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Abstract. Recently, there have been considerable interests in the multiprocessor job scheduling
problem, in which a job can be processed in parallel on one of several alternative subsets of processors.
In this paper, a polynomial time approximation scheme is presented for the problem in which the
number of processors in the system is a fixed constant. This result is the best possible because of
the strong NP-hardness of the problem and is a significant improvement over the past results: the
best previous result was an approximation algorithm of ratio 7/6 + ε for 3-processor systems based
on Goemans’s algorithm for a restricted version of the problem.
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1. Introduction. One of the assumptions made in classical scheduling theory is
that a job is always executed by one processor at a time. With advances in parallel
algorithms, this assumption may no longer be valid for job systems. For example, in
semiconductor circuit design workforce planning, a design project is to be processed
by a group of people. The project contains n jobs, and each job can be worked
on by one of a set of alternatives, where each alternative consists of one or more
persons in the group working simultaneously on the particular job. The processing
time of each job depends on the subgroup of people being assigned to handle the
job. Note that the same person may belong to several different subgroups. Now the
question is how we can schedule the jobs so that the project can be finished as early
as possible. Other applications include (i) the berth allocation problem [23], where
a large vessel may occupy several berths for loading and unloading, (ii) diagnosable
microprocessor systems [22], where a job must be performed on parallel processors in
order to detect faults, (iii) manufacturing, where a job may need machines, tools, and
people simultaneously (this gives an example for a system in which processors may
have different types), and (iv) scheduling a sequence of meetings where each meeting
requires a certain group of people [11]. In the scheduling literature [17], these kinds
of problems are called multiprocessor job scheduling problems.

Among the others, two types of multiprocessor job scheduling problems have
been extensively studied [7, 24]. The first type is the Pm|fix|Cmax problem, in which
the subset of processors and the processing time for parallel processing each job are
fixed. The second type is a more general version, the Pm|set|Cmax problem, in which
each job may have a number of alternative processing modes and each processing
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mode specifies a subset of processors and the job processing time on that particular
processor subset. The objective for both problems is to construct a scheduling of
minimum makespan on the m-processor system for a given list of jobs. The jobs are
supposed to be nonpreemptive.

Approximability of the multiprocessor job scheduling problems has been stud-
ied. The P2|set|Cmax problem is a generalized version of the classical job scheduling
problem on a 2-processor system [13]; thus it is NP-hard. Hoogeveen, van de Velde,
and Veltman [18] showed that the P3|fix|Cmax problem (thus also the P3|set|Cmax

problem) is NP-hard in the strong sense; thus it does not have a fully polynomial
time approximation scheme unless P = NP (see also [4, 5]). Blazewicz et al. [4]
developed a polynomial time approximation algorithm of ratio 4/3 for the problem
P3|fix|Cmax, which was improved later by Dell’Olmo, Speranza, and Tuza [10], who
gave a polynomial time approximation algorithm of ratio 5/4 for the same problem.
Both algorithms are based on the study of a special type of schedulings called normal
schedulings. Goemans [14] further improved the algorithms by giving a polynomial
time approximation algorithm of ratio 7/6 for the P3|fix|Cmax problem. More re-
cently, Amoura et al. [1] developed a polynomial time approximation scheme for the
problem Pm|fix|Cmax for every fixed integer m.

Approximation algorithms for the Pm|set|Cmax problem were not as successful as
that for the Pm|fix|Cmax problem. Bianco et al. [3] presented a polynomial time
approximation algorithm for the Pm|set|Cmax problem whose approximation ratio is
bounded by m. Chen and Lee [8] improved their algorithm by giving a polynomial
time approximation algorithm for the Pm|set|Cmax problem with an approximation
ratio m/2 + ε. Miranda [25] showed that the problem P3|set|Cmax can be approx-
imated in polynomial time with a ratio 7/6 + ε. Before the present paper, it was
unknown whether there is a polynomial time approximation algorithm with ratio c
for the problem Pm|set|Cmax, where c is a constant independent of the number m of
processors in the system.

In this paper, we present a polynomial time approximation scheme for the problem
Pm|set|Cmax. Our algorithm combines the techniques developed by Amoura et al.
[1], who split jobs into large jobs and small jobs, and the techniques developed by
Dell’Olmo, Speranza, and Tuza [10] and Goemans [14] on normal schedulings, plus the
standard dynamic programming and scaling techniques. More precisely, based on a
classification of large jobs and small jobs, we introduce the concept of (m, ε)-canonical
schedulings, which can be regarded as a generalization of the normal schedulings. We
show that for any job list, there is an (m, ε)-canonical scheduling whose makespan
is very close to the optimal makespan. Then we show how this (m, ε)-canonical
scheduling can be approximated. Combining these two steps gives us a polynomial
time approximation scheme for the Pm|set|Cmax problem.

Our result is the best possible in the following sense: because the problem
Pm|set|Cmax is NP-hard in the strong sense, it is unlikely that our algorithm can
be further improved to a fully polynomial time approximation scheme [13]. More-
over, the polynomial time approximation scheme cannot be extended to the more
general problem P |set|Cmax, in which the number m of processors in the system is
given as a parameter in the input: it can be shown that there is a constant δ > 0
such that the problem P |set|Cmax has no polynomial time approximation algorithms
whose approximation ratio is bounded by nδ [25].

The paper is organized as follows. Section 2 gives necessary background and
preliminaries for the problem. In section 3 we introduce (m, ε)-canonical schedulings
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and study their properties. Section 4 presents the polynomial time approximation
scheme for the problem Pm|set|Cmax and section 5 concludes with some remarks and
further research directions.

2. Preliminaries. We assume readers’ familiarity with the basic concepts in
approximation theory [13], such as approximation algorithms, approximation ratios,
polynomial time approximation schemes, and fully polynomial time approximation
schemes.

The Pm|set|Cmax problem is a scheduling problem minimizing the makespan for
a set of jobs, each of which may have several alternative processing modes. More
formally, an instance J of the problem Pm|set|Cmax is a list of jobs: {J1, J2, . . . , Jn},
where each job Ji is associated with a list of alternative processing modes: Ji =
[Mi1, . . . ,Mipi ]. Each processing mode (or simply mode) Mij is specified by a pair
(Qij , tij), where Qij is a subset of processors in the m-processor system and tij is an
integer indicating the parallel processing time of the job Ji on the processor set Qij .
In case there is no ambiguity, we also say that the processor set Qij is a mode for
the job Ji. For each job Ji = [Mi1, . . . ,Mipi ], where Mij = (Qij , tij), we let mini be
the minimum tij over all j, 1 ≤ j ≤ pi. The value mini will be called the minimum
parallel processing time for the job Ji.

Given a list J = {J1, . . . , Jn} of jobs, a scheduling Γ(J ) of J on the m-processor
system consists of two parts: (1) determination of a processing mode for each job
Ji in J and (2) determination of the starting execution time for each job under the
assigned mode so that at any moment, each processor in the system is used for (maybe
parallel) processing at most one job (assuming that the system starts at time τ = 0).
The makespan of the scheduling Γ(J ) is the latest finishing time of a job in J under
the scheduling Γ(J ). Let Opt(J ) denote the minimum makespan over all schedulings
for J . The Pm|set|Cmax problem is for a given instance J to construct a scheduling
of makespan Opt(J ) for J .

Let Pm be the set of the m processors in the m-processor system. A collection
{P ′1, . . . , P ′k} of k nonempty subsets of Pm is a k-partition of Pm if Pm =

⋃k
i=1 P

′
i and

P ′i ∩ P ′j = ∅ for all i �= j. A collection of subsets of Pm is a partition of Pm if it is
a k-partition for some integer k ≥ 1. The total number Bm of different partitions of
the set Pm is called the mth Bell number [16]. It can be proved easily by induction
that Bm ≤ m!.

Another combinatorial fact we need for analysis of our scheduling algorithm is
the “cut-index” in a nonincreasing sequence of integers.

Lemma 2.1. Let T = {t1, t2, . . . , tn} be a nonincreasing sequence of integers, let
m ≥ 2 be a fixed integer, and let ε > 0 be an arbitrary real number. Then there is an
index j0 (with respect to m and ε) such that

(1) j0 = (3mBm + 1)k, where k ≤ �m/ε� is an integer and
(2) for any subset T ′ of at most 3j0mBm integers tq in T with q > j0, we have

∑
tq∈T ′

tq ≤ (ε/m)

n∑
i=1

ti.

Proof. To simplify expressions, let bm = 3mBm + 1. Decompose the sum t1 +
t2 + · · ·+ tn into subsums

A1 = t1 + · · ·+ tbm ,

A2 = tbm+1 + · · ·+ tb2m ,
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· · · · · ·
Aj = tbj−1

m +1 + · · ·+ tbjm ,

· · · · · ·
Ah = tbh−1

m +1 + · · ·+ tn,

where h = �log n/ log bm�.
Since

∑h
j=1Aj =

∑n
i=1 ti, there are at most �m/ε� subsums Aj larger than

(ε/m)
∑n
i=1 ti. Let Ak+1 be the first subsum such that Ak+1 ≤ (ε/m)

∑n
i=1 ti; then

k ≤ �m/ε�.
Let j0 = bkm = (3mBm + 1)k. Since the sum of the first bk+1

m − bkm = 3j0mBm
integers tq in T with q > j0 = bkm is bounded by (ε/m)

∑n
i=1 ti,

Ak+1 = tbkm+1 + · · ·+ tbk+1
m
≤ (ε/m)

n∑
i=1

ti,

and the sequence T = {t1, t2, . . . , tn} is nonincreasing, we conclude that for any subset
T ′ of T of at most 3j0mBm integers tq with q > j0, we must have

∑
tq∈T ′

tq ≤ (ε/m)

n∑
i=1

ti.

This completes the proof.
For the nonincreasing sequence T of integers, we will denote by jm,ε the smallest

index that satisfies conditions (1) and (2) in Lemma 2.1. The index jm,ε will be called
the cut-index for the sequence T .

3. On (m, ε)-canonical schedulings. In this section, we first assume that the
mode assignment for each job in the instance J is decided and discuss how we schedule
the jobs in J under the mode assignment to the processor set Pm. By this assumption,
the job list J is actually an instance for the Pm|fix|Cmax problem (recall that the
Pm|fix|Cmax problem is the problem Pm|set|Cmax with the restriction that every job
in an instance has only one processing mode).

Let J = {J1, . . . , Jn} be an instance for the Pm|fix|Cmax problem, where each
job Ji requires a fixed set Qi of processors for parallel execution with processing time
ti for i = 1, 2, . . . , n. Without loss of generality, assume that the processing time
sequence T = {t1, t2, . . . , tn} is nonincreasing.

For the fixed numberm of processors in the system and for an arbitrarily given real
number ε > 0, let jm,ε be the cut-index for the sequence T as defined in Lemma 2.1.
That is, jm,ε = (3mBm + 1)k, where k is an integer bounded by �m/ε�, and for any
subset T ′ of at most 3jm,εmBm integers tq in T with q > jm,ε, we have

∑
tq∈T ′ tq ≤

(ε/m)
∑n
i=1 ti. We split the job set J into two subsets

JL = {Ji | i ≤ jm,ε}, JS = {Ji | i > jm,ε}.(3.1)

The jobs in JL will be called large jobs and the jobs in JS will be called small jobs.
Let Γ(J ) be a scheduling for the job set J . Consider the nondecreasing sequence

{τ1, τ2, . . . , τh} of integers, where τ1 = 0, τh = +∞, h = 2jm,ε + 2, and τi, 1 < i < h,
are the starting or finishing times of the jm,ε large jobs in Γ(J ). A small job block
χ in Γ(J ) consists of a subset P ′ ⊆ Pm of processors and a time interval [τp, τp+1],
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1 ≤ p ≤ h− 1, such that the subset Pm − P ′ of processors are exactly those that are
executing large jobs in the time interval [τp, τp+1]. The value τp+1 − τp will be called
the height and the processor set P ′ will be called the type of the small job block χ.

Therefore, the subset P ′ of processors associated with the small job block χ are
those processors that are either idle or used for executing small jobs in the time
interval [τp, τp+1]. Note that the small job block χ can be of height 0 when τp = τp+1.
The small job block of time interval [τh−1,+∞], where τh−1 is the latest finish time
of a large job, will be called the “last small job block.” Note that the last small job
block has type Pm.

Let χ be a small job block associated with a processor set P ′ and a time interval
[τp, τp+1]. The small job block at any time moment τ in the time interval [τp, τp+1]
can be characterized uniquely as a collection [Q1, . . . , Qs] of pairwise disjoint subsets
of the processor set P ′ such that at the time τ , for i = 1, . . . , s, all processors in
the subset Qi are used for parallel execution on the same small job (thus, the subset
P ′ −⋃si=1Qi is the subset of idle processors at time τ). The collection [Q1, . . . , Qs]
will be called the type of the time moment τ . A layer in the small job block χ is a
maximal time interval [τ ′, τ ′′] in [τp, τp+1] such that all time moments τ between τ ′

and τ ′′ are of the same type. The type of the layer is equal to the type of any time
moment in the layer and the height of the layer is τ ′′ − τ ′.

Let L1 and L2 be two layers in the small job block χ of types [Q1, . . . , Qs] and
[R1, . . . , Rt], respectively. We say that layer L1 covers layer L2 if {R1, . . . , Rt} ⊆
{Q1, . . . , Qs}. In particular, if L1 and L2 are two consecutive layers in the small job
block χ such that layer L2 starts right after layer L1 finishes and L1 covers L2, then
layer L2 is actually a continuation of the layer L1 with some of the small jobs finished.

Definition 3.1. A floor σ in the small job block χ is a sequence {L1, L2, . . . , Lz}
of consecutive layers such that (1) for i = 2, . . . , z, layer Li starts right after layer
Li−1 finishes, and layer Li−1 covers layer Li; and (2) all small jobs interlacing layer
L1 start in layer L1 and all small jobs interlacing layer Lz finish in layer Lz.

An example of a floor is given in Figure 3.1(a). Note that a small job block may
not have any nonempty floor at all, as shown in Figure 3.1(b).

Remark 1. There are a few important properties of floors in a small job block.
Suppose that the layer L1 starts at time τ ′ while layer Lz finishes at time τ ′′. Then
by property (2) in the definition, no small jobs cross the floor boundaries τ ′ and τ ′′.
Therefore, the floor σ can be regarded as a single job that uses the processor set P ′,
starts at time τ ′, and finishes at time τ ′′. The height of the floor σ is defined to be
τ ′′ − τ ′, which is equal to the sum of the heights of the layers L1, . . ., Lz. Second,
since all floors in the small job block χ are for the same processor subset P ′ and
there are no small jobs crossing the starting and finishing times of any floors, the
floors in the same small job block χ can be rearranged in any order but can still fit
into the small job block without exceeding the height of the small job block. Finally,
property (1) in the definition ensures that no matter how the small jobs in a floor
are rearranged, a simple greedy algorithm is sufficient to refit the small jobs into the
floor without exceeding the floor height. The greedy algorithm is based on the idea
of the well-known Graham’s list scheduling algorithm for the classical job scheduling
problem [15].

Definition 3.2. Let J be an instance of the problem Pm|fix|Cmax and let π be
any permutation of the jobs in J . The list scheduling algorithm based on the ordering
π is to schedule each job Ji of mode Qi in J , following the ordering of π, at the earliest
time when the processor subset Qi becomes available.
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Fig. 3.1. (a) a floor {L1, L2, L3}; (b) a small job block with no floor.

.

Lemma 3.3. Let Jσ be the set of small jobs in the floor σ. The list scheduling
algorithm based on any ordering π of the jobs in Jσ will always reconstruct the floor
σ.

Proof. Suppose that the first layer in the floor σ is of type [Q1, . . . , Qs]. Every
job in Jσ must have a mode Qi for some i, and no processor subset Qi can become
idle before its final completion time. The jobs of each mode Qi in Jσ can be executed
by the processor subset Qi in any order without changing the completion time of Qi.
Since the list scheduling algorithm starts each job at its earliest possible time (thus
no subset Qi can become idle before its final completion time), the completion time
for each subset Qi will not be changed. Therefore, the list scheduling algorithm will
construct a floor with exactly the same layers.

Definition 3.4. Let [Q1, . . . , Qs] be a partition of the processor subset P
′. We

say that we can assign the type [Q1, . . . , Qs] to a floor σ = {L1, . . . , Lz} if the type of
the layer L1 is a subcollection of {Q1, . . . , Qs}.

It is possible that several different types can be assigned to the same floor as long
as the type of the floor is a subcollection of the assigned floor types. For example, let
[Q1, . . . , Qs] be a partition of the processor subset P ′. If the first layer L1 in a floor
σ is of type [Q3, . . . , Qs], then we can assign either type [Q1, Q2, Q3, . . . , Qs] or type
[Q1 ∪Q2, Q3, . . . , Qs] to the floor σ.

Definition 3.5. A small job block χ is a tower if it is constituted by a sequence
of floors such that we can assign types to the floors so that no two floors in the tower
χ are of the same type.

Note that since each floor type is a partition of the processor subset P ′, a tower
contains at most Bm floors, where Bm ≤ m!, the mth Bell number, is the number of
different partitions of a set of m elements.

In our discussion, we will be concentrating on schedulings of a special form in the
following sense.

Definition 3.6. Let J be an instance of the problem Pm|fix|Cmax, which is
divided into large job set JL and small job set JS as given in (3.1) for a fixed integer
m > 2 and a fixed constant ε > 0. A scheduling Γ(J ) of J is (m, ε)-canonical if every
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small job block in Γ(J ) is a tower.
Remark 2. Note that in an (m, ε)-canonical scheduling, no small jobs cross the

boundary of a tower. Therefore, a tower of height t and associated with a processor
set Q can be simply regarded as a job of mode (Q, t).

We first show that an (m, ε)-canonical scheduling Γ(J ) of J can be constructed
by the list scheduling algorithm when large jobs and towers in Γ(J ) are given in a
proper order.

Lemma 3.7. Let Γ(J ) be an (m, ε)-canonical scheduling for the job set J . Let
π be the sequence of the large jobs and towers in Γ(J ), ordered in terms of their
starting times in Γ(J ). Then the list scheduling algorithm based on the ordering π,
which regards each tower as a single job, constructs a scheduling of J with makespan
not larger than that of Γ(J ).

Proof. Let Ji = {J1, . . . , Ji} be any prefix of the ordered sequence π, where each
Jj is either a large job or a tower. Let Γ(Ji) be the scheduling of Ji obtained from
Γ(J ) by removing all large jobs and towers that are not in Ji and let Γ′(Ji) be the
scheduling by the list scheduling algorithm on the jobs in Ji. By induction, it is not
difficult to prove that the completion time of each processor in Γ′(Ji) is not larger than
the completion time of the same processor in Γ(Ji). For Ji = J , this implies that
the makespan of the scheduling constructed by the list scheduling algorithm based
on the ordering π is not larger than the makespan of the (m, ε)-canonical scheduling
Γ(J ).

Thus, once the ordering of large jobs and towers is decided, it is easy to construct
a scheduling that is not worse than the given (m, ε)-canonical scheduling. In the
following, we will prove that for any instance J for the problem Pm|fix|Cmax, there is
an (m, ε)-canonical scheduling whose makespan is very close to the optimal makespan.

Theorem 3.8. Let J be an instance for the problem Pm|fix|Cmax. Then for
any ε > 0, there is an (m, ε)-canonical scheduling Γ(J ) of J such that the makespan
of Γ(J ) is bounded by (1 + ε)Opt(J ).

Proof. Let Γ1(J ) be an optimal scheduling of makespan Opt(J ) for J . We
construct an (m, ε)-canonical scheduling for J based on the optimal scheduling Γ1(J ).
Let JL and JS be the set of large jobs and the set of small jobs in J , respectively,
according to the definition in (3.1). Consider a small job block χ in the scheduling
Γ1(J ).

Assume that the small job block χ is associated with a processor set P ′ of r
processors, r ≤ m, and a time interval [τp, τp+1]. Let [T1, . . . , Ty] be the list of all
partitions of the processor set P ′, where y = Br ≤ Bm. We divide the layers in the
small job block χ into groups, each corresponding to a partition of P ′, as follows.
A layer of type T ′ is put in the group corresponding to a partition Tj if T ′ is a
subcollection of Tj . Note that a layer type T ′ may be a subcollection of more than
one partition of P ′. In this case, we put the layer arbitrarily into one and only one of
the groups to ensure that each layer belongs to only one group.

For each partition Tj of P
′, we construct a floor frame σj whose type is Tj and

height is equal to the sum of heights of all layers belonging to the group corresponding
to the partition Tj . Note that so far we have not yet actually assigned any small jobs
to any floor frames σ1, . . ., σy. Moreover, since each layer belongs to exactly one of
the groups, it is easy to see that the sum

∑y
j=1 height(σj) of the heights of the floor

frames σ1, . . ., σy is equal to the sum of the heights of all layers in the small job block
χ, which is equal to the height of the small job block χ.

The construction for the floor frames for the last small job block in Γ1(J ) is
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slightly different: we group layers only in which not all processors are idle. Thus, the
sum of the heights of all floor frames in the last small job block is equal to Opt(J )−τ0,
where τ0 is the latest finish time for some large job in the scheduling Γ1(J ).

After the construction of the floor frames for each small job block in the scheduling
Γ1(J ), we assign the small jobs in JS to the floor frames using the following greedy
method. For each small job J that requires a parallel processing by a processor subset
Q, we assign J to an arbitrary floor frame σ in a small job block as long as the floor
frame σ satisfies the following conditions: (1) the type of the floor frame σ contains
the subset Q and (2) adding the job J to σ does not exceed the height of the floor
frame σ (if there are more than one floor frames satisfying these conditions, arbitrarily
pick one of them). Note that we assign a job to a floor frame only when the mode
of the job is contained in the type of the floor frame. Therefore, this assignment will
never leave a “gap” between two jobs in the same floor frame.

The above assignment of small jobs in JS to floor frames stops when none of the
small jobs left in JS can be assigned to any of the floor frames according to the above
rules. Now each floor frame becomes a floor.

For each small job block χ in Γ1(J ), let Sχ be the set of floor frames in χ. Since
the height of a resulting floor is not larger than the height of the corresponding floor
frame, the sum of the heights of the floors resulting from the floor frames in Sχ is
not larger than the height of the small job block χ. Therefore, we can put all these
floors into the small job block χ (in an arbitrary order) to make χ a tower. Doing this
for all small job blocks in Γ1(J ) gives an (m, ε)-canonical scheduling Γ2(JL ∪J ′S) for
the job set JL ∪ J ′S , where J ′S is the set of small jobs that have been assigned to the
floor frames in the above procedure. The makespan of the scheduling Γ2(JL ∪ J ′S)
is bounded by Opt(J ). Now the only thing left is that we still need to schedule the
small jobs that have not been assigned to any floor frames. Let J ′′S = JS −J ′S be the
set of small jobs that are not assigned to any floor frames by the above procedure.
We want to demonstrate that there are not many jobs in the set J ′′S .

By the definition, the number of small job blocks in the scheduling Γ1(J ) is
2jm,ε+1 ≤ 3jm,ε. Since each small job block is associated with at most m processors,
the number of floor frames constructed in each small job block is bounded by Bm.
Therefore, the total number of floor frames we constructed from the scheduling Γ1(J )
is bounded by 3Bmjm,ε. Moreover, each floor type is a collection of at most m
processor subsets.

If the set J ′′S contains more than 3mBmjm,ε small jobs, then there must be a
subset Q of processors such that the number of small jobs of mode Q in J ′′S is larger
than the number of the constructed floor frames whose type contains the subset Q.
Let {σ1, . . . , σd} be the set of floor frames whose type contains the subset Q.

By our assignment rules, assigning any job of mode Q in J ′′S to a floor frame in
{σ1, . . . , σd} would exceed the height of the corresponding floor frame. Since there
are more than d small jobs of mode Q in J ′′S , the sum of processing times of all small

jobs of mode Q in JS is larger than
∑d
i=1 height(σi). On the other hand, by our

construction of the floor frames in each small job block χ, the sum of the heights of
the floor frames in χ whose type contains Q should not be smaller than the sum of
the heights of the layers in χ whose type contains Q. Summarizing this over all small
job blocks, we conclude that the sum

∑d
i=1 height(σi) is not smaller than the sum

of processing times of all small jobs of mode Q in JS (since each small job of mode
Q must be contained in consecutive layers whose type contains Q). This derives a
contradiction. The contradiction shows that there are at most 3mBmjm,ε small jobs
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in the set J ′′S .
Now we assign the small jobs in J ′′S to the floor frames in the last small job block

in the scheduling Γ2(JL ∪J ′S). For each small job J of mode Q in J ′′S , we arbitrarily
assign J to a floor frame whose type contains Q in the last small job block, even if
this assignment exceeds the height of the floor frame. Note that the last small job
block is associated with the whole processor set Pm, so for any mode Q, there must
be a floor frame in the last small job block whose type contains the processor subset
Q. This procedure stops with all small jobs in J ′′S assigned to floor frames in the last
small job block. It is easy to see that the resulting scheduling is an (m, ε)-canonical
scheduling Γ(J ) of the original job set J . Moreover, since the makespan of the
scheduling Γ2(JL ∪ J ′S) is bounded by Opt(J ), the makespan of the (m, ε)-canonical
scheduling Γ(J ) is bounded by

Opt(J ) +
∑

J∈J ′′
S

t(J),

where t(J) is the parallel processing time of the small job J . Since there are at most
3mBmjm,ε small jobs in the set J ′′S , by Lemma 2.1,

∑

J∈J ′′
S

t(J) ≤ (ε/m)

n∑
i=1

ti.

It is easy to see that Opt(J ) ≥ (
∑n
i=1 ti)/m. Therefore, the makespan of the (m, ε)-

canonical scheduling Γ(J ) is bounded by (1+ ε)Opt(J ). This completes the proof of
the theorem.

Before we close this section, we introduce one more definition.
Definition 3.9. Let σ be a floor of type [Q1, . . . , Qs] and height l, where Q1,

. . ., Qs are pairwise disjoint subsets of processors in the processor set Pm. Then each
subset Qi plus the height l is called a room of type Qi in the floor σ.

4. The approximation scheme. Now we come back to the original problem
Pm|set|Cmax. Recall that an instance J of the problem Pm|set|Cmax is a set of jobs
{J1, J2, . . . , Jn}, where each job Ji is given by a list of alternative processing modes
[Mi,1, . . . ,Mi,pi ] in which each processing modeMi,j = (Qi,j , ti,j) specifies the parallel
processing time ti,j of the job Ji on the subset Qi,j of processors in the m-processor
system.

In order to describe our polynomial time approximation scheme for the problem,
let us first discuss why this problem is more difficult than the classical job scheduling
problem.

In the classical job scheduling problem, each job is executed by one processor in
the system. Therefore, the order of executions of jobs in each processor is not crucial:
the running time of the processor is simply equal to the sum of the processing times
of the jobs assigned to the processor. Therefore, the decision of which job should
be assigned to which processor, in any order, will uniquely determine the makespan
of the resulting scheduling. This makes it possible to use a dynamic programming
approach that extends a scheduling for a subset of jobs to that for a larger subset.

The situation in the general multiprocessor job scheduling problem Pm|set|Cmax,
on the other hand, is more complicated. In particular, the makespan of a scheduling
depends not only on the assignment of processing modes to jobs but also on the order
in which the jobs are executed. Therefore, the techniques of extending a scheduling
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for a subset of jobs in the classical job scheduling problem are not directly applicable
here.

Theorem 3.8 shows that there is an (m, ε)-canonical scheduling whose makespan
is very close to the optimal makespan. Therefore, constructing a scheduling whose
makespan is not larger than the makespan of a good (m, ε)-canonical scheduling will
give a good approximation to the optimal schedulings.

Nice properties of an (m, ε)-canonical scheduling are that within the same tower,
the order of the floors does not affect the height of the tower and that within the same
floor, the order of the small jobs does not affect the height of the floor (see Remarks
1 and 2 in the previous section). Therefore, the only factor that affects the heights of
towers and floors is the assignments of jobs to towers and floors. This makes it become
possible, at least for small jobs, to apply the techniques in classical job scheduling
problems to our current problem. This is described as follows.

First, suppose that we can somehow divide the job set J into large job set JL
and small job set JS . Let us start with an (m, ε)-canonical scheduling Γ(J ) of the
job set J . The scheduling Γ(J ) gives a nondecreasing sequence {τ0, τ1, . . . , τp+1} of
integers, where τ0 = 0, τp+1 = +∞, p = 2jm,ε, and τi, 0 < i < p+ 1, are the starting
or finishing times of the jm,ε large jobs in JL. Let the p + 1 corresponding towers
be {χ0, χ1, . . . , χp}, where the tower χj consists of a subset P ′j of processors and the
time interval [τj , τj+1].

We suppose that the subset P ′j of processors associated with each tower χj is
known and that the large jobs and towers of the scheduling Γ(J ) are ordered into a
sequence π in terms of their starting times. However, we assume that the assignment
of small jobs to the rooms of the scheduling Γ(J ) is unknown. We show how this
information can be recovered.

For each tower χj associated with the processor set P ′j , the number of floors in
the tower χj is qj = Br ≤ Bm, where r is the number of processors in the set P ′j .
Let σj,1, . . ., σj,qj be the floors of all possible different types in the tower χj . For
each floor σj,q, let γj,q,1, . . ., γj,q,rjq be the rooms in the floor σj,q, where rjq ≤ m.
Therefore, the configuration of the small jobs in the (m, ε)-canonical scheduling Γ(J )
can be specified by a ((2jm,ε + 1)Bmm)-tuple

[t0,1,1, . . . , tj,q,r, . . . , t2jm,ε,Bm,m],

where tj,q,r specifies the running time of the room γj,q,r (for index {j, q, r} for which
the corresponding room γj,q,r does not exist, we can simply set tj,q,r = −1).

Suppose that an upper bound T0 for the running time of rooms is derived; then
we can use a Boolean array D of (2jm,ε + 1)Bmm + 1 dimensions to describe the
configuration of a subset of small jobs in a scheduling

D[0..nS ; 0. .T0, . . . . . . , 0.︸ ︷︷ ︸
(2jm,ε+1)Bmm

.T0],

where nS = n− jm,ε is the number of small jobs in J such that

D[i; t0,1,1, . . . , tj,q,r, . . . , t2jm,ε,Bm,m] = True

if and only if there is a scheduling on the first i small jobs to the floors in Γ(J ) such
that the running time of the room γj,q,r is tj,q,r (recall that the running time of a
room is dependent only on the assignment of small jobs to the room and independent
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of the order in which the small jobs are executed in the room). Initially, all array
elements in the array D[· · · · · ·] have value False.

Suppose that a configuration of a scheduling for the first i− 1 small jobs is given:
D[i− 1; t0,1,1, . . . , tj,q,r, . . . , t2jm,ε,Bm,m] = True.(4.1)

We say that the ith small job J ′i under mode Qi is addable to a room γj,q,r in the
configuration in (4.1) if the room γj,q,r is of type Qi and adding the job J ′i to the
room does not exceed the upper bound T0 of the running time of the room γj,q,r.

Now we are ready to present our dynamic programming algorithm for scheduling
small jobs into the rooms in the (m, ε)-canonical scheduling Γ(J ). The algorithm is
given in Figure 4.1.

Note that the algorithm Schedule-Small may not return an (m, ε)-canonical
scheduling for the job set J . In fact, there is no guarantee that the height of the
towers constructed in the algorithm does not exceed the height of the corresponding
towers in the original (m, ε)-canonical scheduling Γ(J ). We first show below that the
scheduling constructed by the algorithm Schedule-Small has its makespan bounded
by the makespan of the original (m, ε)-canonical scheduling Γ(J ).

The following lemma can be proved by induction on the index i.
Lemma 4.1. For all i, 0 ≤ i ≤ nS, the array element D[i; . . . , tj,q,r, . . .] = True

if and only if there is a way to assign modes to the first i small jobs and arrange them
into the rooms such that the room γj,q,r has running time tj,q,r for all {j, q, r}.

Lemma 4.1 gives us directly the following corollary.
Corollary 4.2. If the sequence π of large jobs and towers is ordered in terms

of their starting times in the (m, ε)-canonical scheduling Γ(J ), then the algorithm
Schedule-Small constructs a scheduling for the job set J with makespan bounded
by the makespan of the (m, ε)-canonical scheduling Γ(J ).

Proof. Note that the (m, ε)-canonical scheduling Γ(J ) gives a way to assign
and arrange all small jobs in JS into the rooms. According to Lemma 4.1, the
corresponding array element in the array D must have value True:

D[nS ; . . . , tj,q,r, . . .] = True.

For this array element, step 3 of the algorithm will construct the towers that have ex-
actly the same types and heights as their corresponding towers in the (m, ε)-canonical
scheduling Γ(J ). (This may not give exactly the same assignment of small jobs to
rooms. However, the running times of the corresponding rooms must be exactly the
same.) Now since the sequence π is given in the order sorted by the starting times of
the large jobs and towers in the (m, ε)-canonical scheduling Γ(J ), by Lemma 3.7, the
call in step 3 to the list scheduling algorithm based on the order π and this configu-
ration will construct a scheduling whose makespan is not larger than the makespan
of the (m, ε)-canonical scheduling Γ(J ).

Finally, since step 4 of the algorithm returns the scheduling of the minimum
makespan constructed in step 3, we conclude that the algorithm returns a scheduling
whose makespan is not larger than the makespan of Γ(J ).

We analyze the algorithm Schedule-Small.
Lemma 4.3. Let T0 be the upper bound used by the algorithm Schedule-Small

on the running time of the rooms. Then the running time of the algorithm Schedule-

Small is bounded by O(n2mλm,εT
λm,ε

0 ), where λm,ε = (2jm,ε + 1)Bmm.
Proof. The number nS of small jobs in JS is bounded by the total number n of

jobs in J ; each small job may have at most 2m− 1 ≤ 2m different modes. Also, as we
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Algorithm. Schedule-Small
Input: The set JS of small jobs and an order π of the large jobs and

towers in Γ(J ).
Output: A scheduling for the job set J .
1. D[0; 0, . . . , 0] = True;
2. for i = 1 to nS do

for each mode Qij of the small job J ′
i with processing time tij

for each D[i− 1; . . . , tj,q,r, . . .] = True such that the job J ′
i

under mode Qij is addable to the room γj,q,r
D[i; . . . , tj,q,r + tij , . . .] = True;

3. for each D[nS ; . . . , tj,q,r, . . .] = True
call the list scheduling algorithm based on the order π to
construct a scheduling for J in which the room γj,q,r has
running time tj,q,r for all tj,q,r ≥ 0;

4. return the scheduling constructed in step 3 with the minimum makespan.

Fig. 4.1. Scheduling small jobs in floors.

indicated before, the number of rooms is bounded by λm,ε = (2jm,ε + 1)Bmm. Since
the running time for each room is bounded by T0, for each fixed i, there cannot be more

than T
λm,ε

0 elements D[i−1; ∗, . . . , ∗]. Finally, for each D[i−1; . . . , tj,q,r, . . .] = True,
we can check each of the λm,ε component values tj,q,r to decide if the job J ′i under
mode Qij is addable to the room γj,q,r. In conclusion, the running time of step 2 in
the algorithm Schedule-Small is bounded by

O(n · 2m · Tλm,ε

0 · λm,ε).

We will also attach the mode assignment and room assignment of the job J ′i
to each element D[i; . . . , tj,q,r, . . .] = True. With this information, from a given
configuration D[nS ; · · · , tj,q,r, · · ·] = True, a corresponding scheduling for the small
jobs in the rooms can be easily constructed by backtracking the dynamic programming
procedure and its makespan can be computed in time λm,ε. Therefore, step 3 of the
algorithm takes time

O(n · Tλm,ε

0 · λm,ε).

In conclusion, the running time of the algorithm Schedule-Small is bounded

by O(n2mλm,εT
λm,ε

0 ), where λm,ε = (2jm,ε + 1)Bmm.
We now discuss how an upper bound T0 for the running time of rooms can

be derived. Given an instance J = {J1, J2, . . . , Jn} of the problem Pm|set|Cmax

and a positive real number ε > 0, where each job Ji is specified by a list of al-
ternative processing modes, Ji = [Mi1, . . . ,Mipi ] and Mij = (Qij , tij). Recall that
mini = min{tij | 1 ≤ j ≤ pi}. Then the sum T0 =

∑n
i=1 mini is obviously an up-

per bound on the makespan of the (m, ε)-canonical schedulings for J . (T0 is the
makespan of a straightforward scheduling that assigns each job Ji the mode corre-
sponding to mini, then starts each job Ji when the previous job Ji−1 finishes. There-
fore, if no (m, ε)-canonical scheduling has makespan better than T0, we simply return
this straightforward scheduling.) In particular, the value T0 is an upper bound for the
running time for all rooms. Moreover, since the job set J takes at least T0 amount of
“work” (the work taken by a job is equal to the parallel processing time multiplied by
the number of processors involved in this processing) and the system hasm processors,
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the value T0 also provides a lower bound for the optimal makespan Opt(J ):

Opt(J ) ≥ T0/m.

In order to apply algorithm Schedule-Small, we first need to decide how the
set J is split into large job set JL and small job set JS , what are the modes for the
large jobs, what are the types for the towers, and what is the ordering π for the large
jobs and towers on which the list scheduling algorithm can be applied. According to
Lemma 2.1, the number of large jobs is of form jm,ε = (3mBm +1)k for some integer
k ≤ �m/ε� and by the definition, the number of towers is 2jm,ε + 1. When m and
ε are fixed, the number of large jobs and the number of towers are both bounded
by a constant. Therefore, we can use any brute force method to exhaustively try all
possible cases.

To achieve a polynomial time approximation scheme for the problem Pm|set|Cmax,
we combine the standard scaling techniques [20] with the concept of (m, ε)-canonical
schedulings as follows.

Let J = {J1, . . . , Jn} be an instance of the Pm|set|Cmax problem, where Ji =
[Mi1, . . . ,Mipi ] and Mij = (Qij , tij). We let K = ε · T0/(nm) and construct another
instance J ′ = {J ′1, . . . , J ′n} for the problem, where J ′i = [M ′i1, . . . ,M

′
ipi
] and M ′ij =

(Qij , �tij/K�). In other words, the jobs in J ′ are identical to those in J except
that all processing times tij are replaced by �tij/K�. We say that the job set J ′
is obtained from the job set J by scaling the processing times by K. We apply the
algorithm described above to the instance J ′ to construct a scheduling for J ′ from
which a scheduling for J is induced. The formal algorithm is presented in Figure 4.2.

We explain how step 5 converts the scheduling Γ0(J ′) for the job set J ′ into a
scheduling Γ0(J ) for the job set J . We first multiply the processing time and the
starting time of each job J ′i in the scheduling Γ0(J ′) by K (but keeping the processing
mode). That is, for the job J ′i of mode Qij and processing time �tij/K� that starts at
time τi in Γ0(J ′), we replace it by a job J ′′i of modeQij and processing timeK ·�tij/K�
and let it start at time Kτi. This is equivalent to proportionally “expanding” the
scheduling Γ0(J ′) by a factor K. Now on this expansion of the scheduling Γ0(J ′),
following the order in terms of their finish times, we do “correction” on processing
times by increasing the processing time of each job J ′′i from K · �tij/K� to tij . (Note
that this increase in processing time may cause many jobs in the scheduling to delay
their starting time by (tij −K · �tij/K�) units. In particular, this increase may cause
the makespan of the scheduling to increase by (tij − K · �tij/K�) units.) After the
corrections on the processing time for all jobs in J , we obtain a scheduling Γ0(J ) for
the job set J .

Lemma 4.4. For fixed m ≥ 2 and δ > 0, the running time of the algorithm
Approx-Scheme for the problem Pm|set|Cmax is bounded by O(n

λm,ε+jm,ε+1), where
ε = δ/2, jm,ε ≤ (3mBm + 1)�m/ε	 and λm,ε = (2jm,ε + 1)Bmm.

Proof. Since the integer k is bounded by �m/ε�, the number j0 of large jobs in J ′L
is bounded by jm,ε ≤ (3mBm+1)

�m/ε	. Therefore, there are at most
(
n
jm,ε

)
= O(njm,ε)

ways to choose the large job set J ′L. Since each job may have up to 2m − 1 < 2m

alternative mode assignments, the total number of mode assignments to each large
job set J ′L is bounded by (2m)jm,ε = 2mjm,ε . Each tower is associated with a subset
of the processor set Pm of m processors. Thus, each tower may be associated with
2m − 1 ≤ 2m different subsets of Pm. Therefore, the number of different sequences of
up to 2jm,ε+1 towers is bounded by (2m)2jm,ε+1 = 22mjm,ε+m. Finally, the number of
permutations of the j0 large jobs and 2j0+1 towers is (3j0+1)!. Summarizing all these
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Algorithm. Approx-Scheme
Input: An instance J for the problem Pm|set|Cmax and δ > 0.
Output: A scheduling of J .
1. ε = δ/2; T0 =

∑n

i=1
mini; K = ε · T0/(nm);

2. let J ′ be the job set obtained by scaling the job set J by K;
3. for k = 0 to �m/ε	 do

j0 = (3mBm + 1)k;
3.1. for each subset J ′

L of j0 jobs in J ′
3.2. for each mode assignment A to the jobs in J ′

L
3.3. for each possible sequence of 2j0 + 1 towers
3.4. for each ordering π of the j0 jobs in J ′

L and the 2j0 + 1 towers
J ′
S = J ′ − J ′

L;
call Schedule-Small on small job set J ′

S and the ordering π
to construct a scheduling for the job set J ′ (use T ′

0 = 
T0/K�
as the upper bound for the running time of rooms);

4. let Γ0(J ′) be the scheduling constructed in step 3 with the minimum
makespan;

5. replace each job J ′
i in Γ0(J ′) by the corresponding job Ji to obtain a

scheduling Γ0(J ) for the job set J ;
6. return the job scheduling Γ0(J ).

Fig. 4.2. The approximation scheme.

together, we conclude that the number of times that the algorithm Schedule-Small
is called is bounded by

O(�m/ε� · njm,ε · 2mjm,ε · 22mjm,ε+m · (3jm,ε + 1)!).(4.2)

When the algorithm Schedule-Small is applied to the job set J ′S , the upper
bound on the running time of the rooms is

T ′0 = �T0/K� = �(nm)/ε� ≤ (nm)/ε+ 1.

According to Lemma 4.3, each call to the algorithm Schedule-Small takes time

O(n2mλm,ε(T
′
0)
λm,ε) = O(n2mλm,ε((nm)/ε+ 1)λm,ε),(4.3)

where λm,ε = (2jm,ε + 1)Bmm.
Combining (4.2) and (4.3) and noting that m and δ thus ε are fixed constants,

we conclude that the running time of the algorithm Approx-Scheme is bounded by
O(nλm,ε+jm,ε+1).

Now we are ready to present our main theorem.
Theorem 4.5. The algorithm Approx-Scheme is a polynomial time approxi-

mation scheme for the problem Pm|set|Cmax.
Proof. As proved in Lemma 4.4, the algorithm Approx-Scheme runs in poly-

nomial time when m and δ are fixed constants. Therefore, we need only to show
that the makespan of the scheduling Γ0(J ) constructed by the algorithm Approx-
Scheme for an instance J of the problem Pm|set|Cmax is at most (1 + δ) times the
optimal makespan Opt(J ) for the instance J . Again let ε = δ/2.

Let Γ(J ) be an optimal scheduling of makespan Opt(J ). Under the scheduling
Γ(J ), the mode assignments of the jobs are fixed. Thus, this particular mode assign-
ment makes us able to split the job set J into large job set JL and small job set JS in
terms of job processing time. According to Theorem 3.8, there is an (m, ε)-canonical
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scheduling Γ1(J ) for the instance J , under the same mode assignments, such that
the makespan of Γ1(J ) is bounded by (1 + ε)Opt(J ).

Consider a room γj,q,r in the (m, ε)-canonical scheduling Γ1(J ). Suppose that
Jp1 , . . ., Jpq are the small jobs assigned to the room γj,q,r by the scheduling Γ1(J ).
Then

∑q
i=1 tpi ≤ T0, where tpi is the processing time for the job Jpi under Γ1(J ),

which is the same as under Γ(J ). Thus we must have
q∑
i=1

�tpi/K� ≤
q∑
i=1

tpi/K ≤ T0/K ≤ T ′0.

Therefore, under the same mode assignments (with processing time tij replaced by
�tij/K�) and the same room assignments, the corresponding scheduling Γ1(J ′) for the
job set J ′ has no rooms with running time exceeding T ′0. Thus, by Lemma 4.1, when
step 3 of the algorithm Approx-Scheme loops to the stage in which the large job set
and their mode assignments, the tower types, and the ordering of the large jobs and the
towers all match that in the scheduling Γ1(J ′), the array element D[nS ; . . . , tj,q,r, . . .]
corresponding to the room configurations of the scheduling Γ1(J ′) must have value
True. Thus, a scheduling Γ′1(J ′) based on this configuration is constructed and its
makespan is calculated. Note that the scheduling Γ′1(J ′) may not be exactly the
scheduling Γ1(J ′). However, they must have exactly the same makespan.

Since step 4 of the algorithm Approx-Scheme picks the scheduling Γ0(J ′) that
has the smallest makespan over all schedulings for J ′ constructed in step 3, we con-
clude that the makespan of the scheduling Γ0(J ′) is not larger than the makespan of
the scheduling Γ′1(J ′), thus not larger than the makespan of the scheduling Γ1(J ′).

As we described in the paragraph before Lemma 4.4, to obtain the corresponding
scheduling Γ0(J ) for the job set J , we first expand the scheduling Γ0(J ′) by K (i.e.,
multiplying the job processing times and starting times in Γ0(J ′) by K). Let the
resulting scheduling be Γ0(J ′′). Similarly we expand the scheduling Γ1(J ′) by K to
obtain a scheduling Γ1(J ′′). The makespan of the scheduling Γ0(J ′′) is not larger
than the makespan of the scheduling Γ1(J ′′) since they are obtained by proportionally
expanding the schedulings Γ0(J ′) and Γ1(J ′), respectively, by the same factor K.

Moreover, the makespan of Γ1(J ′′) is not larger than the makespan of the (m, ε)-
canonical scheduling Γ1(J ). To see this, observe that these two schedulings use the
same large job set under the same mode assignment, the same small job set under the
same mode assignment and room assignment, and the same order of large jobs and
towers. The only difference is that the processing time tij of each job Ji in Γ1(J ) is
replaced by a possibly smaller processing time K ·�tij/K� of the corresponding job J ′′i
in Γ1(J ′′). In consequence, we conclude that the makespan of the scheduling Γ0(J ′′)
is not larger than the makespan of the (m, ε)-canonical scheduling Γ1(J ), which is
bounded by (1 + ε)Opt(J ).

Finally, to obtain the scheduling Γ0(J ) for the job set J , we make corrections on
the processing times of the jobs in the scheduling Γ0(J ′′). More precisely, we replace
the processing time K · �tij/K� for job J ′′i by tij , which is the processing time of the
job Ji in the job set J . Correcting the processing time for each job J ′′i in Γ0(J ′′)
may make the makespan of the scheduling increase by

tij −K · �tij/K� < K.

Therefore, after the corrections of processing times for all jobs in J ′′, the makespan of
the finally resulting scheduling Γ0(J ) for the job set J , constructed by the algorithm



16 JIANER CHEN AND ANTONIO MIRANDA

Approx-Scheme, is bounded by

the makespan of Γ1(J ) + n ·K ≤ (1 + ε)Opt(J ) + εT0/m

≤ (1 + 2ε)Opt(J )
= (1 + δ)Opt(J ).

Here we have used the fact that Opt(J ) ≥ T0/m.
This completes the proof of the theorem.

5. Conclusion and remarks. In this paper, we have developed a polynomial
time approximation scheme for the Pm|set|Cmax problem for any fixed constant m.
The result is achieved by combinations of the recent techniques developed in the area
of multiprocessor job schedulings plus the classical dynamic programming and scaling
techniques. This result is a significant improvement over the previous results on the
problem: no previous approximation algorithms for the problem Pm|set|Cmax have
their approximation ratio bounded by a constant that is independent of the number
m of processors in the system. Our result also confirms a conjecture made by Amoura
et al. [1]. In the following we make a few remarks on further work on the problem.

The multiprocessor job scheduling problem seems an intrinsically difficult prob-
lem. For example, if the number m of processors in the system is given as a variable
in the input, then the problem becomes highly nonapproximable: there is a constant
δ such that no polynomial time approximation algorithm for the problem can have
an approximation ratio smaller than nδ unless P = NP [25]. Observing this plus the
difficulties in developing good approximation algorithms for the problem, people had
suspected whether the Pm|set|Cmax problem for some fixed m should be MAX-NP
hard [8]. The present paper completely eliminates this possibility [2].

Our study shows that there are very “normalized” schedulings whose makespan
is close to the optimal ones and that these “good” normalized schedulings can be
constructed systematically. We are interested in investigating the tradeoff between
the degree of this kind of normalization and the time complexity of approximation
algorithms.

The current form of our polynomial time approximation scheme may not be prac-
tically useful, yet. Even for a small integer m and a reasonably small constant ε, the
time complexity of our algorithm is bounded by a polynomial of very high degree.
More recently, Jansen and Porkolab [21] use the approach of Amoura et al. [1] and
are able to develop a linear time approximation scheme for the Pm|set|Cmax prob-
lem, which still does not seem practical because of the huge constant factor in the
complexity of the algorithm.

We are especially interested in developing more practical polynomial time approx-
imation algorithms for systems with small number of processors, such as P4|set|Cmax.
In particular, we would like to develop practical approximation algorithms for the
Pm|set|Cmax problem with approximation ratio better than m/2, which is still the
best known bound for the problem [8]. Some progress has recently been made toward
this direction for systems of four processors [19].
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Abstract. Let G be a bipartite graph with positive integer weights on the edges and without
isolated nodes. Let n, N , and W be the node count, the largest edge weight, and the total weight of
G. Let k(x, y) be log x/ log(x2/y). We present a new decomposition theorem for maximum weight
bipartite matchings and use it to design an O(

√
nW/k(n,W/N))-time algorithm for computing a

maximum weight matching of G. This algorithm bridges a long-standing gap between the best
known time complexity of computing a maximum weight matching and that of computing a maximum
cardinality matching. Given G and a maximum weight matching of G, we can further compute the
weight of a maximum weight matching of G− {u} for all nodes u in O(W ) time.

Key words. all-cavity matchings, maximum weight matchings, minimum weight covers, graph
algorithms, unfolded graphs
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1. Introduction. Let G = (X,Y,E) be a bipartite graph with positive inte-
ger weights on the edges. A matching of G is a subset of node-disjoint edges of G.
Let mwm(G) (respectively, mm(G)) denote the maximum weight (respectively, car-
dinality) of any matching of G. A maximum weight matching is one whose weight is
mwm(G). Let N be the largest weight of any edge. Let W be the total weight of G.
Let n and m be the numbers of nodes and edges of G; to avoid triviality, we maintain
m = Ω(n) throughout the paper.

The problem of finding a maximum weight matching of a given G has a rich his-
tory. The first known polynomial-time algorithm is the O(n3)-time Hungarian method
[15]. Fredman and Tarjan [5] used Fibonacci heaps to improve the time to O(n(m +
n log n)). Gabow [6] introduced scaling to solve the problem in O(n3/4m log N) time
by taking advantage of the integrality of edge weights. Gabow and Tarjan [7] im-
proved the scaling method to further reduce the time to O(

√
nm log(nN)). For the

case where the edges all have weight 1, i.e., N = 1 (and W = m), Hopcroft and Karp
[11] gave an O(

√
nW )-time algorithm, and Feder and Motwani [4] improved the time

complexity to O(
√

nW/k(n,m)), where k(x, y) = log x/ log(x2/y). It has remained
open whether the gap between the running times of the Gabow–Tarjan algorithm and
the latter two algorithms can be closed for the case where W = o(m log(nN)).

We resolve this open problem in the affirmative by giving an O(
√

nW/k(n,W/N))-
time algorithm for general W . Note that W/N = m when all the edges have the same
weight. The algorithm does not use scaling but instead employs a novel decomposition
theorem for weighted bipartite matchings (Theorem 2.2). We also use the theorem to
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Fig. 1. Consider h = 1. G is decomposed into Gh and G∆
h ; Ch is a minimum weight cover of Gh.

solve the all-cavity maximum weight matching problem which, given G and a maxi-
mum weight matching of G, asks for mwm(G−{u}) for all nodes u in G. This problem
has applications to tree comparisons [2, 14]. The case where N = 1 has been studied
by Chung [2]. Recently, Kao, Lam, Sung, and Ting [12] gave an O(

√
nm log N)-time

algorithm for general N . This paper presents a new algorithm that runs in O(W )
time.

Section 2 presents the decomposition theorem and uses it to compute the weight
of a maximum weight matching. Section 3 gives an algorithm to construct a maximum
weight matching. Section 4 solves the all-cavity matching problem.

2. The decomposition theorem. In section 2.1, we state the decomposition
theorem and use the theorem to design an algorithm to compute the weight mwm(G)
in O(

√
nW/k(n,W/N)) time. In section 2.2, we prove the decomposition theorem.

In section 3, we further construct a maximum weight matching itself within the same
time bound.

2.1. An algorithm for computing mwm(G). Let V (G) be the node set of
G, i.e., X ∪ Y . Let w(u, v) denote the weight of an edge uv ∈ G; if u is not adjacent
to v, let w(u, v) = 0. A cover of G is a function C : X ∪ Y → {0, 1, 2, . . .} such
that C(x) + C(y) ≥ w(x, y) for all x ∈ X and y ∈ Y . Let w(C) =

∑
z∈X∪Y C(z) be

the weight of C. C is a minimum weight cover if w(C) is the smallest possible. Let
mwc(G) denote the weight of a minimum weight cover of G. A minimum weight cover
is a dual of a maximum weight matching as stated in the next fact.

Fact 2.1 (see [1]). Let C be a cover and M be a matching of G. The following
statements are equivalent.

1. C is a minimum weight cover and M is a maximum weight matching of G.
2.
∑
uv∈M w(u, v) =

∑
u∈X∪Y C(u).

3. Every node in {u | C(u) > 0} is matched by some edge in M , and C(u) +
C(v) = w(u, v) for all uv ∈M .

For an integer h ∈ [1, N ], we divide G into two lighter bipartite graphs Gh and
G∆

h as follows:

• Gh is formed by the edges uv of G with w(u, v) ∈ [N − h + 1, N ]. Each edge
uv in Gh has weight w(u, v) − (N − h). For example, G1 is formed by the
heaviest edges of G, and the weight of each edge is exactly one.
• Let Ch be a minimum weight cover of Gh. G∆

h is formed by the edges uv of G
with w(u, v)−Ch(u)−Ch(v) > 0. The weight of uv is w(u, v)−Ch(u)−Ch(v).

An example is depicted in Figure 1. Note that the total weight of Gh and G∆

h is at
most W .

The next theorem is the decomposition theorem.
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Theorem 2.2. mwm(G) = mwm(Gh) + mwm(G∆

h ); in particular, mwm(G) =
mm(G1) + mwm(G∆

1 ).

Proof. See section 2.2.

Theorem 2.2 suggests the following recursive algorithm to compute mwm(G).

Procedure Compute-MWM(G).

1. Construct G1 from G.
2. Compute mm(G1) and find a minimum weight cover C1 of G1.
3. Construct G∆

1 from G and C1.
4. If G∆

1 is empty, then return mm(G1); otherwise, return mm(G1)+Compute-
MWM(G∆

1 ).

Theorem 2.3. Compute-MWM(G) finds mwm(G) in O(
√

nW/k(n,W/N)) time.
Proof. The correctness of Compute-MWM follows from Theorem 2.2. Below, we

analyze the running time. We initialize a maximum heap [3] in O(m) time to store
the edges of G according to their weights. Let T (n,W,N) be the running time of
Compute-MWM excluding this initialization. Let L be the set of the heaviest edges
in G. Then Step 1 takes O(|L| log m) time. In Step 2, we can compute mm(G1) in
O(
√

n|L|/k(n, |L|)) time [4]. From this matching, C1 can be found in O(|L|) time
[1]. Let L1 be the set of the edges of G adjacent to some node u with C1(u) > 0;
i.e., L1 consists of the edges of G whose weights are reduced in G∆

1 . Let �1 = |L1|.
Step 3 updates every edge of L1 in the heap in O(�1 log m) time. As L ⊆ L1, Steps 1
to 3 altogether use O(

√
n�1/k(n, �1)) time. Since the total weight of G∆

1 is at most
W − �1, Step 4 uses at most T (n,W − �1, N

′) time, where N ′ < N is the maximum
edge weight of G∆

1 . In summary, for some positive integer �1 ≤W ,

T (n,W,N) = O(
√

n�1/k(n, �1)) + T (n,W − �1, N
′),

where T (n, 0, N ′) = 0. By recursion, for some positive integers �1, �2, . . . , �p with
p ≤ N and

∑
1≤i≤p �i = W ,

T (n,W,N) = O

(
√

n

(
�1

k(n, �1)
+

�2
k(n, �2)

+ · · ·+ �p
k(n, �p)

))

= O



√

n

log n




 ∑

1≤i≤p
�i


 log n2 −

∑
1≤i≤p

�i log �i




 .

Since x log x is convex, by Jensen’s inequality [10],

∑
1≤i≤p

�i log �i ≥

 ∑

1≤i≤p
�i


 log

∑
1≤i≤p �i

p
≥W log

W

N
.

Therefore,

T (n,W,N) = O

( √
n

log n

(
W log n2 −W log

W

N

))

= O

( √
nW

log n/ log(n2/WN
)
)

= O
(√

nW/k(n,W/N)
)
.
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2.2. Proof of Theorem 2.2. This section proves the statement that mwm(G) =
mwm(Gh)+mwm(G∆

h ), where G∆

h is defined according to an arbitrary minimum weight
cover Ch of Gh. By Fact 2.1, it suffices to prove mwc(G) = w(Ch) + mwc(G∆

h ).
To show the direction mwc(G) ≤ w(Ch) + mwc(G∆

h ), note that any cover D of
G∆

h augmented with Ch gives a cover C of G, where C(u) = Ch(u) + D(u) for each
node u of G. Then C(u) + C(v) ≥ w(u, v) for all edges uv of G. Thus, mwc(G) ≤
w(Ch) + mwc(G∆

h ).
To show the direction w(Ch) + mwc(G∆

h ) ≤ mwc(C), let C be a minimum weight
cover of G. A node u of G is called bad if C(u) < Ch(u). Lemma 2.4 below shows
that G must have a minimum weight cover C allowing no bad node. Then we can
construct a cover D of G∆

h as follows. For each node u of G, define D(u) = C(u) −
Ch(u), which must be at least 0. D is a cover of G∆

h because for any edge uv of
G∆

h , D(u) + D(v) = C(u) + C(v) − Ch(u) − Ch(v) ≥ w(u, v) − Ch(u) − Ch(v). Note
that w(D) = w(C) − w(Ch). Thus, mwc(G∆

h ) ≤ w(C) − w(Ch), or equivalently,
mwc(G∆

h ) + w(Ch) ≤ mwc(G).
The next lemma concludes the proof of Theorem 2.2.
Lemma 2.4. There exists a minimum weight cover of G such that no node of G

is bad.
Proof. Suppose, for the sake of contradiction, that every minimum weight cover

allows some bad node. Then we can obtain a contradiction by constructing another
minimum weight cover with no bad node.

Let C be a minimum weight cover of G with u as a bad node, i.e., C(u) <
Ch(u). Recall that Ch is a minimum weight cover of Gh. Consider a maximum weight
matching M of Gh. By Fact 2.1, since Ch(u) > C(u) ≥ 0, u is matched by an edge in
M , say, to a node v, and Ch(u) +Ch(v) = w(u, v)− (N −h). We call v the mate of u.
Note that v cannot be a bad node; otherwise, C(u)+C(v) < w(u, v)−(N−h) ≤ w(u, v)
and a contradiction occurs.

Since C is a cover of G, C(u) + C(v) ≥ w(u, v). Thus, C(v) ≥ w(u, v)− C(u) ≥
N − h + Ch(u) + Ch(v) − C(u). Define another cover C ′ of G as follows. For each
bad node defined by C, let v be the mate of u, define C ′(u) = Ch(u) and C ′(v) =
C(v)− (Ch(u)−C(v)). Note that u is not a bad node with respect to C ′, and neither
is v since C ′(v) ≥ N −h+Ch(v) ≥ Ch(v). For all other nodes x, C ′(x) is the same as
C(x). Therefore, if C ′ is a cover of G, C ′ allows no bad node. Also, w(C ′) = w(C).

It remains to prove that C ′ is a cover of G. By the definition of C ′, C ′(v) < C(v)
if and only if v is the mate of a bad node with respect to C. Suppose C ′ is not a
cover of G. Then there exists an edge vt such that C ′(v) + C ′(t) ≤ w(v, t) and v is
the mate of a bad node. Recall that the latter implies that C ′(v) ≥ N − h + Ch(v).
In other words,

C ′(t) < w(v, t)− C ′(v) ≤ w(v, t)− (N − h)− Ch(v).

We can derive a contradiction as follows.
Case 1: w(v, t) ≤ N − h. Then C ′(t) < −Ch(v) ≤ 0, which contradicts that

C ′(t) ≥ Ch(t) ≥ 0.
Case 2: w(v, t) > N − h. Then Gh contains the edge vt and Ch(v) + Ch(t) ≥

w(v, t)− (N −h). Thus, C ′(t) < w(v, t)− (N −h)−Ch(v) ≤ Ch(t), which contradicts
the fact that C ′ allows no bad node.

In conclusion, C ′ is a cover of G. Together with the fact that w(C) = w(C ′), we
obtain the desired contradiction that C ′ is a minimum weight cover of G with no bad
node. Lemma 2.4 follows.



22 M.-Y. KAO, T.-W. LAM, W.-K. SUNG, AND H.-F. TING

3. Construct a maximum weight matching. The algorithm in section 2.1
only computes the value of mwm(G). To report the edges involved, we show below how
to first construct a minimum weight cover of G in O(

√
nW/k(n,W/N)) time and then

use this cover to construct a maximum weight matching in O(
√

nm/k(n,m)) time.
Thus, the time required to construct a maximum weight matching is O(

√
nW/k(n,W/N)).

Lemma 3.1. Assume that h,Gh, Ch, and G∆

h are defined as in section 2. Let C∆

h

be any minimum weight cover of G∆

h . If D is a function on V (G) such that for every
u ∈ V (G), D(u) = Ch(u) + C∆

h (u), then D is a minimum weight cover of G.
Proof. Consider any edge uv of G. If uv is not in G∆

h , then w(u, v) ≤ Ch(u) +
Ch(v) ≤ D(u) + D(v). Assume that uv is in G∆

h . Note that its weight in G∆

h is
w(u, v)−Ch(u)−Ch(v). Since C∆

h is a cover, C∆

h (u)+C∆

h (v) ≥ w(u, v)−Ch(u)−Ch(v).
Thus, D(u) + D(v) = Ch(u) + C∆

h (u) + Ch(v) + C∆

h (v) ≥ w(u, v). It follows that D is
a cover of G. To show that D is a minimum weight one, we observe that

∑
u∈V (G) D(u) =

∑
u∈V (G) Ch(u) + C∆

h (u)

=
∑
u∈V (G) Ch(u) +

∑
u∈V (G) C∆

h (u)

= mwm(Gh) + mwm(G∆

h ) by Fact 2.1
= mwm(G) by Theorem 2.2.

By Fact 2.1, D is minimum.
By Lemma 3.1, a minimum weight cover of G can be computed using a recursive

procedure similar to Compute-MWM as follows.
Procedure Compute-Min-Cover(G).
1. Construct G1 from G.
2. Find a minimum weight cover C1 of G1.
3. Construct G∆

1 from G and C1.
4. If G∆

1 is empty, then return C1; otherwise, let C∆
1 = Compute-Min-Cover(G∆

1 )
and return D, where for all nodes u in G, D(u) = C1(u) + C∆

1 (u).
Theorem 3.2. Compute-Min-Cover(G) correctly computes a minimum weight

cover of G in O(
√

nW/k(n,W/N)) time.
Proof. The correctness of Compute-Min-Cover(G) follows from Lemma 3.1. For

the time complexity, the analysis is similar to that of Theorem 2.3.
Now, we show how to recover a maximum weight matching of G from a minimum

weight cover D of G.
Procedure Recover-Max-Matching(G,D).
1. Let H be the subgraph of G that contains all edges uv with w(u, v) = D(u)+

D(v).
2. Make two copies of H. Call them Ha and Hb. For each node u of H, let ua

and ub denote the corresponding nodes in Ha and Hb, respectively.
3. Union Ha and Hb to form Hab, and add to Hab the set of edges {uaub | u ∈

V (H), D(u) = 0}.
4. Find a maximum cardinality matching K of Hab and return the matching

Ka = {uv | uava ∈ K}.
Theorem 3.3. Recover-Max-Matching(G,D) correctly computes a maximum

weight matching of G in O(
√

nm/k(n,m)) time.
Proof. The running time of Recover-Max-Matching(G,D) is dominated by the

construction of K. Since Hab has at most 2n nodes and at most 3m edges, K can be
constructed in O(

√
nm/k(n,m)) time using the Feder–Motwani algorithm [4].

It remains to show that Ka is a maximum weight matching of G. First, we argue
that Hab has a perfect matching. Let M be a maximum weight matching of G. By
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(a) φ(G) (b) φ(G)|Ch
Fig. 2. (a) The unfolded graph φ(G) of the bipartite graph given in Figure 1(a). (b) With

respect to the cover Ch defined in Figure 1(c), the node y1 in φ(G) is the only node satisfying the
condition that 1 ≤ Ch(y). Thus, φ(G)|Ch comprises only the edges incident to y1.

Fact 2.1, D(u) + D(v) = w(u, v) for every edge uv ∈ M . Therefore, M is also a
matching of H. Let U be the set of nodes in H unmatched by M . By Fact 2.1,
D(u) = 0 for all u ∈ U . Let Q be {uaub | u ∈ U}. Let Ma = {uava | uv ∈ M} and
M b = {ubvb | uv ∈M}. Note that Q ∪Ma ∪M b forms a matching in Hab and every
node in Hab is matched by either Q, Ma, or M b. Thus, Hab has a perfect matching.

Since K is a maximum cardinality matching of Hab, K must be a perfect match-
ing. For every node u with D(u) > 0, ua must be matched by K. Since there is
no edge between ua and any xb in Hab, there exists some va with uava ∈ K. Thus,
every node u with D(u) > 0 must be matched by some edge in Ka. Therefore,∑
uv∈Ka w(u, v) =

∑
u∈X∪Y,D(u)>0 D(u) =

∑
u∈X∪Y D(u) = mwm(G), and Ka is a

maximum weight matching of G.

4. All-cavity maximum weight matchings. In section 4.1, we introduce the
notion of an unfolded graph. In section 4.2, we use this notion to design an algorithm
which, given a weighted bipartite graph G and a maximum weight matching of G,
computes mwm(G− {u}) for all nodes u in G using O(W ) time.

4.1. Unfolded graphs. The unfolded graph φ(G) of G is defined as follows.
• For each node u of G, φ(G) has α copies of u, denoted as u1, u2, . . . , uα, where

α is the weight of the heaviest edge incident to u.
• For each edge uv of G, φ(G) has the edges u1vβ , u2vβ−1, . . . , uβv1, where

β = w(u, v).
See Figure 2(a) for an example. Let M be a matching of G. Consider M as a weighted
bipartite graph; then, by definition, φ(M) =

⋃
uv∈M{u1vβ , . . . , uβv1 | β = w(u, v)} is

a matching of φ(G). The number of edges in φ(M) is equal to the total weight of the
edges in M , i.e., |φ(M)| = ∑uv∈M w(u, v). The next lemma relates G and φ(G).

Lemma 4.1. Assume that M is a maximum weight matching of G.
1. mwm(G) = mm(φ(G)).
2. The set φ(M) is a maximum cardinality matching of φ(G).
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Proof. Statement 4.1 follows from Statement 4.1. Statement 4.1 is proved as
follows. Since M is a maximum weight matching of G, mwm(G) =

∑
uv∈M w(u, v) =

|φ(M)| ≤ mm(φ(G)). By Fact 2.1, mwm(G) ≥ mm(φ(G)) if and only if mwc(G) ≥
mwc(φ(G)). We prove the latter as follows. Given a minimum weight cover C of G,
we can obtain a cover C ′ of φ(G) as follows. For any node u of G, C ′(ui) = 1 if
C(u) > 0 and i ≤ C(u); otherwise, C ′(ui) = 0. Note that w(C ′) = w(C) = mwc(G).
Therefore, mwc(G) ≥ mwc(φ(G)) and mwm(G) ≥ mm(φ(G)).

4.2. An algorithm for all-cavity maximum weight matchings. Let M be
a given maximum weight matching of G.

By Lemma 4.1(2), φ(M) is a maximum cardinality matching of φ(G). In light of
this maximality, we say that a path in φ(G) is alternating for φ(M) if (1) its edges
alternate between being in φ(M) and being not in φ(M) and (2) in the case the
first (respectively, last) node is matched by φ(M), the path contains the matched
edge of u as the first (respectively, last) edge. The length of an alternating path is
its number of edges. An alternating path may have zero length; in this case, the
path contains exactly one unmatched node. An alternating path P can modify φ(M)
to another matching, i.e., (φ(M) ∪ P ) − (φ(M) ∩ P ). If P is of even length, the
resulting matching has the same size as φ(M). If P is of odd length, P modifies M
to a strictly smaller or bigger matching; yet the latter is impossible because φ(M) is
maximum. Intuitively, we would like to maximize the size of the resultant matching
and even-length alternating paths are preferred.

Our new algorithm for computing mwm(G − {u}) is based on the observation
that mwm(G − {u}) can be determined by detecting the smallest i such that ui has
an even-length alternating path for φ(M). Details are as follows.

Definition. For each ui in φ(G), let ρ(ui) = 0 if there is an even-length alternating
path for φ(M) starting from ui; otherwise, let ρ(ui) = 1.

The following lemma states a monotone property of ρ(ui) over different i’s.
Lemma 4.2. Consider any node u in G. Let u1, u2, . . . , uβ be its corresponding

nodes in φ(G). If ρ(ui) = 0, then ρ(uj) = 0 for all j ∈ [i, β]. Furthermore, there exist
β− i + 1 node-disjoint even-length alternating paths Pi, Pi+1, . . . , Pβ for φ(M), where
each Pj starts from uj.

Proof. As ρ(ui) = 0, let Pi = ua0
0 , vb00 , ua1

1 , vb11 , . . . , u
ap−1

p−1 , v
bp−1

p−1 , u
ap
p be a shortest

even-length alternating path for φ(M), where ua0
0 = ui.

Based on Pi, we can construct an even-length alternating path Pi+1 for φ(M)
starting from ui+1 as follows. If ui+1 is not matched by φ(M), Pi+1 is simply
a path of zero length. From now on, we assume that ui+1 is matched by φ(M).
As P is of even length, u

ap
p is not matched by φ(M). Then, by the definition of

φ(M), u
ap+1
p is also not matched by φ(M). Let h be the smallest integer in [1, p]

such that uah+1
h is not matched by φ(M). Notice that, for all � < h, ua�+1

� is

matched to vb�−1
� ; furthermore, φ(G) contains an edge between vb�−1

� and u
a�+1+1
�+1 .

Thus, Pi+1 = ui+1, vb0−1
0 , ua1+1

1 , vb1−1
1 , . . . , uah+1

h is an even-length alternating path
for φ(M). Similarly, for j = i + 2, . . . , β, we can use Pi to define an even-length
alternating path Pj for φ(M) starting from uj . By construction, Pi, Pi+1, . . . , Pβ are
node-disjoint.

The next lemma is the basis of our cavity matching algorithm. It shows that
given mwm(G) (i.e., the weight of M), we can compute mwm(G − {u}) from the
values ρ(ui), and all the ρ(ui)’s can be found in O(W ) time.
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Lemma 4.3.
1.
∑

1≤i≤β ρ(ui) = mwm(G)−mwm(G− {u}).
2. For all ui ∈ φ(G), ρ(ui) can be computed in O(W ) time in total.
Proof. The two statements are proved as follows.
Statement 1. Let k be the largest integer such that ρ(uk) = 1. By Lemma 4.2,

ρ(ui) = 1 for all 1 ≤ i ≤ k, and 0 otherwise. Note that if ρ(ui) = 1, ui must be
matched by φ(M). Thus,

∑
1≤i≤β ρ(ui) = k. Below, we prove the following two

equalities:
(1) mm(φ(G)− {u1, . . . , uk}) = mm(φ(G))− k.
(2) mm(φ(G)− {u1, . . . , uβ}) = mm(φ(G)− {u1, . . . , uk}).

Then, by Lemma 4.1, mwm(G) = mm(φ(G)) and mwm(G − {u}) = mm(φ(G) −
{u1, . . . , uβ}). Thus, mwm(G)−mwm(G− {u}) = k and Statement 1 follows.

To show equality (1), let H be the set of edges of φ(M) incident to ui with 1 ≤ i ≤
k. Let M ′ = φ(M)−H. Then, |M ′| = |φ(M)| − k. We claim that M ′ is a maximum
cardinality matching of φ(G) − {u1, . . . , uk}. Hence, mwm(φ(G) − {u1, . . . , uk}) =
|φ(M)| − k, and equality (1) follows. We prove the claim by contradiction. Suppose
M ′ is not a maximum cardinality matching of φ(G)−{u1, . . . , uk}. Then, there exists
an alternating path P that can modify M ′ to a larger matching of φ(G)−{u1, . . . , uk}
[8, 9]; in particular, the length of P must be odd and both of its endpoints are not
matched by M ′. P must start from some node vj with uivj ∈ φ(M) and i < k;
otherwise, P is alternating for φ(M) in G and φ(M) cannot be a maximum cardinality
matching of φ(G). Let Q be a path formed by joining uivj with P . Q is an even-
length alternating path for φ(M) starting from ui in φ(G). This contradicts the fact
that there is no even-length alternating path for φ(M) starting from ui for i < k.

To show equality (2), we first note that mm(φ(G)− {u1, . . . , uβ}) ≤ mm(φ(G)−
{u1, . . . , uk}). It remains to prove the other direction. By Lemma 4.2, we can find
β − k node-disjoint even-length alternating paths Pk+1, . . . , Pβ for φ(M), which start
from uk+1, . . . , uβ . Pj starts at uj . Let M ′′ = (φ(M) ∪ (Pj+1 ∪ · · · ∪ Pβ))− (φ(M) ∩
(Pj+1 ∪ · · · ∪ Pβ)). Note that |M ′′| = |φ(M)| and there are no edges in M ′′ incident
to any of uk+1, . . . , uβ . M ′′ is a matching of φ(G) − {uk+1, . . . , uβ} and M ′′ − H
of φ(G) − {u1, . . . , uβ}. |M ′′ − H| ≥ |M ′′| − k = |φ(M)| − k. Since mm(φ(G) −
{u1, . . . , uk}) = |φ(M)|−k by equality (1), it follows that mm(φ(G)−{u1, . . . , uβ}) ≥
|M ′′ −H| ≥ mm(φ(G)− {u1, . . . , uk}). Therefore, equality (2) holds.

Statement 2. We want to determine whether ρ(ui) = 0 for all nodes ui ∈ φ(G) in
O(W ) time. By definition, ρ(ui) = 0 if and only if there is an even-length alternating
path for φ(M) starting from ui. Let us partition the nodes of φ(G) into two parts:
φ(X) = {ui ∈ φ(G) | u ∈ X} and φ(Y ) = {ui ∈ φ(G) | u ∈ Y }. Below, we give the
details of computing ρ(ui) for all ui ∈ φ(X). The case where ui ∈ φ(Y ) is symmetric.

Let D be a directed graph over the node set φ(X). D contains an edge uivj if
there exists a node wk ∈ φ(Y ) such that uiwk ∈ φ(G) − φ(M) and wkvj ∈ φ(M).
Consider any node vj of D that is unmatched by φ(M). A directed path in D from vj

to a node ui corresponds to a path in φ(G), which is indeed an even-length alternating
path for φ(M) starting from ui. Therefore, for any ui ∈ φ(X), ρ(ui) = 0 if and only
if ui is reachable from some node in D that is unmatched by φ(M). We can identify
all such ui by using a depth-first search on D starting with all the nodes unmatched
by M . The time required is O(|D|). As |D| ≤ |φ(G)| = W , the lemma follows.

The following procedure computes mwm(G − {u}) for all nodes u of G. Let M
be a maximum weight matching of G.
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Procedure Compute-All-Cavity(G,M).
1. Construct φ(G) and φ(M).
2. For every j ∈ [0, n/2], determine Aj from φ(M).
3. For every node ui of φ(G), if ui ∈ ⋃j Aj then ρ(ui) = 0; otherwise ρ(ui) = 1.

4. For every node u of G, compute mwm(G−{u}) = mwm(G)−∑1≤i≤β ρ(ui),

where u1, u2, . . ., uβ are the nodes corresponding to u in φ(G).
Theorem 4.4. Compute-All-Cavity(G,M) correctly computes mwm(G − {u})

for all u of G in O(W ) time.
Proof. The proof follows from Lemma 4.3

Acknowledgments. The authors wish to thank the anonymous referee for ex-
tremely helpful comments, which significantly improved the presentation of the paper.
In particular, Theorem 2.2 was originally proved using unfolded graphs (see the con-
ference version of this paper [13]); the new proof is based on a suggestion by the
referee.
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TRAVELING SALESMAN-BASED CURVE RECONSTRUCTION IN
POLYNOMIAL TIME∗
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Abstract. An instance of the curve reconstruction problem is a finite sample set V of an
unknown collection of curves γ. The task is to connect the points in V in the order in which they
lie on γ. Giesen [Proceedings of the 15th Annual ACM Symposium on Computational Geometry
(SCG ’99), 1999, pp. 207–216] showed recently that the traveling salesman tour of V solves the
reconstruction problem for single closed curves under otherwise weak assumptions on γ and V ; γ
must be a single closed curve. We extend his result along several directions:

• we weaken the assumptions on the sample;
• we show that traveling salesman-based reconstruction also works for single open curves
(with and without specified endpoints) and for collections of closed curves;

• we give alternative proofs; and
• we show that in the context of curve reconstruction, the traveling salesman tour can be
constructed in polynomial time.

Key words. traveling salesman, polynomial time, curve reconstruction

AMS subject classifications. 68Q25, 05C85

PII. S0097539700366115

1. Introduction. An instance of the curve reconstruction problem is a finite
sample set V of an unknown collection of curves γ. The task is to construct a graph
G on V so that two points in V are connected by an edge of G iff the points are
adjacent on γ. The curve reconstruction problem and the related surface reconstruc-
tion problem have received a lot of attention in the graphics and the computational
geometry community. We are interested in reconstruction algorithms with guaran-
teed performance, i.e., algorithms which provably solve the reconstruction problem
under certain assumptions on γ and V . Figure 1.1 illustrates the curve reconstruction
problem.

Many curve reconstruction algorithms have been proposed in the past; we restrict
our discussion to algorithms that provably solve the reconstruction problem for a cer-
tain class of curves and under certain assumptions on the sample set. The algorithms
differ with respect to the following aspects:

• whether a collection of curves or just a single curve can be handled;
• whether (collections of) open and closed curves can be handled or only (col-
lections of) closed curves;
• whether the sampling must be uniform or not. Uniform sampling with density
ε requires that the sample set V contains at least one point from every curve
segment of length ε. In nonuniform sampling, the sampling frequency may
depend on local properties of the curve, e.g., can be lower in parts of low
curvature;
• whether nonsmooth curves can be handled or not. A smooth curve has a
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Fig. 1.1. Part (a) shows a finite set V of points; part (b) shows the traveling salesman tour of
the points.

tangent everywhere. Figure 2.1 shows nonsmooth curves.
For uniformly sampled collections of closed, smooth curves several methods are

known to work ranging over minimum spanning trees [12], α-shapes [5, 11], β-skeletons
[16], and r-regular shapes [4]. A survey of these techniques appears in [10]. The case of
nonuniformly sampled collections of closed smooth curves was first treated successfully
by Amenta, Bern, and Eppstein [3], and subsequently improved algorithms such as [8,
15] appeared. Nonuniformly sampled collections of open and closed smooth curves
were treated in [9]. All papers mentioned so far require the curves to be smooth.

Giesen [14] recently obtained the first result for nonsmooth curves. He considered
the class of benign semiregular curves. An (open or closed) curve is semiregular if a left
and a right tangent exists in every point of the curve; the two tangents may, however,
be different. A semiregular curve is benign if the turning angle at every point of the
curve is less than π; see Figure 2.1. Giesen showed that the traveling salesman tour
of the sample set V solves the curve reconstruction problem for uniformly sampled
benign closed semiregular curves. More precisely, he showed that for every benign
semiregular closed curve γ there exists a positive ε such that the optimal traveling
salesman tour of V is a polygonal reconstruction of γ provided that for every x ∈ γ
there is a p ∈ V with ‖xp‖ ≤ ε, where ‖xy‖ is the Euclidean distance of the two
points x and y. Giesen’s result is an existence result; he did not quantify ε in terms
of properties of the curve γ. We extend Giesen’s result in several directions:

• We relate ε to local properties of the curve γ and show that the optimal
traveling salesman tour solves the reconstruction problem even if sampling is
nonuniform. For smooth curves our sampling condition is similar to the one
used in [3, 8, 15, 9].
• We show that the traveling salesman path is able to reconstruct open curves
for a suitable sampling condition. We treat the case of paths with and without
specified endpoints.
• We show that the optimal traveling salesman tour (path) can be constructed
in polynomial time if our sampling condition is satisfied.
• We give a simplified proof that the traveling salesman tour (path) solves the
curve reconstruction problem.
• We show that an extension of the traveling salesman tour algorithm is able
to reconstruct nonuniformly sampled collections of closed nonsmooth curves.

We have implemented a number of curve reconstruction algorithms. The JAVA-
Applet http://review.mpi-sb.mpg.de:81/Curve-Reconstruction/makes our implemen-



TRAVELING SALESMAN-BASED CURVE RECONSTRUCTION 29

tations available. Our experiments show that the traveling salesman-based curve re-
construction is able to solve the reconstruction problem for surprisingly small sampling
density and that its speed is comparable to Delaunay diagram-based reconstruction
algorithms. The details are given in the companion paper [2].

A preliminary version of the present paper appeared in SODA 2000. It contained
the result for open curves with specified endpoints and for closed curves. It did not
contain the result for open curves without specified endpoints and for collections of
closed curves. Also the proof of polynomiality was incomplete.

Since the publication of the conference version of this paper, Funke and Ramos [13]
have presented an algorithm that works for collections of nonsmooth curves. The
algorithm is based on filtering the Delaunay diagram and can handle collections of
open and closed curves; our algorithm can only handle collections of closed curves.

This paper is structured as follows. In section 2 we give definitions and state
our main results. In sections 3, 4, and 5 we prove our main theorem for open curves
with and without specified endpoints and for closed curves, respectively, assuming
real arithmetic. The result is extended to finite precision arithmetic in section 6. In
section 7 we discuss collections of closed curves. For computational purposes it is
desirable to restrict the search for the reconstruction to a sparse graph defined on the
sample set. In section 8, we show that the edges of the polygonal reconstruction are
in the Delaunay diagram for a slightly strengthened sampling condition. In section 10
we relate our sampling condition to the sampling conditions used by other papers,
and in Section 11 we relate our result to so-called necklace tours. Necklace tours are
a polynomially solvable case of the traveling salesman problem. Curve reconstruction
problems are allowed to “invent” curves if the input does not satisfy the required
sampling condition. This issue is discussed in section 9. Finally, in section 12 we offer
conclusions and state open problems.

2. Definitions and statements of results. An open curve is given by an
embedding γ : [0, 1]→ R2 and a closed curve is given by an embedding γ : S2 → R2,
where S2 is the unit circle.

Definition 2.1 (see [14]). Let

T = {(t1, t2) ; t1 < t2, t1, t2 ∈ [0, 1]}
and

τ : T → S2, (t1, t2) �→ γ(t2)− γ(t1)
| γ(t2)− γ(t1) | .

The curve γ is called left (right) regular at γ(t0) with left (right) tangent tl(γ(t0))
(tr(γ(t0))) if for every sequence (ξn) in T which converges to (t0, t0) from the left
(right) in the closure of T the sequence τ(ξn) converges to t(γ(t0)). We call γ semireg-
ular if it is left and right regular in all points γ(t), t ∈ [0, 1]. We call γ regular if it is
semiregular and the left and right tangent coincide in every point of the curve.

Figure 2.1 shows two semiregular curves. Tangents are unit vectors. The angle
between two vectors with the same source is the smaller of the two angles between
the vectors. The angle is zero if the two vectors point to the same direction and the
angle is π if the vectors point to opposite directions. The angle between the left and
right tangent at a point p ∈ γ is called the turning angle at p. If the curve has a
tangent at p, the turning angle at p is zero. If the turning angle at p is nonzero, we
call p a singularity of the curve. A semiregular curve is benign if the turning angle is
less than π at every point of the curve.
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q

�

ptl

tr

Fig. 2.1. Two semiregular curves, one benign and one not. In the left curve, the two tangents
tl and tr at a point p of the curve are shown. The turning angle at p is α. In the curve on the right
the turning angle at q is π as the left and right tangents at q point to opposite directions.

A traveling salesman path (tour) for a set V of points is a path (cycle) passing
through all points in V . An optimal traveling salesman path (tour) is a traveling
salesman path (tour) of shortest length. An optimal traveling salesman path with
specified endpoints a and b, where a ∈ V and b ∈ V is a shortest traveling salesman
path among the paths with endpoints a and b. We can now state Giesen’s result.

Theorem 2.2 (see [14]). For every benign semiregular closed curve γ there exists
an ε > 0 with the following property: If V is a finite sample set of γ so that for every
x ∈ γ there is a p ∈ V with ‖pv‖ ≤ ε, the optimal traveling salesman tour is a
polygonal reconstruction of γ.

The construction of optimal traveling salesman paths or tours is an NP-hard
problem. A successful method for solving the Traveling Salesman problem is to for-
mulate the problem as an integer linear program (ILP) and to use a branch-and-cut
algorithm based on the LP-relaxation of the problem. We give the formulation for
traveling salesman paths with specified endpoints a and b. We introduce a variable
xuv for every edge uv between two sample points and describe the set of all paths
with endpoints a and b in the following way:

∑
v∈V

xuv = 2 for all u ∈ V \ {a, b},
∑
v∈V

xuv = 1 for u ∈ {a, b},
∑

u∈V ′,v∈V ′
xuv ≤ |V ′ | − 1 for V ′ ⊂ V , V ′ = ∅,

xuv ∈ {0, 1} for all u, v ∈ V.
We refer to this program as the subtour-ILP for the traveling salesman path problem
with specified endpoints. Slight variations of this ILP characterize paths with unspec-
ified endpoints (see section 4) and tours (see section 5). The equality constraints
in the subtour-ILP are called degree constraints, the inequality constraints are called
subtour elimination constraints, and the constraints xuv ∈ {0, 1} are called the in-
tegrality constraints. Relaxing the integrality constraints to 0 ≤ xuv ≤ 1 gives the
subtour-LP for the traveling salesman problem with specified endpoints. The objective
function for both programs is

∑
uv ‖uv‖xuv, i.e., the total Euclidean length of the

edges selected.
In general, the optimal solution of the subtour-LP is fractional. Our main result

states the optimal solution of the subtour-LP is integral, whenever V is a sufficiently
dense sample of a benign semiregular curve. The reader might be interested to know
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that we discovered this fact in our experiments on curve reconstruction. We had
implemented a branch-and-cut algorithm based on the subtour-LP (the algorithm
solved the subtour-LP and was then supposed to branch on a fractional variable) and
observed that the algorithm never branched. After seeing this behavior in a large
number of examples, we formulated it as a conjecture and set out to prove it.

Theorem 2.3 (main theorem). Let γ be an closed benign semiregular curve; let
V be a finite set of samples of γ. If V satisfies the sampling condition given below,
then

• the optimal traveling salesman tour of V is a polygonal reconstruction of γ;
• the subtour-LP for traveling salesman tours has an optimal integral solution
and this solution is unique.

In the case of an open curve let a and b be the first and last sample points, respectively
(in the order on γ). The statements above hold true for the optimal traveling salesman
path with endpoints a and b and the subtour-LP for traveling salesman paths with
specified endpoints and also for the traveling salesman path with unspecified endpoints
and for the subtour-LP for traveling salesman paths with unspecified endpoints. The
latter result required a strengthened sampling condition.

We will prove our Main Theorem for open curves with specified and unspecified
endpoints in sections 3 and 4, respectively. The proof for closed curves follows in
section 5.

Our main theorem suggests a reconstruction algorithm for benign semiregular
curves: Solve the subtour-LP. If the optimal solution is integral, output it. We briefly
discuss two strategies for solving the subtour-LP.

A potentially exponential, but practically very efficient algorithm uses the simplex
method and the cutting plane framework. One starts with the LP consisting only of
the degree constraints and then solves a sequence of LPs. In each iteration one checks
whether the solution X∗ to the current LP satisfies all subtour elimination constraints
and, if not, one adds a violated subtour elimination constraint to the LP. The check for
a violated subtour elimination constraint is tantamount to a min-cut problem. One
assigns capacity x∗e to edge e for every edge e and computes a minimum (a, b)-cut. If
the cut has value less than two, a violated inequality has been found. If the cut has
value two, all cut constraints are satisfied. We use the simplex-based strategy in our
in our experiments on curve reconstruction.

The ellipsoid method (see [18]) solves the subtour-LP in time polynomial in the
size of the bit representations of the coefficients of the cost function. Distance values
are, in general, nonrational numbers and hence the ellipsoid method is not directly
applicable in our setting. In section 6, we extend our results to the situation where
the position of the points and the distances between points are only approximately
known and show how to obtain a polynomial time algorithm.

3. Open curves. We assume that our open curve is oriented and write p < q
if p precedes q on γ. We use B(p, r) and B0(p, r) to denote the closed and open ball
with center p and radius r, respectively.

3.1. The Held–Karp bound. Our proof of Theorem 2.3 exploits the connec-
tion between the subtour-LP and what is known as the Held–Karp bound. The
purpose of this section is to review the relevant facts about the Held–Karp bound.

Let G = (V,E) be an undirected graph, let a and b be two designated vertices
of G, and let c be an arbitrary cost function on the edges of G. A function µ :
V → R is called a potential function. It gives rise to a modified distance function
cµ via cµ(u, v) = c(u, v) − µ(u) − µ(v). Now consider any traveling salesman path
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T with endpoints a and b. Its costs under c and cµ are related by cµ(T ) = c(T ) −
2
∑
v∈V µ(v) + µ(a) + µ(b) since the path uses two edges incident to every vertex

except for a and b. Observe that cµ(T ) − c(T ) does not depend on T and hence the
optimal traveling salesman path for endpoints a and b is the same under both cost
functions. Let T0 be an optimal traveling salesman path for endpoints a and b.

Let MSTµ be a minimum spanning tree with respect to the cost function cµ and
let Cµ = cµ(MSTµ) be its cost. Then Cµ ≤ cµ(T0), since a traveling salesman path is
a spanning tree.

Fact 1. Let µ be any potential function. If MSTµ is a traveling salesman path
with endpoints a and b, it is an optimal Traveling Salesman path for endpoints a
and b.

Proof. From Cµ ≤ cµ(T0), we conclude that MSTµ is an optimal traveling sales-
man path with respect to cµ. Since the ranking of paths is the same under both cost
functions, it is also optimal with respect to c.

The inequality Cµ ≤ cµ(T0) = c(T0)−2
∑
v∈V µ(v)+µ(a)+µ(b) is valid for every

potential function and hence

max
µ
Cµ + 2

∑
v∈V

µ(v)− µ(a)− µ(b) ≤ c(T0) .

The quantity on the left is called the Held–Karp bound.1 The following fact is crucial
for our proof.

Fact 2. The Held–Karp bound is equal to the optimal objective value of the
subtour-LP.

Proof. The fact follows by relaxing the degree constraints of the subtour-LP
in a Lagrangian fashion. For a short introduction to Lagrangian relaxation, see
[7, p. 259].

We remark (but will not use) that an optimal choice of µ in the Held–Karp bound
is given by the optimal solution of the linear programming dual of the subtour-LP; µ
corresponds to the dual variables for the degree constraints. We next draw a simple
consequence from the two facts above, which forms the basis for our proof.

Lemma 3.1. Let µ be any potential function. If MSTµ is the unique minimum
spanning tree with respect to cµ and moreover is a traveling salesman path with end-
points a and b, the subtour-LP has a unique optimal solution and this solution is
integral.

Proof. If MSTµ is a traveling salesman path, it is optimal (Fact 1) and hence
c(MSTµ) = c(T0). The Held–Karp bound is therefore equal to c(T0) and the same
holds true for the optimal objective value of the subtour-LP (Fact 2). The incidence
vector of MSTµ is a feasible solution of the subtour-LP of cost c(MSTµ) and hence is
an optimal solution of the subtour-LP. We will next argue that it is the unique optimal
solution. Assume that there is an optimal solution of the subtour-LP with xe > 0 for
some e ∈ MSTµ. Since MSTµ is unique there is a η > 0 so that decreasing the cost
of e by η will not change the minimum spanning tree and hence will not change the

1A simple iterative algorithm can be used to approximate the Held–Karp bound. Let αt, t =
0, 1, . . . , be positive reals with αt → 0 as t→∞ and

∑
t
αt =∞. Start with µ(v) = 0 for all v ∈ V

and compute MSTµ. As long as MSTµ is not a path with endpoints a and b, update µ as follows:
µ(v) = µ(v) + αt · (d(v)− degµ(v)), where d(a) = d(b) = 1 and d(v) = 2 for all other nodes, t is the
index of the iteration, and degµ(v) is the degree of v in MSTµ. The cost of MSTµ converges to the
Held–Karp bound. We found in our experiments that the convergence is rather slow and that the
cutting plane approach to solving the subtour-LP is faster.
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value of the Held–Karp bound. However, the objective value of the subtour-LP will
decrease. This is a contradiction to the equality of the two bounds.

We can now describe our proof strategy for open curves. We define a potential
function µ such that MSTµ is the unique minimum spanning tree in the complete
network G = (V, V × V, c), where c is the Euclidean distance function, and moreover
MSTµ coincides with the polygonal reconstruction (and hence is a traveling salesman
path with endpoints a and b, where a and b are the first and last sample point,
respectively). Then MSTµ and hence the polygonal reconstruction is the unique
optimal solution of the subtour-LP. We want to stress that the definition of µ is only
needed for the proof of our main theorem. The reconstruction algorithm simply solves
the subtour-LP.

3.2. Intuition. When will the minimum spanning tree of the sample set be the
correct reconstruction? Let V = {v1, v2, . . . , vn}, where we assume the points to be
numbered according to their order on the curve. Kruskal’s algorithm considers the
edges vivj in increasing order of length and adds an edge to the spanning tree if it does
not close a cycle. Kruskal’s algorithm will therefore construct the path v1–v2–· · ·–vn
if the potential function µ is such that

cµ(vi, vi+1) < cµ(vh, vj) whenever h ≤ i < j, j − h ≥ 2 .(3.1)

Let us consider two special situations: γ is essentially straight (any two left or
right tangents to γ form an angle of less than π/3) or γ consists of a sharp corner
(a point in which γ turns by at least 7π/24) and two incident straight line segments.
See Figure 3.1. We will show in section 3.3 that any curve γ can be decomposed into
subcurves which are either essentially straight or which consist of a sharp corner with
two incident essentially straight legs.

For an essentially straight curve the minimum spanning tree will reconstruct for
a large choice of potential functions. It will work without a potential function, i.e.,
µ(p) = 0 for all p, and, more generally, it will work for any potential function that does
not change too fast as a function of the position of its argument. For a point p which
belongs to an essentially straight part of γ, we will essentially2 define µ(p) = d(p)/3,
where d(p) is maximal such that B0(p, d(p)) ∩ γ is connected and essentially straight
and B0(p, r) denotes the open ball with center p and radius r. This choice guarantees
that µ(p) changes slowly with the position of its argument (with at most one third of
the change in argument) and that µ(p) depends on local properties of the curve and
is large in parts of γ that are intuitively simple to reconstruct. For sharp corners, the
definition above leads to a potential value of zero.

Corners with a turning angle of more than π/2 will confuse the minimum spanning
tree when used without a potential function as Figure 3.1 shows. One of our insights
is that a simple potential function can be used to make the minimum spanning trees
work. Assume that our curve consists of the two line segments y = ±m · x for
0 ≤ x ≤ 1 and let V be a finite set of samples. We define the potential as a function
of the x-coordinates of the sample points. Fix π(O) arbitrarily, let p(x) = (x,mx) and
q(x) = (x,−mx) and define π(p(x)) = π(q(x)) = π(O) − x. Then cπ(p(x), p(x0)) =√
1 +m2|x− x0 |−2π(O)+x0+x and cπ(q(x), p(x0)) =

√
(x− x0)2 + (mx+mx0)2−

2π(O) + x0 + x. It is an easy exercise in calculus to show that cπ(p(x), p(x0)) is an
increasing function of |x− x0 | and that cπ(q(x), p(x0)) is an increasing function of
x. We conclude that the minimum spanning tree for the modified distance function

2The precise definition given in section 3.4 is somewhat more involved.
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Fig. 3.1. In the figure on the left, the Euclidean distance between p and p0 grows as p moves
away from p0 along γ. In the figure on the right, the distance first grows and then shrinks again as
p moves around the corner. The minimum spanning tree with µ(p) = 0 for all p will reconstruct the
curve on the left, but may fail on the curve on the right.
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Fig. 3.2. The edge pq does not belong to the polygonal reconstruction. Our definition of the
potential function ensures that cµ(p, q) > 0. Our sampling condition is that any edge in the polygonal
reconstruction has non-positive reduced cost.

reconstructs. In the argument above the choice of π(O) is arbitrary. The actual choice
of π(O) will depend on local properties of the curve. For every sharp corner s we will
consider the largest open disk B0(s, cs) such that γ ∩ B0(s, cs) is connected and is
essentially a sharp corner with two incident straight legs. We set π(O) = cs.

We can now sketch our definition of µ. For every point p ∈ γ, the first definition
µ(p) = d(p)/3 is applicable. It assigns potential zero to sharp corners. Near sharp
corners we use the second definition, namely, µ(p) = cs − ‖sps‖, where p is near
the sharp corner s and ps is the projection of p onto the angular bisector of the two
tangents at s; see Figure 3.6.

The analysis above suggests that with this definition of µ, the minimum spanning
tree solves the reconstruction task locally, i.e., if given the points in V ∩γ′, where γ′ is
a subcurve of γ that is either essentially straight or a sharp corner with two incident
straight legs. In other words, inequality (3.1) holds if vh,vi, and vj belong to the same
γ′.

Does it also hold globally? Consider the situation shown in Figure 3.2. We have
two points p and q that belong to distinct essentially straight parts of γ. We have
max(d(p), d(q)) ≤ ‖pq‖ and hence cµ(p, q) > 0. More generally, we will show in
section 3.3 that any edge pq, where p and q do not belong to an either essentially
straight subcurve or to a sharp corner with its incident legs, has positive modified
cost.

The previous paragraph suggests our sampling condition. We require that any
edge of the polygonal reconstruction has nonpositive reduced cost. Then (3.1) holds
certainly when cµ(vj , vj) > 0. When cµ(vh, vj) ≤ 0, vh and vj are guaranteed to lie
in a common essentially straight subcurve or near a common sharp corner, and the
local analysis applies.

This ends the informal description of our proof.
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Fig. 3.3. p and q are adjacent sample points and cµ(p, q) ≤ 0 if p and q are sufficiently close.
However, the sample set contradicts our intuition of what constitutes a dense sample set. Condition
(b) excludes the case.

3.3. The sampling condition and the global reasoning for open curves.
We will give the detailed definition of our potential function in section 3.4; it assigns
a positive real µ(x) to every point x of γ. Define the turning angle of a subcurve γ′

of γ as the opening angle of the smallest double-cone that contains all (left and right)
tangents to points p ∈ γ′. We require the following.

Sampling condition.
(a) For any two adjacent (on γ) samples u and v: cµ(u, v) ≤ 0.
(b) For any two adjacent samples u and v: γ[u, v] turns by less than π. For

two adjacent points p, q on the curve, γ[p, q] denotes the subcurve of γ with
endpoints p and q not containing an other sample point. (In the case of closed
curves we always have at least 3 sample points.)

Condition (a) implies condition (b) in the case of open curves as we will see
below. For closed curves, condition (a) does not suffice as the example in Figure 3.3
indicates. Condition (a) states that adjacent sample points must be sufficiently close
in a metric sense and condition (b) states that the curve must not turn too much
between adjacent sample points.

The sampling condition is easily satisfied. Let ε = infx∈γ µ(x). Then ε > 0 since
γ is compact and hence a sample set in which γ turns by less than π between adjacent
samples and in which there is at least one sample point in every curve segment of
length ε/2 satisfies the sampling condition. We want to stress that the sampling
condition can also be satisfied with nonuniform sampling. In regions of γ where µ is
large, the sampling may be less dense than in regions where µ is small. In section 10
we will relate our sampling condition to the conditions used in other papers on curve
reconstruction.

In order to show that MSTµ is the polygonal reconstruction of γ from V , we
define a family Γ of (overlapping) subcurves γ′ of γ so that
(P1) each subcurve γ′ is connected and the minimum spanning tree (with respect

to cost function cµ) of the points in V ∩ γ′ is unique and coincides with the
polygonal reconstruction of γ′;

(P2) for every edge e with cµ(e) ≤ 0 there is a subcurve γ′ ∈ Γ containing both
endpoints of e.

We show that these conditions imply that MSTµ is the polygonal reconstruction of γ.
Lemma 3.2. Conditions (P1) and (P2) imply that MSTµ is the polygonal recon-

struction of γ.
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Fig. 3.4. A semiregular curve with an infinite number of corners.

Proof. Let MSTµ be any minimum spanning tree in (V,E, cµ) and let e = uv
be any edge which does not belong to the polygonal reconstruction. We show that
e ∈ MSTµ. Observe first that any edge in the minimum spanning tree has nonpositive
modified cost since there is a spanning tree, namely, the polygonal reconstruction, in
which every edge has nonpositive cost. This follows from the cycle rule for minimum
spanning trees. So assume cµ(e) ≤ 0. Then there is a subcurve γ′ ∈ Γ containing
both endpoints of e by (P2). We even have γ[u, v] ⊆ γ′ since γ′ is connected by (P1).
Moreover, the minimum spanning tree of V ∩ γ′ is unique and coincides with the
polygonal reconstruction of γ′. Thus cµ(e′) < cµ(e) for every edge e

′ on the part of
the polygonal reconstruction between u and v. We conclude that e ∈ MSTµ.

3.4. The definition of the potential function. In this section, we give the
precise definition of our potential function. The definition depends on the parameters
θmax sharp , θturn , fscale , fwriggle , θwriggle , and fshrink whose choice is somewhat arbi-
trary but not completely independent. In section 3.6 we summarize the conditions.

Singularities cause difficulties for most curve reconstruction algorithms; the dif-
ficulties grow with the turning angle. We call a singularity p a sharp corner if the
turning angle at p is at least θmax sharp = 7π/24 = 52.5◦.

A semiregular curve may have an infinite number of singularities. For example,
the convex hull of the points (cos(π/n), sin(π/n)), n ≥ 2, has an infinite number of
singularities; see Figure 3.4. However, a semiregular curve can have only a finite num-
ber of sharp corners. Assume otherwise. Then the sharp corners have an articulation
point p. Let p1, p2, . . . be a increasing sequence of sharp corners converging to p. For
any sharp corner pi we can choose two points qi and ri in the vicinity of the corner so
that the tangents at qi and ri form an angle of at least π/6 and so that the sequence
q1, r1, q2, r2, . . . increases and converges to p. The sequence shows that γ has no left
tangent at p.

We use S to denote the set of sharp corners of γ.
We are now ready to define our potential function. The definition consists of two

parts dealing with the neighborhoods of sharp corners and curve parts “far away”
from all sharp corners, respectively. We start with the latter parts.
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Fig. 3.5. The closed ball intersects γ in more than one part or has a singularity on its boundary,
or γ turns by π/3 in the ball.
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Fig. 3.6. Illustration of the definition of bs and ps.

For every point p ∈ γ let d(p) be maximal such that the open ball B0(p, d(p)) has
the following properties:

• B0(p, d(p)) ∩ S = ∅.
• B0(p, r) ∩ γ is connected for all r with r ≤ d(p).
• B0(p, d(p)) ∩ γ turns by less than θturn = π/3.

We will define our potential in parts that are far away from sharp corners as
fscaled(p) and choose fscale = 1/3. We define later what we mean exactly with far
away.

Observe that the closed ball B(p, d(p)) has one of the following properties: it has
a point in S on its boundary or it intersects γ in more than one component or γ turns
by π/3 in the ball (see Figure 3.5). For sharp corners s ∈ S we have d(s) = 0 and
for points p ∈ γ \ S we have d(p) > 0. The function p �→ d(p) is continuous. Thus
d(p) will be an increasing function of p as p moves away from a sharp corner for a
neighborhood of any sharp corner. In section 10 we will relate d(p) to the distance of
p to the medial axis of γ.

For sharp corners we define a quantity δs. For a sharp corner s ∈ S let bs be the
bisector of the angle between the right tangent and the reversal of the left tangent,
let αs be the turning angle at s (we have αs ≥ 7π/24).

For an angle α, let ᾱ = π − α. For a point p ∈ γ, let ps be the orthogonal
projection of p onto bs. See Figure 3.6 for an illustration of these definitions. For
every s ∈ S let δs be maximal so that

• γ ∩B0(s, δs) is connected. We call the two components of (γ \ s) ∩B0(s, δs)
the two legs of γ incident to s.
• The angle between any segment with both endpoints on one leg and the
tangent in s of the same leg is less than min{fwriggle ᾱs, θwriggle}. We choose
fwriggle = 1/4 and θwriggle = π/9. The second bound guarantees that the
angle between any segment and the perpendicular bisector is less than π/2.

• For either of the two legs d(p) increases as p moves away from s.
• B0(s, 2δs) contains no sharp corner different from s.
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Fig. 3.7. By the definition of δs, we know that γ is connected in B0(s, δs), there is no sharp
corner in B0(s, 2δs), the angle between a segment through two points of a leg in B0(s, δs), say, pq,
and the tangent of this leg, say, tr, is less than min(αs/4, π/9), and the d values are increasing in
B(s, δs).

The last condition ensures that the balls B0(s, δs), s ∈ S, are pairwise disjoint. For
an illustration of the definition see Figure 3.7. Clearly, δs > 0 for all s ∈ S.

Recall from section 3.2 that we want to define the potential near a sharp corner
as cs − ‖sps‖. The change form the potential for sharp corners and smooth areas
is made by choosing the maximum of the two possibilities. We use the constant cs
to specify the exact point where we change from one definition to the other. We
choose cs maximal under the restriction that all points outside the B(s, δsfshrink ) ball
(fshrink = 1/5) have potential d(p)/3. Thus let q1 and q2 be the points where the two
legs intersect the boundary of the circle B(s, δs/5) and let

cs = min
{
d(qi)/3 + ‖sqis‖ ; i = 1, 2

}
.

Then cs ≤ 2δs/5 since d(qi) ≤ ‖sqi‖ = δs/5 and ‖qis‖ ≤ ‖sqi‖ = δs/5.
Remark. In the proofs of section 3.5 we will use only the fact that 0 < cs ≤ 2δs/5;

the exact value of cs does not matter. This will become important in section 5.
We are now ready to define our potential-function µ:

µ(p) =

{
d(p)/3 if p is in no B(s, δs),
max{cs − ‖sps‖, d(p)/3} if p ∈ B(s, δs).

Observe that this definition “combines” the two cases discussed in section 3.2. We
use T to denote the set of points p ∈ γ with µ(p) = d(p)/3, i.e., the points that are
not affected by the singularities. Then qi ∈ T since cs ≤ d(qi)/3 + ‖sqis‖ and hence
cs − ‖sqis‖ ≤ d(qi)/3. Also since d(p) and ‖sps‖ increase as p moves away from s
(at least as long as p ∈ B0(s, δs)), we have p ∈ T for any curve point p that is not
contained in ∪s∈SB0(s, δs/5). This also implies that µ is a continuous function. For
a point p ∈ B(s, δs/5) we have d(p) ≤ δs/5 and hence µ(p) ≤ cs.

We will frequently use the following simple observation.
Lemma 3.3. Let u ∈ T ∩B(s, δs) for some s ∈ S and let v be a point on the other

leg of s. Then d(u) ≤ ‖uv‖.
Proof. Assume otherwise, i.e., ‖uv‖ < d(u). We have d(u) ≤ ‖us‖ and hence

B0(u, d(u)) ∩ γ consists of at least two components, one containing u and one con-
taining v.
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Fig. 3.8. The situation in the proof of Lemma 3.8. We have ‖p1p3‖ ≥ ‖p1p′3‖ > ‖p1p2‖ +‖p2p3‖ cosπ/3.

3.5. Local reasoning. We consider the following family Γ of subcurves:
1. B0(p, d(p)) ∩ T ∩ γ for all p ∈ T .
2. B0(s, δs) ∩ γ for all s ∈ S.

We call the subcurves of the first kind regular subcurves and the subcurves of the
second kind singular subcurves.

Lemma 3.4. The subcurves γ′ ∈ Γ are connected.
Proof. This is obvious for singular subcurves. So consider a subcurve γ′ =

B0(p, d(p)) ∩ T ∩ γ for some p ∈ T . The subcurve B0(p, d(p)) ∩ γ is connected by
definition. If γ′ were not connected, B0(p, d(p)) ∩ γ decomposes into three nontrivial
segments γ1, γ2, and γ3 with γ1 ∩ T = ∅, γ2 ∩ T = ∅, and γ3 ∩ T = ∅. This implies
that γ2 passes through a sharp corner, a contradiction to the definition of d(p).

Lemma 3.5. Let u and v be adjacent sample points and let γ′ ∈ Γ. If γ′ contains
u and v, then γ[u, v] ⊆ γ′.

Proof. γ′ is connected and hence either γ[u, v] ⊆ γ′ or γ \ γ[u, v] ⊆ γ′. The latter
case is impossible since γ \ γ[u, v] is not connected in the case of an open curve and
turns by more than π according to our second sampling condition in the case of a
closed curve. However, γ′ turns by less than π according to the definition of Γ.

For open curves Lemma 3.5 holds true without the second sampling condition.
Since curves γ′ ∈ Γ turn by less than π, the second sampling condition is implied by
the first for open curves. We will next verify the properties (P1) and (P2).

Lemma 3.6 (property (P2)). Let e = pq be an edge with nonpositive modified
cost. Then there is a subcurve γ′ ∈ Γ containing p and q.

Proof. We have ‖pq‖ ≤ µ(p) + µ(q) by assumption. If p ∈ T and q ∈ T , µ(p) =
d(p)/3 and µ(q) = d(q)/3 and hence ‖pq‖ ≤ (d(p) + d(q))/3 ≤ 2max(d(p), d(q))/3.
Thus {p, q} ⊆ B0(x, d(x)) for one of the endpoints x of e.

If one of the endpoints does not belong to T , say, p ∈ T , then p ∈ B0(s, δs/5)
for some sharp corner. If q ∈ B0(s, δs) we are done. Therefore, assume otherwise.
We have µ(p) ≤ 2δs/5 and ‖pq‖ ≥ 4δs/5. If q ∈ T , then µ(q) = d(q)/3 ≤ ‖sq‖/3 ≤
(‖pq‖ + δs/5)/3 and hence ‖pq‖ ≤ (‖pq‖ + δs/5)/3 + 2δs/5 or 2‖pq‖/3 ≤ 7δs/15 or
‖pq‖ ≤ 21δs/30, a contradiction to ‖pq‖ ≥ 4δs/5. If q ∈ T , then q ∈ B0(t, δt/5) for
some sharp corner t different from s and hence ‖pq‖ > 4(δs+ δt)/5. But µ(p) ≤ 2δs/5
and µ(q) ≤ 2δt/5, a contradiction.

In order to show that the MSTµ coincides with the polygonal reconstruction, we
show that the modified distance between two points p and r is either nonnegative,
or the modified distance from p to r is greater than the modified distance from p to
any point q between p and r. Since we also want to use these lemmas if we treat
the problem with finite precision arithmetic, we quantify the change of the modified
distance in the distance of q and r.

Lemma 3.7. Let p, q, and r be sample points on a regular subcurve with p < q < r.
If {p, q, r} ∈ B(t, d(t)) for some point t ∈ γ, then cµ(p, r)− cµ(p, q) ≥ ‖qr‖/6.
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Fig. 3.9. Illustration of the definition of β1 and β2, if p, q, and r are on the same leg.

Proof. Let t ∈ γ and p < q < r ∈ B(t, d(t)). Since the points are contained
in a regular subcurve, we have (see Figure 3.8) ∠( .pq, .qr) < π/3 and hence ‖pr‖ >
‖pq‖ + ‖qr‖ cosπ/3 = ‖pq‖ + ‖qr‖/2. Furthermore observe that d(r) ≤ d(q) + ‖qr‖.
Thus

cµ(p, r)− cµ(p, q) = ‖pr‖ − µ(p)− µ(r)− ‖pq‖+ µ(p) + µ(r)
≥ ‖qr‖/2− ‖qr‖/3 = ‖qr‖/6.

Lemma 3.8 (property (P1) for regular regions). MSTµ coincides with the polyg-
onal reconstruction for regular subcurves.

Proof. The lemma above for both possible orientations of the curve implies di-
rectly that Prim’s minimum spanning tree algorithm finds the polygonal reconstruc-
tion.

Lemma 3.9. Let p, q, and r be sample points of γ with p < q < r. If {p, q, r} ∈
B(s, δs) for some sharp corner s ∈ γ, then cµ(p, r) ≥ 0 or cµ(p, r) − cµ(p, q) ≥
‖qr‖(sin ᾱs/4)2/3.

Proof. We first argue that it suffices to prove the claim for the situations where
either q and r both belong to T or neither of them does. Assume for the moment
that those two cases have been dealt with. If exactly one of q and r belongs to T ,
there is a point u between q and r that belongs to the boundary of T . For this point,
we have d(u)/3 = cs − ‖sus‖ and hence u can be considered to be in T or outside
T . The triples (p, q, u) and (p, u, r) are both in one of the special situations and
hence we have cµ(p, u) ≥ 0 or cµ(p, u)− cµ(p, q) ≥ ‖qu‖(sin ᾱs/4)2/3 and cµ(p, r) ≥ 0
or cµ(p, r) − cµ(p, u) ≥ ‖ur‖(sin ᾱs/4)2/3. If cµ(p, r) ≥ 0, we are done. Otherwise
cµ(p, r) < 0 and hence cµ(p, u) < 0. Thus cµ(p, r) − cµ(p, q) = cµ(p, r) − cµ(p, u) +
cµ(p, u) − cµ(p, q) ≥ (‖qu‖ + ‖ur‖)(sin ᾱs/4)2/3 ≥ ‖qr‖(sin ᾱs/4)2/3, where the last
inequality follows from the triangle inequality. We may from now on assume that q
and r either both belong to T or neither of them does.

We need some further case distinctions. The first distinction is according to the
sign of cµ(p, q). The case cµ(p, q) > 0 is dealt with in the last paragraph of the proof.

We start with the assumption cµ(p, q) ≤ 0. We make a further case distinction
according to the position of s in the sequence p < q < r. In all four cases we employ
a common strategy. We have cµ(p, r)− cµ(p, q) = (‖pr‖ − ‖pq‖)− (µ(r)− µ(q)). We
bound ‖pr‖−‖pq‖ from below and µ(r)−µ(q) from above and estimate the difference
of the bounds. In all cases we also use the estimates ᾱs ≤ 17π/24, sin ᾱs/4 ≤ 0.5281,
(sin ᾱs/4)

2/3 ≤ 0.1, and cos 2π/9 ≥ 2/3.
s ≤ p < q < r: If {q, r} ∩ T = ∅, µ(r) ≤ µ(q), and if {q, r} ⊆ T , µ(r) ≤

µ(q) + ‖qr‖/3. In either case3, µ(r) ≤ µ(q) + ‖qr‖/2.

3In section 5.2 we will consider a modified potential function for which we know only µ(r) ≤
µ(q) + ‖qr‖/2. We want to reuse the proof there.
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Fig. 3.10. The case p < s ≤ q < r: In the left part qs is closer to s than ps and in the right
part the converse is true. In both situations the definitions of β1 and β2 are illustrated.

Let β2 be the angle between the vectors .pq and .qr. Then ‖pr‖−‖pq‖ ≥ ‖qr‖ cosβ2.
By the sampling condition, we have β2 ≤ 2π/9, since the angle between pr, respec-
tively, qr, and the left tangent at s is at most π/9. Thus

cµ(p, r)− cµ(p, q) ≥ ‖qr‖(cos(β2)− 1/2) ≥ ‖qr‖/6 ≥ ‖qr‖ sin(ᾱs/4)2/3 .
p < q < r ≤ s: If {qr} ⊆ T , µ(r) ≤ µ(q) ≤ µ(q) + ‖qr‖/2. Let β2 be the angle

between the vectors .pq and .qr. Then ‖pr‖ − ‖pq‖ ≥ ‖qr‖ cosβ2 and β2 ≤ 2π/9 and
hence the argument used in the case s ≤ p < q < r applies.

Assume next that {q, r} ∩ T = ∅. Let β1 be the angle between the vectors

.qr and .bs. Then µ(r) − µ(q) = ‖qr‖ cosβ1. By the sampling condition, we have
β1 ≥ 3/4ᾱs. Thus µ(r) − µ(q) = ‖qr‖ cos 3/4ᾱs. Let β2 as above be the angle
between the vectors .pq and .qr; see Figure 3.9 for an illustration. Then β2 ≤ ᾱs/2
(since the angle between pq, respectively, qr, and the right tangent at s is at most
ᾱs/4) and ‖pr‖ − ‖pq‖ ≥ ‖qr‖ cosβ2 ≥ ‖qr‖ cos ᾱs/2.

Combining bounds we obtain

cµ(p, r)− cµ(p, q) ≥ ‖qr‖(cos(ᾱs/2)− cos(ᾱs/2 + ᾱs/4))
≥ ‖qr‖(cos(ᾱs/2)− cos(ᾱs/2) cos(ᾱs/4) + sin(ᾱs/2) sin(ᾱs/4))

≥ ‖qr‖ sin(ᾱs/4)2.
p < s ≤ q < r: Assume first that {q, r} ∩ T = ∅. If qs is as least as far from

s as ps, we have ‖pr‖ − ‖pq‖ ≥ 0 and µ(q) − µ(r) ≥ ‖qr‖ cos(17π/48 + π/9) =
‖qr‖ cos(π/2 − 5π/144) = ‖qr‖ sin(5π/144) > 0.1 · ‖qr‖ ≥ ‖qr‖(sin ᾱs/4)2/3. The
claim follows.

If qs is closer to s than ps, let β1 be the angle between the vectors .qp and .bs and
β2 be the angle between the vectors .qr and .bs; see the left part of Figure 3.10 for an
illustration. We have µ(q)− µ(r) = ‖qr‖ cosβ2 and ‖pq‖ − ‖pr‖ ≤ ‖qr‖ cos(β1 + β2).

By the sampling condition, we have β2 ≥ ᾱs/4 and β1 ≥ ∠( .sp,.bs) ≥ ᾱs/4, since

∠( .qp,.bs) ≥ ∠( .sp,.bs) (moving along the line .sq increases the angle). Combining
bounds we obtain

cµ(p, r)− cµ(p, q) ≥ ‖qr‖(cosβ2 − cos(β1 + β2))

= ‖qr‖(cosβ2 − cosβ1 cosβ2 + sinβ1 sinβ2)

≥ ‖qr‖ sin(ᾱs/4)2.
We come to the case that {q, r} ⊆ T : If p ∈ T , we have cµ(p, r) = ‖pr‖−d(p)/3−

d(r)/3 > 0, since d(p) ≤ ‖pr‖ and d(r) ≤ ‖pr‖.



42 ERNST ALTHAUS AND KURT MEHLHORN

So assume p /∈ T . Since q ∈ T , we have d(q)/3 ≥ cs − ‖sqs‖ and hence cs ≤
d(q)/3 + ‖sqs‖. Thus4 0 ≥ cµ(p, q) = ‖pq‖ − (cs − ‖sps‖)− d(q)/3 ≥ ‖pq‖ − (‖sqs‖ −
‖sps‖) − 2d(q)/3 ≥ ‖pq‖/3 − (‖sqs‖ − ‖sps‖) and hence ‖sqs‖ − ‖sps‖ ≥ ‖pq‖/3. In
particular, qs lies further away from s than ps.

Let β1 be the angle between the vectors .qp and .bs and β2 be the angle between
the vectors .qr and .bs; see the right part of Figure 3.10 for an illustration. Then
cos β̄1 ≥ 1/3, β2 ≥ ᾱs/4, and ‖pr‖ − ‖pq‖ ≥ ‖qr‖ cos(π − β1 − β2).

Combining bounds we obtain cµ(p, r) − cµ(p, q) ≥ ‖qr‖(cos(β̄1 − β2) − 1/3). If
cos(β̄1 − β2) − 1/3 ≥ 4/27, we are done since 4/27 ≥ (sin ᾱs/4)

2/3. So assume
cos(β̄1 − β2) ≤ 1/3 + 4/27 = 13/27 ≤ 1/2. Then β̄1 − β2 ≥ π/3 and hence β̄1 ≥ π/3
and hence (1 − cos β̄1)/β̄1 ≥ 1/2. Since cos(β̄1 − x) is convex in [0, β̄1] and hence is
above the line through the points (0, 1) and (β̄1, cos β̄1), we have

cos(β̄1 − β2)− 1/3 ≥ cos β̄1 + (1− cos β̄1)(β2/β̄1)− 1/3 ≥ β2/2 ≥ (sin ᾱs/4)2/3.

p < q < s < r: We have ‖qr‖ ≤ ‖qs‖ + ‖sr‖. One of the previous cases applies
to the triples (p, q, s) and (p, s, r) and hence cµ(p, r)− cµ(p, q) = cµ(p, r)− cµ(p, s) +
cµ(p, s)− cµ(p, q) ≥ (‖qs‖+ ‖sr‖)(sin ᾱs/4)2/3 ≥ ‖qr‖(sin ᾱs/4)2/3.

The discussion of the case cµ(p, q) ≤ 0 is now completed. So let us assume
cµ(p, q) > 0. If cµ(p, r) < 0 there is a point q′ between q and r with cµ(p, q′) = 0. The
first case applies to the triple (p, q′, r) and hence cµ(p, r) > cµ(p, q′), a contradiction.
Thus cµ(p, r) ≥ 0.

Lemma 3.10 (property (P1) for singular regions). MSTµ coincides with the
polygonal reconstruction for singular subcurves.

Proof. The lemma above for both possible orientations of the curve implies di-
rectly that Prim’s minimum spanning tree algorithm finds the polygonal reconstruc-
tion.

3.6. Conditions on the thresholds. In the preceding sections we showed that
properties (P1) and (P2) hold if one chooses the thresholds as in section 3.4. There
are other possible choices for the thresholds that make the arguments work. We now
collect the conditions on the thresholds. Note that the subtour-LP has an unique
integral solution if there is a choice of the thresholds that make the MSTµ unique and
equal to the polygonal reconstruction.

We introduced six thresholds:
θmax sharp : The minimum turning angle of a singularity, which we call sharp. We

have chosen θmax sharp = 7π/24.
θturn : The maximal turning angle in a B(p, d(p)) ball. We have chosen θturn =

π/3.
fscale : The factor by which we scaled the d(p) value for the potential. We have

chosen fscale = 1/3.
fwriggle : The factor by which we scaled the ᾱs as maximal angle between a tangent

and a segment in a sharp corner. We have chosen fwriggle = 1/4.
θwriggle : The maximal angle between a tangent and a segment in a sharp corner.

We have chosen θwriggle = π/9.
fshrink : The factor by which we shrunk the δs ball to define the area where we

use the potential function for sharp corners. We have chosen fshrink = 1/5.

4Recall that we work under the assumption cµ(p, q) ≤ 0.
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First of all, we must guarantee that µ > 0, which is equivalent to

θturn < θmax sharp .

We start our investigations by looking at property (P2), i.e., to guarantee that
all edges which are not contained in a region have positive modified cost. Look at
any edge pq with negative reduced cost. If p and q are in T , we have to show that
there is a point x with ‖px‖ ≤ d(x) and ‖qx‖ ≤ d(x). For simplicity we have assumed
that x is either p or q. This is reasonable, since the conditions we get are weaker
than the conditions we need later. Thus we require max(d(p), d(q)) ≥ ‖pq‖. Since
‖pq‖ ≤ fscale(d(p) + d(q)) it suffices that

fscale < 1/2.

If exactly one of p, q is not in T , we require that 2fshrinkδs + fscale‖sq‖ ≤ ‖pq‖.
(The first summand is an upper bound for the potential of p, the second for the
potential of q.) Using that ‖pq‖ ≥ 1− fshrink for all points outside the B(s, δs) ball,
we conclude that it suffices that

3fshrink + fscale < 1.

Assume next that p and q are not in T . Then p ∈ B(s1, fshrinkδs1) and q ∈
B(s2, fshrinkδs2) for different sharp corners s1 and s2. Let without loss of generality
(w.l.o.g. ) δs1 ≥ δs2 . It suffices that

fshrink < 1/3.

Let us now turn to property (P1). In regular regions we require that “potential
changes slower than the distance.” Thus we need

cos(θturn) > fscale .

For singular regions, we have to go through all cases of Lemma 3.9. If s ≤ p <
q < r we need similarly to the case of regular cures

cos(θwriggle) > fscale .

The same suffices in the case p < q < r < s and q and r are in T .
If p < q < r < s and q and r are not in T , we require that cos(1 − fwriggle) <

cos(2fwriggle), which is equivalent to

fwriggle < 1/3.

If p < s ≤ q < r and q, r /∈ T , we additionally require that

θmax sharp/2 + θwriggle < π/2.

If q, r ∈ T we compute that cos(β̄1) ≥ 1−2fscale and require that cos(β̄1−fwriggleαs) >
1/3. This is equivalent to

fscale ≤ 1/3.
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Note that the last requirement is the only one where the condition can also be
satisfied with equality, since we subtract a positive number in the derivation. This
ends our discussion.

4. Open curves with unspecified endpoints. In the preceding sections we
assumed that the first and last sample point (= endpoints of the traveling salesman
path) are specified as part of the input. In this section we show that the subtour-LP
can also reconstruct when the endpoints are not specified. Of course, the requirements
on the sample will be stronger. The argument used in this section is a variant of the
argument used in section 3.

We use the following formulation of the subtour-ILP. The goal is to select a total
of n− 1 edges such that at most two of them are incident to any node and such that
no subset V ′ with V ′ = ∅ is “over-full.”

min
∑
u,v∈V

cuvxuv

subject to (s.t.)
∑
v∈V

xuv ≤ 2 for all u ∈ V,

∑
u,v∈V ′

xuv ≤ |V ′ | − 1 for V ′ ⊂ V , V ′ = ∅,

∑
u,v∈V ′

xuv = n− 1,

xuv ∈ {0, 1} for all u, v ∈ V.

Selecting a total of n− 1 edges such that at most two of them are incident to any
node amounts to selecting a path and a set of cycles covering all nodes. The constraint
that no set can be over-full implies that no cycles can be used and hence any solution
must be a traveling salesman path. The subtour-LP is obtained by replacing the
integrality constraints xuv ∈ {0, 1} by the linear constraints 0 ≤ xuv ≤ 1.

As in the case of open curves with specified endpoints, we have to show that
the separation problem can be solved in polynomial time. The separation algorithm
works as follows. Let x∗ be the optimal solution. We assign a capacity of x∗e to edge
e for every edge e. Furthermore we introduce a artificial vertex s and edges us with
capacity 2−∑e∈δ(u) x

∗
e for every node u of the graph. We compute a minimal cut in

this graph and take as subset for the subtour elimination constraint the side of the
cut that does not contain the artificial node s.

To see the correctness of this separation algorithm, we show that the subtour
elimination constraint for S is violated iff the size of the cut is less than 2. Let S ⊂ V
be a subset of the nodes. First notice that the sum of the capacities of edges adjacent
to a node is exactly 2 for every node in the above graph. Thus 2

∑
e∈γ(S) x

∗
e +∑

e∈δ(s) x
∗
e = 2 S. (For every node u ∈ S, we sum the capacities of the adjacent

edges.) We conclude that
∑
e∈δ(s) x

∗
e < 2 iff

∑
e∈γ(S) x

∗
e > S − 1.

We consider only nonpositive potential functions µ ≤ 0 in this section. Let a and
b be fixed vertices and consider any traveling salesman path T with endpoints a and b.
Its costs under c and cµ are related by cµ(T ) = c(T )−2

∑
v∈V µ(v)+µ(a)+µ(b) since

the path uses two edges incident to every vertex except for a and b. Observe that
cµ(T ) − c(T ) does not depend on T and hence the optimal traveling salesman path
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for endpoints a and b is the same under both cost functions. However, the relative
order of traveling salesman path with distinct endpoints is changed.

Let MSTµ be a minimum spanning tree with respect to the cost function cµ and
let Cµ = cµ(MSTµ) be its cost. Then Cµ ≤ cµ(T ) for any traveling salesman path T .

Fact 3. Let µ ≤ 0 be any potential function. If MSTµ is a traveling salesman
path and µ(a) = µ(b) = 0 for the endpoints of this path, it is an optimal traveling
salesman path.

Proof. Let T0 be an optimal traveling salesman path, say, with endpoints u and v.
Then Cµ ≤ cµ(T0), since T0 is a spanning tree, c(MSTµ) = cµ(MSTµ)+2

∑
v∈V µ(v)−

µ(a)− µ(b) = cµ(MSTµ) + 2
∑
v∈V µ(v), since MSTµ is a path with endpoints a and

b and a and b have potential zero, and c(T0) = cµ(T0) + 2
∑
v∈V µ(v)−µ(u)−µ(v) ≥

cµ(T0) + 2
∑
v∈V µ(v), since T0 is a path with endpoints u and v, and since the

potentials of u and v are nonpositive. Thus

c(T0) ≥ cµ(T0) + 2
∑
v∈V

µ(v) ≥ cµ(MSTµ) + 2
∑
v∈V

µ(v) = c(MSTµ).

The inequality Cµ ≤ cµ(T0) = c(T0) − 2
∑
v∈V µ(v) + µ(u) + µ(v) ≤ c(T0) −

2
∑
v∈V µ(v) is valid for every nonpositive potential function (the last inequality uses

nonpositivity) and hence

max
µ≤0

(
Cµ + 2

∑
v∈V

µ(v)

)
≤ c(T0) .

The quantity on the left is called the Held–Karp bound. The following fact is crucial
for our proof.

Fact 4. The Held–Karp bound is equal to the optimal objective value of the
subtour-LP.

Proof. The proof follows from [7, p. 259]. Relaxing the degree constraints∑
v∈V xuv ≤ 2 in a Langrangian fashion, we obtain the problem

max
µ≤0

min
x≥0

∑
u,v∈V

c(uv)xuv +
∑
u

µ(u)

(
2−

∑
v∈V

xuv

)

s.t.
∑

u,v∈V ′
xuv ≤ |V ′ | − 1 for V ′ ⊂ V , V ′ = ∅,

∑
u,v∈V

xuv = n− 1,

xuv ≤ 1 for all u, v ∈ V.

Observe that we are only maximizing over nonpositive potential functions µ.
This stems from the fact that in contrast to section 3, the degree constraints are now
inequalities instead of equalities. The reformulation has the same objective value. The
objective function of the LP can be reformulated as

∑
u,v∈V (c(uv)−µ(u)−µ(v))xuv+

2µ(V ). We conclude that the LP is simply a minimum spanning tree problem for the
cost function cµ.

We remark (but will not use) that the optimal choice of µ in the Held–Karp bound
is given by the optimal solution of the linear programming dual of the subtour-LP; µ
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corresponds to the dual variables for the degree constraints. We next draw a simple
consequence from the two facts above.

Lemma 4.1. Let µ ≤ 0 be any potential function. If MSTµ is the unique minimum
spanning tree with respect to cµ, is a traveling salesman path, and µ(a) = µ(b) = 0 for
its endpoints a and b, the subtour-LP has a unique optimal solution and this solution
is integral.

Proof. If MSTµ is a traveling salesman path, it is optimal (Fact 1) and hence
c(MSTµ) = c(T0). The Held–Karp bound is therefore equal to c(T0) and the same
holds true for the optimal objective value of the subtour-LP (Fact 2). The incidence
vector of MSTµ is a feasible solution of the subtour-LP of cost c(MSTµ) and hence is
an optimal solution of the subtour-LP. We will next argue that it is the unique optimal
solution. Assume that there is an optimal solution of the subtour-LP with xe > 0 for
some e ∈ MSTµ. Since MSTµ is unique there is a η > 0 so that decreasing the cost
of e by η will not change the minimum spanning tree and hence will not change the
value of the Held–Karp bound. However, the objective value of the subtour-LP will
decrease. This is a contradiction to the equality of the two bounds.

It remains to define the appropriate potential function. We obtain it as a modifi-
cation of the potential function defined in the preceding section. We use µ̄ to denote
it. Let V be a set of sample points and let a and b be the first and the last sample
point.

Let m = min(µ̄(a), µ̄(b)) and set cs = min(cs,m) for all sharp corners. This
changes µ̄. (It makes µ̄ smaller for some points near sharp corners.) Define new
potential functions µ̃ and µ by

µ̃(p) = min(µ̄(p),m) and µ(p) = µ̃(p)−m
for all p ∈ γ, i.e., first all potential values are capped at m and then m is subtracted.
Then µ̃(p) ≥ µ(p) for all p and µ(p) ≤ 0 for all p. Also µ(a) = µ(b) = 0.

We strengthen the sampling condition and require cµ̃(pq) = ‖pq‖−µ̃(p)−µ̃(q) ≤ 0
for all edges in the reconstruction.

Since cs ≤ m for all sharp corners, we have µ̃(p) = µ̄(p) for all p ∈ T . Here µ̄
denotes the original potential function, but with the capped c-values.

Suppose that V satisfies the strengthened sampling condition. Then the minimum
spanning tree with respect to cµ̃ is equal to the polygonal reconstruction. This requires
us to check that Lemmas 3.6 to 3.10 stay true; we leave the straightforward but
tedious check to the reader. The minimum spanning tree with respect to µ is the
same as the minimum spanning tree with respect to µ̃, since µ and µ̃ differ only by
a constant. We conclude that the minimum spanning tree with respect to µ is equal
to the polygonal reconstruction and moreover unique. We finally observe that µ is
nonpositive and that µ(a) = µ(b) = 0. Thus MSTµ is the unique optimal solution of
the subtour-LP by Lemma 3.2.

5. Closed curves. We extend the result to closed curves in two steps.
• In section 5.2 we alter the potential function to µ′ so that the two longest
edges of the polygonal reconstruction have the same modified cost and so
that the minimum spanning trees with respect to the new modified cost are
precisely the polygonal reconstruction minus one of the edges of maximal
modified cost.
• In section 5.1 we show that the preceding sentence implies our main theorem
for closed curves.

Observe that, in our write-up, the second step is dealt with first.
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Readers familiar with the Held–Karp bound for traveling salesman tours may
wonder why we are not arguing about 1-trees. We tried but could not get the argument
to work. A 1-tree is defined as follows. An arbitrary node v ∈ V is fixed. A 1-tree
consists of the two cheapest edges incident to v plus a minimum spanning tree of
V \ v. We were unable to construct a potential function for which the optimal 1-tree
coincides with the polygonal reconstruction. We were able to construct a potential
function where the two cheapest edges incident to v were indeed the edges to the
two neighbors in the polygonal reconstruction and were able to construct a potential
function where the minimum spanning tree on V \ v coincided with the polygonal
reconstruction minus the two edges incident to v. We were unable to satisfy both
conditions simultaneously.

5.1. The subtour-LP and the global reasoning. Assume that the potential
function µ′ has been constructed. The subtour-LP for the traveling salesman problem
can be formulated as follows:

min
∑
u,v∈V

cuvxuv

s.t.
∑
v∈V

xuv = 2 for u ∈ V,
∑

u∈V ′,v∈V ′
xuv ≤ |V ′ | − 1 for V ′ ⊆ V , ∅ = V ′ = V,

∑
u,v∈V

xuv = |V |,

0 ≤ xuv ≤ 1.

The last equality is redundant but helpful for our Lagrangian-relaxation. The length
of the polygonal reconstruction is an upper bound for the objective value of the
subtour-LP. We relax the set of degree equalities to the objective function and obtain
the following problem with the same objective value [7, pp. 258–260]:

max 2
∑
u∈V

µ(u) + min
∑
u,v∈V

cµ(uv)xuv

s.t.
∑

u∈V ′,v∈V ′
xuv ≤ |V ′ | − 1 for V ′ ⊆ V , ∅ = V ′ = V,

∑
u,v∈V

xuv = |V |,

0 ≤ xuv ≤ 1.

In this formulation the maximization is over all choices of µ. For fixed µ the inner
minimization is over the choices for the xuv. We will show that for µ = µ′ the
polygonal reconstruction is the unique optimal solution for the minimization problem
and hence the objective value of the maximization problem is at least the length of
the polygonal reconstruction. It cannot be larger and hence the objective value of the
maximization problem is equal to the length of the reconstruction. This proves that
the polygonal reconstruction is an optimal solution to the subtour-LP. We still need to
argue uniqueness. Assume that there is another optimal solution for the subtour-LP.
Since the solution satisfies the degree constraints, it will give the same value to the
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Fig. 5.1. The notation used in the reformulations of the subtour-LP. We have ei ∈ Ei.

inner minimization problem as the polygonal reconstruction and hence the polygonal
reconstruction is not the unique optimal solution to the inner minimization problem.

It remains to prove that for µ = µ′, the polygonal reconstruction is the unique
optimal solution for the inner minimization problem. Orient γ arbitrarily, let e1 and e2
be edges in the polygonal reconstruction which have maximal modified cost, and let u
and v be the starting nodes of e1 and e2, respectively, and let R1 and R2 be the sample
points from u to v (both inclusive), respectively, from v to u (both inclusive) with
respect to the order of the points along the curve; see Figure 5.1. Then R1 ∪R2 = V
and R1 ∩ R2 = 2. Let Ei, i = 1, 2, be the set of edges having both endpoints in
Ri and let C be the remaining set of edges. Then ei ∈ Ei and any edge e ∈ C has
a modified cost larger than e1 (and hence e2). Otherwise there would be a minimum
spanning tree that is not contained in the polygonal reconstruction. In an optimal
solution to the inner LP, the total weight of the edges in Ei is |Ri | − 1− oi for some
oi ≥ 0, i = 1, 2, and the total weight of the edges in C is o1 + o2. Thus the inner LP
is relaxed by

min
o1,o2≥0

min
∑
u,v∈V

cµ′(uv)xuv

s.t.
∑

u∈R′
1,v∈R′

1

xuv ≤ |R′1 | − 1 for all R′1 ⊆ R1, with R
′
1 = ∅,

∑
u,v∈R1

xuv = |R′1 | − 1− o1,
∑

u∈R′
2,v∈R′

2

xuv ≤ |R′2 | − 1 for all R′2 ⊆ R2, with R
′
2 = ∅,

∑
u,v∈R2

xuv = |R2 | − 1− o2,
∑
uv∈C

xuv = o1 + o2,

0 ≤ xuv ≤ 1.

Observe that we dropped some of the subtour elimination constraints.
Consider the inner minimization problem for fixed values of o1 and o2. The first

two lines describe a partial minimum spanning tree for R1 and the next two lines a
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partial minimum spanning tree for R2. More precisely, the system is minimized if one
chooses the � R1 − 1 − o1� shortest edges of the minimum spanning tree and fills
the fractional part with the next edge.5 The same is true for R2. The LP takes its
minimum for o1 = o2 = 0 since any edge in C has higher cost than any edge in the
minimum spanning tree. For o1 = o2 = 0, the system describes the minimum spanning
trees for R1 and R2. Thus the polygonal reconstruction is the unique optimal solution
of the inner minimization problem and hence of the subtour-LP.

5.2. The modified potential function and the local reasoning. We show
how to alter the potential so that the two longest edges of the polygonal reconstruction
have the same modified cost and so that all minimum spanning trees for V remain
part of the polygonal reconstruction. Note that the new potential is defined according
to a given sample set, whereas the original potential depends only on the curve.

Let emax be the edge of the polygonal reconstruction with highest modified cost.
We claim that one of the following cases arises:

(1) There is a sharp corner so that both endpoints of emax are outside the ball
B(s, δs/5).

(2) There is a point v ∈ γ so that ‖vu‖/2 ≥ µ(u) for both endpoints u of emax
and so that v does not lie in the B0(s, δs) ball of any sharp corner s.
The first case certainly arises when there are at least three sharp corners. Assume
that the first case does not hold. We make a further case distinction: Either both
endpoints of emax lie in T (this will certainly be the case when there is no sharp
corner) or some endpoint of emax lies in B(s, δs/5) \ T for some sharp corner s. In
the former case the curve must leave the union of the B(u, d(u)) balls of the two
endpoints u of emax (because the curve can turn by at most 2π/3 within the union of
these balls) and any curve point v outside the two balls (since ‖uv‖ ≥ d(u) = 3µ(u) for
any of the endpoints) and outside ∪s∈SB0(s, δs) will work; v exists since the regions
(B0(s, δs))s∈S are pairwise disjoint and since γ turns by less than π in any such region.
So assume that some endpoint of emax lies in B(s, δs/5) \ T of some sharp corner s.

5For o1 = 0 this is the characterization of minimum spanning trees by a linear program; see [7,
Theorem 2.8]. The proof extends to nonzero values of o1. We sketch the proof for the sake of
completeness. The dual linear program has an unconstrained variable yR1

and a nonpositive variable

yR′ for every proper subset of R1. It reads max(|R1 |− 1)yR1
+
∑

R′;∅�=R′ �=R1
(|R′ |− 1)yR′ subject

to yR1 +
∑

R′;e∈γ(R′) yR′ ≤ ce for every edge e and yR′ ≤ 0 for every R′, ∅ �= R′ �= R1. In this

footnote we use γ(R) to denote all edges having both endpoints in R. We use Kruskal’s algorithm
to construct a primal and dual solution simultaneously. The dual solution will always be feasible;
the primal solution will always satisfy x(γ(R′)) ≤ |R′ | − 1 for all nonempty R′ (but will satisfy
x(γ(R1)) = n− 1− o1 only in the last step); and we will always have complementary slackness.

We start with the empty spanning forest, i.e., xe = 0 for all e, and all dual variables equal to
zero. We declare all singleton sets R′ active. We then increase yR1 and decrease yR′ for all active
R′ at the same rate until the first constraint yR1 +

∑
e;e∈γ(R)

yR ≤ ce becomes tight. This will

be for the minimum cost edge (let us assume for simplicity that all costs are distinct); observe that
the yR′ for singletons sets R′ are irrelevant. We add e to the spanning forest, i.e., we change xe
to one. Observe that this preserves complementary slackness. The addition of e to the spanning
forest combines two active sets R′

1 and R
′
2 into a set R

′. We declare R′
1 and R

′
2 inactive and R

′
active. Observe that R′ corresponds to a subtree of the spanning tree and hence the primal constraint
x(γ(R′)) = |R′ | − 1 is tight. Thus yR′ is a dual variable which complementary slackness allows to
become nonzero. We proceed, i.e., we increase yR1

and decrease yR′ for every active set R′ at the
same rate. Observe what happens. For every edge f contained in an active set R′ the left-hand side
of yR1 +

∑
e;e∈γ(R)

yR ≤ cf will not change, because the increase of yR1 is balanced by the decrease

of yR′ . For any edge f connecting two active sets the left-hand side will increase. When the next
edge becomes tight, we add it to the spanning tree, . . . . We finish when adding a partial edge makes
the constraint x(γ(R1)) = n− 1− o1 tight.
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Fig. 5.2. The construction of the potential function µ′.

Consider the leg of s that does not contain the other endpoint of emax. It contains
no endpoint of emax that lies in T . Let v be the point on this leg of s with distance
δs from s and let u be an endpoint of emax. If u ∈ B(s, δs/5), then ‖uv‖ ≥ 4δs/5
and µ(u) ≤ max(cs, d(u)/3) ≤ 2δs/5 and if u ∈ B(s, δs/5), then u ∈ T and hence u
does not lie on the same leg as v does. Then d(u) ≤ ‖uv‖ by Lemma 3.3 and we are
done. In either case we have shown that one of items above holds. We also need the
following lemma.

Lemma 5.1. Let s be a sharp corner and let x and y be adjacent sample points
so that s ∈ γ[x, y]. Then x, y ∈ B(s, 3δs/5) and either x or y lies in B(s, δs/5) \ T .

Proof. Since the regions B0(p, d(p))∩T do not contain any sharp corner and since
the regions (B0(t, δt))t∈S are pairwise disjoint, we have x, y ∈ B0(s, δs) by Lemmas 3.5
and 3.6. Assume x ∈ B(s, 3δs/5). Then

cµ(x, y) ≥ cµ(s, x) ≥ ‖sx‖ − 2δs/5− ‖sx‖/3 ≥ 2‖sx‖/3− 2δs/5 > 2δs/5− 2δs/5 = 0,

where the first inequality follows from the third claim in the proof of Lemma 3.10.
Assume next that x, y ∈ T . Lemma 3.3 implies d(x), d(y) ≤ ‖xy‖ and hence cµ(x, y) ≥
‖xy‖/3 > 0.

We now turn to the definition of the modified potential function and the proof
that all minimum spanning trees for V with respect to the modified potential function
are subsets of the polygonal reconstruction.

Assume first that there is a sharp corner s so that both endpoints of emax lie
outside the B(s, δs/5) ball. We decrease cs continuously down to zero. For cs = 0, we
have µ(x) = d(p)/3 for all x ∈ B(s, δs) and hence the edge xy in the reconstruction
that connects the two legs of s (it exists by Lemma 5.1) has positive modified cost:
cµ′(x, y) = ‖xy‖−µ′(x)−µ′(y) ≥ ‖xy‖−‖xy‖/3−‖xy‖/3 > 0 since d(x), d(y) ≤ ‖xy‖
and hence cµ(x, y) ≥ ‖xy‖/3 > 0 by Lemma 3.3. The modified cost of the edge
emax is not affected by the change of cs. Thus there must be a value of cs for
which the two largest modified costs in the reconstruction are the same. All edges
in the reconstruction still have nonpositive modified cost (because emax has) and the
minimum spanning tree with respect to cµ′ remains the polygonal reconstruction by
the remark in section 3.4 that only the fact that 0 < cs ≤ 2δs/5 is used in our proofs.
This completes the discussion of the first case.

We come to the case that there is a point v ∈ γ so that µ(u) ≤ ‖vu‖/2 for both
endpoints u of emax and so that v lies outside the B

0(s, δs) balls of all sharp corners.
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We split the curve at v and orient the resulting open curve arbitrarily. For any l ∈ R,
0 ≤ l ≤ µ(v), we define a as the first point with µ(a) = ‖va‖/2 + l and b as the last
point with µ(b) = ‖vb‖/2 + l and define a potential µ′ by

µ′(p) =

{
µ(p) if a ≤ p ≤ b,
‖vp‖/2 + l otherwise.

Observe that a, b, and µ′ depend on l. For simplicity of notation we do not make this
dependence explicit in the notation. Figure 5.2 illustrates the definition of µ′.

We need to argue that a and b exist for all choices of l, that the cost of emax does
not depend on l, that there is a choice of l for which the two largest modified costs
are the same, and that every minimum spanning tree with respect to cµ′ uses only
edges of the polygonal reconstruction.

We first show the existence of a and b for all choices of l. For l = µ(v) we have
a = b = v. For 0 ≤ l < µ(v) we have µ(v) > l+‖vv‖/2 and µ(u) ≤ ‖uv‖/2 ≤ l+‖uv‖/2
for either endpoint of emax. From the continuity of µ we conclude that there is a point
a between v and u for which µ(a) = ‖va‖/2 + l and a point b between u and v for
which µ(b) = ‖vb‖/2 + l. We have shown that a and b exist and that emax does not
depend on l. Furthermore we know that µ′(p) ≤ µ(p) for all p by the definition of a
and b.

We next show that a ≤ r, where r is the first point on γ with ‖sr‖ = 3δs/5 for
some sharp corner s, and hence a ∈ T . We have ‖rv‖ ≥ 2δs/5 and µ(r) = d(r)/3 ≤
‖sr‖/3 = δs/5 ≤ ‖rv‖/2 ≤ ‖rv‖/2 + l. Continuity of µ implies that a lies between
v and r. Similarly, b lies in T and after the last point r on γ with ‖sr‖ = 3δs/5 for
some sharp corner.

We next argue that there is a choice of l for which the two largest modified costs
in the reconstruction are the same. From a ≤ u ≤ b for any endpoint u of emax
we conclude that the modified cost of emax does not depend on l. For l = µ(v),
we have a = b = v and hence µ = µ′. Thus emax has the maximal modified cost
cµ′ among all edges in the reconstruction. For l = 0, we consider the reconstruction
edge between the last and the first sample points x and y, respectively, and show
that it has positive modified cost cµ′(xy). There must be a subcurve γ′ containing
γ[x, y] and hence v. Since v ∈ B(s, δs) for any sharp corner, γ′ is a regular subcurve
and hence γ[x, y] ⊆ T . We first show that a < x and y < b is impossible. Assume
otherwise. Then µ(x) ≤ µ(a)+‖ax‖/3 = ‖va‖/2+‖ax‖/3 and µ(y) ≤ µ(b)+‖by‖/3 =
‖vb‖/2 + ‖by‖/3 and ‖xy‖ > ‖xa‖/2 + ‖ab‖+ ‖by‖/2 since γ′ turns by less than π/3.
Thus cµ(x, y) > 0, a contradiction to our sampling condition. Thus either v ≤ x ≤ a
or b ≤ y ≤ v or both. We may assume w.l.o.g. that v ≤ x ≤ a. If y < b, we
have µ(y) ≤ µ(b) + ‖by‖/3 = ‖vb‖/2 + ‖by‖/3, ‖xy‖ > ‖xv‖/2 + ‖vb‖ + ‖by‖/2, and
µ′(x) = ‖vx‖/2 and hence cµ′(x, y) > 0. If b ≤ y, we have ‖xy‖ > ‖xv‖/2 + ‖vy‖/2,
µ′(y) = ‖vy‖/2 and µ′(x) = ‖vx‖/2 and hence cµ′(x, y) > 0. In either case we have
shown that for l = 0 there is an edge in the reconstruction with positive modified
cost. Continuity implies that there is a value of l for which the two largest modified
costs in the reconstruction are the same. This completes the definition of the modified
potential function in the second case.

In order to verify that all minimum spanning trees are subsets of the polygonal
reconstruction is suffices to show that Lemma 3.6 holds for the new potential function
and that cµ′(p, r) > cµ′(p, q) for any three points with p < q < r and {p, q, r} ⊆ γ′
for some γ′ ∈ Γ.

From µ′(x) ≤ µ(x) for all x, we conclude cµ′(pq) ≤ cµ(pq) for all edges pq. Thus
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Lemma 3.6 stays true.
If {p, q, r} ⊆ B(u, d(u)) ∩ T for some r ∈ γ, we have ∠( .pq, .qr) < π/3 and hence

‖pr‖ − ‖pq‖ > ‖qr‖/2 and µ′(r) ≤ µ′(q) + ‖qr‖/2. Thus cµ′(p, r) > cµ′(p, q).
Assume next that {p, q, r} ⊆ B(s, δs) for some sharp corner s. If cµ′(p, r) ≥ 0 we

are done. Otherwise cµ(p, r) < 0, since the modified distance with respect to µ is at
most the modified distance with respect to µ′. We make the same case distinction as
in the proof of Lemma 3.9. In this proof we bounded ‖pr‖ − ‖pq‖ from below and
µ(r) − µ(q) from above. We now need to bound µ′(r) − µ′(q). Since µ′(x) = µ(x)
for x /∈ T , we need only to reconsider the case that r and q are in T . We have
µ′(r) ≤ µ′(q) + ‖qr‖/2 and hence the arguments used in the cases p < q < r ≤ s,
s ≤ p < q < r, and p < q < s < r stay valid. We need only to reconsider the case
p < s ≤ q < r.

If µ(p) = µ′(p), we have µ(q) = µ′(q) and µ(r) = µ′(r) and are done. So assume
µ(p) = µ′(p). If µ(q) = µ′(q) we have cµ′(p, r)−cµ′(p, q) ≥ cµ(p, r)−cµ(p, q) ≥ 0, since
µ′(r) ≤ µ(r). Otherwise µ′(r)− µ′(q) ≤ 0 ≤ µ(r)− µ(q), since r is closer to v than q
and both q and r are in T ∩B(s, δs). Thus cµ′(p, r)−cµ′(p, q) ≥ cµ(p, r)−cµ(p, q) ≥ 0.

6. Solving the subtour-LP. The subtour-LP has an exponential number of
constraints. The ellipsoid method [18] allows one to solve LPs with an exponential
number of constraints in time polynomial in the number of variables if the following
conditions are satisfied:

• The coefficients of the variables in the constraints are polynomially bounded.
This is the case for the subtour-LP.
• The separation problem can be solved in polynomial time, i.e., given a vector
x∗uv of polynomially bounded values for the variables, one can decide in poly-
nomial time whether the vector satisfies all constraints and, if not, exhibit a
violated constraint. This is the case. It is trivial to check the degree con-
straints and the constraint that all values lie between zero and one. In order
to check the subtour elimination constraints, we discuss the case of tours,
having already discussed the case of path in sections 3 and 4. Consider the
complete network on V and assign capacity x∗uv to edge uv. Consider any sub-
set V ′ of V with ∅ = V ′ = V and observe that 2|V ′ | =∑u∈V ′

∑
v∈V x

∗
uv =

2
∑
u∈V ′,v∈V ′ x∗uv +

∑
u∈V ′

∑
v/∈V ′ x∗uv. We conclude that the subtour elimi-

nation constraint for V ′ is satisfied iff the capacity of the cut (V ′, V \ V ′) is
at least two. Some subtour elimination constraint is satisfied if the minimum
cut is less than two. A minimum cut can be computed in polynomial time.
• The coefficients in the objective function are polynomially bounded. This is
not the case since the bit-representation of an Euclidean length is in principal
infinite. Furthermore there are curves where the bit-representation of any
point is infinite.

We show that it suffices to know the sample points and their Euclidean distances
only approximately. More precisely, we show the following: Let S be a set of points.
Let m be the minimal distance between any two points in S and for a point p ∈ S.
Let p∗ be a closest point of γ. If

1. ‖pp∗‖ ≤ ρm/10 for all p ∈ S, where ρ is a constant depending on γ, and
2. the set S∗ = {p∗ | p ∈ S} satisfies a strengthened sampling condition,

then the subtour-LP has a unique optimal integral solution even when the distances
between sample points are only known up to an error of mρ/10. Moreover, the
subtour-LP can be solved in polynomial time and the optimal solution is a tour
connecting the points in S in the order in which the points S∗ lie on γ. We also show
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how to estimate ρ from the sample set and without knowledge of γ.
Now we make precisely what we mean by an approximate sample set of a curve

γ. Recall that for an angle α we have defined ᾱ by ᾱ = π − α. Let α0 = maxs∈S αs.
We define ᾱ0 = 17π/24, if there is no sharp corner.

Definition 6.1. Let γ be a benign semiregular curve. We call a set S of points
p ∈ Q2 an approximate sample set of a curve γ, if for all p ∈ S

‖pγ‖ ≤ (sin ᾱ0/4)
2m/30.

For the following let ρ = (sin ᾱ0/4)
2m/3. Then m > 7ρ (since ᾱ0 < 17π/24)

and ‖pp∗‖ ≤ ρ/10 for the points in an approximate sample. We need the following
sampling condition.

Sampling condition for approximate sample sets.
(a) For any two adjacent (on γ) samples u∗ and v∗: ‖u∗v∗‖ ≤ 9/10(µ(u∗)+µ(v∗)).
(b) For any two adjacent samples u∗ and v∗: γ[u∗, v∗] turns by less than π. For

two adjacent points p, q on the curve, γ[p, q] denotes the subcurve of γ with endpoints
p and q not containing another sample point.

Let γ be a benign semiregular curve and S an approximate sample set satisfying
the sampling condition. For any two sample points p and q let ‖pq‖≈ be a rational
number, so that ‖pq‖ − ‖pq‖≈ ≤ ρ/10. Then ‖p∗q∗‖ − ‖pq‖≈ ≤ 3ρ/10. Note
that for all p, q ∈ S there exists a choice of ‖pq‖≈ which has a bit representation
of polynomial size in m and ᾱ0. We consider the approximate subtour-LP of the
approximate sample set S.

Theorem 6.2. Let γ be an open (closed) benign semiregular curve and S be an
approximate sample set of γ satisfying the sampling condition above.

• The approximate subtour-LP for S has an unique optimal integral solution.
• The approximate subtour-LP can be solved in polynomial time.

Proof. We define the potential function of an approximate sample point p as
µ(p) := µ(p∗). We call the new modified cost function c≈µ . We show that

1. if p and q are adjacent sample points, then c≈µ (p, q) < −3ρ/10 and hence there
is a minimum spanning tree in which each edge has length less than −3ρ/10;

2. if p and q are sample points which are not contained in some γ′ ∈ Γ, then
c≈µ (p, q) ≥ −3ρ/10 and hence no such edge belongs to a minimum spanning
tree;

3. if p < q < r are three sample points contained in some γ′ ∈ Γ and c≈µ (p, r) <
−3ρ/10, then c≈µ (p, r) > c≈µ (pq), and hence the minimum spanning tree re-
constructs locally.

We turn to the first item. Let p and q be adjacent sample points. We have
6ρ < m− ρ ≤ ‖pq‖ − ρ ≤ ‖p∗q∗‖+ 2ρ/10− ρ ≤ ‖p∗q∗‖ ≤ µ(p∗) + µ(q∗). Thus

c≈µ (p, q) = ‖pq‖≈ − µ(p)− µ(q)
≤ ‖p∗q∗‖+ 3ρ/10− 1/10(µ(p∗) + µ(q∗))− 9/10(µ(p∗) + µ(q∗))
< ‖p∗q∗‖ − 3ρ/10− 9/10(µ(p∗) + µ(q∗))
≤ −3ρ/10.

For the second item, consider points p and q that are not contained in any common
subcurve γ′ ∈ Γ. We have

c≈µ (p, q) ≥ ‖p∗q∗‖ − 3ρ/10− µ(p∗)− µ(q∗)
= cµ(p

∗, q∗)− 3ρ/10
≥ −3ρ/10.
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We come to the third item. Consider three sample points p < q < r that are
contained in some γ′ ∈ Γ and for which c≈µ (pr) < −3ρ/10. Then cµ(p∗, r∗) < 0 and
hence (using Lemmas 3.7 and 3.9 and the fact that (sin ᾱ0/4)

2/3 ≤ 1/6)
c≈µ (p, r)− c≈µ (p, q) ≥ cµ(p∗, r∗)− cµ(p∗, q∗)− 6ρ/10

≥ ‖qr‖(sin ᾱ0/4)
2/3− 6ρ/10

≥ ρ− 6ρ/10 > 0.

What have we achieved at this point? We have shown that the subtour-LP re-
constructs provided our sample set S satisfies the sampling condition for approximate
sample sets and we are given approximate distances of polynomial size that differ by
at most ρ/10 from the true distances. We could compute approximate distances with
the required property, if we were given ρ or alternatively α0 as an additional input.
We now show how to compute a lower bound on α0, which leads to a polynomial
precision in the input size, without any additional knowledge of the curve.

Lemma 6.3. Let m andM be the minimal, respectively maximal, distance between
two sample points. Then sin(ᾱ0/4) ≥ m/(15M).

Proof. If γ has no sharp corners, α0 = 17π/24 and there is nothing to show. So
assume otherwise and let s be any sharp corner. We prove that there is a sample
point p in B(s, δs)∩T on each leg of the sharp corner and then use this fact to bound
ᾱs from below.

We look at an arbitrary order of the two orders obtained by splitting the curve at
s and prove that there is a sample point behind s in B(s, δs)∩ T . Assume otherwise.
Let x be the first sample point behind s outside B(s, δs) and let y be the sample point
preceding x. Since every edge of the polygonal reconstruction must lie in at least one
subcurve γ′ ∈ Γ, y must lie behind s. By assumption y does not lie in T . Assume first
that x ∈ T . Then ‖xy‖ ≥ 4δs/5 and µ(y) ≤ 2δs/5. Thus cµ(x, y) = ‖xy‖ − µ(x) −
µ(y) ≥ ‖xy‖−2δs/5−‖xy‖/3 ≥ 2‖xy‖/3−2δs/5 ≤ 8δs/15−2δs/5 > 0, a contradiction.
Assume now x /∈ T . Let s′ be the corner so that x ∈ B(s′, δs′) and assume w.l.o.g.
δs ≥ δs′ . Then µ(x) ≤ 2δs/5, µ(y) ≤ 2δs/5 and ‖xy‖ ≥ 2δs − δs/5− δs′/5 ≥ δs. Thus
cµ(x, y) > 0, a contradiction.

Let p be the first sample point behind s in B(s, δs)∩ T and let q be the adjacent
sample point behind p. Then q ∈ T ; if q ∈ T , then q ∈ B(s′, δs′) for some sharp
corner s′ and hence s′ would have no sample point in B(s′, δs′) ∩ T . The distance
between p and q is at least m. Also ‖pq‖ ≤ d(p)/3+d(q)/3 ≤ d(p)/3+(d(p)+‖pq‖)/3
and so d(p) ≥ ‖pq‖ ≥ m. Consider the intersections of the two legs of s with the
boundary of the δs-ball centered at s. The intersections have distance at least m
(since d-values grow along each leg) and s sees the intersections under an angle of at
least ᾱ0/2. Thus sin ᾱ0/4 ≥ m/(2δs). Since there is at least one sample outside the
ball B(s, δs) and at least one sample inside the ball B(s, δs/5), we have M ≥ 4δs/5.
Thus sin ᾱ0/4 ≥ 4m/(10M).

7. Collections of closed curves. In the preceding sections we showed that
the subtour-LP formulation of the traveling salesman problem is able to reconstruct
single closed and open curves. In this section we extend the algorithm so that is can
handle collections of closed curves. We do not know how to handle collections of open
and closed curves. Please note that the algorithms [9, 13] can handle open and closed
curves.

The algorithm works in rounds. The first round constructs an initial partition
of the sample points and subsequent rounds merge blocks of the partition. The con-
struction of the initial partition and the merging is done conservatively, i.e., all points
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Fig. 7.1. The points p1 up to p5 are joined with p0, but p6 is not joined.

in the same block provably belong to the same curve. In the first round, every point
is joined to points close to it; section 7.1 gives the details. In later rounds (see sec-
tion 7.2), we solve the subtour-LP for each block and then analyze the solution. If
the subtour-LP fails on a block or if curves constructed for different blocks interfere,
some blocks are merged.

Throughout this section we assume our set of sample points to satisfy a some-
what strengthened sampling condition. The strengthened sampling condition leads
to denser sampling near sharp corners. We change µ to µ′ by decreasing the δ- and
c-values of sharp corners. We set δ′s ≤ δs such that for any two points p and q in
B(s, δ′s/7) the angle between the segment pq and the corresponding tangent in s is at
most π/40. Furthermore we decrease the value cs to c

′
s such that c

′
s−‖sps‖ ≤ d(p)/3

for every p ∈ B(s, δ′s/60). This enlarges the region where the potential is defined by
d(p)/3 from T to T ′. Recall that the choice of cs guaranteed only that the points
outside B(s, δs/5) belonged to T , whereas T ′ contains all points outside the balls
B(s, δ′s/60).

7.1. The initial partition. We define a graph on our set of sample points. The
connected components of this graph form the initial partition. For a sample point
p = p0 let p1, p2, . . . be the other sample points in order of increasing distance
(ties are broken arbitrarily). We always join p0 with p1 and p2. We join p0 and pi,

i ≥ 3, if ∠
−−−−−−→
pk−1pk−2,

−−−−→
pk−1pk ≥ 2π/3 for all k with 2 ≤ k ≤ i − 1. Observe that the

decision whether pi is joined to p0 depends only on the points p0 up to pi−1, but not
on the point pi itself. This is essential for making connections between the points
on different legs of a sharp corner but also hinders the extension to open curves.
Figure 7.1 illustrates the definition.

Lemma 7.1. If p and its two adjacent sample points are in T ′, then p is only
joined with points in B(p, d(p)) and is joined with both adjacent sample points.

Proof. Since p is in T ′, γ ∩ B(p, d(p)) consists of a single component and turns
by less than π/3. Also the two sample points q, r adjacent to p on γ lie in B(p, d(p)).
We show this for q. We have d(q) ≤ d(p) + ‖pq‖, µ(q) = d(q)/3 since q ∈ T ′, and, by
our sample condition, ‖pq‖ ≤ d(p)/3+ d(q)/3. Thus ‖pq‖ ≤ d(p)/3+ (d(p) + ‖pq‖)/3
and hence ‖pq‖ ≤ d(p).

Assume w.l.o.g. that q is considered before r = pi. Orient γ ∩ B(p, d(p)) such
that r < p < q. Then q = p1 and p1 < p2 < · · · < pi−1. Since γ ∩B(p, d(p)) turns by
less than π/3, we have ∠

−−−−−−→
pk−1pk−2,

−−−−→
pk−1pk ≥ 2π/3 for all k with 2 ≤ k ≤ i − 1 and

∠
−−−−−→
pi−1pi−2,

−−−−→
pi−1pi ≤ π/3. Thus p is joined with p1 up to pi, but not with pi+1.

We turn to the nonsmooth parts of the curve. We first show that our sampling
condition implies that each leg of a sharp corner must contain several sample points.

Lemma 7.2. (a) Let p be a sample point in B(s, δ′s) \ B(s, 2δ′s/60). Then both
adjacent sample points lie on the same leg as p, the one closer to s has distance at
most ‖ps‖/2 from p, and the one further from s has distance at most ‖ps‖ from p.

(b) For every leg 5 of a sharp corner s we have at least one sample point in
B(s, 2 · 2jδ′s/60) \B(s, 2jδ′s/60) for j = 1, 2, 3, 4.
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Fig. 7.2. The angle between q′q and r′r must be large that the region is grown further. This
contradicts the fact that the distance between q and r is short.

Proof. (a) We have µ′(p) ≤ ‖sp‖/3. The point q on the same leg as p with
distance exactly ‖sp‖/2 to s lies in T ′ and hence µ′(q) ≤ ‖sp‖/6. Thus cµ′(p, q) ≥
‖sp‖/2− ‖sp‖/6− ‖sp‖/3 = 0. Lemma 3.9 implies that cµ′(p, x) ≥ 0 for any point x
between s and q and for any point x on the other leg. Thus there must be a sample
point between p and q. We conclude that both adjacent sample points lie on the
same leg as p and that the one closer to s satisfies the distance constraint stated. For
the one further from p we consider the point q on the same leg as p, further away
from s than p, and having distance ‖sp‖ from p. Then µ′(q) ≤ 2‖sp‖/3 and hence
cµ′(p, q) ≥ ‖sp‖ − 2‖sp‖/3− ‖sp‖/3 = 0. We now argue as above.

We turn to part (b). Part (a) implies that if one of the annuli contains a point,
the adjacent annuli do also and hence all annuli do. We conclude that either all annuli
contain a sample point or none does. Assume the latter and let p be the first sample
point on 5 outside B(s, δ′s). The sample point q preceding p must lie in B(s, 2δ

′
s/60).

Thus ‖pq‖ ≥ ‖ps‖−2δ′s/60, µ′(p) ≤ ‖ps‖/3, ‖ps‖ ≥ δ′s, and µ′(q) ≤ max(2δ′s/60, cs) ≤
2δ′s/5, a contradiction.

Lemma 7.3. A sample point p is joined only with points of the same curve.
Proof. Consider a sample point p. If p and both adjacent sample points of p are

in T ′, the claim follows from Lemma 7.1.
Otherwise p ∈ B(s, 2δ′s/60) by Lemma 7.2, part (a). Let p = p0, p1, . . . , pj be the

sample points in B(s, δ′s) ordered according to their distance from p. Since both legs
of the sharp corner contain sample points in the annuli B(s, 2 ·2jδ′s/60)\B(s, 2jδ′s/60)
for j = 2, 3, 4, we must have a subsequence of length at least three such that the first
and the last element of the subsequence, call them q and r, respectively, lie on the
same leg as p and further away from s than p, and the points in between (there is
at least one) lie on the other leg. Figure 7.2 illustrates the situation. We show that
no point after r is joined to p. Assume otherwise. Let q′ be the point added directly
after q and r′ be the point added directly before r.

We want to bound the angle between the segments q′q and r′r. If q′ is equal to r′

this angle is at least 2π/3. Otherwise the angle between q′q and the segment between
q′ an the sample q′′ added after q′ is at least 2π/3 and the angle between r′r and the
segment between r′ an the sample r′′ added before r′ is at least 2π/3 (since r is not
the last point joined to p). Also q′, q′′, r′′, and r′ all lie on the same leg and hence
the angle between q′q and r′r is at least π/3− 4π/40. Here we use the strengthened
sampling condition.

Let x be the intersection between the lines supporting qq′ and rr′. We have
d(q) < d(r) ≤ d(q) + ‖qr‖, ‖rr′‖ ≥ d(r), and ‖qq′‖ ≥ d(q) by Lemma 3.3, ‖qr‖ ≤
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(d(q) + d(r))/3 by our sampling condition, and hence ‖rx‖ ≥ ‖rr′‖ ≥ d(r) ≥ (d(r) +
d(q))/2 ≥ 3‖qr‖/2 and ‖qx‖ ≥ ‖qq′‖ ≥ d(q) ≥ (d(q) + d(r) − ‖pq‖)/2 ≥ ‖qr‖.
Application of the “theorem of cosines6” with D = ‖qr‖ yields cos(∠(q′q, r′r)) ≥
[(3D/2)2 + D2 − D2]/(2 · D · 3D/2) = 3/4 and hence ∠(q′q, r′r) < π/3 − π/10, a
contradiction.

Lemma 7.4. For any curve γj all sample points in T
′ ∩ γj belong to the same

component.
Proof. Breaking γj at its sharp corners gives us a collection of subcurves γjk.

Consider any subcurve γjk. The sample points on γjk come in three groups: first a
group of points outside T ′, then a group of points in T ′, and finally a group of points
outside T ′. Lemma 7.1 implies that all sample points in γjk ∩ T ′ belong to a single
component. Consider now two adjacent subcurves incident to a sharp corner s. In
both subcurves all points in T ′ belong to the same component. Let p and q be the
points in the components containing the points T ′ which are closest to s and do not
connect to both neighbors. We claim that p and q are connected to points on the
other leg. Assume otherwise; say p is not connected to a point on the other leg. Since
p is not connected to both neighbors we have p ∈ B(s, δ′s/60). Let p = p0, p1, . . . , pi

be the sample points connected to p and ordered according to their distance from p.
Then s < p < p1 < · · · < pi since p is not connected to both neighbors and since p is
not connected to a sample point on the other side. Also we have shown in the proof
of Lemma 7.3 that pi ∈ B(s, δ′s). Thus ∠(pi−1pi−2, pi−1pi) ≥ 2π/3, a contradiction to
the fact that pi is the last point joined with p.

Thus p connects to a point u on the other leg and q connects to a point v on
the other leg. If either u or v belong to the component containing the points in T ′

we are done. So assume otherwise. Then u is closer to s than q, and v is closer to s
than p, and hence pvuq builds a convex quadrangle. The two segments pu and qv are
crossing. Thus either ‖pv‖ < ‖pu‖ or ‖qu‖ < ‖qv‖ since ‖pv‖ + ‖qu‖ < ‖pu‖ + ‖qv‖
and hence either p or q will be joined with a sample closer to s, a contradiction.

We call the component containing all sample points in γj∩T ′ the main component
of γj .

Lemma 7.5. The subtour-LP applied to the main component of γj reconstructs
γj.

Proof. We show that the sample points in γj ∩ T ′ satisfy our original sampling
condition. Consider two points p and q in γj ∩ T ′ that are adjacent along γj . If
they are also adjacent in the full sample, we are done. Assume otherwise. Then
{p, q} ⊆ B(s, 2δ′s/60) for some sharp corner s. Let t be the point such cs = d(t)/3 +
‖sts‖; see Figure 7.3. We have ‖pq‖ ≤ 2 · (2δ′s/60) · sin 3αs/4 + ‖sps‖ − ‖sqs‖, since
∠(sp, sps) ≤ 3αs/4 and similarly for q, d(t) ≥ δ′s/5 sinαs/2, since the ball around
t with radius δs/5 sinαs/2 does not intersect the other leg, µ(p) ≥ cs − ‖sps‖ =
d(t)/3 + ‖sts‖ − ‖sps‖ = d(t)/3 + ‖tsps‖ ≥ δ′s

15 sinαs/2 + ‖tsps‖ and, by the same
argument, µ(q) ≥ δ′s

15 sinαs/2 + ‖tsqs‖. Thus cµ(p, q) ≤ 4δ′s
60 sin 3αs/4 + ‖sps‖ −

‖sqs‖ − 2 δ
′
s

15
2
3 sin 3αs/4− ‖tsps‖ − ‖tsqs‖ ≤ 0.

7.2. Merging components. The initial partition may contain too many com-
ponents. For every curve γj , there is a main component which contains all sample
points in γj ∩ T ′ and maybe other components. We call them minor components.
Each minor component is contained in B(s, 2δ′s/60) for some sharp corner s. The

6‖qr‖2 = ‖qx‖2 + ‖rx‖2 − 2‖qx‖ · ‖rx‖ · cos(∠(q′q, r′r)).
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reconstruction based on the subtour-LP is guaranteed to succeed for the main com-
ponent of every curve. For the minor components it may or may not produce a tour.
In this section we describe a strategy for merging components.

We define a region Rpq for every edge pq of the computed reconstruction. If the
region Rpq for an edge pq of the computed reconstruction contains a sample point from
another component, we join the component containing p and q with the component
of the point closest to pq and lying in another component. We continue until the
components stabilize.

Before we define the regions Rpq we draw an important consequence of the merg-
ing rule. For an edge in a minor component the point closest to it and in another
component is guaranteed to lie on the same curve. This follows from the fact that
a minor component is contained in B(s, 2δ′s/60) for some sharp corner, that the cor-
responding major component has a point in B(s, 4δ′s/60), and that any point within
B(s, δ′s) belongs to the same curve.

In the arguments to follow we can therefore concentrate on edges in the reconstruc-
tion of the main component. In particular, we can use the fact that the subtour-LP
correctly reconstructs the main component. We come to the definition of the regions
Rpq. We define Rpq as the union of a region R

′
pq and the circumcircle of the segment

pq. For every sample point p we define βp to be the angle between the two segments
incident to p. The following paragraph motivates our definition of the region R′pq.

Assume pq is the segment in the main component connecting the two legs of a
sharp corner s (we say that the edge straddles the sharp corner) and let ᾱs be the angle
between the two tangents at s. Let sp be a segment defined by two adjacent sample
points on the leg of p; let sq be a segment defined by two adjacent sample points on
the leg of q, both lying in B(s, δ′s/7). Let θs be the angle formed by the segments.
Since either segment forms an angle less than ᾱs/4 with the corresponding tangent
at s, we have ᾱs/2 ≤ θs ≤ 3ᾱs/2 or 2θs/3 ≤ ᾱs ≤ 2θs, i.e., θs is a good estimator for
ᾱs. Since again the angle between any tangent on a leg and the appropriate tangent
in the corner is at most αs/4, we know that the angle between the corner point and
the points p and q is between ᾱs/2 and 3ᾱs/2, thus between θs/3 and 3θs.

We come to the definition of R′pq. For an edge pq let p
+ and q+ be the other

neighbors of p and q, respectively, and let θs be the angle between the segments pp
+

and qq+, i.e., θs = βp + βq − π. We define R′pq as the set of all points r with
• ∠(−→rp,−→rq) ≥ θs/3,
• ∠(−→pr,−→pq) ≤ π − βp +min(π/20, θs) and r lies on the opposite halfspace with
respect to the line pq as p+, and
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Fig. 7.5. The inscribed angle theorem: The central angle is equal to twice the inscribed angle.

• ∠(−→qr,−→pq) ≥ π − βq +min(π/20, θs) and r lies on the opposite halfspace with
respect to the line qp as q+.

For an illustration of this definition see Figure 7.4. Note that π−βq+min(π/20, θs) ≤
π − βq + θs = βp ≤ π.

Lemma 7.6. If the main component of a curve does not yet contain all sample
points from the curve, it will grow.

Proof. The main component contains all points in T ′. Consider a sample point
on γj which does not belong to the main component and let p and q be its adjacent
sample points in the main component. Then {p, q} ⊆ B(s, 2δ′s/60) for some sharp
corner. If p and q lie on the same leg of s the centerball of pq contains the subcurve
between p and q and if pq straddles the sharp corner, the region R′pq contains the
subcurve.

To prove that we do not merge components that do not belong to the same curve,
we need the following three lemmas.

Lemma 7.7. Every point r in R′pq has distance at most ‖pq‖/ sin(θs/3) from p
and q.

Proof. Let m1 and m2 be the points on the perpendicular bisector of pq with
distance ‖pq‖/(2 sin(θs/3)) from p and q (see Figure 7.5).

By the inscribed angle theorem, every point which sees pq under an angle of at
least θs/3 lies inside the union of the the balls with center m1 or m2 through p and
q. Thus at any point in the region Rpq that distance is at most ‖pq‖/ sin(θs/3) from
p and q.

Lemma 7.8. θs ≥ αs/2.
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Proof. If the segment pq straddles the corner, θs ≥ αs/2, since pp+ lies completely
on one leg and qq+ lies completely on the other leg. If p+ and q+ are on the same
leg, this follows directly from the sampling condition. If the segment pp+ straddles
the corner, the angle formed by the segments pp+ and qq+ is smaller than the angle
formed by the segments sp+ and qq+, which is at least αs/2.

Lemma 7.9. Let pq be a segment of the polygonal reconstruction, with p, q ∈ T
and d(p) ≥ d(q). Then d(p) ≥ 3‖pq‖/2.

Proof. Assume otherwise. Than cµ(p, q) = ‖pq‖ − d(p)/3 − d(q)/3 ≥ ‖pq‖ −
2d(p)/3 > ‖pq‖+ ‖pq‖ ≥ 0.

We now turn to the proof that we do not merge a curve with points from another
component.

Lemma 7.10. The region Rpq of an edge pq in the polygonal reconstruction of
the main component contains no sample point of another component.

Proof. This is obvious for the center ball of pq. We turn to the region R′pq.
Assume first p and q are in T ′ and w.l.o.g. d(p) ≥ d(q). Assume there is a point

r outside the the B(p, d(p)) ball in R′pq. Then ‖pr‖ ≥ d(p) ≥ 3‖pq‖/2 by Lemma 7.9.
We know ∠(−→pq,−−→pp+) ≥ 2π/3 and ∠(

−−→
pp+,−→pr) ≥ 19π/20. Hence ∠(−→pq,−→pr) ≤ (π −

2π/3)+(π−19π/20) = 23π/60; see Figure 7.6. Analogously ∠(−→qp,−→qr) ≤ 23π/60, thus
∠(−→rp,−→rq) ≥ 7π/30. So7 ‖pr‖ ≤ sin(23π/60)/ sin(7π/3)‖pq‖ < 3‖pq‖/2.

Next assume that one of p and q does not belong to T ′.
We will show that R′pq ⊆ B(s, δ′s). Let r be any point in R

′
pq and let θ be the

angle under which r sees the segment pq. Then θ ≥ θs/3 by the definition of R′pq.
First assume θs ≥ π/6. We know ‖pr‖ ≤ ‖pq‖/ sin(θs/3) ≤ 6‖pq‖. Thus ‖sr‖ ≤

6(8δ′s/60) + 2δ′s/60 < δ
′
s.

Now assume θs < π/6. Look at the triangle �pqr and assume w. l. o. g. π−βp >
π/2 (see Figure 7.7). We show that the corner point s is almost as far away from p
as r. The angle at r is at least θs/3; the angle at p is at most π + θs − βp. Thus

7In this proof we make frequent use of the fact that a/ sinα = b/ sinβ = c/ sin γ for a triangle
with sides a, b, c and corresponding angles α, β, and γ.
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Fig. 8.1. The edge pq does not belong to the Delaunay triangulation; p is a sharp corner with
δp = ‖pr‖/2. Also cp ≈ 2δp/5 = ‖pr‖/5. If ‖pq‖ < ‖pr‖/5, the edge pq has negative reduced cost.
Thus our sampling condition is satisfied.

‖pr‖ ≤ ‖pq‖ sin(π + θs − βp)/ sin(θs/3).
The sharp corner s forms an angle of at most 3θs with points p and q, since

ᾱs ≤ 2θs by Lemma 7.8. The angle at p of the triangle �pqs is between π + θs − βp
and π − θs + βp.

We have to distinguish two cases according to βp. First assume βp > π − 2θs.
We conclude ‖rs‖ ≤ ‖ps‖ + ‖pr‖ ≤ 2δ′s/60 + ‖pq‖ sin(π + θs − βp)/ sin(θs/3) ≤
2δ′s/60 + ‖pq‖ sin(3θs)/ sin(θs/3) ≤ 2δ′s/60 + 10‖pq‖ ≤ 2δ′s/60 + 40δ′s/60 ≤ δ′s.

Now assume βp < π − 2θ. We conclude ‖rs‖ ≤ ‖ps‖ + ‖pr‖ ≤ 2δ′s/60 +
‖pq‖ sin(π + θs − βp)/ sin(θs/3) ≤ 2δ′s/60 + ‖ps‖(sin(3θ)/ sin(π − θs + βp))(sin(π +
θs−βp)/ sin(θs/3)) ≤ 2δ′s/60+‖ps‖(sin(3θs)/ sin(θs))(sin(3θs)/ sin(θs/3)) ≤ 2δ′s/60+
27‖ps‖ ≤ 2δ′s/60 + 52δ′s/60 < δ

′
s.

8. Curve reconstruction and the Delaunay diagram. Most previous curve
reconstruction algorithms use sampling conditions that guarantee that the polygonal
reconstruction is a subset of the Delaunay diagram. Our sampling condition does not
imply that the traveling salesman tour is a subgraph of the Delaunay triangulation;
see Figure 8.1. This fact can be interpreted positively and negatively: positively,
as an indication of the strength of the traveling salesman-based reconstruction, and
negatively, since the optimal traveling salesman tour must be searched for in the
complete graph on the sample set. In this section we show that a slight strengthening
of our sample condition implies that the polygonal reconstruction is contained in the
Delaunay diagram.

Additional condition on the sample set. An edge pq of the polygonal recon-
struction with an endpoint not in T has length at most 4δs sin(αs/2)/5, where s is
the sharp corner with {p, q} ⊆ B(s, δs).

Lemma 8.1. If the sample set V satisfies the strengthened sampling condition,
the polygonal reconstruction is contained in the Delaunay diagram of V .

Proof. Let pq be an edge of the polygonal reconstruction. We construct a Delau-
nay ball B for it.

First assume that {p, q} ⊆ T . The center ball of pq is contained in B(p, d(p)) and
hence empty of sample points; otherwise, γ would either intersect the ball in more
than one component or turn by more than π/3 within the ball.

Next assume that one of the endpoints of the edge, say, p, does not lie in T . Let
s be the sharp corner with p ∈ B(s, δs). We distinguish the cases whether p and q are
on the same leg of s or not.

First assume that p and q lie on different legs; see Figure 8.2. We put the center
m of B into the halfspace containing s and having p and q in its boundary and set
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Fig. 8.2. The sample x must lie on the upper leg behind q and in the shaded lune.
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Fig. 8.3. The sample x must lie on the upper leg and in the shaded lune.

the radius r of B to (‖pq‖/2)/ sin(ᾱs/2) ≤ 2δs/5; the upper bound on the radius
follows from the strengthened sampling condition. Since one of p or q is contained in
B(s, δs/5), we conclude B(m, r) ⊆ B(s, δs).

Now assume that there is a sample point x ∈ B(m, r). We discuss the case that
x lies on the same leg as q and leave the other case to the reader. Since p and q are
adjacent samples, x cannot lie on the segment sq and hence ∠( .sp, .qx) = ∠( .sp, .sq) +
∠(.sq, .qx) ≤ ∠( .qp, .sq) + ∠(.sq, .qx) = ∠( .qp, .qx). (We have ∠( .sp, .sq) < ∠( .qp, .sq), since
moving along the segment .sq increase the angle.) Since x lies in the lune of B(m, r)
defined by pq, we have ∠( .qx, .qp) ≤ ᾱs/2. Thus ∠( .sp, .qx) ≤ ᾱs/2. On the other hand,
the angle between the two tangents at s is ᾱs and hence ∠( .sp, .qx) > ᾱs − 2ᾱs/4 =
ᾱs/2, a contradiction.

Next assume that p and q lie on the same leg; see Figure 8.3. The center m of
B lies on the same side of the angular bisector of the cone defined by the tangents
tr(s),−tl(s) as p and q and sees the segment pq under an angle of ᾱs. As above, we
conclude that B(m, r) ⊆ B(s, δs). Then x must be contained in the lune of B(m, r)
defined by the segment pq. Since p and q are adjacent sample points, x must lie on
the other leg. Assume w.l.o.g. that p is closer to s than q. We have ∠( .pq, .px) ≤ ᾱs/2
and hence ᾱs = ∠(tr(s),−tl(s)) < ∠( .ps, .px) + 2(ᾱs/4) ≤ ᾱs, a contradiction.

9. Monotonicity. Intuitively, a larger sample set makes the reconstruction task
simpler. We discuss how various sampling conditions and reconstruction algorithms
behave with respect to larger sample sets.
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Fig. 9.1. For the sample set in the left figure, the algorithms in [3, 8, 15] produce the hexagon,
as shown. If one adds a sample point in the middle of one of the long segments, the algorithm in [8]
produces the output of the middle figure, and the algorithms in [3, 15] produce the output of the right
figure. Thus none of these algorithms is self-consistent.

A sampling condition is called monotone8 if any superset of a set satisfying the
sampling condition also satisfies the sampling condition.

For closed curves and open curves with specified endpoints, our sampling con-
dition is monotone. For open curves with unspecified endpoints the superset must
satisfy the additional constraint that the additional points must lie in γ[a, b], where
a and b are the extreme sample points in the old sample. The sampling conditions
used in the papers [3, 8, 15, 9] are also monotone; again the additional constraint is
needed for open curves. The conditions in [13] are not monotone.

All algorithms mentioned in the present paper come with a guarantee: if the
curve γ is from a certain class of curves and the sample set V is sufficiently dense,
the algorithm will reconstruct γ. It is not specified what the algorithm does, if the
hypothesis of the theorem is not satisfied. The algorithm may either fail, i.e., indicate
that it could not find a curve, or “invent” a curve. From a practical point of view
this situation is unsatisfactory as a user has in general no way of distinguishing recon-
struction from invention. The situation is aggravated by the fact that the sampling
densities required by the theorems are quite high and that the algorithms tend to
work for smaller densities and hence are likely to be used in situations not covered by
the theorems. It would be nice to have algorithms that never invent curves.

A reconstruction algorithm is called self-consistent if it has the following property.
On an input V it either outputs FAILURE or SUCCESS. In the latter case it also outputs
a curve Γ passing through V such that for any sample V ′ from Γ with V ⊆ V ′, it
will also output Γ. A reconstruction algorithm that is not self-consistent can change
its mind if given additional sample points that seem to confirm the output of the
algorithm.

Theorem 9.1. The algorithm in [9] and the traveling salesman-based algorithm
are self-consistent; the algorithms in [3, 8, 15, 13] are not self-consistent.

Proof. The algorithm in [9] is constructed to be self-consistent. For the algorithms
in [3, 8, 15, 13] it is easy to come up with examples that show non-self-consistency
(see Figure 9.1).

It remains to show self-consistency for the traveling salesman-based algorithm.
We show that if the solution for the subtour-LP for a set V is unique and integral,
then the same is true for the subtour-LP for V ∪ {z} for any z on an edge of the
integral solution of the subtour-LP of V (and different from all points in V ).

The claim is a simple consequence of the so-called splitting-off lemma (see [17,
Problem 6.53]). Consider an optimal solution of the subtour-LP for V ∪ {z}. The
value C of this solution is at most the length C0 of the optimal tour of V (since the
tour for V is also a tour for V ∪ {z}). The splitting-off lemma allows us to construct
a solution for the subtour-LP for V from the solution for V ∪ {z}. It implies the
existence of a set of triples (e, f, r), where e and f are edges incident to z and r is a
nonnegative real, such that

8Be aware, this choice of name reflects a bias on behalf of the authors.
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• for each edge e incident to z the sum of the third components of all triples
containing e is equal to xe (the value of the edge e in the subtour-LP for
V ∪ {z}) and
• a solution for the subtour-LP for V can be obtained by modifying the solution
for the subtour-LP for V ∪ {z} as follows: for each edge uv with u = z and
v = z increase xuv by the sum of the third components of all triples (uz, zv, r).
Delete all edges incident to z.

For any edge e = uv let ye be the increase of xe in this construction. The cost of the
obtained solution is C +

∑
uv yuv(cuv − cuz − czv). This cost is at most C (and hence

at most C0) since cuv ≤ cuz + czv by the triangle inequality. Since the solution for
the subtour-LP for V is unique and is equal to the tour for V , the cost of the solution
cannot be smaller than C0 and hence for any edge e = uv with yuv > 0 we must have
cuv = cuz + czv, i.e., z lies on the line segment uv. Moreover, ye+xe must be integral
for every edge e = uv.

In the tour for V there is only one edge passing through z (since optimal tours are
non-self-intersecting) and hence there can be only one edge uv with yuv > 0. Thus our
set of triples consists of a single triple (uz, zv, r) and since the degree constraint at z
must be satisfied for the optimal solution of the subtour-LP for V ∪ {z} we conclude
that r = 1. We conclude that the optimal solution of the subtour-LP for V ∪ {z} is
unique and integral.

10. Our sample condition and the local feature size. The papers [3, 8, 15,
9] investigated the reconstruction problem for smooth curves. A curve is smooth if
it is twice-differentiable. They expressed the sampling condition in terms of the so-
called local feature size. The local feature size f(p) at a curve point p is the distance
of p from the medial axis of γ. The medial axis of a curve is the closure of the set
of points in the plane which have at least two nearest (with respect to the Euclidean
metric) points on the curve. They required a sampling condition of the form: For any
p ∈ γ there must be a sample point v ∈ V with ‖pv‖ ≤ ε · f(p); here ε is a parameter
which depends on the algorithm. All algorithms require ε ≤ 1/2.

The experimental results in [2] suggest that the traveling salesman-based algo-
rithms works for sparser sample sets than the algorithms mentioned above. We do
not know whether this observation is a fact and can prove only a much weaker result.

Lemma 10.1. Let γ be a smooth curve and ε < 1/10. If for any p ∈ γ there is a
sample point v ∈ V with ‖pv‖ ≤ ε · f(p), then V satisfies our sampling condition.

Before we prove Lemma 10.1, we show the following lemma.
Lemma 10.2.

f(p) < 3d(p).

Proof. The following fact was shown in [3].
Fact 5. Let r be a point of a smooth curve γ. Furthermore let q and s be points

on γ with distance less than f(r) from r with q < r < s. Then ∠( .rq, .rs) > π/3.
By the definition of d(p), either B(p, d(p)) ∩ γ is not connected or B(p, d(p))

contains three points turning by π/3.
In the first case, there is a medial axis point in B(p, d(p)) by Lemma 1 of [3] and

hence f(p) ≤ d(p).
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Fig. 11.1. The underlying part of the curve is a line segment. Hence, there is no condition on
the sample set. In a necklace tour the disks centered at a and b have radius at most 2x. Thus the
two disks will not intersect.

We turn to the second case. Let q < r < s ∈ B(p, d(p))∩γ forming an angle of π/3.
By Fact 5 we conclude f(r) ≤ max(‖qr‖, ‖rs‖). Thus f(p) ≤ ‖pr‖+max(‖qr‖, ‖rs‖) <
3d(p).

Proof of Lemma 10.1. We have to show that for an ε-sampled curve, with ε < 1/10,
the modified cost of the edge between two adjacent sample points is less then 0.

Let p and q be adjacent sample points. Let w.l.o.g. d(p) ≤ d(q). Lemma 3.4 of [8]
states ‖pq‖ ≤ 2εf(p)/(1− ε) = 1/5f(p)/(1− 1/10). Thus cµ(p, q) = ‖pq‖ − d(p)/3−
d(q)/3 < 1/5f(p)/(1− 1/10)− f(p)/9− f(p)/9 ≤ 0.

Our sample condition depends on several parameters and we have set these pa-
rameters to particular values in section 3. In section 3.6 we discussed the dependency
between the parameters. For smooth curves we can set fscale to 1/2 and then the
argument above works for ε = 1/7.

11. Necklace tours. We have shown that curve reconstruction gives rise to
a polynomially solvable case of the Euclidean traveling salesman problem. In this
section we relate our results to a known solvable case, the so-called necklace tours.
Let V be a set of points in the plane and assume that there is a set of disks centered
at the points in V so that each disk intersects with exactly two other disks and so
that the intersection graph of the disks is connected. The intersection graph of the
disks defines a tour on V ; the two neighbors of a point v correspond to the two disks
that intersect the disk associated with v. The tour is called a necklace tour and is
known to be an optimal traveling salesman tour of V ; see [6].

We cannot claim that necklace tours are a special case of our result, since there
is no curve underlying a necklace tour. The optimality proof for necklace tours is a
special case of our argument. We simply define the potential of any point v as the
radius of the disk associated with v. Then exactly the edges in the tour have non-
positive cost. Any tour which uses an edge outside the necklace tour must include
edges of positive cost and can include only a subset of the edges in the necklace tour.
This implies that the necklace tour is optimal.

Figure 11.1 shows an example of a traveling salesman problem which is covered
by Theorem 2.3 and whose solution is not a necklace tour.

12. Conclusions. We have shown that traveling salesman-based curve recon-
struction permits a polynomial time algorithm. In the companion paper [2] we show
that traveling salesman-based curve reconstruction is reasonably efficient and works
for smaller sampling density than other reconstruction algorithms. We have also
shown how to extend traveling salesman-based reconstruction to collections of closed
curves. The generalization to collections of open and closed curves stays open.

Surface reconstruction is the three-dimensional analogue of curve reconstruction.
There are no surface reconstruction algorithms that can handle nonsmooth surfaces.
Whether global minimization can also be applied to surface reconstruction remains
an open question. A first step in this direction was recently taken by [1].
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Abstract. This paper presents a simple atomic model of message-passing multicomputers.
Within one synchronous time step each processor can receive one atomic message, perform local
computation, and send one message. When several messages are destined to the same processor,
then one is transmitted and the rest are blocked. Blocked messages cannot be retrieved by their
sending processors; each processor must wait for its blocked message to clear before sending more
messages into the network. Depending on the traffic pattern, messages can remain blocked for
arbitrarily long periods.

The model is conservative when compared with existing message-passing systems. Nonetheless,
we prove linear message throughput when destinations are chosen at random; this rigorously justifies
an instance of folklore. Based on this result we also prove linear speedup for backtrack and branch-
and-bound searches using simple randomized algorithms.
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1. Introduction. The message-passing style of programming is widely used on
almost all parallel computers. The primitives to send and receive messages hide low-
level architectural details and are ideal for programming many large applications.
While message-passing systems have been in use for over a decade, relatively few
results concerning the complexity of message-passing protocols are available. One
reason for this discrepancy is the lack of theoretical models that appropriately capture
issues related to communication; as stated in [5], most theoretical models “encourage
exploitation of formal loopholes, rather than rewarding development of techniques
that yield performance across a range of current and future parallel machines.”

We propose an atomic model [18] to study the performance of message-passing
programs. The model is simple and much more restricted in its capabilities in compar-
ison with existing systems. Nevertheless, we show that it allows simple and efficient so-
lutions (linear speedup) for message scattering and backtrack and branch-and-bound
searches.

1.1. Message-passing systems. Message-passing instructions appear in two
varieties: blocking and nonblocking. Blocking instructions require synchronization
between the sender and receiver: a send instruction terminates only when the corre-
sponding receive is executed by a remote process. One advantage of blocking instruc-
tions is that no system buffering is required. However, the delay in waiting for a send
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instruction to complete means that computation and communication cannot overlap;
this can reduce overall performance significantly. Another disadvantage is that the
programmer must carefully arrange send/receive instruction pairs to avoid deadlock.

Nonblocking instructions allow a process to execute multiple send instructions
before any of the corresponding receive instructions is executed. This allows for the
possibility of increased efficiency since communication and computation can overlap.
However, more system resources, buffering and bandwidth, for example, are required
for a nonblocking scheme; otherwise pending messages (those sent but not yet received)
will be excessively delayed or potentially lost. Moreover, since system resources are
finite, the programmer must ensure that the number of pending messages is bounded
at all times.

Underneath the message-passing abstractions, a message goes through several
phases before it is absorbed at its destination. During each phase it requires some
critical system resource to continue its journey. For example, a memory buffer is
required to compose a message. When a message buffer is sent, it goes through the
network interface connecting the processor to the network. Before the message arrives
at the destination, it travels in the network and occupies network buffers. On reaching
its destination the message occupies a buffer at the network interface before it is
removed and processed. Whenever a message cannot get the critical resource it needs,
it must wait. When messages wait a long time, there is the danger that communication
delays can cause processor idling, thereby reducing overall performance greatly.

In many applications it is also common practice to reduce communication costs
(primarily due to system overheads) by aggregating data into fewer, but longer, atomic
messages [3].1 First, the sender notifies the receiver of the message length. Upon
receipt of this notification, the receiver allocates sufficient buffer space and sends back
an acknowledgment. This establishes a link between the sender and the receiver and
the message is transmitted in the third step. Once again, there is ample opportunity
for delay from the time the protocol is initiated until the time the data is actually
transferred.

Given the limited resources of multicomputer systems, it is natural to ask whether
the efficiency gained by using nonblocking instructions is lost if the number of pending
messages is limited. Nevertheless, we show that nonblocking communication can still
achieve high performance, even with very limited communication resources.

We investigate this question formally within the atomic model which permits
only one pending message per processor. In brief, each processor is given one send
buffer and one receive buffer, each capable of holding one atomic message. The
system alternates between message transmission and computation cycles. During a
computation cycle a processor retrieves a message from its receive buffer, performs a
computation, enqueues newly generated messages into a message queue, and writes
the first message in the queue into the send buffer if the send buffer is empty. During
the transmission cycle, the network attempts to transmit every message in each send
buffer to the receive buffer of the destination. If more than one message is destined
for the same processor, exactly one is successfully transmitted. The rest remain in
their send buffers. The one which is transmitted is chosen by a network arbiter. The
worst-case arbiter makes choices to maximize the running time. The first in first out
(FIFO) arbiter gives priority to messages with smaller time-stamps; messages with
the same time-stamp can be delivered in arbitrary order.

1Atomic messages travel through a critical resource as a single entity; different messages do not
coexist inside the critical section.
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The atomic model is motivated by the desire to analyze the performance of
message-passing programs in an architecture-independent manner. For this reason,
we have chosen to abstract the network as an arbiter which takes one unit of time
to transfer messages from send buffers to receive buffers at the destination. We be-
lieve this is reasonable in applications that involve the atomic transfer of large data
sets. Unit-delay assumptions are also made in the literature on PRAMs and complete
networks [13, 14]. Unlike these models, however, we explicitly account for message
contention and do not allow multiple messages to be received in one step by a pro-
cessor. The issue of contention at the receiving module is also addressed in models
for optical communication [8] and module parallel computers [12, 20]. A key feature
which distinguishes the atomic model is that once a message has been sent it cannot
be retrieved; the sending processor must wait for the network to clear the send buffer
after the message has been copied into the receive buffer at the destination. Finally,
the atomic model can be viewed as the limiting version of the LogP model [5]; with
long messages of equal length, the latency, overhead, and gap parameters of the LogP
model can be lumped into a single unit time delay.

Communication contention is an important issue in modeling parallel compu-
tations. Valiant’s bulk synchronous parallel (BSP) model [24] divides the parallel
computation into supersteps in which processors perform local computation and ex-
change data. All the outstanding communication requests will be serviced before the
next superstep starts. The memory contention is characterized by the length of the
time interval a processor must wait before sending the next message. To model the
fact that many shared memory machines now have a large number of memory banks
in order to serve relatively much faster processors, Blelloch et al. [4] extended BSP
into (d, x)-BSP by adding two parameters—the memory bank delay (the minimum in-
terval length a memory bank can serve memory requests) and the ratio of the number
of memory banks to processors. The QSM model [9] also characterizes the contention
problem by a bandwidth parameter g so that a processor can issue memory requests
only once every g steps. All these models characterize the contention by limiting
the communication capability on a per processor basis. In contrast, the QSM(m)
model by Adler et al. [1] added another parameter to describe the limitation on the
communication capability for the entire system.

Besides characterizing the memory contention by a memory bandwidth parame-
ter, it is also possible to model the contention by allowing atomic access to a shared
resource. Dwork, Herlihy, and Waarts [6] proposed a model for shared memory ac-
cess in which simultaneous accesses to a single memory location are serialized and
only one will succeed at a time. However, a process may have multiple pending op-
erations due to trying to access different memory locations. Gibbons, Matias, and
Ramachandran [11] proposed a queue-read, queue-write (QRQW) model that allows
concurrent reading and writing to the same memory location to be queued. Similar
to BSP, the computation is divided into supersteps and all the queued memory re-
quests in one superstep will be served before the next one. The asynchronous variant
of QRQW (AQRQW) [10] relaxes the bulk synchronous requirement of QRQW and
BSP and more accurately captures the memory contention phenomenon in modern
shared-memory parallel computers [10]. The atomic model we propose differs from all
the previous message-passing models in that it allows only one pending outstanding
“request” per processor.2

2The SIMD-QRQW model in [11] also allows only one pending request per processor in shared
memory.
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Despite the restriction on the rate at which the network can deliver messages to
a destination, as well as the adversarial nature of the arbiter, we show that simple
randomized algorithms can attain linear speedup for branch-and-bound and backtrack
tree searching. Furthermore, all-to-some message passing can finish within a constant
factor of the optimal time with high probability if the destinations are uniformly
distributed among the processors.

2. The atomic message-passing model. We model a message-passing mul-
ticomputer as a collection of p nodes connected via an interconnection network [23].
For convenience of analysis we require that the system be synchronous and operate
in discrete time steps.3 Each time step is divided between one communication step
and one node computation step.
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Fig. 1. The structure of a node.

Each node consists of a receive buffer, a processor, local memory, a queue manager,
a message queue, and a send buffer (Figure 1). Each buffer can hold one atomic
message. Every node can perform local computation using its processor and local
memory. It can also receive a message using the receive buffer and enqueue messages
into the message queue. The message queue is maintained by a queue manager which
may be under the control of the processor or the system. A message from the message
queue is injected into the network by placing it into the send buffer. For our purposes,
it is convenient to model the actions at a node as repeated executions of the following
reactive cycle which occurs during one synchronous time step. Notice that we consider

3This assumption is not required for termination but simplifies the analysis of throughput.
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the communication as a sequence of time steps, and the timing of an event is expressed
as the time step number at which the event occurs, not a particular point in the
absolute time line. Similarly, a time interval refers to a contiguous set of time steps,
not an interval in terms of wallclock time.

1. The send phase (performed by the processor).
Transfer the message at the head of the queue into the send buffer if it is
empty.

2. The transmission phase (performed by the network system).
Take messages from send buffers to receive buffers according to message des-
tinations. If more than one message is destined for the same receive buffer,
the one which succeeds is selected by the network arbitration policy.

3. The receive phase (performed by the processor).
Probe the receive buffer to receive an incoming message, if any, into local
memory.

4. The local computation phase (performed by the processor).
• compute. Perform local computation, possibly on the newly received
message, and generate new messages.
• enqueue. Pass the newly generated messages to the queue manager,
which will place it into an appropriate place in the message queue.

Observe that there are two ways a message can be delayed. First, a message may
have to wait in the message queue until it is selected to be placed in the send buffer.
Second, once a message is in the send buffer, it may be delayed in the network. We
call the second kind a receive-delay.

When more than one message, occupying send buffers of different nodes, are si-
multaneously destined for the same node, the network must deliver one message. Since
every node executes a receive instruction during its reactive cycle, this requirement
of the network satisfies the network contract of the CM-5 [17]: “The data network
promises to eventually accept and deliver all messages injected into the network by
the processors as long as the processors promise to eventually eject all messages from
the network when they are delivered to the processors.” With the reactive cycle and
the network contract we are assured that deadlocks cannot occur.

We wish to make as few assumptions as necessary on the message queue. Our
results for backtrack search are independent of queue maintenance. Our result for
branch-and-bound depends on maintaining the message queue as a priority queue.

We also wish to make as few assumptions as necessary about the network ar-
bitration policy when multiple messages are destined for the same node. We will
consider two different network arbitration policies. The worst-case policy selects the
message which maximizes the overall time to complete the task at hand. The FIFO
policy dictates that, for any pair of messages with the same destination, they will be
accepted in the order of earliest occupancy of their respective send buffers. In other
words, if the messages reach their send buffers at different time steps, then the earlier
one will be delivered first. If two messages reach their send buffers at the same time,
then the order of delivery is arbitrary. Optimal speedup for backtrack search can be
achieved even with worst-case arbitration, whereas we require FIFO arbitration to
prove optimal speedup for branch and bound search.

3. Overview of results. We will study three problems under the atomic mes-
sage setting: all-to-some message scattering, backtrack search, and branch-and-bound
search. For each of these problems we analyze the case when all messages are des-
tined for independently chosen random nodes. Our intuition is that when messages
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are headed for random destinations, the number of conflicting messages is unlikely to
become too large. However, when the size of the computation is much larger than the
number of processors, this is not always true and one has to prove that the effects of
the conflicts do not add up significantly.

The message scattering problem is informally stated as follows: suppose that each
node has a list ofm messages to send (in order) to remote nodes. How much time does
it take, under the worst-case (adversarial) arbitration policy, until all messages are
received at their destinations? This problem arises naturally in several applications.
In fact, the message scattering problem and the atomic message model are motivated
by the “all-to-some” communication in our parallel N-body implementation [19].

In the backtrack search problem, each internal vertex of a search tree, T , corre-
sponds to a partial solution to a problem while each leaf represents a solution with
a certain cost. The goal of backtrack search is to find the minimum cost leaf in the
search tree. The search tree is not given in advance; it is instead spawned on-line
as the search proceeds. The search begins with the root of the tree in a given node;
when each internal vertex is expanded, two (or any bounded number of) children are
spawned and must each be examined. When a leaf is examined, the cost is calculated
and no further expansion along that branch is possible. If the total number of vertices
in the search tree is n, and the maximum depth of any leaf is h, it is easy to see that
the time to examine all leaves is at least Ω(n/p+ h), where p denotes the number of
processors.

Branch-and-bound search is similar to backtrack search, except that only a subtree
of the search tree must necessarily be explored. Following Karp and Zhang [13, 14],
we model a branch-and-bound tree as a binary search tree, each of whose vertices has
an associated cost. The cost of each vertex is strictly less than the cost of each of its
children (for simplicity we assume that all vertex costs are distinct). The problem is
to find the leaf with minimum cost in the tree. Clearly, every tree vertex whose cost
is less than the minimum cost leaf must be expanded because one of its children could
potentially be the minimum cost leaf. These vertices form a critical subtree; call it T
of the overall search tree.

As before, the time to complete the search is Ω(n/p+ h), where n is the number
of vertices in the critical subtree and h is the height of the critical subtree. Noncritical
vertices can, in principle, be pruned by the search process and need not be explored.

Tight upper bounds for branch-and-bound, and hence for backtrack search, were
given by Karp and Zhang [13] on the complete network which allows multiple messages
to be simultaneously received at each node and on the concurrent PRAM which
essentially allows unsuccessful writes to be detected. The basic idea was to send each
node to a random processor for further exploration. Ranade [21] gave an elegant
alternative proof of the Karp–Zhang result. By extending Ranade’s techniques we
show that the random destination strategy yields linear speedup for backtrack search
in the atomic model.

Theorem 3.1. Using random destinations, the probability that a binary backtrack
search tree of size n and depth h takes time more than k(n/p + h) in the atomic
transmission model with worst-case arbiter is polynomially small in n for k sufficiently
large.

Achieving linear speedup for branch-and-bound search in the atomic model is a
little harder. The subtle distinction is that pending noncritical vertices can delay
pending critical vertices. In the Karp–Zhang model this can never happen. Since
we have no control over the number of noncritical vertices, and we do not know the
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shape of the critical subtree, it is conceivable that the delays can become arbitrarily
large under the worst-case arbiter which consistently favors noncritical vertices over
critical vertices. However, under a FIFO arbiter we establish the following result.

Theorem 3.2. Let the critical subtree, T , of a branch-and-bound search tree have
size n and depth h. Using randomized destinations, the probability that the time, in
the atomic model with FIFO arbiter, exceeds k(n/p + h) is polynomially small in n
when n > p2 log p and k is sufficiently large.

We present the proof of Theorems 3.1 and 3.2 in sections 6 and 7.

4. Message scattering. The off-line version of the message scattering problem
in which the lists can be reordered is easily solved using standard bipartite graph
edge-coloring techniques [2, 7]. If r and m are the maximum numbers of messages
received and sent by any node, respectively, then max{r,m} steps are necessary and
sufficient.

However, the distributed version of the problem, without reordering, is not as
simple. We show that with each of p nodes sending m messages (m can be arbitrarily
larger than p) the worst-case time is Ω(mp). In other words, the average throughput
of the system is O(1) messages received per time step, independent of the size of the
system.

On a positive note, we show that when each of the messages is destined for a
randomly chosen node (all destinations independent and uniformly drawn), then, with
high probability, the time to completion is O(m). As a result the average throughput
is Ω(p) messages received per time step, asymptotically the maximum possible.

4.1. Lower bounds. Suppose every processor sends n messages to every pro-
cessor in ascending processor index order. We show that a simple FIFO network
arbiter increases the communication time to Ω(np2) so that on average only a con-
stant number of messages are received in one time step. The network arbiter ensures
that the messages are received in FIFO order; the message sent first is received first.
The messages sent at the same time are received in increasing processor index order.

Figure 2 shows the history of four processors sending two messages to each des-
tination in ascending processor index order. A square in the intersection of row i
and column j indicates that processor pi successfully sends a message at time step
j. The numbers in the squares are the processor index of the destination. Notice
that two successful sends to the same destination are p time steps apart because the
messages are received in FIFO order. The total number of time steps is therefore
((n− 1)p+ 1)p+ (p− 1) = Ω(np2).

4.2. Randomized scattering. Formally, we establish the following theorem.
Theorem 4.1. Suppose that each node sends m messages and that for each

message all destinations are equally likely and independent of choices of all other
messages. The probability that the time until all messages have been received exceeds
km is bounded by O(e−m) for sufficiently large k and m > log p.

Proof. We adapt Ranade’s proof [21] of the result of Karp and Zhang [13].
Let T be the completion time of the protocol, the last time step at which a message

is received. Let messageMm be a message received at time step T and let S be the
node which was the source of messageMm. LetMi denote the ith message sent by
node S and let Ti denote the time step at which Mi was received at its destination
Qi.

Definition. Suppose that messageM is selected for transmission, i.e.,M enters
the send buffer at time step τ and is destined for node q. Then we say thatM became
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Fig. 2. The situation when the messages are sent in ascending processor address order.

ready for q at time step τ .
Lemma 4.2. There exists a partition Π = Π1, . . . ,Πm of the interval [1, T ] and a

set R of T −m messages (not including those sent by S) each of which satisfies the
following property: if the message became ready during Πi its destination node is Qi.

Proof. Message Mi is received at Qi at time step Ti. Let Tnri < Ti be the
maximum time step at which Qi does not receive a message. At each time step of the
interval ∆i = [Tnri + 1, Ti], Qi receives a message. Each of these messages became
ready during the same interval ∆i.

Observe that message Mi−1 was received at time step Ti−1 and message Mi

became ready at time step Ti−1 + 1. Therefore, Tnri ≤ Ti−1. As a result there
is no gap between any pair of consecutive intervals ∆i,∆i+1. Given the intervals
∆1, . . . ,∆m, we construct a partition Π as follows:

Πm = ∆m

Πi = ∆i −
⋃
j>i

Πj , 1 ≤ i < m.

By construction, it follows that every message received by Qi during Πi became
ready during Πi and at least T −m messages received by Qi’s during Πi’s were not
sent by S. This establishes the lemma.

To complete the proof of the theorem, we sum, over all possible partitions, choice
of source S, and choice of T −m messages, the probability that these T −m messages
chose their destinations in accordance with the partition.

The probability that a message which becomes ready during Πi chooses Qi as
its destination equals 1

p . The probability that each of T − m messages makes the

right choice is p−(T−m). The number of choices for S, the partitions, and the T −m
messages equals p

(
T+m
m

)(
(p−1)m
T−m

)
. The probability that T ≥ km is at most

p

(
T +m

m

)(
(p− 1)m

T −m
)
p−(T−m)

≤ 2T+2m

(
(p− 1)m

(k − 1)m

)
p−((k−1)m)

≤ 2(k+2)m

(
e

k − 1

)(k−1)m

≤
(
2k+2

(
e

k − 1

)k−1
)m

.
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The first two inequalities follow from the assumption that m > log p and the fact
that

(
x
y

)
< (xe/y)y (the proof can be found in [16, p. 165]). For k sufficiently large,

this quantity is smaller than O(e−m).

5. Techniques for tree searches.

5.1. Algorithmic issues. This section outlines the algorithmic and proof strate-
gies for backtrack and branch-and-bound searches in the atomic message model. The
branch-and-bound strategy is essentially that of Karp and Zhang [13]; their model al-
lows any number of messages to be received at a node in one time step. Our technical
contribution is to extend their result to the atomic transmission model. The proofs
of both results extend the techniques of the previous section.

While the goal of both search procedures is to find the minimum cost leaf, there is
an essential difference. Backtrack search examines every vertex of the search tree. In
branch-and-bound search the cost associated with each vertex increases monotonically
with the distance from the root, so that only the critical subtree, consisting of vertices
with cost no greater than the minimum cost leaf, need be examined. We call such
vertices critical vertices. For efficient branch-and-bound search, the time devoted
to examining noncritical vertices must not dominate that for examining the critical
subtree.

Within each synchronous reactive cycle, each processor (1) receives a tree vertex,
if any, from its receive buffer, (2) examines and expands the vertex, and (3) puts
the children onto the message queue, headed for an independently chosen random
destination. For backtrack search we place no requirements on the message queue
discipline. However, for branch-and-bound search we require that the message queue
be a priority queue, so that the tree vertex selected for transmission is the one with
minimum cost.

Using priority message queues for branch-and-bound search means that noncrit-
ical vertices cannot be selected for transmission when there is at least one critical
vertex inside the message queue. However, a critical vertex can arrive inside the mes-
sage queue while a noncritical vertex occupies the send buffer. In this case, the critical
vertex will have to wait for selection, but it is easy to see that a critical vertex can be
delayed by a noncritical vertex in this manner at most once.

Once a message has been selected for transmission, it is still subject to receive-
delays. Receive-delays depend on the network policy and are beyond the control
of the programmer, so we would like to make as few assumptions as necessary. For
backtrack search we are able to carry out the analysis without making any assumptions
on network arbitration. For branch-and-bound search, however, our analysis requires
that the network observes a FIFO arbitration policy.

In conclusion, our analysis for branch-and-bound search makes stronger assump-
tions on both the message queue discipline and the network arbitration policy. The
first assumption is required to guarantee that progress is made on the critical subtree
and is reasonable from an algorithmic viewpoint. The second assumption, concerning
network arbitration, is required for technical reasons: we bound the running time as a
function of the size of the critical subtree, not the entire search tree which can be ar-
bitrarily larger. Currently we do not know if the FIFO assumption can be weakened,
and it is conceivable that it can.

5.2. Proof techniques. In this section we describe some of the ideas and ter-
minology common to the analysis for both backtrack and branch-and-bound searches.
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In both problems our goal is to analyze the time to expand a critical tree4 of size n
and depth h on a p-node system. For branch-and-bound search the quantities n and
h can each be much smaller than the size and depth of the complete search tree.

In the analysis of the running time we proceed as follows. At time t = 1 the root
is assumed to be in the send buffer of some node and is received at its destination
within that time step. Suppose that the running time is T , i.e., the last time step at
which a critical vertex is received. Pick one of the critical vertices received at time
T—it must be a leaf in the critical subtree. Call the path s1, s2, . . . , sh from the root
(s1) to this critical leaf (sh) the special path and the vertices along this path the special
vertices. Let Qi denote the destination queue of special vertex si.

The first step of the proof is similar to the proof of Lemma 4.2. For a fixed run
of the algorithm we construct a partition, Π = {Π1, . . . ,Πh}, of the time interval
[1, T ]. Next, we construct a signature set R of nonspecial, critical vertices each of
which became ready for some Qi during the corresponding time interval Πi. Roughly
speaking, the signature set, R, is constructed such that the receive delay periods of
its children are disjoint and the sum of these receive-delays is large, i.e., close to T .

There are two cases to consider: the signature set R is either large or small,
compared with the threshold αT , where α is some suitably chosen constant. We first
show that it is unlikely that R is large when T is large. The proof closely follows the
proof of Theorem 4.1.

Lemma 5.1. For suitable constants k, α, the probability that T > k(np + h) and

|R| ≥ αT is polynomially small in n.
Proof. We estimate Pr(|R| ≥ αT ) by summing the probability of the event

|R| ≥ αT under all possible combinations of partition Π and queue sequence Q.
Given Π and Q each critical vertex appears in R with probability 1/p, independent
of other vertices. The probability that |R| ≥ αT and all the special nodes go to
destinated Qi is therefore bounded by

(
n
αT

)
p−(h+αT ).

The number of choices for Π, Q and the special path S is no more than
(
T+h
h

)
phn.

Thus, the probability that |R| ≥ αT is bounded by

(
n

αT

)
p−αT

(
T + h

h

)
n

<

(
ne

αTp

)αT
((1 + T/h)e)hn

<
( e
αk

)αk(n
p +h)

((
k

(
n

ph
+ 1

)
+ 1

)
e

)h
n, when T > k(np + h)

<

[( e
αk

)αk( n
ph+1)

((
k

(
n

ph
+ 1

)
+ 1

)
e

)]h
n

<

[( e
αk

)αk
((2k + 1)e)

]h
n

which, for appropriately chosen k, is polynomially small in n, the size of the critical
subtree since the height of the tree h is at least log n.

The second part of the proof argues that it is unlikely that R is small when T
is large. The intuition is that the expected receive-delay of any vertex is a small
constant; therefore, it would seem unlikely for the children of a small number of

4Every vertex in backtrack search is critical.
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signature vertices to suffer a large total receive-delay. Unfortunately, the delays of
the children of the signature vertices are not independent random variables, so that
Chernoff bounds cannot immediately be invoked.

Briefly, in analyzing backtrack search we track the destinations of the children of
the signature vertices to construct a new set of queues, a new partition of time, and a
new signature set. The new signature set is guaranteed to be large; consequently, the
remainder of the proof follows the proof of Lemma 5.1. The analysis of branch-and-
bound search is based on the observation that, under FIFO arbitration, the delays of
the children of the signature set can essentially be treated as a martingale, thereby
allowing us to use Chernoff bounds.

6. Analysis of backtrack search. In this section we demonstrate that when
each vertex chooses its destination randomly and independently, then with high prob-
ability the completion time of backtrack search is optimal within a constant factor.

Following the outline of the previous section, we proceed in two stages. In the
first stage we identify the required signature set R; the second stage establishes the
unlikelihood of the event that T is large while R is small.

6.1. Signature set. We begin with some terminology and definitions. As before,
let S = {s1, . . . , sh} denote the special vertices along the special root-to-leaf path and
Qi be the destination queue which receives special vertex si at time Ti.

Definition. A node Q is empty at time t if neither the send buffer nor the
message queue of Q contains a vertex right after the send phase of time step t. By
definition a node cannot be empty at time t if it receives an internal vertex at time
t − 1. However, it is possible that a node which is empty at t receives a leaf at time
t − 1. Note that any node which is nonempty throughout an interval I attempts to
inject a vertex into the network at every time step of I.

Definition. Suppose that node Q receives a vertex at each time step during time
interval W . We call the interval W an arrival window for node Q. Recall that a
receive-delay is the time interval during which a message waits in the send buffer due
to destination congestion. Note that if time interval W is the receive-delay of vertex
v, then W is an arrival window for the destination queue of v.

Definition. For 1 ≤ i < h, let T ei denote the maximum time t < Ti+1 such that
Qi is empty at t, and Tnri denote the maximum time t ≤ T ei at which Qi does not
receive a message. Finally, let Ni denote the interval [T ei +1, Ti+1], Ai = [Tnri +1, T ei ]
and ∆i = Ai ∪Ni.

The following lemma summarizes three properties which are a straightforward
consequence of the definitions above.

Lemma 6.1.
1. Qi receives an internal vertex at time T ei ,
2. Qi is nonempty throughout Ni and Qi attempts to inject a vertex at every

step of Ni, and
3. Ai is an arrival window for Qi.

Let ci denote the set of vertices that are injected into the network from Qi during
Ni. We obtain the following lemma.

Lemma 6.2.
1. The parent of every vertex in ci becomes ready for Qi during ∆i,
2. ∆i can be partitioned into a set of arrival windows (not necessarily for all
Qi), and

3. the interval ∆i contains [Ti, Ti+1], and
⋃h−1
i=1 ∆i = [1, T ].



78 PANGFENG LIU, WILLIAM AIELLO, AND SANDEEP BHATT

Proof. Let w be the parent of a vertex v ∈ ci. In contradiction to (1), suppose w
is ready at or before Tnri . Two cases follow: either w is received before Tnri or after
Tnri .

In the first case, if w is received before Tnri , then v will stay in the message queue
of Qi until it becomes ready. However, from the definition, v cannot become ready
until T ei + 1 or later. This contradicts the fact that Qi is empty at T ei .

In the second case, if w is received after Tnri , then the receive-delay of w is an
arrival window for Qi. This contradicts the fact that Qi does not receive a vertex at
Tnri . As a result w must be ready after Tnri .

From part 2 of Lemma 6.1 Ni can be partitioned into arrival windows for the
destinations of ci. Therefore, ∆i can be partitioned into arrival window Ai for Qi and
a set of arrival windows in Ni for the destinations of ci.

Finally, for part 3 we observe that si+1 ∈ ci, so si must be ready after Tnri (from
part 1 of this lemma) and is received at Ti > T

nr
i . Therefore ∆i contains [Ti, Ti+1]

and part 3 follows.

From part 3 of Lemma 6.2 the union of all ∆i covers the time interval [1, T ];
consequently we can define a partition Π = {Π1, . . . ,Πh−1} of the interval [1, T ] as
follows:

Πh−1 = ∆h−1,

Πi = ∆i −
⋃
j>i

Πj , 1 ≤ i < h− 1.

Definition. Let Ri be the set of critical vertices which are not special (v �∈ S)
but are ready for Qi during the interval Πi. Also, let R = ∪i<hRi. We call the set R
the signature set.

Having identified the signature set, it remains to estimate the probability that the
signature set is small when T is large.5 This estimation is completed in the following
section.

6.2. A refined partition. As mentioned in section 5, our strategy will be to
find a new partition of the interval [1, T ] and a corresponding signature set which is
guaranteed to be large.

In this section we identify O(|R| + h) arrival windows which cover the interval
[1, T ]. We will find arrival windows to cover each Πi (1 ≤ i < h) and argue that the
sum of the number of windows in each Πi is O(|R|+h). The next section will identify
the new partition and signature set.

Definition. Let Ci denote those ki children of Ri ∪ si that are ready within
Ni ∩Πi. We sort Ci into a list vi,1, . . . , vi,ki according to the time they become ready.
Also let Qi,j denote the destination of vertex vi,j and Wi,j denote the receive-delay of
vi,j.

Each Πi is the union of two disjoint intervals Ni ∩ Πi and Ai ∩ Πi. The interval
Ni∩Πi is an initial segment of Ni which, from part 2 of Lemma 6.2, can be partitioned
into arrival windows. Each such arrival window W is the receive-delay of a vertex v
which is enqueued after T ei and becomes ready in Qi at the beginning of W . From
part 1 of Lemma 6.2 the parent of v must be ready for Qi after T

nr
i . In other words,

the parent of v must be ready during Πi and consequently v ∈ Ci. As a result the

5The case when R and T are both large is covered by Lemma 5.1.
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interval Ni ∩ Πi can be partitioned into the receive-delays of the ki vertices in Ci.
6

Each such receive-delay is an arrival window Wi,j for Qi,j (1 ≤ j ≤ ki).
From part 3 of Lemma 6.1 Ai ∩ Πi is an arrival window for Qi. Let Wi,0 =

Ai∩Πi and Qi,0 = Qi, so that the interval Πi can be partitioned into arrival windows
Wi,j for Qi,j (0 ≤ j ≤ ki). Finally we consider Πi for all i and it follows that⋃

1≤i<h
⋃

0≤j≤ki Wi,j = [1, T ].

From the discussion above, the receive-delays, Wi,j , of the ki vertices vi,j ∈ Ci,
and Wi,0 cover Πi. Moreover, the parent of every vertex in C =

⋃
1≤i<h Ci is in

either R or S; consequently, the number of arrival windows is at most h + |C| ≤
h+ 2(|S|+ |R|) = 3h+ 2|R| since we assume a binary search tree.

We need one more definition to derive the refined partition Π∗ and queue sequence
Q∗, where we can find T vertices that become ready for Q∗ according to Π∗.

Definition. For the arrival window Wi,j = [t1, t2] for Qi,j, let t ≤ t1 be the
maximum time step at which Qi,j does not receive a message. Define W ∗i,j = [t+1, t2]
so that (W ∗i,j , Qi,j) is the maximal backward extension of the arrival window.

Let Q∗ be the sequence of all the queues Qi,j , 1 ≤ i < h, 1 ≤ j ≤ ki. Notice
that every message received by Qi,j during the interval W ∗i,j = [t + 1, t2] necessarily
becomes ready for Qi,j during the same interval. Otherwise Qi,j would have received
a message at time t, a contradiction.

From the extended windows W ∗i,j , 1 ≤ i < h, 0 ≤ j ≤ ki, we next obtain the
partition Π∗ as follows:

Π∗h−1,kh−1
=W ∗h−1,kh−1

,

Π∗i,j =W
∗
i,j −

⋃

l>i∨(l=i∧m>j)
Π∗l,m.

Now we can find T vertices that become ready for Q∗ according to Π∗ since every
vertex received by Q∗ must be ready in the corresponding Π∗ interval and the union
of Π∗ is [1, T ]. Let Xi,j denote the set of vertices v such that v /∈ C ∪ R ∪ S and v
is received by Qi,j during Π∗i,j . From the discussion above every vertex in Xi,j must
become ready for Qi,j during Π∗i,j . Finally, let X = ∪Xi,j and V = C ∪R ∪ S. Since
the arrival windows cover the interval [1, T ], it follows that |X| ≥ T − |V |.

6.3. Execution templates. Our goal in this section is to estimate the proba-
bility of the event that T is large and R is small. We proceed in two stages; first we
characterize the completion time in terms of an execution template. Then we show
that execution templates corresponding to large completion times are unlikely. This
follows the delay-sequence arguments used in the literature [21, 22].

Definition. An execution template E is an octuple (S,R,C,Π,Π∗, X,Q,Q∗)
whose elements are defined as follows:

• S = {s1, . . . , sh} denotes the set of vertices along a path from the root to a
leaf;
• Ri, 1 ≤ i < h, are disjoint sets of nonspecial critical vertices that become

ready for Qi during Πi, and R = ∪h−1
i=1 Ri is the signature set;

• Ci, 1 ≤ i < h, are disjoint sets of tree vertices that are children of si ∪ Ri
and become ready within Ni ∩Πi; |Ci| = ki and C = ∪Ci;
• Π = {Π1, . . . ,Πh−1} is a partition of [1, T ];

6The receive-delay of the last vertex vi,ki
may not fall entirely within Ni ∩Πi, in which case we

truncate it accordingly.
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• Π∗ = {Π1,1, . . . ,Π1,k1 , . . . ,Πh−1,1, . . . ,Πh−1 kh−1
} is a partition of [1, T ];

• Xi,j, 1 ≤ i < h, 0 ≤ j ≤ ki, are sets of tree vertices that are disjoint from
V = C ∪R∪S and ready for Q∗i,j during Π∗i,j, X = ∪Xi,j and |X| ≥ T −|V |;
• Q = {Q1, . . . , Qh} is a set of queues such that for every 1 ≤ i < h, Qi is the

destination queue of si and also of every vertex in Ri and Xi,0, and Qh is
the destination of sh;

• Q∗ = {Q∗1,1, . . . , Q∗1,k1 , . . . , Q∗h−1,1, . . . , Q
∗
h−1,kh−1

} is a set of queues such that
for every 1 ≤ i < h, 1 ≤ j ≤ ki, Q∗i,j is the destination for the jth element in
Ci and every vertex in Xi,j.

From the earlier discussion, when the backtrack search takes T time steps to
complete, there exists an execution template where the destination of vertices in S,
R, C, and X satisfy the following conditions (let D(v) be the random destination of
vertex v):

1. D(si) = Qi, 1 ≤ i ≤ h.
2. For all v ∈ Ri, D(v) = Qi, 1 ≤ i < h.
3. Let vi,j be the jth element in Ci, D(vi,j) = Q

∗
i,j , 1 ≤ i < h, 1 ≤ j ≤ ki.

4. For all v ∈ Xi,j , D(v) = Q∗i,j , 1 ≤ i < h, 1 ≤ j ≤ ki.
5. For all v ∈ Xi,0, D(v) = Qi, 1 ≤ i < h.

6.4. Estimating the probability of execution templates. Let L be the
event T > k(np + h) and |R| < αT . We bound the probability of event L by summing
the probabilities of event L under all possible execution templates. For a fixed exe-
cution template the probability that all vertices in S, R, C, and X choose the right
queue according to E is at most

p−|S∪R∪C|p−(T−|S∪R∪C|) = p−hp−|R|p−|C−(S∪R)|p−(T−|S∪R∪C|).

Next, we count the number of different execution templates. The number of
possible S is n since there are at most n leaves in the tree. After S and R are specified,
there are at most

(
2(|S|+|R|)
|C|

)(
n

T−|V |
)
ways to choose C and X. The destinations of

vertices from S and R are specified by Q, so the number of unspecified queues in Q∗

is |C− (S ∪R)| and the number of ways to choose Q and Q∗ is php|C−(S∪R)|. Finally,
there are

(
T+|C|+h
|C|+h

)(
T+h
h

)
ways to choose Π∗ and Π, so the total number of execution

templates is at most

n

(
n

|R|
)(

2(|S|+ |R|)
|C|

)(
n

T − |V |
)
php|C−(S∪R)|

(
T + |C|+ h
|C|+ h

)(
T + h

h

)
.

Lemma 6.3. For suitable constants k > 1, 0 < α < 1/3, the probability that
T > k(np + h) and |R| < αT is polynomially small in n.

Proof. The probability of L is no more than the product of the number of different
execution templates and the probability that every vertex in S, R, C, and X will
actually choose the destination according to E when T > k(np + h) and |R| < αT .
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p (

ne

(T − 3αT − 3h)p

)T−3αT−3h

since |V | ≤ 3(αT + h)

≤ 27h+(4α+2)k(n
p +h)(2e)

n
p

(
ne

((1− 3α)k − 3)(np + h)p

)((1−3α)k−3)(n
p +h)

≤ 2((4α+2)k+7)(n
p +h)(2e)

n
p

(
e

((1− 3α)k − 3)

)((1−3α)k−3)(n
p +h)

≤
[
2(4α+2)k+7(2e)

(
e

((1− 3α)k − 3)

)((1−3α)k−3)
](n

p +h)

≤ 2−(n
p +h) for suitably chosen constants k, α.

The first inequality follows from the observation that
(
n
x

)
p−x is maximized when

x = �n−pp+1 �. The second inequality follows from the fact that logn < h, |S| = h and
the assumption that R ≤ αT . The probability in the fourth inequality is roughly

2k1T k
n/p
2 kk4T3 < (2k1k2k

k4
3 )T . As long as we keep (2k1k2k

k4
3 ) < 1 (by choosing suf-

ficiently large k) the probability will diminish when n (and T ) is sufficiently large.
Therefore, when n is sufficiently large, we replace T with k(n/p + h). Finally, since
h ≥ log n, the bound in the last step is polynomially small in n.

From Lemmas 5.1 and 6.3 we have the following theorem.
Theorem 6.4. Let T be any binary backtrack search tree of size n and depth

h. Let T be the total time for the random destination backtrack search algorithm to
expand T in a p-node network. The probability that T exceeds k(np + h), where k is
suitably chosen, is polynomially small in n.

7. Analysis of branch-and-bound search. The proof for backtrack search
does not apply in the branch-and-bound search case because an adversarial network
arbiter can delay a critical node by favoring noncritical nodes. In the backtrack
case, every tree node has to be expanded. Therefore, no matter which tree node the
arbiter chooses to be received, some progress is made. In the branch-and-bound case,
although a critical node cannot be delayed by a noncritical node in the competition
for the send buffer, it can be delayed by noncritical nodes in the competition for the
same destination. An adversarial arbiter can work against the critical nodes so that
they suffer long receive-delays.

Our analysis of branch-and-bound search is based on the assumption that the
network obeys the FIFO scheduling policy. Under FIFO scheduling incoming vertices
are received in time-stamp order; a vertex that is ready cannot be delayed by a vertex
that becomes ready at a later time-step; vertices that become ready at the same time
can be received in arbitrary order.

We prove linear speedup in two steps. First, we prove that the aggregate delay
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of m nonoverlapping receive delays is bounded by O(m) with high probability under
FIFO scheduling. Next, we show that for every execution there exists a signature set
R and a set of O(|R| + h) nonoverlapping receive-delays with aggregate delay Ω(T ).
As a result, it is very unlikely for T to be large and |R| to be small. The other case,
that of large T and large |R|, is already covered by Lemma 5.1.

7.1. Martingales.
Lemma 7.1. Let X1, . . . , Xm be m random variables each in the range

[0, p−1] and let X =
∑m
i=1Xi. Suppose that the conditional expectation E(Xi | X1 =

x1, . . . , Xi−1 = xi−1) ≤ 1, for all 1 ≤ i ≤ m, and 0 ≤ x1, . . . , xi−1,≤ p − 1. Then,
Pr(X ≥ αm) ≤ ( 1

2 )
α m

p−1 when α ≥ 2e.
Proof. The analysis is similar to the generalized Chernoff bound given by Leighton

et al. [15]. We first estimate the expectation of etX :

E(etX) = E(etX1etX2 · · · etXm)

=

p−1∑
x=0

etxE(etX2 · · · etXm |X1 = x)Pr(X1 = x).

We then choose a value x∗1 for X1 so that E(etX2 · · · etXm |X1) is maximized:

E(etX) ≤
p−1∑
x=0

etxE(etX2 · · · etXm |X1 = x∗1)Pr(X1 = x)

≤
(
p−1∑
x=0

etxPr(X1 = x)

)
E(etX2 · · · etXm |X1 = x∗1)

≤ E(etX1)E(etX2 · · · etXm |X1 = x∗1)

= E(etX1)

p−1∑
x=0

exE(etX3 · · · eXm |X1 = x∗1, X2 = x)Pr(X2 = x|X1 = x∗1)

= E(etX1)E(etX2 |X1 = x∗1)E(e
tX3 · · · etXm |X1 = x∗1, X2 = x∗2)

...

≤ E(etX1)E(etX2 |X1 = x∗1) · · ·E(etXm |X1 = x∗1, . . . , Xm−1 = x∗m−1).

Each of these expectations is maximized when the probability is nonzero only
at 0 and p − 1, the endpoints of the range of Xi. From Markov’s inequality we
can bound E(etXi |X1 = x∗1, . . . , Xi−1 = x∗i−1) by Pr(Xi = 0|X1 = x∗1, . . . , Xi−1 =

x∗i−1)+Pr(Xi = p−1|X1 = x∗1, . . . , Xi−1 = x∗i−1)e
t(p−1) ≤ (1− 1

p−1 )+
1
p−1e

t(p−1) since

E(Xi|X1 = x∗1, . . . , Xi−1 = x∗i−1) is bounded by 1 from the assumptions. As a result

we choose t so that et(p−1) is larger than 1 and E(etXi |X1 = x∗1, . . . , Xi−1 = x∗i−1) is
maximized when Pr(Xi = p− 1|X1 = x∗1, . . . , Xi−1 = x∗i−1) is maximized.

E(etX |X1 = x∗1, . . . , Xi−1 = x∗i−1) ≤
((

1− 1

p− 1

)
+

1

p− 1
et(p−1)

)m

=

(
1 +

et(p−1) − 1

p− 1

)m

≤ e( et(p−1)−1
p−1 )m, (1 + y < ey).
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Then we again use Markov’s inequality to bound the probability that X is greater
than αm:

Pr(X ≥ αm) = Pr(etX ≥ etαm)

≤ e
( et(p−1)−1

p−1 )m

etαm

= e−
(α ln α−α+1)m

p−1 (when t = lnα
p−1 )

≤ 2−
αm
p−1 (when α ≥ 2e).

Lemma 7.2. Let V = {v1, . . . , vm} be m vertices with nonoverlapping delays.

The probability that their aggregate delay exceeds βm is smaller than ( 1
2 )

(β−1)m
p−1 when

β ≥ 2e+ 1.
Proof. Let Qi be the destination of vi and Xi be the number of vertices that will

be received by Qi before vi when vi becomes ready. The receive-delay of vi is Xi + 1
and the aggregate receive-delay of V is m+

∑m
i=1Xi.

Every vertex chooses its destination independently and uniformly; therefore, given
X1, . . . , Xi−1, vi is equally likely to pick any destination. We will argue that, given
X1, . . . , Xi−1, the expected value of Xi is no more than 1. When vi makes its random
choice there are at most p − 1 other ready vertices in the system whose choices are
independent of vi’s choice. Therefore, the conditional expectation of Xi is less than
one.

For the aggregate delay to exceed βm, the sum of all Xi must exceed (β − 1)m.
The bound on the probability of this event follows from Lemma 7.1.

7.2. The signature set. As before we consider the special vertices S = {s1, . . . ,
sh}. Let si be received by Qi at time Ti for 1 ≤ i ≤ h. For every 1 ≤ i < h we seek a
set of receive-delays which together cover the interval [Ti, Ti+1].

Let Tnsi be the largest time step smaller than Ti+1 at which the send buffer of Qi
is not occupied by a critical vertex, (1 ≤ i < h). Note that at each time step during
the interval Γi = [Tnsi +1, Ti+1] the send buffer of Qi is occupied by a critical vertex.
Let ci be the critical vertices that are injected into the network from Qi during Γi.
As a result, Γi can be partitioned into receive-delays of vertices in ci.

Among all the parents of vertices in ci let fi be the one that becomes ready at
the earliest time step, say, T fi . Since si+1 ∈ ci it follows that si is received no earlier

than T fi .
It is possible for a gap to exist between the receive-delays of fi and vertices in ci.

In this case, the send buffer of Qi must be occupied by a noncritical vertex, call it gi,
which is received at its destination at time Tnsi . Observe that gi cannot be received
at its destination any earlier, for otherwise the send buffer of Qi would have to be
occupied by a critical vertex (the message queue contains at least one critical vertex,
the child of fi, and a critical vertex gets priority over noncritical vertices to enter the
send buffer). However, this contradicts the definition of Tnsi .

Let T gi be the time step at which the parent of gi becomes ready and let ∆i =

[min(T fi , T
g
i ), Ti+1]. The following lemma summarizes our observations.

Lemma 7.3.
1. The parent of each vertex in ci becomes ready for Qi during ∆i,
2. ∆i is the union of receive-delays of vertices fi, ci, and gi (if it exists), and

3.
⋃h−1
i=1 ∆i = [1, T ].
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Proof. The parent of each vertex v in ci must become ready before v; furthermore,
it cannot become ready before fi. For part 2, if there is a gap between the receive-
delay of fi and ci, then this gap will be covered by the receive-delay of gi from the
discussion above. Finally si must be ready at or after T fi from the definition of fi so

it cannot be received before T fi ; thus the interval ∆i contains [Ti, Ti+1], and part 3
follows.

From part 3 of Lemma 7.3 the union of all ∆i cover the interval [1, T ]. We can
therefore define a partition Π of [1, T ] as follows:

Πh−1 = ∆h−1,

Πi = ∆i −
⋃
j>i

Πj , 1 ≤ i < h− 1.

Definition. As before, a critical vertex v is in the signature set R if v is not a
special vertex (v /∈ S) and v becomes ready for Qi during Πi.

There are three kinds of receive-delays in Πi: the earliest ready parent fi, the
noncritical vertex gi, and those vertices in ci that become ready during Γi ∩ Πi. We
use F , G, and C to denote the sets of these three kinds of vertices from all Πi. From
part 1 of Lemma 7.3 and the definition of R, the parent of every vertex in C is
either in R or S. As a result the number of receive-delays in F ∪ G ∪ C is at most
2h+ 2(|S|+ |R|) = 4h+ 2|R|.

The receive-delays identified thus far cover the interval [1, T ] and there are no
more than 4h + 2|R| in number. They are not necessarily nonoverlapping, however.
Using a straightforward greedy procedure it is possible to produce a subset of no more
than 2h+ |R| intervals which are disjoint and whose union includes at least T/2 time
steps. With this observation, we have the following theorem.

Theorem 7.4. Let T be the critical branch-and-bound subtree of size n and depth
h. Let T be the total time for the random destination algorithm to expand T in a p-
node network under FIFO scheduling strategy. The probability that T exceeds k(np +h)

is polynomially small, for suitably chosen k, when n > p2 log p.

Proof. The probability that the signature set R exceeds αT in size is polynomially
small by Lemma 5.1. From the above discussion we can identify a set of 2h + αT
nonoverlapping receive-delays whose aggregate delay is at least T/2. From the result

of Lemma 7.2 this probability is bounded by (1
2 )

cT
p for a suitable constant c. This

quantity is polynomially small in n for n > p2 log p and a suitably chosen k.

8. Conclusions. In this paper we have developed a simple model which captures
some aspects of message-passing systems. The model can be extended in several ways
to include, for example, nonuniformity of routing times and more system buffering
capacity.

We believe that the model is simple enough to carry out further algorithmic
analysis which we expect will shed light on the limitations of bounded resources in
parallel systems.
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Abstract. We consider the problem of on-line call admission and routing on trees and meshes.
Previous work gave randomized on-line algorithms for these problems and proved that they have
optimal (up to constant factors) competitive ratios. However, these algorithms can obtain very
low profit with high probability. We investigate the question of devising for these problems on-line
competitive algorithms that also guarantee a “good” solution with “good” probability.

We give a new family of randomized algorithms with asymptotically optimal competitive ratios
and “good” probability to get a profit close to the expectation. We complement these results by
providing bounds on the probability of any optimally competitive randomized on-line algorithm for
the problems we consider to get a profit close to the expectation. To the best of our knowledge,
this is the first study of the relationship between the tail distribution and the competitive ratio of
randomized on-line benefit algorithms.

Key words. on-line algorithms, competitive analysis, randomized algorithms, call admission
control
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1. Introduction. The area of communication networks gives rise to a large
number of on-line problems. One of the most extensively studied problems in this
area is the problem of on-line assignment of virtual circuits in networks: a sequence
of requests for calls is given on-line to an algorithm which has to select a virtual
circuit between the communicating parties (or reject the request), obeying the network
constraints (such as link capacities). Two kinds of decisions are involved: admission
control, i.e., the choice of whether to accept the call or not, and route selection, i.e.,
the decision on the route of an accepted call. Each call is processed before any future
call is known, while the algorithm has to make both decisions. The basic form of this
problem (when link capacities are 1, and each call requests bandwidth 1) is an on-line
version of the well-known problem of maximizing the number of edge-disjoint paths.

The off-line version of the maximum edge-disjoint path problem is known to be
NP-hard on general networks [13]. The problem is solvable in polynomial time on tree
networks [11] while it is still NP-hard on mesh networks [17]. Kleinberg and Tardos
[16] give an O(1) approximation algorithm for meshes and densely embedded nearly
Eulerian graphs. For general graphs an O(

√
m) approximation is given in [14], where

m is the number of edges in the graph. Recently, an Ω(n1/2−ε) inapproximability lower
bound for the maximum edge-disjoint path problem on general graphs was proved in
[12] (where n is the number of nodes in the graph).
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Algorithms for on-line maximization problems are usually analyzed in terms of
their competitive ratio [20], i.e., the worst case, over all input sequences, of the ratio
between the benefit obtainable by an off-line optimal algorithm (that knows the whole
sequence in advance), and the benefit obtained by the on-line algorithm. It is easy to
see that greedy strategies for the problems we consider here are noncompetitive; hence
more sophisticated strategies are necessary. Awerbuch, Azar, and Plotkin [2] gave a
deterministic on-line algorithm (denoted by AAP in this paper) for the case in which
the bandwidth request of each call is small when compared with the link capacities of
the network. Their algorithm works for any network topology and achieves a benefit
that is at least a logarithmic fraction (in the size of the network) of the optimal
solution. No deterministic algorithm can have an asymptotically better competitive
ratio [2]. However, if calls may request the full bandwidth of links in the network,
Awerbuch, Azar, and Plotkin [2] prove a lower bound of Ω(n) for deterministic on-
line algorithms for a line network, where n is the number of vertices. (Deterministic
algorithms with good competitive ratios are still possible for the maximum edge-
disjoint paths problem on some particular networks like expander graphs [15].)

Therefore randomized on-line algorithms have been considered for these problems.
A randomized on-line algorithm, A, is said to be c-competitive (against an oblivious
adversary [7]) if for any sequence of requests σ, E[A(σ)] ≥ 1

c · OPT (σ), where A(σ)
and OPT (σ) denote the algorithm’s and the optimal benefit over sequence σ, and
the expectation is taken over the random choices of A. Awerbuch et al. [3] proposed
an algorithm with an O(log n)-competitive ratio for trees of n vertices. This result
has been improved to O(logD), where D is the diameter of the tree, by Awerbuch et
al. [4]. Kleinberg and Tardos [16] presented an algorithm with an O(log n)-competitive
ratio for meshes and a class of planar graphs. For all these topologies, matching (up
to constant factors) randomized lower bounds have also been proved. On the other
hand, Bartal, Fiat, and Leonardi [5] proved an Ω(nε) lower bound for randomized
on-line algorithms on a specific network.

However, all the aforementioned algorithms have only the property that their com-
petitive ratio is “good.” They have not been analyzed with respect to their probability
to get a “good” solution, and they only guarantee that for any sequence of requests
the expected benefit is “close” (usually a logarithmic fraction) to the optimum. How-
ever, it may happen that, with high probability, a very poor benefit is achieved (and
the main contribution to the average is given by a high benefit, obtained with low
probability).1 Indeed, algorithms of this kind have been criticized on this basis as not
giving an appropriate solution for the problems they attempt to solve. For instance,
the O(log n)-competitive algorithm of [3] for the maximum edge-disjoint path prob-
lem on trees obtains for some sequences σ, even with OPT (σ) = Ω(n), a benefit of 0
with probability 1 − 1

logn . The O(logD)-competitive algorithm for trees [4] behaves

somewhat better; still unless OPT (σ) = Ω(Dε), the probability of getting any con-
stant fraction of the expectation remains o(1) (as a function of D). As to meshes, the
algorithm of [16] decides with probability 1/2 to accept only “short” calls and with
probability 1/2 to accept only “long” calls. On sequences of calls that are composed
of only one kind of call, the algorithm would obtain benefit 0 with probability at least
1/2.

1Note that using the Markov inequality it is possible to obtain bounds on the probability of
deviating from the expectation for algorithms for on-line minimization (cost) problems as a direct
consequence of the analysis of the competitive ratio. This is not the case for maximization (benefit)
problems.
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In this paper we investigate the question of whether it is possible to obtain compet-
itive randomized on-line algorithms (for the problems at hand) which also guarantee
a “good” solution with “good” probability. Obviously, the probability of achieving
a benefit close to the expectation is related to the quality of the expectation: the
expectation of deterministic algorithms is obtained with probability 1; however, these
algorithms have very poor competitive ratios for the problems we consider.

We formulate the following questions. Our results give answers to most of them
in the context of the on-line maximum edge-disjoint paths problem.

1. Can a randomized on-line algorithm with optimal (up to a constant factor)
competitive ratio guarantee a benefit of a constant fraction of the expectation with
constant probability?

2. Can a randomized on-line algorithm with optimal competitive ratio (up to a
constant factor) achieve a constant fraction of the expected benefit with probability
that tends to 1 (say, as the size of the optimal solution grows)? What is the possible
rate of convergence?

3. What is the interplay between the competitive ratio of a randomized algorithm,
and the concentration of the benefit around its expectation?

1.1. Results of the paper. We address the above questions for the call ad-
mission problem in the basic case of infinite duration, requested bandwidth and link
capacities 1, on the topologies of trees and meshes. Pairs of nodes are given on-
line to an algorithm, which has to accept or reject every call immediately when it
is received. An accepted call has to be assigned a route which is edge-disjoint with
respect to all previously assigned routes. The aim is that of maximizing the number
of accepted calls. This problem is equivalent to the on-line version of the maximum
edge-disjoint paths problem for the above topologies. We present new randomized
algorithms for trees and meshes with asymptotically optimal competitive ratios and
good concentration of the benefit around its expectation.

Our work contains the following results for trees:

1. We present a family of randomized algorithms, parameterized by k ≥ 12, with
competitive ratios of 2k�log 2D�, and with the property that the probability to get
any fixed constant fraction of the expected benefit tends to a constant, as OPT/ logD
tends to infinity. In addition, these algorithms have the property that their probability
to obtain a 1− δ fraction of the expectation, δ ∈ (0, 1], is at least some constant value
1 − P(k, δ) when OPT

logD is a large enough constant. The value of 1 − P(k, δ) is such
that it can be made as close to 1 as desired at the expense of a larger k, i.e., a larger
constant in the competitive ratio.

We also present an O(logD)-competitive algorithm that for any sequence of
calls guarantees some constant fraction of the expected benefit with probability Ω(1)
(equivalently, this algorithm guarantees an O(logD) fraction of the optimal solution
with probability Ω(1)).

2. We show that no optimally competitive algorithm can guarantee a constant
fraction of the expected benefit with “very high” probability, unless the optimal so-
lution is “very high.” (For a formal statement see section 3.)

3. We also show that other algorithms from the family of algorithms with a
slightly worse competitive ratio of O(log1+εD), for arbitrary ε > 0, have the property
to achieve any fixed constant fraction of the expectation with probability that tends
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to 1− 1/Ω(logεD), as OPT
log1+3ε D

tends to infinity.

4. Our family of algorithms for trees is based on a new and simple scheme. We
are also able to derive an algorithm with the best known competitive ratio for the
problem, 6�log 4D�, as opposed to the previously known ratio of 48 log 2D [4]. Finally
we point out that our algorithms, and in fact any algorithm for link capacities 1, can
be made to apply to trees with arbitrary uniform capacities.

5. We also study the problem on meshes and we present an asymptotically optimal
O(log n)-competitive algorithm for meshes that obtains any constant fraction of the
expected benefit with probability that tends to 1, as OPT

log4 n
tends to infinity. This

algorithm is based on some of the ideas of [16] and [6] and on new ideas presented
here.

2. The algorithms for trees. The design of our family of algorithms is based
on a new approach. They are composed of two conceptual steps. In the first step we
apply an on-line deterministic filter to the input sequence. Those calls that are not
filtered out are called candidate calls and may be accepted. The set of the candidate
calls has two important properties: first, its cardinality is a constant fraction of the
cardinality of the largest (optimal) set of calls that can be accepted (by an off-line
adversary). Second, although this set cannot be fully accepted (as some of the calls
intersect), the intersections between the calls of this set exhibit “nice” properties.
When a call passes the deterministic filter and becomes a candidate it is presented
to an on-line randomized selection procedure that determines if the call is actually
accepted. The randomized selection procedures that we use are very simple, and the
various algorithms are distinguished by the randomized selection procedure used.

Before we describe the algorithms, we give some notations: we denote by σ =
(s1, t1), (s2, t2), . . . the sequence of requests. We denote by OPT (σ) and A(σ) the
set of calls accepted by an optimal (off-line) algorithm and by an on-line algorithm
A, respectively, out of the sequence σ. We denote by C(σ) the set of candidate
calls passed on by the deterministic filtering procedure to the randomized selection
procedure. By D we indicate the diameter of the tree. We abuse notation and denote
by OPT (σ), A(σ), and C(σ) also the cardinality of the corresponding sets. We start
now by describing the properties of the deterministic filter that we use.

Theorem 2.1. There exists a deterministic on-line filtering procedure for trees
of diameter D such that for any sequence σ the following properties hold:

• C(σ) ≥ OPT (σ)/6.
• The number of pairs of calls in C(σ) that intersect is at most C(σ) · �log 2D�.

We prove this theorem in section 2.2. We also show in section 2.3 an alternative
filtering procedure which makes use of the AAP algorithm but achieves somewhat
worse performances.

The different algorithms of the family of algorithms are distinguished by the
randomized selection procedure used. We use a single procedure parameterized by
a parameter p (p ≤ 1

2�log 2D� ). Algorithm Ap presents the candidate calls selected

by the deterministic filter, one by one as they are selected to the on-line randomized
selection procedure RSp defined below.

RSp. Any candidate call (s, t) ∈ C becomes a considered call with probability p
and is rejected with probability 1 − p. A considered call is accepted if it does not
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intersect any previous considered call.2

2.1. Analysis of the algorithms.

Theorem 2.2. Algorithm Ap is a 6
p(1−p�log 2D� ) -competitive randomized on-line

algorithm for call admission on trees of diameter D. For any δ ∈ (0, 1], and any

sequence σ, Pr[Ap(σ) < (1 − δ)E[Ap(σ)]] ≤ exp(−OPT (σ)p
48 (δ(1 − p�log 2D� ))2) +

1

1+ 1
2 δ
(

1
p�log 2D�−1

) .
Before proving the theorem we explain its consequences and give some corollaries.

The proof of the first corollary follows from simple calculations.

Corollary 2.3. For any fixed constant k ≥ 12, algorithm Ap with p = 6
k�log 2D�

is a 2k�log 2D�-competitive randomized algorithm for on-line call admission on trees
of diameter D. Let P (k, δ, σ) = 1 − Pr[Ap(σ) < (1 − δ)E[Ap(σ)]]. Then for fixed
k ≥ 12 and fixed δ > 0, P (k, δ, σ) → (1 − P(k, δ)), for = P(k, δ) = 1

1+ 1
2 δ(

k
6−1)

, as

OPT (σ)
logD → ∞. Furthermore, when OPT (σ) ≥ βk logD, for some constant βk, then

P (k, δ, σ) ≥ 1− c for some fixed constant c < 1.3 Note that 1− P(k, δ) is a constant
bounded away from 0, if k ≥ 12, and that it can be made as close to 1 as desired, at
the expense of a larger constant k, i.e., a larger constant in the competitive ratio.

Based on the above corollary we also define a slightly different algorithm, Bp,
that guarantees for any sequence a constant fraction of the expected benefit with
probability Ω(1). This algorithm, with probability 1/2 accepts the first call (and
stops); with probability 1/2 it runs algorithmAp on σ.4 Although Bp may have benefit
only 1 with probability 1/2, it has the desirable property that it achieves an O(logD)
fraction of the optimal solution with constant probability: if OPT (σ) = O(logD),
then Bp will have an O(logD) fraction of the optimal benefit with probability 1/2
(if it takes the first call). If OPT = Ω(logD), then with probability 1/2, Bp runs
Ap, which, for such sequences, achieves an O(logD) fraction of the optimum with
constant probability by Corollary 2.3.

Corollary 2.4. There exists an O(logD)-competitive algorithm for call admis-
sion on trees of diameter D such that for any sequence of calls the benefit obtained is
within some constant fraction of the expectation with constant probability.

We now give another corollary, relative to a family of algorithms that obtain any
fixed constant fraction of the expectation with probability that tends asymptotically
to 1 (as OPT (σ) and D grow) at the expense of a competitive ratio slightly higher
than the optimum.

Corollary 2.5. Algorithm Ap, with p = Θ( 1
log1+ε D

), ε > 0, is an O(log1+εD)-

competitive randomized algorithm for on-line call admission on trees of diameter D.

2The more natural algorithm that immediately rejects a candidate call if it intersects a previous
accepted call, and otherwise accepts the candidate with probability p, performs at least as well.
We leave the description as above for simplicity of the proof. To see that, note that for any given
sequence of random choices, one for each candidate, any candidate accepted by RSp is also accepted
by the more natural algorithm. Since the call is accepted by RSp its corresponding random choice
is “positive,” and it does not intersect any previous considered call (i.e., it does not intersect any
previous candidate with a “positive” random choice). In the more natural algorithm this call cannot
intersect any previously accepted call (as no previous candidate that intersects it had a “positive”
random choice), and its own random choice is “positive.” Hence it is accepted.

3To see that, note that p = Θ(1/(2 log 2D)), and thus, for OPT (σ) ≥ βk logD, and large enough
βk, the absolute value of the expression in the exponent of the first summand is at least a constant,
and the second summand is bounded from above by a constant.

4A more natural algorithm would continue to run Ap after taking the first call in the first case.
However, in the worst case its behavior is no better than the above algorithm.
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For any constant δ ∈ (0, 1], Pr[Ap(σ) < (1 − δ)E[Ap(σ)]] < exp(−δ2 OPT (σ)
Θ(log1+3ε D)

) +
1

Ω(δ logε D) .

Proof of Theorem 2.2. We prove that the expected number of calls accepted by Ap
on a sequence σ is at least C(σ) · p(1− p�log 2D�), where C(σ) is the set of candidate
calls picked from σ. By Theorem 2.1, C(σ) ≥ OPT (σ)/6, and the competitive ratio
follows.

We number the candidate calls by the order that they arrive from 1 to � = C(σ).
If calls i and j intersect we denote this by i∩ j. Let ci, i ≥ 1, be an indicator random
variable which is 1 if and only if the ith candidate is considered. Let C =

∑
i ci. Let

yi,j , for i < j and i∩ j, be an indicator random variable which is 1 if and only if both
calls i and j are considered, and let Y =

∑
i<j,i∩j yi,j . Let rj be an indicator random

variable which is 1 if and only if there is an index i < j, i ∩ j, such that yi,j = 1. Let
R =

∑
j rj . Note that R ≤ Y .

A candidate is accepted if it was considered, but none of its (previously presented)
intersecting candidates was considered. Thus, if candidate j is considered but not
accepted into the on-line solution, then there is a candidate i < j, i ∩ j, that was
considered. That is, cj = 1, and rj = 1. Therefore Ap(σ) = C −R ≥ C − Y , and we
get E[Ap(σ)] ≥ E[C]− E[Y ].

Clearly E[C] = C(σ) · p since each candidate is considered with probability p.
For any pair i < j, i ∩ j, Pr[yi,j = 1] = p2 since the event occurs if and only if
call i and call j are considered. By Theorem 2.1 there are at most C(σ) · �log 2D�
pairs i < j such that i ∩ j. Therefore E[Y ] ≤ C(σ)�log 2D� · p2. We get that
E[Ap(σ)] ≥ E[C]− E[Y ] ≥ C(σ)(p− �log 2D� · p2) = C(σ) · p(1− p�log 2D�).

We now turn to prove the second part of the claim. For δ ∈ (0, 1], since E[C] ≥
E[Y ]

p�log 2D� ≥ E[R]
p�log 2D� , we have

Pr[Ap(σ) < (1− δ)E[Ap(σ)]]
= Pr[(C −R) < (1− δ)E[C −R]]

≤ Pr

[
C < E[C]− 1

2
δE[C −R]

]

+ Pr

[
R > E(R) +

1

2
δE[C −R]

]

≤ Pr

[
C < E[C]− 1

2
δ(1− p�log 2D�)E[C]

]

+ Pr

[
R > E[R] +

1

2
δ

(
1

p�log 2D� − 1

)
E[R]

]

= Pr

[
C <

(
1− 1

2
δ(1− p�log 2D�)

)
· E[C]

]

+ Pr

[
R >

(
1 +

1

2
δ

(
1

p�log 2D� − 1

))
· E[R]

]
.

The variable C =
∑l

j=1 cj is the sum of � = C(σ) random variables cj ∈ {0, 1},
set by independent Bernoulli trials to 1 with equal probability p and to 0 with equal
probability 1−p. We use the following version of Chernoff’s bound (cf. [19]) to bound
the first summand: let µ = E[C] = pC(σ) be the expected value of variable C; then
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for every γ ∈ (0, 1],

Pr[C < (1− γ)µ] < e(−µγ
2/2).

The variable R is the sum of dependent random variables, as for all pairs i, j, i < j,
yi,j depends on the random choice for candidate i. We use the Markov inequality for
the second summand.

Using E[C] ≥ OPT (σ)p
6 , we have

Pr[Ap(σ) < (1− δ)E[Ap(σ)]]

< exp

(
−E[C]

2

(
1

2
δ(1− p�log 2D�)

)2
)

+
1

1 + 1
2δ
(

1
p�log 2D� − 1

)

= exp

(
−C(σ)p

2

(
1

2
δ(1− p�log 2D�)

)2
)

+
1

1 + 1
2δ
(

1
p�log 2D� − 1

)

≤ exp

(
−OPT (σ)p

12

(
1

2
δ(1− p�log 2D�)

)2
)

+
1

1 + 1
2δ
(

1
p�log 2D� − 1

) .

2.2. The deterministic filter. When call (s, t) is presented to the algorithm,
it is first passed through the deterministic filter, where it is discarded or becomes a
candidate. We describe in the following a deterministic filter appropriately designed
for trees.

First we designate an arbitrary internal vertex as the root of the tree and denote
it by r. Without loss of generality we can restrict our attention to calls between
two leaves of the tree. This is shown by constructing a new instance of the problem
where all the calls are between leaf vertices of the tree, such that any solution to the
new instance can be transformed back to a solution of the original instance, with the
same size. The tree network of the new instance is obtained by adding to the original
tree, for every internal vertex v and every edge e adjacent to v, a new leaf vertex
ve connected to v. For a call (s, t) of sequence σ, let es, et be the first and the last
edges of the path connecting s to t. A new sequence σ′ is obtained by transforming
every call (s, t) into a call (ses , tet). It is easy to show that any subset of calls of
σ can be accepted as a solution in the original tree if and only if the corresponding
subset of calls of σ′ can be accepted as a solution in the new tree. We note that this
construction does not change the diameter of the tree.

We denote by lca(s, t) the least common ancestor of vertices s and t in the tree
rooted at r and by p(u) the parent of vertex u in that tree. Path path(s, t) is the set
of edges in the path connecting s to t. Finally, T is the set of all edges of the tree.

Calls will be discarded on the basis of two tests. To perform the first test we block
two edges when a call becomes a candidate: for any candidate (s′, t′) the two edges on
path(s′, t′) adjacent to lca(s′, t′) are blocked. The edges are said to be blocked edges.

For the purpose of the second test we associate a weight function w(e) to each
edge of the tree. The value w(e) is determined as follows:
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1. Initially, assign w(e) = 1 for all edges e ∈ T .
2. Double w(e) whenever edge e is included in a path(s′, t′) for a call (s′, t′) that

becomes a candidate.
On the basis of the value of the weight function we give the following definition.

Definition. For two vertices u and v, path(u, v) is a segment at a certain time in
the run of the algorithm if at this time, for some nonempty subset of the current can-
didates, denoted by C′, path(u, v) is the maximal path contained in

⋂
(s,t)∈C′ path(s, t)

such that no edge of the path is included in a candidate call not in C′. We denote a
segment, and its set of edges, by seg(u, v).

Note that for two vertices u and v, path(u, v) may at times be a segment but later
cease to be a segment. Further note that the edges of a segment may increase their
weight over time, but when they form a segment they have equal weight. We thus
sometimes refer to the weight of the segment being the weight of each of its edges.
In what follows we will count the number of segments (of weight w > 2) ever created
during the run of the algorithm. We identify a segment by its two endpoints. Thus,
the first time that path(u, v) becomes a segment, it is counted as one. If the weights
of its edges increase, and it continues to be a segment, we do not count it again.

As an example, the set of segments defined by a set of candidate calls is shown
in Figure 2.1.

2

2

2

2

2
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2
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3t

2

4

8

s2

Fig. 2.1. The segments created by the three candidate calls (s1, t1), (s2, t2), (s3, t3) are marked
with dashed lines. The weight of each segment is indicated next to the dashed line.

As mentioned above the filter is based on two tests:
Test 1. Discard call (s, t) if path(s, t) contains a blocked edge.
If call (s, t) is not discarded by the first test, then it is submitted to the second

test.
Test 2. Discard a call (s, t) if at the time the call is presented, there exists

a segment seg(u, v) of weight w such that |path(lca(s, t), s) ∩ seg(u, v)| ≥ 2D
w or

|path(lca(s, t), t) ∩ seg(u, v)| ≥ 2D
w .

A call that is not discarded by any of these test becomes a candidate.
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Definition. For a sequence of calls σ, denote by C(σ) the set of candidates
produced by the deterministic filter out of sequence σ. Denote by C1(σ) those calls that
are discarded by Test 1 and by C2(σ) those calls that are discarded by Test 2. When
the sequence σ is clear from the context, we sometimes use the notations C, C1, C2. We
also sometimes abuse notation and use C, C1, C2 for the cardinality of the corresponding
sets.

We prove below that the number of candidates C(σ), i.e., those calls that are not
discarded by any of the two tests, is at least OPT (σ)/6. In the following we will often
say that edge e is included in a call (s, t) if e ∈ path(s, t). We give some claims and
lemmas as intermediate steps.

Claim 2.6. A call (s, t) in C ∪ C2 intersects a previous candidate (s′, t′) only if
(s′, t′) includes edge (lca(s, t), p(lca(s, t))).

Proof. If there is a previous candidate (s′, t′) that does not include edge (lca(s, t),
p(lca(s, t))) but intersects call (s, t), then lca(s′, t′) is in the subtree rooted at (lca(s, t)).
Then (s, t) intersects (s′, t′) in one of the two blocked edges of (s′, t′), a contradiction
to Test 1.

Claim 2.7. If the edges of a segment seg(u, v) have weight w > 2, then either u
is an ancestor of v or v is an ancestor of u.

Proof. If w > 2, then the edges of the segment are included in more than one
candidate call. Let (s, t) be the first such candidate call. If neither u is an ancestor
of v nor v is an ancestor of u, then lca(s, t) is internal to seg(u, v). Two edges of
seg(u, v) would have been blocked when (s, t) became a candidate. The two blocked
edges would also be part of any later call (s′, t′) that contains seg(u, v), and (s′, t′)
would not become a candidate, a contradiction.

Lemma 2.8. Let (s, t) be a call in C∪C2 (i.e., a call that passes Test 1). Consider
the intersection of path(lca(s, t), s) (resp., path(lca(s, t), t)) with the set of calls that
are candidate calls prior to the presentation of (s, t) and assume that this intersection
is not empty. Then, there exists a sequence of nodes v0, . . . , v�, � ≥ 1, such that the
following hold:

1. v0 = lca(s, t); v� is either equal to s (resp., t) or on path(lca(s, t), s) (resp.,
path(lca(s, t), t)); and the intersection of path(lca(s, t), s) (resp., path(lca(s, t), t))
with the set of previous candidate calls is path(v0, v�).

2. For 0 ≤ i ≤ � − 1, all edges between vi and vi+1 have the same weight, which
we denote Wi.

3. For 0 < i ≤ �− 1, Wi < Wi−1.

4. For 0 ≤ i ≤ � − 1, there is a set of candidates Ci such that for any edge e in
path(vi, vi+1), the set of calls that use e is exactly Ci.

5. For 0 < i < �− 1, path(vi, vi+1) is a segment.

Proof. We prove the claim for the path from lca(s, t) to s. An analogous proof
holds for the path from lca(s, t) to t.

Consider the time when call (s, t) is presented before it becomes a candidate.
First consider an edge e on path(lca(s, t), s). If there is a previous candidate call that
uses this edge, then this candidate call also uses edge (lca(s, t), p(lca(s, t)) by Claim
2.6. It follows that for any edge e on path(lca(s, t), s), if edge e is used by a previous
candidate, then all edges between e and lca(s, t) are used by this candidate. Let e be
the edge on path(lca(s, t), s) which is furthest away from lca(s, t) and is included in
a previous candidate call. Let the node adjacent to e and further away from lca(s, t)
be node v�, and let v0 be lca(s, t). This proves point 1.

Since for any edge e, any previous candidate that uses edge e also uses all edges
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between edge e and lca(s, t) (by Claim 2.6), it follows that going from lca(s, t) to s,
the weight of the edges is nonincreasing. If there is a decrease in the weight of the
edges, we assign the point of decrease as one of the nodes vi. We thus get a sequence
of nodes vi that satisfy points 2 and 3.

For 0 ≤ i ≤ � − 1, now consider path(vi, vi+1). We claim that there is a set of
candidates Ci such that all edges on path(vi, vi+1) are used by exactly the calls in Ci.
Consider two edges e and e′ on this path, where e′ is further away from lca(s, t) than
e. Any candidate that uses e′ also uses e, following Claim 2.6. On the other hand,
if there were a candidate that uses e, but not e′, then the weights of e and e′ would
have been different. We thus establish point 4.

We further claim that for 0 < i < � − 1, path(vi, vi+1) is the maximal path of
edges that are used by exactly the calls in Ci. For edges on path(lca(s, t), s), any edge
which is not on path(vi, vi+1) has weight not equal to Wi and thus cannot be used by
exactly the calls in Ci. Furthermore, observe that there is at least one call in Ci that
uses also the edge leading from vi+1 towards s and must also reach lca(s, t) (by Claim
2.6). Thus no edge outside of path(lca(s, t), s) can possibly be used by the calls in Ci.
It follows from the definition of a segment that path(vi, vi+1) is a segment satisfying
point 5.

The number of calls that are discarded by Test 2, while accepted in the optimal
solution, will be proved to be related to the number of segments of weight bigger than
2 ever created. We prove the following upper bound on the number of such segments.

Lemma 2.9. Consider a run of the algorithm on a sequence of calls σ. The
number of segments ever created, and which at some point in time have weight bigger
than 2, is at most 4C(σ).

Proof. Note that when a call is presented but does not become a candidate, there
is no change in the segments in the tree. Therefore, we consider events when a new
call becomes a candidate. To prove the lemma we give an upper bound on the number
of segments that at such event either are created with weight bigger than 2 or reach a
weight bigger than 2 (without changing their endpoints). We show that the number
of such segments is at most 4 per such event.

Let (s, t) be a call that becomes a candidate. If it does not intersect any previous
candidate, then no new segments of weight bigger than 2 are created. We therefore
assume that call (s, t) intersects at least one previous candidate. We distinguish
between two cases. The first one is when all the intersections of (s, t) with previous
candidates are either on path(lca(s, t), s) or on path(lca(s, t), t). The second case is
when there are such intersections on both path(lca(s, t), s) and path(lca(s, t), t).

We now consider the first case (without loss of generality assume that all intersec-
tions are on path(lca(s, t), s)). We use the sequence of nodes vi, 0 ≤ i ≤ �, guaranteed
by Lemma 2.8. A new segment of weight bigger than 2 can be created either by the
augmentation of the weight of edges of weight 2, or by the augmentation of the weight
of edges of weight already bigger than 2, but while creating new endpoints for the
segments (this may create more than one new segment).

If prior to (s, t) becoming a candidate there is a segment of weight bigger than 2
that includes (lca(s, t), p(lca(s, t)) and the edge e that leads from lca(s, t) towards s,
then two new segments of weight bigger than 2 are created with a new endpoint at
lca(s, t). One of these two segments is path(v0, v1). See Figure 2.2.

Further distinguish the case where v� is inside a segment from the case where v�
is not inside a segment.

If v� is inside a segment (see Figure 2.3), two new segments are created, both
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lca(s,t)

p(lca(s,t))

s

t

Fig. 2.2. Two new segments are created with endpoint lca(s, t).
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s

lca(s,t)

p(lca(s,t))

t

Fig. 2.3. Vertex v� is inside a segment.

with an endpoint at v�. If the weight of the segment was already bigger than 2, then
two new segments of weight bigger than 2 are created. In this case all the segments
seg(vj−1, vj), 1 < j < �, are already of weight bigger than 2; their weight will increase,
but since their endpoints do not change there are no new segments here. If the weight
of the segment was 2, then only one segment of weight bigger than 2 is created (while
the other one is a segment of weight 2 with new endpoints). Whatever the weight of
this segment was, all the segments seg(vj−1, vj), 1 < j < �, have weight bigger than
2 (by Lemma 2.8); their weight will increase, but since their endpoints do not change
no new segments of weight bigger than 2 are created here. Altogether we get at most
four new segments of weight bigger than 2.

For the case where v� is not inside a segment (see Figure 2.4), observe that the
weights of the edges on path(v�−1, v�) are doubled, thus possibly creating one new
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p(lca(s,t))
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s

l
v

t

Fig. 2.4. Vertex v� is not inside a segment.

segment of weight bigger than 2 (which is seg(v�−1, v�)), if the weight of this segment
was not bigger than 2 beforehand. Altogether we get for this case at most three new
segments of weight bigger than 2.

We note that a new segment of weight 2 may be created as seg(v�, s) if v� �= s.

Now consider the second case where (s, t) intersects previous candidates on both
path(lca(s, t), s) and path(lca(s, t), t). Consider the two edges e1, and e2, adjacent
to lca(s, t) and leading to s and t, respectively. Since by Claim 2.6 any previous
candidate call that intersects (s, t) also uses the edge between lca(s, t) and p(lca(s, t)),
it follows that there are two candidate calls p1 and p2 such that p1 uses e1 and
(lca(s, t), p(lca(s, t)), and p2 uses e2 and (lca(s, t), p(lca(s, t)). It follows that prior to
(s, t) becoming a candidate, (lca(s, t), p(lca(s, t)) and e1 (resp., e2) cannot be in the
same segment. We now use the sequence of nodes vi guaranteed by Lemma 2.8 for
each of path(lca(s, t), s) and path(lca(s, t), t). From the above argument it follows that
the two paths path(v0, v1) (on the two paths path(lca(s, t), s) and path(lca(s, t), t))
are segments. No new segment will be created with a low endpoint at lca(s, t) when
(s, t) becomes a candidate. We therefore now consider separately path(lca(s, t), s) and
path(lca(s, t), t). We consider in what follows path(lca(s, t), s). Analogous arguments
hold for path(lca(s, t), t).

As argued above, prior to (s, t) becoming a candidate, path(v0, v1) is a segment,
seg(v0, v1). When (s, t) becomes a candidate, the weight of this segment doubles.

If prior to (s, t) becoming a candidate the weight of seg(v0, v1) was already bigger
than 2, then there is no new segment at the top of path(lca(s, t), s). Using the same
arguments as in the case where all intersections are on path(lca(s, t), s) (and not also
on path(lca(s, t), t)) it follows that there are at most 1 or at most 2 new segments of
weight bigger than 2 on path(lca(s, t), s), depending on whether or not v� equals s.

If prior to (s, t) becoming a candidate the weight of seg(v0, v1) was 2, then when
the (s, t) becomes a candidate this segment becomes a new segment with weight bigger
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than 2. However, it also follows that v1 must equal v�, as there is only one previous
candidate on path(lca(s, t), s). No additional new segment of weight bigger than 2
will be created on path(lca(s, t), s). (Note that a new segment of weight 2 may be
created if v� �= s.)

We can conclude that on any of path(lca(s, t), s) and path(lca(s, t), t) at most two
new segments of weight bigger than 2 can be created. Altogether at most four new
segments of weight bigger than 2 are created when (s, t) becomes a candidate.

We now prove that the number of calls not discarded (i.e., the number of calls
that become candidates) is a good fraction of size of the optimal solution.

Lemma 2.10. For any sequence of calls σ, the number of candidate calls C(σ)
has the property that C(σ) ≥ OPT (σ)

6 .

Proof. Since σ = C ∪ C1 ∪ C2, we prove that the optimal solution accepts at most
2C calls from C ∪ C1 and at most 4C calls from C2.

First consider the calls from C ∪ C1 accepted in the optimal solution. Any call of
C ∪ C1 includes at least one blocked edge. Since there are at most 2C blocked edges
in the tree, any solution can accept at most 2C calls from C ∪ C1.

We now consider the calls from C2 accepted in the optimal solution. Consider
a call (s, t) ∈ C2. It includes, when presented, at least 2D

w edges of some segment
seg(u′, v′) of weight w > 2 either on path(lca(s, t), s) or on path(lca(s, t), t). (Observe
that no call is discarded because of a segment of weight 2 since path(lca(s, t), s) and
path(lca(s, t), t)) are of size at most D − 1.) For the sake of analysis, we assign call
(s, t) to a single such segment, seg(u′, v′).

We now show that the length of seg(u′, v′) is less than 4D
w . By definition, the

edges of segment seg(u′, v′) are included in the intersection of a set C′ of candidate
calls. Let (s′, t′) be the call of C′ presented last, and let C′′ = C′ \ {(s′, t′)}. Set C′′
defines a segment seg(u′′, v′′) at the time call (s′, t′) is presented, and this segment
includes segment seg(u′, v′). To see that, observe that path(u′, v′) is included in the
intersection of the calls in C′′ and that at the above time no other candidate includes
any edge of path(u′, v′). We know that the weight of this segment at the time call
(s′, t′) is presented is w

2 (since when (s′, t′) becomes a candidate it doubles the weights
to w). Since call (s′, t′) becomes a candidate it passes Test 2, and we can conclude that
its intersection with seg(u′′, v′′), on either path(lca(s′, t′), s′) or path(lca(s′, t′), t′), is
of length less than 4D

w . However, by Claim 2.7, either u′ is an ancestor of v′ or vice
versa, as w > 2, and path(u′, v′) is included in call (s′, t′), as seg(u′, v′) is defined
by C′. Therefore all of path(u′, v′) is included in this intersection. If follows that the
length of segment seg(u′, v′) is less than 4D

w .

It now follows that if we consider the calls of the optimal solution, at most one
call can be assigned to each segment of weight bigger than 2 in the way we described.
This is because any assigned call uses more than half the edges of the segment it is
assigned to, and thus any two would intersect. By Lemma 2.9, at most 4C segments
of weight bigger than 2 are ever created while the algorithm processes the sequence.
We conclude that at most 4C calls of C2 can be in the optimal solution.

Lemma 2.11. Every candidate call intersects at most �log 2D� previous candi-
dates.

Proof. By Claim 2.6, for any candidate (s, t), all the previous intersecting candi-
dates include edge (lca(s, t), p(lca(s, t))). Their number is at most �log 2D�, since once
an edge is included in �log 2D� candidates, it has weight of at least 2D.
No call can become a candidate if it includes an edge of weight 2D, as it will fail
Test 2.
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Proof of Theorem 2.1. The first part of the theorem is proved in Lemma 2.10.
For the second part, by Lemma 2.11 every candidate call of C(σ) intersects at most
�log 2D� previous candidates. The number of intersecting pairs is thus at most C(σ) ·
�log 2D�.

2.3. An alternative deterministic filter. In this section we describe an al-
ternative design of the deterministic filter at the cost of having a somewhat worse
performance. This filter uses the AAP (deterministic) call control algorithm [2], orig-
inally designed for general networks of high capacity. The test runs the AAP algorithm
on the tree, assuming link capacities of log 4D. A call that is accepted by the AAP
algorithm becomes a candidate, while a call that is rejected by AAP is also rejected
by the filter. This filter relies on the following property: if the capacity is increased in
that way, then the set of calls accepted by AAP is a constant fraction of the optimal
set accepted by an adversary that has only capacity 1. (A similar result is also de-
rived in [18] if the capacity is increased by a factor of Ω(logn).) On the other hand,
since the capacity of each link is bounded, the number of intersections between the
candidate calls is small.

In Appendix A we give for completeness the AAP algorithm for this specific
setting and prove the following claim.

Theorem 2.12. If for every e ∈ E the AAP algorithm has capacity u(e) = log 4D
while the adversary has capacity u(e) = 1, then the AAP algorithm has competitive
ratio 5.

Based on the above theorem we can now give the properties of the filter.

Lemma 2.13. The above filter based on the AAP algorithm, applied to trees of
diameter D, achieves the following for any sequence σ: (1) C(σ) ≥ OPT (σ)/5; (2)
The number of pairs of calls in C(σ) that intersect is at most C(σ) · 2�log 2D�.

Proof. The first part of the claim follows from Theorem 2.12. For the second
part of the claim we consider an intersection graph of paths on a tree.5 Our claim
follows from the fact that if each edge in the tree is included in at most g of these
paths, then the intersection graph is a (2(g − 1))-inductive graph (see [6]).6 Since
the capacity used by the AAP algorithm is log 4D, any edge is used by at most
log 4D calls. Therefore the intersection graph of the candidate calls is a 2(log 4D−1)-
inductive graph, which implies that the total number of edges in this graph is at most
C(σ) · 2(log 4D − 1) = C(σ) · 2 log 2D. This is a bound on the number of pairs of
candidates that intersect.

The randomized selection procedure used in conjunction with this filter is the
same as for our first filter. The results stated in Theorem 2.2 are proved in a similar
way with necessary modifications in the constants.

3. A bound on the probability to achieve a “good” solution. We have
presented O(logD)-competitive algorithms for call admission on trees that for any
sequence σ, with OPT (σ) = Ω(logD), achieve any constant fraction of the expected
benefit with at least constant probability. The probability tends to some constant
as OPT (σ) tends to infinity. The obvious question is then if the rate of convergence
and the limit probability can be improved for O(logD)-competitive algorithms and
in particular if the limit can be 1.

5The intersection graph has a node for each one of the paths. There is an edge between two
nodes in the intersection graph if and only if the corresponding two paths intersect.

6A d-inductive graph is a graph G = (V,E) for which there is an ordering of the vertices such
that for any i, |{j : i < j, (i, j) ∈ E}| ≤ d.
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In this section we give a partial answer to this question. We show that for any
algorithm with an O(logD)-competitive ratio, there is a sequence σ with OPT (σ) =
Θ(D1−c), for any 0 < c < 1/2, for which with probability Ω(c), the on-line benefit is
o(OPT (σ)/ logD) (in fact the on-line benefit is only a n−ε fraction of the expectation
for some constant ε > 0).

We give our lower bound on a line network of n + 1 vertices, with n = 2s, for
some s. Observe that on such a line network we have D = n. Given a randomized
k log n-competitive algorithm for the line, we present a sequence of requests formed by
l = �α · log n�+1 (α < 1/2) phases, plus a final extra phase. At phase i, 0 ≤ i ≤ l, 2i

pairwise disjoint calls of size n
2i are presented. These are calls ((j− 1) n2i +1, j n

2i +1),
1 ≤ j ≤ 2i. Thus, during phase l, 2l calls of size n/2l are presented. We will prove that
for any k log n-competitive algorithm, at least one of these calls has the property that
with probability at least α

4k all its edges are occupied by the time phase l ends. Then,
we present n/2l disjoint calls of length 1 on these edges. The optimal solution is of
size n/2l ≥ n/2α logn = n1−α, while with probability at least α

4k the on-line algorithm
can achieve a benefit of at most 2l ≤ 2α logn = nα. We get that the algorithm cannot
be close (by any constant fraction) to its expectation with probability 1− o(1) (as a
function of D), even when the size of the optimal solution is Ω(n1−c).

We now turn to prove our claim. Let pim be the absolute probability that the mth
call of phase i is accepted. We denote by P l

m the sum of the absolute probabilities
of acceptance of all the calls that include call m of level l, plus the probability that
this call itself is accepted. We will show that for any k log n-competitive randomized

algorithm,
∑2l

m=1 P
l
m ≥ 2l · α

4k . Therefore, there is at least one call m′ such that
P l
m′ ≥ α

4k , from which our claim follows.
We have

2l∑
m=1

P l
m =

l∑
i=0

2l−i




2i∑
m=1

pim




≥
l∑

i=0

2l
1

2

l∑
j=i

2−j




2i∑
m=1

pim




= 2l−1
l∑

j=0

2−j
j∑

i=0




2i∑
m=1

pim


 .

The first equation follows since the absolute probability pim of accepting call m of
phase i is summed up for the 2l−i included calls of level l. Now, observe that∑j

i=0(
∑2i

m=1 p
i
m) is the algorithm’s expected benefit after the calls of phase j have

been presented.

We continue with 2−j
∑j

i=0(
∑2i

m=1 p
i
m) ≥ 1

k log n , since the algorithm is k log n-

competitive, and the optimal solution can accept 2j calls after phase j. We get

2l∑
m=1

P l
m ≥ 2l−1 l + 1

k log n
> 2l · α

4k

(for large enough n), which proves our claim. We can conclude the following theorem.
Theorem 3.1. For any k log n-competitive algorithm for call admission on the

line of n nodes, and any constant probability p (p < 1
8k ), there is a sequence σ with
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OPT (σ) = n1−O(p) such that with probability at least p, the algorithm does not achieve
any constant fraction of the expected benefit.

4. Further extensions for trees. In this section we show that a better com-
petitive ratio can be obtained at the expense of a larger deviation. We obtain a
competitive ratio of 6�log 4D� which improves upon the previously known bound of
48 log 2D [4]. We also consider extensions of our algorithms to trees with edges of any
uniform capacity and point out that any algorithm for call admission on trees can be
converted to apply to uniform-capacity trees with almost the same competitive ratio.

First, we give an algorithm with a competitive ratio of 6�log 4D�. This is done
at the expense of a larger deviation from the expectation. To obtain the improved
competitive ratio we use our general framework, with the first version of the deter-
ministic filter (section 2.2), but a different randomized selection procedure. We now
use a variation of the “classify and randomly select” technique [3]: we use a set of
�log 4D� colors and define an arbitrary order on them. We first choose uniformly at
random one color among these colors, and we denote it A. When a new candidate
call is presented to the randomized selection procedure, we assign to it the first color
(according to the defined order) that was not assigned to any of the previous candi-
dates that intersect the present one (i.e., we color the candidate calls with a proper
coloring in their intersection graph). By Lemma 2.11, �log 4D� colors are sufficient,
since each candidate intersects at most �log 2D� previous candidates. The algorithm
will now accept those candidates that are assigned the color A. Since the above col-
oring procedure classifies the candidate calls into �log 4D� disjoint classes, each class
fully acceptable, we obtain the following theorem.

Theorem 4.1. There exists a 6�log 4D�-competitive randomized algorithm for
call admission on trees of diameter D.

Proof. We partition C into a set of �log 4D� disjoint classes. Class Ci, i =
1, . . . , �log 4D�, contains all the candidates which are assigned color i. All the candi-
dates of a class can be accepted together in a solution since they are nonintersecting.
The algorithm accepts a set of calls A that corresponds to the randomly selected class.
The expected size of the on-line solution is E(A) ≥ 1

�log 4D�
∑

i=1 Ci = 1
�log 4D�C ≥

OPT
6�log 4D� , since, by Lemma 2.10, C ≥ OPT

6 .

We also point out that our algorithms also apply to trees with any uniform ca-
pacity. In fact, any c-competitive algorithm for call admission on trees of capacity 1

can be converted into a 2 e1/c

e1/c−1
≤ (2(c+1))-competitive algorithm for call admission

on trees with arbitrary uniform capacity. Given any c-competitive algorithm for the
capacity-1 case, we run a “first fit”-based technique [1] that uses k copies of the orig-
inal algorithm on k copies of the tree but each with capacity 1. If the call is accepted
by any of the algorithms we accept it into the actual k-capacity tree. Using [1, 9]

we get for this case that we have a e1/c

e1/c−1
-competitive algorithm with respect to an

adversary that uses k distinct, capacity-1 trees. Since this adversary is only a 1/2
fraction away from the original adversary that has a single tree of uniform capacity k

(cf. [4]), we obtain a 2 e1/c

e1/c−1
≤ (2(c+ 1))-competitive algorithm for the problem.

5. Routing on meshes with high probability. In this section we propose a
randomized algorithm for the on-line maximum edge-disjoint paths problem on meshes
that has a logarithmic competitive ratio. The algorithm achieves the best possible
competitive ratio up to a constant multiplicative factor and a benefit close to the
expectation with high probability on any sequence of a large class of input instances.
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Kleinberg and Tardos [16] presented the first O(log n)-competitive algorithm (de-
noted KT in the following) for the on-line maximum edge-disjoint paths problem on
meshes. They partition the input sequence into two classes: short calls and long calls.
Define the distance between two vertices of the mesh as the number of edges on a
shortest path connecting the two vertices. According to the partitioning of KT, every
call with endpoints at distance bigger than a given value d = Θ(logn) is a long call.
KT decides with equal probability to accept only long calls or only short calls. KT
has thus the drawback of obtaining benefit 0 with probability at least 1/2 on any
input sequence containing only calls with endpoints at distance bigger than d (or only
calls with endpoints at distance at most d).

We propose an algorithm with a logarithmic competitive ratio that achieves a
constant fraction of its expected benefit with probability tending to 1 as the size of
the optimal solution grows. Our algorithm for meshes is composed of a randomized
stage followed by a deterministic stage. The first stage of the algorithm is a randomized
filter that selects a subset C of candidate calls out of the input sequence σ. Calls of
σ \ C are discarded to make space for the routing of candidate calls. The calls in C
form a new input sequence for the second stage of the algorithm, which is a completely
deterministic procedure. The subset of C accepted by the second stage is the set of
calls finally accepted by the algorithm. Our algorithm uses a routing strategy different
from that of KT. Some of its ideas are borrowed from the algorithm of Bartal and
Leonardi [6] for on-line path coloring on meshes [6] .

Let us denote by ON(T ) and OPT (T ) the subsets, of some sequence T , that are
accepted (out of T ) by our on-line algorithm and by the optimal solution, respectively,
and their cardinalities.

We prove (see Lemma 5.2) that E(OPT (C)) is at least a constant fraction of
OPT (σ) and that OPT (C) is within a constant fraction of E(OPT (C)) with probabil-
ity tending to 1 as the optimal solution grows. We present the deterministic procedure
in section 5.2. We denote by OND(T ) the set of calls accepted by the deterministic
procedure, out of some sequence T , and its cardinality. We prove (see Lemma 5.8)
that for any sequence of candidates C, OPT (C) = O(log n)OND(C). Combining the
two statements (for the randomized filter and for the deterministic procedure), we
conclude with the following theorem.

Theorem 5.1. There exists an O(log n)-competitive algorithm for call control
on the n × n mesh such that for any δ ∈ (0, 1] and any sequence σ, Pr[ON(σ) ≥
(1− δ)E(ON(σ))] ≥ 1− 2 exp(− δ2OPT (σ)

O(log4 n)
).

Our algorithm thus has asymptotically optimal O(log n)-competitive ratio and it

is close to the expectation with probability tending to 1 as OPT (σ)
log4 n

tends to infinity.

5.1. The randomized filter. The n×n two dimensional mesh G is partitioned
into a set of disjoint squares. Let B = �log n�. We assume n large enough such that
B ≥ 16. Let L = �γ log n� for γ = 13. Let s = �nL�, and let s1 = n mod L = n− s ·L.
We partition the mesh into s× s submeshes of logarithmic size. The partition of the
mesh is obtained by segmenting each of its sides into s − s1 contiguous segments of
size L and then s1 segments of size L+1. Note that with the above assumption on B
this segmentation is always attainable, and that s1 can be 0, in which case each side
is segmented into s segments of size L. Every submesh is called a square, even if the
size of its two sides differs by 1.

The first ring in a square S consists of all nodes of S that either are incident to
a node outside of S or are on the border of the mesh. Recursively, the ith ring of S
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for i > 1 consists of all nodes of S that are incident to a node of ring i− 1 of S. Each
ring, except the innermost, forms a rectangle of nodes. The first ring of a square is
also called the border of the square. Denote by Sv the square containing vertex v.

In any square S we define three regions S1, S2, and S3. Region S1 consists of
rings 1 to 2B, region S2 consists of rings 2B + 1 to 4B, and region S3 is formed by
rings 4B + 1 to 6B. The remaining part of S is called the central region of S (see
Figure 5.1). The central region is a rectangle with sides of size at least B.

S

S

S

1

2

3

Fig. 5.1. The routing of a long call.

The randomized filter makes the following random choice before starting the pro-
cessing of the sequence.

For every square S choose one of the regions S1, S2, S3 with equal probability.
The region that has been chosen for square S is called the selected region of S.
Every call (s, t) ∈ σ, when presented, is submitted to the following test:
Add call (s, t) to C if s is not in the selected region of Ss and t is not in the

selected region of St, otherwise discard (s, t).
As a result of this filtering procedure, no call (s, t) of C has an endpoint in the

selected region of a square. The selected region will be used later to route calls through
the square without blocking calls with endpoints inside the square.

Lemma 5.2. For any input sequence σ, E(OPT (C)) ≥ 1
3OPT (σ). For any

constant δ ∈ (0, 1], for any sequence σ, Pr[OPT (C) ≥ (1 − δ)E(OPT (C))] ≥ 1 −
2 exp(− OPT (σ)δ2

82(
γ logn�)4 ).
Proof. For the first part of the lemma we prove that every call (s, t) of OPT (σ) is

part of set C with probability at least 1/3. A call (s, t) becomes a candidate if both s
and t are not in the selected region of Ss and St. We distinguish between (i) calls with
both endpoints in the same square and (ii) calls with endpoints in different squares.

(i) Ss = St. If s and t are in the same region of Ss, then this region is not selected
with probability 2/3. If s and t are in different regions, the probability that the region
not containing s and t is selected is 1/3. The claim then follows.

(ii) Ss �= St. Vertex s (resp., t) is outside the selected region of Ss (resp., St)
with probability 2/3. The probability that both s and t are outside a selected region
is then at least 4/9. The first part of the claim is thus proved.

For the second part of the claim we use the “independent bounded differences
inequality” in the formulation proposed by Maurey.

Lemma 5.3 (see [10]). Let X1, . . . , Xm be independent random variables with
Xk taking values in a set Ak for each k. Suppose that the (measurable) function
f :
∏m

k=1 Ak → � satisfies |f(x) − f(x′)| ≤ ck, whenever the vectors x and x′ differ
only in the kth coordinate, for some constant ck. Let Y be the random variable
f(X1, . . . , Xm). Then, for any t > 0,

Pr[|Y − E(Y )| ≥ t] ≤ 2 exp

( −2t2∑
k c

2
k

)
.
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In our problem we consider m = s2 = (�nL�)2 independent random variables
X1, . . . , Xm to indicate the selected region for every square. Every random variable
assumes one of three values with equal probability. For the function f(x), we will
use the function |OPT (σ)∩C(x)|, where x ranges over all the possible assignments of
x = (X1, . . . , Xm). Note that |OPT (C(x))| ≥ |OPT (σ)∩C(x)|. A different assignment
of variable Xk results in a maximum absolute variation ck for f(x), where ck is equal
to the number of calls of OPT (σ) with an endpoint in the kth square. For a square
that does not contain any endpoint of a call of the optimal solution, we have ck = 0.

Let K be the set of squares that contain the endpoint of at least one call of the
optimal solution. We also denote by K the cardinality of the set K. Every square
contains at most 2(L+1)2 edges. This is clearly a bound on the number of calls with
both endpoints in the same square that can be accepted in a solution. The number of
calls with only one endpoint in a square that can be accepted in a solution is bounded
by the the number of edges that have one endpoint in the square and one endpoint
outside of it, i.e., 4(L+ 1). Altogether, ck ≤ 3(L+ 1)2 (using that L is large enough)
for any square k ∈ K.

We have µ = Ex(OPT (σ) ∩ C(x)) ≥ 1
3OPT (σ), and clearly OPT (σ) ≥ K/2.

From the bounded differences inequality of Lemma 5.3 it follows that

Pr[|OPT (σ) ∩ C(x)| < δµ] < 2 exp

(−2(δµ)2∑
k c

2
k

)

≤ 2 exp

(
−2(δOPT (σ)

3 )2

K · 9(L+ 1)4

)
≤ 2 exp

(−δ2OPT (σ)

81(L+ 1)4

)

≤ 2 exp

(−δ2OPT (σ)

82L4

)
≤ 2 exp

( −δ2OPT (σ)

82(�γ log n�)4
)
,

from which the claim follows.

5.2. The deterministic procedure for meshes. The deterministic procedure
receives as input the set of candidate calls C accepted by the randomized filter in the
order they appear in the input sequence σ.

We follow KT and partition the set of calls into the set of long and the set of
short calls. A call (s, t) is a short call if both s and t are in the same square and a
long call if s and t are in different squares. Set C is partitioned into the set of long
calls L = {(s, t) ∈ C : Ss �= St} and the set of short calls S = {(s, t) ∈ C : Ss = St}.
Long and short calls are dealt with differently by the algorithm. However, as opposed
to KT, we will accept both long calls and short calls at the same time.

The selected region of every square is dedicated to the routing of long calls through
the square. For every square S, we number the columns from left to right and the
rows from top to bottom. The routes assigned to long calls will traverse the border
between two adjacent squares only on columns or rows in the interval 6B+1, . . . , 7B.
A crossbar row (column) of square S is defined as a path on a row (column) in the
interval 6B +1, . . . , 7B connecting the central region of S to the closest vertex of the
border of S. For every square S and two rings a and b, with ring a of index higher
than ring b, define a straight-line extension of ring a as a path from a corner of ring
a to ring b that does not include edges of a. Observe that the straight-line extensions
starting from two distinct rings of a square are edge-disjoint.

We say that a ring, a crossbar row or column, or a straight-line extension is
assigned to an accepted call if they contain at least one edge of the path assigned to
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the accepted call.
We first describe the algorithm for long calls and then the algorithm for short

calls.
Long calls.
Every call (s, t) of L is first submitted to the following test:
1. If a short or a long call with endpoint in Ss or St has been previously accepted,

then discard (s, t). Otherwise add (s, t) to set L′.
Calls of L′ are dealt with using the idea of KT to build a simulated network

G′, with links of higher capacity, and run AAP on this network. A vertex of G′ is
associated with every square of the original mesh. Two vertices of G′ are connected by
an edge if and only if there is at least one edge in the original mesh that connects two
nodes, each on the border of one of the corresponding squares (i.e., the two squares
are adjacent in the mesh).

Every call (s, t) of L′ is transformed into a call between the two vertices of G′

associated with Ss and St and then submitted to the AAP algorithm. If AAP accepts
(s, t), then (s, t) is added to OND(C), the set of calls accepted by the algorithm. Calls
not accepted by AAP are discarded.

We use the AAP algorithm with the parameter ε = 6/7. Observe that one can use
AAP with this value of ε, since the capacity B of the edges in the simulated network
is high enough. To see that, recall that we assumed B = �log n� ≥ 16. Thus (see also
Appendix A)

ε logD + 1 + ε ≤ 6

7
log n+ 1 +

6

7
≤ 6

7
log n+ 2 ≤ 6

7
(B + 1) +

1

8
B ≤ B .

If AAP accepts call (s, t) it also returns a route in G′ that has a straightforward
interpretation as a sequence of squares S1, . . . , Sp in the original mesh with S1 = Ss
and Sp = St. Our algorithm will assign call (s, t) to a path (i) from s to the border
between S1 and S2, (ii) from the border between Si−1 and Si to the border between
Si and Si+1, i = 2, . . . , p− 1, and (iii) from the border between Sp−1 and Sp to t. In
the following description we give the details of this route assignment.

(i) From s to the border between S1 and S2.
Without loss of generality assume that the border between S1 and S2 is on
a column. We consider two cases: (a) s is outside the central area; (b) s is
inside the central area.

(a) The call is routed from s through the ring containing s until it meets
an unassigned crossbar row leading to the border between S1 and S2; this
crossbar row is followed until the border between S1 and S2.

(b) The call is routed from s through the ring containing s until a corner
of the ring is reached, where a straight-line extension is followed until ring
6B. From there the path continues as in point (a).

(ii) From the border between Si−1 and Si to the border between Si and Si+1.
Without loss of generality, assume that the border between Si−1 and Si and
the border between Si and Si+1 are on columns of G. The path enters the
border between Si−1 and Si on a crossbar row that is followed until an unas-
signed ring of the selected region. The path is routed through the ring of
the selected region until an unassigned crossbar row leading to the border
between Si and Si+1 is met. This crossbar row is followed until the border
between Si and Si+1.

(iii) From the border between Sp−1 and Sp to t. This case is equal to case (i).
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Fig. 5.2. The routing of short calls.

Figure 5.1 shows the routing of a long call with an endpoint in the first region
and an endpoint in the third region.

Short calls.

A short call (s, t) is accepted on the basis of the following test:

1. If the ring containing s or the ring containing t has been previously assigned,
then discard (s, t).

2. If either s or t, but not both, is in the central area, the other vertex is in
region S1 or S2, but all rings in the range from 4B + 1 to 6B are already
assigned, then discard (s, t).

3. Otherwise, add (s, t) to OND(C).
In the following we describe the route assigned to an accepted call (s, t).

If s and t are on the same ring, we route (s, t) on a path contained in the ring of
s and t. Otherwise, we assume without loss of generality that the ring of s is internal
to the ring of t and distinguish between two cases:

1. Both s and t are inside or are both outside the central area. We route (s, t)
through the ring of s until a corner of the ring. There, we continue on a
straight-line extension until the ring of t, which is then followed until t itself.

2. Either s or t, but not both, is in the central area. One of the rings from
4B + 1 to 6B must be unassigned and will be assigned to (s, t) (possibly the
ring containing t). A straight-line extension from a corner of the ring of s to an
unassigned ring of S3 not intersecting the crossbar row or column assigned to
the single long call with endpoint in Ss is assigned to (s, t). The path follows
the ring of s until the corner of the selected straight-line extension that is
followed until the assigned ring of S3. There, if t is in S3, we follow the ring
until t, otherwise we continue as at point 1.

Figure 5.2 shows the routing of short calls.

Proof of correctness. We prove that the algorithm described above routes accepted
calls on edge-disjoint paths. To that end, we prove the following lemmas.

Lemma 5.4. The maximum number of calls routed between two adjacent squares
is B.

Proof. Each edge in the simulated network has capacity B and AAP does not
violate the capacity constraints.

Lemma 5.5. Let S be a square. There are at most 2B calls routed through square
S.

Proof. Every call routed through a square consumes two units of bandwidth
on the edges incident to the vertex of G′ associated with the square. The overall
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bandwidth on the edges incident to a vertex of G′ is 4B; thus at most 2B calls are
routed through a square.

Lemma 5.6. The following claims hold at any time during the execution of the
algorithm:

1. Every crossbar row or column is assigned to at most a single call.
2. Every ring is assigned to at most a single call.
3. Every straight-line extension is assigned to at most a single call.

Proof. Clearly the claims hold before any call is accepted. We now assume that
the claims hold before call (s, t) is accepted and prove that they still hold after call
(s, t) is accepted.

1. Assume (s, t) is accepted on a path crossing the border between S and S′.
Without loss of generality assume that the border is on a column. By Lemma
5.4 at most B− 1 (long) calls have been previously routed between S and S′.
We conclude that there is an unassigned crossbar row of S and an unassigned
crossbar row of S′ leading to the border between S and S′, both contained
in the same row, that can be assigned to (s, t).

2. Two cases: (i) (s, t) is a long call; (ii) (s, t) is a short call. (i) We prove that
the rings assigned to call (s, t) are not assigned to any other call. Call (s, t)
is accepted by AAP on a path crossing a sequence of squares S1, . . . , Sp, with
S1 = Ss and Sp = St. A ring for every square Si is assigned to (s, t). We first
consider squares Ss and St. By step 1 of the algorithm for long calls, no long
or short call is previously accepted in Ss and in St. Since vertices s and t are
outside the selected regions of Ss and of St, the rings containing s and t are
unassigned when (s, t) is accepted. Call (s, t) is also assigned to a ring of the
selected region in every square Si, i = 2, . . . , p − 1. By Lemma 5.5, at most
2B−1 rings of the selected region of a square Si are previously assigned when
(s, t) is accepted. A ring of the selected region of Si is then still available to
be assigned to (s, t). (ii) By steps 1 and 2 of the routing algorithm for short
calls, if (s, t) is accepted, it is assigned to at most three rings which were not
previously assigned to any other call.

3. All the straight-line extensions in a square are edge-disjoint. A straight-line
extension is assigned to a call if it starts from a ring that is also assigned to
that call. By point 2 of the claim, every ring is assigned to at most a single
call. Therefore, every straight-line extension is assigned to at most a single
call.

We can now prove the main lemma.

Lemma 5.7. Every pair of accepted calls is routed on two edge-disjoint paths.

Proof. By Lemma 5.6, every crossbar row or column, ring, and straight-line
extension is assigned to at most a single call. Rings and straight-line extensions
are edge-disjoint, as are rings and crossbar rows and columns. Only straight-line
extensions from the central region of a square may intersect crossbar rows or columns.
We prove that the edges common to a straight-line extension from a ring of the central
region and to a crossbar row or column are not assigned to more than one call.

Consider square S. We first exclude intersections between calls with an endpoint
in S and calls that are routed through S. By point (i)b of the routing algorithm
for long calls and by step 2 of the routing algorithm for short calls, a straight-line
extension from a ring of the central region is followed by the route of a call at most
until a ring of S3. In this case the selected region in S is either S1 or S2. Therefore,
by point (ii) of the routing algorithm for long calls, a call routed through S includes
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only edges of S1 and S2 that belong to a crossbar row or column. Therefore, there is
no intersection with calls routed through S.

We now consider a long call (s, t) with an endpoint, say, s, in S and a call (s′, t′)
assigned to a straight-line extension from a ring of the central region. By step 1 of the
algorithm for long calls, (s′, t′) must be a short call accepted after (s, t), (s, t) being
the single long call with endpoint in S that is accepted. There could be a potential
intersection only if (s′, t′) is in the central region, and (s, t) has an endpoint in S3.
There are four possible straight-line extensions that connect the ring of s′ with a ring
of S3. By step 2 of the algorithm for short calls, (s′, t′) is assigned to a straight-line
extension that does not overlap with the crossbar row or column assigned to (s, t).
No edge of S3 on the chosen straight-line extension is thus assigned to more than one
call.

The analysis. We conclude the proof that the algorithm is O(log n)-competitive
by showing the following lemma.

Lemma 5.8. For any set of candidate calls C, OPT (C) = O(log n)OND(C).
Proof. We will prove the following lemmas:
1. OPT (L \ L′) = O(log n) OND(C) (Lemma 5.9).
2. OPT (L′) = O(log n) OND(L′) (Lemma 5.10).
3. OPT (S) = O(log n) OND(C) (Lemma 5.11).
The proof then easily follows:

OPT (C) = OPT (L ∪ S) ≤ OPT (L \ L′) +OPT (L′) +OPT (S)
= O(log n) OND(C) .

Lemma 5.9. OPT (L \ L′) = O(log n) OND(C).
Proof. A call (s, t) of L is discarded if a long or a short call with an endpoint in

Ss or in St has been previously added to OND(C). At most 4(L+1) long calls with an
endpoint in a given square can be accepted by the optimal solution, since the border
of S is formed by at most 4(L+1) vertices (and edges). Then, for every call accepted
in OND(C), at most 8(L+ 1) calls of L \ L′ are accepted by the optimal solution. As
L = �γ log n� the claim follows.

Lemma 5.10. OPT (L′) = O(log n) OND(L′).
Proof. Every call of L′ is submitted to the AAP algorithm on G′ with edges of

bandwidth B = �log n�. Note that this capacity is large enough to allow AAP to
work correctly if we use the AAP algorithm with ε = 6/7 (and using the assumption
that B ≥ 16). The benefit OPT (L′), obtained by an optimal solution on the set
L′, is bounded by the benefit obtained by an optimal algorithm on G′ with edges of
bandwidth L+1, which is the maximum number of calls that can be routed between
two adjacent squares. The AAP algorithm is still O(log n)-competitive even if the
bandwidth used by the on-line algorithm (AAP) on the edges is smaller by a constant
multiplicative factor than the bandwidth used by the off-line algorithm (see [2, 16];
for completeness this is also proved in the appendix). In our case this constant factor
is at most 14. The claim then follows.

Lemma 5.11. OPT (S) = O(log n) OND(C).
Proof. Let us restrict our attention to a single square. Let S1 and S2 be the set of

calls discarded at steps 1 and 2 of the algorithm for short calls. We have OPT (S) ≤
OPT (S1) + OPT (S2) + OND(S). The proof of the lemma derives from the two
following statements: (i) OPT (S1) = O(log n) OND(C); (ii) OPT (S2) ≤ 8 OND(C).

(i) For every accepted call, at most three rings of a square are assigned by the
algorithm to that call. The number of edges incident to a ring is at most 4(L+1). This
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is a bound on the number of calls with an endpoint on a ring that can be accepted in
an optimal solution. Therefore, the number of calls of OPT (S) that are discarded at
step 1 of the algorithm for short calls, per each call in OND(C), is at most 12(L+1).
As L = �γ log n�, this proves the first statement.

(ii) Short calls with an endpoint in the central region and an endpoint outside the
central region are discarded at step 2 of the algorithm if all the rings of S3 outside
the central region are assigned. At most two rings of S3 are assigned to an accepted
call. If a short call is discarded at step 2, we thus have the evidence that B calls with
an endpoint in S have already been accepted. For the sake of the proof we charge,
for every accepted long call, the value of 1/2 to S and the value of 1/2 to the square
containing its other endpoint. A square is therefore already charged with at least the
value of B/2 if a short call of the square is discarded at step 2. The number of short
calls of OPT (S2) with endpoints in S is bounded by 4B, as this is the number of
vertices on the border of the central region. The ratio between the number of calls of
S2 with endpoints in S that belong to OPT (S2), and the number of calls of OND(C)
charged to S, is thus at most 8. This proves the second statement.

Appendix A. The AAP algorithm. For completeness we describe a restricted
version of the AAP algorithm. We consider the case where all calls are of infinite
duration, request bandwidth of 1, and are of uniform benefit that without loss of
generality we assume equals to D, the length of the longest simple path in the network.
Let u(e), for e ∈ E, be the capacity of edge e and assume that for all e ∈ E,

u(e) ≥ ε logD + 1 + ε for some 0 < ε ≤ 1.(A.1)

Let bj(e) be the number of calls routed trough edge e by AAP among the first j
presented calls. Define the relative load of edge e, just after call j has been processed,

to be λj(e) =
bj(e)
u(e) . Define the cost of edge e just after call j has been processed to

be cj(e) = u(e)[µλj(e) − 1], where µ = 21+1/εD. A request (sj , tj) is accepted to path
Pj if

∑
e∈Pj)

1
u(e) · cj−1(e) ≤ D.

The above algorithm has competitive ratio O(21/ε/ε+21/ε logD). We give below
a sketch of the proof. The proof follows the proof that appears in [8].

Theorem A.1. The above AAP algorithm has competitive ratio 21+1/ε logµ+1.

Proof. Let σ = σ1, σ2, . . . , σn, be the sequence of requests. Let A be the set of
indices of requests that are accepted by AAP and let A′ be the set of indices of requests
that are rejected by AAP but are accepted by the adversary. Let C =

∑
e∈E cn(e).

Let Q(σ) denote the benefit obtained by algorithm AAP on sequence σ. We prove
the following two claims that yield the desired result.

1. C ≤ (21+1/ε logµ) · |A| ·D.
2. |A′| ·D ≤ C.

The result follows from the above two inequalities since Q(σ) = |A| · D, and
OPT (σ) ≤ Q(σ) + |A′| ·D.

The proof of inequality 1 can be found in [8]. We repeat here the proof of in-
equality 2 since we slightly modify it below to give the corollaries we need.

For a call σj that is accepted by the off-line algorithm let P ∗j be the path that is
used by the off-line algorithm to accept this call. For any j ∈ A′

D < min
Pj

∑
e∈Pj

1

u(e)
cj−1(e) ≤

∑
e∈P∗

j

1

u(e)
cj−1(e) .
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We get

|A′| ·D <
∑
j∈A′

∑
e∈P∗

j

1

u(e)
cj−1(e)

≤
∑
j∈A′

∑
e∈P∗

j

1

u(e)
cn(e)

=
∑
e

cn(e)
∑

j∈A′:e∈P∗
j

1

u(e)

≤
∑
e

cn(e)

= C.

The last inequality follows since the capacity of the adversary on any edge e is
u(e), that is, it can route at most u(e) calls though edge e.

We now give two corollaries of the above theorem.

Corollary A.2. If for all e ∈ E, u(e) satisfied condition A.1, and the off-line
algorithm has capacity c · u(e) for each edge e, for some constant c, then AAP is
(1 + c(21+1/ε logµ))-competitive.

Proof. We slightly modify the above proof for inequality 2. Since for each e ∈ E
the capacity available to the off-line algorithm is c · u(e), then the last inequality in
the proof would yield

|A′| ·D <
∑
e

cn(e) · c = C · c .

Thus we get (|A′| ·D)/c ≤ (21+1/ε logµ) · |A| ·D. And we get

OPT (σ) ≤ Q(σ) + |A′| ·D ≤ Q(σ) + c(21+1/ε logµ) · |A| ·D
= (1 + c(21+1/ε logµ)) · Q(σ).

Corollary A.3. If AAP, with ε = 1, has for each e ∈ E capacity u(e) = log 4D,
while the off-line algorithm has for all e capacity 1, then the competitive ratio is 5.

Proof. We use ε = 1 and slightly modify the above proof of inequality 2. We
again modify the last inequality of the the proof. Since the off-line algorithm has for
each e only capacity u(e)/ log 4D, we get

|A′| ·D <
∑
e

cn(e)/ log 4D ,

i.e.,

|A′| ·D < C/ log 4D .

We get
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OPT (σ) ≤ Q(σ) + |A′| ·D
≤ Q(σ) + C/ log 4D

≤ Q(σ) + ((21+1/ε logµ) · |A| ·D)/ log 4D

= Q(σ) + ((21+1/ε logµ) · |A| ·D)/ logµ

= Q(σ) + 4 · |A| ·D = 5 · Q(σ) .
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Abstract. In this article, we study parameterized complexity theory from the perspective of
logic, or more specifically, descriptive complexity theory.

We propose to consider parameterized model-checking problems for various fragments of first-
order logic as generic parameterized problems and show how this approach can be useful in studying
both fixed-parameter tractability and intractability. For example, we establish the equivalence be-
tween the model-checking for existential first-order logic, the homomorphism problem for relational
structures, and the substructure isomorphism problem. Our main tractability result shows that
model-checking for first-order formulas is fixed-parameter tractable when restricted to a class of
input structures with an excluded minor. On the intractability side, for every t ≥ 0 we prove an
equivalence between model-checking for first-order formulas with t quantifier alternations and the
parameterized halting problem for alternating Turing machines with t alternations. We discuss the
close connection between this alternation hierarchy and Downey and Fellows’ W-hierarchy.

On a more abstract level, we consider two forms of definability, called Fagin definability and
slicewise definability, that are appropriate for describing parameterized problems. We give a charac-
terization of the class FPT of all fixed-parameter tractable problems in terms of slicewise definability
in finite variable least fixed-point logic, which is reminiscent of the Immerman–Vardi theorem char-
acterizing the class PTIME in terms of definability in least fixed-point logic.

Key words. parameterized complexity, model-checking, descriptive complexity
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1. Introduction. Parameterized complexity is a branch of complexity theory
which has matured in the last 10 years, as witnessed in the culminating monograph
[10]. It gives a framework for a refined complexity analysis of hard algorithmic prob-
lems. The basic idea can best be explained by an example: Consider the problem of
evaluating a query in a relational database. This problem usually has a high com-
plexity (depending on the query language, of course, but the problem is NP-complete
even for the very basic conjunctive queries [5]). The main factor contributing to this
complexity is the length of the query. In practice, however, queries are usually short,
certainly much shorter than the size of the database. Thus when analyzing the com-
plexity of the problem we should put much more emphasis on the size of the database
than on the length of the query. An algorithm evaluating a query of length k in a
database of size m in time O(2k · m) is therefore much better than one performing
the same task in time O(mk/2), although both are exponential.

Parameterized complexity theory studies problems whose instances are parame-
terized by some function of the input, such as the length of the query in our example.
The idea is to choose the parameterization in such a way that it can be assumed to
take small values for the instances one is interested in. Then the complexity of an
algorithm is measured not only in the size of the input but also in terms of the param-
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eter. A parameterized problem is fixed-parameter tractable if there is an algorithm
solving it in time f(k) · nc, where n denotes the size of the input, k the parameter,
and f : N → N is a computable function and c > 0 a constant.

Parameterized complexity theory provides methods for proving problems to be
fixed-parameter tractable but also gives a framework for dealing with apparently
intractable problems in a similar way that the theory of NP-completeness does in
classical complexity theory.

The purpose of this article is to establish a very fruitful connection between
parameterized complexity theory and logic. Our approach is that of descriptive com-
plexity theory. We study the definability of parameterized problems and try to obtain
information about the parameterized complexity of the problems through the syntac-
tical structure of the defining sentences. On the one hand, we use this approach to
prove that certain problems are tractable because they can be defined by syntactically
simple formulas. On the other hand, we characterize classes of intractable problems
by syntactical means.

Central to our approach are parameterized model-checking problems of the fol-
lowing form. For a class Φ of formulas, we let MC(Φ) be the problem

MC(Φ) Input: A finite structure A.
Parameter: A sentence ϕ ∈ Φ.

Question: Does A satisfy ϕ?

In most cases, Φ will be a fragment of first-order logic.
After a preliminary section, we discuss some basic facts about parameterized

model-checking problems in section 3. In section 4 we introduce two notions of de-
finability of parameterized problems, which we call slicewise definability and Fagin
definability, and relate them to model-checking. We then show how Fagin definability
can be used to establish the fixed-parameter tractability of various problems.

In section 5 we study the parameterized complexity of the model-checking prob-
lem for Σ1-formulas (that is, existential first-order formulas in prenex normal form).
We associate a graph with each such formula and use it to establish a surprisingly
close connection between this model-checking problem, the homomorphism problem,
and the subgraph isomorphism problem. As an application of our result we show that
for Σ1-sentences whose graph has bounded tree-width, the model-checking problem is
fixed-parameter tractable, even if inequalities are disregarded in the graph of the for-
mula. Model-checking for formulas with a tree-like graph or hypergraph has recently
received much attention (see [6, 24, 18, 16]).

So far we have looked only for tractable cases of the model-checking problem
MC(Φ) that are obtained by restricting the class of formulas Φ. A different approach
is to restrict the class of structures where the input structure A is taken from (see, for
example, [7, 29, 17]). We prove a far reaching result: For any class C of graphs with
an excluded minor, the model-checking problem for first-order logic is fixed-parameter
tractable if the inputs are taken from C. This implies, for example, that parameter-
ized versions of the dominating set problem or the (induced) subgraph isomorphism
problem are fixed-parameter tractable when restricted to such classes of graphs.

Our last result on fixed-parameter tractability is a descriptive characterization
of the complexity class FPT of all fixed-parameter tractable problems in terms of
slicewise definability in finite variable fragments of least-fixed point logic. This simple
result can be seen as a parameterized analogue of the well-known Immerman–Vardi
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theorem [21, 30] characterizing the class PTIME in terms of definability in least-fixed-
point logic.

The final section is devoted to fixed-parameter intractability. We define a hierar-
chy A[t] of parameterized complexity classes in terms of alternating Turing machine
acceptance (t is the number of alternations). This hierarchy can be seen as a pa-
rameterized analogue of the polynomial hierarchy. We prove that for all t ≥ 1, the
model-checking problem for Σt-formulas is complete for the tth level of this hierar-
chy. Then we study the relation between our A-hierarchy and Downey and Fellows’
W-hierarchy. It is known that the first levels of the respective hierarchies, A[1] and
W[1], coincide [4]. We slightly improve a result of Downey, Fellows, and Regan [11]
relating W[t], the tth level of the W-hierarchy, to the model-checking problems for
a certain fragment of Σt. However, the question whether A[t] and W[t] coincide for
t ≥ 2 remains open.

2. Preliminaries.

2.1. Logic. We assume that the reader is familiar with first-order logic; we recall
only a few basic notions to fix our notation (compare with [13] for a more detailed
introduction of these notions).

In this article, a vocabulary is a finite set of relation symbols. Associated with
every relation symbol is a natural number, its arity. The arity of a vocabulary is
the maximal arity of the relation symbols it contains. Usually, vocabularies are also
permitted to contain function and constant symbols. All results of this article, with
the single exception of Theorem 8.4, would remain true if function and constant
symbols were allowed, but adding them would not give us any new insights. Therefore,
for convenience, we restrict our attention to relational vocabularies. In the following,
τ always denotes a vocabulary.

A τ -structure A consists of a set A, called the universe of A, and a relation
RA ⊆ Ar for each r-ary relation symbol R ∈ τ . We synonymously write ā ∈ RA

or RAā to denote that the tuple ā ∈ Ar belongs to the relation RA. For τ ⊆ τ ′, a
τ -structure A is the τ -reduct of a τ ′-structure A′ if A = A′ and RA = RA

′
for all

R ∈ τ . A τ ′-structure A′ is a τ ′-expansion of a τ -structure A if A is the τ -reduct of
A′.

We consider only finite structures. When we consider classes of structures, they
are always assumed to be closed under isomorphism. STR denotes the class of all
(finite) structures. If C is a class of structures, C[τ ] denotes the subclass of all τ -
structures in C. Furthermore, C[s] denotes the class of all structures in C whose
vocabulary is at most s-ary. We consider graphs as {E}-structures G = (G,EG),
where EG is an irreflexive and symmetric binary relation (i.e., graphs are loop-free
and undirected). GRAPH denotes the class of all graphs.

The class of all first-order formulas is denoted by FO. Recall that atomic formulas
are formulas of the form x = y or Rx1 . . . xr, where x, y, x1, . . . , xr are variables and
R is an r-ary relation symbol. Literals are atomic or negated atomic formulas. A first-
order formula ϕ is in negation normal form if negation symbols occur only directly
in front of atomic subformulas. ϕ is existential (universal) if it is in negation normal
form and contains no universal quantifiers (no existential quantifiers, respectively). ϕ
is in prenex normal form if it is of the form Q1x1 . . . Qkxkθ, where Q1, . . . , Qk ∈ {∃,∀}
and θ is quantifier-free.

EFO (AFO) denotes the class of all existential (respectively, universal) first-order
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formulas. For t ≥ 1, Σt denotes the class of all FO-formulas of the form

∃x11 . . .∃x1k1
∀x21 . . .∀x2k2

. . . Qxt1 . . . Qxtkt
θ,

where Q = ∀ if t is even and Q = ∃ otherwise and θ is quantifier-free. Πt-formulas
are defined analogously starting with a block of universal quantifiers.

If Φ is a class of formulas of some logic, then Φ[τ ] denotes the class of all formulas
of vocabulary τ in L, and Φ[s] denotes the class of all formulas in Φ whose vocabulary
is at most s-ary. We write A |= ϕ if, for some τ , A is a τ -structure, ϕ is in L[τ ], and
A is a model of ϕ.

2.2. Coding issues. We use random access machines (RAMs) with the uniform
cost measure as our underlying model of computation (cf. [1]).

Very often, the objects of our computations are structures. Therefore, we have to
fix a way of representing structures on a RAM. The two most common ways of doing
this are the array representation and the list representation. For both representations
we assume that the universes of our structures are initial segments of the natural
numbers; of course this is no real restriction because every structure is isomorphic to
one with such a universe.

Both representations start with an encoding of the vocabulary and a natural
number representing the size of the universe of the structure. The difference between
the two representations is in how relations are stored. In the array representation, a
k-ary relation is stored as a k-dimensional array with 0, 1-entries. For graphs, this is
just the adjacency matrix. The advantage of this representation is that for each tuple
it can be checked in constant time whether it belongs to the relation or not. However,
for sparse relations this representation wastes a lot of space.

In the more concise list representation, a relation is represented as a list of all
tuples it contains. Clearly, the list representation of a structure can be computed from
the array representation in linear time but not vice versa. For graphs G, it is easy to
construct the common adjacency list representation from the list representation (in
time linear in |G|+ (size of the representation), where |G| denotes the number of ele-
ments in G). In this article, we always assume that structures are given in the list rep-
resentation, but all results also hold for the array representation. The size of a struc-
ture A, denoted by ||A||, is defined to be |A| + (size of the list representation of A).
The complexity of algorithms on structures is measured in this size. Remark 3.3 shows
that this can be relevant.

2.3. Parameterized problems. We recall only those notions of the theory
needed in this article. For a comprehensive treatment we refer the reader to Downey
and Fellows’ recent monograph [10]. A parameterized problem is a set P ⊆ Σ∗ × Π∗,
where Σ and Π are finite alphabets. Following [10], we usually represent a parame-
terized problem P in the following form:

P Input: x ∈ Σ∗.
Parameter: y ∈ Π∗.

Question: Is (x, y) ∈ P?

In most cases, we have Π = {0, 1} and consider the parameters y ∈ Π∗ as natural
numbers (in binary). A natural example is the parameterized version of the well-
known VERTEX COVER problem:
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VC Input: Graph G.
Parameter: k ∈ N.

Question: Does G have a vertex cover of size k?

Recall that a vertex cover of a graph is a set X of vertices such that every edge is
incident to one of the vertices in X. Similarly, we can define parameterized versions
of DOMINATING SET (DS) and CLIQUE. (A dominating set of a graph is a set X
of vertices such that every vertex not contained in X is adjacent to a vertex in X. A
clique is a set of pairwise adjacent vertices.)

An example where the set of parameters is not N, but the class GRAPH of
all finite graphs, is the following parameterized SUBGRAPH ISOMORPHISM (SI)
problem:

SI Input: Graph G.
Parameter: Graph H.

Question: Is H isomorphic to a subgraph of G?

Similarly, we can define parameterized versions of the INDUCED SUBGRAPH ISO-
MORPHISM problem and the GRAPH HOMOMORPHISM problem.

Definition 2.1. A parameterized problem P ⊆ Σ∗ × Π∗ is fixed-parameter
tractable1 if there is a computable function f : Π∗ → N, a constant c ∈ N, and an
algorithm that, given a pair (x, y) ∈ Σ∗ ×Π∗, decides if (x, y) ∈ P in time f(y) · |x|c.

We denote the class of all fixed-parameter tractable problems by FPT.
Of course we can always consider parameterized problems as classical problems

and determine their complexity in the classical sense. Clearly, every parameterized
problem in PTIME is also in FPT.

The best currently known algorithm for vertex cover VC has running time O(k ·
n + max{1.255k · k2, 1.291k · k}) [15], where n denotes the size of the input graph.
Thus VC ∈ FPT.

2.4. Reductions between parameterized problems. It is conjectured that
none of the problems DS, CLIQUE, SI is in FPT. As it is often the case in complexity
theory, we cannot actually prove this but prove only that the problems are hard for
certain complexity classes that are conjectured to contain FPT strictly. To do this
we need a suitable concept of reduction. We actually introduce three different types
of reduction.

Definition 2.2. Let P ⊆ Σ∗ × Π∗ and P ′ ⊆ (Σ′)∗ × (Π′)∗ be parameterized
problems.

(1) A parameterized T-reduction from P to P ′ is an algorithm with an oracle
for P ′ that solves any instance (x, y) of P in time f(|y|) · |x|c in such a way
that for all questions (x′, y′) ∈ P ′? to the oracle we have |y′| ≤ g(|y|) (for
computable functions f, g : N → N and a constant c ∈ N).

P is fixed-parameter T-reducible to P ′ (we write P ≤fp
T P ′) if there is a

parameterized T-reduction from P to P ′.

1This is what Downey and Fellows call strongly uniformly fixed-parameter tractable. For variants
of this definition, and also of Definition 2.2 and the definition of the W-hierarchy, the reader should
consult [10].
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(2) A parameterized m-reduction from P to P ′ is an algorithm that computes for
every instance (x, y) of P an instance (x′, y′) of P ′ in time f(|y|) · |x|c such
that |y′| ≤ g(|y|) and

(x, y) ∈ P ⇐⇒ (x′, y′) ∈ P ′

(for computable functions f, g : N → N and a constant c ∈ N).
P is fixed-parameter m-reducible to P ′ (we write P ≤fp

m P ′) if there is a
parameterized m-reduction from P to P ′.

Whereas every parameterized problem that is in PTIME (when considered as a
classical problem) is in FPT, it is not the case that every PTIME many-one reduction
between two parameterized problems is also a parameterized m-reduction. To capture
both concepts we occasionally use the following third kind of reduction.

Definition 2.3. Let P ⊆ Σ∗ × Π∗ and P ′ ⊆ (Σ′)∗ × (Π′)∗ be parameterized
problems.

A pp m-reduction from P to P ′ is a parameterized m-reduction from P to P ′ that
is also a polynomial time many-one reduction from P to P ′ in the classical sense, i.e.,
the function f in Definition 2.2(2) is a polynomial.

P is pp m-reducible to P ′ (we write P ≤fpp
m P ′) if there is a pp m-reduction from

P to P ′.
For example, CLIQUE ≤fp

m SI by the simple parameterized m-reduction that
reduces the instance (G, k) of CLIQUE to the instance (G,Kk) of SI. Here Kk denotes
the complete graph with k vertices. Note that if we represent integers in binary, this
reduction is not a pp m-reduction.

Observe that ≤fp
T , ≤fp

m, and ≤fpp
m are transitive and that for all P, P ′ we have

P ≤fpp
m P ′ =⇒ P ≤fp

m P ′ and P ≤fp
m P ′ =⇒ P ≤fp

T P ′.

Furthermore, if P ≤fp
T P ′ and P ′ ∈ FPT, then P ∈ FPT. For any of the reductions

≤fp
T ,≤fp

m,≤fpp
m we let ≡···... denote the corresponding equivalence relation.

We define hardness and completeness of parameterized problems for a parame-
terized complexity class (under parameterized m- or T-reductions) in the usual way.
For a parameterized problem P , we let [P ]fpm := {P ′ | P ′ ≤fp

m P}, and for a class P of
parameterized problems [P]fpm :=

⋃
P∈P[P ]

fp
m.

Remark 2.4. Very often, it is natural to think of a parameterized problem P as
derived from a (classical) problem L ⊆ Σ∗ by a parameterization p : Σ∗ → N in such
a way that P = {(x, k) | x ∈ L, k = p(x)}.

Slightly abusing notation, we represent such a P in the following form:

P Input: x ∈ Σ∗.
Parameter: p(x).

Question: Decide if x ∈ L?

As an example, let us reconsider the subgraph isomorphism problem. Instead of taking
graph H as the parameter, we may also consider pairs of graphs (G,H) as inputs and
parameterize the problem by the size of H. In our new notation, this would be the
problem:
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SI ′ Input: Graphs G, H.
Parameter: ||H||.

Question: Is H isomorphic to a subgraph of G?

It is easy to see, however, that SI ≡fp
m SI ′.

2.5. Parameterized intractability. Some combinatorial problems are prov-
ably not fixed-parameter tractable, and others, such as GRAPH COLORABILITY,
are not fixed-parameter tractable unless PTIME = NP. However, many interesting
problems, such as the parameterized CLIQUE problem, do not seem to be fixed-
parameter tractable, although there is no known way to prove this or reduce it to

classical complexity theoretic questions such as PTIME
?
= NP. To classify such prob-

lems, Downey and Fellows (cf. [10]) introduced a hierarchy

W[1] ⊆ W[2] ⊆ · · ·
of classes above FPT. These classes can best be defined in terms of the satisfiability
problem for formulas of propositional logic. Formulas of propositional logic are built
up from propositional variables X1, X2, . . . by taking conjunctions, disjunctions, and
negations. The negation of a formula ϕ is denoted by ¬ϕ. We distinguish between
small conjunctions, denoted by ∧, which are conjunctions of two formulas, and big
conjunctions, denoted by

∧
, which are conjunctions over arbitrary finite sets of for-

mulas. Analogously, we distinguish between small disjunctions, denoted by ∨, and
big disjunctions, denoted by

∨
.

Every formula ϕ corresponds to a labeled tree Tϕ in a natural way. The size of
ϕ is defined to be the number of vertices of Tϕ. The depth of ϕ is defined to be the
maximum number of nodes labeled ∧,∧,∨,∨ on a path from the root to a leaf of Tϕ.
Thus when computing the depth, we do not count negations.

A formula is small if it contains only small conjunctions and small disjunction.
We define C0 = D0 to be the class of all small formulas. For an i ≥ 1, we define Ci

to be the class of all big conjunctions of formulas in Di−1, and we define Di to be the
class of all big disjunctions of formulas in Ci−1. Note that these definitions are purely
syntactical; every formula in a Ci or Di is equivalent to a formula in C0. Of course
the translation from a formula in Ci to an equivalent formula in C0 usually increases
the depth of a formula. For all i, d ≥ 0 we let Ci,d denote the class of all formulas in
Ci whose small subformulas have depth at most d (equivalently, we may say that the
whole formula has depth at most d+ i). We define Di,d analogously.

The weight of an assignment α for the variables of a propositional formula is the
number of variables set to True by α. For any class P of propositional formulas, let
weighted satisfiability for P be the following parameterized problem:

WSAT(P ) Input: ϕ ∈ P .
Parameter: k ∈ N.

Question: Does ϕ have a satisfying assignment of
weight k?

Now we are ready to define the W-hierarchy : For every t ≥ 1, we let

W[t] :=
⋃
d≥0

[WSAT(Ct,d)]
fp
m .
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In other words, a parameterized problem is in W[t] if there is a d ≥ 0 such that the
problem is fixed-parameter m-reducible to the weighted satisfiability problem for Ct,d.
It is an immediate consequence of the definition of parameterized m-reductions that
FPT ⊆ W[1]. Actually, it is conjectured that this inclusion is strict and that W[t] is
strictly contained in W[t+ 1] for every t ≥ 1.

Example 2.5. The parameterized CLIQUE -problem is in W[1]. To see this, for
every graph G we describe a propositional formula ϕ := ϕ(G) ∈ C1,1 such that G has
a clique of size k if and only if ϕ has a satisfying assignment of weight k. It will be
obvious from the construction that ϕ can be computed from G in polynomial time.

So let G be a graph. For all a ∈ G let Xa be a propositional variable. Let

ϕ :=
∧

a,b∈G,a 
=b
ab
∈EG

(¬Xa ∨ ¬Xb).

Then every satisfying assignment of ϕ corresponds to a clique of G.
Actually, Downey and Fellows proved the following nontrivial result.
Theorem 2.6 (Downey and Fellows [8, 9]).
(1) CLIQUE is W[1]-complete under parameterized m-reductions.
(2) DS is W[2]-complete under parameterized m-reductions.
Remark 2.7. Downey and Fellows phrase their definition of the W-hierarchy

in terms of Boolean circuits rather than propositional formulas. However, since the
classes of the hierarchy involve only circuits/formulas of bounded depth, this does not
really make a difference (cf. [10]). In their definition of W[t], Downey and Fellows
admit more complicated formulas than those in Ct. However, they prove that our
definition is equivalent. A surprising by-product of their results is that for every t ≥ 1
and every d ≥ 0, the problem WSAT [Dt+1,d] is contained in W[t]. It is not hard to
prove this result directly, and even easier to prove that WSAT [D1,d] is in FPT. (This
explains why we defined only a hierarchy using the Cts.)

There is another, more serious source of confusion in the various definitions of the
W-hierarchy: Downey and Fellows are never really clear about what kind of reductions
they are using to define the classes. We decided, more or less in accordance with [10],
that parameterized m-reductions are most natural.

We will further discuss the W-hierarchy and other seemingly intractable classes
in section 8.

3. Model-checking. In this article we are mainly concerned with the complex-
ity of various parameterized model-checking problems. For a set Φ of formulas, we
let

MC(Φ) :=
{
(A, ϕ)

∣∣ A ∈ STR, ϕ sentence in Φ,A |= ϕ
}
,

or more intuitively,

MC(Φ) Input: A ∈ STR.
Parameter: ϕ ∈ Φ.

Question: Does A |= ϕ?

In this section we collect a few basic facts about parameterized model-checking prob-
lems. For every Φ we consider, we assume that we have fixed an encoding γ : Φ →
{0, 1}∗, and we let ||ϕ|| be the length of γ(ϕ).
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Taking sentences as parameters seems a little unusual. The following parameter-
ization of the model-checking problem looks more natural:

MC ′(Φ) Input: A ∈ STR, ϕ ∈ Φ.
Parameter: ||ϕ||.

Question: Does A |= ϕ?

However, it is easy to see that MC(Φ) ≡fp
m MC ′(Φ).

It is well known that various problems of model theory or complexity theory
can be reduced from structures to graphs. The following two lemmas contain such
reductions. Although their proofs use only standard techniques, they are subtle and
require some care. Therefore we decided to give the proofs in some detail. We will
apply these lemmas several times later.

Lemma 3.1. There are polynomial time transformations that associate with ev-
ery structure A ∈ STR a graph H(A) and with every sentence ϕ ∈ FO a sentence
ϕGRAPH ∈ FO, respectively, such that

A |= ϕ ⇐⇒ H(A) |= ϕGRAPH.

Furthermore for every t ≥ 1, if ϕ ∈ Σt then ϕGRAPH ∈ Σt+1 and if ϕ ∈ Πt then
ϕGRAPH ∈ Πt+1.

Proof. Let A ∈ STR[τ ] and ϕ ∈ FO[τ ]. Without loss of generality we can assume
that ϕ is in prenex and in negation normal form.

Step 1. In the first step we translate A to a structure B(A) of a vocabulary
β(τ) that consists only of unary and binary relation symbols. ϕ is translated to a
corresponding sentence ϕB of vocabulary β(τ).

β(τ) contains unary relation symbols U and UR for each symbol R ∈ τ and binary
relation symbols E1, . . . , Es, where s is the arity of τ .

The universe of B(A) is

B(A) := A ∪ {b(R, ā) | R ∈ τ, ā ∈ RA}.

We assume that the elements b(R, ā) are all pairwise distinct and distinct from those
in A. Note that the cardinality of B(A) is essentially ||A||, up to an additive term
depending on τ . The unary relations are defined in the obvious way: We let UB(A) :=
A and U

B(A)
R := {b(R, ā) | ā ∈ RA} for every R ∈ τ . The binary relations E1, . . . , Es

are defined by

E
B(A)
i := {(ai, b(R, ā)), (b(R, ā), ai) | R ∈ τ, ā = (a1, . . . , ar) ∈ RA, 1 ≤ i ≤ r}.

Note that E
B(A)
i is symmetric; this will be useful later.

To define ϕB , we first relativize all quantifiers to U , i.e., we inductively replace
all subformulas ∃xψ by ∃x(Ux ∧ ψ) and all subformulas ∀xψ by ∀x(Ux → ψ). We
obtain a formula ϕ′.

ϕB is obtained from ϕ′ by replacing every atomic subformula Rx̄, for r-ary R ∈ τ ,
by

∃z
(
URz ∧

r∧
i=1

Eixiz

)
,(3.1)
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where z is a new variable. Then we have

A |= ϕ ⇐⇒ B(A) |= ϕB .(3.2)

Furthermore, B(A) can be computed from A in time O(||τ || · ||A||), where ||τ || denotes
the length of the encoding of τ , and ϕB can be computed from ϕ in linear time.

Step 2. In this step we replace the binary relations E1, . . . , Es by a single new
binary relation E. We let

γ(τ) := (β(τ) \ {E1, . . . , Es}) ∪ {E,P1, . . . , Ps},

where P1, . . . , Ps are new unary relation symbols.
We transform B(A) to a γ(τ)-structure C(A) as follows: For 1 ≤ i ≤ s and for

all a, b ∈ B(A) such that E
B(A)
i ab we introduce a new element c(i, a, b), add the

pairs (a, c(i, a, b)), (c(i, a, b), a), (c(i, a, b), b), (b, c(i, a, b)) to EC(A), and add c(i, a, b)

to P
C(A)
i .
We define a sentence ϕC by replacing each subformula of ϕB of the form Eixy

by ∃z(Exz ∧ Ezy ∧ Piz). Then we have the analogue of (3.2) and the subsequent
remarks for C(A), ϕC instead of B(A), ϕB .

Step 3. The restriction of C(A) to E is already a graph, i.e., EC(A) is symmet-
ric and irreflexive. Therefore all we have to do is to eliminate the unary relations
U, (UR)R∈τ , (Pi)1≤i≤s. Say, Q1, . . . , Ql is an enumeration of all these relations. Note
that every a ∈ C(A) is either isolated or of valence two or adjacent to a vertex of va-
lence two. We use this to define certain trees T1, . . . , Tl and corresponding existential

first-order formulas ξ1(x), . . . , ξl(x) and attach a copy of Ti to each vertex in Q
C(A)
i

in such a way that in the resulting graph H(A) we have for all vertices a

H(A) |= ξi(a) ⇐⇒ a ∈ Q
C(A)
i .

Furthermore, the Ti and thus the ξi can be chosen of size polynomial in l. We omit
the details.

Then we let ϕGRAPH be the formula obtained from ϕC by replacing every subfor-
mula of the form Qix by ξi(x), for 1 ≤ i ≤ l, and transforming the resulting formula
into prenex normal form in the usual manner.

Clearly the transformations A �→ H(A) and ϕ �→ ϕGRAPH are polynomial, and
we have

A |= ϕ ⇐⇒ H(A) |= ϕGRAPH.

It remains to prove that if ϕ ∈ Σt (ϕ ∈ Πt), then ϕGRAPH ∈ Σt+1 (ϕGRAPH ∈ Πt+1,
respectively). This follows easily from the way we defined the sentences ϕB , ϕC , and
ϕGRAPH in Steps 1–3, noting that each positive (negative) occurrence of a relation
symbol R ∈ τ gives rise only to positive (respectively, negative) occurrences of UR,
the Ei, and the Pi. Thus for the positive occurrences of the R ∈ τ we get a new block
of existential quantifiers and for the negative occurrences a new block of universal
quantifiers. This increases the alternation depth by at most one.

Recall that for a class C of structures and an s ≥ 0, by C[s] we denote the class
of all structures in C whose vocabulary is at most s-ary. Similarly, for a class Φ of
formulas, by Φ[s] we denote the class of all formulas in Φ whose vocabulary is at most
s-ary.
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Lemma 3.2. Let s ≥ 1. There is a polynomial time transformation that asso-
ciates with every structure A ∈ STR[s] a graph H′(A) and a linear time function that
associates with every sentence ϕ ∈ FO a sentence ϕ′GRAPH ∈ FO such that

A |= ϕ ⇐⇒ H′(A) |= ϕ′GRAPH.

Furthermore, for all t ≥ 1, if ϕ ∈ Σt, then ϕ′GRAPH ∈ Σt and if ϕ ∈ Πt, then
ϕ′GRAPH ∈ Πt.

Proof. Let us first look back at the proof of the last lemma and note that if all
relation symbols occur only positively in ϕ, then the transformation ϕ �→ ϕGRAPH

generates only a new block of existential quantifiers. If all relation symbols occur only
negatively, then we get only a new block of universal quantifiers. Thus if ϕ ∈ Σ2t−1
(ϕ ∈ Π2t) and all relation symbols occur only positively in ϕ, then also ϕGRAPH ∈
Σ2t−1 (respectively, ϕGRAPH ∈ Π2t). Similarly, if ϕ ∈ Σ2t (ϕ ∈ Π2t−1) and all
relation symbols occur only negatively in ϕ, then also ϕGRAPH ∈ Σ2t (respectively,
ϕGRAPH ∈ Π2t−1).

We first transform A to an A′ and ϕ to a ϕ′ in the same prefix class such that

A |= ϕ ⇐⇒ A′ |= ϕ′,

and either all relation symbols in ϕ′ occur positively or negatively, whichever we need
to apply the previous remark. For this purpose, let τ be an at most s-ary vocabulary.
We let τ ′ := τ ∪{R | R ∈ τ}, where R is a new relation symbol that has the same arity

as R. For every A ∈ STR[τ ], we let A′ be the τ ′-expansion of A with R
A′

= Ar \RA
for r-ary R ∈ τ . Note that A′ can be computed from A in time O(||A||s). To define
ϕ′ we either replace each negative literal ¬Rx̄ by Rx̄ or each positive literal Rx̄ by
¬Rx̄.

Remark 3.3. Note that if we represent structures by the array representation,
then the transformation of Lemma 3.2 is actually polynomial even if we do not fix
the arity of the vocabulary in advance. This follows from the fact that the array
representation of the structure A′ (in the proof of the lemma) can be computed from
the array representation of A in linear time, uniformly over all vocabularies.

For a parameterized problem P ⊆ STR × Π∗ and a class C of structures we let
P |C denote the restriction of P to C. In particular,

MC(Φ)|GRAPH = {(G, ϕ) | G ∈ GRAPH, ϕ ∈ Φ,G |= ϕ}.
Note that for every class Φ of formulas and vocabulary τ the two problems MC(Φ[τ ])
and MC(Φ)|STR[τ ], though formally different, are essentially the same. Therefore we
do not distinguish between them.

Corollary 3.4.
(1) MC(FO) ≡fpp

m MC(FO)|GRAPH.
(2) For all t ≥ 1 we have

MC(Σt) ≤fpp
m MC(Σt+1)|GRAPH and MC(Πt) ≤fpp

m MC(Πt+1)|GRAPH.

(3) For all s ≥ 2, t ≥ 1 we have

MC(Σt[s]) ≡fpp
m MC(Σt)|GRAPH and MC(Πt[s]) ≡fpp

m MC(Πt)|GRAPH.

We do not know if MC(Σt) ≤fp
m MC(Σt)|GRAPH or MC(Πt) ≤fp

m MC(Πt)|GRAPH

for any t ≥ 1.
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4. Defining parameterized problems. Definability is the connection between
arbitrary parameterized problems and our logical analysis that focuses on model-
checking problems. In [11], Downey, Fellows, and Regan consider two forms of defin-
ability: Their exposition motivates two general notions of definability, which we call
slicewise definability and Fagin definability.

For a parameterized problem P ⊆ Σ∗ × Π∗ and y ∈ Π∗, we call P ∩ (Σ∗ × {y})
the yth slice of P .

Definition 4.1. Let P ⊆ STR × Π∗ be a parameterized problem and Φ a class
of formulas. P is slicewise Φ-definable if there is a computable function δ : Π∗ → Φ
such that for all A ∈ STR and y ∈ Π∗ we have (A, y) ∈ P ⇐⇒ A |= δ(y).

For example, the parameterized subgraph isomorphism problem SI is slicewise
Σ1-definable via the function δ : GRAPH → Σ1 defined as follows: For a graph H
with vertex set H = {h1, . . . , hn} of cardinality n, δ(H) is the sentence

∃x1 . . .∃xn




∧
1≤i<j≤n

xi �= xj ∧
∧

1≤i,j≤n
EHhihj

Exixj


 .

Slicewise Φ-definability is closely related to the model-checking problem for Φ: If
P ⊆ STR × Π∗ is slicewise Φ-definable, then P ≤fp

m MC(Φ). On the other hand, if
Φ is a decidable set of formulas, then the problem MC(Φ) is slicewise Φ-definable for
trivial reasons.

Definition 4.2. Let τ be a vocabulary, P ⊆ STR[τ ]×N a parameterized problem,
and Φ a class of formulas. P is Φ-Fagin-definable if there is a relation symbol X �∈ τ
(say, r-ary) and a sentence ϕ ∈ Φ[τ ∪ {X}] such that for all A ∈ STR[τ ] and k ∈ N

we have (A, k) ∈ P if and only if there is a B ⊆ Ar such that |B| = k and (A, B) |= ϕ.
(Here (A, B) denotes the τ ∪ {X}-expansion of A that interprets X by B.) Then ϕ
Fagin-defines P .

We often consider X as a relation variable and thus write ϕ(X) ∈ Φ[τ ] instead of
ϕ ∈ Φ[τ ∪ {X}] and A |= ϕ(B) instead of (A, B) |= ϕ.

For example, parameterized vertex cover VC is Fagin-defined by the formula

ϕVC := ∀y∀z(Eyz → (Xy ∨Xz)
)
.

It is easy to see that every problem that is FO-Fagin-definable is also FO-slicewise
definable. Indeed, if P ⊆ STR[τ ] × N is Fagin-defined by a formula ϕ(X) ∈ FO[τ ],
where X is r-ary, then it is slicewise FO-defined via the function δ : N → FO[τ ] with
δ(k) = ∃x̄1 . . .∃x̄k(

∧
1≤i<j≤k x̄i �= x̄j ∧ ϕk), where x̄1, . . . , x̄k are r-tuples of distinct

variables not occurring in ϕ, and ϕk is the sentence obtained from ϕ by replacing
each subformula of the form Xȳ by

∨k
i=1 x̄i = ȳ. Fagin definability implies slicewise

definability also for other reasonable classes Φ of formulas, e.g., for the class Σ1
1 of

formulas of second-order logic of the form ∃X1 · · · ∃Xlψ, where X1, . . . Xl are relation
variables and ψ is first-order.

The converse is certainly not true, not even for problems of the specific form P ⊆
STR[τ ]×N: It is obvious that there are slicewise FO-definable problems of arbitrarily
high classical complexity (choose δ in Definition 4.1 arbitrarily complex). On the
other hand, we have the following characterization of Σ1

1-Fagin-definable problems.
Proposition 4.3. Let P ⊆ STR[τ ]×N. Then, (1) and (2) are equivalent, where
(1) P is Σ1

1-Fagin-definable;
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(2) P is in NP (when considered as a classical problem) and for some r ≥ 1,
(A, k) ∈ P implies k ≤ |A|r.

Proof. The implication of (1) ⇒ (2) being clear, we turn to a proof of (2) ⇒ (1).
Choose r according to (2). Then,

{(A, B) | B ⊆ Ar and (A, |B|) ∈ P}

is a class of τ ∪ {X}-structures in NP, where X is r-ary. By Fagin’s theorem [14],
there is a Σ1

1-formula ϕ(X) of vocabulary τ ∪ {X} axiomatizing this class. Then,
ϕ(X) Σ1

1-Fagin-defines P .
Thus, slicewise definability is the more general notion. Nevertheless, Fagin defin-

ability can be very useful. We illustrate this by the following generalization of a result
due to Cai and Chen, namely, Theorem 3.5 of [3], which is based on a result due to
Kolaitis and Thakur [23] that syntactically characterizes certain minimization prob-
lems. It is motivated by comparing the formula ϕVC defining the fixed-parameter
tractable problem VC with the following formulas ϕDS and ϕCLIQUE defining the
W[1]-hard problems DS and CLIQUE, respectively:

ϕDS := ∀y∃x(Xx ∧ (x = y ∨ Exy)
)
,

ϕCLIQUE := ∀y∀z((Xy ∧Xz) → (y = z ∨ Eyz)
)
.

Observe that in ϕDS the relation variable X is in the scope of an existential quantifier
and in ϕCLIQUE it occurs negatively.

Theorem 4.4. Let τ be a vocabulary and P ⊆ STR[τ ] × N a parameterized
problem that is Fagin-defined by a FO[τ ]-formula ϕ(X) in which X does not occur in
the scope of an existential quantifier or negation symbol. Then P is in FPT.

Proof. For simplicity, let us assume that X is unary. Without loss of generality
we can assume that

ϕ = ∀y1 . . .∀yl
m∨
i=1

p∧
j=1

ψij ,

where each ψij is either Xyq for some q ∈ {1, . . . , l} or a first-order formula with
free variables in {y1, . . . , yl} in which X does not occur. In a preprocessing phase
we replace the latter ones by atomic formulas: For each such ψij we introduce a new
relation symbol Rij whose arity matches the number of free variables of ψij and let
τ∗ be the set of all these relation symbols. We let ϕ∗ be the formula obtained from
ϕ by replacing each subformula ψij(z̄) by Rij z̄. Then ϕ∗ = ∀y1 . . .∀yl

∨m
i=1 χi, where

each χi is a conjunction of atomic formulas.
For a structure A ∈ STR[τ ] we let A∗ be the τ∗-structure with universe A and

with

RA
∗

ij := {ā | A |= ψij(ā)}.

Then we have for B ⊆ A,

A |= ϕ(B) ⇐⇒ A∗ |= ϕ∗(B).

Given A, each RA
∗

ij can be computed in time O(|A|||ψij ||); thus A∗ can certainly be

computed in time O(|A|||ϕ||).
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Check-ϕ(A ∈ STR[τ ], k ∈ N)
1 compute A∗
2 initialize set S ⊆ Pow(A) by S := {∅}
3 for all ā ∈ Al do
4 for all B ∈ S do
5 if A∗ �|= ∨m

i=1 χi(B, ā) then
6 S := S \ {B}
7 for i = 1 to m do
8 compute B′ := β(B, ā, i)
9 if |B′| ≤ k and A∗ |= χi(B

′, ā)
10 then S := S ∪ {B′}
11 if S �= ∅
12 then accept
13 else reject.

Algorithm 1.

For 1 ≤ i ≤ m, ā = a1 . . . al ∈ Al, and B ⊆ A we let

β(B, ā, i) := B ∪ {aj | Xyj is a conjunct of χi}.

Since χi(X, ȳ) is positive in X, the following two statements are equivalent for every
B′ with B ⊆ B′ ⊆ A:

• A∗ |= χi(B
′, ā).

• β(B, ā, i) ⊆ B′ and A∗ |= χi(β(B, ā, i), ā).

This equivalence is used by Algorithm 1 to decide P .

Recall that, given a τ -structure A and a parameter k ∈ N, the algorithm is
supposed to decide whether there is a B ⊆ A with |B| = k such that for all ā ∈ Al

there is an i such that A∗ |= χi(B, ā).

The crucial observation to see that the algorithm is correct is that whenever the
main loop in lines 3–10 is entered, S is a set of subsets B ⊆ A such that |B| ≤ k and for
all ā considered so far (in earlier runs through the loop) we have A∗ |= ∨m

i=1 χi(B, ā).

To get a bound on the running time, we note that whenever a new set is added to
S (in line 10), then it is an extension of a strictly smaller set that has been removed
from S (in line 6). Furthermore, for each set removed (in line 6) at most m such
extensions can be added. Thus an upper bound for the number of sets that can be in
S at any time is mk. The main loop (in lines 3–10) is called nl times, where n := |A|.
This gives an overall bound on the running time of O(mk · nl) plus the time needed
to compute A∗.

Since l does not depend on the instance, but only on the formula ϕ, this yields
the fixed-parameter tractability of P .

Besides VC , many other parameterized problems can be shown to be fixed-
parameter tractable by a simple application of this theorem. Let us consider one
example in detail: The valence of a graph is the maximal number of neighbors a
vertex in the graph has. For an l ≥ 1, we consider the restriction of DOMINATING
SET to graphs of valence at most l, i.e., the following problem:
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VCl Input: Graph G.
Parameter: k ∈ N.

Question: Is the valence of G at most l and does G have
a dominating set of size at most k?

This problem is Fagin-defined by the following first-order formula:

∀x∃≤lz Exz ∧ ∀y0∀y1 . . .∀yl
(
∀z
(
Ey0z →

l∨
i=1

z = yi

)
→

l∨
i=0

Xyi

)
.

(∃≤mxψ(x) abbreviates ∃y1 . . .∃ym∀x(ψ(x) → ∨m
i=1 x = yi).)

Other examples of problems that can be shown to be in FPT by Theorem 4.4
are HITTING SET FOR SIZE THREE SETS, MATRIX DOMINATION, or SHORT
3DIMENSIONAL MATCHING. These problems are also considered in [10].

5. Homomorphisms, embeddings, and model-checking. In this section we
analyze the close relationship between the homomorphism problem, the embedding
problem, and model-checking problems for Σ1-formulas from the point of view of pa-
rameterized complexity (compare with [24] for a further analysis of this relationship).

A homomorphism from a τ -structure B into a τ -structure A is a mapping h : B →
A such that for all R ∈ τ and tuples b̄ ∈ RB we have h(b̄) ∈ RA. The parameterized
HOMOMORPHISM PROBLEM (HOM) is defined as follows:

HOM Input: A ∈ STR.
Parameter: B ∈ STR.

Question: Is there a homomorphism from B to A?

A (weak) embedding of B into A is an injective homomorphism from B to A. Note that
a graph H is isomorphic to a subgraph of a graph G in the usual graph theoretic sense
if there is an embedding ofH into G. Thus the following parameterized EMBEDDING
PROBLEM (EMB) is a generalization of the SI problem:

EMB Input: A ∈ STR.
Parameter: B ∈ STR.

Question: Is there an embedding of B into A?

The Gaifman graph of a τ -structure A is the graph G(A) with universe A in which
two elements a �= b are adjacent if there is an R ∈ τ and a tuple ā ∈ RA such that
both a and b occur in the tuple ā. For a class C of graphs we let STR[C] denote
the class of all structures whose Gaifman graph is in C. Note that STR[GRAPH ] =
STR. Furthermore, we let STR[τ, C] := STR[τ ]∩ STR[C] for every vocabulary τ and
STR[s, C] := STR[s] ∩ STR[C] for every s ≥ 1. We define restrictions HOM [. . . ]
and EMB[. . . ] of the respective problems, where for every possible restriction “. . . ”
in the square brackets we require the parameter B to belong to the class STR[. . . ].
For example, we let

EMB[s, C] := EMB ∩ (STR × STR[s, C]).
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Lemma 5.1. For all classes C of graphs and s ≥ 1 we have HOM [C] ≤fpp
m

EMB[C] and HOM [s, C] ≤fpp
m EMB[s, C].

Proof. Suppose we are given an instance (A,B) of HOM[C]. Let τ be the vo-
cabulary of A. Let AB be the τ -structure which for every element of A contains |B|
duplicates, i.e., AB := A×B and, for every r-ary R ∈ τ ,

RAB :=
{
((a1, b1), . . . , (ar, br))

∣∣ RAa1 . . . ar}.

Then, every homomorphism h : B → A gives rise to an embedding f : B → AB

defined by f(b) = (h(b), b) and every embedding f : B → AB induces a homomor-
phism h : B → A defined by letting h(b) be the projection on the first component of
f(b).

Note that, unless PTIME = NP, there is no polynomial time reduction from
EMB[C] to HOM [C] for the class C of all paths because HOM[C] can easily be
seen to be in PTIME by a dynamic programming algorithm, whereas EMB[2, C]
is NP-complete by a reduction from HAMILTONIAN PATH. Thus EMB[s, C] ≤fpp

m

HOM [s, C] does not hold for any s ≥ 2. However, we will see that for all s ≥ 2 and

C we actually have HOM [s, C] ≡fp
T EMB[s, C].

Before we show this, we introduce two related model-checking problems. With
each first-order formula ϕ we associate a graph G(ϕ). Its universe is var(ϕ), the set
of all variables in ϕ, and there is an edge between distinct x, y ∈ var(ϕ) in G(ϕ) if ϕ
has an atomic subformula in which both x, y occur.

Let ϕ
= be the formula obtained from ϕ by deleting all inequalities, i.e., all atomic
subformulas of the form x = y that occur in the scope of an odd number of negation
symbols. We are also interested in G(ϕ 
=). Let us see an example:

ϕ := ∃x1 . . .∃xk

 ∧

1≤i<j≤k
¬xi = xj ∧

k−1∧
i=1

Exixi+1


 .

G(ϕ) is the complete graph with vertex set {x1, . . . , xk}, whereas G(ϕ 
=) is the path
x1 . . . xk. Note that ϕ says that a graph has a subgraph isomorphic to a path of length
k, whereas ϕ 
= says that a graph contains a homomorphic image of a path of length
k. This generalizes to the following simple lemma, whose proof we omit.

Lemma 5.2. For every structure B ∈ STR there is a Σ1-sentence ϕB (whose

quantifier-free part is a conjunction of literals) such that G(ϕ 
=B ) = G(B) and for every
structure A we have

A |= ϕB ⇐⇒ there is an embedding of B into A,

A |= ϕ 
=B ⇐⇒ there is a homomorphism from B to A.

Furthermore, the mapping B �→ ϕB is computable in linear time.
For s ∈ N and a class C of graphs we let

Σ1[s, C] :=
{
ϕ ∈ Σ1[τ ]

∣∣ τ s-ary vocabulary,G(ϕ) ∈ C
}
,

Σ 
=1 [s, C] :=
{
ϕ ∈ Σ1[τ ]

∣∣ τ s-ary vocabulary,G(ϕ 
=) ∈ C
}
.

Furthermore, we let Σ1[C] :=
⋃

s≥1 Σ1[s, C] and Σ
=1 [C] :=
⋃

s≥1 Σ

=
1 [s, C].

Lemma 5.2 implies that for every s ≥ 1 and for every class C of graphs we have
HOM [s, C] ≤fpp

m MC(Σ1[s, C]) and EMB[s, C] ≤fpp
m MC(Σ 
=1 [s, C]). Unless PTIME =
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NP, the converse of these statements is wrong. To see this, let C be the class of all
graphs that consist only of isolated vertices, i.e., all graphs G with EG = ∅. Then
clearly HOM [C] and EMB[C] are in PTIME, but we can reduce the satisfiability

problem for propositional formulas to MC(Σ1[1, C]) and MC(Σ 
=1 [1, C]).
Theorem 5.3. Let C be a class of graphs and s ≥ 2. Then

HOM [s, C] ≡fp
T EMB[s, C] ≡fp

T MC(Σ 
=1 [s, C]) ≡fp
T MC(Σ1[s, C]).

Proof. We have already seen that HOM [s, C] ≤fp
T EMB[s, C] (Lemma 5.1) and

that EMB[s, C] ≤fp
T MC(Σ 
=1 [s, C]) (Lemma 5.2). To complete the cycle we shall prove

that MC(Σ 
=1 [s, C]) ≤fp
T MC(Σ1[s, C]) and that MC(Σ1[s, C]) ≤fp

T HOM [s, C].

We first prove that MC(Σ1[s, C]) ≤fp
T HOM[s, C]. Let ϕ ∈ Σ1[s, C], say, of vo-

cabulary τ , and let A be a τ -structure. We shall describe an algorithm that decides
whether A |= ϕ using HOM [s, C] as an oracle.

Let S be a binary relation symbol not contained in τ and τ ′ := τ ∪{S}. Further-
more, let A′ be the τ ′-expansion of A with SA

′
= ∅. Our algorithm first computes a

sentence ϕ′ :=
∨m

i=1 ∃x̄iψi of vocabulary τ ′ such that
(1) A |= ϕ if and only if A′ |= ϕ′;
(2) for 1 ≤ i ≤ m, the formula ψi is a conjunction of literals, and we have

G(ψi) = G(ϕ).
This can be achieved by first translating ϕ to a sentence whose quantifier-free part is
in disjunctive normal form, then swapping existential quantifiers and the disjunction,
and then adding dummy literals of the form ¬Sxy until G(ψi) = G(ϕ).

Let τ ′′ := τ ′ ∪ {R | R ∈ τ ′} ∪ {E,E}, where for all R ∈ τ ′ the symbol R is a new
relation symbol of the same arity as R, and E,E are new binary relation symbols.
Let A′′ be the τ ′′ expansion of A′ in which R is interpreted as the complement of RA

′′

and E,E are interpreted as equality and inequality, respectively. For 1 ≤ i ≤ m, we
define a τ ′′-structure Bi with G(Bi) = G(ϕ) such that A′ |= ∃x̄iψi if and only if there
is a homomorphism from Bi into A′′. We let Bi be the τ ′′-structure with universe
var(ψi) and

RBi := {y | Ry is a literal of ψi} (for R ∈ τ ′),

R
Bi

:= {y | ¬Ry is a literal of ψi} (for R ∈ τ ′),

EBi := {yz | y = z is a literal of ψi},
E
Bi

:= {yz | ¬y = z is a literal of ψi}.
It is obvious that Bi does indeed have the desired property. Altogether, our construc-
tion yields a parameterized T-reduction.

It remains to prove that MC(Σ 
=1 [s, C]) ≤fp
T MC(Σ1[s, C]). We use the so-called

color coding technique of Alon, Yuster, and Zwick [2].
Let l ≥ 1 and let X be a set. An l-perfect family of hash functions on X is a

family F of functions f : X → {1, . . . , l} such that for all subsets Y ⊆ X of size l
there is an f ∈ F such that f(Y ) = {1, . . . , l} (i.e., on Y , f is one-to-one). Alon,
Yuster, and Zwick [2] show that given n, l ≥ 1, an l-perfect family of hash functions
on {1, . . . , n} of size 2O(l) · log n can be computed in time 2O(l) · n · log n.

For a similar reason as outlined above, without loss of generality we can restrict
our attention to sentences ϕ ∈ MC(Σ
=1 [s, C]) whose quantifier-free part is a conjunc-
tion of literals. Given such a sentence ϕ = ∃x1 . . .∃xkψ, say, of vocabulary τ and
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a τ -structure A, we define a family of sentences ϕγ ∈ MC(Σ1[s, C]) and a family of
structures Af such that A |= ϕ if and only if there is a γ and f such that Af |= ϕγ .

A coloring of ϕ is a function γ : {1, . . . , k} → {1, . . . , k} such that γ(i) �= γ(j) if
¬xi = xj occurs in ϕ. For a coloring γ we let ψγ be the formula obtained from ψ by
replacing all literals ¬xi = xj by Cγ(i)xi ∧ Cγ(j)xj (here, C1, . . . , Ck are new unary

“color” relation symbols) and let ϕγ := ∃x1 . . .∃xkψγ . Note that G(ϕγ) = G(ϕ 
=).
Thus ϕγ ∈ MC(Σ1[s, C]).

With every f : A → {1, . . . , k}, which we call a coloring of A, we let Af be the

τ ∪ {C1, . . . , Ck}-expansion of A with C
Af

i := f−1(i) for 1 ≤ i ≤ k.
Observe that

A |= ϕ ⇐⇒ there is a coloring γ of ϕ and a coloring f of A such
that Af |= ϕγ .

(5.1)

The problem is that there are k|A| colorings of A, so (5.1) does not yet give rise to a
parameterized reduction. The crucial trick is that to achieve this equivalence we do
not have to consider all possible colorings f of A. For 1 ≤ l ≤ k, let Fl be an l-perfect
family of hash-function on A and F :=

⋃k
l=1 Fl. We claim that

A |= ϕ ⇐⇒ there is a coloring γ of ϕ and an f ∈ F such that Af |= ϕγ .(5.2)

The backward direction follows immediately from (5.1). For the forward direction,
suppose that A |= ϕ. Let ā ∈ Ak such that A |= ψ(ā). There is a function f ∈ F
whose restriction to {a1, . . . , ak} is one-to-one. Define γ by γ(i) := f(ai). Then, γ is
a coloring of ϕ, Af |= ψγ(ā), and hence Af |= ϕγ .

Since the family F can be chosen sufficiently small and computed sufficiently fast,
the equivalence (5.2) gives rise to a parameterized reduction.

Remark 5.4. We do not know if the parameterized T-reductions in Theorem
5.3 can be replaced by parameterized m-reductions. However, for many interesting
classes C they can be replaced. One such example is the class of all graphs. Similar
techniques work for all classes C of graphs for which there exists an algorithm that,
given a graph H ∈ C, computes a connected H′ ∈ C such that H is a subgraph of H′.
For all such classes C we can show that

HOM [s, C] ≡fp
m EMB[s, C] ≡fp

m MC(Σ 
=1 [s, C]) ≡fp
m MC(Σ1[s, C])

(for all s ≥ 1).

5.1. Sentences of bounded tree-width. Our main application of Theorem
5.3 is to sentences whose underlying graphs have bounded tree-width. In the time
since we submitted this article, considerable progress has been made in this area. For
an extensive discussion of model-checking algorithms based on tree-decompositions of
the sentences, we refer the reader to [16].

We think of a tree T as directed from its root, which we denote by rT , to the
leaves and thus can speak of a child and of the parent of a vertex.

A tree-decomposition of a τ -structure A is a pair (T , (At)t∈T ), where T is a tree
and (At)t∈T a family of subsets of A such that

(1) for every a ∈ A, the set {t ∈ T | a ∈ At} is nonempty and induces a subtree
of T (that is, is connected);

(2) for every k-ary relation symbol R ∈ τ and all a1, . . . , ak ∈ A such that
RAa1, . . . , ak there exists a t ∈ T such that a1, . . . , ak ∈ At.
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The width of a tree-decomposition (T , (At)t∈T ) is max{|At| | t ∈ T} − 1. The tree-
width tw(A) of A is the minimal width of a tree-decomposition of A.

For s ≥ 1, let Ws denote the class of all structures of tree-width at most s and
GWs := GRAPH ∩Ws. Note that Ws ⊆ STR[s+ 1] because a graph of tree-width s
has clique number at most s + 1.2 (The clique number of a graph G is the maximal
cardinality of a set of pairwise adjacent vertices of G.)

Plehn and Voigt [27] were the first to realize that tree-width is a relevant pa-
rameter for the problems considered in the previous section. They proved that the
parameterized embedding problem restricted to (parameter) graphs of bounded tree-
width is fixed-parameter tractable. Chekuri and Rajaraman [6] proved that for every
s ≥ 1 the problem HOM [GWs] is in PTIME (when considered as an unparameterized
problem) and therefore fixed-parameter tractable. They phrased their result in terms
of the equivalent conjunctive query containment problem (see also [24]).

Thus as a corollary of Theorem 5.3 we obtain the following corollary.
Corollary 5.5. Let s ≥ 1. Then the problems EMB[GWs], MC(Σ1[GWs]), and

MC(Σ
=1 [GWs]) are in FPT.
Papadimitriou and Yannakakis [26] proved the model-checking results of this

corollary for the related case of acyclic conjunctive queries.
Unfortunately, it turns out that Corollary 5.5 is the only real application of The-

orem 5.3. Very recently, Grohe, Schwentick, and Segoufin [20] have proved that
for every class C of graphs of unbounded tree-width and every s ≥ 2, the problem
HOM [C, s] is W[1]-complete under parameterized T-reductions.

6. FO-model-checking on graphs with excluded minors. The fixed-pa-
rameter tractability results of the previous section were obtained by putting syntacti-
cal restrictions on the sentences, i.e., the parameter of the model-checking problem. In
this section we put restrictions on the structures, i.e., the input of the model-checking
problem.

Recall the definition of the parameterized problem MC(Φ)|D for a class Φ of
formulas and a class D of structures:

MC(Φ)|D Input: A ∈ STR.
Parameter: ϕ ∈ Φ.

Question: Is A ∈ D and A |= ϕ?

Our starting point is the following theorem due to Courcelle [7]. Remember that
monadic second-order logic is the extension of first-order logic where one is allowed to
quantify not only over individual elements of a structure but also over sets of elements.
MSO denotes the class of all formulas of monadic second-order logic. Remember that
Ws denotes the class of all structures of tree-width at most s (for s ≥ 0).

Theorem 6.1 (see [7]). Let s ≥ 0. Then MC(MSO)|Ws
is in FPT.

A graph H is a minor of a graph G (we write H # G) if H can be obtained from
a subgraph of G by contracting edges. H is an excluded minor for a class D if H is
not a minor of any graph in D. Note that a class D of graphs has an excluded minor
if and only if there is an n ∈ N such that Kn is an excluded minor for D.

2This is slightly imprecise because a structure A ∈Ws might have a vocabulary of arbitrarily high
arity, as long as no tuple contained in a relation of A consists of more than s+ 1 distinct elements.
However, since any structure with this property can easily be transformed to an (s+1)-ary structure
that is essentially the same, we decided to accept this imprecision in exchange for a simpler notation.
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Examples of classes of graphs with an excluded minor are classes of graphs of
bounded tree-width or classes of graphs embeddable in a fixed surface.

Recall that for a class D of graphs, STR[D] denotes the class of all structures
whose Gaifman graph is in C.

Theorem 6.2. Let D be a PTIME-decidable class of graphs with an excluded
minor. Then MC(FO)|STR[D] is in FPT.

The rest of this section is devoted to the proof of this theorem, which needs some
preparation.

A class D of graphs is called minor closed if for all G ∈ D and H # G we have
H ∈ D. Robertson and Seymour proved the following theorem.

Theorem 6.3 (see [28]). Every minor-closed class of graphs is PTIME-decidable.
This, together with Theorem 6.2, immediately yields the following corollary.
Corollary 6.4. Let D � GRAPH be minor closed. Then MC(FO)|STR[D] is

in FPT.
Recall the definition of the Gaifman graph G(A) of a structure A (cf. p. 127).

The distance dA(a, b) between a, b ∈ A is the length of the shortest path from a to
b in G(A). For r ∈ N and a ∈ A, the r-ball around a is the set BAr (a) := {b ∈ A |
dA(a, b) ≤ r}. For an X ⊆ A, 〈X〉A denotes the substructure induced by A on X, i.e.,

the structure with universe X and R〈X〉
A
= RA ∩Xr for all r-ary relation symbols R

in the vocabulary of A. Furthermore, we let A \X := 〈A \X〉A.
The local tree-width of A is the function ltw(A) : N → N defined by

ltw(A)(r) := max
{
tw(〈BAr (a)〉A)

∣∣ a ∈ A
}
.

For functions f, g : N → N we write f ≤ g if f(n) ≤ g(n) for all n ∈ N. A class D of
structures has bounded local tree-width if there is a function λ : N → N such that for
all A ∈ D we have ltw(A) ≤ λ.

The “local” character of first-order formulas allows us to generalize Theorem 6.1
for first-order logic from classes of structures of bounded tree-width to classes of
structures of bounded local tree-width.

Theorem 6.5 (see [17]). Let D be a PTIME-decidable class of structures of
bounded local tree-width. Then MC(FO)|D is in FPT.

For λ : N → N we let

GL(λ) :=
{G ∈ GRAPH

∣∣ ∀H # G : ltw(H) ≤ λ
}
,

and, for µ ∈ N,

B(λ, µ) :=
{A ∈ STR

∣∣ ∃X ⊆ A (|X| ≤ µ ∧ G(A \X) ∈ GL(λ))
}
.

Note that the clique-number of a graph in GL(λ) is at most λ(1)+ 1; thus the clique-
number of a graph in B(λ, µ) is at most µ + λ(1) + 1. This implies that B(λ, µ) ⊆
STR[µ+ λ(1) + 1].3

Lemma 6.6. Let λ : N → N and µ ∈ N. Then MC(FO)|B(λ,µ) is in FPT.
Proof. The class GL(λ) of graphs is minor closed and hence PTIME-decidable by

Theorem 6.3. This implies that B(λ, µ) is PTIME-decidable.
Then for µ = 0 the statement follows from Theorem 6.5. The case µ > 0 can be

reduced to the case µ = 0 as follows: For every A ∈ B(λ, µ) and sentence ϕ ∈ FO, we
define a structure A∗ ∈ B(λ, 0) and a sentence ϕ∗ ∈ FO in such a way that A |= ϕ

3Cf. footnote 2.
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if and only if A∗ |= ϕ∗, and the mappings A �→ A∗ and ϕ �→ ϕ∗ are computable in
polynomial time.

Therefore, suppose we are given A ∈ B(λ, µ) and ϕ ∈ FO. For simplicity, we
assume that their vocabulary consists of a single binary relation symbol E.

Let X ⊆ A such that |X| ≤ µ and A \ X ∈ B(λ, 0). Such an X can be
computed in polynomial time because the class B(λ, 0) is PTIME-decidable. Say,
X = {a1, . . . , aµ}.

Let τ := {E,P1, . . . , Pµ, Q1, . . . , Qµ, R1, . . . , Rµ}, where the Pi, Qi, and Ri are
unary. We let A∗ := A, EA

∗
:= EA ∩ (A \X)2, and, for 1 ≤ i ≤ µ,

PA
∗

i := {ai},
QA

∗
i := {b ∈ A | EAaib},

RA
∗

i := {b ∈ A | EAbai}.
Furthermore, we let ϕ∗ be the sentence obtained from ϕ by replacing each subformula
Exy by

Exy ∨
µ∨

i=1

((Pix ∧Qiy) ∨ (Piy ∧Rix)).

Clearly, these definitions lead to the desired result.
To complete the proof of Theorem 6.2 we use a decomposition theorem for non-

trivial minor-closed classes of graphs that roughly says that all graphs in such a class
are built up in a tree-like manner from graphs in a B(λ, µ). It is based on Robert-
son and Seymour’s deep structure theory for graphs without Kn-minors. The precise
statement requires some new notation. Let (T , (At)t∈T ) be a tree-decomposition of a
structure A. The torso of this decomposition at t ∈ T , denoted by [At], is the graph
with universe At and an edge between two distinct vertices a, b ∈ At if either there is
an edge between a and b in the Gaifman graph G(A) or there exists an s ∈ T \ {t}
such that a, b ∈ As. (T , (At)t∈T ) is a tree-decomposition over a class D of graphs if
all its torsos belong to D.

Theorem 6.7 (see [19]). Let D be a class of graphs with an excluded minor. Then
there exist λ : N → N and µ ∈ N such that every G ∈ D has a tree-decomposition over
B(λ, µ).

Furthermore, given G, such a decomposition can be computed in PTIME.
Clearly, this theorem implies the analogous statement for all structures in STR[D].
The adhesion of a tree-decomposition (T , (At)t∈T ) is max{|As∩At| | ET st}. The

clique number of a class of structures is the maximum of the clique numbers of the
Gaifman graphs of structures in D, if this maximum exists, or ∞ otherwise. Note
that if (T , (At)t∈T ) is a decomposition over a class D, then the clique-number of D
is an upper bound for the adhesion of (T , (At)t∈T ). Remembering that the clique-
number of B(λ, µ) is λ(1) + µ + 1, we see that the adhesion of a tree-decomposition
over B(λ, µ) is at most λ(1) + µ+ 1.

Proof of Theorem 6.2. Let D be a PTIME-decidable class of graphs with an
excluded minor and λ, µ such that every G ∈ D has a tree-decomposition over B(λ, µ).
Let ν := λ(1) + µ+ 1.

We shall describe an algorithm that, given A ∈ STR[D] and ϕ ∈ FO, decides if
A |= ϕ.

Therefore let A ∈ STR[D], say, of vocabulary τ and ϕ ∈ FO[τ ]. Our algorithm
starts by computing a tree-decomposition (T , (At)t∈T ) of A over B(λ, µ). For t ∈ T
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we let A≥t :=
⋃

u≥tAu (u ≥ t if there is a path from t to u in the (directed) tree T ).

In particular, A≥r = A for the root r := rT of T .
Furthermore, we let Br := ∅ and Bt := At ∩ As for t ∈ T \ {r} with parent s.

Recall that the adhesion of (T , (At)t∈T ) is at most ν. Thus |Bt| ≤ ν for t ∈ T .
The quantifier rank of a first-order formula is the maximal depth of nested quan-

tifiers in this formula. Let q be the quantifier rank of ϕ. Simple techniques from logic
show that there is an algorithm that, given a vocabulary τ and q,m ∈ N, computes a
finite set Φτ,q,m of first-order formulas of vocabulary τ of quantifier rank ≤ q with free
variables among v1, . . . , vm such that every such formula is equivalent to a formula
in Φτ,q,m. Without loss of generality we can assume that ϕ ∈ Φτ,q,m (otherwise we
can compute a ϕ′ ∈ Φτ,q,m equivalent to ϕ and work with ϕ′).

A (τ, q,m)-type is a subset of Φτ,q,m. Given a τ -structure A′ and a set B =

{b1, . . . , bm} ⊆ A′ let tpA
′

q (B)—more precisely, tpA
′

q (b1, . . . , bm)—be the (τ, q,m)-
type

tpA
′

q (B) := {ψ(v1, . . . , vm) ∈ Φτ,q,m | A′ |= ψ(b1, . . . , bm)}.
We come back to our structure A and the tree-decomposition (T , (At)t∈T ). By in-

duction from the leaves to the root, for every t ∈ T we compute tp
〈A≥t〉A
q (Bt), which

for brevity we denote by tp≥tq (Bt). Since Br = ∅, tp≥rq (Br) is a set of sentences, and

we have A |= ϕ if and only if ϕ ∈ tp≥rq (Br).
Therefore let t be a vertex of T and assume that we have already computed

tp≥uq (Bu) for all children u of t (if there are any). (Actually, the case that t has
no children is much simpler than the following general case because it is a direct
application of Lemma 6.6.)

For every (τ, q,m)-type Φ we introduce a new (m + 1)-ary relation symbol RΦ.
Furthermore, we let P1, . . . , Pν be new unary relation symbols and τ ′ := τ ∪ {RΦ |
m ≤ ν, Φ a (τ, q,m)-type} ∪ {P1, . . . , Pν}. In four steps, we define a τ ′-structure Ãt

that contains all the relevant information to compute tp≥tq (Bt). In the first three
steps we define “intermediate” structures A1

t , A2
t , A3

t .
(1) A1

t is the induced substructure of A with universe At.
(2) Suppose that Bt = {b1, . . . , bm} for an m ≤ ν. Then A2

t is the τ ∪ {P1,

. . . , Pν}-expansion of A1
t with P

A2
t

i := {bi} for 1 ≤ i ≤ m and P
A2

t
i := ∅ for

m+ 1 ≤ i ≤ ν.
(3) A3

t is obtained from A2
t by adding a new vertex cu for every child u of t and

edges from cu to all vertices of Bu.
(4) Ãt is the τ

′-expansion of Ã3
t with

RÃt

Φ :=
{
(d1, . . . , dmu , cu)

∣∣ u child of t,

Bu = {d1, . . . , dmu}, tp≥uq (Bu) = Φ
}
.

Standard Ehrenfeucht–Fräıssé-type methods show that there is a computable function
that associates with every formula ψ ∈ Φτ,q,m a sentence ψ̃ ∈ FO[τ ′] such that

ψ ∈ tp≥tq (Bt) if and only if Ãt |= ψ̃.

We claim that Ãt ∈ B(λ + 1, µ). To see this, observe that the Gaifman graph

G(Ãt) is the graph obtained from the torso [At] by adding the vertices cu and edges
between cu and every element of Bu. Recall that, by the definition of the torso, each
Bu is a clique in [At]. It is easy to see that adding vertices and connecting them with
cliques can increase the tree-width of a graph by at most one. This implies the claim.
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ModelCheckD(A ∈ STR, ϕ ∈ FO)
1 if G(A) �∈ D then reject
2 compute tree-decomposition (T , (At)t∈T ) of A over B(λ, µ)
3 q := qr(ϕ), τ := vocabulary of ϕ
4 for m = 0 to ν
5 compute Φτ,q,m

6 for all t ∈ T (from the leaves to the root)

7 compute Ãt

8 tp≥tq (Bt) := ∅
9 m := |Bt|
10 for all ψ ∈ Φτ,q,m

11 compute ψ̃

12 if Ãt |= ψ̃
13 then tp≥tq (Bt) := tp≥tq (Bt) ∪ {ψ}
14 if ϕ ∈ tp≥rq (Br)
15 then accept
16 else reject.

Algorithm 2.

Now we can put everything together and obtain an algorithm for MC(FO)STR[D],
a high-level description of which is given as Algorithm 2. Its correctness is straight-
forward. Let us have a look at the running time: Let n be the size of the input
structure. Then lines 1 and 2 require time polynomial in n (independently of ϕ). The
time required in lines 3–5 only depends on ϕ. The main loop in lines 6–13 is called |T |
times, which is polynomial in n. Computing Ãt is polynomial in |At| and the number
of children of t since we have already computed tp≥uq (Bu) for all children u of t (with

constants heavily depending on ||ϕ||). The main task is to decide whether Ãt |= ψ̃

in line 12; by Lemma 6.6 this is fixed-parameter tractable because Ãt ∈ B(λ+ 1, µ).
The time required in lines 14–16 again depends only on ϕ.

A consequence of our results is that slicewise first-order definable parameterized
problems are fixed-parameter tractable when restricted to classes of structures whose
underlying class of graphs has an excluded minor.

Corollary 6.8. Let D be a PTIME-decidable class of graphs with an excluded
minor and P ⊆ STR × Π∗ a parameterized problem that is slicewise FO-definable.
Then P |STR[D] is in FPT.

7. A logical characterization of fixed-parameter tractability. In this sec-
tion we give a characterization of FPT in the spirit of descriptive complexity theory.

We briefly review some facts from this area (see [13, 22] for details). It is common
in descriptive complexity theory to identify decision problems, usually modeled by
languages L ⊆ Σ∗ for a finite alphabet Σ, with classes of finite structures. More
precisely, one identifies problems with classes of ordered finite structures. An ordered
structure is a structure whose vocabulary contains the binary relation symbol ≤, and
this symbol is interpreted as a linear order of the universe. ORD denotes the class of
all ordered structures. In this section, τ always denotes a vocabulary that contains
≤.

One of the most important results in descriptive complexity theory is the Immer-
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man–Vardi theorem [21, 30] saying that a class of ordered structures is in PTIME if
and only if it is definable in least-fixed point logic FO(LFP). More concisely,

PTIME = FO(LFP).

We prove a similar result characterizing the class FPT in terms of the finite variable
least fixed-point logics LFPs, for s ≥ 1, which were introduced by Kolaitis and Vardi
[25]. Analogously to the classical setting we model parameterized problems by subsets
of ORD[τ ]× N for some τ .

Theorem 7.1. A parameterized problem P ⊆ ORD[τ ]×N is in FPT if and only
if there is an s ≥ 1 such that P is slicewise LFPs-definable. More concisely, we may
write

FPT =
⋃
s≥1

slicewise-LFPs.

In the proof of this result we assume that the reader is familiar with descrip-
tive complexity theory, in particular with least fixed-point logic and the proof of the
Immerman–Vardi theorem. Those who are not may safely skip the rest of this section.

We first recall the definition of LFPs: In the terminology of [13, p. 174], LFPs-
sentences are FO(LFP)-sentences in the form

∃ȳ[S–LFPx̄1,X1,... ,x̄m,Xm
ϕ1, . . . , ϕm]ȳ,

where ϕ1, . . . , ϕm are first-order formulas with at most s individual variables. (That
is, LFPs-sentences are existential closures of simultaneous fixed-points over FOs-
formulas.)

We use the following two facts, the first implicit in [31] and the second in the
proof of the Immerman–Vardi theorem (cf. [13]). Fix τ and s ∈ N and let n always
denote the size of the input structure.

(1) There is a computable function that associates an O(n2s)-algorithm Aϕ with
each ϕ ∈ LFPs[τ ] such that Aϕ accepts a structure A ∈ ORD[τ ] if and only
if A satisfies ϕ.

(2) There is a t ∈ N and a computable function that associates with every O(ns)-
algorithm A accepting a class C ⊆ ORD[τ ] a sentence ϕA ∈ LFPt[τ ] such
that a τ -structure A satisfies ϕA if and only if A ∈ C.

There is a slight twist in (2). When proving it, one usually assumes that all
structures are sufficiently large, in particular larger than the constant hidden in O(ns).
This way it can be assumed that the algorithm is actually an ns+1-algorithm (without
any hidden constants). Then one argues that small structures are no problem because
they can be described up to isomorphism in first-order logic. When restricting the
number of variables, one has to be careful with such an argument. Luckily, we are
safe here because we consider only ordered structures, and there is a t ∈ N (depending
on τ) such that every structure A ∈ ORD[τ ] can be characterized up to isomorphism
by an FOt-sentence.

Proof of Theorem 7.1. For the backward direction, suppose that P ⊆ ORD[τ ]×N

is slicewise LFPs-definable via δ : N → LFPs. Then Algorithm 3 shows that P is in
FPT. The crucial fact is that lines 1 and 2 do not depend on the input structure A
and line 3 requires time O(n2s).

For the forward direction, suppose that P ⊆ ORD[τ ] × N is in FPT. Choose
f : N → N, c ∈ N and an algorithm A deciding P in time f(k) · nc. The algorithm
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Decide-P(A ∈ ORD, k ∈ N)
1 compute δ(k) ∈ LFPs

2 compute Aδ(k) (cf. (1))
3 simulate Aδ(k) on input A
4 if Aδ(k) accepts A
5 then accept
6 else reject.

Algorithm 3.

A gives rise to a sequence Ak (k ≥ 1) of algorithms, where Ak decides the class
{A | (A, k) ∈ P} ⊆ ORD[τ ] in time O(nc). Then (2) yields the desired slicewise
definition of P .

8. Beyond FPT. In this last section we discuss how logical definability is related
to the classes of the W-hierarchy. We introduce another hierarchy of parameterized
problems, which we call the A-hierarchy, in terms of model-checking problems for
first-order logic and show that the A-hierarchy can be seen as a parametric analogue
of the polynomial hierarchy. We then discuss the relation between the A-hierarchy
and the W-hierarchy.

Our treatment is motivated by the following two results. They relate the class
W[1] to model-checking and computations of nondeterministic Turing machines, re-
spectively. Recall that MC(Σ1[s]) denotes the parameterized model-checking problem
for existential formulas in prenex normal form whose vocabulary contains at most
s-ary relation symbols.

Theorem 8.1 (Downey, Fellows, and Regan [11]). MC(Σ1)|GRAPH is W[1]-
complete under parameterized m-reductions.

Proof. We prove that CLIQUE ≡fp
m MC(Σ1)|GRAPH.

CLIQUE ≤fp
m MC(Σ1)|GRAPH follows from the fact that CLIQUE is slicewise

Σ1-definable, so we only have to prove the converse.

An atomic k-type (in the theory of graphs) is a sentence θ(x1, . . . , xk) of the form∧
1≤i<j≤k αij(xi, xj), where αij(xi, xj) is either xi = xj or Exixj or (¬Exixj ∧¬xi =

xj) (for 1 ≤ i < j ≤ k).

It is easy to see that there is a computable mapping f that associates with every
EFO-sentence ϕ a sentence ϕ̃ of the form

l∨
i=1

∃x1 . . .∃xkθi(x1, . . . , xk),(8.1)

where each θi is an atomic k-type, such that for all graphs G we have G |= ϕ ⇐⇒
G |= ϕ̃.

For each graph G and each atomic k-type θ(x̄) =
∧

1≤i<j≤k αij(xi, xj) we define
a graph h(G, θ) as follows:

• The universe of h(G, θ) is {1, . . . , k} ×G.
• There is an edge between (i, v) and (j, w), for 1 ≤ i < j ≤ k and v, w ∈ G, if

G |= αij(v, w).

Then h(G, θ) contains a k-clique if and only if G |= ∃x̄θ(x̄). Now we are ready to
define the reduction from MC(Σ1)|GRAPH to CLIQUE. Given an instance (G, ϕ) of
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MC(Σ1)|GRAPH, we first compute the sentence

ϕ̃ =

l∨
i=1

∃x1 . . .∃xkθi.

We let G′ be the disjoint union of the graphs h(G, θi) for 1 ≤ i ≤ l. Then G′ has a
k-clique if and only if G |= ϕ.

Theorem 8.2 (Cai et al. [4]). The following parameterized problem SHORT
TURING MACHINE ACCEPTANCE (NM)4 is W[1]-complete:

NM Input: A nondeterministic Turing machine M .
Parameter: k ∈ N.

Question: Does M accept the empty word in at most
k steps?

Downey and Fellows call Theorem 8.2 a parameterized “analogue of Cook’s the-
orem.” In our notation, we may write [NM ]fpm = W[1]. It is now very natural to
define the following “parameterized analogue of the polynomial hierarchy,” which we
call the A-hierarchy, by letting A[t] := [AMt]

fp
m for all t ≥ 1:

AMt Input: An alternating Turing machineM whose ini-
tial state is existential.

Parameter: k ∈ N.
Question: Does M accept the empty word in at most

k steps with at most t alternations?

Note that NM = AM1; thus W[1] = A[1]. Our following theorem can be seen as a
natural generalization of Theorem 8.1.

Theorem 8.3. For all t ≥ 1, the problem MC(Σt)|GRAPH is A[t]-complete under
parameterized m-reductions. Thus

A[t] = [MC(Σt)|GRAPH]
fp
m =

⋃
s≥1

[MC(Σt[s])]
fp
m.

Proof. The second equality follows from Corollary 3.4(3).
To prove that MC(Σt)|GRAPH ≤fp

m AMt, we first observe that, for every graph G
and every quantifier-free formula θ(x1, . . . , xm), in time p(||θ||) · |G|2, for a suitable
polynomial p, we can construct a deterministic Turing machine M(G, θ) with input al-
phabet G that accepts an input word a1 . . . am over G if and only if G |= θ(a1, . . . , am)
and that performs at most f(||θ||) steps for some computable function f : N → N.
Only to give an example, to check whether Exkxl holds, say, with k < l, we need
states s(i) for 1 ≤ i ≤ k and s(i, a) for k < i ≤ l, a ∈ G. The machine starts in state
s(1) with head in position 1 in state s(1). It moves its head right until it reaches
position k in state s(k), reads ak, and goes to position (k + 1) in state s(k + 1, ak).
Then it moves right again until it reaches position l in state s(l, ak). From this state
it can reach an accepting state if and only if EGakal.

4NM stands for nondeterministic Turing machine. This notation should be seen in connection
with the AMt below, which refers to alternating Turing machines.



FIXED-PARAMETER TRACTABILITY AND MODEL-CHECKING 139

Now suppose we are given an instance of MC(Σt)|GRAPH, i.e., a graph G and a
sentence

ϕ = ∃x11 . . .∃x1k1
∀x21 . . .∀x2k2

. . . Qxt1 . . . Qxtkt
θ,

where θ is quantifier-free. Then the following alternating Turing machine M(G, ϕ)
accepts the empty word if and only if G |= ϕ: It first writes a sequence of elements of
G on the tape using existential and universal states appropriately and then simulates
M(G, θ) on this input. Again g(||θ||), for some computable function g, is an upper
bound for the number of steps M(G, ϕ) has to perform.

To finish the proof, by Corollary 3.4(3) it suffices to show that AMt ≤fp
m MC(Σt[τ ])

for a suitable vocabulary τ . To illustrate the idea, we first consider the case t = 1.
Suppose we are given a nondeterministic Turing machine M with alphabet Σ, set Q
of states, initial state q0, accepting state qacc, and transition relation δ. Let ΣH :=
{aH | a ∈ Σ}, aH coding the information that the head of M scans a cell containing
a. Let τ := {ST,AL, H, IN,ACC, R, L, S} with unary ST,AL, H, IN,ACC and 4-ary
R,L, S and let AM be the τ -structure given by

AM := Q∪̇Σ∪̇ΣH ,
STAM := Q, ALAM := Σ, HAM := ΣH ,
INAM := {q0}, ACCAM := {qacc},
RAM := {(q, aH , b, q′) | (q, a, 1, b, q′) ∈ δ},
LAM := {(q, aH , b, q′) | (q, a,−1, b, q′) ∈ δ},
SAM := {(q, aH , bH , q′) | (q, a, 0, b, q′) ∈ δ} ∪ {(qacc, aH , aH , qacc) | a ∈ Σ},

where (q, a, h, b, q′) ∈ δ means that if M is in state q and its head scans a ∈ Σ, then
M replaces a by b, moves its head one cell to the right (h = 1), moves to the left
(h = −1), or does not move its head (h = 0); finally, it changes to state q′.

Let k be given as parameter for AM1. In k steps, M scans at most the first k
cells. The quantifier-free formula (note that the following formulas depend only on k
and not on M)

ϕconfig(x, y1, . . . , yk) := STx ∧
k∨

i=1


Hyi ∧

∧
j 
=i

ALyj




states that (x, y1, . . . , yk) is a configuration with state x, with the head facing yi,
and with yj being the content of the jth cell (j �= i). Let ϕstart(x, y1, . . . , yk) be a
quantifier-free formula stating that (x, y1, . . . , yk) is the starting configuration. Simi-
larly, we define a quantifier-free formula ϕstep(x, y1, . . . , yk, x

′, y′1, . . . , y
′
k) stating that

the configuration (x′, y′1, . . . , y
′
k) is the successor configuration of (x, y1, . . . , yk) (we

agree that each accepting configuration is its own successor).
Now, the equivalence

M stops in ≤ k steps ⇐⇒ AM |= ϕk

holds for the following existential sentence ϕk:

∃x1∃y11 . . .∃y1k . . . ∃xk∃yk1 . . .∃ykk(ϕstart(x, y11, . . . , y1k)

∧∧k−1
i=1 ϕstep(xi, yi1, . . . , yik, xi+1, yi+11, . . . , yi+1k) ∧ ACCxk).

For t ≥ 1, we can proceed similarly with the addition that universal quantifiers are
needed to take care of universal states of the input machine. Now, τ also contains two
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further unary symbols F (for the existential states) and U (for the universal states)
which get the corresponding interpretations in AM . For example, for t = 2, we can
take a Σt-sentence equivalent to

∨
l≤k

∃x1 ∃y11 . . .∃y1k . . . ∃xk∃yl1 . . .∃ylk
(
ϕstart(x, y11, . . . , y1k)

∧∧l−1
i=1 ϕstep(xi, yi1, . . . , yik, xi+1, yi+1 1, . . . , yi+1 k)

∧Fx1 ∧ . . . ∧ Fxl−1 ∧ Uxl

∧∀xl+1∀yl+1 1 . . .∀yl+1 k . . . ∀xk ∀yk1 . . .∀ykk((
Uxl+1 ∧ . . . ∧ Uxk−1

∧ ∧k−1
i=l ϕstep(xi, yi1, . . . , yik, xi+1, yi+1 1, . . . , yi+1 k)

)→ ACCxk
))

.

(Without loss of generality we assume that the accepting state is both existen-
tial and universal and that at least one transition is always possible in a universal
state.)

The following result due to Downey, Fellows, and Regan [11] allows us to compare
the W- and the A-hierarchy. Let t, u ≥ 1. A formula ϕ is Σt,u if it is Σt and all
quantifier blocks after the leading existential block have length ≤ u.

Theorem 8.4 (see [11]). For all t ≥ 1,

W[t] =
⋃

τ vocabulary
u≥1

[MC(Σt,u[τ ])]
fp
m =

⋃
u≥1

[MC(Σt,u)|GRAPH]
fp
m.

Note that for t = 1, this is Theorem 8.1. The crucial step in proving the the-
orem for t ≥ 2 is to establish the W[t]-completeness of the problems WEIGHTED
MONOTONE t-NORMALIZED SATISFIABILITY (for even t) and WEIGHTED
ANTIMONOTONE t-NORMALIZED SATISFIABILITY (for odd t ≥ 3). We refer
the reader to [10] for the (difficult) proofs of these results. Once these basic complete-
ness results are established, it is relatively easy to derive Theorem 8.4 (cf. also our
proof of Theorem 8.7). We encourage the reader to give a purely “logical” proof of
the second equality in the theorem.

Since Σ1,u = Σ1, we get

W[1] =
⋃

τ vocabulary

[MC(Σ1[τ ])]
fp
m = [MC(Σ1)|GRAPH]

fp
m = A[1].

By Theorem 8.3, W[t] ⊆ A[t] for all t ≥ 2. The question whether W[t] = A[t] for
all t remains open; in view of Theorem 8.3 this question is equivalent to W[t] =
[MC(Σt)|GRAPH]

fp
m for all t ≥ 1. In this form it is stated as an open problem in [11].

Consider, for example, the following parameterized problem:

P0 Input: Graph G.
Parameter: (k, l) ∈ N 2.

Question: Are there a1, . . . , ak ∈ G such that every
clique of size l contains an ai?



FIXED-PARAMETER TRACTABILITY AND MODEL-CHECKING 141

Since P0 is slicewise Σ2-definable, we have P0 ∈ A[2]. However, is P0 in W[2]?
In the definition of the W-hierarchy we can restrict the length of the nonleading

quantifier-blocks to one.
Proposition 8.5. For all t ≥ 1,

W[t] =
⋃

τ vocabulary

[MC(Σt,1[τ ])]
fp
m.

Proof. The inclusion ⊇ being trivial we turn to a proof of ⊆: Fix τ and u ≥ 1.
We show that MC(Σt,u[τ ]) ≤fp

m MC(Σt,1[τ
′]) for suitable τ ′. The idea is to replace the

blocks of at most u quantifiers by a single quantifier ranging over the set of u-tuples of
a structure. To explain this idea we first use a vocabulary containing function symbols
(and sketch afterwards how one can do without). Let τ ′ := τ ∪{T, p1, . . . , pu}, where
T is a unary relation symbol (for ordered u-tuples) and p1, . . . , pu are unary function
symbols (the projection functions). Given a τ -structure A let A′ be a τ ′-structure
with

A′ := A∪̇Au, TA
′
:= Au,

where for (a1, . . . , au) ∈ Au, pi(a1, . . . , au) = ai and where the relation symbols of τ
are interpreted as in A. Now, for example, for

ϕ = ∃x1 . . .∃xk∀y1 . . .∀yuψ(x̄, ȳ)

with quantifier-free ψ, let

ϕ′ = ∃x1 . . .∃xk∀y(¬Tx1 ∧ · · · ∧ ¬Txk ∧ (Ty → ψ(x̄, p1(y) . . . pu(y)))).

Then,

A |= ϕ ⇐⇒ A′ |= ϕ′,

which gives the desired parameterized m-reduction.
Let us explain, for the case t = 2, how to proceed to avoid function symbols.

One has to add to τ , besides T as above, for every relation symbol R ∈ τ , say, r-
ary, every subset M ⊆ {1, . . . , r}, and every function ρ : M → {1, . . . , u} a new
relation symbol RM,ρ; e.g., if M = {s, . . . , r}, then RA

′
M,ρa1 . . . as−1b if and only if

a1 . . . as−1 ∈ A, b = (b1, . . . , bu) ∈ Au, and RAa1 . . . as−1bρ(s) . . . bρ(r); and a subfor-
mula Rxi1 . . . xis−1yρ(s) . . . yρ(r) of ϕ is replaced by RM,ρxi1 . . . xis−1y.

Downey, Fellows, and Regan [11] also gave a (much simpler) characterization of
the W-hierarchy in terms of Fagin definability. We find it worthwhile to sketch a
short proof of this result. For a class Φ of formulas we let FD(Φ) be the class of all
problems that are Φ-Fagin-definable. Let Πt[s] denote the class of all Πt-formulas
whose vocabulary is at most s-ary.

Theorem 8.6 (see [11]). For all t ≥ 1 we have W[t] = [FD(Πt[2])]
fp
m = [FD(Πt)]

fp
m.

Proof. Recall that W[t] =
⋃

d≥1[WSAT(Ct,d)]
fp
m, where Ct,d is the class of all

propositional formulas of the form

∧
i1

∨
i2

. . .
(∧

/
∨)

it

ϕi1...it ,(8.2)
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where the ϕi1...it are small formulas of depth at most d.
To prove that W[t] ⊆ [FD(Πt[2])]

fp
m, we first transform a propositional formula ϕ

of the form (8.2) into a propositional formula ϕ′ of essentially the same form, but with
all the ϕi1...it being disjunctions (if t is odd) or conjunctions (if t is even) of exactly
d′ literals, for some constant d′ depending only on d. This can be done by first
transforming the small formulas into equivalent formulas in conjunctive normal form
or disjunctive normal form, respectively, and then repeatedly replacing disjunctions
(respectively, conjunctions) γ with less than the maximum number of literals by the
two clauses γ ∨X and γ ∨¬X (γ ∧X and γ ∧¬X, respectively) for some variable X
not appearing in γ.

We associate with ϕ′ an {E,P,N, T, L}-structure C which is obtained from the
tree corresponding to ϕ′ as follows: We first remove the root. Then we identify
all leaves corresponding to the same propositional variable. To indicate whether a
variable occurs positively or negatively in a clause, we use the binary relations P and
N . The unary relation T contains all the top level nodes, and the unary relation L
contains all the (former) leaves. It is easy to write a Πt-formula ψ′(X) such that ϕ′

has a satisfying assignment of weight k if and only if there exists a k-element subset
B ⊆ C such that C |= ψ′(B).

This can best be illustrated with a simple example: Let

ϕ′ := (X ∨ Y ∨ Z) ∧ (X ∨ ¬Y ∨ Z) ∧ (X ∨ ¬Y ∨ ¬Z) ∧ (¬X ∨ Y ∨ ¬Z).

The corresponding structure C is displayed in Figure 8.1.

X Y Z

Fig. 8.1.

We let

ψ′(U) :=∀x(Ux → Lx) ∧ ∀x∀y1∀y2∀y3
((

Tx ∧
3∧

i=1

Exyi ∧
∧

1≤i<j≤3
yi �= yj

)

−→
3∨

i=1

(
(Pxyi ∧ Uyi) ∨ (Nxyi ∧ ¬Uyi)

)
)
.

To prove [FD(Πt)]
fp
m ⊆ W[t], we note only that for every formula ψ(X) ∈ Πt and

every structure A, there is a Ct,d-formula ϕ with the property that every assignment
α for ϕ corresponds to a set B, whose size is the weight of the assignment, such
that α satisfies ϕ if and only if A |= ψ(B). Here d is a constant that depends only
on ψ. Furthermore, the transformation (A, ψ) �→ ϕ is computable in time polynomial
in A.

We do not know of any simple proof of the equivalence between the two char-
acterizations of the W-hierarchy in terms of slicewise Σt,u-definability (cf. Theorem
8.4) and Πt-Fagin definability. While the proof of the previous theorem shows that
Πt-Fagin definability is actually quite close to the definition of W[t] in terms of the
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weighted satisfiability problem for Ct-formulas, it seems that it is a significant step
to get from there to slicewise Σt,u-definability.

Our last result is another characterization of the W-hierarchy in terms of Fagin
definability that is much closer to the slicewise characterization. A first-order formula
ϕ(X) is bounded to the r-ary relation variable X if in ϕ(X) quantifiers appear only
in the form ∃x1 . . .∃xr(Xx1 . . . xr ∧ ψ) or ∀x1 . . .∀xr(Xx1 . . . xr → ψ), which we
abbreviate by ∃x̄ ∈ X ψ and ∀x̄ ∈ X ψ, respectively. For t ≥ 1 we let Πb

t be the class
of all formulas ϕ(X) of the form

∀x̄1∃x̄2 . . . Qx̄tθ,

where Q = ∀ if t is odd and Q = ∃ otherwise and where θ is bounded to X.
For example, CLIQUE is Fagin-defined by the Πb

0-formula

∀x ∈ X∀y ∈ X(x �= y → Exy)

and DOMINATING SET by the Πb
1-formula

∀x∃y ∈ X(x = y ∨ Exy).

Theorem 8.7. For t ≥ 1, W[t] = [FD(Πb
t−1)]

fp
m.

Proof. First, assume that the problem P ⊆ STR[τ ] × N is Fagin-defined by
ϕ(X) ∈ Πb

t−1, say,

ϕ(X) := ∀ȳ1∃ȳ2∀ȳ3 . . . Qȳt−1ψ,

where ψ contains only bounded quantifiers. Let l be the maximum of the lengths of
the tuples ȳi for 1 ≤ i ≤ t. For simplicity, let us assume that X is unary. Since Xy
is equivalent to ∃z ∈ X z = y, we can assume that in ψ, the variable X occurs only
in quantifier bounds. We show that P ∈ W[t]. Given a parameter k set (with new
variables x1, . . . , xk)

ϕk := ∃x1 . . .∃xk∀ȳ1∃ȳ2∀ȳ3 . . . Qȳt−1


 ∧

1≤i<j≤k
xi �= xj ∧ ψ∗


 ,

where ψ∗ is obtained from ψ by inductively replacing ∀u∈Xχ(u) and ∃u∈X χ(u) by∧k
i=1 χ(xi) and

∨k
i=1 χ(xi), respectively. Note that ϕk is a Σt,l-formula and that for

every structure A,

(A, k) ∈ P ⇐⇒ A |= ϕk.

Thus, P is slicewise Σt,l-definable and hence in W[t].
For the converse direction, we prove that for all t, u ≥ 1 we have

MC(Σt,u)|GRAPH ⊆ FD(Πb
t−1).

The idea is to associate with every graph G and Σt,u-formula ∃x1 . . .∃xkϕ a structure C
which essentially is a Boolean circuit whose satisfying assignments of size k correspond
to assignments to the variables x1, . . . , xk such that G satisfies ϕ. We can Fagin-define
the weighted satisfiability problem for this circuit by a Πb

t−1-formula. We leave the
details to the reader.
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For readers familiar with [10] (Theorem 12.6 on p. 299 is the relevant result), we
state another proof. For t = 1, the result follows from the fact the W[1]-complete
problem CLIQUE is Πb

0-Fagin-definable. For odd t ≥ 2, the problem WEIGHTED
ANTIMONOTONE t-NORMALIZED SATISFIABILITY is W[t]-complete. It is pa-
rameterized m-reducible to the problem Fagin-defined by the Πb

t−1-formula

ϕ(X) :=∀y0∀y1∃y2∀y3 . . .∃yt−1
((Ey0y1 ∧ Ey1y2 ∧ · · · ∧Eyt−2yt−1) → ∀x ∈ X¬Eyt−1x).

For even t we use the completeness of WEIGHTED MONOTONE t-NORMALIZED
SATISFIABILITY and argue similarly.

Remark 8.8. Downey, Fellows, and Taylor [12] proved that the parameterized
model-checking problem for full first-order logic is complete for the class AW[∗], a
parameterized complexity class above the W-hierarchy that is defined in terms of the
satisfiability problem for quantified Boolean formulas.
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Abstract. We consider the problem of nonpreemptive scheduling to minimize average (weighted)
completion time, allowing for release dates, parallel machines, and precedence constraints. Recent
work has led to constant-factor approximations for this problem based on solving a preemptive or
linear programming relaxation and then using the solution to get an ordering on the jobs. We
introduce several new techniques which generalize this basic paradigm. We use these ideas to obtain
improved approximation algorithms for one-machine scheduling to minimize average completion time
with release dates. In the process, we obtain an optimal randomized on-line algorithm for the same
problem that beats a lower bound for deterministic on-line algorithms. We consider extensions to
the case of parallel machine scheduling, and for this we introduce two new ideas: first, we show that
a preemptive one-machine relaxation is a powerful tool for designing parallel machine scheduling
algorithms that simultaneously produce good approximations and have small running times; second,
we show that a nongreedy “rounding” of the relaxation yields better approximations than a greedy
one. We also prove a general theorem relating the value of one-machine relaxations to that of the
schedules obtained for the original m-machine problems. This theorem applies even when there are
precedence constraints on the jobs. We apply this result to obtain improved approximation ratios
for precedence graphs such as in-trees, out-trees, and series-parallel graphs.

Key words. approximation algorithms, scheduling, parallel machine scheduling, release dates,
precedence constraints
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1. Introduction. We present new approximation techniques and results for non-
preemptive scheduling to minimize average (weighted) completion time (equivalently,
sum of (weighted) completion times). In this problem, we are given n jobs J1, . . . , Jn,
where job Jj has processing time pj , release date rj , and a positive weight wj . A feasi-
ble schedule S assigns jobs nonpreemptively1 to m machines such that each job starts
after its release date. Let CSj denote the completion time of job Jj in schedule S. The
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objective is to minimize the weighted completion time
∑
j wjC

S
j ; if all wj are 1/n, the

objective becomes the average completion time. For the single machine case, if the
release dates are 0 for all jobs, then the weighted completion time problem can be
solved optimally in polynomial time [30]. We are interested in a more general setting
with release dates and precedence constraints and multiple machines, any of which
makes the problem NP-hard [23]. Thus we will consider approximation algorithms,
or, in an on-line setting, competitive ratios.

An important motivation for studying scheduling to minimize sum of weighted
completion times, aside from its intrinsic theoretical interest, comes from application
to compiler optimizations. Compile-time instruction scheduling is essential for ef-
fectively exploiting the fine-grained parallelism offered in pipelined, superscalar, and
very-long instruction word architectures (see, for example, [17, 35]). Current research
is addressing the issue of profile-based compiler optimization. In a recent paper,
Chekuri et al. [4] show that weighted completion time is the measure of interest
in profile-driven code optimization; some of our results are related to the heuristics
described and empirically tested therein.

Recent work has led to constant-factor approximations for weighted completion
time for a variety of these NP-hard scheduling problems [25, 16, 3, 12, 7, 28]. Most
of these algorithms work by first constructing a relaxed solution, either a preemptive
schedule or a linear programming relaxation. These relaxations are used to obtain an
ordering of the jobs, and then the jobs are list scheduled as per this ordering.

We introduce new techniques that generalize this basic paradigm. We use these
to obtain improved approximation algorithms for one-machine scheduling to minimize
average completion time with release dates. Our main result here is a e

e−1 ≈ 1.58-
approximation algorithm. This algorithm can be turned into a randomized on-line
algorithm with the same bound, where an algorithm is on-line if before time rj it is
unaware of Jj , but at time rj it learns all the parameters of Jj . This randomized on-
line algorithm is particularly interesting as it beats a lower bound for deterministic
on-line algorithms [21] and matches a recent lower bound for randomized on-line
algorithms [33].

We then consider extensions to parallel machine scheduling and introduce two
new ideas: first, we show that a preemptive one-machine relaxation is a powerful
tool for designing parallel machine scheduling algorithms that simultaneously pro-
duce good approximations and have small running times; second, we show that a
nongreedy “rounding” of the relaxation produces better approximations than sim-
ple list scheduling. In fact, we prove a general theorem relating the value of one-
machine relaxations to that of the schedules obtained for the original m-machine
problems. This theorem applies even when there are precedence constraints yielding
better approximations for precedence graphs such as in-trees, out-trees, and series-
parallel graphs, which are of interest in compiler applications that partly motivated
our work.

The bounds in this paper derive from proving bounds on the ratio between solu-
tions to a nonpreemptive scheduling problem and a relaxed version of this problem.
The bounds on this ratio all hold when both the original and relaxed problems have
weights; however, the relaxed problem with weights is typically not solvable exactly in
polynomial time. Because of this, the performance ratios of our algorithms, in some
cases, are not as good as those obtained directly through other techniques. However,
given future improvement in state of the art for one-machine preemptive scheduling
with release dates and/or precedence constraints, our results would also imply better
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bounds for weighted completion time. We begin with a more detailed discussion of
our results and their relation to earlier work.

One-machine scheduling with release dates. The first constant-factor ap-
proximation algorithm for an average completion time problem was the following
2-approximation algorithm of Phillips, Stein, and Wein [25] for minimizing the av-
erage completion time on one machine with release dates. First, an optimal pre-
emptive schedule P is found using the shortest remaining processing time (SRPT)
algorithm [23] which at any time runs an available job that has the least processing
time left; note that this is an on-line algorithm. Given P , the jobs are ordered by
increasing completion times, CPj , and are scheduled according to that ordering, intro-
ducing idle time as necessary to account for release dates. A simple proof shows that
each job Jj completes at time no later than 2C

P
j , implying a 2-approximation. Other

2-approximation algorithms have been discovered subsequently [21, 32, 12], and it is
also known that no deterministic on-line algorithm has approximation ratio better
than 2 [21, 32]. This approximation technique has been generalized to many other
scheduling problems, and hence finding better approximations for this basic problem
is believed to be an important step toward improved approximations for more general
problems.

Our main result here is a deterministic off-line algorithm for the basic problem
that gives an e

e−1 -approximation (
e
e−1 ≈ 1.58). We also obtain an optimal randomized

on-line algorithm (in the oblivious adversary model) with expected competitive ratio
e
e−1 . This beats the deterministic on-line lower bound. Our approach is based on
what we call α-schedules (this notion was also used by [25] and [15] in a somewhat
different manner). Given a preemptive schedule P and α ∈ (0, 1], we define CPj (α)
to be the time at which αpj , an α-fraction of Jj , is completed. An α-schedule is a
nonpreemptive schedule obtained by list scheduling jobs in order of increasing CPj (α),
possibly introducing idle time to account for release dates. Clearly, an α-scheduler is
an on-line algorithm; moreover, for α = 1, the α-scheduler is exactly the algorithm
of Phillips, Stein, and Wein [25] and hence a 2-approximation. We show that for
arbitrary α, an α-scheduler has a tight approximation ratio of 1 + 1/α. Given that
1 + 1/α ≥ 2 for α ∈ (0, 1], it may appear that this notion of α-schedulers is useless
for obtaining ratios better than 2.

A key observation is that a worst-case instance that induces a performance ratio
1+1/α for one value of α is not a worst-case instance for many other values of α. This
suggests that a randomized algorithm which picks α at random, and then behaves like
an α-scheduler, may lead to an approximation better than 2. Unfortunately, we show
that choosing α uniformly at random gives an expected approximation ratio of 2 and
that this is tight. However, this leaves open the possibility that for any given instance
I, there exists a choice α(I) for which the α(I)-schedule yields an approximation
better than 2. We refer to the resulting deterministic off-line algorithm which, given
I, chooses α to minimize α(I), as Best-α.

It turns out, however, that the randomized on-line algorithm which chooses α
to be 1 with probability 3/5 and 1/2 with probability 2/5 has competitive ratio 1.8;
consequently, for any input I, either the 1-schedule or the 1

2 -schedule is no worse
than an 1.8-approximation. More significantly, the nonuniform choice in the random-
ized version suggests the possibility of defining randomized choices of α that may
perform better than 1.8 while being easy to analyze. In fact, our main result here
is that it is possible to define a distribution for α that yields a randomized on-line
e
e−1 -approximation algorithm implying that Best-α is an e

e−1 -approximation algo-
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rithm. It should be noted that Best-α can be implemented in O(n2) time and all
our other algorithms can be implemented in either O(n) or O(n log n) time. Torng
and Uthaisombut [34] recently showed that our analysis of Best-α is tight by giving
instances on which the approximation ratio achieved by Best-α is arbitrarily close
to e/(e− 1).

Our bounds are actually job-by-job, i.e., we produce a schedule N in which
E[CNj ] ≤ e

e−1C
P
j for all j where E[CNj ] is the expected completion time of Jj in

the nonpreemptive schedule. Thus our conversion results generalize to weighted com-
pletion time. However, since for the weighted case even the preemptive scheduling
problem is NP-hard (given release dates), we must use an approximation for the re-
laxation. The current best approximation algorithm for the preemptive case [26] has a
ratio of 4/3, which yields a 2.12-approximation for the nonpreemptive case. However,
this does not improve earlier results.

Independently, Goemans [12] has used similar ideas to design a 2-approximation
algorithm for the problem of nonpreemptive scheduling on one machine so as to mini-
mize the average weighted completion time. His algorithm is also a Best-α algorithm
and works off a preemptive schedule that is optimal for a certain linear programming
relaxation of the problem and the analysis is based on the linear programming formu-
lation. Interestingly, Goemans proves the performance of his algorithm by choosing
α uniformly at random in the interval (0, 1]. Further work [26, 13] based on the
idea of using independent random α points for each job has resulted in an improved
approximation ratio of 1.6853.

Scheduling parallel machines with release dates. We consider generaliza-
tions of the single machine problems to the case of m identical parallel machines. We
first consider the problem of minimizing average completion time with release dates
and no precedence constraints. Extending the techniques to the m-machine problem
gives rise to two complications: the problem of computing an optimal m-machine pre-
emptive schedule is NP-hard [9], and the best known approximation ratio is 2 [25];
further, the conversion bounds from preemptive to nonpreemptive schedules are not
as good. Chakrabarti et al. [3] obtain a bound of 7/3 on the conversion from the
preemptive to the nonpreemptive case yielding a 14/3-approximation for scheduling
on m machines with release dates. Several other algorithms do not use the preemp-
tive schedule but use a linear programming relaxation. Phillips, Stein, and Wein [25]
gave the first such algorithm, a 24-approximation algorithm. This has been greatly
improved to 4 + ε [15], 4− 1

m [16], and 3.5 [3]. Using a general on-line framework [3],
one can obtain an algorithm with an approximation ratio of 2.89 + ε. Unfortunately,
the algorithm with the best approximation is inefficient, as it uses the polynomial
approximation scheme for makespan due to Hochbaum and Shmoys [20].

We give a new algorithm for this problem. First we introduce a different relaxa-
tion—a preemptive one-machine relaxation. More precisely, we maintain the original
release dates and allow preemptions but divide all the processing times by m. We
then compute a one-machine schedule. The resulting completion time ordering is then
used to generate a nonpreemptivem-machine schedule that is a 3-approximation. Our
algorithm has a running time of O(n log n) and in addition is also on-line. We then
show that the approximation ratio can be improved to 2.83 using a general conversion
algorithm that we develop. This improves on the approximation bounds of previous
algorithms and gives a much smaller running time of O(n log n). Subsequent to our
work, Schulz and Skutella [28] using some of our ideas have obtained an approximation
ratio of 2 for the more general case of sum of weighted completion times.
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Scheduling with precedence constraints. We now consider the weighted
completion time problem with precedence constraints. For one-machine scheduling,
minimizing the weighted completion time is NP-hard for arbitrary precedence con-
straints even without release dates [11, 22]. A 2-approximation for the case of no
release dates [16] and an e � 2.718-approximation [29] with release dates are known.
For arbitrarym, the problem is NP-hard even without precedence constraints and re-
lease dates if weights are not required to be identical; on the other hand, the problem
is strongly NP-hard even when all weights are identical and the precedence graph is
a union of chains [10]. An expected approximation ratio of 5.33+ ε is achievable with
release dates and precedence constraints [3]. This has been recently improved to 4 in
[24].

A general conversion algorithm. We obtain a fairly general algorithm for
m-machine problems with precedence constraints, release dates, and job weights. To
do so, we first solve a one-machine preemptive relaxation and apply an algorithm we
call Delay List to get an m-machine nonpreemptive schedule. Since, in general, the
one-machine preemptive relaxation is also NP-hard, we would have to settle for a
ρ-approximation for it; then our algorithm would give a (2ρ + 2)-approximation for
the m-machine case. In fact, we give an algorithm that gives a (1 + β)ρ+ (1 + 1/β)-
approximation for any β > 0 which when optimized for ρ yields a (ρ + 2

√
ρ + 1)-

approximation. In the absence of release dates an optimal one-machine schedule can
be computed in polynomial time when the precedence graph is a forest [19] or a series-
parallel graph [22, 1]. Applying our conversion algorithm for these cases results in
improved approximation results. Although the algorithm fails to obtain improved
results for the most general problem, we feel that it is of independent interest and
likely to find applications in the future. Further, our conversion algorithm has the
advantage of being simple and combinatorial. In applications such as compilers [4],
speed and simplicity are sometimes more important than getting the best possible
ratio. Finally, our algorithm has a surprising property: it gives schedules that are
good for both makespan and average completion time (Chakrabarti et al. [3] and Stein
and Wein [31] also have shown the existence of such schedules).

2. One-machine scheduling with release dates. In this section, we present
our results for one-machine scheduling with release dates to minimize average comple-
tion time. Let P be a preemptive schedule, and let CPi and C

α
i denote the completion

time of Ji in P and in the nonpreemptive α-schedule derived from P , respectively. We
begin by analyzing simple α-schedules. Techniques from [25, 16] are easily generalized
to yield the following.

Theorem 2.1. Given an instance of one-machine scheduling with release dates,
for any α ∈ (0, 1], an α-schedule has

∑
j C

α
j ≤ (1 + 1/α)

∑
j C

P
j . Further, there are

instances where the inequality is asymptotically tight.
Proof. Index the jobs by the order of their α-points in the preemptive schedule

P . Let rmax
j = max1≤k≤j rk be the latest release date among jobs with α points no

greater than j’s. By time rmax
j , jobs 1 through j have all been released, and hence

Cαj ≤ rmax
j +

j∑
k=1

pk.(2.1)

We know that CPj ≥ rmax
j , since only an α fraction j has finished by rmax

j . We also

know that CPj ≥ α
∑j
k=1 pk, since the α fractions of jobs 1, . . . , j must run before time

CPj . Plugging these last two inequalities into (2.1) yields C
α
j ≤ (1+ 1

α )C
P
j . Summing
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over all j yields the lemma.
To see that this is tight, consider the following class of instances. Let ε be a

small positive number. We will also allow jobs with processing time 0, although the
proof can be modified even if these are not allowed. At time 0, we release a job with
processing time 1. At time α− ε, we release a job with processing time ε and at time
α+ε, we release x jobs of processing time 0. The optimal preemptive completion time
is α + x(α + ε) + 1 + ε, while the completion time of the nonpreemptive α-schedule
is α+ (α+ 1) + x(1 + α). As x gets large and ε goes to 0, the ratio between the two
goes to 1 + 1

α .
This theorem, in and of itself, always yields approximation bounds that are worse

than 2.
We thus introduce a new fact that ultimately yields better algorithms. We will

show that the makespan of an α-schedule is within a (1 + α)-factor of the makespan
of the corresponding preemptive schedule; in fact, we will prove a stronger result in
Lemma 2.3 below. Thus the idle time introduced in the nonpreemptive schedules
decreases as α is reduced from 1 to 0. On the other hand, the (worst-case) bound
on the completion time of any specific job increases as α goes from 1 to 0. It is the
balancing of these two effects that leads to better approximations. In the following
discussion we do not assume that the preemptive schedule is the optimal preemptive
schedule found using SRPT. In fact, our results on converting preemptive schedules to
nonpreemptive schedules apply in general, but when we want to prove upper bounds
on the performance ratio for total completion time, we assume that the preemptive
schedule is an optimal preemptive schedule whose value is a lower bound on the value
of any optimal nonpreemptive schedule.

Let SPi (β) denote the set of jobs which complete exactly β fraction of their pro-
cessing time before CPi in the schedule P (note that Ji is included in SPi (1)). We
overload notation by using SPi (β) to also denote the sum of processing times of all
jobs in the set SPi (β); the meaning should be clear from the context. Let Ti be the
total idle time in P before Ji completes.

The preemptive completion time of Ji can be written as the sum of the idle time
and fractional processing times of jobs that ran before CPi . This yields the following
lemma.

Lemma 2.2. CPi = Ti +
∑

0<β≤1 βS
P
i (β).

We next upper bound the completion time of a job Ji in the α-schedule.
Lemma 2.3.

Cαi ≤ Ti + (1 + α)
∑
β≥α

SPi (β) +
∑
β<α

βSPi (β).

Proof. Let J1, . . . , Ji−1 be the jobs that run before Ji in the α-schedule. We will
give a procedure which converts the preemptive schedule into a schedule in which
(C1) jobs J1, . . . , Ji run nonpreemptively in that order,
(C2) the remaining jobs run preemptively, and
(C3) the completion time of Ji obeys the bound given in the lemma.

Since the actual Cαi is no greater than the completion time of Ji in this schedule, the
lemma will be proven.

Splitting up the second term in the bound from Lemma 2.2, we get the following
equation:

CPi = Ti +
∑
β<α

βSPi (β) +
∑
β≥α

αSPi (β) +
∑
β≥α

(β − α)SPi (β).
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(a) SRPT schedule and 1/2 completion times.
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(d) The true 1/2-schedule.
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(c) Extending the pieces to complete the schedule used in the proof.
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Fig. 2.1. Illustration of proof of Lemma 2.3 with α = 1/2 and i = 4.

Let JB =
⋃
β≥α S

P
i (β) and JA = J − JB . We can interpret the four terms in the

above equation as (1) the idle time in the preemptive schedule before CPi , (2) the
pieces of jobs in JA that ran before CPi , (3) for each job Jj ∈ JB , the pieces of
Jj that ran before CPj (α), and (4) for each job Jj ∈ JB , the pieces of Jj that ran

between CPj (α) and CPi . Let xj be the β for which Jj ∈ SPi (β), that is, the fraction

of Jj that was completed before C
P
i . Then

∑
β≥α(β − α)SPi (β) can be rewritten as∑

Jj∈JB (xj −α)pj . Observe that (xj −α)pj is the fraction of job Jj that ran between

CPj (α) and CPi .

Let JC = {J1, . . . , Ji}. Clearly JC is a subset of JB . Now think of schedule P as
an ordered list of pieces of jobs (with sizes). For each Jj ∈ JC modify the list by (1)
removing all pieces of jobs that run between CPj (α) and CPi and (2) inserting a piece

of size (xj −α)pj at the point corresponding to C
P
j (α). In this list, we have pieces of

size (xj − α)pj of jobs J1, . . . , Ji in the correct order (plus other pieces of jobs). Now
convert this ordered list back into a schedule by scheduling the pieces in the order
of the list, respecting release dates. We claim that job i still completes at time CPi .
To see this observe that the total processing time before CPi remains unchanged and
that other than the pieces of size (xj − α)pj , we moved pieces only later in time, so
no additional idle time need be introduced.

Now, for each job Jj ∈ JC , extend the piece of size (xj − α)pj to one of size pj
by adding pj − (xj − α)pj units of processing and replace the pieces of Jj that occur
earlier, of total size αpj , by idle time. Figure 2.1 illustrates this transformation. We
now have a schedule in which J1, . . . , Ji are each scheduled nonpreemptively for pj
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units of time and in which the completion time of Ji is

CPi +
∑

Jj∈JC

(pj − (xj − α)pj) ≤ CPi +
∑

Jj∈JB

(pj − (xj − α)pj)

= CPi +
∑
β≥α

(1− β + α)SPi (β)

= Ti + (1 + α)
∑
β≥α

SPi (β) +
∑
β<α

βSPi (β),

where the second equality just comes from reindexing terms by β instead of j, and
the third comes from plugging in the value of CPi from Lemma 2.2. To complete the
proof, we observe that the remaining pieces in the schedule are all from jobs in J−JC ,
and we have thus met the conditions (C1), (C2), and (C3) above.

Although we will not use it directly, applying Lemma 2.3 to the last job to com-
plete in the α-schedule yields the following corollary.

Corollary 2.4. The makespan of the α-schedule is at most (1 + α) times the
makespan of the corresponding preemptive schedule, and there are instances for which
this bound is tight.

Having analyzed completion times as in Lemma 2.3, we see that the approximation
ratio is going to depend on the distribution of the different sets SPi (β). To avoid the
worst-case α, we choose α randomly according to some probability distribution. We
now give a general bound on this algorithm, which we call Random-α.

Lemma 2.5. Suppose α is chosen from a probability distribution over (0, 1] with
a density function f . Then for each job Ji, E [C

α
i ] ≤ (1 + δ)CPi , where

δ = max
0<β≤1

∫ β

0

1 + α− β

β
f(α)dα.

It follows that E [
∑
i C

α
i ] ≤ (1 + δ)

∑
i C

P
i .

Proof. We will show that the expected completion time of any job Ji is within
(1 + δ) of its preemptive completion time. From Lemma 2.3 it follows that for any
given α,

Cαi ≤ Ti + (1 + α)
∑
β≥α

SPi (β) +
∑
β<α

βSPi (β).

Therefore, when α is chosen according to f , the expected completion time of Ji,

E[Cαi ] =
∫ 1

0
f(α)Cαi dα, is bounded by

Ti +

∫ 1

0

f(α)

(
(1 + α)

∑
β≥α

SPi (β) +
∑
β<α

βSPi (β)

)
dα

since Ti is independent of α. We now bound the second term in the above expression:
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∫ 1

0

f(α)

(
(1 + α)

∑
β≥α

SPi (β) +
∑
β<α

βSPi (β)

)
dα

=
∑

0<β≤1

SPi (β)

(∫ β

0

(1 + α)f(α)dα+

∫ 1

β

βf(α)dα

)

=
∑

0<β≤1

βSPi (β)

(
1 +

∫ β

0

1 + α− β

β
f(α)dα

)

≤
(
1 + max

0<β≤1

∫ β

0

1 + α− β

β
f(α)dα

) ∑
0<β≤1

βSPi (β)

≤ (1 + δ)
∑

0<β≤1

βSPi (β).

It follows that

E[Cαi ] ≤ Ti + (1 + δ)
∑

0<β≤1

βSPi (β) ≤ (1 + δ)CPi .

Using linearity of expectations, it is easy to show that the expected total comple-
tion time of the schedule is within (1+δ) of the preemptive schedule’s total completion
time.

With Lemma 2.5 in place, we can simply choose different PDFs to establish
different bounds.

Theorem 2.6. For the problem of scheduling to minimize weighted completion
time with release dates, Random-α performs as follows:

1. If α is chosen uniformly in (0, 1], the expected approximation ratio is at
most 2.

2. If α is chosen to be 1 with probability 3/5 and 1/2 with probability 2/5, the
expected approximation ratio is at most 1.8.

3. If α is chosen from (0, 1] according to the density function f(α) = eα

e−1 , the
expected approximation ratio is at most e

e−1 ≈ 1.58.
Proof.
1. Choosing α uniformly corresponds to the PDF f(α) = 1. Plugging into the
bound from Lemma 2.5, we get an approximation ratio of

1 + max
0<β≤1

∫ β

0

1 + α− β

β
dα = 1 + max

0<β≤1

1

β

(
(1− β)β +

β2

2

)

= 1 + max
0<β≤1

(
1− β

2

)

≤ 2.
2. Omitted.
3. If f(α) = eα

e−1 , then

max
0<β≤1

∫ β

0

(
1 + α− β

β

)(
eα

e− 1
)
dα = max

0<β≤1

1

β(e− 1)
(
((1− β) + (β − 1))eβ

− ((1− β)− 1)
)

= max
0<β≤1

1

e− 1
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=
1

e− 1 .

Therefore

1 + max
0<β≤1

∫ β

0

(
1 + α− β

β

)(
eα

e− 1
)
dα ≤ e

e− 1 .

It can be shown that the density function eα

e−1 minimizes the expression

max0<β≤1

∫ β
0

1+α−β
β f(α)dα over all choices of f(α). In the off-line setting, rather

than choosing α randomly, we can try different values of α and choose the one that
yields the best schedule. We call the algorithm which computes the schedule of value
minα

∑
j C

α
j , Best-α.

Corollary 2.7. Algorithm Best-α is an e/(e− 1)-approximation algorithm for
nonpreemptive scheduling to minimize average completion time on one machine with
release dates. It runs in O(n2) time.

Proof. The approximation bound follows from Theorem 2.6. For the running
time, we observe that given a preemptive SRPT schedule we can efficiently determine
the best possible choice of α. The SRPT schedule preempts only at release dates.
Thus it has at most n − 1 preemptions and there are at most n “combinatorially
distinct” values of α for a given preemptive schedule. The SRPT schedule can be
computed in O(n log n) time using a simple priority queue and given that schedule
and an α, the corresponding α-schedule can be computed in linear time by a simple
scan.

In the on-line setting, we cannot implement Best-α. However, if we choose α
randomly we get the following theorem.

Theorem 2.8. There is a polynomial-time randomized on-line algorithm with an
expected competitive ratio e/(e − 1) for the problem of minimizing total completion
time in the presence of release dates.

Proof. The randomized on-line algorithm is the following. The algorithm picks an
α ∈ (0, 1] at random according to the density function f(x) = ex

e−1 before receiving any
input (this is the only randomness used in the algorithm). The algorithm simulates the
on-line preemptive SRPT schedule. At the exact time when a job finishes α fraction of
its processing time in the simulated SRPT schedule, it is added to the queue of jobs to
be executed nonpreemptively. The nonpreemptive schedule is obtained by executing
jobs in the strict order of their insertion into the queue while respecting the insertion
times into the queue. Observe that this rule leads to a valid on-line nonpreemptive
schedule and that in fact the order of the jobs scheduled is exactly the same as in the
α-schedule. The schedule respects the insertion times; therefore no job is executed in
the nonpreemptive schedule before its α point in the SRPT schedule. To show the
bound on the expected competitive ratio, we claim that the bounds in Lemma 2.3
(and hence Theorem 2.6 also) hold for the nonpreemptive schedule created by the
on-line algorithm. The main observation is that the proof of Lemma 2.3 does not use
the true α-schedule but a weaker one in which for every job Ji the first α fraction of
its processing time in the SRPT schedule is left as idle time. A careful examination
of the proof of Lemma 2.3 with Figure 2.1 as an illustration makes this clear.

We also give some negative results for the various algorithms.
Theorem 2.9. For the problem of scheduling to minimize weighted completion

time with release dates, Random-α performs as follows:
1. If α is chosen uniformly, the expected approximation ratio is at least 2.
2. For the Best-α algorithm, the approximation ratio is at least 4/3.
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Proof. We will use a set of parameterized instances to show all the above bounds.
We define an instance I(δ, n) as follows. At time 0 a job of size 1 is released and
at time δ < 1, n jobs of size 0 are released (we use zero length jobs for ease of
exposition). The optimal preemptive schedule for this instance has a total completion
time of 1+nδ. The optimal nonpreemptive schedule for this instance can be obtained
by first completing all the small jobs and running the large job after them for a total
completion time of 1+δ+nδ. It is easy to see that there are only two combinatorially
distinct schedules corresponding to the values of α ≤ δ and α > δ and we can restrict
our attention to those two schedules and the probability with which they are chosen.
Let S1 and S2 be the two schedules and C1 and C2 be their total completion times,
respectively. It is easy to see that C1 = 1 + n and C2 = 1 + δ + nδ.

1. If α is chosen uniformly at random, S1 is chosen with probability δ and S2
is chosen with probability (1 − δ) and a simple calculation shows that if we
choose n� 1 and 1� δ, the expected approximation ratio approaches 2.

2. Consider an instance I in which in addition to the jobs of I(1/2, n) we release
n more jobs of size 0 at time 1. The optimal preemptive schedule for I
consists of the preemptive schedule for I(1/2, ε, n) followed by the additional
n small jobs. The completion time of the optimal preemptive schedule is term
1+3n/2. An optimal nonpreemptive schedule schedules the large job after all
the small jobs and has a total completion time 2+3n/2. It is easy to see that
there are only two combinatorially distinct α-schedules, one corresponding
to α ≤ 1/2 and the other corresponding to α > 1/2. In both cases it is
easy to verify that the completion time of the schedule is 1 + 2n. Thus the
approximation ratio of the Best-α cannot be better than 4/3.

After learning of our results, Stougie and Vestjens [33] improved the lower bound
for randomized on-line algorithms to e/(e − 1). This implies that our randomized
on-line algorithm is optimal. Torng and Uthaisombut [34] have shown that there are
instances on which the approximation ratio of Best-α can be made arbitrarily close
to e

e−1 . This improves our lower bound of 4/3 on Best-α’s performance and also
implies that our upper bound analysis is tight.

3. Parallel machine scheduling with release dates. We now turn to the
problem of minimizing average completion time on parallel machines in the presence
of release dates. In this section, we give a simple 3-approximation algorithm for the
problem that is also an on-line algorithm. Our algorithm does not use linear pro-
gramming or slow dynamic programming. It introduces the notion of a one-machine
preemptive relaxation. In the next section, we will show how to improve this to a
2.83-approximation algorithm using more involved techniques.

Given an instance I for nonpreemptive scheduling on m machines, we define a
one-machine preemptive relaxation I1 as follows. I1 has the same set of jobs as those
of I and has one machine. The processing time of Jj in I1 is p′j = pj/m and release
date is r′j = rj .

Lemma 3.1. The value of an optimal solution to I1 is a lower bound on the value
of an optimal solution to I.

Proof. We show how to convert a feasible schedule N , for input I, to a feasible
schedule P1, for input I1, without increasing the average completion time. Take any
schedule N and consider a particular time unit t that is sufficiently small. Let the
k ≤ m jobs that are running during that time be J1, . . . , Jk. In P1, at time t, run
1/m units of each of jobs J1, . . . , Jk, in arbitrary order. The completion time of job
Jj in P1, CP1

j is clearly no greater than CNj , the completion time of Jj in N .
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Given an optimal preemptive schedule P1 for I1, we form a list schedule N
by ordering jobs by CP1

j and then scheduling them nonpreemptively in that order,
respecting release dates. Let C∗j be the completion time of Jj in an optimal schedule
for I. I1 may be a bad relaxation in the sense that

∑
j C

P1
j may be much less than∑

j C
∗
j . However, we can still use this relaxation to obtain a good nonpreemptive

schedule.
Lemma 3.2. The nonpreemptive list schedule N satisfies

∑
j C

N
j ≤ (3− 1

m )
∑
j C
∗
j .

Proof. We focus on a particular job Jj . For convenience, we assume that the
jobs are ordered according to their completion times in P1. Thus Jj is the jth job to
complete in P1. We now derive three lower bounds on CP1

j . First, we have the trivial

bound CP1
j ≥ r′j + p′j . Further, C

P1
j is at least as big as the processing times of the

jobs that precede it. Therefore

CP1
j ≥

j∑
k=1

p′k =
j∑

k=1

pk
m

.(3.1)

Let rmax
j = max1≤k≤j r′k be the latest release date among jobs that complete before

j; then CP1
j ≥ rmax

j .
Now consider the list schedule N . Clearly by time rmax

j all jobs J1, . . . , Jj have
been released. Even if no job starts before time rmax

j , by standard makespan argu-
ments Jj will complete by

CNj ≤ rmax
j +

j−1∑
k=1

pk
m
+ pj

≤ CP1
j + CP1

j + pj

(
1− 1

m

)
,(3.2)

where the second inequality follows from (3.1) and CP1
j ≥ rmax

j above. Summing (3.2)
over all jobs, we get a total completion time of

∑
j

CNj ≤ 2
∑
j

CP1
j +

(
1− 1

m

)∑
j

pj .(3.3)

By Lemma 3.1,
∑
j C

P1
j ≤ ∑

j C
∗
j , and trivially the optimal solution to I must

have total completion time
∑
j C
∗
j ≥

∑
pj ; therefore this algorithm is a (3 − 1

m )-
approximation.

The running time is just the time to run SRPT on the one-machine relaxation
and the time to list schedule for a total of O(n log n). This algorithm can be made
on-line by simulating the preemptive schedule and adding a job to the list when it
completes in the preemptive schedule.

4. A general conversion algorithm. In this section we develop a technique to
obtain parallel machine schedules from one-machine schedules that works even when
jobs have precedence constraints and release dates. Given an average weighted com-
pletion time scheduling problem, we show that if we can approximate the one-machine
preemptive variant, then we can also approximate them-machine nonpreemptive vari-
ant with a slight degradation in the quality of approximation.

Precedence constraints will be represented in the usual way by a directed acyclic
graph (DAG) whose vertices correspond to jobs and whose edges represent precedence
constraints.
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In this section, we use a slightly different one-machine relaxation from the previous
section; namely, we do not divide the processing times by m. We use the superscript
m to denote the number of machines; thus Sm denotes a schedule for m machines, Cm

denotes the sum of weighted completion time of Sm, and Cmj denotes the completion
time of job Jj under schedule S

m. The subscript opt refers to an optimal schedule;
thus an optimal schedule is denoted by Smopt, and its weighted completion time is
denoted by Cmopt. For a set of jobs A, p(A) denotes the sum of processing times of
jobs in A.

Definition 4.1. For any vertex j, recursively define the quantity κj as fol-
lows. For a vertex j with no predecessors κj = pj + rj. Otherwise define κj =
pj +max{maxi≺j κi, rj}. Any path Pij from i to j where p(Pij) = κj is referred to as
a critical path to j.

4.1. Conversion algorithm DELAY LIST. We now describe the Delay List
algorithm. Given a one-machine schedule which is a ρ-approximation, Delay List
produces a schedule form ≥ 2 machines whose value is within a factor (k1ρ+k2) of the
optimal m-machine schedule, where k1 and k2 are small constants. We will describe
a variant of this scheduling algorithm which yields k1 = (1 + β) and k2 = (1 + 1/β)
for any β > 0. Therefore, for cases where we can find optimal one-machine schedules
(trees and series-parallel without release dates), we obtain a 4-approximation for m
machines by setting β = 1. To our knowledge, these are the best results for these
special cases.

The main idea is as follows. The one-machine schedule taken as a list (jobs in
order of their completion times in the schedule) provides some priority information
on which jobs to schedule earlier.2 Unlike with makespan, the completion time of
every job is important for weighted completion time. When trying to convert the
one-machine schedule into an m-machine one, precedence constraints prevent com-
plete parallelization. Thus we may have to execute jobs out-of-order from the list to
benefit from parallelism. If all pi are identical (say 1), we can afford to use naive list
scheduling.3 If there is an idle machine and we schedule some available job on it, it is
not going to delay jobs which become available soon, since it completes in one time
unit. On the other hand, if not all pi’s are the same, a job could keep a machine
busy, delaying more profitable jobs that become available soon. At the same time, we
cannot afford to keep machines idle. We strike a balance between the two extremes:
schedule a job out-of-order only if there has been enough idle time already to justify
scheduling it. To measure whether there has been enough idle time, we introduce a
charging scheme.

Assume, for ease of exposition, that all processing times are integers and that
time is discrete. This restriction can be removed without much difficulty and we use
it only in the interests of clarity and intuition. A job is ready if it has been released
and all its predecessors are done.

Definition 4.2. The time at which job Ji is ready in a schedule S is denoted by
qSi and the time at which it starts is denoted by sSi .

We use Sm to denote the m-machine schedule that our algorithm constructs and
for ease of notation the superscript m will be used in place of Sm to refer to quantities

2In the rest of the paper we assume without loss of generality that a list obeys the precedence
constraints; that is, if i ≺ j, then i comes earlier in the list than j.

3In this section, by list scheduling we mean the algorithm which schedules the first available job
in the list if a machine is free. This is in contrast to another variant considered in earlier sections in
which jobs are scheduled strictly in the order of the list.
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of interest in this schedule. Let β > 0 be some constant. At each discrete time step
t, the algorithm applies one of the following three cases:

1. There is an idle machineM and the first job Jj on the list is ready at time t—
schedule Jj on M and charge all uncharged idle time in the interval (qmj , smj )
to Jj .

2. There is an idle machine and the first job Jj in the list is not ready at t, but
there is another ready job on the list—focusing on the job Jk which is the first
in the list among the ready jobs, schedule it if there is at least βpk uncharged
idle time among all machines and charge βpk idle time to Jk.

3. There is no idle time or the above two cases do not apply—do not schedule
any job; merely increment t.

Definition 4.3. A job is said to be scheduled in order if it is scheduled when it
is at the head of the list. Otherwise it is said to be scheduled out of order. The set
of jobs which are scheduled before a job Ji but which come later in the list than Ji is
denoted by Oi. The set of jobs which come after Ji in the list is denoted by Ai and
those which come before Ji by Bi (includes Ji).

Definition 4.4. For each job Ji, define a path P ′i = Jj1 , Jj2 , . . . , Jj� , with Jj� =
Ji with respect to the schedule S

m as follows. The job Jjk is the predecessor of Jjk+1

with the largest completion time (in Sm) among all the predecessors of Jjk+1
such that

Cmjk ≥ rjk+1
; ties are broken arbitrarily. Jj1 is the job where this process terminates

when there are no predecessors which satisfy the above condition. The jobs in P ′i
define a disjoint set of time intervals (0, rj1 ], (s

m
j1
, Cmj1 ], . . . , (s

m
j�
, Cmj� ] in the schedule.

Let κ′i denote the sum of the lengths of the intervals.
Fact 4.5. κ′i ≤ κi.
Fact 4.6. The idle time charged to each job Ji is less than or equal to βpi.
Proof. The fact is clear if idle time is charged to Ji according to case 2 in the

description of our algorithm. Suppose case 1 applies to Ji. Since Ji was ready at
qmi and was not scheduled according to case 2 earlier, the idle time in the interval
(qmi , smi ) that is charged to Ji is less than βpi. We remark that the algorithm with
discrete time units might charge more idle time due to integrality of the time unit.
However, that is easily fixed in the continuous case where we schedule Ji at the first
time instant when at least βpi units of uncharged idle time have accumulated.

A crucial feature of the algorithm is that when it schedules jobs, it considers only
the first job in the list that is ready, even if there is enough idle time for other ready
jobs that are later in the list. The proof of the following lemma makes use of this
feature.

Lemma 4.7. For every job Ji, there is no uncharged idle time in the time interval
(qmi , smi ), and furthermore all the idle time is charged only to jobs in Bi.

Proof. By the preceding remarks, it is clear that no job in Ai is started in the
time interval (qmi , smi ) since Ji was ready at q

m
i . From this we can conclude that there

is no idle time charged to jobs in Ai in that time interval. Since Ji is ready at q
m
i and

was not scheduled before smi , from cases 1 and 2 in the description of our algorithm
there cannot be any uncharged idle time.

The following lemma shows that for any job Ji, the algorithm does not schedule
too many jobs from Ai before scheduling Ji itself.

Lemma 4.8. For every job Ji, the total idle time charged to jobs in Ai, in the
interval (0, smi ), is bounded by m(κ′i − pi). It follows that p(Oi) ≤ m(κ′i − pi)/β ≤
m(κi − pi)/β.

Proof. Consider a job Jjk in P ′i . The job Jjk+1
is ready to be scheduled at the
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completion of Jjk , that is, q
m
jk+1

= Cmjk . From Lemma 4.7, it follows that in the time
interval between (Cmjk , s

m
jk+1

) there is no idle time charged to jobs in Ajk+1
. Since

Ajk+1
⊃ Ai it follows that all the idle time for jobs in Ai has to be accumulated in

the intersection between (0, smi ) and the time intervals defined by P ′i . This quantity
is clearly bounded by m(κ′i − pi). The second part follows since the total processing
time of the jobs in Oi is bounded by 1/β times the total idle time that can be charged
to jobs in Ai (recall that Oi ⊆ Ai).

Theorem 4.9. Let Sm be the schedule produced by the algorithm Delay List
using a list S1. Then for each job Ji, C

m
i ≤ (1 + β)p(Bi)/m+ (1 + 1/β)κ

′
i − pi/β.

Proof. Consider a job Ji. We can split the time interval (0, C
m
i ) into two disjoint

sets of time intervals T1 and T2 as follows. The set T1 consists of all the disjoint time
intervals defined by P ′i . The set T2 consists of the time intervals obtained by removing
the intervals in T1 from (0, C

m
i ). Let t1 and t2 be the sum of the times of the intervals

in T1 and T2, respectively. From the definition of T1, it follows that t1 = κ′i ≤ κi.
From Lemma 4.7, in the time intervals of T2, all the idle time is either charged to
jobs in Bi, and the only jobs which run are from Bi ∪ Oi. From Fact 4.6, the idle
time charged to jobs in Bi is bounded by βp(Bi). Therefore the time t2 is bounded
by (βp(Bi) + p(Bi) + p(Oi))/m. Using Lemma 4.8 we see that t1 + t2 is bounded by
(1 + β)p(Bi)/m+ (1 + 1/β)κ

′
i − pi/β.

4.2. One-machine relaxation. In order to use Delay List, we will need to
start with a one-machine schedule. The following two lemmas provide lower bounds
on the optimal m-machine schedule in terms of the optimal one-machine schedule.
This one-machine schedule can be either preemptive or nonpreemptive; the bounds
hold in either case.

Lemma 4.10. Cmopt ≥ C1
opt/m.

Proof. Given a schedule Sm on m machines with total weighted completion time
Cm, we will construct a one-machine schedule S1 with total weighted completion time
at most mCm as follows. Order the jobs according to their completion times in Sm

with the jobs completing early coming earlier in the ordering. This ordering is our
schedule S1. Note that there could be idle time in the schedule due to release dates. If
i

�≺ j, then Cmi ≤ smj ≤ Cmj which implies that there will be no precedence violations

in S1. We claim that C1
i ≤ mCmi for every job Ji. Let P be the sum of the processing

times of all the jobs which finish before Ji (including Ji) in Sm. Let I be the total
idle time in the schedule Sm before Cmi . It is easy to see that mCmi ≥ P + I. We
claim that C1

i ≤ P + I. The idle time in the schedule S1 can be charged to idle time
in the schedule Sm and P is the sum of all jobs which come before Ji in S1. This
implies the desired result.

Lemma 4.11. Cmopt ≥
∑
i wiκi = C∞opt.

Proof. The length of the critical path κi is an obvious lower bound on the com-
pletion time Cmi of job Ji. Summing up over all jobs gives the first inequality. It
is also easy to see that if the number of machines is unbounded, every job Ji can
be scheduled at the earliest time it is available and will finish by κi yielding the
equality.

4.3. Obtaining generic m-machine schedules. In this section we derive our
main theorem relating m-machine schedules to one-machine schedules.

We begin with a corollary to Theorem 4.9.
Corollary 4.12. Let Sm be the schedule produced by the algorithm Delay

List using a one-machine schedule S1 as the list. Then for each job Ji, Cmi ≤
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(1 + β)C1
i /m+ (1 + 1/β)κi.

Proof. Since all jobs in Bi come before Ji in the one-machine schedule, it follows
that p(Bi) ≤ C1

i . Plugging this and Fact 4.5 into the bound in Theorem 4.9, we
conclude that Cmi ≤ (1 + β)C1

i /m+ (1 + 1/β)κi.
Theorem 4.13. Given an instance I of scheduling to minimize sum of weighted

completion times and a one-machine schedule for I that is within a factor ρ of an
optimal one-machine schedule, Delay List gives an m-machine schedule for I that
is within a factor (1 + β)ρ+ (1 + 1/β) of an optimal m-machine schedule.

Proof. Let S1 be a schedule which is within a factor ρ of the optimal one-machine
schedule. Then C1 =

∑
i wiC

1
i ≤ ρC1

opt. By Corollary 4.12, the schedule created by
the algorithm Delay List satisfies

Cm =
∑
i

wiC
m
i

≤
∑
i

wi

(
(1 + β)

C1
i

m
+

(
1 +

1

β

)
κi

)

=
1 + β

m

∑
i

wiC
1
i +

(
1 +

1

β

)∑
i

wiκi.

From Lemmas 4.10 and 4.11 it follows that

Cm ≤ (1 + β)ρC1
opt

m
+

(
1 +

1

β

)
C∞opt

≤
(
(1 + β)ρ+

(
1 +

1

β

))
Cmopt.

Corollary 4.14. There is an O(n log n) time 4-approximation algorithm for
weighted completion time on parallel machines when the precedence graphs are re-
stricted to be series-parallel graphs.

Proof. The optimal single machine schedule with release dates ignored can be
computed in O(n log n) time for series-parallel graphs [1]. Applying the Delay List
algorithm with β = 1 to this schedule gives the desired result.

Remark 4.15. Since the bounds in our conversion algorithm are job-by-job, the
algorithm is applicable to a more general class of metrics as well.

There is an interesting property of the conversion algorithm that is useful in
its applications and worth pointing out explicitly. We explain it via an example.
Suppose we want to compute an m-machine schedule with release dates and prece-
dence constraints. From Theorem 4.13 it would appear that we need to compute
a one-machine schedule for the problem that has both precedence constraints and
release dates. However, we can completely ignore the release dates in computing
the one-machine schedule S1! This follows from a careful examination of the upper
bound proved in Theorem 4.9 and the proof of Theorem 4.13. This is useful since
the approximation ratio for the problem 1| prec |∑j wjCj is 2 [16] while it is 3 for
1 | prec, rj |

∑
j wjCj [16]. In another example, the problem 1 | | ∑j wjCj has a very

simple polynomial-time algorithm using Smith’s ratio rule while 1 | rj |
∑
j wjCj is

NP-hard. Thus release dates play a role only in the conversion algorithm and not
in the single machine schedule. A similar claim can be made when there are de-
lays between jobs. In this setting a positive delay dij between jobs i and j indicates
that i is a predecessor of j and that j cannot start until dij time units after i com-
pletes. We can generalize our conversion algorithm and its analysis to handle delays
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and obtain the same results as those in Theorems 4.9 and 4.13. The only change
required is in the definition of ready time of a job which now depends also on the
delay after a predecessor finishes. As with release dates we can ignore the delay val-
ues (not the precedence constraints implied by them though) in computing the single
machine schedule. Munier, Queyranne, and Schulz [24] use linear programming ideas
to generalize results for problems with precedence constraints to those with delay
constraints.

4.4. Applying conversion to in-tree precedence. We obtain stronger results
for in-tree precedence without release dates. The problem is strongly NP-hard even
for this case. We analyze the standard list scheduling algorithm which starts with an
ordering on the jobs (the list) and greedily schedules each successive job in the list at
the earliest possible time. We use the optimal one-machine schedule for trees as the
list. We show that this algorithm gives a 2-approximation for in-trees. Recall that
smi is the start time of Ji in the schedule S

m.
Lemma 4.16. If Sm is the list schedule using a one-machine schedule S1 as the

list, then for any job Ji, C
m
i ≤ κi + C1

i /m.
Proof. Since there are no release dates, we can assume that the schedule S1 has

no idle time. Without loss of generality assume that J1, . . . , Jn is the ordering of the
jobs ordered according to their start times smi in Sm (we break ties arbitrarily). We
will prove the lemma by induction on i. We strengthen the hypothesis by adding the
following invariant. If Cmi > Cmj + pi, where Jj is the last predecessor of Ji to finish

in Sm, then all the jobs scheduled before smi in Sm are ahead of Ji in the list S
1

and there is no idle time in the schedule before time smi . In this case it follows that
Cmi ≤ pi + C1

i /m. The base case is trivial since κ1 = p1 and the first job finishes at
time p1. Suppose that the hypothesis holds for all jobs Jk, k < i; we will prove it
holds for Ji. If Ji has no predecessor it is easily seen that there is no idle time before
Ji is scheduled and that C

m
i ≤ pi +C1

i /m. Among the predecessors of i, let Jj , j < i
be the last to finish in the schedule Sm (ties are broken arbitrarily). We consider two
cases.

1. Cmi = Cmj + pi. By the hypothesis, Cmj ≤ κj + C1
j /m. It follows that

Cmi ≤ κi + C1
i /m since κi ≥ κj + pi and C1

j < C1
i .

2. Cmi > Cmj + pi. Let t = Cmj . Let P be the set of jobs which finish exactly
at time t and P ′ be the set of jobs which had their last predecessor running
until time t. Note that Ji ∈ P ′, Jj ∈ P , and all the jobs in P ′ are ready to
be run at time t. In an in-tree a node has at most one immediate successor;
therefore |P ′| ≤ |P |. Therefore the number of jobs that are ready at t but
were not ready at t− is at most |P |. If Ji was not scheduled at t there must
exist a job Jl /∈ P ′ which is scheduled at t. This implies that Jl occurs
before Ji in the list S

1. Since no immediate predecessor of Jl finished at t,
by the induction hypothesis we conclude that there was no idle time and no
job which comes later than Jl in S1 is scheduled before time t. Since Ji was
ready at time t, it follows that there is no idle time and no job later than
Ji in S1 is scheduled between time t and the smi . From these observations it
follows that Cmi ≤ pi + C1

i /m ≤ κi + C1
i /m.

In both cases we see that the induction hypothesis is established for Ji and this finishes
the proof.

Theorem 4.17. There is an O(n log n)-time algorithm with approximation ra-
tio 2 for minimizing weighted completion time on m machines for in-tree precedence
without release dates.
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Proof. The proof is similar to that of Theorem 4.13 except that we use the stronger
bounds from Lemma 4.16. The running time is dominated by the time to compute
the optimal one-machine schedule which can be done in O(n log n) time [1].

4.5. A 2.83-approximation for scheduling without precedence con-
straints. We now improve the approximation bound for parallel machine schedul-
ing with release dates to 2.83 which improves the earlier ratio of 2.89 + ε [3]. We
combine ideas of the one-machine relaxation developed in section 3 and the idea of
using delay based list scheduling to derive an alternate algorithm which has worse
ratio than the algorithm in section 3. However, we observe that the bounds we get
from the analysis of these two algorithms can be combined to get an improved lower
bound on the optimal which leads to the improvement.

Recall from section 3 that I1 is the one-machine relaxation for a given instance
I and P1 is an optimal preemptive schedule for I1.

Lemma 4.18. If we apply Delay List to P1 with parameter β, the resulting
schedule D has total completion time

∑
CDj ≤ (2 + β)C∗j +

1

β

∑
j

rj .

Proof. We focus on a particular job Jj . From Theorem 4.9 and Fact 4.5 we
conclude that CDj ≤ (1 + β)p(Bj)/m + (1 + 1/β)κj − pj/β. Since we do not have
precedence constraints on the jobs, κj = rj+pj . From the definition of Bj and the fact
that the list is the order in which jobs finish in P1, it follows that p(Bj)/m ≤ CP1

j .

We therefore conclude that CDj ≤ (1+β)CP1
j +pj + rj/β. Summing this over all jobs

we obtain

∑
j

CDj ≤ (1 + β)
∑
j

CP1
j +

∑
j

pj +
1

β

∑
j

rj .

Since both
∑
j C

P1
j and

∑
j pj are lower bounds on the optimal schedule value, it

follows that

∑
j

CDj ≤ (2 + β)
∑
j

C∗j +
1

β

∑
j

rj .

We now balance the two algorithms, list scheduling and Delay List, to achieve
an approximation ratio of 2.83.

Lemma 4.19. For any input I, either list scheduling from P1 or using De-
lay List on P1 for an appropriate choice of β produces a schedule with

∑
j Cj ≤

2.83
∑
j C
∗
j and runs in O(n log n) time.

Proof. By (3.3), we know that
∑
j

CNj ≤ 2
∑
j

CP1
j +

∑
j

pj .(4.1)

If, for some α, we know that
∑
j pj ≤ α

∑
j C
∗
j , then the list scheduling algorithm is

a (2 + α)-approximation algorithm.
Now consider the case when

∑
j pj > α

∑
j C
∗
j . If we combine this equation with

the simple bound that
∑
j C
∗
j ≥

∑
j(pj + rj), we get

∑
j

rj ≤ (1− α)
∑
j

C∗j .(4.2)
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We can now plug (4.2) into the upper bound on CDj from Lemma 4.18 to get

∑
j

CDj ≤
(
2 + β +

1− α

β

)∑
j

C∗j .

We do not know the value of α, but for each possible α we can choose the β that
minimizes the two terms. Simple algebra and calculus show that given α, we can
choose β to be

√
(1− α). The expression min{2+α, 2+2

√
1− α} is minimized when

α = 2
√
2− 2 thus yielding a ratio of 2√2 � 2.83.

To obtain the guaranteed approximation the algorithm runs both the list schedul-

ing algorithm and the Delay List algorithm with β =
√
3− 2√2 and chooses

the better of the two schedules. The schedules can be computed in O(n log n) time
each.

5. Conclusions. As mentioned earlier, many variants of the problem of mini-
mizing average weighted completion time were shown to have constant factor approx-
imations. Hoogeveen, Schuurman, and Woeginger [18] investigated the hardness of
approximation of average completion time scheduling and in particular showed that
the problems P |prec, pj = 1|

∑
j Cj and R|rj |

∑
j Cj are APX-hard; in other words,

they do not admit a polynomial-time approximation scheme (PTAS) unless P = NP .
Recently, much progress was made in obtained improved upper bounds as well. Sev-
eral groups of authors obtained efficient PTASs for problems involving only release
dates. A preliminary version describing these results is [2]. The maximal cases that
were shown to have a PTAS are P |rj |

∑
j wjCj , Rm|rj |

∑
j wjCj , and their preemp-

tive versions. An interesting open problem is the complexity of 1|prec|∑j wjCj . A
2-approximation for this problem is known but no APX-hardness has been established.
Subsequent to the linear programming based methods [16], simple combinatorial algo-
rithms [6, 8] were developed for this problem matching the approximation ratio of 2.
By coupling these algorithms with the Delay List algorithm in this paper we obtain
the first efficient and combinatorial approximation algorithms even with precedence
constraints and delays. The ratio achieved for P |rj , prec|

∑
j wjCj is 5.83 and is worse

than the currently best known ratio of 4 [24]. However, the algorithm in [24] is based
on solving a linear program via the ellipsoid method.
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Abstract. Consider the following Markov chain, whose states are all domino tilings of a 2n×2n
chessboard: starting from some arbitrary tiling, pick a 2 × 2 window uniformly at random. If the
four squares appearing in this window are covered by two parallel dominoes, rotate the dominoes
90o in place. Repeat many times. This process is used in practice to generate a random tiling and
is a widely used tool in the study of the combinatorics of tilings and the behavior of dimer systems
in statistical physics. Analogous Markov chains are used to randomly generate other structures on
various two-dimensional lattices. This paper presents techniques which prove for the first time that,
in many interesting cases, a small number of random moves suffice to obtain a uniform distribution.
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1. Introduction. This paper is concerned with algorithmic problems of the fol-
lowing type: given a simply connected region S of the two-dimensional Cartesian
lattice (e.g., an n × n chessboard), generate uniformly at random a tiling of S with
nonoverlapping dominoes, each of which covers two adjacent squares of the lattice.
This problem arises in statistical physics, where the tilings correspond to configura-
tions of a dimer system on S (see, e.g., [8]). Various physical properties of the system
are related to the expected value, over the uniform distribution, of some function
defined over configurations, such as the number of horizontal dominoes or the corre-
lation between the orientation of dominoes at two given squares. An algorithm for
randomly generating configurations allows such expectations to be estimated to any
desired accuracy. It also enables one to formulate and test more detailed properties
of a “typical” configuration, such as the Arctic Circle theorem [10], which began as a
conjecture based on observations of random configurations.

A host of other problems of physical and combinatorial interest center around
the properties of random structures of various kinds on a two-dimensional lattice.
Further examples that we shall consider in this paper are lozenge tilings of a triangular
lattice (corresponding to a dimer system with a different underlying geometry), and
Eulerian orientations of a Cartesian lattice, also known in the statistical mechanics
community as the six-point ice model. In all cases, algorithms that randomly generate
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configurations are the major experimental tool available to researchers interested in
the properties of such systems.

Returning to our first example, here is the algorithm that is most widely used in
practice to generate a random domino tiling of a region S. Starting from an arbitrary
tiling, pick a 2 × 2 window uniformly at random. If the four squares in this window
are covered by two parallel dominoes, rotate the dominoes in place (see Figure 1).
Repeat this operation a large number of times. The resulting tiling should then be
(almost) random.

↔

Fig. 1. Domino rotations.

The fact that this process (a Markov chain on the set of tilings) is connected (i.e.,
that every tiling is reachable from every other one by a sequence of moves of the above
kind) follows from a beautiful result of Thurston [17]. However, no nontrivial upper
bound is known on the number of moves needed to achieve a random tiling. In practice,
this number is decided by appealing to combinatorial intuition, or experimentally by
some ad hoc stopping rule. What is lacking is an analysis of the rate of convergence of
the Markov chain to the uniform distribution, which would supply an a priori bound
on the number of moves. Similar Markov chains, based on analogous local moves, are
used to generate other two-dimensional lattice structures in the same way. Like the
dominoes chain, they have so far resisted analysis.

In this paper, we develop a combinatorial framework that allows several Markov
chains of this kind to be analyzed for the first time. There are two essential ingredients.
The first, which we believe to be of independent combinatorial interest, is to establish
a one-to-one correspondence between the configurations on a lattice region S and
objects which we call routings on a related lattice. Informally, a routing is a collection
of vertex-disjoint (or edge-disjoint) paths crossing S from left to right. (See section 2
for precise definitions and examples.) These correspondences were already known, at
least implicitly, but here they play an essential role in the analysis of the associated
Markov chains.

The second ingredient is to interpret natural Markov chains like the one above on
domino tilings in terms of the associated routings. As we shall see, elementary moves
on configurations correspond to natural local perturbations of the routings (such as
displacing one vertex along a path). The crucial feature of this translation is that,
when viewed in the routings world, the rate of convergence of the Markov chain turns
out to be amenable to a simple and elegant analysis using a coupling argument. In
fact, this analysis leads us to generalize slightly the class of random moves allowed
for routings; these in turn map back to natural nonlocal moves for the configurations
themselves. As a result, we obtain new, nonlocal versions of the Markov chains which
are provably “rapidly mixing” (i.e., they converge quickly to the uniform distribution).

The upshot of all this is low-degree polynomial bounds on the convergence time
of these Markov chains for all three of the examples mentioned above. We therefore
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provide the first rigorous justification for experiments that use short simulations of
the chains in order to generate random configurations.

We should mention that these problems can be solved by alternative approaches.
A combinatorial trick known as the Gessel–Viennot method [7] allows one to count lat-
tice routings by evaluating a suitable determinant. In conjunction with self-reducibility
properties, this allows one to generate configurations uniformly at random (see, e.g.,
[16]). Other Markov chain algorithms which can be applied to these structures in
arbitrary graphs are given in [9, 12] (for tilings) and [13] (for Eulerian orientations).
However, in the important special case of planar lattices, the algorithms in this paper
have better time bounds than these other methods and are simpler, more natural,
and quite widely used in practice. Moreover, our bounds are in fact quite pessimistic
(our main concern is to introduce the methodology rather than to tune the bounds)
and can be improved with a more detailed analysis (see the subsequent paper by
Wilson [18]). We also point out that there is a simple experiment one can perform
which provides a reliable estimate of the true convergence rate: this can be used to
dramatically reduce the number of simulation steps required in practice, as discussed
in [14].

The remainder of the paper is organized as follows. In section 2 we illustrate
the correspondence between lattice configurations, routings, and height functions for
each of our examples: lozenge tilings, domino tilings, and Eulerian orientations. In
section 3, we show how to analyze the rate of convergence of the natural Markov
chain on lozenge tilings by applying a coupling argument to the corresponding chain
on routings. In the process, we will enrich the chain with nonlocal moves. In sec-
tions 4 and 5 we show how to apply the same technology to analogous Markov chains
for domino tilings and Eulerian orientations.

2. Lattice routings and height functions. In this section, we consider several
important examples of lattice structures and illustrate the correspondence between
them and collections of paths which we call routings. Routings are the key for an-
alyzing the convergence rate, or running time, of our Markov chain algorithms. As
we shall see, the routings are closely related to a third representation of the lattice
structures known as height functions, which arise from the tiling groups of Conway
and Lagarias [4] and Thurston [17]. For each of our three examples we briefly outline
the bijections between lattice structures, routings, and height functions. As we shall
see later, this framework will make the analytical tools we develop rather generally
applicable.

2.1. Lozenge tilings. The first structures we consider are lozenge tilings of a
finite region of the triangular lattice: we discuss these first because the correspondence
with routings is most direct here. A lozenge is the analogue of a domino in the
Cartesian lattice: each lozenge covers two adjacent triangles in the lattice and has
three possible orientations. Lozenge tilings are configurations of a dimer system on
this lattice. As explained in the introduction, we are interested in the problem of
generating a random lozenge tiling of the given region.

The routings corresponding to lozenge tilings are defined on an associated Carte-
sian lattice. Given a finite, simply connected region S of the triangular lattice, we
define an associated region Ŝ of the Cartesian lattice as follows. The vertices of Ŝ
correspond to the midpoints of the vertical edges in S, and two vertices in Ŝ are
connected if the corresponding points in S lie on adjacent triangles. This mapping is
demonstrated in Figure 2.
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Fig. 2. Lozenge tilings and routings.

The vertices of Ŝ that correspond to edges on the boundary of S are called sources
and sinks: a vertex v is a source if the interior of Ŝ lies to the right of v and a sink if
the interior of Ŝ lies to its left. It is not hard to check that, if a lozenge tiling of S
exists, then the numbers of sources and sinks are necessarily equal. Label the sources
s1, . . . , sk and the sinks t1, . . . , tk.

A lozenge routing of Ŝ is a set of k nonintersecting (i.e., vertex-disjoint) shortest
paths on the Cartesian lattice within Ŝ from {s1, . . . , sk} to {t1, . . . , tk}. It is not
difficult to see that there is a bijection between lozenge tilings and lozenge routings of
corresponding regions. Figure 2 provides a pictorial illustration of this correspondence
for a typical region S. An easy way to see this is to “mark” the tiles containing two
vertical edges with a stripe connecting the centers of these edges. Now notice that if a
tile is placed next to any vertical edge of S, then it must have two vertical edges whose
midpoints correspond to adjacent vertices in Ŝ. Furthermore, if the vertical edge of a
tile lies in the interior of S, then it must be adjacent to another tile having two vertical
edges (so the markings line up). Following such a sequence of tiles, starting from each
vertical edge on the boundary of S, defines a set of nonintersecting source-sink paths
in Ŝ, i.e., a routing. Conversely, given a routing we may invert the above construction
to create a partial tiling using only marked (i.e., nonhorizontal) tiles. All vertical
edges of these tiles are adjacent to another tile or to the boundary of S. The untiled
portion of S therefore consists of regions bounded only by nonvertical edges. It is not
hard to see that these can be tiled in only one way, using only horizontal tiles. Hence
there is a bijection between the set of tilings and routings of S. Moreover, we can
order the sinks so that the path from si always ends at ti, for all i, and the path from
si to ti will have the same length in every routing.

This correspondence has been formalized by Sachs et al.

Theorem 2.1 (see [1, 11]). The set of lozenge tilings of S corresponds bijectively
with the set of lozenge routings of Ŝ.

The bijection between tilings and routings is closely related to the height functions
defined by Thurston [17]. Although we don’t require it for our analysis, we briefly de-
scribe this connection here because it sheds further light on the above correspondence.
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Fig. 3. Lozenge tilings and height functions.

In this representation, the height of each vertex in the region S is determined by an
underlying algebraic structure known as the tiling group, introduced by Conway and
Lagarias [4]. The height function can be extended to all points within the region by
a piecewise linear function, thereby defining a three-dimensional surface associated
with each tiling. It turns out that, by viewing each surface from a certain orientation,
the paths of a routing can be interpreted as the level sets of this surface. This is a
common feature of all the structures we discuss in this paper; in the case of lozenges
the surfaces are immediately apparent and are just the set of three-dimensional boxes
that seem to “jump out” of the two-dimensional lozenge tiling, as in the left-hand
picture in Figure 2.

The heights of the vertices of any tiling can be determined by the following simple
rule. First choose a vertex u on the boundary of the region and fix its height hloz(u) =
0. To determine the heights of all other vertices we rely on the bipartite structure of
the dual lattice, which allows us to color all the triangles pointing to the right white
and all those pointing to the left black. Starting at u, walk around the boundaries of
tiles until an edge is traversed from a vertex v with known height hloz(v) to a vertex
w whose height has not yet been determined. If the triangle to the left of this edge
(w.r.t. the direction of traversal) is black, set hloz(w) = hloz(v) + 1; if the triangle
to the left is white, set hloz(w) = hloz(v) − 1. Repeat this process until all of the
vertices have been visited. For any tiling of a simply connected region, the heights are
always unique and well-defined (up to translation). As an example, Figure 3 shows
the height function for the tiling of Figure 2 with u being the bottom vertex. A
simple consequence of the above definition is that the heights along the boundary of
any tiling are determined by the region alone and are identical for all tilings of the
region.

The connection between height functions and routings in the case of lozenge tilings
is quite straightforward. We create an adjusted height function ĥloz by letting vy be
the vertical coordinate of vertex v (i.e., the row of the lattice that it lies in) and

defining ĥloz(v) = hloz(v)+ vy. It is a simple exercise to verify that, for any vertex v,

the adjusted height function satisfies ĥloz(v) = ĥloz(u) + 3k, where k is the number
of paths in the routing which lie between v and u (with k being negative if these



172 MICHAEL LUBY, DANA RANDALL, AND ALISTAIR SINCLAIR

�� ❅❅�� ❅❅

�

�

�

�

�

�

�� ��❅❅ ❅❅

�� ��❅❅ ❅❅
❅❅ ❅❅�� ��

�� ��❅❅ ❅❅

�� ��❅❅ ❅❅

�� ��❅❅ ❅❅
❅❅ ❅❅�� ��

�� ��❅❅ ❅❅

�
�

�
�

�
�

�
��

�
�

�
�

��
�

��

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅

�
�

�
�

�
�

�

�
�

�
�

❅
❅

❅
❅

❅
❅

❅
❅❅

❅
❅

❅
❅

❅❅
❅

❅❅
s1

s2

s3

t1

t1

t1�

�

�

�

�

�

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � �
� � � � �
� � � �
� � � � �

� � � � �
� � � �
� � � � �
� � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � �
� � � � �
� � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � �
� � � � �
� � � �
� � � � �

� � � � �
� � � �
� � � � �
� � � �
� � � � �

� � � � �
� � � �
� � � � �
� � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � �
� � � � �
� � � �
� � � � �

� � � � �
� � � �
� � � � �
� � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � �
� � � � �
� � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � �
� � � � �
� � � �
� � � � �

Paths through dominoes A domino tiling The corresponding routing

Fig. 4. Domino tilings and routings.

paths lie above v and positive if they lie below v); see Figure 3. This can be proved
using the observation that on every lozenge the heights of the two vertices where the
angle is acute must be equal. This implies that horizontal lozenges, where the two
vertices with acute angles lie in the same row, will have the same adjusted height at
all four corners, while on the other two types of lozenges the lower two vertices will
have strictly smaller height than the upper two vertices.

2.2. Domino tilings. A domino tiling is a covering of a finite region of the
Cartesian lattice with dominoes, where each domino covers two adjacent squares of
the region. Domino tilings are configurations of dimer systems on this lattice. As in
the case of lozenge tilings, there is a family of routings which correspond bijectively
to the set of domino tilings. Again, the routings are defined on an associated lattice,
which in this case is triangular.

Given a finite, simply connected tileable region S in the Cartesian lattice, we
define a related region Ŝ (which lies on a triangular lattice). First color the squares of
the Cartesian lattice black and white as on a chessboard. The vertices of the triangular
lattice can be defined as the centers of all of the vertical edges of the Cartesian lattice
which have a black square to their right, where edges are defined by connecting each
vertex (x, y) to (x+ 1, y + 1), (x+ 1, y − 1), and (x+ 2, y). The region Ŝ is the part
of this triangular lattice which is defined by vertices and edges contained completely
within the original region S. Sources and sinks of Ŝ are defined in similar fashion to
the lozenge case: sources are boundary vertices with the interior of Ŝ to their right,
and sinks are those with the interior to their left. Once again, we pair up sources
{s1, . . . , sk} and sinks {t1, . . . , tk} in the obvious way. A domino routing of Ŝ is then a
collection of nonintersecting shortest paths on the triangular lattice within Ŝ from si
to ti for each i.

The correspondence between domino tilings and routings is illustrated by means of
an example in Figure 4: each tiling defines a unique routing using the three permitted
paths through the dominoes as shown. This correspondence is formalized in the next
theorem.

Theorem 2.2. There is a bijection between domino tilings of S and domino
routings of Ŝ.
Proof. Figure 4 indicates how to use paths through dominoes to map tilings to

routings as follows. Start at a source vertex si. By definition, there must be a black
square in the interior (of the original Cartesian lattice region S) to the right of si.
The domino occupying this square determines the first step of our path: we connect
si to the unique point on the right boundary of the domino which is a vertex of Ŝ
in the underlying triangular lattice. We now find ourselves at a new point with a
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Fig. 5. Domino tilings and height functions.

black square to our right, and we can repeat this process. Since we migrate to the
right in each step, we eventually hit a point on the right boundary of Ŝ which has a
black square to its right and thus must be a sink. The paths must be nonintersecting
because the tiles cannot overlap.

To see that the above map is bijective, we construct the inverse map from routings
to tilings as follows. Each path starts at a source si (which has a black square to its
right) and follows lattice edges to a sink ti. As we follow the path from left to
right, we tile each of the black squares to the right of the lattice points on the path
(except the sink ti). There are three possible positionings for each tile corresponding
to the three possible types of edges the path can pass through. Since the paths are
nonintersecting, our tiles cannot overlap and we are left with a partial tiling of S.
Now there is a unique way to tile the remaining parts of the region, namely, using
only horizontal tiles (whose left half covers a white square). To see this, consider any
untiled black square. The white square to its left must be untiled, for if it were tiled
there would be a path exiting its right boundary, and then the black square would
be tiled. Therefore every black square can be tiled with the right half of a horizontal
domino. This completes the tiling since there must be an equal number of black and
white squares in S. The uniqueness comes from the fact that the leftmost square in
each row of each untiled subregion is white, so we cannot complete the tiling if we
use any vertical tiles.

Once again, the routings defined above can be viewed as level sets of a height
function. The height function which arises from the tiling group for dominoes can be
summarized using a rule based on the bipartition underlying the dual lattice (i.e., the
black and white squares of the chessboard). To define the height function hdom, start
with some point u on the boundary and assign hdom(u) = 0. Now, walking along
edges bounding the tiles starting at u, if the square to the left of an edge is black
(respectively, white), increase (respectively, decrease) the height by one. An example
is illustrated in Figure 5 with u being the bottom left vertex.

The connection between height functions and routings is analogous to that for
lozenge tilings. For any point v = (vx, vy), let vy be the y coordinate of v (i.e., the
row of the lattice). Let par(v) = 1 if v is the lower left corner of a white square, and
let par(v) = 0 if v is the lower left corner of a black square. Now define the adjusted

height function by ĥdom(v) = −hdom(v) + 2vy + par(v). It is easy to verify that
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ĥdom(v) is equal to ĥdom(u)+4k, where k is the number of paths which lie between u
and v in the routing (k being negative if these paths lie below u). Figure 5 illustrates
this relationship.

2.3. Eulerian orientations. A third important set of structures which can
be identified with lattice routings are the Eulerian orientations of a region of the
Cartesian lattice with specified boundary conditions. An Eulerian orientation of an
undirected graph is an orientation of its edges so that the in-degree of every vertex is
equal to its out-degree. In this problem, the input is a finite simply connected region S
of the two-dimensional Cartesian lattice, together with a fixed orientation for each of
the edges that connects the boundary of S with the interior: these orientations are
the boundary conditions. Our task is to generate uniformly at random an orientation
of the edges in the interior such that all interior vertices have equal in-degree and
out-degree. This is the “six-point model” in statistical mechanics, also known as the
“ice model.”

The correspondence between Eulerian orientations and a suitable class of routings
is well known in the physics community (see, e.g., [3]) and is sketched in Figure 6.
The sources and sinks in this case are defined by the boundary conditions as shown.
Sources are the vertices on the boundary which are connected to the interior of the
region by edges directed towards the interior and which point up or to the right; sinks
are the boundary vertices which are connected to the interior by edges directed away
from the interior (i.e., towards the boundary) and which also point up or to the right.
A necessary condition for the existence of an Eulerian orientation is, of course, that
the number of sources and sinks are equal.

An Eulerian routing of S is a set of shortest paths in S from sources {s1, . . . , sk}
to sinks {t1, . . . , tk} on the boundary. The paths are permitted to intersect at a
vertex but not along an edge. As illustrated in Figure 6, to get the Eulerian routing
corresponding to a given Eulerian orientation, we construct the paths only from edges
that are oriented up and those that are oriented to the right. It is straightforward to
establish that there is a bijection between the set of Eulerian orientations of a region
S and the set of Eulerian routings of S.
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Fig. 6. Eulerian orientations and routings.

The height function associated with Eulerian orientations is an assignment of
integers to the center of each face within a region such that neighboring faces differ
in height by one. In the statistical physics community, this is known as a “solid-on-
solid surface.” To define the heights, start with a face adjacent to the boundary and
assign to its center u the height heul(u) = 0. To define the heights of the other faces,
walk along edges in the dual lattice. When traversing a dual edge (v, w), where the
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height of v is already defined, let heul(w) = heul(v) + 1 if the edge of the Eulerian
orientation which was crossed points to the right (relative to the path from v to w)
and let heul(w) = heul(v)− 1 if the edge points to the left. Again this height function
is unique (up to translation) and well-defined. If we define an adjusted height function

ĥeul(v) = heul(v)− vx + vy, where vx and vy are the Cartesian coordinates of v, then

ĥeul(v) = ĥeul(u)+2k, where k is the number of paths of the routing which lie between
u and v. See Figure 7 for an illustrative example.
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Fig. 7. The height function representation of an Eulerian orientation.

Remark 1. The solid-on-solid height function demonstrates the well-known con-
nection between Eulerian orientations and three-colorings of a lattice region, since
taking the values of the heights mod 3 always gives a valid three-coloring of the re-
gion (see, e.g., [3]). If we fix the colors of all the dual vertices on the boundary of
the region (and hence the boundary conditions), then there is a bijection between
three-colorings and Eulerian orientations.

3. Generating lozenge tilings. This section is devoted to an analysis of a nat-
ural Markov chain algorithm for generating random lozenge tilings. The analysis will
exploit in a crucial way the correspondence with routings established in section 2.1.
We present this example first because it is the most straightforward to deal with. Anal-
ogous Markov chains for generating the other structures discussed in section 2 can be
analyzed by more refined applications of the same techniques, as we will demonstrate
in section 4.

3.1. The Markov chain. In the introduction, we discussed a Markov chain on
domino tilings based on a local move that rotates a pair of adjacent dominoes. The
analogous Markov chain for lozenge tilings has as its local move a rotation of three
neighboring lozenges (see Figure 8(a)). As in the domino case, this chain can also be
shown to be connected and to converge to the uniform distribution over tilings (see
section 3.2).

Let us now interpret this Markov chain in the world of routings. It is clear that a
lozenge rotation induces a natural local move on the corresponding routing, in which
a “peak” or a “valley” is inverted by switching two edges (see Figure 8(b)). Therefore
we can think of the chain as picking a point uniformly at random on the routing and
inverting it if possible.1 It turns out that the Markov chain in the routings world

1Strictly speaking, this chain differs slightly from the original one in that it does not attempt
to make rotations at points that are not on the current paths, which will always be rejected. This
merely reduces the self-loop probabilities of the chain, and hence speeds up the mixing time by a
factor that is bounded by the area of the region.
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Fig. 8. Lozenge rotations.

becomes considerably easier to analyze if every peak and valley can give rise to a
rotation: note that this is not the case for the above chain, since sometimes when
we try to invert a point the move will be blocked by the presence of another path.
(Recall that the paths in a routing are not allowed to intersect. See, e.g., the second
valley on the lower path in the left-hand routing of Figure 8(b).) This motivates the
introduction of a more general set of moves in which a tower is rotated. The original
moves will simply correspond to the special case of rotating a tower of height 1.

In the routings lattice, define the cell at (x, y) to be the edges connecting (x, y), (x+
1, y + 1), (x, y + 2), and (x − 1, y + 1). A tower of height h is a connected set
of cells at the points (x, y), (x, y + 2), . . . , (x, y + 2h − 2), where either the points
(x, y), (x, y+2), . . . , (x, y+2h−2) are all valleys and the point (x, y+2h) does not lie
on the routing, or the points (x, y+2h), (x, y+2h−2), . . . , (x, y+2) are all peaks and
the point (x, y) does not lie on the routing. We call the points (x, y) and (x, y + 2h)
the bottom and top of the tower, respectively (see Figure 9(a)). Provided both the
top and bottom of a tower lie in the region, its peaks (respectively, valleys) can be
inverted by switching pairs of edges in each of its cells. Such an operation is called
a rotation of the tower. Figure 9(b) illustrates a rotation of a tower of height 3,
and Figure 9(c) shows that tower rotations have a natural counterpart in the original
tilings world.

LetR1 andR2 be lozenge routings of the region Ŝ. We define a Markov chainMloz

in which there is a move from R1 to R2 iff R1 and R2 differ by a single tower rotation.
The transition probabilities P (· , ·) ofMloz are defined by

P (R1, R2)=





1/2Nh if R1, R2 differ by rotation
of a tower of height h;

1−
∑
R �=R1

P (R1, R) if R2 = R1,

where N is the total number of internal vertices along all the paths in any routing.
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Fig. 9. A move in the Markov chain Mloz for lozenge routings (and tilings).

Notice that we may implement a move of Mloz as follows. Given a routing R,
choose an internal point p on one of the paths in R and a number r ∈ [0, 1] uniformly
at random. Assume first that r ≤ 1/2. If p is a valley, then it is the bottom of a
unique tower (say, of height h); in this case, if r ≤ 1/2h, then rotate the tower if
possible (i.e., if the top of the tower lies in the region). On the other hand, if r > 1/2
check whether p is a peak (and hence the top of a unique tower), and if possible rotate
this tower if r ≥ 1 − 1/2h, where h is the height of the tower. In all other cases do
nothing. This slightly unusual implementation is a technical device that will prove
useful later when we define a coupling for the Markov chain.

As we shall see in section 3.2, this Markov chain is ergodic and converges to the
uniform distribution over all lozenge routings. Therefore, we can generate a random
tiling by simulatingMloz for sufficiently many steps, starting from an arbitrary rout-
ing and outputting the tiling corresponding to the final routing. The efficiency of this
algorithm depends on the number of simulation steps necessary to ensure an (almost)
uniform distribution, or, equivalently, on the rate of convergence of the Markov chain.
We shall see in section 3.4 that a small number of steps suffice, or in other words that
the Markov chain is “rapidly mixing.” In preparation for this we will introduce some
general technology in section 3.3.

3.2. Ergodicity of Mloz. The fact that Mloz converges to the uniform dis-
tribution over tilings follows almost immediately from the fact that the chain is con-
nected, i.e., every state is reachable from every other. It is actually quite straight-
forward to show that the Markov chain based on simple rotations connects the state
space of all lozenge tilings. This is sufficient to show the connectedness of the Markov
chain based on towers since it includes all the simple moves. Here we sketch a proof
whose machinery will be useful to us in other ways.
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Lemma 3.1. The state space of the Markov chainMloz is connected.
Proof. It is conceptually easier to work in the routings world. Note that there is a

natural partial order on the set of all lozenge routings of a given region Ŝ, defined as
follows. Let R1, R2 be two routings, and let P1, P2 be a pair of corresponding paths
(i.e., having the same source and sink) in R1, R2, respectively. We say that P1 � P2 iff
the ith point of P1 lies on or above the ith point of P2 for all i. We say that R1 � R2

iff the relation P1 � P2 holds for all pairs of corresponding paths P1, P2. Since all
routings of a region Ŝ have the same number of paths, this relation is well-defined. If
R1 � R2, we define the distance between them to be the total area enclosed between
all pairs of corresponding paths. Now it is not too hard to see that, for any finite,
simply connected region Ŝ, there is a unique minimum routing R⊥, such that R � R⊥
for all routings R of Ŝ.2 We will show that every routing is connected to R⊥ by a
sequence of simple rotations (i.e., of towers of height 1) each of which decreases the
distance to R⊥ by one.

Let R �= R⊥ be an arbitrary routing. Starting with the lowest pair of correspond-
ing paths in R,R⊥ and working upwards, scan left to right along the paths until the
first point x at which R,R⊥ deviate from one another. Now continue to follow these
two paths (say, P and P⊥) until the first point y where they meet again (this must
happen, at the latest, at their common sink). Notice that the union of the segments
of P and P⊥ that lie between x and y form a circuit whose interior is entirely contained
within the interior of Ŝ, since Ŝ is simply connected. In addition, since R⊥ is mini-
mal, P must lie strictly above P⊥ along the segment delimited by these two points.
Therefore, P must have at least one peak along this segment; let v be the leftmost
such peak. It follows that v must be the top of a (rotatable) tower of height 1 in R,
since v lies strictly above the corresponding point in R⊥ and R coincides with R⊥
on all lower paths. Therefore, if we rotate the tower at v we decrease the distance
from R⊥ by one unit. Applying this argument repeatedly, we arrive at R⊥.

Theorem 3.2. The Markov chainMloz is ergodic and converges to the uniform
distribution over lozenge tilings.
Proof. The Markov chain is clearly aperiodic since it has a holding probability of

at least 1/2 in every state. Together with Lemma 3.1, this implies that the chain is
ergodic, i.e., converges to a unique stationary distribution. That this stationary distri-
bution is uniform follows from the fact that the transition probabilities are symmetric:
for any pair of adjacent routings R1, R2, we have P (R1, R2) = P (R2, R1) = 1/2Nh,
where h is the height of the tower by which R1 and R2 differ.

3.3. Coupling and the convergence rate. In this subsection, we establish
some general machinery for bounding the rate of convergence of Markov chains, which
we shall use repeatedly in the remainder of the paper. Consider an ergodic Markov
chainM with finite state space Ω, transition matrix P , and stationary distribution π.
Following standard practice, for any given initial state x, we shall measure the devi-
ation of the distribution P t(x, ·) at time t from π by the variation distance

∆x(t) =
1
2

∑
y∈Ω

|P t(x, y)− π(y)|.

The mixing time of the Markov chain is defined by the function

τ(ε) = max
x

min{t : ∆x(t
′) ≤ ε for all t′ ≥ t}.

2A careful proof of the existence of a unique highest tiling (in the height function representation)
was given by Thurston [17]; this corresponds precisely to the minimum routing defined here.
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Our strategy for bounding τ(ε) is to construct a coupling for the Markov chain,
i.e., a stochastic process (Xt, Yt)

∞
t=0 on Ω× Ω with the following properties:

1. Each of the processes Xt and Yt is a faithful copy ofM (given initial states
X0 = x and Y0 = y).

2. If Xt = Yt, then Xt+1 = Yt+1.

The idea here is the following. Although each of Xt, Yt, viewed in isolation, behaves
exactly like M, they need not be independent; on the contrary, we will construct a
joint distribution for the two processes in such a way that they tend to move closer
together. By the second condition above, once they have met they must remain
together at all future times.

The expected time taken for the processes to meet provides a good bound on the
mixing time ofM. To state this formally, for initial states x, y set

T x,y = min{t : Xt = Yt | X0 = x, Y0 = y}

and define the coupling time to be T = maxx,y ET
x,y. The following result relating

the mixing time to the coupling time is standard (see, e.g., [2]).

Theorem 3.3. τ(ε) ≤ T e�ln ε−1�.
Next, we introduce some machinery that will help us to bound the coupling time.

Suppose we have a distance function φ defined on Ω × Ω such that φ takes integer
values in the range [0, B], and φ(x, y) = 0 iff x = y. In our examples, where the
states of the Markov chain are lattice routings, φ will be a natural measure of the
“area” between a pair of routings. We will measure the distance between a pair of
processes (Xt, Yt) using the stochastic process Φ(t) = φ(Xt, Yt). Our strategy will
be to show that, under a suitably defined coupling, the expected change ∆Φ in Φ is
always nonpositive; intuitively, this should enable us to conclude that the coupling
time is small. The following lemma makes this intuition precise.

Lemma 3.4. With the above notation, suppose the coupling satisfies E
[
∆Φ(t)|Xt,

Yt
] ≤ 0 and, whenever Φ(t) > 0, E

[
(∆Φ(t))2|Xt, Yt

] ≥ V . Then the expected coupling

time from initial states x, y satisfies ET x,y ≤ Φ(0)
(
2B − Φ(0)

)
/V .

Proof. Define the stochastic process Z(t) = Φ(t)2−2BΦ(t)−V T (t), where T (t) =
t if Φ(t) > 0, and T (t) = min{t′ : Φ(t′) = 0} if Φ(t) = 0. Then Z(t + 1) − Z(t) = 0
whenever Φ(t) = 0, and when Φ(t) > 0 we have

E
[
Z(t+ 1)|Xt, Yt

]− Z(t)

= 2
(
Φ(t)−B

)
E
[
∆Φ(t)|Xt, Yt

]
+
(
E[(∆Φ(t))2|Xt, Yt]− V

)

≥ 0.

Hence Z(t) is a submartingale with respect to the sequence {(Xt, Yt)}t≥0. Moreover,
the random time T x,y = min{t : Φ(t) = 0} (where X0 = x, Y0 = y) is a stopping time
for Z(t) with finite expectation, and the differences |Z(t + 1) − Z(t)| are bounded.
This allows us to apply the optional stopping theorem for submartingales (see, e.g., [6,
Chapter 4, Theorem 7.5] and conclude that EZ(T x,y) ≥ EZ(0). From the definition
of Z(t), this implies that

−V ET x,y ≥ Φ(0)2 − 2BΦ(0),

which gives the desired upper bound on ET x,y.
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3.4. Mloz is rapidly mixing. We first consider the simplified case of routings
consisting of a single path P with source s and sink t. Notice that in this case all
towers have height 1.

We define a coupling as follows. Consider two copies of the Markov chain, whose
states are the paths P1 and P2, each containing N internal points. Then in one move
we choose (i, r) ∈ {1, . . . , N} × [0, 1] uniformly at random and simultaneously move
the ith points of each of P1 and P2 as specified by the random number r. It should be
clear that this is a valid coupling. Notice that, because we are using the same value
of r for both processes, the two paths will never move in opposite directions. This
was the reason we implemented the Markov chain in this fashion in section 3.1.

We now proceed to bound the expected time it takes the coupled process to cause
any two initial routings to agree. To simplify the analysis, we use an observation
due to Propp and Wilson [14]: if the state space of a Markov chain is endowed with
a partial order with unique maximum and minimum elements, and if the coupling
preserves the partial order (in a sense made precise below), then the coupling time
is bounded above by the expected coupling time starting from the maximum and
minimum states. Recall the partial order defined in the proof of Lemma 3.1: P1 � P2

iff the ith point of P1 lies on or above the ith point of P2 for all i. Recall also that this
partial order has a unique minimum (and similarly also a unique maximum) element.
To make precise the notion of preserving the partial order, we first extend the above
coupling to a random function f on the entire state space; namely, pick (i, r) as above
and, for any path P , let f(P ) be the path obtained by moving the ith point of P as
specified by r. We say that the coupling is monotone with respect to the partial order
if P1 � P2 implies f(P1) � f(P2). The next lemma verifies that this condition holds
for our coupling.

Lemma 3.5. The above coupling is monotone with respect to the partial order �.
Proof. Suppose P1 � P2, and consider a random move defined by a pair (i, r);

let P ′1 = f(P1) and P ′2 = f(P2) be the images of P1, P2, respectively. Assume that
r ≥ 1/2 (the case r < 1/2 is symmetric). It is straightforward to verify that if i is
a peak in P1, then either the ith point of P1 is sufficiently far above the ith point
of P2 to ensure that P ′1 � P2 (and therefore P ′1 � P ′2), or i is also a peak in P2, in
which case the peak is rotated in both paths. In either case we can deduce that P ′1 �
P ′2.

We now need to bound the time taken for the two extremal paths to meet. To
do this, we introduce a distance function as in Lemma 3.4. For a pair of paths
P1, P2, define the distance φ(P1, P2) to be the area (i.e., number of Cartesian lattice
squares) of the region between P1 and P2. The crucial observation is that the distance
Φ(t) = φ(Xt, Yt) will tend not to increase under our coupling, as the next lemma
shows. By Lemma 3.5, we may restrict attention to the case Xt � Yt.

Lemma 3.6. Let P1 and P2 be any two paths such that P1 � P2. Then E[∆Φ|P1,
P2] ≤ 0.

Proof. Consider an arbitrary pair of paths P1 � P2. The typical situation is as
depicted in Figure 10 with path P1 drawn as a solid line and path P2 as a dotted line.
We can partition the paths into segments C1, . . . , C� on which the two paths coincide,
and segments D1, . . . , Dm whose endpoints coincide, but for which P1 is strictly above
P2 at all intermediate points.

First consider a segment Ci. It is clear that, if the point chosen by the coupling
lies in this segment, then the point will move with the same probability on both paths,
so the paths will still coincide and there will be no change in area.
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Now consider a segment Di, in which points on P1 are strictly above the corre-
sponding points on P2 (except at the endpoints). On the upper path P1, label the
peaks “good” (G) and the valleys “bad” (B) and vice versa for the lower path P2.
Thus a point is good if a rotation at that point would cause the area between the
paths to decrease and bad if a rotation would case the area to increase. (The bound-
ary of the region might in fact prohibit some of these bad rotations.) It is easy to see
that, on each path, the labeled points in the interior of the segment Di are alternately
good and bad with a net excess of one good point. Moreover, each endpoint of Di

contributes at most one bad point (unless Di and Di+1 meet at a point, in which case
there might be two bad points, but we can assign one to each segment).

Summing over all segments of the path, we see that the total number of good
points is greater than or equal to the total number of bad points. Since each good or
bad point is equally likely to be chosen in the coupling, the expected change in area
is at most zero.
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Fig. 10. Proof of Lemma 3.6.

Theorem 3.7. Let S be a region in the triangular lattice such that the corre-
sponding region Ŝ has one source s and one sink t. Then the mixing time of the
Markov chainMloz on lozenge routings of Ŝ satisfies τ(ε) ≤ 2en3�ln ε−1�, where n is
the area of Ŝ.
Proof. By Theorem 3.3, it suffices to show that the coupling time T satisfies

T ≤ 2n3. To bound T we appeal to Lemma 3.4, restricting our attention to extremal
initial states following Lemma 3.5. Our distance function φ clearly takes integer
values in the interval [0, n]. Moreover, we have seen in Lemma 3.6 that E[∆Φ] ≤ 0.
(Note that the monotonicity of the coupling ensures that any pair (P1, P2) that is
reachable under the coupling satisfies P1 � P2.) It remains only to bound E[(∆Φ)2],
assuming that the area between the pair of paths is nonzero. In this case, there must
be a segment on which the solid path is strictly above the dotted path (using the
terminology in the proof of Lemma 3.6). Scanning this segment from left to right,
there is a first point where at least one of the paths is good and neither is bad. If
this point is chosen at the next time step, then there will be a decrease in area with
probability at least 1

2 . Hence Φ decreases strictly with probability at least 1/2n,
so E[(∆Φ)2] ≥ 1/2n. (Clearly the number of points on a path cannot exceed n.)
Plugging all of these quantities into Lemma 3.4 yields T ≤ 2n3.

We now extend the above argument to the case of lozenge routings with multiple
paths. The coupling we use is the following obvious generalization of our earlier one.
Given a pair of routings, choose the same random point p on both, say the ith point
of the jth path, and the same random bit r ∈ [0, 1]. Then update each routing by
rotating at point p with the appropriate probability as determined by the random
number r.
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As in the single-path case, we can argue that it is sufficient to bound the expected
coupling time for a pair of extremal routings. Recall the partial order defined in the
proof of Lemma 3.1, in which routings R1, R2 satisfy R1 � R2 iff the ith path of R1

lies on or above the ith path of R2 for all i. As before, there are unique maximum
and minimum elements under �. And once again it is not hard to check that our
coupling is monotone with respect to this partial order.

Lemma 3.8. The above coupling for routings is monotone with respect to the
partial order �.
Proof. Suppose R1 � R2 and consider a random move defined by the pair (p, r) ∈

[1, . . . , N ]×{0, 1}. Assume without loss of generality that r ≥ 1/2. If p is the top of a
rotatable tower in R1, then either R2 is sufficiently far away from R1 so that rotating
the tower inR1 does not disturb the order, or p is also the top of a tower inR2. Because
R1 � R2, it must be the case that the tower defined by p in R1 has height at least as
large as the tower defined by p in R2. Thus the probability of performing a rotation
in R1 cannot exceed that of performing a rotation in R2. Therefore, depending on
the value of r, we rotate either in both routings, only in R2, or in neither routing. In
each of these cases it is clear that the partial order is preserved.

For a pair of routings R1, R2, we define the distance φ(R1, R2) to be the sum of the
areas between corresponding paths in R1 and R2. The next lemma, a generalization
of Lemma 3.6, proves that the distance tends not to increase under the coupling.
Again, in light of Lemma 3.8 we restrict our attention to the case where R1 � R2.

Lemma 3.9. Let R1 and R2 be any two lozenge routings such that R1 � R2.
Then E[∆Φ|R1, R2] ≤ 0.
Proof. Consider a pair of routings, the upper one solid and the lower one dotted.

Adopting the same terminology as in the proof of Lemma 3.6, give a point the label Gi

if it defines a tower of height i and is a good point (i.e., choosing it could reduce the
area between the two routings). Similarly, label a point Bi if it defines a bad tower
of height i (see Figure 11). We can calculate the expected change in area by first
considering the expected change if we make a move on the upper (solid) routing only
and then adding to this the expected change in area from a move on the lower (dotted)
routing only. Each point labeled Gi has probability 1/2Ni of rotating, and such a
rotation decreases the area between the two routings on each of the i paths altered
by the rotation, a total decrease of i. Summing the expected changes in area over all
good and bad points, we have

E[∆Φ|R1, R2] =
∑
i

∑
Bi

i

2Ni
−
∑
j

∑
Gj

j

2Nj

=
1

2N

(∑
i

#Bi −
∑
j

#Gj

)
≤ 0,

where #Bi is the number of points labeled Bi. The final inequality follows from the
fact that on each path the number of good points is at least as large as the number
of bad points, as argued in lemma 3.6.

It is now a short step to the main theorem of this section, which confirms that
simulating the Markov chainMloz for a small number of steps suffices to generate a
random lozenge tiling.

Theorem 3.10. Let S be a region of the triangular lattice. The mixing time of
the Markov chain Mloz on lozenge routings of Ŝ satisfies τ(ε) ≤ 8en4�ln ε−1�, where
n is the area of Ŝ.
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Fig. 11. Proof of Lemma 3.9.

Proof. By Theorem 3.3, it suffices to show that the coupling time satisfies T ≤ 8n4;
and by Lemma 3.8 we need only consider the coupling time for the two extremal initial
states. We first bound the distance between these extremal configurations.

Recall two properties of the height function h. First, the heights of all points
around the boundary are fixed for all routings of a region. Second, the heights of
neighboring vertices differ by at most two. For any internal point v, let kv be the
side length of the largest hexagon centered at v and fully contained within the region.
This largest hexagon must share at least one vertex with the boundary of the region,
and hence in any tiling the height of v can take on at most 4kv+1 consecutive integer
values. Finally, recall that we can walk from the lowest to the highest routing by a
sequence of rotations each of which increases the height of one vertex by three (and
leaves all other heights unchanged). As we perform this walk, there can be at most
� 4kv+1

3 � < 2kv rotations which alter the height of v. If the region being tiled has area
n, then kv <

√
n for every vertex v. Therefore, summing over all internal vertices,

we find that the total distance between the highest and lowest routings is at most∑
v 2
√
n = 2n3/2.

Lemma 3.9 confirms that E[∆Φ] ≤ 0 for all pairs of states reachable under the
coupling. To get a bound on E[(∆Φ)2], consider a pair of routings with nonzero area
between them. Then there must be a pair of corresponding paths, one solid and
one dotted, and a segment in which the solid path is strictly above the dotted path.
Scanning this segment from left to right, call the first good point we reach on either
path p. There is a 1/N chance of choosing the point p, and we perform the rotation
at p with probability 1/2h, where h is the height of the tower defined by p. Rotating
this tower causes a decrease of h in the total area, one unit for each path included in
the tower. Hence we can conclude that E[(∆Φ)2] ≥ h2/2Nh ≥ 1/2n. Putting all this
together and appealing to Lemma 3.4, we see that the coupling time satisfies T ≤ 8n4.
The result now follows from Theorem 3.3.

Remarks. (a) We have made no attempt here to optimize the upper bound on
the mixing time in Theorem 3.10; our concern has been to establish that the chain
is rapidly mixing, in the sense that the mixing grows only polynomially with the
area n. (Note in contrast that the size of the state space, i.e., the number of lozenge
tilings, is in general exponential in n.) Using a more detailed analysis of our coupling,
Wilson [18] has derived sharper bounds on the mixing time.

(b) The monotonicity property of our coupling allows one to determine bounds on
the coupling time experimentally, simply by simulating the coupled process starting at
the two extremal states. In practice, this has been found to yield significantly tighter
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bounds than that of Theorem 3.10. This idea can be further extended using the tech-
nique of “coupling from the past” due to Propp and Wilson [14] to obtain a stopping
rule for the simulation that eliminates all bias from the samples. Theorem 3.10 can
be viewed as an a priori bound on the running time of such experiments.

(c) Randall and Tetali [15] recently demonstrated that the comparison technique
of Diaconis and Saloff-Coste [5] can be used to relate the mixing time ofMloz to that
of the original Markov chain whose only moves are simple rotations. Their results,
together with Theorem 3.10, imply that the original Markov chain is rapidly mixing
as well.

4. Sampling domino tilings. The machinery presented in the last section pro-
vides a general framework which can be applied to the random generation of other
lattice structures, including domino tilings and Eulerian orientations (and presum-
ably others). In each case, the development of a provably efficient algorithm follows
the same outline: we start with natural local moves connecting the space of configu-
rations. We then interpret these moves in terms of the appropriate routings, enrich
them with a small set of nonlocal moves (involving towers), and use a coupling argu-
ment to argue that the resulting Markov chain is rapidly mixing: in all these cases,
the mixing time is bounded by a low-degree polynomial in the area of the region. The
definition of towers is sensitive to the type of routing, and the proofs use slightly more
sophisticated arguments. It is interesting that, in each case, as for lozenge tilings, the
choice of towers is quite natural in the original setting as well.

Our task in this section is to construct a random domino tiling of a given region S
of the Cartesian lattice. This we achieve using a Markov chain on the space of domino
tilings, whose moves correspond to rotations of suitably defined towers. As before,
towers are constructed so as to allow, in a single move, a series of domino rotations
which enable a rotation at a particular point which would otherwise be disallowed.
Consider, for example, a 2 × 2 block centered at a point p = (x, y) which has one
vertical domino to its right but a horizontal domino covering the square to its lower-
left. Then we can either perform a domino rotation at the point (x−1, y), which would
then allow a domino rotation at p, or the square to the upper-left of p is covered by a
vertical domino. Continuing in a zigzag fashion to the upper-left, we will eventually
find a point q = (x − k, y − k) or q = (x − k − 1, y − k) where we can perform a
rotation (assuming that we do not hit the boundary). Rotating dominoes along the
zigzag, starting at q, we can eventually perform a rotation at p. See Figure 12. As
we shall see, allowing these types of tower moves along just one of the two diagonal
directions turns out to be sufficient, so we restrict our attention to those running in
the NW-SE direction.

To formalize the above, a domino tower is defined by a spine, which is a zigzag
path (staircase of unit steps along domino boundaries) in the NW-SE direction of a
tiling, and the tower includes all the cells that are incident to a vertex on the spine.
The endpoints of the spine are the top and bottom of the tower. Provided that all the
vertices along the spine lie in the interior of the region, there are exactly two ways
in which the tower can be tiled so that one of the two endpoints of the spine is the
center of a 2× 2 block tiled with two parallel dominoes. A rotation of the tower is an
operation that replaces one of these two tilings with the other. There are four distinct
types of domino towers, depending on whether the first and last edges of the spine are
horizontal or vertical. The height of a tower is the number of vertices on the spine.

For the analysis it is more useful to redefine towers in terms of the corresponding
routings. Recall that in Theorem 2.2 we showed that generating a random tiling
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A spine defining a tower The two tilings of the tower

Fig. 12. Towers moves for domino tilings.
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Fig. 13. The four types of domino towers.

is equivalent to constructing a random domino routing of a region of the triangular
lattice with sources {s1, . . . , sk} and sinks {t1, . . . , tk}. The four types of towers can
easily be interpreted in terms of routings, as shown in Figure 13. A move of the
Markov chain consists of identifying a tower and then moving between the solid and
dotted local structures shown. In the routings representation, the height is just the
number of unit triangles in the tower. The edges marked e in the diagram indicate
the bottoms of the corresponding towers in the northwest direction, while the edges
marked e′ are the tops of towers in the southeast direction. (To relate this definition
to tilings, if e is a diagonal edge, then it corresponds to a vertical domino such that
the center of the left edge is the bottom of the spine defining the tower in the tiling; if
e is horizontal, then it corresponds to a horizontal tile such that the center of the top
edge is the bottom of the spine. For edges e′, the center of the left or bottom edge
of the corresponding domino is the top of the spine.) We refer to any of the edges e
or e′ as the “start” of a tower; notice that a tower can be uniquely specified by its
start edge and its direction. The type of the tower merely reflects whether the top
and bottom edges are horizontal or diagonal. For example, the original Markov chain
based on rotating two neighboring domino tiles consists of all Type I and Type IV
tower rotations of height 1.

Let N be the number of edges in any domino routing of Ŝ. The transition prob-
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abilities P (· , ·) ofMdom are

P (R1, R2)=





1/2Nh if R1, R2 differ by rotation
of a tower of height h;

1−
∑
R �=R1

P (R1, R) if R2 = R1.

To implement one step of this Markov chain, starting at a routing R, choose (e, r) ∈
{1, . . . , N}× [0, 1] uniformly at random, where e is a random edge of R. First suppose
r ≤ 1/2. If the edge e is a diagonal directed up and to the right, check whether
there is a tower starting at e and extending in the northwest direction. Notice that
this must be a tower of Type I or Type II and is unique. If, on the other hand, e is
horizontal, check whether there is a tower of Type III or Type IV starting at e and
extending northwest (again this is unique). In either case, determine the height h of
the tower, and if r ≤ 1/2h rotate the tower if possible (i.e., if the tower lies entirely
within the region). The case when r > 1/2 is similar: check whether there is a tower
in the southeast direction starting at e. If e is a diagonal pointing up and to the right
this would be a tower of Type II or Type IV; if e is horizontal it would be a tower of
Type I or Type III. In either case rotate the tower (if possible) if r > 1− 1/2h, where
h is the height of the tower.

The Markov chainMdom can be analyzed using arguments similar to those used
in the previous section for Mloz. As before, we first need to show that the chain is
ergodic.

Theorem 4.1. The Markov chainMdom is ergodic and converges to the uniform
distribution over domino tilings.
Proof. It is easy to check that the Markov chain is symmetric and aperiodic.

Therefore, it suffices to show that the Markov chain connects the state space of domino
tilings of a region. We will show that the state space is connected even if we restrict
the set of allowable transitions to simple domino rotations.

We start by defining a partial order on the set of all domino routings of Ŝ as
follows. Let R1, R2 be two routings and let P1, P2 be a pair of corresponding paths
(with the same source and sink). We say that P1 � P2 iff each vertical line intersecting
the paths intersects P1 at a point at least as high as the intersection with P2. (Since
the paths are piecewise linear, it suffices to check this condition at vertical lines which
pass through vertices of the underlying lattice.) As before, we say R1 � R2 iff the
relation P1 � P2 holds for all pairs of corresponding paths and define the distance
between two routings to be the union of the area between corresponding paths.

Using an argument analogous to that in the proof of Lemma 3.1, it can be verified
that there is a unique minimum routing R⊥, and that for any routing R �= R⊥ we can
find a tower of height 1 whose rotation will reduce the distance between R and R⊥.
This moves R closer to R⊥ and inductively guarantees the connectedness, and thus
the ergodicity, ofMdom.

It remains for us to show that the Markov chain converges rapidly to stationarity.
We can define a coupling in exactly analogous fashion to that for lozenge routings
in section 3.4; namely, pick a random pair (e, r) and make the appropriate move in
both routings simultaneously. Once again it is not hard to check that this coupling is
monotone with respect to the partial order on domino routings defined in the proof
of Theorem 4.1, so when analyzing the coupling time we need consider only the two
extremal routings. The key fact is the following analogue of Lemma 3.9, which says
that the area Φ(t) between routings (defined in the obvious way) is nonincreasing in
expectation.
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Lemma 4.2. Let R1 and R2 be two domino routings such that R1 � R2. Then
E[∆Φ|R1, R2] ≤ 0.

Proof. First consider the case when R1 and R2 each consist of only a single
path. Then, following the ideas from Lemmas 3.6 and 3.9, we can consider segments
C1, . . . , C� on which the two paths coincide, and segments D1, . . . , Dm on which the
two paths coincide at the endpoints, and on which R1 is strictly above R2 at all
intermediate points. As before, it is clear that choosing an edge on any of the Cj will
not change the area between the paths.

Now consider a region Dj . Give an edge the label Gi if, when that edge is chosen
by the coupling, the area between the routings could decrease by exactly i. Similarly,
label an edge Bi if one of the directions could cause the area to increase. When the
routings consist of a single path, i is either 1 or 2. Certain edges will receive two
labels. See Figure 14.
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Fig. 14. Proof of Lemma 4.2—single path case.

We can match each bad edge to a unique good edge as follows. Each horizontal
edge with a bad label also has a good label, so we can pair them off. Any diagonal
segment which has a bad label at one end must have a good label at the other end,
so we can pair these. (The moves of Mdom are defined so that we can rotate only
the routing at the two extremal edges of a diagonal segment.) This tells us that
the number of bad edges is less than or equal to the number of good edges. As in
Lemma 3.9, the probability of rotating at a given edge is inversely proportional to the
change in area caused by such a rotation. This ensures that the expected change in
area is always nonpositive.

To handle multiple paths, we need to modify the above labeling slightly. It is
possible that edges which would be labeled good or bad when a path is viewed in
isolation might no longer be places where we can perform a rotation. In particular,
if horizontal edges from adjacent paths get too close, one will not be able to rotate
in the northwest direction, and the other will not be able to rotate in the southeast
direction. This will have the net effect of eliminating a good and a bad label. To see
this, label an edge Ĝ if it is a horizontal edge which cannot move in the good direction
because of interference with another path and label it B̂ if it cannot move in the bad
direction because of interference with another path. These labels are shown in Figure
15 for the solid paths only. The crucial point is that every edge labeled Ĝ must be
paired with a distinct edge labeled B̂ and vice-versa; these are unit distance apart in
the NE-SW direction. Hence #Ĝ = #B̂.

Generalizing the argument from the single path case, we have that

#B̂ +
∑
i

#Bi ≤ #Ĝ+
∑
j

#Gj ,
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Fig. 15. Proof of Lemma 4.2—multiple path case.

whence

∑
i

#Bi ≤
∑
j

#Gj .

From this we can conclude as before that the expected change in area is always
nonpositive.

As a final ingredient, we need to bound the distance between the two extremal
routings. For a fixed region with area n, the distance between the highest and lowest
routings is at most 2n3/2. To see this, recall that the difference between the heights
of neighboring vertices in a domino routing is at most ±3. If kv is the side length of
the largest square centered at v which lies within the region, then the height of v is
an integer value in [h(u) − 2kv, h(u) + 2kv], where u is a vertex which lies on both
the square and the boundary of the region. Each step in a walk from the lowest to
the highest routing increases the height of some vertex by four, so the total number
of steps is at most

∑
v

6kv+1
4 ≤∑v 2

√
n = 2n3/2.

In analogous fashion to the proof of Theorem 3.10, Lemma 4.2, together with
Lemma 3.4 and monotonicity of the coupling, implies that the Markov chainMdom

is rapidly mixing.
Theorem 4.3. Let S be a region of the Cartesian lattice, and let Ŝ be the

corresponding region containing domino routings. Then the mixing time of the Markov
chain Mdom on routings of Ŝ satisfies τ(ε) ≤ 8en4�ln ε−1�, where n is the area of
S.

5. Sampling Eulerian orientations. Let S be a region with specified bound-
ary conditions for Eulerian orientations: recall that these determine the sources and
sinks in the routings representation. To generate a random Eulerian orientation of S,
we construct a Markov chainMeul whose state space is the set of all Eulerian routings
on S with these sources and sinks. In similar fashion to the case of lozenge routings,
moves will be defined in terms of “peaks” and “valleys,” where in this case a valley
is a vertex which is the right endpoint of a horizontal edge and the bottom endpoint
of a vertical edge of the routing; a peak is a vertex which is the left endpoint of a
horizontal edge and the top endpoint of a vertical edge. Note that a vertex may be
both a peak and a valley at the same time. The operation of flipping a peak into a
valley (or vice versa) where possible defines a simple Markov chain which we argue in
Theorem 5.1 connects the state space.

For our analysis we augment this Markov chain by allowing a move between two
routings if they differ by a structure which is either a vertical or horizontal tower as
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depicted in Figure 16. More precisely, let the cell at (x, y) be the four edges of the
unit square of the lattice whose lower-right corner is at (x, y). Define a horizontal
tower of height h to be a set of cells at points (x, y), (x−1, y), . . . , (x−h+1, y), where
either (x, y), (x − 1, y), . . . , (x − h + 1, y) are all valleys and (x, y + 1), (x − h, y) are
not valleys, or (x− h, y + 1), . . . , (x− 1, y + 1) are all peaks and (x− h, y), (x, y + 1)
are not peaks. The point (x, y) is the bottom of the tower and (x−h, y+1) is the top
of the tower. Similarly, define a vertical tower of height h to be a set of cells at points
(x, y), (x, y+1), . . . , (x, y+h− 1), where either (x, y), . . . , (x, y+h− 1) are all valleys
and (x−1, y), (x, y+h) are not valleys, or (x−1, y+h), . . . , (x−1, y+1) are all peaks
and (x, y + h), (x− 1, y) are not peaks. In this case (x, y) is the bottom of the tower
and (x− 1, y+ h) is the top (see Figure 16). Note that vertical and horizontal towers
of height 1 are identical and that any vertex can be the top (respectively, bottom) of
at most one tower. The reader should be able to verify that any tower can be inverted
in the obvious way to produce a valid routing provided all of its cells are contained
within the region. As usual, we call such an operation a rotation of the tower.
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Fig. 16. Markov chain for Eulerian orientations.

The transition probabilities P (· , ·) ofMeul are defined as follows:

P (R1, R2)=





1/2Nh if R1, R2 differ by rotation
of a tower of height h;

1−
∑
R �=R1

P (R1, R) if R2 = R1,

where N is the number of vertices on any routing.
To implement one step ofMeul, starting at a routing R, choose (p, r) ∈ {1, . . . , N}

×[0, 1] uniformly at random, where p denotes a point on the routing. If r ≤ 1/2,
check whether p is the bottom of a tower of height h and rotate this tower if possible
if r < 1/2h. Similarly, if r > 1/2 check whether p is the top of a tower of height h
and rotate this tower if possible if r > 1− 1/2h.

Tower rotations have a simple interpretation in terms of Eulerian orientations. A
tower of height h corresponds to a directed cycle in the Eulerian orientation which is
a 1× h or h× 1 rectangle (with its internal edges aligned). The rotation corresponds
to reversing all the orientations around this cycle, which of course produces a new
Eulerian orientation.

Theorem 5.1. The Markov chainMeul is ergodic and converges to the uniform
distribution over Eulerian orientations.
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Proof. Since the Markov chain is symmetric and aperiodic, it is again sufficient
to show that it is connected. As in the case of domino and lozenge tilings, the key to
proving this fact is to define a suitable partial order on routings. For corresponding
paths P1, P2 on two routings R1, R2, we say that P1 � P2 if each diagonal line in the
NW-SE direction intersects P1 at a point at least as far left as P2. We say R1 � R2

iff P1 � P2 holds for each pair of corresponding paths P1, P2. Under this partial order
there will always be a unique minimum routing. An argument analogous to that in
the proof of Lemma 3.1 demonstrates that, for any routing R which is not minimum,
we can find a point which is the top of a rotatable tower whose rotation reduces the
distance between R and the minimum routing (where again distance is defined as the
sum of the area between corresponding paths). This guarantees, inductively, that the
state space is connected.

We now turn to the mixing time of the Markov chain. Note that when the
boundary conditions define a set of routings consisting of a single path, the Markov
chain is equivalent to the lozenge routing chain Mloz of section 3. Theorem 3.7
guarantees that this chain is rapidly mixing. We now extend this result to Eulerian
routings that consist of an arbitrary number of paths. As in the previous examples,
we will construct a coupling that chooses a random point p and a random number r
and makes the appropriate move in both routings simultaneously. Again as before,
this coupling is easily seen to be monotone with respect to the partial order defined in
the proof of Theorem 5.1, so we need analyze only the coupling time starting from the
two extremal routings. As usual the following lemma, which says that the area Φ(t)
between routings is nonincreasing in expectation, is the key to the proof.

Lemma 5.2. Let R1 and R2 be any two Eulerian routings such that R1 � R2.
Then E[∆Φ|R1, R2] ≤ 0.

Proof. We assign labels G and B to peaks and valleys in similar fashion to the
lozenge case (see Figure 17). On the lower routing, label G any corner which is the
lower-right of a tower and label B any corner which is the upper-left of a tower; on
the upper routing, interchange the roles of G and B. Finally we will label all the
corners which do not define a tower because of interference with another path. On
the lower routing, label Ĝ any unlabeled corner which goes to the right and then
up if the two edges which complete the unit square are part of another path on the
routing. Likewise, label B̂ any unlabeled corner which goes up and then to the right
but which is not part of a tower because the two edges completing the square are
part of anther path on the routing. On the upper routing, interchange the roles
of Ĝ and B̂. Generalizing from the single path case as in Lemma 3.9, we know that
#B +#B̂ ≤ #G+#Ĝ.

Next observe that each point labeled Ĝ is paired with a distinct point labeled B̂.
A point p is labeled Ĝ if the two edges which complete the unit square defined by
the peak or valley at p belong to an adjacent path on the same routing. The point
defining the opposite corner of the square must be labeled B̂, and we can pair this
bad point (on the same routing) with p. This pairing implies that #B̂ = #Ĝ, and
hence that #B ≤ #G.

Finally, observe that the weights of the moves are chosen so that each bad and
each good point contributes equally to the expected change in area. Hence, if N
is the total number of points on the routing, we have E[∆Φ] = (#B − #G)/2N ≤
0.

A simple calculation based on the height function representation reveals that the
distance between extremal Eulerian routings of a region with area n is at most n3/2.
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Fig. 17. Proof of Lemma 5.2.

Combining Lemmas 5.2 and 3.4 and the fact that the coupling is monotone, we can
deduce in by now familiar fashion that the Markov chainMeul is rapidly mixing.

Theorem 5.3. Let S be a region of the Cartesian lattice with specified boundary
conditions. Then the mixing time of the Markov chain Meul on Eulerian routings
of S satisfies τ(ε) ≤ 2en4�ln ε−1�, where n is the area of S.
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1. Introduction. In [2] Berman and Hartmanis conjectured that all NP-
complete sets are polynomially isomorphic. That is, that for all NP-complete sets
A and B, there exists a bijection ϕ : Σ∗ → Σ∗ such that x ∈ A if and only if
ϕ(x) ∈ B. In addition, both ϕ and its inverse are computable in polynomial time.
Here Σ denotes the set {0, 1} and Σ∗ the set of all finite sequences of elements in Σ.

Should this conjecture be proved, we would have as a consequence that no “small”
NP-complete set exists in a precise sense of the word “small.” A set S ⊆ Σ∗ is said
to be sparse when there is a polynomial p such that for all n ∈ N, the subset Sn of all
elements in S having size n has cardinality at most p(n). If the Berman–Hartmanis
conjecture is true, then there are no sparse NP-complete sets.

In 1982 Mahaney [11] proved this weaker conjecture by showing that there exist
sparse NP-hard sets if and only if P = NP. After this, a whole stream of research
developed around the issue of reductions to “small” sets (see [1]).

In a different line of research, Blum, Shub, and Smale (BSS) introduced in [4] a
theory of computability and complexity over the real numbers with the aim of mod-
elling the kind of computations performed in numerical analysis. The computational
model defined in that paper deals with real numbers as basic entities and performs
arithmetic operations on them as well as sign tests. Inputs and outputs are vec-
tors in Rn and decision problems are subsets of R∞, the disjoint union of Rn for all
n ≥ 1. The classes PR and NPR—which are analogous to the well-known classes P
and NP—are then defined, and one of the main results in [4] is the existence of natural
NPR-complete problems.

Clearly, the sparseness notion defined above for sets over {0, 1} will not define
any meaningful class over R since now the set of inputs of size n is Rn, and this is an
infinite set. A notion of sparseness over R capturing the main features of the discrete
one (independence of any kind of computability notion and capture of a notion of
“smallness”), however, was proposed in [6]. Let S ⊆ R∞. We say that S is sparse if,
for all n ≥ 1, the set

Sn = {x ∈ S | x ∈ Rn}
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has dimension at most logq n for some fixed q. Here dimension is the dimension, in
the sense of algebraic geometry, of the Zariski closure of Sn. Note that this notion of
sparseness parallels the discrete one in a very precise way. For a subset Sn ⊆ {0, 1}n
its cardinality gives a measure of its size, and a sparse set is one for which, for all n,
this cardinality is polylogarithmic in the largest possible (i.e., 2n the cardinality of
{0, 1}n). For a subset Sn ⊆ Rn, we take the dimension to measure the size of Sn and
again define sparseness by the property of having this measure be polylogarithmic in
the largest possible (which is now n, the dimension of Rn).

Using this definition of sparseness for subsets of R∞, the main result of [6] proves
that there are no sparse NP-complete sets in the context of machines over R which
do not perform multiplications or divisions and branch only on equality tests. Note
that this result is not conditioned to the inequality P �= NP since this inequality is
known to be true in this setting (cf. [12]).

A variation on the BSS model attempting to get closer to the Turing machine
(in the sense that iterated multiplication is somehow penalized) was introduced by
Koiran in [10]. This model, which Koiran called weak, takes inputs from R∞ but no
longer measures the cost of the computation as the number of arithmetic operations
performed by the machine. Instead, the cost of each individual operation x◦y depends
on the sequences of operations which lead to the terms x and y from the input data
and the machine constants.

In this paper we extend Mahaney’s theorem to machines over R endowed with
the weak cost. Again, this is not a conditional result since it is known that P �= NP in
this context too (cf. [7]). If NPW denotes the class of sets decided in nondeterministic
polynomial cost, our main result is the following.

Theorem 1.1. There are no sparse NPW -hard sets.

2. The weak cost. Let M be a machine over R, let α1, . . . , αs be its constants,
and let a = (α1, . . . , αs) ∈ Rs. Let x = (x1, . . . , xn) ∈ R∞. At any step ν of the
computation of M with input x, the intermediate value z ∈ R produced in this step
can be written as a rational function of a and x, z = ϕ(a, x). This rational function
depends only on the computation path followed by M up to ν (i.e., on the sequence
steps previously performed by M) and is actually a coordinate of the composition of
the arithmetic operations performed along this path (see [3] for details). Let ϕ = gν

hν

be the representation of ϕ obtained by retaining numerators and denominators in this
composition. For example, the representation of the product g

h · rs is always gr
hs , and

the representation of the addition g
h +

r
s is always gs+hr

hs . We will now use gν and hν
to define weak cost.

Definition 2.1. The weak cost of any step ν is defined to be the maximum of
deg(gν), deg(hν), and the maximum bit size of the coefficients of gν and hν . For any
x ∈ R∞ the weak cost of M on x is defined to be the sum of the costs of the steps
performed by M with input x.

The class PW of sets decided within weak polynomial cost is now defined by
requiring that for each input of size n the weak cost of its computation is bounded
by a polynomial in n. A set S is decided in weak nondeterministic polynomial cost
(we write S ∈ NPW ) if there is a machine M working within weak polynomial cost
satisfying the following: for each x ∈ R∞, x ∈ S if and only if there is y ∈ R∞ with
size polynomial in n such that M accepts the pair (x, y).

Remark 1. The definitions above do not fully coincide with those given in [10]
since this reference requires the representation of the rational functions ϕ above to be
relatively prime. The definitions we give here, which are taken from [3], are essentially
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equivalent. For if a set is in PW with the definition above, it is clearly in PW with
Koiran’s. The converse is more involved to prove. Roughly speaking, any machine can
be simulated by another which keeps “programs” instead of performing the arithmetic
operations at the computation nodes. When the computation reaches a branch node,
the program for the register whose value is tested for positivity is evaluated at the
pair (a, x) to decide such positivity. Now note that one can use algorithms of sym-
bolic computation to make the numerator and denominator of the rational function
computed by the program relatively prime before evaluating.

3. Proof of the main result. Let n ≥ 1. Consider the polynomial

fn = x2n

1 + · · ·+ x2n

n − 1

and let Cn = {x ∈ Rn | fn(x) = 0}. The polynomial fn is irreducible and the
dimension of Cn is n− 1. Let C ⊂ R∞ be given by C = ∪Cn. We know (cf. [7]) that
C ∈ NPW but C �∈ PW .

Let S ⊂ R∞ be a NPW -hard set. Then C reduces to S. That is, there exists a
function ϕ : R∞ → R∞ computable with polynomial cost such that, for all x ∈ R∞,
x ∈ C ⇐⇒ ϕ(x) ∈ S. For each n ≥ 1, the restriction of ϕ to Rn is a piecewise rational
function. Our first result, Proposition 3.2, gives some properties of this function. It
uses the following simple fact in real algebraic geometry whose proof can be found in
Chapter 19 of [3].

Proposition 3.1. Let f ∈ R[x1, . . . , xn] be an irreducible polynomial such that
the dimension of its zero set Z(f) ⊆ Rn is n − 1. Then, for any polynomial g ∈
R[x1, . . . , xn], g vanishes on Z(f) if and only if g is a multiple of f .

Proposition 3.2. Let n be sufficiently large. There exist x ∈ Cn and U ⊂ Rn,
an open ball centered at x such that the restriction of ϕ to U is a rational map
h : U → Rm for some m bounded by a polynomial in n. In addition, if h1, . . . , hm
are the coordinates of h, then the degrees of the numerator and denominator of hi are
also bounded by a polynomial in n for i = 1, . . . ,m.

Proof. Let M be a machine computing ϕ within weak polynomial cost. By
unwinding the computation of M in a standard manner we obtain an algebraic com-
putation tree of depth polynomial in n. To each branch η in this tree, one associates
a set Dη ⊆ Rn such that the Dη partition Rn (i.e., ∪Dη = Rn and Dη ∩Dγ = ∅ for
η �= γ). In addition, each branch η computes a rational map hη and ϕ|Dη

= hη. The
set Dη is the set of points in Rn satisfying a system

sη∧
i=1

qi(x1, . . . , xn) ≥ 0 ∧
tη∧

i=sη+1

qi(x1, . . . , xn) < 0,(3.1)

where the qi(X1, . . . , Xn) are the rational functions tested along the branch. Since M
works within weak cost, the numerators and denominators of the qi, as well as those
of hη, have degrees bounded by a polynomial in n.

Everything we need to see now is that for some branch η, Dη contains an open
neighborhood of a point x ∈ Cn.

To do so, first notice that, by replacing each qi by the product of its numerator
and denominator, we can assume that the qi are polynomials. Also, by writing qi ≥ 0
as qi = 0 ∨ qi > 0 and distributing the disjunctions in (3.1), we can express Dη as a
finite union of sets satisfying a system

s∧
i=1

qi(x1, . . . , xn) = 0 ∧
t∧

i=s+1

qi(x1, . . . , xn) < 0.(3.2)
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We have thus described Rn as a union of sets which are solutions of systems like (3.2).
Since this union is finite there exists one such set D containing a subset H of Cn of
dimension n − 1. Let D be the solution of a system like (3.2). We claim that there
are no equalities in such a system. Assume the contrary. Then there is a polynomial
q such that H ⊂ Z(q). Since dimH = n − 1 and Cn is irreducible, this implies that
q(Cn) = 0 and, by Proposition 3.1, that q is a multiple of fn. Since deg fn = 2n, this
is not possible for sufficiently large n.

The above implies that D is an open set from which the statement follows.
For the next result we keep the notation of the statement of Proposition 3.2.
Proposition 3.3. Let k = dimh(U).
(i) There exist indices i1, . . . , ik ∈ {1, . . . ,m}, a polynomial g ∈ R[y1, . . . , yk],

and a rational function q ∈ R(x1, . . . , xn) with both numerator and denomi-
nator relatively prime with fn such that

g(hi1 , . . . , hik) = f �nq

for some  > 0.
(ii) Let n be sufficiently large. Then k ≥ n.
Proof. For part (i), first notice that since dim(h(U)) = k, there exist i1, . . . , ik ∈

{1, . . . ,m} such that the functions hi1 , . . . , hik are algebraically independent. We
want to show that dim(U ∩ Cn) < k. To do so let X = h(U), Y = h(U − Cn), and
Z = h(U ∩ Cn). We have that all X,Y , and Z are semialgebraic subsets of Rm. In
addition, Z is contained in the closure of Y with respect to the Euclidean topology
relative to X since h is continuous, and Y ∩Z = ∅ since h is the restriction of ϕ to U
and ϕ is a reduction.

From here it follows that Z is included in the boundary of Y relative to X. Hence,
dimZ < dimY = dimX (see, e.g., Proposition 2.8.12 of [5]).

The above shows that dimh(U∩Cn) < k. Therefore, there exists g ∈ R[y1, . . . , yk]
such that, for all x ∈ U ∩ Cn, g(hi1(x), . . . , hik(x)) = 0. Write this as a rational
function g(h) = a/b with a, b ∈ R[x1, . . . , xn] relatively prime. Then a(Cn) = 0
and a �= 0 (since hi1 , . . . , hik are algebraically independent). By Proposition 3.1 this
implies that there exists r ∈ R[x1, . . . , xn] such that a = rfn. If  is the largest power

of fn dividing a, then the result follows by taking q = r′
b , where r′ is the quotient of

r divided by f �−1
n .

We now proceed to part (ii). To simplify notation, assume that ij = j for j =
1, . . . , k. Also, let d be a bound for the degrees of the numerators and denominators
of the hj . Recall from Proposition 3.2 that d is bounded by a polynomial in n.

By part (i) there exists q ∈ R(x1, . . . , xn) relatively prime with fn such that

f �nq = g(h1, . . . , hk)

for a certain  ≥ 1. Taking derivatives on both sides we obtain that, for all x ∈ Rn,

∇(f �nq)(x) = ∇(g)(h(x)) ◦Dh(x),(3.3)

where ∇ denotes the gradient and Dh(x) is the Jacobian matrix of h at x.
Assume that k < n. Transposing (3.3) one sees that ∇(f �q)(x) is the image of a

vector of dimension k. Thus, there exists a linear dependency among the first k + 1
coordinates of ∇(f �q)(x),

k+1∑
i=1

λi
∂f �nq

∂xi
= 0,(3.4)
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and the coefficients λi of this linear dependency are the determinants of some minors
of Dh(x). Thus, for i = 1, . . . , k+1, λi is a rational function of x whose numerator and
denominator have degrees bounded by kd. Since the submatrix of Dh(x) obtained
by keeping its first k + 1 rows contains at most k(k + 1) different denominators,
multiplying (3.4) by the product of all of them allows one to assume that the λi are
polynomials with degree at most kd(k + 1).

By the product rule we get

k+1∑
i=1

λi

(
 f �−1
n q

∂fn
∂xi

+ f �n
∂q

∂xi

)
= 0,

i.e.,

 f �−1
n q

k+1∑
i=1

λi
∂fn
∂xi

+ f �n

k+1∑
i=1

λi
∂q

∂xi
= 0.

Since f �n divides the second term above, it must also divide the first from which, using

that fn and q are relatively prime, it follows that fn divides
∑k+1
i=1 λi

∂fn
∂xi

. That is,
there exists a polynomial p such that

fnp =

k+1∑
i=1

λi
∂fn
∂xi

,

i.e.,

p

(
n∑
i=1

x2n

i − 1

)
= 2n

k+1∑
i=1

λix
2n−1
i .

Now, for n large enough, the degrees of the λi are smaller than 2
n−1 since kd(k+1) is

polynomial in n. This implies that the degree of p must also be bounded by kd(k+1).
Then, however, for each i ≤ k + 1, px2n

i = λix
2n−1
i , i.e., pxi = λi. And from here it

follows that −p = 0, a contradiction.
Theorem 1.1 now readily follows. For all n ∈ N, Proposition 3.2 ensures the

existence of an open ball U ⊂ Rn whose image by the reduction ϕ is included in
Rm with m polynomially bounded on n. However, for all n sufficiently large, this
image, by Proposition 3.3(ii), has dimension at least n and therefore it cannot be
polylogarithmic on m.

Remark 2. The result of Theorem 1.1, together with that in [6], supports the
conjecture that there are no sparse NP-hard sets over the reals unless P = NP. There
are two main settings where this remains to be proved. On the one hand, there are
machines which do not multiply nor divide but which branch over sign tests. On
the other hand, there is the unrestricted case in which the machine can multiply or
divide (and branch over sign tests) with unit cost. In these two cases, the result seems
harder since there is no proof that P �= NP. In the first case, we would like to remark
that if many-one reductions are replaced by Turing reductions and we assume that
P �= NP, then Mahaney’s conjecture is false. This is due to a result of Fournier and
Koiran [9] proving that any NP-complete set in the Boolean setting (i.e., over {0, 1})
is NP-complete over the reals with addition and order for Turing reductions. Since
the subsets of elements of size n of any such set S have dimension 0, the sparseness
of S is immediate. For more on this see [8].
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1987.

[6] F. Cucker, P. Koiran, and M. Matamala, Complexity and dimension, Inform. Process. Lett.,
62 (1997), pp. 209–212.

[7] F. Cucker, M. Shub, and S. Smale, Complexity separations in Koiran’s weak model, Theoret.
Comput. Sci., 133 (1994), pp. 3–14.

[8] H. Fournier, Sparse NP-complete problems over the reals with addition, Theoret. Comput.
Sci., 255 (2001), pp. 607–610.

[9] H. Fournier and P. Koiran, Lower bounds are not easier over the reals: Inside PH, in Pro-
ceedings of the 28th International Colloquium on Automata, Languages and Programming,
Lecture Notes in Comput. Sci. 1853, Springer-Verlag, Berlin, 2000, pp. 832–843.

[10] P. Koiran, A weak version of the Blum, Shub and Smale model, J. Comput. System Sci., 54
(1997), pp. 177–189.

[11] S. Mahaney, Sparse complete sets for NP: Solution of a conjecture by Berman and Hartmanis,
J. Comput. System Sci., 25 (1982), pp. 130–143.

[12] K. Meer, A note on a P �= NP result for a restricted class of real machines, J. Complexity, 8
(1992), pp. 451–453.



RANDOMNESS AND RECURSIVE ENUMERABILITY∗
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Abstract. One recursively enumerable real α dominates another one β if there are nondecreasing
recursive sequences of rational numbers (a[n] : n ∈ ω) approximating α and (b[n] : n ∈ ω) approxi-
mating β and a positive constant C such that for all n, C(α− a[n]) ≥ (β− b[n]). See [R. M. Solovay,
Draft of a Paper (or Series of Papers) on Chaitin’s Work, manuscript, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, 1974, p. 215] and [G. J. Chaitin, IBM J. Res. Develop., 21
(1977), pp. 350–359]. We show that every recursively enumerable random real dominates all other
recursively enumerable reals. We conclude that the recursively enumerable random reals are exactly
the Ω-numbers [G. J. Chaitin, IBM J. Res. Develop., 21 (1977), pp. 350–359]. Second, we show that
the sets in a universal Martin-Löf test for randomness have random measure, and every recursively
enumerable random number is the sum of the measures represented in a universal Martin-Löf test.
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1. Introduction. When is a real number effectively random? To a large extent,
this question was answered by the collective efforts of Chaitin [4], Kolmogorov [11],
Martin-Löf [14], Schnorr [15], Solomonoff [16], [17], and Solovay [18], among others.
We present a brief historical account, based in the most part on [19]. One could also
consult [1] or [13].

1.1. Characterizations of effective randomness. To fix some notation, Σ∗

denotes the set of finite binary sequences. For a ∈ Σ∗, |a| denotes the length of
a and 〈a〉 denotes the rational number with binary expansion 0.a. We order Σ∗

lexicographically.

Σω denotes the set of all infinite binary sequences. As above, 〈α〉 denotes the real
number with binary expansion 0.α. We extend the lexicographic ordering of Σ∗ to
that on Σω.

For A ⊆ Σ∗, AΣω denotes the open subset of Σω whose elements have an initial
segment in A, and µ(AΣω) denotes the measure of AΣω.

We have chosen to work with Σ∗ and Σω, as that seemed to work best notationally.
We could have worked with Q and R just as well and come to the same conclusions.
We will refer to elements of R and to elements of Σω as real numbers.

Characterization by measure. Our first characterizations of effective randomness
are based on the hypothesis that an effectively random real should avoid every effec-
tively presented set of measure 0.

Definition 1.1 (Martin-Löf [14]).

1. A Martin-Löf randomness test is a uniformly recursively enumerable sequence
(An : n ≥ 1) of subsets of Σ∗ such that for each n, µ(AnΣω) ≤ 1/2n.
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1, Czech Republic (kucera@ksi.mff.cuni.cz).
‡Department of Mathematics, University of California, Berkeley, CA 94720-3840 (slaman@math.

berkeley.edu). This author was partially supported by National Science Foundation grant DMS-
9500878.

199
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2. An x in Σω is Martin-Löf-random if for every Martin-Löf test (An : n ≥ 1),
x �∈ ⋂n≥1AnΣ

ω.
3. A Martin-Löf test (Un : n ≥ 1) is universal if for every x ∈ Σω, if x �∈⋂

n≥1 UnΣ
ω, then x is Martin-Löf-random.

Note that when we speak of Martin-Löf tests, we will always be referring to tests
which are applied to infinite binary sequences. Such tests are also known as sequential
Martin-Löf tests to distinguish them from tests applied to finite strings.

A second measure theoretic criterion was proposed by Solovay.

Definition 1.2 (Solovay [18]).

1. A Solovay randomness test is a uniformly recursively enumerable sequence
(An : n ≥ 1) such that the sum

∑
n≥1 µ(AnΣ

ω) is convergent.
2. An x in Σω is Solovay-random if and only if for every Solovay randomness
test (An : n ≥ 1), {n : x ∈ AnΣω} is finite.

It is immediate that every Solovay-random real is Martin-Löf-random, and Solovay
proved the converse.

Theorem 1.3 (Solovay [18]). Every x in Σω which is Martin-Löf-random is also
Solovay-random.

Characterization by algorithmic complexity.. Our second characterization of ef-
fective randomness is based on the hypothesis that an effectively random sequence
should be unpredictable.

Suppose that f is a partial recursive function from Σ∗ to Σ∗. We say that f is
self-delimiting if for all a and b in Σ∗, if f is defined on a and on b, then a and b are
incompatible; that is to say that they are not equal and neither string extends the
other.

Definition 1.4 (Levin [12], Chaitin [4]). Suppose that f is a self-delimiting
recursive function. We write f(a) ↓ to indicate that f is defined on argument a.

1. The halting probability of f is
∑
f(a)↓ 1/2

|a|.
2. If b is in the range of f , then the f -complexity of b is the least length of a
string a such that f(a) = b. If b is not in the range of f , then the f-complexity
of b is ∞. Let Hf (b) denote the f-complexity of b.

Note the halting probability of a self-delimiting function is a real number between
0 and 1. Consequently, we can use its binary expansion to identify it with an element
of Σω. This identification is unique for irrational reals.

Convention 1.5. In the following, we will make implicit use of the identification
between R and Σω whenever we say that a real number has a property defined only on
Σω.

Definition 1.6 (Chaitin [4]). A recursive function u is Chaitin-universal if and
only if the following conditions hold:

1. u is self-delimiting.
2. For any self-delimiting recursive function f , there is a constant C such that
for all a, Hu(a) is less than or equal to Hf (a) + C.

Proposition 1.7 (Chaitin [4]). There is a recursive function which is Chaitin-
universal.

Definition 1.8 (Chaitin [4]). An x ∈ Σω is Chaitin-random if there is a re-
cursive function u which is Chaitin-universal and a constant C such that for all n,
Hu(x � n) > n− C. (Here x � n is the sequence given by the first n values of x.)

It is straightforward to check that every Martin-Löf-random real is Chaitin-
random. Schnorr proved the converse; see [3].
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Theorem 1.9 (Schnorr [15]). For every x ∈ Σω, if x is Chaitin-random, then x
is Martin-Löf-random.

Since all of the preceding notions of effective randomness coincide, except for
historical references, we will drop the prefixes and speak of a real’s being random.

Natural examples. Chaitin provided a natural class of random reals.

Definition 1.10 (Chaitin [4]). A Chaitin Ω-number is the halting probability of
a universal function u as above.

Theorem 1.11.

1. (Chaitin [4]). Every Ω-number is Chaitin-random.
2. (Solovay [18]). Every Ω-number is Solovay-random.

Consequently, every Ω-number is random.

1.2. Recursive enumerability.

Definition 1.12. An α in Σω is recursively enumerable if there is a nondecreas-
ing sequence (a[n] : n ∈ ω) from Σ∗ such that limn→∞ a[n] = α.

The Ω-numbers provide natural examples of recursively enumerable reals.

Solovay formulated the following notion for recursive increasing sequences of ra-
tional numbers converging to real numbers. We take the liberty of presenting his
definition in terms of recursive increasing sequences from Σ∗ converging to elements
of Σω.

Definition 1.13 (Solovay [18]). Let (a[n] : n ∈ ω) and (b[n] : n ∈ ω) be recursive
monotonically (lexicographically) increasing sequences from Σ∗ which converge to α
and β, respectively.

1. (a[n] : n ∈ ω) dominates (b[n] : n ∈ ω) if there is a positive constant C such
that for all n in ω, C(〈α〉 − 〈a[n]〉) ≥ (〈β〉 − 〈b[n]〉).

2. (a[n] : n ∈ ω) is universal if it dominates every recursive monotonically
increasing sequence from Σ∗.

3. α is Ω-like if it is the limit of a universal monotonically increasing recursive
sequence from Σ∗.

Solovay showed that every Ω-number is Ω-like. Additionally, Solovay’s proof that
every Ω-number is Solovay-random generalizes to Ω-like reals.

Theorem 1.14 (Solovay [18]). If α is Ω-like, then α is random.

Calude et al. [2] sharpened Theorem 1.14 as follows.

Theorem 1.15 (Calude et al. [2]). If α is Ω-like, then α is an Ω-number.

Thus, every Ω-like number is an Ω-number.

Calude et al. [2] posed the natural question, “Is every recursively enumerable
random real an Ω-number?” In Theorem 2.1, we show that every recursively enumer-
able random real is Ω-like and conclude from Theorem 1.15 that the answer to this
question is yes.

A second natural class of random reals. Chaitin’s Ω-numbers come from universal
objects in the complexity theoretic formulation of randomness. Calude et al. [2] raised
the question whether the universal objects in the measure theoretic formulation of
randomness are also random. They asked, “If (Un : n ≥ 1) is a universal Martin-
Löf test, then is

∑
n≥1 µ(UnΣ

ω) random?” In Theorem 3.1, we show that the answer
is yes. As we discuss below, an equivalent form of this fact was known in the context
of recursive analysis.

A dual statement is also true. Theorem 3.3 states that every random recursively
enumerable real number is the sum of the measures in a some universal Martin-
Löf test.
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This paper represents work conducted independently by the authors. Where
appropriate, we have indicated places where they came to their solutions to these
problems differently.

2. Random recursive enumerability implies Ω-like.

Theorem 2.1. Suppose that α is a random recursively enumerable element of
Σω. Then α is Ω-like.

Proof. Let (a[n] : n ∈ N) be a recursive nondecreasing sequence from Σ∗ which
converges to α. Let β be recursively enumerable, and let (b[n] : n ∈ N) be a recursive
lexicographically nondecreasing sequence from Σ∗ which converges to β.

We show that one of the following two conditions must hold:

1. There is a uniformly recursively enumerable sequence of sets (An : n ∈ N)
such that for each n, An ⊆ Σ∗, µ(AnΣω) ≤ 1/2n, and α ∈ AnΣω.

2. There is a C such that for all i, C(〈α〉 − 〈a[i]〉) ≥ (〈β〉 − 〈b[i]〉).
Theorem 2.1 follows. If the first condition holds, then α is not random and

Theorem 2.1 is verified. Otherwise, the second condition holds and the pair β and
(b[n] : n ∈ N) is not a counterexample to α’s being Ω-like. Since β and (b[n] : n ∈ N)
were arbitrary, Theorem 2.1 is verified.

We enumerate An by recursion on stages s. Let An[s] be the finite set of strings
that have been enumerated into An during earlier stages than s. Let s

−[s] be the
last stage during which we enumerated an element into An, or equal to 0, if there
was no such earlier stage. If a[s] has an initial segment in An[s] or b[s] = b[s−[s]],
then we let An[s + 1] = An[s]. Otherwise, let a[s] + (b[s] − b[s−[s]])/2n denote the
string c such that 〈c〉 is equal to 〈a[s]〉 + (〈b[s]〉 − 〈b[s−[s]]〉)/2n. We choose a finite
antichain d1, . . . , dk from Σ

∗ such that for every d in [a[s], a[s] + (b[s]− b[s−[s]])/2n],
there is an i such that d is compatible with di . We enumerate d1, . . . , dk into An. In
other words, we add the interval from a[s] to a[s] + (b[s] + b[s−[s]])/2n to AnΣω. Our
intention is that if the approximation to β changed by ε, then either α will belong to
AnΣ

ω or the approximation to α must change by an additional amount greater than
or equal to ε/2n.

First, we calculate that µ(AnΣ
ω) ≤ (〈β〉−〈b[0]〉)/2n: AnΣω is a union of a disjoint

set of intervals, and the measure of AnΣ
ω is the sum of the lengths of those intervals.

That sum has the form

(〈b[t1]〉 − 〈b[0]〉)/2n + (〈b[t2]〉 − 〈b[t1]〉)/2n + (〈b[t3]〉 − 〈b[t2]〉)/2n + . . . ,

where t1, t2, . . . is the sequence of stages during which we enumerate intervals into
AnΣ

ω. This is a collapsing sum with limit less than or equal to (〈β〉−〈b[0]〉)/2n. The
inequality could be strict when there are only finitely many terms in the sum. In any
event, µ(AnΣ

ω) ≤ 1/2n.
If α belongs to each AnΣ

ω, then we have condition 1.

Therefore, suppose that n is fixed so that α is not in AnΣ
ω. By our construction,

if we enumerate the interval [a[s], a[s]+(b[s]− b[s−[s]])/2n] into AnΣω during stage s,
then there is a stage t greater than s such that 〈a[t]〉 is greater than 〈a[s]〉+ (〈b[s]〉 −
〈b[s−[s]]〉)/2n).

We claim that for all s, 2n(〈α〉 − 〈a[s]〉) ≥ (〈β〉 − 〈b[s]〉). Fix s and let t0 be the
greatest stage t less than s such that we enumerate something into An during stage t
or be 0 if there is no such stage. Let t0, t1, . . . be the sequence of stages, beginning
with stage t0, during which we enumerate intervals into An. Then t1 is greater than or
equal to s and 〈α〉−〈a[t1]〉 is greater than the sum Σ∞k=1(〈b[tk]〉−〈b[tk−1]〉)/2n. This is
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another collapsing sum and is equal to (〈β〉−〈b[t0]〉)/2n. Consequently, 〈α〉−〈a[s]〉 ≥
〈α〉 − 〈a[t1]〉 ≥ (〈β〉 − 〈b[t0]〉)/2n ≥ (〈β〉 − 〈b[s]〉)/2n, as required.

3. Universal Martin-Löf tests have random measure. Subsequent to our
having proven Theorem 3.1, the first author observed that a version of it appears in
[6], set in the context of recursive analysis. See Remark 3.5.

Theorem 3.1. Let (Un : n ≥ 1) be a universal Martin-Löf test. Then, for each
n ≥ 1, µ(UnΣω) is random.

Proof. We show that for each n, µ(UnΣ
ω) is Ω-like and therefore random.

Let U be one of the elements of (Un : n ≥ 1). We note that µ(UΣω) is less
than or equal to 1/2. Let U [s] denote the set consisting of the first s elements in the
enumeration of U . Let β ∈ Σω be recursively enumerable, and let (b[s] : s ≥ 1) be a
recursive increasing sequence from Σ∗ which converges to β.

We will construct a Martin-Löf test (An : n ≥ 1) so that for all n, An+1Σ
ω ⊆

AnΣ
ω and so that one of the following conditions holds:

1. For each n, An is finite and µ(AnΣ
ω \ UΣω) > 0.

2. There is a C such that for each s, C(µ(UΣω)− µ(U [s]Σω)) > (〈β〉 − 〈b[s]〉).
In the first case, we will obtain a contradiction by showing that (Un : n ≥ 1) is

not universal. In the second case, we will show that (µ(U [s]Σω) : s ≥ 1) dominates
(b[s] : s ≥ 1). Since β and (b[s] : s ≥ 1) were arbitrary, µ(UΣω) is Ω-like, as required.

We construct the sets An and several auxiliary functions by recursion on stages s.
Our continuing convention is to use the suffix [s] to denote the values of these objects
during stage s. For example, An[s] denotes the finite subset of Σ

∗ whose elements
were enumerated into An before stage s.

In our recursion, if the recursion variable i goes to infinity, then we verify the first
disjunct above. If i does not go to infinity in the limit, then its limit infimum i∗ is
the least index for an infinite element of (An : n ≥ 1). In this case, U must cover a
nonzero fraction of the measure of Ai∗ . We add measure to each An so that we can
verify the second disjunct above (where C depends on i∗; see below).

We begin the construction with each An empty. During stage 0, we definem0[0] =
1/2, define A0 = { () }, the set whose only element is the null sequence, and say that 0
is active during stage 0. During stage s greater than 0, we begin in step 1 and follow
the instructions below until reaching one which requires the end of stage s. Upon the
end of stage s, we begin stage s+ 1.

1. Let m0[s] = 1/2, let A0[s] = { () }, and let i = 1. Go

to step 2.

2. (a) If i has not been active during any previous

stage or if all of its previous actions have been

canceled, then let s−i [s] equal 0.
(b) Otherwise, let s−i [s] be the most recent stage

during which i was active.

Go to step 3.

3. (a) If s−i [s] = 0 or if µ(Ai[s]Σ
ω \ U [s]Σω) is less than

or equal to di[s
−
i [s]]mi−1[s]/2, then take the

following actions.

i. Set di[s] = (〈b[s]〉 − 〈b[s−i [s]]〉) and

mi[s] = di[s]mi−1[s]/2.
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ii. Choose a finite set of strings Fi[s] so that

µ(Fi[s]Σ
ω) is equal to di[s]mi−1[s], Fi[s]Σ

ω is a

subset of Ai−1[s]Σ
ω, and Fi[s]Σ

ω is disjoint

from U [s]Σω. Enumerate the elements of Fi[s]
into Ai.

iii. Say that i is active during stage s. For each

j > i, cancel all of the previous actions for

the sake of j.
iv. End the stage s of the recursion.

(b) Otherwise, let di[s] = di[s
−
i [s]] and

mi[s] = di[s]mi−1[s]/2. Go to step 4.

4. (a) If i is less than s, then increase the value of i
by 1, and go to step 2.

(b) Otherwise, end stage s of the recursion.

Suppose that we reach step 3(a) with i = n. If n is equal to 1, then we are required
to find a set F1[s] such that F1[s]Σ

ω ⊂ (Σω \U [s]Σω) and µ(F1[s]Σ
ω) = d1[s]m0[s]. Of

course, m0[s] = 1/2 and d1[s] is less than 1. Therefore we must find a set of measure
less than 1/2 in Σω \ U [s]Σω. Since U belongs to a Martin-Löf test, µ(UΣω) ≤ 1/2
and it is possible to find the set F1[s]. If n is greater than 1, then at an earlier point in
stage s, we noted that µ(An−1[s]Σ

ω \U [s]Σω) is greater than dn−1[s
−
n−1[s]]mn−2[s]/2.

We defined dn−1[s] = dn−1[s
−
n−1[s]] and defined mn−1[s] = dn−1[s]mn−2[s]/2. Then

dn[s]mn−1[s] = dn[s](dn−1[s]mn−2[s]/2). Since dn[s] is less than or equal to 1, this
quantity is less than dn−1[s

−
n−1[s]]mn−2[s]/2, and again it is possible to find the set

Fn[s].

We say that n is injured during stage s if we cancel all of the previous actions for
the sake of n during stage s. Note that 1 is never injured.

LetMn be the set of stages during which n is active. Mn is naturally divided into
intervals by injury to n. If Mn is not empty, then start by letting {qj : j ∈ Qn} be
an increasing enumeration of the stages s in Mn such that s

−
n [s] is equal to 0. Note

that Qn may be finite or may be all of N. In the case that Qn is finite with greatest
element j, we let qj+1 denote infinity and use it to refer to the semi-infinite interval
of stages coming after the final injury to n.

To calculate a bound on the measures of the sets AnΣ
ω, we now compute∑

s∈Mn
dn[s]mn−1[s], when n is greater than or equal to 1.

Divide Mn into intervals.

∑
s∈Mn

dn[s]mn−1[s] =
∑
j∈Qn

∑

s∈Mn∩[qj ,qj+1)

dn[s]mn−1[s].

Note that mn−1[s] is constant between qj and qj+1.

=
∑
j∈Qn


mn−1[qj ]

∑

s∈Mn∩[qj ,qj+1)

dn[s]


 .
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Identify the collapsing sum.

=
∑
j∈Qn


mn−1[qj ]

∑

s∈Mn∩[qj ,qj+1)

(〈b[s]〉 − 〈b[s−n [s]]〉)



≤
∑
j∈Qn

mn−1[qj ](〈β〉 − 〈b[0]〉)

≤
∑
j∈Qn

mn−1[qj ].

Note that mn−1[qj ] equal to mn−1[s], where s is the greatest stage less than qj
during which n− 1 was active.

≤
∑

s∈Mn−1

mn−1[s].

The last inequality could be strict, as there may be stages during which n− 1 is
active which are followed by an injury to n− 1 before the next stage during which n
is active.

We now check by induction that
∑
s∈Mn

mn[s] is less than or equal to 1/2
n+1.

Consider the case when n is equal to 0. Then, M0 is equal to {0} and m0[0] is
equal to 1/2. Consequently,

∑
s∈M0

m0[s] = 1/2, as required.
Now, suppose that n is greater than 0. Then,

∑
s∈Mn

mn[s] is given by the
following:

∑
s∈Mn

mn[s] =
∑
s∈Mn

dn[s]mn−1[s]/2.

Move the factor 1/2 out of the sum, and apply the previous calculation.

≤ 1
2

∑
s∈Mn−1

mn−1[s].

Apply induction.

≤ 1
2
(1/2n)

= 1/2n+1.

We have the required inequality.
Now, µ(AnΣ

ω) is less than or equal to the sum of the measures of the sets Fn[s]Σ
ω

for s ∈Mn. Each Fn[s]Σ
ω has measure dn[s]mn−1[s]. Therefore, µ(AnΣ

ω) is less than
or equal to

∑
s∈Mn

dn[s]mn−1[s], which is less than or equal to
∑
s∈Mn−1

mn−1[s], and

hence less than or equal to 1/2n, as above.
Thus, (An : n ≥ 1) is a Martin-Löf test.
Suppose that for each n, n is active only finitely often. Then for each n, there is

a stage s during which we execute step 3(a) for i = n for the final time. Therefore,
for each n, An is finite and AnΣ

ω \ UΣω is a closed set of positive measure. Further,
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for each n, An+1Σ
ω ⊆ AnΣω. Since Σω is compact,

⋂
n≥1AnΣ

ω \ UΣω is not empty.
Thus,

⋂
n≥1AnΣ

ω is not a subset of U , contradicting the universality of (Un : n ≥ 1).
Consequently, there are numbers which are active infinitely often, and we let i∗

be the least such number.
The first possibility is that i∗ is equal to 1. Consider the action during a stage

s ∈ M1. We add strings to A1 so that the measure of A1Σ
ω \ U [s]Σω is greater

than or equal to d1[s]m0[s], where d1[s] is the amount that the approximation to
β has increased since the most recent stage s−1 [s] during which 1 was active. At
the next stage s+1 [s] in M1 after s, the measure of A1[s

+
1 ]Σ

ω \ U [s]Σω is less than
d1[s]m0[s]/2 = d1[s]m0[0]/2. Thus, for s in M1, if the approximation to β in-
creases by d1[s] during the interval [s

−
1 [s], s), then the measure of U [s

+
1 ]Σ

ω \ U [s]Σω
is greater than or equal to d1[s]m0[s]/2. It follows that for every s, (〈β〉 − 〈b[s]〉) ≤
(2/m0[0])(µ(UΣ

ω) − µ(U [s]Σω)). Thus, every increase in the approximation to β is
followed by a proportional increase in the approximation to the measure of U , and so
µ(U [s]Σω : s ≥ 1) dominates (b[s] : s ≥ 1).

Second, i∗ may be larger than 1, but the analysis is completely parallel to that of
the previous case. We start from the first stage s[0] in Mi∗ after i

∗ is injured for the
last time, we add strings to Ai∗ so that the measure of Ai∗Σ

ω \U [s]Σω is greater than
or equal to di∗ [s]mi∗−1[s] = di∗ [s]mi∗−1[s0], and we observe that the measure of UΣ

ω

increases by at least half that much during the interval from s to the next stage inMn.
It follows that for every m, (〈β〉 − 〈b[m]〉) ≤ (2/mi∗−1[s0])(µ(UΣ

ω)− µ(U [m]Σω)).
In either case, U is Ω-like and therefore random.
The following corollary follows easily.
Corollary 3.2. Let (Un : n ≥ 1) be a universal Martin-Löf test. Then∑

n≥1 µ(UnΣ
ω) is random.

Theorem 3.3. For each recursively enumerable random r in Σω there is a uni-
versal Martin-Löf test (Un : n ≥ 1) such that 〈r〉 is equal to

∑
n≥1 µ(UnΣ

ω).
Proof. We fix a universal Martin-Löf test (An : n ≥ 1), and construct another

(Un : n ≥ 1) based on it so that 〈r〉 =
∑
n≥1 µ(UnΣ

ω). Let An[s] denote the finite
set of sequences which enter An during the first s steps of its enumeration. We may
assume that for all n and s, if s < n, then An[s] is empty. With analogous notation,
we will make use of a universal Martin-Löf test (Vn : n ≥ 1) and a nondecreasing
recursive sequence (r[s] : s ≥ 1) with limit r such that for all s, ∑n≥1 µ(VnΣ

ω) −∑
n≥1 µ(Vn[s]Σ

ω) is less than 〈r〉−〈r[s]〉. We first argue that there are such sequences.
For s greater than or equal to 1, let b[s] be the binary string such that the following

condition holds:

〈b[s]〉 =
∑
s≥i≥1

2i
∑
s≥j≥1

µ(A2i+j+1[s]Σ
ω).

Note that

∑
s≥i≥1

2i
∑
s≥j≥1

µ(A2i+j+1[s]Σ
ω) ≤

∑
i≥1

2i
∑
j≥1

µ(A2i+j+1Σ
ω)

≤
∑
i≥1

2i
∑
j≥1

(1/22i+j+1)

≤
∑
i≥1

1/2i+1

≤ 1/2,
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and so there is such a b[s]. Let β be lims→∞ b[s]. Since r is random, Theorem 2.1
applies and we may let (r[s] : s ≥ 1) be a recursive nondecreasing sequence from
Σ∗ with limit r and let C be constant such that for all s, 〈β〉 − 〈b[s]〉 is less than
C(〈r〉 − 〈r[s]〉). Now let k be fixed so that 2k is greater than C. Then for all s,

2k(〈r〉 − 〈r[s]〉) > C(〈r〉 − 〈r[s]〉)
≥ 〈β〉 − 〈b[s]〉
=
∑
i≥1

2i
∑
j≥1

µ(A2i+j+1Σ
ω)−

∑
s≥i≥1

2i
∑
s≥j≥1

µ(A2i+j+1[s]Σ
ω)

≥ 2k
∑
j≥1

µ(A2k+j+1Σ
ω)− 2k

∑
s≥j≥1

µ(A2k+j+1[s]Σ
ω).

Consequently, for each s,

(〈r〉 − 〈r[s]〉) >
∑
j≥1

µ(A2k+j+1Σ
ω)−

∑
s≥j≥1

µ(A2k+j+1[s]Σ
ω).

Then, (A2k+j+1 : j ≥ 1) is a universal Martin-Löf test such that for all s,∑
j≥1 µ(A2k+j+1Σ

ω)−∑s≥j≥1 µ(A2k+j+1[s]Σ
ω) is less than 〈r〉 − 〈r[s]〉.

We first handle the case in which 〈r〉 is less than 1/2. Choose m so that

〈r〉+ µ(A2k+m+1Σ
ω) < 1/2

and so that

〈r〉 >
∑
j≥1

µ(A2k+m+j+1Σ
ω).

For n ≥ 1, let Vn = A2k+m+n+1. For s greater than or equal to 1, let v[s] be∑
s≥n≥1 µ(Vn[s]Σ

ω), and let v be
∑
n≥1 µ(VnΣ

ω). By the estimates given above, for
each s, v − v[s] is less than or equal to 〈r〉 − 〈r[s]〉.

We now construct our Martin-Löf test (Un : n ≥ 1) so that V1 ⊆ U1 and for all n
greater than 1, Vn = Un.

Assuming that we establish
∑
n≥1 µ(UnΣ

ω) = 〈r〉, then since µ(U1Σ
ω) is less than

or equal to 〈r〉 and 〈r〉 is less than or equal to 1/2, (Un : n ≥ 1) is a Martin-Löf test.
Further, ∩n≥1An is a subset of ∩n≥1Un and so (Un : n ≥ 1) is universal.

We enumerate U1 by recursion on stages s. Let U1[s] be set of strings enumerated
into U1 during stages less than s. Let u[s] be µ(U1[s]Σ

ω)+
∑
n>1 µ(Vn[s]Σ

ω), and let
u be the limit of u[s], as s goes to infinity.

During stage s, if u[s] is less than 〈r[s]〉, then we enumerate a finite set of strings
F [s] into U1 so that F [s]Σ

ω ∩ U1[s]Σ
ω = ∅ and µ(F [s]Σω) is equal to 〈r[s]〉 − u[s].

(Not to ignore a fine point, since 〈r[s]〉 and u[s] have finite binary expansions, there
is such a finite set.) We then enumerate all of the strings that enter V1 during stage
s into U1.

It remains to check that u =
∑
n≥1 µ(UnΣ

ω) is equal to 〈r〉.
By the construction, for every s, u[s+ 1] is greater than or equal to 〈r[s]〉. Con-

sequently, u ≥ 〈r〉.
Since

∑
n≥1 µ(VnΣ

ω) < 〈r〉, there must be a stage s such that 〈r[s]〉 ≥ v(s). At
the first such stage, 〈r[s]〉 ≥ u(s) as well. If there are infinitely many stages s during
which 〈r[s]〉 ≥ u[s], then u = 〈r〉, as required. Otherwise, there are only finitely many
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such stages. We argue that 〈r〉 ≥ u as follows. Let s0 be the greatest stage s during
which 〈r[s]〉 ≥ u[s]. At the beginning of stage s0 + 1, we add a finite set of elements
F [s0 + 1] to U1 so that the measure of U1Σ

ω is momentarily equal to 〈r[s0]〉. Since
u[s] ≥ 〈r[s]〉 during every stage s after s0, we do not add any further elements to U1

other than those in V1. Consequently U1 is equal to U1[s0]∪ F [s0 +1]∪ V1. Further,
u, which is equal to

∑
n≥1 µ(UnΣ

ω), can be written as

u = µ ((U1[s0]∪ F [s0 + 1])Σω) +
∑
n>1

µ(Vn[s0]Σ
ω)

+ µ(V1Σ
ω \ (U1[s0]∪ F [s0 + 1])Σω) +

∑
n>1

µ(VnΣ
ω \ Vn[s0]Σω).

By the choice of F [s0 + 1],

µ((U1[s0]∪ F [s0 + 1])Σω) +
∑
n>1

µ(Vn[s0]Σ
ω) = 〈r[s0]〉.

Further, V1[s0] ⊆ U1[s0] so

µ(V1Σ
ω \ (U1[s0]∪ F [s0 + 1])Σω) +

∑
n>1

µ(VnΣ
ω \ Vn[s0]Σω)

≤ µ(V1Σ
ω \ V1[s0]Σ

ω) +
∑
n>1

µ(VnΣ
ω \ Vn[s0]Σω)

≤
∑
n≥1

µ(VnΣ
ω)−

∑
n≥1

µ(Vn[s0]Σ
ω)

≤ (v − v[s0]).
Then, however, u ≤ 〈r[s0]〉+(v−v[s0]). By the above, (v−v[s0]) is less than or equal
to (〈r〉 − 〈r[s0]〉). We conclude that u is less than or equal to 〈r[s0]〉+ (〈r〉 − 〈r[s0]〉);
that is, u ≤ 〈r〉, as required.

Next we consider the case when 〈r〉 is greater than 1/2. Again, let (An : n ≥ 1)
be a universal Martin-Löf test. Choose m > 1 so that 1/2 +

∑
n>m µ(AnΣ

ω) is less
than 〈r〉. Let 0n denote the sequence with n many 0’s. For n ≥ 1, let Vn be a subset
of Σ∗ such that Am+nΣ

ω ∪{0n+1}Σω is equal to VnΣω ∪{0n+1}Σω, and each element
of Vn is incompatible with 0

n+1. For each n, µ(Am+nΣ
ω ∪{0n+1}Σω) is less than

or equal to µ(Am+nΣ
ω) + 1/2n+1, which is less than or equal to 1/2n. Now we use

the method in the previous construction to find (Un : n ≥ 1) such that the following
conditions hold:

∑
n≥1 µ(UnΣ

ω) = 〈r〉 − 1/2; for each n, Vn ⊆ Un; and every element
of Un is incompatible with 0

n+1.
The last constraint is only relevant to the construction of U1. In the notation of

the previous construction, we may be asked during step s + 1 to find a set of finite
sequences F [s+1] such that the measure of F [s+1]Σω is equal to (〈r[s]〉−1/2)−u[s]
and F [s+ 1]Σω ∩U1[s]Σ

ω = ∅. For n = 1, the complement of {0n+1}Σω has measure
3/4, so the measure available for the choice of F [s + 1] is greater than or equal to
3/4− u[s]. Thus it is always possible to find the set F [s] as required.

Finally, we let U∗n be Un ∪ {0n+1}.
Then,

∑
n≥1 µ(U

∗
nΣ

ω) is evaluated as follows:

∑
n≥1

µ(U∗nΣ
ω) =

∑
n≥1

µ(UnΣ
ω ∪ {0n+1}Σω).
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Note that UnΣ
ω ∩ {0n+1}Σω is empty.

=
∑
n≥1

µ(UnΣ
ω) +

∑
n≥1

µ({0n+1}Σω)

=
∑
n≥1

µ(UnΣ
ω) + 1/2

= (〈r〉 − 1/2) + 1/2
= 〈r〉.

Remark 3.4. Theorem 3.1 can also be proved by using the following idea. We first
observe that approximating µ(UnΣ

ω) by an open set with measure less than ε is at
least as difficult as approximating 〈L〉, where L is the least element in Σω which is not
in UnΣ

ω. More precisely, let 〈α〉 denote µ(UnΣω). If we were given a Martin-Löf test
(An : n ≥ 1) such that α belongs to

⋂
n≥1AnΣ

ω, then we could construct another
Martin-Löf test (Bn : n ≥ 1) such that L belongs to

⋂
n≥1BnΣ

ω. By virtue of L’s
passing the universal Martin-Löf test (Un : n ≥ 1), L is random, a contradiction.
Theorem 3.1 follows.

We sketch the enumeration of (Bn : n ≥ 1). For any σ and s, if s is the least such
that

σ ∈ An[s] and 〈σ〉 ≤ µ(Un[s]Σω) < 〈σ〉+ 2−|σ|,

take the following actions. Choose a finite set of strings Gn[s] such that Gn[s]Σ
ω is

disjoint from Un[s]Σ
ω, µ(Gn[s]Σ

ω) = 〈σ〉+2−|σ|−µ(Un[s]Σω); if β is the least element
in Σω which is not in Un[s]Σ

ω ∪Gn[s]Σω, then

〈β〉 = µ(Un[s]Σω ∩ {γ : γ < β}) + µ(Gn[s]Σω).

(Observe that such set Gn[s] exists.) Enumerate Gn[s] into Bn.
Roughly speaking, enumerate into Bn a finite set of strings Gn[s] such that

Gn[s]Σ
ω presents the leftmost part of the complement of Un[s]Σ

ω (not necessarily
connected) of a total length 〈σ〉+ 2−|σ| − µ(Un[s]Σω).

Remark 3.5. As we mentioned above, a recursive-analysis version of Theorem 3.1
was proven by [6]. Demuth worked in the Markov/Russian style of constructive math-
ematical analysis. He studied a behavior of everywhere defined constructive functions
of a real variable and, among others, questions of differentiation of such functions.
Since random reals from the closed unit interval

1. form a set of measure one,
2. arise by avoiding sets of measure zero from a special class, and
3. can be viewed as “generic,”

one could expect that they would be important in recursive analysis. This is the
case and Demuth devoted a considerable amount of effort toward understanding their
role there. He started with a rather finitistic approach, and he used a more standard
terminology only in his last papers. We briefly survey Demuth’s work here, taking
the liberty to reformulate his definitions and results into a contemporary terminology.

Demuth [6] studied reals recursive in ∅′ and defined π1 and π2 numbers in that
context. According to Demuth, a real x recursive in ∅′ is a π1 number if and only if
for some (equivalently, for any) recursive sequence of rational numbers (a[n] : n ∈ ω)
converging to x there is a recursive sequence of finite recursive sets (Cm : m ∈ ω)
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such that µ(
⋃
s �∈Cm

(min(a[s], a[s+ 1]),max(a[s], a[s+ 1]))) is less than 2−m. Dually,
x recursive in ∅′ is a π2-number if x is not a π1-number.

In his own terminology, Demuth constructed a universal Martin-Löf test [6, The-
orem 2] and showed [6, Theorem 5] that for all x recursive in ∅′, x is a π2 number if
and only if x is random in the sense of Martin-Löf. We are omitting some details here.
Later, Demuth [7] worked with arithmetical reals and defined A1 and A2 numbers
as natural extensions of π1 and π2 numbers. Demuth was not aware that Martin-Löf
had formulated these notions earlier.

Finally, Demuth [9] extended these notions to all reals under a different termi-
nology (still not using “randomness”). In [6], he proved, among other things, the
following.

(Demuth [6, Lemma 3]). If r =
∑
n∈ω rn, for nonnegative rationals rn, is a π1-

number (i.e., nonrandom), then
∑
n∈C rn for any recursively enumerable set C is

again a π1-number (no proof was given).

(Demuth [6, Corollary]). Let Q be a recursively enumerable set of strings. If
µ(QΣω) is a π1-number and µ(Q[s]Σ

ω) is less than 1 for all s, then there is a π1-
number x with 0 ≤ x ≤ 1 such that x �∈ QΣω (no proof was given).

In other words, if µ(QΣω) is not random, then there is a nonrandom real not in
QΣω. It follows that if Un appears as one of the sets in a universal Martin-Löf test,
then µ(UnΣ

ω) is random.

For more on the massive work of Demuth on recursive analysis one could also
consult [10], [8], or [9]. Finally, we note that Demuth also proved several interesting
results from a more recursion theoretic point of view in his last papers; see [8], [9], [10].
He also studied various modifications of randomness, again motivated by problems
arising in recursive analysis.

Acknowledgments. Slaman wishes to thank Cristian S. Calude and Robert M.
Solovay for their advice on this project.
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Abstract. We use the notion of potential maximal clique to characterize the maximal cliques
appearing in minimal triangulations of a graph. We show that if these objects can be listed in poly-
nomial time for a class of graphs, the treewidth and the minimum fill-in are polynomially tractable
for these graphs. We prove that for all classes of graphs for which polynomial algorithms computing
the treewidth and the minimum fill-in exist, we can list their potential maximal cliques in polyno-
mial time. Our approach unifies these algorithms. Finally we show how to compute in polynomial
time the potential maximal cliques of weakly triangulated graphs for which the treewidth and the
minimum fill-in problems were open.

Key words. graph algorithms, treewidth, minimum fill-in, weakly triangulated graphs
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1. Introduction. The notion of treewidth was introduced by Robertson and
Seymour in [28]. It plays a major role in graph algorithm design. Indeed, it has
been shown that many classical NP-hard problems become polynomial and even lin-
ear when restricted to graphs with small treewidth. These algorithms often use a tree
decomposition or a triangulation of the input graph, which is a chordal supergraph,
i.e., all the cycles with at least four vertices of the supergraph have a chord. Comput-
ing the treewidth consists of finding a triangulation of minimum cliquesize. A related
problem is the minimum fill-in problem, which consists of finding a triangulation of
a graph such that the number of added edges is minimum. This parameter is used in
sparse matrix factorization.

Both the treewidth and the minimum fill-in problems are NP-complete. Neverthe-
less, these parameters can be computed in polynomial time for several classes of graphs
such as chordal bipartite graphs [20, 9], circle and circular-arc graphs [16, 32, 24], and
AT-free graphs with a polynomial number of separators [23]. Most of these algorithms
use the fact that these classes of graphs have a polynomial number of minimal separa-
tors. It was conjectured in [18, 19] that the treewidth and the minimum fill-in should
be tractable in polynomial time for all the graphs having a polynomial number of
minimal separators. The conjecture is still open.

A potential maximal clique of a graph is a set of vertices which induces a maximal
clique in some minimal triangulation of the graph. Although this seems a purely
combinatorial definition, a potential maximal clique corresponds to a local grouping
of some minimal separators of the graph. This will lead to a local characterization of
a potential maximal clique, and in particular to a polynomial algorithm that, given
a graph G and a set of vertices K, decides if K is a potential maximal clique of G.
We also show in this paper that if one can list in polynomial time all the potential
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maximal cliques of some class of graphs, then the treewidth and the minimum fill-in
of those graphs can be computed in polynomial time.

We prove that the potential maximal cliques can be enumerated in polynomial
time for all the classes of graphs previously mentioned, unifying in this way the cited
algorithms.

The class of weakly triangulated graphs, introduced in [13], is a class of graphs with
a polynomial number of separators, probably the only one for which the treewidth and
minimum fill-in problems were still open. We give an algorithm computing the poten-
tial maximal cliques of these graphs. Consequently, the treewidth and the minimum
fill-in of weakly triangulated graphs are computable in polynomial time.

2. Chordal graphs and minimal separators. Throughout this paper we con-
sider connected, simple, finite, undirected graphs.

A graph H is chordal (or triangulated) if every cycle of length at least four has a
chord, i.e., an edge between two nonconsecutive vertices of the cycle. A triangulation
of a graph G = (V,E) is a chordal graph H = (V,E′) such that E ⊆ E′. H is a
minimal triangulation if for any intermediate set E′′ with E ⊆ E′′ ⊂ E′, the graph
(V,E′′) is not triangulated. For example, the graph of Figure 2.1(b) is a minimal
triangulation of the graph of Figure 2.1(a).

Another characterization of minimal triangulations is provided in [29].
Lemma 2.1. Let H be a triangulation of a graph G. Then H is a minimal

triangulation of G if and only if, for any edge e of E(H)−E(G), the graph H − e is
not triangulated.

Now let us define the treewidth and the minimum fill-in of a graph.
Definition 2.2. Let G be a graph. The treewidth of G, denoted by tw(G), is the

minimum, over all triangulations H of G, of ω(H)− 1, where ω(H) is the maximum
cliquesize of H.

Definition 2.3. The minimum fill-in of a graph G, denoted by mfi(G), is the
smallest value of |E(H)−E(G)|, where the minimum is taken over all triangulations
H of G.

In other words, computing the treewidth of G means finding a triangulation with
the smallest cliquesize, while computing the minimum fill-in consists in finding a
triangulation with the smallest number of edges. In both cases we can restrict our
work to minimal triangulations.

Now let a and b be two nonadjacent vertices of a graph G. A set of vertices
S ⊆ V is an a, b-separator if the removal of S from the graph separates a and b in
different connected components. S is a minimal a, b-separator if no proper subset of S
separates a and b. We say that S is a minimal separator of G if there are two vertices a
and b such that S is a minimal a, b-separator. Notice that a minimal separator can be
strictly included in another one. We denote by ∆G the set of all minimal separators
of G.

Let us recall some known results about the minimal separators of a chordal graph.
We will use the representation of chordal graphs provided by clique trees. For an
extensive survey of these notions, see [2, 12]. A clique is a complete subgraph of G.
Now consider the set KG = {Ω1, . . . ,Ωp} of maximal cliques of G. Let T be a tree on
KG, i.e., every maximal clique Ω ∈ KG corresponds to exactly one node of T . We also
say that the nodes of T are labeled by the cliques of KG and we will simply denote by
Ω the node of the tree labeled by a maximal clique Ω. We say that T is a clique tree
of G if it satisfies the clique-intersection property: for every pair of distinct cliques
Ω,Ω′ ∈ K, the set Ω∩Ω′ is contained in every clique on the unique path connecting Ω
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Fig. 2.1. Minimal triangulation and clique tree.

and Ω′ in the tree T . It is well known (see [2] for a proof) that a graph G is chordal
if and only if it has a clique tree.

Figure 2.1(c) presents a clique tree of the chordal graph of Figure 2.1(b).
The following crucial property is proved in [2].
Proposition 2.4. Let H be a chordal graph and T be any clique tree of H. A set

of vertices S is a minimal separator of H if and only if S = Ω∩Ω′ for some maximal
cliques Ω and Ω′ of H adjacent in the clique tree T .

In particular, all minimal separators of a chordal graph are cliques. Actually,
Dirac [10] has shown that a graph is chordal if and only if all its minimal separators
are cliques.

The following proposition (see [2]) gives another relation between a minimal sep-
arator and a clique tree of H.

Proposition 2.5. Let T be any clique tree of a chordal graph H and let Ω, Ω′

be two maximal cliques of H, adjacent in T . Consider the two subtrees of T obtained
by removing the edge between the nodes Ω and Ω′. Let TΩ be the subtree containing Ω
and TΩ′ the subtree containing Ω′. We denote by VΩ and VΩ′ the union of the labels of
TΩ (respectively, TΩ′). Then the minimal separator S = Ω ∩ Ω′ separates in H every
vertex of VΩ − S from every vertex of VΩ′ − S.

Consider, for example, the chordal graph H of Figure 2.1(b) and its clique tree
of Figure 2.1(c). If we take the adjacent cliques {a, b, c} and {b, c, e, g}, then the
minimal separator {b, c} separates in H every vertex of {a, h, i} from every vertex of
{d, e, f, g}.

Let G be a graph and S a minimal separator of G. We note CG(S) to be the
set of connected components of G− S. A component C ∈ CG(S) is a full component
associated with S if every vertex of S is adjacent to some vertex of C. We denote by
C∗G(S) the set of all full components associated with S. For the following lemma, we
refer to [12].

Lemma 2.6. A set S of vertices of G is a minimal a, b-separator if and only if a
and b are in different full components associated with S.

If C ∈ C(S), we say that (S,C) = S ∪ C is a block associated with S. A block
(S,C) is called full if C is a full component associated with S.

Definition 2.7. Two separators S and T cross, denoted by S�T , if T intersects
at least two distinct components of G − S. If S and T do not cross, they are called
parallel, denoted by S‖T .

It is easy to prove that these relations are symmetric (see [26]). Remark that two
minimal separators S and T are parallel if and only if T is contained in some block
(S,C) associated with S.
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Using the fact that a separator cannot separate two adjacent vertices we deduce
the following lemma.

Lemma 2.8. Let G be a graph, S a minimal separator, and Ω a clique of G. Then
Ω is included in some block associated with S. In particular, the minimal separators
of a chordal graph are pairwise parallel.

Let S ∈ ∆G be a minimal separator. We denote by GS the graph obtained from
G by completing S, i.e., by adding an edge between every pair of nonadjacent vertices
of S. If Γ ⊆ ∆G is a set of separators of G, GΓ is the graph obtained by completing all
the separators of Γ. The results of [22], concluded in [27], establish a strong relation
between the minimal triangulations of a graph and its minimal separators.

Theorem 2.9. Let Γ ⊆ ∆G be a maximal set of pairwise parallel separators of
G. Then H = GΓ is a minimal triangulation of G and ∆H = Γ.

Conversely, let H be a minimal triangulation of a graph G. Then ∆H is a maximal
set of pairwise parallel separators of G and H = G∆H

.
In other terms, every minimal triangulation of a graph G is obtained by consider-

ing a maximal set Γ of pairwise parallel separators of G and completing the separators
of Γ. The minimal separators of the triangulation are exactly the elements of Γ. For
example, if G is the graph of Figure 2.1(a) and H is the graph of Figure 2.1(b), then
Γ = {{a, b}, {b, c}, {c}, {b, e}, {c, e}}.

It is important to know that the elements of Γ, which become the minimal sep-
arators of H, have strictly the same behavior in H as in G. Indeed, the connected
components of H − S are exactly the same in G− S for every S ∈ Γ. Moreover, the
full components are the same in the two graph: C∗H(S) = C∗G(S).

3. Potential maximal cliques. The previous theorem gives a characterization
of the minimal triangulations of a graph by means of minimal separators, but it gives
no algorithmic information about how we should construct a minimal triangulation in
order to minimize its cliquesize or the fill-in. We will prove that the potential maximal
cliques of a graph suffice to compute its treewidth and its minimum fill-in.

Definition 3.1. A set of vertices Ω of a graph G is called a potential maximal
clique if there is a minimal triangulation H of G such that Ω is a maximal clique of
H.

In this section, we give several characterizations of the potential maximal cliques
of a graph, which will allow us to recognize a potential maximal clique in polynomial
time and also to enumerate these objects for several classes of graphs.

3.1. Potential maximal cliques and minimal separators. If K is a set of
vertices of G, we denote by ∆G(K) the minimal separators of G included in K. Our
aim is to give a strong relation between a potential maximal clique Ω and the minimal
separators of ∆G(Ω).

Definition 3.2. Let G be a graph and S ⊆ ∆G a set of pairwise parallel separa-
tors such that for any S ∈ S, there is a block (S,C(S)) containing all the separators
of S. Suppose that S ordered by inclusion has no greatest element. We define the
piece between the elements of S by

P (S) =
⋂
S∈S

(S,C(S)).

Notice that for any S ∈ S the block (S,C(S)) containing all the separators of S
is unique: if T ∈ S is not included in S, there is a unique connected component of S
containing T − S.
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Lemma 3.3. Let H be a chordal graph and let Ω be a maximal clique of H. Then
either ∆H(Ω) has a greatest element, or P (∆H(Ω)) exists and contains Ω.

Proof. According to Lemma 2.8, for any minimal separator S ∈ ∆H(Ω), the clique
Ω is contained in some block (S,C(S)) of S. It follows that if ∆H(Ω) has no greatest
element, then Ω is contained in P (∆H(Ω)), by definition of the piece between.

Theorem 3.4. Let Ω be a maximal clique of a chordal graph H. If all the
separators of ∆H(Ω) are contained in some S ∈ ∆H(Ω), then Ω is a block (S,C)
associated with S. Otherwise, Ω = P (∆H(Ω)).

Proof. Suppose that
⋃
T∈∆H(Ω) T = S with S ∈ ∆H(Ω). Ω is included in some

block (S,C) of S. If x ∈ C is not in Ω, we take in a clique tree of H a path
Ω,Ω′, . . . ,Ω(i) of adjacent cliques such that x ∈ Ω(i). Then T = Ω ∩ Ω′ is a minimal
separator of H included in Ω, so it must be an element of ∆H(Ω). In particular, T is
included in S. According to Proposition 2.5, T separates x and any vertex of Ω− T .
Since T ⊆ S, S clearly separates x and any vertex of Ω − S, contradicting the fact
that x and Ω are in the same block associated with S. It follows that (S,C) = Ω.

Now suppose that no separator S ∈ ∆H(Ω) contains all the others. According to
the Lemma 3.3, P (∆H(Ω)) exists. On the one hand, Ω ⊆ P (∆H(Ω)) by Lemma 3.3.
On the other hand, consider y ∈ P (∆H(Ω)) − Ω. In a clique tree of H, we consider
a path Ω,Ω′, . . . ,Ω(i) of adjacent cliques such that y ∈ Ω(i). Then S = Ω ∩ Ω′ is
a minimal separator that belongs to ∆H(Ω) and S separates y from every vertex of
Ω − S by Proposition 2.5. Let T be a separator of ∆H(Ω) not included in S. Then
S separates y and a vertex of T − S, so y is not in the block (S,C(S)) containing Ω,
contradicting our choice. It follows that Ω = P (∆H(Ω)).

Theorem 3.4 gives a relation between a maximal clique of a chordal graph and
the minimal separators contained in the clique. We extend this result to the potential
maximal cliques of a graph. We also establish the reverse of Theorem 3.4, which will
allow us to recognize a potential maximal clique. For this we need some easy lemmas.

Lemma 3.5. Let H be a minimal triangulation of a graph G and T be a minimal
separator of G such that H[T ] is a clique. Then T is also a minimal separator of H.

Proof. We know that H = GΓ for a maximal set of pairwise parallel separators
Γ ⊆ ∆G and ∆H = Γ (Theorem 2.9). Let S ∈ Γ be any minimal separator of H and
G. By Lemma 2.8, the clique T will be in some block (S,C) of H. Since the blocks
associated with S in G are the same as in H (Theorem 2.9 and the related remarks)
we deduce that S and T are parallel in G. Since Γ is a maximal set of pairwise parallel
separators, T must be in Γ = ∆H .

Corollary 3.6. In particular, if T is a minimal separator of G contained in S
with S ∈ ∆H , then T ∈ ∆H .

Consider a graph G and a minimal triangulation H of G. An important conse-
quence of Lemma 3.5 is that if Ω is a clique of H, then the minimal separators of H
contained in Ω are the same as in G.

Proposition 3.7. Let G be a graph and H be a minimal triangulation of G.
Then for any clique Ω of H, we have ∆H(Ω) = ∆G(Ω).

Proof. By Theorem 2.9, every minimal separator of H is also a minimal separator
of G, so ∆H(Ω) ⊆ ∆G(Ω). According to Lemma 3.5, since every minimal separator
S ∈ ∆G(Ω) of S induces a clique in H, S is also a minimal separator of H.

The next step is to prove that if Ω is a maximal clique of a minimal triangulation
H of G, then Ω is also a clique in the graph G∆G(Ω), obtained by completing in G the
minimal separators included in Ω.

Lemma 3.8. Let H be a chordal graph, Ω a maximal clique, and S a minimal
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separator of H intersecting Ω. Then S ∩Ω is contained in some minimal separator T
with T ⊂ Ω.

Proof. Consider a clique tree T of H. We can write S = Ω1∩Ω2 for some maximal
cliques Ω1,Ω2 of H, adjacent in T (Proposition 2.4). Let us suppose that Ω1 is closer
to Ω in the clique tree than Ω2. Let Ω

′ be the clique next to Ω on the path from Ω
to Ω2 in T , i.e., the path is Ω,Ω′, . . . ,Ω1,Ω2.

Then Ω1∩Ω ⊂ Ω′ and Ω2∩Ω ⊂ Ω′ by definition of a clique tree. Since S = Ω1∩Ω2,
we deduce that S ∩ Ω ⊂ Ω′ and, in particular, S ∩ Ω is contained in Ω ∩ Ω′, which is
a minimal separator by Proposition 2.4.

Proposition 3.9. Let Ω be a potential maximal clique of G. Then Ω is a clique
in the graph G∆G(Ω).

Proof. Let H be a minimal triangulation of G such that Ω is a maximal clique
of H. Notice that H exists by definition of a potential maximal clique. By Theorem
2.9, H = G∆H

, so for any edge {x, y} ∈ E(H) − E(G), there is a minimal separator
of H containing both x and y. Now let {x, y} be an edge of H[Ω]; we want to prove
that {x, y} is also an edge of G∆G(Ω)[Ω]. If {x, y} ∈ E(G), the assertion is clearly
true. Otherwise, let S be a minimal separator of H such that x, y ∈ S. By Lemma
3.8, there is a minimal separator T of H contained in Ω and containing x and y. We
deduce that {x, y} is also an edge of G∆G(Ω).

We can give now a characterization of the potential maximal cliques Ω of a graph
using the minimal separators of ∆G(Ω).

Theorem 3.10. Let Ω be a set of vertices of G and suppose that ∆G(Ω) has a
maximum element S, i.e., every T in ∆G(Ω) is included in S. Then Ω is a potential
maximal clique if and only if Ω is some block (S,C) and G∆G(Ω)[Ω] is a clique.

Proof. “⇒.” Let H be a minimal triangulation of G such that Ω is a maximal
clique of H. By Proposition 3.7, ∆H(Ω) = ∆G(Ω), so S is an element of ∆H(Ω),
maximum by inclusion. According to Theorem 3.4, Ω is a block (S,C) of S in H.
Since the blocks of S are the same in H and in G, (S,C) is also a block in the graph
G.

By Proposition 3.9, Ω is a clique in the graph G∆G(Ω). Notice that G∆G(Ω) is
identical to GS .

“⇐.” Notice that the separators of ∆G(Ω) are pairwise parallel. Indeed, let H
be a minimal triangulation of G such that S ∈ ∆H . Then each T ∈ ∆G(Ω) is a clique
in H because T ⊆ S. Consequently ∆G(Ω) ⊆ ∆H , so by Theorem 2.9, the elements
of ∆G(Ω) are pairwise parallel in G.

We prove that S ∪C is a maximal clique of H. Let Ω′ be a clique of H including
S ∪ C; Ω′ must be in some block associated with S in H (Lemma 2.8), and the
only choice is Ω ⊆ (S,C). We conclude that Ω is a maximal clique of the minimal
triangulation H of G, and therefore Ω is a potential maximal clique of G.

Theorem 3.11. Let Ω be a set of vertices of G and suppose that ∆G(Ω) ordered
by inclusion has no greatest element. Then Ω is a potential maximal clique if and
only if Ω = P (∆G(Ω)) and G∆G(Ω)[Ω] is a clique.

Proof. The proof is very similar to the one of the previous theorem.

“⇒.” We consider a minimal triangulation H of G such that Ω is a maximal
clique of H. According to Theorem 3.4, Ω = P (∆H(Ω)) in H. By Proposition 3.7,
∆H(Ω) = ∆G(Ω) and the minimal separators of ∆H(Ω) induce the same connected
components in G and in H. Consequently, P (∆H(Ω)) is the same as P (∆G(Ω)) in G,
so Ω = P (∆G(Ω)) in the graph G.

By Proposition 3.9, Ω is a clique in G∆G(Ω).



218 VINCENT BOUCHITTÉ AND IOAN TODINCA

“⇐.” Since P (∆G(Ω)) exists, the minimal separators of ∆G(Ω) are pairwise
parallel in G. As in the previous theorem, we prove that Ω is a maximal clique in any
minimal triangulation H = GΓ of G with ∆G(Ω) ⊆ Γ.

Since Ω is a clique in G∆G(Ω), Ω is also a clique in H. Consider a maximal clique
Ω′ of H containing Ω. Let x be a vertex of Ω′. For any S ∈ ∆H(Ω), x must be in
the block (S,CΩ(S)) of H containing Ω. Therefore x ∈ P (∆H(Ω)) in the graph H.
However, ∆H(Ω) = ∆G(Ω) by Proposition 3.7, and the piece between these separators
is the same in H and in G. It follows that x ∈ P (∆G(Ω)) = Ω, so Ω is a maximal
clique of H.

Notice that Theorems 3.10 and 3.11 lead to an algorithm that, given a graph G,
its minimal separators ∆G, and a set of vertices K, verifies in polynomial time if K
is a potential maximal clique of G.

3.2. A simpler characterization of potential maximal cliques. We are
going to give a strong characterization of potential maximal cliques here, which does
not use minimal separators. We start with some easy observations, following directly
from the previous results.

Corollary 3.12. Let Ω be a potential maximal clique of G and let S ∈ ∆G(Ω).
Then S is strictly contained in Ω and Ω−S is in a full connected component associated
with S.

Proof. Consider a minimal triangulation H of G such that Ω is a maximal clique
of H. By Lemma 3.5, S is a minimal separator of H. S is an intersection of two
distinct maximal cliques of H by Proposition 2.4, so S cannot be a maximal clique of
H. It follows that S is strictly contained in Ω.

Now let us prove that Ω− S is in a full connected component associated with S
in G. Clearly Ω − S is in a full component associated with S in H. Since the full
components associated with S in G are the same as in H, we conclude that Ω− S is
in a full component associated with S in G.

Corollary 3.13. Let Ω be a potential maximal clique of a graph G and let a
be any vertex of V − Ω. There is a minimal separator S ⊂ Ω that separates a and
Ω− S.

Proof. If we are in the case of Theorem 3.10, ∆G(Ω) has a greatest element S
and Ω = (S,C). Then clearly S separates any vertex a ∈ V − (S,C) from any vertex
of C = Ω − S. Now suppose that we are under the conditions of Theorem 3.11, so
∆G(Ω) has no greatest element and Ω = P (∆G(Ω)). By definition of P (∆G(Ω)),
since a �∈ P (∆G(Ω)), we deduce that there is some S ∈ ∆G(Ω) separating a from
P (∆G(Ω))− S.

Now let K be a set of vertices of a graph G. We denote by C1(K), . . . , Cp(K) the
connected components of G−K. We denote by Si(K) the vertices of K adjacent to
at least one vertex of Ci(K). When no confusion is possible we will simply speak of
Ci and Si. If Si(K) = K, we say that Ci(K) is a full component associated with K.

Lemma 3.14. Let Ω be a potential maximal clique of a graph G and let ∆G(Ω)
be the set of all minimal separators contained in Ω. Then the elements of ∆G(Ω) are
exactly the sets Si(Ω).

Proof. We prove that for any i, 1 ≤ i ≤ p, Si is a minimal a, b-separator for some
a ∈ Ci and b ∈ Ω − Si. Corollary 3.13 tells us that there is some minimal separator
S ∈ ∆G(Ω) that separates a from Ω− S; recall that Ω− S is not empty. Since every
vertex in Si has a neighbor in Ci, if S does not contain a vertex x ∈ Si, S cannot
separate x ∈ Ω − S from a, so we get Si ⊆ S. By Corollary 3.12, Ω − S is in a
full component associated with S and therefore of Si. Let b be a vertex of Ω − S.
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Then a and b are in different full components associated with Si, so Si is a minimal
a, b-separator by Lemma 2.6.

We now have to prove that for any minimal separator S ⊆ Ω, there is some
i, 1 ≤ i ≤ p, such that S = Si. We have that Ω − S �= ∅ and Ω − S is in some full
component associated with S. Let C be another full component associated with S.
Then C is a connected component of G − Ω, let us say Ci. It follows that S ⊆ Si.
Suppose there exists a vertex x ∈ Si − S. Then x has a neighbor in Ci, so x must
be in the connected component C of G − S, contradicting C = Ci. It remains that
S = Si. We conclude that the separators of G included in Ω are exactly the sets
Si.

Remark 1. Actually, each minimal separator Si separates any vertex of Ci from
any vertex of G− (Si, Ci).

We also give a “sufficient condition” to characterize the potential maximal cliques,
which is somehow the dual of Lemma 3.14.

Theorem 3.15. Let K ⊆ V be a set of vertices. We denote by S the set of all
Si(K). K is a potential maximal clique if and only if

1. G−K has no full components associated to K;
2. GS [K] is a clique.
Proof. We prove the “only if” part. Suppose that K is a potential maximal clique

of G. By Lemma 3.14, S = ∆G(K). By Theorems 3.10 and 3.11, K is a clique in the
graph GS . It remains to show that G−K has no full components associated with K.
Let Ci be any connected component of G−K. Then Si is the neighborhood of Ci in
K. Since K is a potential maximal clique and Si is a separator contained in K, we
have that Si is strictly contained in K by Corollary 3.12. Therefore, Ci is not a full
component associated with K.

We now prove the “if” part. Let us show at first that for any i, 1 ≤ i ≤ p, Si is
a minimal separator. Si is clearly a separator and Ci is a full component associated
with Si. Let x be a vertex of K − Si. We show that x belongs to a full component
associated with Si and different from Ci. We denote by Cx the connected component
of G − Si containing x. For any y ∈ Si, y must have a neighbor in Cx. This is true
if x and y are adjacent in G. If x and y are not adjacent, by the second condition
of the theorem, x and y belong to a same Sj . Cj being a full component associated
with Sj , there is a path in G connecting x to y entirely contained in Cj except from
x and y. We deduce that Cj ⊆ Cx. It follows that y has a neighbor in Cx since it has
a neighbor in Cj . Si is a minimal separator of G according to Lemma 2.6.

Now, given two distinct separators Si and Sj , we have to show that they are
parallel. We prove thatK−Si is in a connected component ofG−Si. Let x, y ∈ K−Si.
If x and y are adjacent they are clearly in the same component of G−Si. Otherwise,
since GS [K] is a clique, they are in a same Sk, so they are connected via Ck. Therefore
Sj intersects only the component of G−Si containing K−Si and consequently Si‖Sj .
Therefore S is a set of pairwise parallel minimal separators.

We have to show that any separator of G included in K is an element of S.
Consider a minimal triangulation H of G such that all the elements of S are minimal
separators of H. We know that K is a clique in H. Now let U ⊆ K be any minimal
separator of G. Notice that U must be strictly included in K, otherwise G−K would
have two full components associated with K in G, contradicting our choice of K.
Clearly U is a clique in H, so by Lemma 3.5, it is a minimal separator of H. Since K
is a clique in H, it must be included in some full block associated with U . Let (U,C)
be another full block associated with U in H and consequently in G. We have that C
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is a connected component of G− U and U separates C and K − U . We deduce that
C is also a connected component of G−K, let us say Ci. By definition of Si, we have
U ⊆ Si. Suppose there exists a vertex x ∈ Si − U ; since x has a neighbor in C, the
connected component C of G − U would contain x contradicting C = Ci. Therefore
we have U = Si and U ∈ S.

We want to prove that K and S = ∆G(K) satisfy the conditions of Theorems
3.10 or 3.11. Remark that for any y ∈ V −K, y is in some connected component Ci
of G −K, and the separator Si ∈ S separates y from K − Si. Now suppose that S
has an element S, maximum by inclusion. Let (S,C) be the block associated with
S containing K. By the previous remark, for any y ∈ V − K, S separates y and
K − S, so y �∈ (S,C). It follows that (S,C) = K, so K satisfies all the conditions of
Theorem 3.10. Now if S does not have an element maximum by inclusion, K is clearly
contained in the piece between the separators of S in G. By the previous remark,
PG(S) does not contain any y ∈ V −K, so K = PG(S) and therefore we are under
the conditions of Theorem 3.11. It follows that K is a potential maximal clique of
G.

Corollary 3.16. There is an algorithm that, given a graph G = (V,E) and a
set of vertices K ⊆ V , verifies if K is a potential maximal clique of G. The time
complexity of the algorithm is O(n3), where n is the number of vertices of G.

Proof. The algorithm computes the connected components Ci of G−K and their
neighborhoods Si. It then checks the two conditions of Theorem 3.15. Remark that
computing the sets Ci, Si and verifying that G−K has no full components associated
with K can be done in linear time. We can complete each set Si in O(n2) steps, and
therefore computing the graph GS [K] takes O(n3) time.

4. Triangulating blocks. In this section we prove that the potential maximal
cliques of a graph are sufficient to compute its treewidth and its minimum fill-in.

Let B = (S,C) be a block of the graph G. The graph R(S,C) = GS [S ∪ C] is
called the realization of the block B. The following lemma, proved in [23], gives a
relation between minimal triangulation of a graph and minimal triangulations of some
block realizations.

Lemma 4.1. Let S ∈ ∆G and let C1, C2, . . . , Cp be the connected components of
G − S. Suppose that Hi is a minimal triangulation of R(S,Ci) for any i, 1 ≤ i ≤ p.
Then the graph H = (V,E(H)) with E(H) =

⋃p
i=1E(Hi) is a minimal triangulation

of G.
Conversely, let H be a minimal triangulation of G with S ∈ ∆H . Then H[S ∪C]

is a minimal triangulation of the realization R(S,C) for each component C of G−S.
This gives an equation for computing the treewidth and the minimum fill-in of a

graph (see [23] for a proof).
Corollary 4.2. Let G be a noncomplete graph. Then

tw(G) = min
S∈∆G

max
C∈C(S)

tw(R(S,C)),

mfi(G) = min
S∈∆G

(fill(S) +
∑

C∈C(S)

mfi(R(S,C))),

where fill(S) is the number of nonedges of S.
We give a version of Lemma 4.1 using potential maximal cliques instead of minimal

separators. If Ω is a potential maximal clique of a graph G, we denote as usual
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by Ci, 1 ≤ i ≤ p, the connected components of G − Ω and by Si, 1 ≤ i ≤ p, the
neighborhood of each Ci. We say that the blocks (Si, Ci) are the blocks associated
with Ω in G.

Theorem 4.3. Let H be a minimal triangulation of G and let Ω be a maximal
clique of H. Then for each block (Si, Ci) associated with Ω in G, the graph Hi =
H[Si ∪ Ci] is a minimal triangulation of the realization R(Si, Ci).

Conversely, let Ω be a potential maximal clique of G. For each block (Si, Ci)
associated with Ω in G, let Hi be a minimal triangulation of R(Si, Ci). Then H =
(V,E(H)) with E(H) =

⋃p
i=1E(Hi)∪ {{x, y}|x, y ∈ Ω} is a minimal triangulation of

G.
Proof. For proving the first part, notice that by Theorem 3.15, (Si, Ci) are blocks

of G and ofH. Then by Lemma 4.1, H[Si∪Ci] are minimal triangulations of R(Si, Ci).
We now prove the second part. Let us prove that H is a triangulated graph.

Suppose that H has a chordless cycle of length at least four. Since Ω is a clique, the
cycle is not contained in Ω, so it has a vertex a in some component Ci. SinceH[Si∪Ci]
is chordal, the cycle is not contained in (Si, Ci). Then at least two nonconsecutive
points of the cycle, say, b and c, are in Si. Therefore the cycle has a chord, namely,
the edge {b, c}.

Now let us prove that H is a minimal triangulation of G. Let e = {x, y} be an
edge of H − G. Suppose at first that x and y are not both contained in Ω. Then x
and y are in some Hi. Since e is not in Ω, e is not in Si. It remains that e is an edge
of Hi−R(Si, Ci). By Lemma 2.1, Hi− e is not chordal, so H − e is not chordal. Now
suppose that x, y ∈ Ω. Then x, y must be in some Si, since H[Ω] = G∆G(Ω)[Ω] and
e ∈ H−G. Consider two full components of H−Si associated with Si and a shortest
path from x to y in each of them. The two paths form a cycle of length at least four,
which is a chordless cycle of H − e.

By Lemma 2.1, H is a minimal triangulation of G.
We want to give a characterization of the minimal triangulations of a realization

R(S,C) using the potential maximal cliques Ω with S ⊂ Ω and Ω ⊆ (S,C) and the
minimal triangulations of the realizations of some blocks (Si, Ci), strictly included in
(S,C). This will express the treewidth and the minimum fill-in of a realization from
the treewidth (respectively, the minimum fill-in) of realizations of smaller blocks, and
we will compute the two parameters by dynamic programming on blocks.

The minimal triangulations of the realizations of nonfull blocks are easily reducible
to the case of full blocks. For the following lemma, see, for example, [8].

Lemma 4.4. Let (S,C) be a nonfull block of G and let S∗ be the set of vertices of
S having some neighbor in C. Then (S∗, C) is a full block of G and a super graph H
of R(S,C) is a minimal triangulation of R(S,C) if and only if H[S∗∪C] is a minimal
triangulation of R(S∗, C).

We conclude in the following corollary.
Corollary 4.5. Let (S,C) be a nonfull block of G and let S∗ be the vertices of

S adjacent in G to at least one vertex of C. Then

tw(R(S,C)) = max(|S| − 1, tw(R(S∗, C))),

mfi(R(S,C)) = mfi(R(S∗, C)).

It remains to express the treewidth and the minimum fill-in of realizations of full
blocks from realizations of smaller blocks.
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Lemma 4.6. Let R(S,C) be the realization of some full block (S,C) and let
H(S,C) be a minimal triangulation of R(S,C). Then there is a maximal clique Ω of
H(S,C) such that S ⊂ Ω and Ω is a potential maximal clique of G.

Proof. S clearly is a clique in H(S,C). Consider a maximal clique Ω of H(S,C)
containing S. Let us show that S is strictly contained in Ω. C is a full component
associated with S in G, so also in H(S,C). If S = Ω, then C is a full component
associated with Ω in H(S,C). However, Ω is also a potential maximal clique of the
chordal graph H(S,C), so by Theorem 3.15, H(S,C)−Ω cannot have full components
associated with Ω, which leads to a contradiction. It remains to show that Ω is a
potential maximal clique of G. By Lemma 4.1, there is a minimal triangulation H of
G such that H[S ∪ C] = H(S,C). The components associated with S in H are the
same as in G. Since S separates C from V − (C ∪ S), Ω is a maximal clique of H, so
by definition it is a potential maximal clique of G.

Notice that we have proved that any maximal clique of H(S,C) is a potential
maximal clique ofG and, moreover, it is a maximal clique of any minimal triangulation
H with H[S ∪ C] = H(S,C).

By Theorem 4.3 and Lemma 4.6 we have proved the following theorem.
Theorem 4.7. Let (S,C) be a full block of a graph G. Then H(S,C) is a

minimal triangulation of R(S,C) if and only if there is a potential maximal clique
Ω ⊆ (S,C) of G such that S ⊂ Ω and H(S,C) = (S ∪ C,E(H)) with E(H) =⋃p
i=1E(Hi) ∪ {{x, y}|x, y ∈ Ω}, where (Si, Ci) are the blocks associated with Ω in

H(S,C) and Hi are minimal triangulations of R(Si, Ci).
Corollary 4.8. Let (S,C) be a full block of G. Then

tw(R(S,C)) = min
S⊂Ω⊆(S,C)

max(|Ω| − 1, tw(R(Si, Ci))),

mfi(R(S,C)) = min
S⊂Ω⊆(S,C)

(
fill(Ω)− fill(S) +

∑
mfi(R(Si, Ci))

)
,

where (Si, Ci) are the blocks associated with Ω in R(S,C).
We give in Table 4.1 a sketch of the algorithm that, given a graph and the list

of all its potential maximal cliques, computes, by standard dynamic programming
techniques, the treewidth and the minimum fill-in of the graph. The first part of the
algorithm computes the treewidth and the minimum fill-in of the realization of each
block (S,C) ofG. For computing the treewidth and the minimum fill-in of a realization
R(S,C), all we need are the potential maximal cliques Ω such that S ⊂ Ω ⊆ (S,C)
and the treewidth and the minimum fill-in of the realizations of some blocks strictly
contained in (S,C) (see Corollaries 4.5 and 4.8). The treewidth and the minimum
fill-in of the input graph is computed, as in Corollary 4.2, using the treewidth and
the minimum fill-in of the realizations of its blocks.

Theorem 4.9. Given a graph G = (V,E) and the set ΠG of all its poten-
tial maximal cliques, we can compute the treewidth and the minimum fill-in of G in
O(n2|∆G| × |ΠG|) time.

Proof. The whole algorithm can be implemented in O(bpn + re) time, where n
and e are the number of vertices, respectively, of edges of G and r, b, and p are the
number of minimal separators (respectively, blocks and potential maximal cliques) of
G. We make some observations on the relations between r, p, and b. Each minimal
separator S induces in G − S at most n connected components, so the number b
of blocks is at most rn. The minimal separators contained in a potential maximal
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Table 4.1
Algorithm computing the treewidth and the minimum fill-in of a graph.

Input: G and all its potential maximal cliques
Output: tw(G) and mfi(G)
begin

compute all the blocks (S,C) and sort them by the number of vertices
for each block (S,C) taken in increasing order

if (S,C) is not full then
compute the neighborhood S∗ of C
tw(R(S,C)) := max(|S| − 1, tw(R(S∗, C)))
mfi(R(S,C)) := mfi(R(S∗, C))

else {the block (S,C) is full}
tw(R(S,C)) :=∞
mfi(R(S,C)) :=∞
for each p.m.c. Ω with S ⊂ Ω ⊆ (S,C)

compute the blocks (Si, Ci) associated with Ω in R(S,C)
tw(R(S,C)) := min(tw(R(S,C)),

max
i
(|Ω| − 1, tw(R(Si, Ci))))

mfi(R(S,C)) := min(mfi(R(S,C)),

fill(Ω)− fill(S) +
∑
i

(mfi(R(Si, Ci))))

end if

end for

tw(G) := min
S∈∆G

max
C∈C(S)

tw(R(S,C))

mfi(G) := min
S∈∆G

(fill(S) +
∑

C∈C(S)

mfi(R(S,C)))

end

clique Ω correspond to the neighborhoods of the connected components of G− Ω, so
Ω contains at most n minimal separators. Thus, r ≤ pn. The algorithm is clearly
polynomial in the size of the input, i.e., in n and p.

5. Application to some classes of graphs. Several classes of graphs have
“few” minimal separators, in the sense that the number of minimal separators of such
graphs is polynomially bounded in the size of the graph. Moreover, an algorithm
given in [21] computes all the minimal separators of these graphs.

For some of these classes of graphs we also have algorithms computing the tree-
width and the minimum fill-in in polynomial time, using the minimal separators (cf.
[20, 9, 3, 32, 24, 15, 26]). Different proofs have been given for each of these algorithms.
We have remarked that, for computing the treewidth or the minimum fill-in of a graph,
all these algorithms compute, in an implicit manner, all the potential maximal cliques
of the input graph. Therefore, our approach unifies the cited algorithms (see also [4]).

We will also show how to compute in polynomial time the potential maximal
cliques for a new class of graphs, namely, the weakly triangulated graphs (see also
[5]).

5.1. AT-free graphs. We say that three vertices (x, y, z) of a graph form an
asteroidal triple of a graph G if they are pairwise nonadjacent and between every two
of them there exists a path avoiding the neighborhood of the third. A graph is AT-free
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if it has no asteroidal triple. The notion of the asteroidal triple was introduced by
Lekkerkerker and Boland [25] in relation to interval graphs.

Notice that the treewidth and the minimum fill-in problems are NP-complete even
restricted to the class of cobipartite graphs [1, 34], which is contained in the class of
AT-free graphs. It was shown in [23, 26] that the treewidth and the minimum fill-in
are tractable in polynomial time for AT-free graphs with a polynomial number of
minimal separators. Among the AT-free graphs with few minimal separators, we find
the cocomparability graphs of bounded dimension and in particular the permutation
graphs or the d-trapezoid graphs, which have a polynomial number of separators for
any fixed d.

The following proposition gives an easy way to compute the potential maximal
cliques of an AT-free graph G in a time which is polynomial in the size of G and in
the number of its minimal separators.

Proposition 5.1. Let Ω be a potential maximal clique of an AT-free graph G.
Then ∆G(Ω) has at most two elements maximal by inclusion.

Proof. Recall that we denote by C1, C2, . . . Cp the connected components of G−Ω
and by Si the neighborhood of Ci in Ω. By Theorem 3.15, the elements of ∆G(Ω)
are exactly the sets of vertices S1, . . . , Sp. Suppose that ∆G(Ω) has three elements
maximal by inclusion, say, S1, S2, S3. Let x1, x2, and x3 be three vertices of C1, C2,
and C3, respectively. We show that (x1, x2, x3) is an asteroidal triple. Let y be a
vertex of S2 − S1. There is a path from y to x2 that avoids S1, so y and x2 are in
the same connected component of G−S1. Since Ω is contained in a block (S1, C(S1))
associated with S1, we deduce that y and x2 are in the connected component C(S1)
of G − S1. For the same reasons, x3 is in the same connected component C(S1) of
G − S1. Therefore, there is a path from x2 to x3 in C(S1), which clearly avoids the
neighborhood of x1. By symmetry, x1, x2, and x3 form an asteroidal triple.

Corollary 5.2. An AT-free graph G has O(|∆G|2 + n|∆G|) potential maximal
cliques, computable in a time polynomial in the number n of vertices of G and the
number |∆G| of its minimal separators.

Proof. In an AT-free graph, we have two types of potential maximal cliques:
the potential maximal cliques Ω such that ∆G(Ω) has two distinct elements maximal
by inclusion, and the potential maximal cliques such that ∆G(Ω) has one element
maximum by inclusion.

Let us prove that if Ω is a potential maximal clique ofG and S1, S2 are two distinct
elements maximal by inclusion in ∆G(Ω), then Ω = P (S1, S2). For any T ∈ ∆G(Ω), let
(T,C(T )) be the unique block of T containing Ω. If T ⊆ S1, then (T,C(T )) contains
the block (S1, C(S1)). It follows that ∩T∈∆G(Ω)(T,C(T ) = (S1, C(S1)) ∩ (S2, C(S2)),
so P (∆G(Ω)) = P (S1, S2). Thus, we have O(|∆G|2) potential maximal cliques Ω with
two maximal elements in ∆G(Ω). Clearly, all these potential maximal cliques can be
computed in polynomial time.

If Ω is a potential maximal clique and S is the unique element maximum by
inclusion in ∆G(Ω), then by Theorem 3.10 we have Ω = (S,C), where (S,C) is a full
block associated with S. Consequently, we have at most n|∆G| potential maximal
cliques of this type, computable in polynomial time.

Remark 2. One can prove that an AT-free graph has at mostO(n2|∆G|) potential
maximal cliques. This result follows directly from [26].

The notion of asteroidal triple can be extended to more than three vertices. We
say that a set of vertices A is an asteroidal set if for any a ∈ A, A− {a} is contained
in a same connected component of G − N(a), where N(a) is the neighborhood of a
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in G. In particular, an asteroidal triple is an asteroidal set of cardinality 3. The
asteroidal number of a graph is na(G) = max{|A|, A is an asteroidal set of G}. In [7]
it is proved that the treewidth and the minimum fill-in are polynomially tractable
for graphs with a bounded asteroidal number and with few minimal separators. As
for the AT-free graphs, a potential maximal clique of G has at most na(G) maximal
elements, so a graph has at most O(|∆G|na(G) + n|∆G|) potential maximal cliques.
We deduce as in Corollary 5.2 that if na(G) is bounded by a constant c and if G has
few minimal separators, then all the potential maximal cliques of G can be listed in
polynomial time.

5.2. Circle and circular arc graphs. Circle and circular arc graphs are ob-
tained from an intersection model. A graph G = (V,E) is a circle graph if and only
if we can associate each vertex of the graph with a chord of a circle such that two
vertices are adjacent in the graph if and only if the corresponding chords cross. The
circle and its chords are the circle model D(G) of the graph. In the same manner, a
graph G is a circular arc graph if each vertex can be associated with an arc of a circle
and two vertices are adjacent if and only if the corresponding arcs overlap. The circle
and its circular arcs are said to be the circular arc model D(G) of the graph.

Without loss of generality, we can assume that no two chords of the circle model
(respectively, no two arcs of the circular arc model) share an endpoint. For both circle
and circular arc graphs, there are recognition algorithms working inO(n2) time, which
also compute the circle (respectively, the circular arc model of a graph) (see [30, 11]).
Therefore, we will assume that an intersection model (i.e., a circle (respectively, a
circular-arc model)) of the input graph is always given.

The treewidth and the minimum fill-in problems have been solved for the circle
and the circular arc graphs in O(n3) time [16, 32, 24]. We show here that all the
potential maximal cliques of a circle or a circular arc graph can be listed in polynomial
time. We will use the results of [24] in order to prove this assertion. Actually, the
cited algorithms compute, in an implicit manner, all the potential maximal cliques of
the input graph.

We will present here in detail only the circle graphs. The results can be extended
to circular arc graphs using the same techniques.

For these “geometrical” classes of graphs, the minimal separators can be modeled
by scanlines. In the circle model of a circle graph, we add a scanpoint between every
two consecutive endpoints of the chords. The scanlines are the straight line segments
between two scanpoints.

Let G be a circle graph and D(G) be a circle model of G. For each scanline s, we
denote by S(s) the set of all vertices of G corresponding to the chords of D(G) that
intersect s.

Kloks [16] proved the following proposition.
Proposition 5.3. Let G be a circle graph and let D(G) be a circle model of G.

For any minimal separator S of G, there is a scanline s in D(G) such that S = S(s).
Since the circle model has n chords, we have 2n scanpoints and consequently

n(2n− 1) scanlines. Therefore, a circle graph has O(n2) minimal separators.
Kloks, Kratsch, and Wong [24] gave a characterization of minimal triangulations

of a circle graph G using scanlines of the circle model. The scanpoints of D(G) form
a convex polygon P . A planar triangulation of P is a set T of noncrossing diagonals
of P dividing the interior of P in triangles. Notice that if P has n vertices, then T
has n− 3 diagonals dividing the interior of P in n− 2 triangles.

If T is a planar triangulation of P , the graph H(T ) is defined as the graph with
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the same vertex set as G, and two vertices x and y are adjacent in H(T ) if and only if
the chords corresponding to x and y in D(G) intersect a same triangle of T . Clearly,
H(T ) is a supergraph of G. Moreover, it is proved in [24] that H(T ) is a triangulation
of G. However, we will use only the following theorem of [24].

Theorem 5.4. Let G be a circle graph, D(G) a circle model of G, and P its
polygon of scanpoints. Then for any minimal triangulation H of G, there is a planar
triangulation T of P such that H = H(T ).

All we have to do is to notice how maximal cliques are formed in H(T ). Let Q be
a triangle of a planar triangulation T of P . We denote by S(Q) the set of all vertices
of G for which the corresponding chords intersect Q.

Proposition 5.5. Let G be a circle graph, D(G) a circle model of G, and T a
planar triangulation of its polygon P of scanpoints. Then for any maximal clique Ω
of H(T ), there is a triangle Q of T such that Ω = S(Q).

Proof. Clearly, for any triangle Q of T , the set of vertices S(Q) induces a clique
in H(T ).

We want to prove that all the chords corresponding to vertices of Ω intersect a
same triangle Q. Let s be any diagonal of T and let x, y be two adjacent vertices of
H(T ). The scanline s induces two regions R1 and R2 in the polygon P . Since x and y
are adjacent in H(T ), the chords of D(G) corresponding to x (respectively, y) cannot
be in different regions induced by s. Consequently, all the chords corresponding to
vertices of Ω intersect a same region induced by s, say, R1. If R1 is a triangle, we
have found our triangle Q. Otherwise, let s′ be a diagonal of T contained in R1. Then
s′ divides R1 in two smaller regions R′1 and R′2. For the same reasons as previously,
the chords corresponding to vertices of Ω intersect a same subregion, say, R′1. We can
iterate the process until finding a triangle Q such that Ω ⊆ S(Q).

We have that Ω ⊆ S(Q), S(Q) is a clique in H(T ), and Q is a maximal clique of
H(T ). It follows that Ω = S(Q).

Corollary 5.6. A circle graph has O(n3) potential maximal cliques computable
in polynomial time.

Proof. Let Ω be a potential maximal clique of G and H a minimal triangulation
of G such that Ω is a maximal clique of H. By Theorem 5.4, there is a planar
triangulation T of the polygon of scanpoints such that H = H(T ). By Proposition
5.5, there is a triangle Q of scanlines such that Ω = S(Q).

Consequently, for any potential maximal clique Ω there is a triangle of scanpoints
Q such that Ω = S(Q). Since we have at most O(n3) triangle of scanpoints, G has at
most O(n3) potential maximal cliques.

For listing all the potential maximal cliques of G, it is sufficient to list all the
triangles of scanpoints Q, to compute S(Q), and to check if S(Q) is a potential
maximal clique of G. This enumeration can be done in polynomial time.

Therefore for circle graphs, all the potential maximal cliques can be listed in
polynomial time. Notice that the algorithms of [16, 24] that compute the treewidth
and the minimum fill-in of circle graphs are looking for triangulations of type H(T ) of
G. In particular, all the minimal triangulations of G are of this type. Moreover, these
algorithms compute all the sets S(Q) for all the triangles of scanlines. Therefore
they implicitly use all the potential maximal cliques of the input graph. The fact
that they are using triangulations of type H(T ) of G instead of using only minimal
triangulations leads to an efficient algorithm in time O(n3).

For characterizing the potential maximal cliques of a circle graph, we have used
the global characterization of its minimal triangulations given by Theorem 5.4. One
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proves directly that, under certain conditions, two minimal separators of a circle graph
are parallel if and only if the corresponding scanlines do not cross (they may have a
common endpoint). Using Theorem 3.15 and the same arguments as for the proof of
Proposition 5.5, we can prove that, if Ω is a potential maximal clique of G, then the
scanlines corresponding to the minimal separators of ∆G(Ω) determine a region R
such that Ω = S(R) (the chords corresponding to vertices of Ω are exactly the chords
intersecting R). One can deduce directly the Proposition 5.5 (see [33]).

For the class of circular arc graphs, the results are very similar. Let G be a
circular arc graph and D(G) be a circular arc model of G. For a point p of the circle,
we denote by S(p) the vertices of G for which the corresponding arcs contain p. We
place a point p between every two consecutive endpoints u and v of the arcs of D(G).
We say that p is a scanpoint if |S(p)| < min(|S(u)|, |S(v)|). Once again, a straight
line s between two scanpoints is called a scanline. If p1 and p2 are the scanpoints
determining the scanline s, we define S(s) = S(p1) ∪ S(p2), i.e., the vertices of G
such that the corresponding arcs contain a point of the scanline. If Q is a triangle
of scanpoints of vertices p1, p2, p3, then we put S(Q) = S(p1) ∪ S(p2) ∪ S(p3). We
can also define a triangulation T of the polygon P of scanpoints and the supergraph
graph H(T ) of G in which two vertices x and y are adjacent if they are adjacent in
G or if there is a scanline s ∈ T with x, y ∈ S(s).

Kloks, Kratsch, and Wong [24] proved the following results.
Theorem 5.7. Let G be a circular arc graph, D(G) a circular arc model of G,

and P its polygon of scanpoints. Then for any minimal triangulation H of G there is
a planar triangulation T of P such that H = H(T ).

We can give the same characterization of the potential maximal cliques as in the
case of circle graph. The proof is almost the same as for Proposition 5.5, so we omit
it.

Proposition 5.8. Let G be a circular arc graph, D(G) a circular arc model of
G, and T a planar triangulation of its polygon of scanpoints P . Then for any maximal
clique Ω of H(T ), there is a triangle of scanpoints Q of T such that Ω = S(Q).

Clearly, circular arc graphs have a polynomial number of potential maximal
cliques and we can list these potential maximal cliques in polynomial time.

Corollary 5.9. A circular arc graph has O(n3) potential maximal cliques com-
putable in polynomial time.

Once again, the algorithms of [32, 24] compute all the sets of type S(Q), so in
particular they use the potential maximal cliques of the input graph.

5.3. Weakly triangulated graphs. We now consider two nonadjacent vertices
x, y of an arbitrary graph G. Let G′ be the graph obtained from G by adding the
edge {x, y}. We will show in this section that the potential maximal cliques of G can
be computed from the minimal separators of G and the potential maximal cliques of
G′. We will use this technique to compute all the potential maximal cliques of any
weakly triangulated graph.

Let Ω once again be a potential maximal clique of G. Let C1, . . . , Cp be the
connected components of G− Ω and let Si be the set of vertices of Ω having at least
a neighbor in Ci. We want to describe the behavior of Ω and S in the graph G′. We
deduce the following lemma directly from Theorem 3.15.

Lemma 5.10.
1. If x, y ∈ Ω or there is an i, 1 ≤ i ≤ p, such that x, y ∈ Ci or x ∈ Si and
y ∈ Ci, then Ω is a potential maximal clique of G′ and the elements of ∆G′(Ω)
are S1, S2, . . . , Sp.
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2. If y ∈ C1, x ∈ Ω−S1, and Ω �= S1∪{x}, then Ω is a potential maximal clique
of G′ and the elements of ∆G′(Ω) are S1 ∪ {x}, S2, . . . , Sp.

3. If x ∈ C1, y ∈ C2, and Ω �= S1 ∪ S2, then Ω is a potential maximal clique of
G′ and the elements of ∆G′(Ω) are S1 ∪ S2, S3, . . . , Sp.

Proof. By Theorem 3.15, G − Ω has no full components associated with Ω and
G∆G(Ω)[Ω] is a clique. Notice that, by Lemma 3.14, the elements of ∆G(Ω) = S(Ω)
are exactly the sets S1, . . . , Sp.

If we are in the first case of the lemma, then the connected components of G′−Ω
are exactly the same in G − Ω, and their neighborhoods in G′ are also the same. If
we denote by S ′(Ω) the neighborhoods of the connected components of G′ − Ω, then
S ′(Ω) consists of S1, S2, . . . , Sp. Clearly, G

′ − Ω has no full components associated
with Ω and GS′(Ω)[Ω] is a clique. By Theorem 3.15, Ω is a potential maximal clique
of G′.

If we are in the second case, the connected components of G′−Ω are C1, C2 . . . , Cp
and their neighborhoods in G′ are S1 ∪ {x}, S2, . . . , Sp. If Ω �= S1 ∪ {x}, then G′ −Ω
has no full components associated with Ω, and once again Ω is a potential maximal
clique of G′, by Theorem 3.15.

In the third case, the connected components of G′−Ω are C1∪C2, C3, . . . , Cp, and
their neighborhoods are S1 ∪ S2, S3, . . . , Sp, respectively. The fact that Ω �= S1 ∪ S2

ensures that G′−Ω has no full components associated with Ω. Clearly GS′(Ω)[Ω] is a
clique, so by Theorem 3.15, Ω is a potential maximal clique of G′.

The following theorem follows directly.

Theorem 5.11. Let Ω be a potential maximal clique of G. Let x, y be two
nonadjacent vertices of G and let G′ = G ∪ {x, y}. Two cases are possible.

1. Ω can be written as S1 ∪ {x}, S1 ∪ {y} or S1 ∪ S2, where S1, S2 are minimal
x, y-separators of G.

2. Ω is a potential maximal clique of G′.
The weakly triangulated graphs were introduced in [13]. A graph G is called

weakly triangulated if neither G nor its complement G have an induced cycle with
strictly more than four vertices. This class contains the chordal graphs, the chordal
bipartite graphs, and the distance hereditary graphs.

We denote by N(x) the neighbors of the vertex x. We say that two vertices
x, y of a graph G form a two-pair if their common neighbors N(x) ∩ N(y) form an
x, y-separator. The following theorem was proved in [14].

Theorem 5.12. If G is a weakly triangulated graph, then every induced subgraph
of G that is not a clique contains a two-pair.

Spinrad and Sritharan give in [31] an algorithm recognizing the weakly triangu-
lated graphs based on the following theorem.

Theorem 5.13. Let G = (V,E) be a graph and let {x, y} be a two-pair of G.
Let G′ = (V,E′) be the graph obtained from G by adding the edge {x, y}. Then G is
weakly triangulated if and only if G′ is weakly triangulated.

Notice that a clique is a weakly triangulated graph. The recognition algorithm
considers an input graph G and, while G has a two-pair {x, y}, it adds the edge
between x and y to G. At the end of the loop, either G becomes a clique, in which
case the initial graph is weakly triangulated by Theorem 5.13, or G is not a clique
and it has no two-pair, in which case the input graph cannot be weakly triangulated
by Theorems 5.12 and 5.13.

We denote by e the number of edges of G. Now let G = (V,E) be a weakly
triangulated graph and let f1 = {x1, y1}, . . . , fe = {xe, ye} be the edges added to
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G by the recognition algorithm in this order. In particular, (V,E ∪ {f1, . . . , fe}) is
a clique. We denote by Gi the graph (V,E ∪ {f1, f2, . . . , fi}) with 0 ≤ i ≤ e (so
G0 = G and Ge is a clique). We will describe the minimal separators (respectively,
the potential maximal cliques of Gi) using the minimal separators (respectively, the
potential maximal cliques of Gi+1) for any i < e.

It is known that a weakly triangulated graph has at most e minimal separators
(Kloks [17]). We give here the proof of this result because we will reuse the same tech-
nique for counting and listing the potential maximal cliques of a weakly triangulated
graph.

Theorem 5.14. Let G be a noncomplete weakly triangulated graph and let {x, y}
be a two-pair of G. Let Sxy be the set N(x) ∩N(y). Consider the graph G′ obtained
from G by adding the edge {x, y}. Then ∆G ⊆ ∆G′ ∪ {Sxy}.

Proof. Notice that Sxy is a minimal x, y-separator of G by definition of a two-pair.

Let S be any minimal separator of G.

Suppose at first that S separates x and y, and let Cx, Cy be the connected compo-
nents of G− S containing x (respectively, y). If both Cx and Cy are full components
associated with S, then S is a minimal x, y-separator by Lemma 2.6. Notice that
N(x) ⊂ Cx ∪ S and N(y) ⊂ Cy ∪ S. We deduce that N(x) ∩ N(y) ⊆ S, and since
N(x)∩N(y) = Sxy is a x, y-separator in G by definition of a two-pair, it follows that
S = Sxy. Now suppose that Cx and Cy are not both full components of S in G. The
connected components of G′ − S are the same as in G − S, except for Cx and Cy
which form a unique component Cx ∪Cy in G′−S. If G−S has two full components
D and E associated with S, both different from Cx and Cy, then D and E are full
components associated with S in G′, so S is a minimal separator of G′ by Lemma
2.6. Otherwise, G−S has a unique full component D associated with S and different
from Cx and Cy, so at least one of Cx, Cy must be a full component associated with
S in G. Therefore, D and Cx ∪Cy are full components associated with S in G′, so S
is a minimal separator of G′ by Lemma 2.6.

If S does not separate x and y, the connected components of G′−S are the same
as in G − S, so G′ − S has two full components associated with S. Consequently, S
is a minimal separator of G′.

Therefore for any i < e, the graph Gi has at most one more minimal separator
than Gi+1. We deduce the following corollary.

Corollary 5.15. A weakly triangulated graph G has at most e minimal separa-
tors, where e is the number of edges of G.

We can conclude directly from Theorem 5.11 and Lemma 5.15 that all the poten-
tial maximal cliques of a weakly triangulated graph can be computed in polynomial
time. However, we can refine the results of the third case of Lemma 5.10.

Lemma 5.16. Let G be a graph, let x, y be a two-pair of G, and let Ω be a potential
maximal clique of G such that x and y are in different connected components of G−Ω.
Then Ω is a potential maximal clique of G′ = G ∪ {x, y}.

Proof. We use the fact that if x, y is a two-pair of a graph G, then Sxy =
N(x)∩N(y) is the only x, y-minimal separator of G. Let C1 and C2 be the connected
components of G− Ω containing x (respectively, y). As before, let S1 and S2 be the
sets of vertices of Ω having a neighbor in C1 (respectively, C2). We want to prove that
both S1 and S2 contain Sxy and at least one of them is equal to Sxy. By Remark 1,
S1 separates x and y, so it must contain N(x) ∩N(y) = Sxy. The same holds for S2.
Suppose that there is some vertex a ∈ S1 − Sxy and some vertex b ∈ S2 − Sxy. Since
a has a neighbor in C1, a is in the connected component G − Sxy containing x. b is
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also in the connected component of G−Sxy containing y. Then Ω intersects different
connected components of G−Sxy, which is, by Corollary 3.12, a contradiction to the
fact that Sxy ⊂ Ω. It remains that S1 = Sxy or S2 = Sxy. Therefore, S1 ∪ S2 is equal
to S1 or S2, and consequently Ω �= S1 ∪ S2 by Corollary 3.12. By the third part of
Lemma 5.10, Ω will be a potential maximal clique of G′.

We deduce from Theorem 5.11 and Lemma 5.16 the following corollary.

Corollary 5.17. Let Ω be a potential maximal clique of G. Let x, y be a two-pair
of G and let G′ = G ∪ {xy}. Let Sxy = N(x) ∩N(y). Two cases are possible.

1. Ω can be written as Sxy ∪ {x} or Sxy ∪ {y}.
2. Ω is a potential maximal clique of G′.
Corollary 5.18. A weakly triangulated graph G has at most 2e + 1 potential

maximal cliques.

Proof. We consider the sequence of graphs G0 = G,G1, . . . , Ge previously defined.
Since Gi+1 is obtained from Gi by adding an edge between a two-pair, by Corollary
5.17 the graph Gi has at most two more potential maximal cliques than Gi+1. Clearly
Ge, which is a clique, has a unique potential maximal clique.

Corollary 5.19. The treewidth and the minimum fill-in of weakly triangulated
graphs can be computed in polynomial time.

The complexity of computing all the potential maximal cliques is O(n3e). It
is sufficient to use the weakly triangulated graphs recognition algorithm of [31] to
generate the two-pairs {xi, yi} and the sets Sxiyi . This takes O(n2e) time. One can
check in O(n3) time if a set is a potential maximal clique by Corollary 3.16. Therefore
the list of all potential maximal cliques is computable in O(n3e) time.

For weakly triangulated graphs, the number of minimal separators is r = O(e),
the number of blocks is b = O(ne), and the number of potential maximal cliques
is p = O(e). According to the complexity of the algorithm of Corollary 3.16, the
treewidth and the minimum fill-in are computable in O(n2e2 + n3e) time.

6. Conclusion. The main result of this paper is that, given a graph G and the
list ΠG of all its potential maximal cliques, the treewidth and the minimum fill-in of
G can be determined in polynomial time in the size of G and the number |ΠG| of its
potential maximal cliques.

We did not say whether there is a connection between the number of potential
maximal cliques and the number of minimal separators in a graph. We have recently
proved (see [6]) that, for any graph, |ΠG| = O(n|∆G|2) and the potential maximal
cliques can be computed in polynomial time in the size of the graph and the number
of its minimal separators. Thus, the treewidth and the minimum fill-in are tractable
in polynomial time in the size of the graph and the number of its minimal separators.
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Abstract. A new measure, the accommodating function, for the quality of on-line algorithms is
presented. The accommodating function, which is a generalization of both the competitive ratio and
the competitive ratio on accommodating sequences, measures the quality of an on-line algorithm as
a function of the resources that would be sufficient for an optimal off-line algorithm to fully grant
all requests. More precisely, if we have some amount of resources n, the function value at α is the
usual ratio (still on some fixed amount of resources n), except that input sequences are restricted to
those where the optimal off-line algorithm will not obtain a better result by having more than the
amount αn of resources.

The accommodating functions for three specific on-line problems are investigated: a variant of
bin packing in which the goal is to maximize the number of items put in n bins, the seat reservation
problem, and the problem of optimizing total flow time when preemption is allowed.

We also show that when trying to distinguish between two algorithms, the decision as to which
one performs better cannot necessarily be made from the competitive ratio or the competitive ratio on
accommodating sequences alone. For the variant of bin-packing considered, we show that Worst-Fit
has a strictly better competitive ratio than First-Fit, while First-Fit has a strictly better competitive
ratio on accommodating sequences than Worst-Fit.

Key words. on-line algorithms, performance measures, competitive analysis, restricted adver-
saries, bin packing, seat reservations, flow time

AMS subject classifications. 68Q25, 05B40, 90B35

PII. S0097539799361786

1. Introduction. The competitive ratio [17, 29, 23], as a measure for the quality
of on-line algorithms, has been criticized for giving bounds that are unrealistically
pessimistic [5, 7, 18, 22, 25] and for not being able to distinguish between algorithms
with very different behavior in practical applications [7, 18, 25, 28]. Though this
criticism also applies to standard worst-case analysis, it is often more disturbing in
the on-line scenario [18].

The basic problem is that the adversary is too powerful compared with the on-
line algorithm. For instance, it would often be more interesting to compare an on-line
algorithm to other on-line alternatives than to an all-powerful off-line algorithm. A
number of papers have addressed this problem [16] by making the on-line algorithm
more powerful, by providing the on-line algorithm with more information, or by re-
stricting the set of legal input sequences.

With regard to providing the on-line algorithm with more information, most
progress has been made on paging problems. It has been observed [7] that programs
exhibit “locality of reference.” By supplying an “access graph” as part of the input
to the algorithms, this behavior can be modeled. In [7, 19], a number of classes of
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access graphs have been studied. In [11], it is shown that LRU is never worse than
FIFO on any access graph.

The “loose competitive ratio” from [31] represents another attempt at improving
the ratio. When determining the loose competitive ratio c, the following steps are
taken. First, from an infinite set of input sequences, a set of sequences, asymptotically
smaller than the whole set, may be disregarded. The remaining sequences should then
either be c-competitive or have small cost. The assumption is that sequences of small
cost are relatively unimportant.

With regard to making the on-line algorithmmore powerful, this has been achieved
through so-called “extra-resource analysis” of scheduling problems. In [22] and [28],
processor speed is a resource which to some degree compensates for the on-line algo-
rithm’s lack of knowledge of the future compared with the (optimal) off-line algorithm.
In [28], reduced job arrival rate is also considered as an extra resource the on-line al-
gorithms could be allowed. Another possibility for an extra resource in scheduling
problems is extra machines. Graham in [17] compares two arbitrary algorithms, al-
lowing different numbers of processors for the two algorithms. This work was done
before the competitive ratio was formally defined, but if one of these two algorithms
is the optimal off-line algorithm, this result can be viewed as allowing the on-line
algorithm extra machines. In [30, 31], the competitive ratio is improved by allowing
some limited look-ahead.

In [25], unrealistic sequences can be removed by specifying a collection of possible
distributions. The off-line adversary will choose the distribution which maximizes the
ratio of the expected performance of the on-line algorithm to the expected performance
of the adversary.

In this paper, we obtain new and stronger results by restricting the adversary.
This can be done various ways; we move in the direction of restricting the set of
input sequences the adversary can supply. However, instead of a “fixed” restriction,
we consider a function of the restriction, the accommodating function. Informally, in
on-line problems, where requests are made for parts of some resource, we measure the
quality of an on-line algorithm as a function of the resources that would be sufficient
for an optimal off-line algorithm. More precisely, if we have some amount of resources
n, the function value at α is the usual ratio (still on some fixed amount of resources
n), except that input sequences are restricted to those where the optimal off-line
algorithm will not obtain a better result by having more than the amount αn of
resources.

In the limit, as α tends towards infinity, there is no restriction on the input se-
quence, so this is the competitive ratio. However, when α is very large, the allowed
sequences cannot necessarily be handled very well by the optimal off-line algorithm
and can, depending on the application, be quite unrealistic. To avoid comparing an
on-line algorithm to the optimal off-line algorithm on problematic sequences of this
type, we consider smaller values of α and restrict the adversary so that it can supply
only sequences which the optimal off-line algorithm could handle optimally with only
αn resources. In the case where increasing the amount of resources available will not
improve the optimal off-line algorithm’s result, the sequences are called accommodat-
ing sequences [9].1 Thus, when α = 1, the function value is the competitive ratio on
accommodating sequences. Consequently, the accommodating function is a true gen-

1In that paper and a preliminary version of the current paper [10], this competitive ratio on
accommodating sequences was called the accommodating ratio. The change is made here for consis-
tency with common practice in the field.
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eralization of the competitive ratio as well as the competitive ratio on accommodating
sequences.

In addition to giving rise to new interesting algorithmic and analytical problems,
which we have only begun investigating, this function, compared to just one ratio,
contains more information about the on-line algorithms. For some problems, this
information gives a more realistic impression of the algorithm than the competitive
ratio does. Additionally, this information can be exploited in new ways. The shape
of the function, for instance, can be used to warn against critical scenarios, where
the performance of the on-line algorithm compared to the off-line can suddenly drop
rapidly when more sequences are allowed.

In the next section, we formally define the accommodating function. In the fol-
lowing sections, the accommodating functions for three specific on-line problems are
investigated: a variant of bin-packing in which the goal is to maximize the number
of items put in n bins, the seat reservation problem, and the problem of optimizing
total flow time when preemption is allowed.

In section 3, where we consider the variant of bin-packing, we consider two spe-
cific algorithms, First-Fit and Worst-Fit. We show that although First-Fit performs
worse than Worst-Fit with respect to the competitive ratio, it performs better with
respect to the competitive ratio on accommodating sequences. Thus, the choice as
to which algorithm to use depends on which ratio is more relevant in a specific situ-
ation. This would depend on the actual distribution of request sequences and on the
accommodating functions for the algorithms.

2. The accommodating function. Consider an on-line problem with a fixed
amount of resources n. For a maximization problem, A(I) is the value of running the
on-line algorithm A on I, and OPT(I) is the maximum value that can be achieved on
I by an optimal off-line algorithm, OPT.

For a minimization problem, A(I) is a cost and OPT(I) is the minimum cost
which can be achieved.

A and OPT use the same amount of resources, n. For a problem with some
limited resource, OPTm(Am) denotes the value/cost of an optimal off-line algorithm
(the on-line algorithm) when the amount m of the limited resource is available.

Definition 2.1. Let P be an on-line problem with a fixed amount n of resources.
For any α > 0, an input sequence I to the problem P is said to be an α-sequence if
OPTαn(I) = OPTn′(I) for all n′ ≥ αn. 1-sequences are also called accommodating
sequences.

If an input sequence is an α-sequence, then an optimal off-line algorithm does
not benefit from having more than the amount αn of resources. For maximization
problems, this will often mean that the optimal off-line algorithm could have fully
granted all requests with the amount αn of resources. If an input sequence is an
accommodating sequence, then an optimal off-line algorithm does not benefit from
having more resources than the amount already available.

For a maximization problem, the algorithm A is c-competitive on α-sequences if
c ≤ 1, and for every n and every α-sequence I, An(I) ≥ c ·OPTn(I)− b, where b is a
fixed constant for the given problem, and, thus, independent of I.

Let Cα
A
= {c | A is c-competitive on α-sequences}. The accommodating function

A is defined as AA(α) = sup Cα
A
.

For a minimization problem, A is c-competitive on α-sequences if c ≥ 1 and for
every n and every α-sequence I, An(I) ≤ c · OPTn(I) + b, and the accommodating
function is defined as AA(α) = inf Cα

A
.
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With this definition, the competitive ratio on accommodating sequences from [9]
is A(1) and the competitive ratio is limα→∞A(α). In this paper, we consider only
α ≥ 1. In Figure 2.1, these relationships are depicted using a hypothetical example
for a maximization problem.

✲

✻

0 1 α

1

on-line
off-line

acc.rat

comp.rat

Fig. 2.1. A typical accommodating function for a maximization problem.

The extra information contained in the accommodating function compared with
the competitive ratio can be used in different ways. If the user knows that estimates
of required resources cannot be off by more than a factor three, for instance, then
A(3) is a bound for the problem and thereby a better guarantee than the bound given
by the competitive ratio. The shape of the function is also of interest. Intervals where
the function is very steep are critical, since there earnings, compared to the optimal
earnings, drop rapidly. Thus, the user misses out on business. Therefore, the function
can warn against algorithms with unfortunate behavior, and, if such an algorithm
must be used, the function can be used to locate resource critical areas.

3. Fair bin packing. Consider the following bin packing problem: Let n be
the number of bins, all of size k. Given a sequence of integer-sized items of size at
most k, the objective is to maximize the total number of items in these bins. This
problem has been studied in the off-line setting, starting in [14], and its applicability
to processor and storage allocation is discussed in [13]. (For surveys on Bin Packing,
see [12, 15].) The problem we are considering is on-line, so the requests occur in a
definite order. We require the packing to be fair ; that is, an item can be rejected only
if it cannot fit in any bin at the time when it is given. We refer to the problem as Fair
Bin Packing.2 Notice that the fairness criterion is a part of the problem specification.
Thus, even though the optimal off-line algorithm knows the whole sequence of requests
in advance, it must process the requests in the same order as the on-line algorithm
and do so fairly.

In this problem, for a given α, we consider only sequences which could be packed
in αn bins by an optimal off-line algorithm.

3.1. Summary of results. The following six theorems summarize our results
for deterministic algorithms for Fair Bin Packing. Note that since this is a maxi-
mization problem, lower bounds are obtained by proving a bound on the worst-case
behavior of algorithms, and upper bounds are obtained by giving adversary argu-
ments.

2In [10], where a preliminary version of some of these results was presented, the same problem
was referred to as Unit Price Bin Packing.



THE ACCOMMODATING FUNCTION 237

Theorem 3.1. For any Fair Bin Packing algorithm, the accommodating function
is at most

A(α) ≤





6
7 : α = 1,
2

2+(α−1)(k−2) : 1 < α ≤ 5
4 ,

8
6+k : α > 5

4

for k ≥ 3.

Theorem 3.2. For any Fair Bin Packing algorithm, the accommodating function
is at least

A(α) ≥





1
2 : α = 1,
α

max{1+(α−1)k,2+(α−1) k
2 }

: 1 < α < 2,

2− 1
k

k : α ≥ 2

for k ≥ 3.

The bounds presented in the previous two theorems are depicted in Figure 3.1.
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✠

α
max{1+(α−1)k,2+(α−1) k

2 }

Fig. 3.1. General upper and lower bounds on the accommodating function for Fair Bin Packing,
drawn for k = 60.

The specific algorithms we consider are First-Fit and Worst-Fit. First-Fit places
an item in the lowest numbered bin in which it fits, while Worst-Fit places an item
in one of the bins which are least full.

Theorem 3.3. An upper bound on the accommodating function for First-Fit is

AFF(α) ≤





7
11 : α = 1,
α

1+(α−1)(k−1) : 1 < α < 2,

2− 1
k

k : α ≥ 2.

The general lower bounds from Theorem 3.2 apply to all algorithms, including
First-Fit. A better lower bound on the competitive ratio on accommodating sequences
can be shown.
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Fig. 3.2. Upper and lower bounds on the accommodating function for First-Fit, drawn for k = 60.

Theorem 3.4. For First-Fit, the competitive ratio on accommodating sequences
is at least

AFF(1) ≥ 5

8
.

The bounds on First-Fit presented in the previous three theorems are depicted
in Figure 3.2.

Theorem 3.5. An upper bound on the accommodating function for Worst-Fit is

AWF(α) ≤





1
2− 1

k

: α = 1,

3− 1
n

2− 1
n+(α−1)k : 1 < α < 1 + 1

n
 (n−1)(k−n)+(n−1)
k �,

3+ 1
n−1

3+ 1
n−1+(1− 1

β )k
: α ≥ 1 + 1

n
 (n−1)(k−n)+(n−1)
k �, k ≥ βn, β ≥ 1.

The general lower bounds from Theorem 3.2 apply to all algorithms, including
Worst-Fit. A better lower bound on the competitive ratio can be shown.

Theorem 3.6. The competitive ratio of Worst-Fit is at least 3
2+k .

3.2. Upper bounds for all deterministic algorithms. Here we prove bounds
which apply to all deterministic algorithms for Fair Bin Packing, beginning with an
upper bound on the accommodating function. All of the results in this subsection also
hold if one relaxes the restriction that all items must be integer-sized to a restriction
that the bins have unit size and the smallest item has size 1/k.

Theorem 3.7. For any Fair Bin Packing algorithm, if α ≤ 5
4 and k ≥ 3, then

A(α) ≤ 2
2+(α−1)(k−2) .

Proof. Consider an arbitrary fair on-line algorithm A. An adversary can give A

the following request sequence, divided into three phases. Phase 1 consists of n small
items of unit size. Phase 2 consists of items, one for each bin which A did not fill
completely with size equal to the empty space in that bin, sorted in decreasing order.
After these are given, A has filled all bins completely and so must reject the items in
phase 3, which consists of (αn − n)k items of unit size. Let q denote the number of
empty bins in A’s configuration after the first phase.

In the case where q < n
4 , we know that A has at least n−2q ≥ 2(αn−n) bins with

exactly one item after phase 1. OPT can arrange the items from phase 1 such that
half of the bins contain two items and half contain no items. In the second request
phase, there are at least 2(αn− n) items of size k − 1. OPT rejects at least αn− n,
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leaving room for at least (αn − n)(k − 1) of the unit size items from phase 3. This
gives a total gain of at least (k − 2)(αn − n), and the performance ratio is at most

2n
2n+(αn−n)(k−2) =

2
2+(α−1)(k−2) .

In the case where q ≥ n
4 , we know that A has at least αn − n empty bins after

phase 1. OPT places each of the items from phase 1 in a different bin. This gives
a performance ratio of at most 2n

2n+(αn−n)(k−1) = 2
2+(α−1)(k−1) , since OPT rejects

αn− n items of size k.

Using the value α = 5
4 in the above theorem gives an upper bound on the com-

petitive ratio.

Corollary 3.8. If k ≥ 3, no Fair Bin Packing algorithm is more than 8
6+k -

competitive.

The next theorem improves the bound on the accommodating function for α = 1.

Theorem 3.9. For k ≥ 7, any Fair Bin Packing algorithm has a competitive
ratio on accommodating sequences of at most 6

7 .

Proof. Consider an arbitrary fair on-line algorithm A and assume n is even. An
adversary first gives n items of size 
k2 � − 1. Since k ≥ 7, A has packed at most two
items per bin. Let q denote the number of empty bins in A’s packing. In the case
where q < 2n

7 , the off-line algorithm can pack these n requests in the first n
2 bins.

Now the adversary can give n
2 long requests of size k. The performance ratio is then

n+q
n+n

2
= 2n+2q

3n < 6
7 .

In the case where q ≥ 2n
7 , observe that A has q bins with exactly two items. Let

the off-line algorithm place one item in each bin. In this case, the adversary can now
give n requests of size �k2 +1. The performance ratio is then 2n−q

2n ≤ 6
7 .

3.3. Lower bounds for all deterministic algorithms. Now we prove lower
bounds which apply to all deterministic algorithms for Fair Bin Packing. The first
lower bound is on the competitive ratio. Fix an on-line algorithm A and consider
the configuration of A after a given sequence I has been packed. Let e denote the
maximal empty space in any bin. Since all items are integer-sized, if the bins are not
all full, e ≥ 1.

Lemma 3.10. If e ≥ 1, the performance ratio of A is at least 3
2+k , for k ≥ 3.

Proof. Let V denote the volume of the first n requests, all of which must be
accepted by A. Note that n ≤ V ≤ nk. All items of size at most e have been accepted
by A due to the fairness criterion. LetM count the number of such small items which
arrive after the first n requests.

In the case where e = 1, M counts the number of unit size items. As argued
above, A must accept the first n items, plus the M unit size items, and together they
have volume V +M . Since A fills every bin with volume at least k − 1, these items
account for all of what A places in at most �V+M

k−1  bins. Thus, it must accept at least
n − �V+M

k−1  additional items. The optimal off-line algorithm OPT must also accept
the first n items and the M unit size items. For other items, it has nk − V −M
space remaining. All other items in the request sequence have size at least 2, so OPT
accepts at most nk−V−M

2 additional items. Hence, the performance ratio is at least

n+M + n− �V+M
k−1 

n+M + nk−V−M
2

≥ n+M + n− V+M
k−1

n+M + nk−V−M
2

,

defined for n ≤ V ≤ nk and 0 ≤M ≤ nk − V . By finding the minimum with respect
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to M , it can be shown that the following is a lower bound for the performance ratio:

2n− V
k−1

n+ nk−V
2

≥ 2n− n
k−1

n+ nk−n
2

=
4k − 6

k2 − 1
.

The last inequality is obtained by finding the minimum with respect to V .
In the case where e ≥ 2, the performance ratio is at least

n+M + (n− �V+M
k−e )

n+M + nk−V−M
e+1

≥ n+M

n+M + nk−n−M
e+1

=
(e+ 1)(M + n)

en+ eM + nk

≥ (e+ 1)n

en+ nk
≥ 3

2 + k
.

For k ≥ 3, the case e ≥ 2 gives the smallest value.
Theorem 3.11. The competitive ratio for any Fair Bin Packing algorithm is at

least
2− 1

k

k when k ≥ 3.
Proof. Consider an algorithm A for Fair Bin Packing. When k ≥ 3, the ratio 3

2+k

from Lemma 3.10 is larger than
2− 1

k

k . Thus, it suffices to consider the case where e = 0.
Again, let V denote the volume of the first n requests, all of which must be accepted
by A, since it is fair. Since e = 0, every bin has been filled up by the on-line algorithm,
but the first n requests filled at most �Vk  bins. Thus, A accepted at least n+(n−�Vk )
items. Since all items have size at least 1, OPT accepts at most n+ (nk − V ) items,
giving a performance ratio of at least

2n−	Vk 

n+nk−V ≥

2n−V
k

n+nk−V ≥
2n−n

k

nk =
2− 1

k

k .
Next we give a lower bound on the competitive ratio on accommodating sequences,

A(1). Note that the result does not depend on the items being integer-sized.
Theorem 3.12. Let I be an input sequence which can be accommodated within n

bins. The performance ratio is greater than 1
2 for any Fair Bin Packing algorithm.

Proof. Let A denote the set of items accepted by the on-line algorithm, and let
R denote the set of items rejected. The set R could be empty, but then the on-line
algorithm would have accommodated every request, giving a performance ratio of 1.

If R is nonempty, at least n items are accepted. Since the performance ratio is |A|
|A|+|R| ,

it is enough to show that |R| < n. Let e denote the maximal empty space in any bin.
Every item in R has size greater than e. If |R| ≥ n, then the volume of R is greater
than ne. However, this contradicts the fact that the total empty space is at most ne,
and the entire sequence can be packed in n bins.

The final general lower bound is on the accommodating function.
Theorem 3.13. For any Fair Bin Packing algorithm, the accommodating func-

tion can be bounded by A(α) ≥ α
max{1+(α−1)k,2+(α−1) k

2 }
for 1 < α < 2 and k ≥ 4.

Proof. Consider a worst-case sequence I for an on-line algorithm A. We may
assume that I contains no item which is rejected by both A and OPT, since such an
item has no influence on the ratio.

Again, let A denote the set of items accepted by the on-line algorithm A, and
let R denote the set of items rejected. Let ρ(I) denote the least number of bins in
which the sequence can be packed and define l = ρ(I) − n. If l = 0, we can use the
result from Theorem 3.12. Assume that l ≥ 1 and note that l is a lower bound on the
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number of items rejected by OPT. The first n items are accepted by both algorithms.
Since, by assumption, the on-line algorithm accepts all those items OPT rejects, it
must accept at least n + l items. Thus, |A| ≥ n + l. Again, let e denote the size of
the maximal empty space in any bin. The proof is divided into two cases depending
on e.

If e = 0, all n bins have been filled by the on-line algorithm, so the number of
rejected items is at most lk.

In the case where e ≥ 1, an upper bound on the number of items rejected is
|R| ≤ 1

e+1 (en + lk) using the same arguments as in the previous theorem. We can

now bound the accommodating function: A(α) ≥ |A|
|A|+|R|−l ≥ n+l

n+l+max{lk, en
e+1+l

k
e+1}−l

≥ n+(αn−n)
n+max{(αn−n)k,n+(αn−n) k

2 }
= α

1+max{(α−1)k,1+(α−1) k
2 }
, for 1 < α < 2.

3.4. Separation of First-Fit and Worst-Fit using the accommodating
function. In this section, we prove that the accommodating function provides extra
information by showing that the best choice between two different algorithms for
the same natural problem (Fair Bin Packing) cannot be made based on either the
competitive ratio or the competitive ratio on accommodating sequences alone.

The two specific algorithms that we consider are First-Fit andWorst-Fit. First-Fit
places an item in the lowest numbered bin in which it fits, while Worst-Fit places an
item in a bin which is least full. We show that Worst-Fit has a better competitive ratio

(rWF ≥ 3
2+k ) than First-Fit (rFF ≤ 2− 1

k

k ), while First-Fit has a better competitive

ratio on accommodating sequences (AFF(1) ≥ 5
8 ) than Worst-Fit (AWF(1) ≤ 1

2− 1
k

).

All of the results proven in this section for First-Fit also hold for Best-Fit. Best-Fit
is the algorithm which places an item in the most full among the bins where it fits. If
the “most full” is not unique, then Best-Fit chooses the first among those “most full”
bins.

Worst-Fit’s competitive ratio on accommodating sequences. First, we
prove an upper bound on Worst-Fit’s competitive ratio on accommodating sequences.

Theorem 3.14. Worst-Fit has a competitive ratio on accommodating sequences
of at most 1

2− 1
k

for all k.

Proof. Assume that n is divisible by k. An adversary can give the following
request sequence:

1. n items of unit size;
2. n− n

k items of size k.
Worst-Fit places one small item in each bin and must reject all the following

items. The optimal algorithm behaves like First-Fit and accepts all items giving the
following performance ratio: n

n+n−n
k
= 1

2− 1
k

.

First-Fit’s and Best-Fit’s competitive ratios on accommodating se-
quences. Now we show that First-Fit’s and Best-Fit’s competitive ratios on ac-
commodating sequences are at least 5

8 , which is strictly greater than Worst-Fit’s
competitive ratio on accommodating sequences, when k > 2. Thus, according to this
performance measure, First-Fit and Best-Fit are better algorithms than Worst-Fit.
The proof which shows this lower bound on Best-Fit’s competitive ratio on accommo-
dating sequences is essentially the same as the one for First-Fit, after the following
two lemmas are proven giving lower bounds on the sizes of the first items Best-Fit
places in a new bin. We let A(A, I) denote the set of items accepted by an on-line
algorithm A, and we let R(A, I) denote the set of items it rejects. The first lemma
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shows that if Best-Fit packs items so that some bin is no more than half full, then
the performance ratio is at least 2/3 > 5/8, so we can safely ignore such sequences.
In fact, this result holds for First-Fit, too, but we need only to apply it for Best-Fit.

Lemma 3.15. Suppose that OPT accepts all items in some request sequence I.
Suppose further that in Best-Fit’s packing of the sequence I, there is some bin which
is no more than half full. Then Best-Fit accepts at least 2/3 of the items in I.

Proof. If Best-Fit leaves some bin b no more than half full, then every item in
R(BF, I) must have size strictly greater than k/2. Suppose that among the items
which Best-Fit accepts, there are x not in b which it places in bins alone. All of these
x items must be larger than the empty space in bin b. Otherwise, they would have
been placed in bin b or some of the contents in bin b would have been placed on top
of them. Thus, these x items also have size strictly greater than k/2. We consider
two cases:

Case 1. Bin b contains more than one item.
Case 2. Bin b contains exactly one item.

In the first case, since OPT accepts all of the items in I, there cannot be more than
n items of size strictly greater than k/2, so x + |R(BF, I)| ≤ n. If Best-Fit rejects
any items at all, it has at least two items in all except x bins, so the number of
items accepted by Best-Fit, A(BF, I) ≥ 2n− x, and the total number of items in I is

A(BF, I)+R(BF, I). Thus, Best-Fit’s performance ratio is at least A(BF,I)
A(BF,I)+R(BF,I) ≥

2n−x
2n−x+R(BF,I) ≥ 2n−x

3n−2x ≥ 2
3 .

The second case is argued similarly. Since b has only one item, it cannot fit
with any of the x items which are placed alone or with any of the rejected items, so
1 + x + |R(BF, I)| ≤ n. Another difference is that there is now an additional bin, b,
which Best-Fit does not give at least two items. In this case, A(BF, I) ≥ 2n− x− 1.

Thus, Best-Fit’s performance ratio is at least A(BF,I)
A(BF,I)+R(BF,I) ≥ 2n−x−1

2n−x−1+R(BF,I) ≥
2n−x−1
3n−2x−2 ≥ 2

3 .
When considering Best-Fit in the following, we look only at sequences which Best-

Fit packs such that all bins are more than half full. The next lemma shows that if
Best-Fit packs more than one item in some bin, b, then either at least one of them has
size greater than k/2 or at least two of them have size greater than the final empty
space in any bin which was first used before bin b. We call a bin which was first used
before that bin an “earlier” bin. This lemma can be seen to follow from Claim 2.2.2
in [21], but a direct proof is included below for completeness.

Lemma 3.16. Suppose that OPT accepts all items in some request sequence I,
and that in Best-Fit’s packing of the sequence I, all bins are more than half full. Then
every bin contains either an item of size greater than k/2 or at least two items of size
greater than the empty space in any earlier bin.

Proof. Best-Fit places an item in an empty bin only when it will not fit in any
earlier bin. Suppose that Best-Fit puts the first item in bin b at time t. This first
item must be larger than the empty space in any earlier bin at time t and thus larger
than the final empty space in any earlier bin. Suppose that this first item has size no
more than k/2. Then, by the assumption that all bins are eventually more than half
full, Best-Fit must put some other item x in bin b. In addition, all of the earlier bins
must have been more than half full at time t. Thus, when this second item x is put
in bin b, all earlier bins were more full than b, so this x was too large to fit in them.
Thus, if the first item in a bin has size no more than k/2, the first two both have size
larger than the final empty space in any earlier bin.

Given a request sequence I = 〈s1, s2, . . . , st〉, where si is the size of item i, we can



THE ACCOMMODATING FUNCTION 243

represent the final configuration of an algorithm A by conf(A, I) = 〈S1, S2, . . . , Sn〉,
a list of n multisets, where the multiset Sj contains the sizes of the items in bin
j. In order to prove a lower bound on First-Fit’s or Best-Fit’s competitive ratio on
accommodating sequences, we compare conf(FF, I) or conf(BF, I) to conf(OPT, I).
In the following, we write only First-Fit or FF, but everything applies to Best-Fit as
well. The sizes which appear in conf(FF, I) will correspond to items in A(FF, I), but
since we are assuming that OPT can accommodate all t items from I, there will be
t items in conf(OPT, I). Consider rearranging the items in conf(FF, I) so that the
items from A(FF, I) are placed in exactly the same bins as they are in conf(OPT, I),
creating a new configuration good(I) = 〈S′1, S′2, . . . , S′n〉, which also contains exactly
those items in A(FF, I).

First, we prove a lemma which relates the number of moves necessary for changing
from conf(FF, I) to good(I) to the number of items from I which First-Fit rejects. In
fact, this lemma holds for any algorithm for Fair Bin Packing, not just for First-Fit
and Best-Fit.

Lemma 3.17. For any request sequence I which could be accommodated by OPT,
the minimal number of items which have to be moved, in order to change from
conf(A, I) to good(I), is an upper bound on the number of items from I which the
algorithm A rejects.

Proof. Consider any request sequence I and any algorithm A for Fair Bin Packing.
The process of changing from conf(A, I) to good(I) involves moving items out of some
bins and into others. Those bins that become less full after this rearrangement may
have space for one or more items from R(A, I). Let s denote the size of the smallest
item in R(A, I) and write the size of item i as si = qis + ri, where 0 ≤ ri ≤ s − 1,
and the amount of empty space in bin j as ej = k−

∑
si∈Sj

si. The new empty space

in bin j is e′j = ej +
∑
si∈Sj\S′

j
si −

∑
si∈S′

j
\Sj
si. When item i moves from bin j to

bin j′, the value si = qis + ri is added to the empty space in bin j and subtracted
from the empty space in bin j′. Therefore if we sum, over all bins in the configuration
good(I), the number of items of size s which could fit in their empty space, the value
qi is added to bin j and subtracted from bin j′, giving a net gain of zero. Thus, the
only real contribution comes from the original empty space, ej , and the values ri. Let
g(j) denote the net gain attributed to bin j. Then

g(j) ≤ � 1s (ej +
∑
si∈Sj\S′

j
ri)

≤ � 1s (s− 1 + |Sj \ S′j |(s− 1))
= � s−1s (|Sj \ S′j |+ 1)
≤ |Sj \ S′j |,

which is the number of items moved out of bin j. Since all of the items from R(A, I) fit
in the empty space available in good(I), the total number of items in R(A, I) is at most
the total net gain after rearranging. This net gain is

∑n
j=1 g(j) ≤

∑n
j=1 |Sj\S′j |, which

is the total number of items moved from one bin to another to get from conf(A, I) to
good(I).

Note that the ordering of the sets in conf(OPT, I) is irrelevant, so we may order
them in any way. The above result holds for the minimum number of moves over all
of these arrangements.

In order to prove a lower bound on the competitive ratio on accommodating
sequences for First-Fit, we prove a lower bound on |A(FF, I)|, which holds for all I.
This is done by proving a lower bound on the number of items which do not move
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when changing from conf(FF, I) to good(I). First, we prove a general result which
applies to all algorithms for Fair Bin Packing, and then we use this result and the
special properties of First-Fit and Best-Fit to prove the lower bound of 5/8.

Define B(A, I) to be the set of items in I of size greater than k/2 which A accepts.
Some of the items moved, in changing from conf(A, I) to good(I), will be moved to be
in the same bins as the items in B(A, I) or moved out of some bin containing an item
from B(A, I). Suppose that these moves are done first. Let O(A, I) denote the items
in A(A, I) \ B(A, I) which have not moved yet. We use Vol[·] to denote the volume
of a collection of items; e.g., Vol[O(A, I)] is the total volume of all items in O(A, I).

Lemma 3.18. There must be an ordering of the sets in conf(OPT, I) in which at

least Vol[O(A,I)]
k of the items in A(A, I) \B(A, I) are not moved.

Proof. Consider the bipartite graph G = ((X,Y ), E) defined as follows:

1. For each bin b, there are two vertices xb ∈ X and yb ∈ Y .
2. For each item in O(A, I), there is one edge. If the item is in bin i in conf(A, I)

and in bin j in good(I), the corresponding edge is (xi, yj).

A matching in this graph G corresponds to a partial renumbering of the bins, and
the edges in the matching correspond to items which have not been moved. A well-
known result due to König [26] (see [6] for instance) states that the size of a maximum
matching in a bipartite graph is equal to the size of a minimum vertex cover. However,
a vertex cover of G corresponds to a set of bins (possibly with some from conf(A, I)
and some from good(I)), which contain all of the items in O(A, I). Thus, the number
of items which have not been moved is at least the minimum number of bins needed
to contain all the items in O(A, I). The value Vol[O(A,I)]

k is a lower bound on this
number of bins.

Theorem 3.19. The competitive ratios on accommodating sequences for First-Fit
and Best-Fit are at least 5

8 .

Proof. Within this proof, First-Fit and Best-Fit are the only on-line algorithms
considered, and the sequence I will be fixed, but arbitrary, subject to the restriction
that all requests would have been accepted by OPT (and for Best-Fit subject to the
further restriction that, given I, Best-Fit packs all bins to more than half full). We use
the following short hand notation for legibility: A is used for A(FF, I) or A(BF, I), B
is used for B(FF, I) or B(BF, I), R is used for R(FF, I) or R(BF, I), and V is used
for Vol[O(FF, I)] or Vol[O(BF, I)].

No two items from B can be placed in one bin, since they all have size greater
than k/2. Therefore when counting moves as in Lemma 3.17, the items from B can
be assumed not to have moved, since the bins can be reordered such that these items
stay in their original bins.

According to Lemma 3.17, in order to get from conf(BF, I) to good(I), at least
one item must move for each item in R. All of these items must be in A, along with
the items which are not moved. Lemma 3.18 shows that at least V

k of these items in

A \B are not moved, so |A| ≥ |R|+ |B|+ V
k .

We consider two cases based on the value of s, the size of the smallest item in R.
In each case, we first prove a lower bound on V and then use that to prove a lower
bound on the performance ratio.

Case s > k
3
. Let T denote those bins which do not contain items of size greater

than k/2, and let ei denote the size of the empty space in the ith bin in T . For
First-Fit, it is clear that, for 2 ≤ i ≤ n−|B|, there are at least two items in bin i in T
which have size greater than ei−1. For Best-Fit, since we assume that ei < k/2 for all
bins i in T , this follows from Lemma 3.16. The empty space in those bins containing
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items from B is at most s − 1, since no items from R could fit in them. Thus, the
total volume of those items which are moved to be in the same bins as the items in B
is no more than |B|(s− 1). The first bin in T has volume k − e1. Hence, the volume
V > (k−e1)+2(

∑n−|B|−1
i=1 ei)−|B|(s−1). The empty space above the first n−|B|−1

bins in T , plus the empty space above the other bins, must be large enough to contain

all of the rejected items. Thus,
∑n−|B|−1
i=1 ei ≥ |R|s− (|B|+ 1)(s− 1). Hence,

V > (k − e1) + 2(
∑n−|B|−1
i=1 ei)− |B|(s− 1)

≥ k − (s− 1) + 2|R|s− 2(|B|+ 1)(s− 1)− |B|(s− 1)
= k − 3s+ 3 + 2|R|s− 3|B|s+ 3|B|
≥ k − 3s+ 2|R|s− 3|B|s.

Note that either the performance ratio is greater than 5
8 or 5

8 ≥ |A|
|A|+|R| ≥ |R|+|B|

2|R|+|B| , so
2|R| ≥ 3|B|. Thus, for s ≥ k

3 , this lower bound for V is at least the value at s = k
3 .

Hence, V ≥ 2|R|k
3 − |B|k. This volume V requires at least V

k ≥ 2
3 |R| − |B| bins.

The performance ratio is then |A|
|A|+|R| ≥

5
3 |R|
8
3 |R|

= 5
8 .

Case s ≤ k
3
. Each of the bins must contain items with size adding up to at

least k − s + 1, or neither First-Fit nor Best-Fit would have rejected an item of size
s. As in the previous case, the total volume of those items which are moved to be
in the same bins as the items in B is no more than |B|(s − 1). Thus, the volume
V ≥ (n− |B|)(k − s+ 1)− |B|(s− 1) = nk − ns+ n− |B|k, and V

k ≥ n− ns
k − |B|.

For s ≤ k
3 , this is minimized when s = k

3 , giving
V
k ≥ 2n

3 − |B|. In the proof
of Theorem 3.12, it was shown that |R| < n, so the performance ratio is at least
|A|

|A|+|R| ≥
|R|+ 2n

3

2|R|+ 2n
3

≥ 5n
3
8n
3

= 5
8 .

Therefore, the competitive ratios on accommodating sequences for First-Fit and
Best-Fit are at least 5

8 .
We now show an upper bound which applies to both First-Fit’s and Best-Fit’s

competitive ratios on accommodating sequences.
Theorem 3.20. For Fair Bin Packing, First-Fit’s and Best-Fit’s competitive

ratios on accommodating sequences are at most 7
11 .

Proof. Assume that n is divisible by 13 and that k is greater than 72 and divisible
by 3. An adversary can give the following request sequence, divided into four phases:

1. 3n
13 of size k

3 − 6;

2. 6n
13 pairs, one of size k

3 − 1 followed by one of size k
3 + 3;

3. 6n
13 of size 2k

3 + 1;

4. 12n
13 of size k

3 .
First-Fit and Best-Fit will pack phase 1 in n

13 bins, with three items in each bin.
The assumption that k > 72 ensures that four items from this phase cannot be packed
together. From phase 2, First-Fit and Best-Fit will pack one pair in each bin using
6n
13 bins. In phase 3, each item will be placed in its own bin, using the last 6n

13 bins.
There will be no space for items from phase 4.

OPT can pack one item from phase 1 with two of the items of size k
3 + 3 from

phase 2, using a total of 3n
13 bins for this. Then, it can place one item of size k

3 − 1
from phase 2 together with one item from phase 3, using a total of 6n

13 for this. There
are now 4n

13 empty bins which can each hold three items from phase 4. The ratio is
thus 3+12+6

3+12+6+12 = 7
11 .

This bound has been improved later to 5
8 [1], showing that the lower bound from

Theorem 3.19 is tight.
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First-Fit’s competitive ratio. Turning to the competitive ratio, we show that
according to this measure, Worst-Fit is the better algorithm. First, we prove an upper
bound on First-Fit’s competitive ratio. Note that this result also applies to Best-Fit.

Theorem 3.21. For Fair Bin Packing, First-Fit has a competitive ratio which

is no more than
2− 1

k

k , when k divides n.
Proof. An adversary gives the following request sequence, divided into three

phases:
1. n items of unit size;
2. n− n

k items of size k;
3. n(k − 1) items of unit size.

First-Fit accepts the first two phases of requests. The optimal algorithm places
each of the first n items in a separate bin and accepts all requests in phases 1 and 3,

giving the following performance ratio:
n+n−n

k

nk =
2− 1

k

k .
For arbitrary n and k, a very similar request sequence gives an upper bound on

the competitive ratio for First-Fit of
2− 1

k+
1
n

k . By Theorem 3.11, this result is tight.

Worst-Fit’s competitive ratio. Finally, we prove a lower bound onWorst-Fit’s
competitive ratio, but first we prove a tight upper bound, since it can provide some
intuition for the lower bound rWF ≥ 3

2+k . The request sequence used to prove this
upper bound involves items with sizes dependent on n, the number of bins. However,
it is relatively easy to prove an upper bound of 4

k+2 using a sequence where the sizes
only depend on k, rather than also on n.

Theorem 3.22. For k ≥ βn and β ≥ 1, the competitive ratio for Worst-Fit is

no more than
3+ 1

n−1

3+ 1
n−1+(1− 1

β )k
.

Proof. An adversary can give the following request sequence with four phases:
1. n− 1 items of size n− 1;
2. n− 1 items of size 1;
3. n items of size k − (n− 1);
4. (n− 1)(k − n) + (n− 1) items of size 1.

After phase 2, Worst-Fit has free space of size k − (n − 1) in every bin, and all
items from phase 3 must be accepted. OPT places items from phase 1 in separate
bins, and each item from phase 2 on top of an item from phase 1. OPT will then
accept only one item from phase 3, making space for all the unit size items from phase
4. The performance ratio is then

(n− 1) + (n− 1) + n

(n− 1) + (n− 1) + 1 + (n− 1)(k − n) + (n− 1)

=
3n− 2

3n− 2 + (n− 1)(k − n)
=

3n− 3 + 1

3n− 3 + 1 + (n− 1)(k − n)

=
3 + 1

n−1
3 + 1

n−1 + k − n

≤ 3 + 1
n−1

3 + 1
n−1 + (1− 1

β )k
.

In order to compare this ratio to the lower bound of 3
2+k , note that it can be

made arbitrarily close to 3
3+k if n and β are made large enough.
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We now move on to the lower bound. Consider any request sequence I for Fair
Bin Packing. Throughout this section, we assume that there are no items in I which
both Worst-Fit and OPT reject. This cannot affect the results since any such item
could simply be removed from the request sequence without affecting the competitive
ratio.

The upper bound can give some intuition for the lower bound. In order to allow
OPT to accept many more items than Worst-Fit, the adversary must give some large
items which Worst-Fit will accept but OPT will reject. In a worst case example,
Worst-Fit packs none of these large items alone. Since OPT is fair, OPT must pack
two items in some bins such that these bins have more contents than the Worst-Fit
bins just before the large items are accepted. The second small item OPT packs in
each bin cannot be large enough to cause a rejection alone. Thus for each large item
accepted by Worst-Fit it will accept additionally two items, while OPT will accept at
most k small items. Unfortunately, there are many possibilities for sequences, so it is
necessary to argue that it is possible to make certain assumptions about them.

We define the following sets:
X is the set of items which both Worst-Fit and OPT accept.
Y is the set of items which Worst-Fit accepts, but OPT rejects.
Z is the set of items which Worst-Fit rejects, but OPT accepts.

Let ylast ∈ Y be the last item from Y in the request sequence I, and let i be the
bin where Worst-Fit places it.

We define the following additional sets:
Xf ⊆ X are those items from X which appear before ylast in I.
Zf ⊆ Z are those items from Z which appear before ylast in I.

For any item z ∈ Zf , define the following two sets:
Y (z) contains those items from Y which appear after z in I.
Zf (z) contains the item z and all z′ from Zf appearing after z in I.

If necessary, when more than one sequence is involved, we subscript these sets
with the name of the sequence (ZfI , for instance).

Let e denote the maximal empty space in any of Worst-Fit’s bins, after processing
the request sequence I. The case e ≥ 1 was considered in Lemma 3.10. We now turn
to the case e = 0, beginning with some lemmas which allow us to make assumptions
about the request sequences which give the worst performance ratio for Worst-Fit.

Lemma 3.23. If, for some sequence I, Worst-Fit places two items from YI in the
same bin, then there exists another sequence I ′ on which Worst-Fit places all items
from YI′ in separate bins and on which the performance ratio of Worst-Fit is smaller.

Proof. First we show that if, for some sequence I, Worst-Fit places some item
x ∈ XI on top of some item y ∈ YI (call this an inversion), then there is another
sequence I ′, containing exactly the same items as I, for which Worst-Fit and OPT
accept exactly the same items as when given I, but Worst-Fit never places an item
from XI′ on top of an item from YI′ .

We modify I to obtain I ′, correcting one of these inversions at a time. Suppose
that Worst-Fit places x ∈ XI directly on top of y ∈ YI in bin j. Clearly, y occurs
before x in I. Due to fairness, y must also be larger than x since OPT accepts x but
not y. Let I ′ be identical to I up until the point where y appears. Replace y by x.
Then x will still be placed in bin j. Let the next items from I ′ be the same as the
next items from I up to the point where Worst-Fit would put something on top of
x in bin j. Assuming there was room for it, insert the item y at this point, and let
the rest of I ′ be the same as I. Since x is smaller than y, the item y will appear in
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I ′ no later than where x appeared in I. Thus, Worst-Fit will place the items from
I ′ in exactly the same bins as the items from I, the only difference being that one
item from X will be placed below an item from Y which it had been placed on top of
when I was given. OPT will accept exactly the same items as before and place them
exactly as before, since the only difference is that it receives an item it would accept
anyway earlier and an item it would reject anyway later. Thus the performance ratio
is unchanged. This process can be repeated until there are no inversions.

Suppose that for some sequence I, Worst-Fit places more than one item from YI
in some bin. From the above, we may assume without loss of generality that Worst-
Fit never places an item from XI on top of an item from YI . Modify I to obtain I ′

as follows: Consider each bin which receives more than one item from YI , one at a
time. Among the items from YI in the bin, choose the item O which occurs first in
the request sequence I. Replace O in the sequence by a single item of size exactly
equal to the sum of the sizes of all of the items from YI in that bin. Remove all of
those other items from the request sequence. Note that all of the items which are
merged had originally been placed directly on top of each other.

By induction, carrying out this modification for one bin at a time, it follows that
Worst-Fit places a new item in the same bin as all of the old items from YI that it
replaced and gives the same placement to all other items.

In addition, OPT cannot improve its ratio by accepting some of these new items,
since then it could also have done it on the sequence I by accepting some of the items
from YI . Thus, it accepts exactly the same items as from the sequence I. Hence,
Worst-Fit accepts fewer items from I ′, while OPT accepts the same number, so the
performance ratio becomes smaller.

The following proposition is used in the next lemma and in the proof of the
theorem.

Proposition 3.24. Given a request sequence I and a z ∈ Zf and suppose that
for all w ∈ Zf (z) it is the case that |Zf (w)| ≤ |Y (w)|, then there exists a 1–1 mapping
g : Zf (z)→ Y (z) such that for all w ∈ Zf (z), g(w) occurs after w in I.

Proof. Enumerating the items in Y (z) and Zf (z) separately, starting from ylast
and working in the direction of the beginning of the sequence I, g could be defined
as the mapping which takes an item from Zf (z) numbered j to the item in Y (z)
numbered j.

It would be tempting to move items accepted by OPT to the end of the sequence
and then convert these to unit size items. Since OPT must be fair, there is no
guarantee that it would accept exactly the same items. In fact, it might be forced to
accept some items from Y , which could use up more volume than the moved elements
from Z. However, under some circumstances, it is possible to perform these moves
which will be used in the next lemma. It shows that an additional assumption can be
made on worst-case request sequences, in those cases where Worst-Fit packs all bins
so that they are completely full.

Lemma 3.25. If, for some sequence I for which e = 0, there exists an item z ∈ ZfI
such that |ZfI (z)| ≥ |YI(z)|, then there exists another sequence I ′, where for all items
z ∈ ZfI′ , |ZfI′(z)| < |YI′(z)|, and on which the performance ratio of Worst-Fit is no
larger.

Proof. Let I be a sequence such that there exists a z ∈ ZfI with |ZfI (z)| ≥
|YI(z)|. Let z be the last item such that |ZfI (z)| ≥ |YI(z)|. It must be the case that
|ZfI (z)| = |YI(z)|, and |ZfI (w)| < |YI(w)| for all w ∈ ZfI which occur after z. From

Proposition 3.24, we know that there must exist a 1–1 mapping g : ZfI (z)→ YI such
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that for all w ∈ ZfI (z), g(w) occurs after w in I. Since Worst-Fit is fair and rejects
w while accepting g(w), g(w) must be smaller than w. This means that the total

volume of all items in ZfI (z) must be greater than the total volume in YI(z).

Modify I to obtain I ′ by removing all items from ZfI (z) and adding that many
items of size 1 right after the last item accepted by Worst-Fit. This will not affect
which items Worst-Fit accepts, since, by assumption, e = 0, which means that all
bins are full at that point. On the other hand, from the new sequence I ′, OPT will
accept some items from YI(z), and since every moved item has size 1, it can accept
at least one additional item for each item from YI(z) which it rejects.

Since |ZfI (z)| = |YI(z)|, OPT accepts at least as many items from I ′ as from I,
so the performance ratio of Worst-Fit is no larger.

There is no problem in assuming the forms implied by Lemmas 3.23 and 3.25
simultaneously.

Corollary 3.26. Given k and n, there exists a request sequence I such that the
following hold:

1. There is no request sequence I ′ which Worst-Fit packs so that e = 0, for

which we have that WF(I′)
OPT(I′) <

WF(I)
OPT(I) .

2. Worst-Fit places all items from YI in separate bins.
3. If Worst-Fit packs I so that e = 0, then for all items z ∈ ZfI , |ZfI (z)| <

|YI(z)|.
Proof. Since one can assume that not both Worst-Fit and OPT reject the same

item from I, there are only a finite number of sequences to be considered; one of
them must give the worst performance ratio. Begin with that request sequence. The
construction from Lemma 3.23 can be applied to ensure that the second condition
holds. If e = 0 now, the construction from Lemma 3.25 can be applied, without
changing Worst-Fit’s behavior, so the last two properties can hold simultaneous-
ly.

Now we are ready to prove a lower bound on the competitive ratio of Worst-Fit.

Theorem 3.27. For Fair Bin Packing, the competitive ratio of Worst-Fit is at
least 3

2+k .

Proof. If for some sequence I, the largest empty space, e, remaining in Worst-Fit
is greater than zero, then by Lemma 3.10, the performance ratio r is at least 3

2+k .
Therefore we assume that e = 0.

By Corollary 3.26, we can assume that Worst-Fit places no two items from Y
in the same bin. Let BWF be the set of bins which receive items from Y , and let
b = |BWF| = |Y |. We first show that |X| ≥ 2(b− |Zf |).

Let U ⊆ X be those items from X which are placed in bins belonging to BWF.
For any item x ∈ U , OPT must place it with another item from X or from Zf , or it
would be unable to reject the item from Y , which Worst-Fit placed with x. Therefore
if we let BOPT be those bins which receive items from U ∪Zf from OPT, then every
bin in BOPT receives either at least two items from X or at least one from Zf .

Consider those bins which are not in BOPT. When the last item ylast ∈ Y is given
to OPT, such bins contain only items from Xf \ U . Recall that i is the bin where
Worst-Fit placed the last item ylast ∈ Y . Let V be the total volume of all items from
U placed in bin i by Worst-Fit. If j is a bin, not in BWF, Worst-Fit placed at least
one item from Xf there. If it received more than one item from Xf , only the last
one could have size greater than V . Otherwise, by its strategy, Worst-Fit would have
placed the next item (after the one of size greater than V ) from bin j in bin i.
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Thus, only this last item could be placed by OPT in a bin which has no other
items from X ∪ Zf . The reason for this is that, since the other items have size at
most V , a bin with such an item alone would have to accept the item ylast.

This means that only n − b of OPT’s bins could have no more than one item
from X and no items from Zf , so at least b bins have either at least two items from
X or at least one from Zf . Hence, even if all those from Zf are in separate bins,
|X| ≥ 2(b− |Zf |).

Now Worst-Fit places the first n items, all of which must be in X, in different
bins, so no item in Y can be larger than k − 1. By Corollary 3.26, Proposition 3.24,
and fairness, items in Zf must be larger than corresponding items in Y , so since e = 0,
|Z \ Zf | ≤ (k − 1)(|Y | − |Zf |), which implies that |Z| ≤ |Zf |+ (k − 1)(b− |Zf |).

Thus, the ratio r is bounded by
|X|+|Y |
|X|+|Z| ≥ |X|+b

|X|+|Zf |+(k−1)(b−|Zf |) ≥ 1
|X|+|Zf |

|X|+b
+

(k−1)(b−|Zf |)
3b−2|Zf |

≥ 1
1+ k−1

3

= 3
2+k .

3.5. The accommodating functions for First-Fit and Worst-Fit. Finally,
we prove upper bounds on the accommodating functions for First-Fit and Worst-Fit.
All of the results in this subsection also hold if one relaxes the restriction that all items
must be integer-sized to a restriction that the bins have unit size and the smallest
item has size 1/k. The upper bound for First-Fit is close to the general lower bound
of Theorem 3.13, so it is almost tight.

Theorem 3.28. For Fair Bin Packing, First-Fit has an accommodating function
of at most α

1+(α−1)(k−1) for 1 < α < 2.

Proof. The adversary’s request sequence is divided into four phases. First, give
αn− n items of unit size, and second, give one item of size k − (αn− n) mod k. If k
divides αn−n, this item has size 0 and is not given. Third, give n−
αn−nk � items of
size k. Fourth, give (αn− n)(k − 1) items of unit size.

First-Fit accepts those items in the first three phases. The off-line algorithm
places the first n items in separate bins, rejects the remaining long items, and ac-

cepts all items from phase 4. The performance ratio is at most
(αn−n)+(n−	αn−n

k 
)
n+(αn−n)(k−1) ≤

αn
n+(αn−n)(k−1) =

α
1+(α−1)(k−1) .

The proof of Theorem 3.22, giving an upper bound on Worst-Fit’s competitive
ratio, can be extended to prove an upper bound on Worst-Fit’s accommodating func-
tion.

Theorem 3.29. For Worst-Fit, if 1 ≤ α ≤ 1 + 1
n
 (n−1)(k−n)+(n−1)

k � and k ≥ n,
then AWF(α) ≤ 3− 2

n

3− 3
n+(α−1)k(1− 1

k−n+1 )
.

Proof. In the proof of Theorem 3.22, since all of the items in the first three
phases of the request sequence fit in n bins, to determine how many bins would be
necessary for an optimal off-line algorithm one needs only to compute how many bins

are necessary for phase 4. Thus, α = 1 + 1
n
 (n−1)(k−n)+(n−1)

k �. Hence, for any value
of α less than this, replacing phase 4 by (α− 1)kn items of size 1 gives an α-sequence
for which Worst-Fit will accept exactly those requests in the first three phases, while
OPT can accept all items, except some of the items from phase 3. The number

of items from phase 3 which OPT can accept is �kn−((n−1)(n−1)+n−1+(α−1)kn)
k−(n−1)  =

�n(k−n+1)−(α−1)kn
k−n+1 . Thus, the accommodating function is

AWF(α) ≤ 3n−2
2n−2+(α−1)kn+n−	 (α−1)kn

k−n+1 

≤ 3− 2

n

3− 3
n+(α−1)k(1− 1

k−n+1 )
.
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4. The unit price seat reservation problem. The competitive ratio on ac-
commodating sequences was introduced in [9]3 in connection with the seat reservation
problem, which was originally motivated by some ticketing systems for trains in Eu-
rope. The setup is as follows: A train with n seats travels from a start station to an
end station, stopping at k ≥ 2 stations, including the first and last. Reservations can
be made for any trip from a station s to a station t. The passenger is given a single
seat number when the ticket is purchased, which can be any time before departure.
The algorithms (ticket agents) attempt to maximize income; i.e., the sum of the prices
of the tickets sold. For political reasons, the problem must be solved in a fair man-
ner, i.e., the ticket agent may not refuse a passenger if it is possible to accommodate
him when he attempts to make his reservation. In this paper, we consider only the
pricing policy in which all tickets have the same price, the unit price problem; for
the proportional price problem, where the price of the ticket is proportional to the
distance traveled, there does not appear to be any significant difference between the
competitive ratio and the competitive ratio on accommodating sequences. We define
the accommodating function A(α) for the seat reservation problem to be the ratio
of how well an on-line algorithm can do compared to the optimal off-line algorithm,
OPT, when an optimal off-line algorithm could have accommodated all requests if it
would have had αn ≥ n seats. The accommodating function could help the manage-
ment in determining how much benefit could be gained by adding an extra car to the
train, given their current distribution of request sequences. Notice that the fairness
criterion is a part of the problem specification. Thus, even though the optimal off-line
algorithm knows the entire sequence in advance, it too must process the sequence in
the given order and do so fairly.

The seat reservation problem is similar to the problem of coloring an interval
graph on-line, which has been well studied because of applications to dynamic storage
allocation. The difference is that with graph coloring, all vertices must be given a
color and the goal is to minimize the number of colors. With the seat reservation
problem, there is a fixed number of colors, and the goal is to maximize the number
of vertices that get colors. We use, however, an interesting result from interval graph
theory: Interval graphs are perfect [20], so the size of the largest clique is exactly the
number of colors needed. Thus, when there is no pair of stations (s, s+1) such that the
number of people who want to be on the train between stations s and s+1 is greater
than n, the optimal off-line algorithm will be able to accommodate all requests. The
contrapositive is also clearly true; if there is a pair of stations such that the number
of people who want to be on the train between those stations is greater than n, the
optimal off-line algorithm will be unable to accommodate all requests. We will refer
to the number of people who want to be on the train between two stations as the
density between those stations.

4.1. Bounds on the accommodating function. In [9], the following lower
bounds for the competitive ratio and the competitive ratio on accommodating se-
quences were proven: Any algorithm for the unit price seat reservation problem is
2
k -competitive, and any algorithm for the unit price seat reservation problem is 1

2 -
competitive on accommodating sequences. The key idea for the proof of the theorem
bounding the competitive ratio on accommodating sequences is also used to prove a
lower bound on the accommodating function, and the result generalizes the one for
the competitive ratio on accommodating sequences.

3It was called the accommodating ratio there.
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Theorem 4.1. A(α) ≥ 1
2+(k−2)(1− 1

α )
is a lower bound for the unit price seat

reservation problem.

Proof. Consider any algorithm A for the unit price seat reservation problem and
any request sequence, I, which an optimal off-line algorithm could have accommodated
with ρ(I) ≥ n seats. Let l = ρ(I) − n, and suppose that A accepts h intervals. We
first show that A rejects at most h+ l(k − 1) intervals.

Let S denote the seating assignment found by the on-line algorithm, and let U
be the set of unseated intervals. First, some of the intervals in U will be assigned to
distinct intervals in S. Let S′ be a seating assignment which is initialized to be the
same as S, but which will be altered by the following process. Note that the only
changes will be to increase the lengths of some intervals in S′.

First order the intervals in U by increasing left endpoint (starting station), break-
ing ties arbitrarily. Now process these intervals, one by one, in increasing order.

For a given interval I ∈ U , if there is no seat which is empty in S′ from the
point where the passenger wants to get on until at least the next station, leave I in
U . Otherwise, find such a seat. Since A is fair and the interval I was rejected, the
interval I could not be placed on that seat, so there must be a first (leftmost) interval
J assigned to that seat in S′ which overlaps the interval I. Assign the interval I to the
interval J . Now remove I from U and replace J on this seat in S′ by an interval K,
which is as much of I ∪J as will currently fit on that seat. Clearly, all of the intervals
which are now seated in S′ and all of the unseated intervals currently in U could be
seated by an optimal algorithm on αn seats, since this operation cannot increase the
density anywhere. This process can be repeated. The order of processing ensures that
each interval I ∈ U which gets assigned to an interval in S gets assigned to a distinct
interval in S. Thus, after all of U has been processed, at most h intervals have been
removed from it. For every interval I ′ remaining in U , the leftmost unit segment
(the point where the passenger wants to get on until the next station) has density
n in S′, so there is now density at most l for that unit segment in U . The number
of possible distinct leftmost segments in U is at most k − 1, so the total number of
leftmost segments remaining in U , and thus the total number of intervals in U , is at
most l(k − 1). We have now shown that A rejects at most h+ l(k − 1) intervals.

To compute a lower bound on the ratio of what A accepts to what OPT accepts,
we need to have a lower bound on the number of intervals A accepts and an upper
bound on the number of intervals OPT accepts. We may assume that there are no
intervals in the request sequence which both A and OPT reject, since removing them
from the sequence changes nothing. Since an optimal off-line algorithm could not
have accommodated all of the requests with fewer than ρ(I) seats, but OPT has only
n seats, OPT must reject at least l intervals, and all of these must have been accepted
by A. Clearly, the first n intervals in the request sequence must have been accepted
by both A and OPT. Thus, A accepts h ≥ n+ l = ρ(n) intervals. Of the h intervals
which A accepts, OPT rejects at least l of them. Additionally, there are at most
h + l(k − 1) intervals which OPT accepts, but A does not. Thus, a lower bound on
the accommodating function is A(α) ≥ h

2h+l(k−1)−l =
1

2+(k−2) l
h

≥ 1

2+(k−2) ρ(n)−n
ρ(n)

≥
1

2+(k−2)(1− 1
α )
.

In [9], the following upper bounds for the competitive ratio and the competitive
ratio on accommodating sequences were proven: No deterministic algorithm for the
unit price seat reservation problem is more than 8

k+5 -competitive, and no deterministic

algorithm for the unit price seat reservation problem is more than 8k−9
10k−15 -competitive
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on accommodating sequences, when k is divisible by 3. The proof proving an upper
bound on the accommodating function for any algorithm for Unit Price Bin Packing,
is very similar to the proof of the theorem in [9] giving the upper bound on the
competitive ratio. The result obtained is very close to that for the competitive ratio
when α > 5

4 .

Theorem 4.2. A(α) ≤ 4
3+2(k−2)min{ 1

4 ,α−1}
is an upper bound for the unit price

seat reservation problem.

Proof. The following is an adversary argument, so the request sequence depends
on the on-line algorithm A’s behavior. Assume that n is divisible by 2. The adversary
begins with n

2 pairs of requests for [1, 2] and [k − 1, k] intervals. Suppose that the
algorithm A places them such that after these requests there are exactly q seats
which contain two intervals. Then n− 2q of the seats have exactly one short interval
scheduled. Next, the adversary will give q requests for [1, k] intervals, followed by
n−2q
2 requests for [1, k − 1] intervals, n−2q2 requests for [2, k] intervals, and q requests

for [2, k− 1] intervals, all of which can be accommodated by A. Now the train is full.
One of two cases will occur:

Case 1. q ≥ n
4 .

Case 2. q < n
4 .

If Case 1 occurs, the adversary will give min{q, αn − n} requests for each of the
intervals [1, 2], [2, 3], [3, 4], . . . , [k − 1, k], none of which can be accommodated by A.
On the other hand, OPT could put each of the short intervals on a separate seat, so
that it would be unable to accommodate the q [1, k] intervals, but all of the other
intervals would fit. The on-line algorithm A is able to accommodate 2n requests, while
OPT can accommodate 2n − q +min{q, αn − n}(k − 1) requests. Since n

4 ≤ q ≤ n
2 ,

this ratio is less than 2n
2n−n

2 +min{n
4 ,αn−n}(k−1) =

4
3+2(k−1)min{ 1

4 ,
αn−n

n } .

If Case 2 occurs, the adversary will give min{n−2q2 , αn − n} requests for each of
the intervals [2, 3], [3, 4], . . . , [k − 1, k], none of which can be accommodated by A.
On the other hand, OPT could pair up the short intervals, putting two per seat, so
that it would be unable to accommodate the n−2q

2 [2, k] intervals, but all of the other
intervals would fit. The on-line algorithm A is able to accommodate 2n requests,
while OPT can accommodate 2n− n−2q

2 + (k− 2)min{n−2q2 , αn− n} requests. Since
q < n/4, this ratio is less than 2n

2n−n
4 +(k−2)min{n

4 ,αn−n} =
8

7+4(k−2)min{ 1
4 ,

αn−n
n } .

This argument assumes that k ≥ 4, but the result also clearly holds for k = 2 and
k = 3.

As an example of a specific on-line algorithm, one might consider First-Fit, which
always processes a new request by placing it on the first seat which is unoccupied for
the length of that journey. The lower bound from Theorem 4.1, on the accommo-
dating function for any algorithm, clearly applies to this specific algorithm. It also
applies to Best-Fit, which always processes a new request by placing it on a seat so it
leaves as little total free space as possible on that seat immediately before and after
that passenger’s trip. The following result, giving an upper bound on the accommo-
dating function for these two specific algorithms, should be compared with the results
in [9], which give upper bounds for the competitive ratio and the competitive ratio
on accommodating sequences for First-Fit and Best-Fit: First-Fit and Best-Fit have

competitive ratios which are no better than
2− 1

k−1

k−1 and competitive ratios on accom-

modating sequences no better than k
2k−6 for the unit price seat reservation problem.

The proof is very similar to the proof of the theorem in [9] which gives the upper
bound on the competitive ratios for First-Fit and Best-Fit.
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Theorem 4.3. For the unit price seat reservation problem, First-Fit and Best-Fit

have A(α) ≤ max{ 2−
1

k−1

k−1 ,
2− 1

k−1

1+(k−1)(α−1)}.
Proof. We will state everything in terms of the First-Fit algorithm, but Best-Fit

would behave exactly the same. We will assume that n is divisible by k−1. The request
sequence will start with n

k−1 requests for each of the intervals [1, 2], [2, 3], [3, 4], . . . , [k−
1, k] which First-Fit will put in the first n

k−1 seats. Then there will be n − n
k−1

requests for [1, k] intervals, which First-Fit will put in the remaining seats. At this
point, the train will be full, but there will now be min{n − n

k−1 , αn − n} requests
for each of the intervals [1, 2], [2, 3], [3, 4], . . . , [k − 1, k], all of which First-Fit will be
unable to accommodate. It will accommodate a total of 2n − n

k−1 requests. OPT
will put each of the original first intervals on a different seat, thus arranging that
it can reject the longest intervals. Then, it will be able to accommodate all of the
additional short intervals. Thus, it will accommodate n of the original short intervals,
plus min{n − n

k−1 , αn − n}(k − 1) of the later short intervals. This gives a ratio of

max{ 2−
1

k−1

k−1 ,
2− 1

k−1

1+αn−n
n (k−1)}. This argument assumes that k ≥ 3, but the result trivially

holds for k = 2 too.

5. Other problems. It is natural to ask if the accommodating function can be
defined for any on-line problem. This is equivalent to asking if α-sequences can be
defined for every on-line problem. The answer is clearly “yes” if there is no requirement
that a relevant resource be considered; then the accommodating function is constant,
and its value is the competitive ratio. This answer is not particularly interesting. It
seems, however, that for most on-line problems, there is some relevant resource which
can be used to define α-sequences and therefore also the accommodating function. For
paging, the obvious resource is the number of pages in fast memory; for scheduling,
it is the number of machines available; and for server problems, it is the number of
servers.

Unfortunately, for some on-line problems, using the accommodating function with
the obvious resource choice and α ≥ 1 fails to result in additional insight compared
with what is already known from the competitive ratio. For example, one of the best
known on-line problems is paging. The well-known lower bound results, which show
that any deterministic on-line algorithm has a competitive ratio of at least k, where
k is the number of pages in main memory, holds even if there are only k + 1 pages
in all. Thus, nothing further is said about how much it helps to have extra memory,
unless one actually has enough extra memory to hold all of a program and its data. In
fact, however, it was shown later [8] that the accommodating function for the paging
problem becomes more interesting when α < 1.

The situation is similar when considering the accommodating function for prob-
lems which generalize the paging problem, such as the k-server problem and metrical
task systems.

5.1. Minimizing flow times on m identical machines. As an example of
a very different type of problem where the accommodating function can be applied,
we have considered a scheduling problem: the problem of minimizing flow time in a
situation where there are m identical machines and preemption is allowed. Let J be
the sequence of jobs. A job j ∈ J arrives at its release time rj , and its processing time
pj is known. The total flow time is

∑
j∈J(Cj − rj), where Cj denotes the completion

time of job j. There are some very nice results in [27] showing that shortest remaining
processing time (SRPT) has a competitive ratio of O(logP ) for this problem, where
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P is the ratio between the processing time for the longest job and the shortest job.
They also show that any randomized algorithm for the problem has a competitive
ratio of Ω(logP ).

The concept of an accommodating function can be applied to this problem, even
though it is a minimization problem and no rejections are allowed. Given a request
sequence J , there is an absolute minimum flow time—the sum s of the processing
times for all jobs in J . Thus, one can define the competitive ratio on accommodating
sequences by restricting the request sequences to those which OPT could schedule
with total flow time s. This means that all jobs can be scheduled immediately when
they arrive. Thus, any on-line algorithm which assigns an incoming job to some free
processor, when such a processor exists, will also schedule that sequence with total
flow time s, giving a competitive ratio on accommodating sequences of 1, which is
significantly different from the competitive ratio. The accommodating function A(α)
can be defined by restricting the request sequences to those in which an optimal off-
line algorithm could have begun each job immediately upon arrival if it had αm ≥ m
machines available.

Using the techniques from the result in [27], proving a lower bound on the com-
petitive ratio for SRPT, and lengthening the adversary’s sequence appropriately gives
a lower bound of Ω(logm P ) on the performance ratio of SRPT, even when OPT could
have handled the request sequence with only m + 1 processors. Thus, SRPT’s be-
havior is similar to that of all paging algorithms; restricting to sequences which OPT
could accommodate with only one extra unit of the resource gives essentially the same
result as allowing any sequence whatsoever. It is also possible to show that all other
algorithms for this problem also have a sudden change from the competitive ratio on
accommodating sequences to the competitive ratio.

Although some of the ideas from the Ω(logP ) lower bound on the competitive
ratio in [27] are used in the proof here, their adversary uses sequences with α = 3

2 ,
while our adversary only needs αm = m+ 1.

Theorem 5.1. For αm = m + 1 and m > 4, the performance ratio of any
deterministic on-line algorithm is Ω(logm P ).

Proof. Consider a deterministic on-line algorithm A and assume P is a power of
m. An adversary can give a request sequence consisting of L = �logm P −1− logm 4−
2 logm logm P  phases. For phase i = 0, . . . , L−1, let pi = P

mi , and ri = m∗
∑i−1
j=0 pj .

The adversary will repeat the same set of jobs m times. Let j denote the repetition
number, and let rij = ri + j ∗ pi, j = 0, . . . ,m− 1. The following jobs are given:

1. One job of size pi at time rij ;
2. m unit size jobs at each of the times rij + k, k = 0, . . . , pi(1− 1

m )− 1.

Let Sij denote the set of all unit size jobs given in phase i and repetition j, and
let Uij count the number of jobs from Sij that are not finished by A before time
wij = rij + pi(1− 1

m ).

There are two cases depending on the Uij .

Case 1. There exist i, j, such that Uij ≥ m logm P .

Case 2. For all i, j, Uij < m logm P .

If Case 1 occurs for i0, j0, the above release pattern is stopped at time wi0j0 .
Instead, the adversary gives m unit size jobs at each of the next P 3 time units.

An off-line algorithm OPT could finish all jobs from one repetition before the
next starts by processing the long job on one machine and the unit size jobs on the
other machines. Beginning with phase i0 and repetition j0, OPT should process all
unit size jobs, including the unit size jobs given after wi0j0 , immediately when they
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are released. Then OPT has only one long unfinished job at time wi0j0 , which will be
delayed for time P 3.

The total flow time for OPT is then at most m2P 2 logP + (m+ 1)P 3 + P , since
from the first part there are less than m2P logP jobs, which will be delayed for at
most P time.

Since Case 1 has occurred, the on-line algorithm has at leastm logm P jobs delayed
at every time unit for P 3 time steps. The total flow time for the on-line algorithm is
then more than mP 3 logm P .

In Case 1, the performance ratio is then more than mP 3 logm P
m2P 2 logP+(m+1)P 3+P .

If Case 2 occurs, an off-line algorithm, OPT, can follow a pattern similar to Case
1 and finish every job from phase i before phase i+ 1 starts. Call the time just after
the last phase ends rL. Starting at time rL, the adversary gives m unit size jobs at
each of the next P 3 time units. OPT can process them immediately upon arrival.

In this case, OPT has a total flow time of less than m2P 2 logP +mP 3.

The on-line algorithm A will have many long jobs hanging at time rL. Fixing a
phase i, we want to calculate the possible processing time for long jobs in this and the
following phases. In phase i, the long jobs appear one at a time, so in repetition j there
are j + 1 available. After time wij there are

P
mi+1 time units remaining in repetition

j, and since this is Case 2, there is a total of less than m logm P time units available
on all the processors together before time wij . Thus, the maximum amount of time
the m long jobs from phase i can be processed within phase i is in total bounded
by
∑m
j=1(j

P
mi+1 + m logm P ). For the following phases the total time available for

processing these m jobs from phase i is bounded by
∑L−1
j=i+1(m

P
m(j+1) +m

2 logm P ).

This adds up to at most 2m2 log2m P + pi
m
m(m+1)

2 + pi ≤ pi
m+2
2 + pi, since by the

definition of L, 2m2 log2m P ≤ pi
2 for all i. It follows that for a fixed phase i, at

most �m+4
2  of the long jobs could be run to completion. Since we have L phases, at

least 
m−42 L� long jobs are unfinished at time rL. This gives a flow time of at least
m−4
2 P 3 logm P .

In Case 2, the performance ratio is at least
m−4

2 P 3 logm P

m2P 2 logP+mP 3 .

The difference between this lower bound and the lower bound on the competitive
ratio from [27] is quite small: Ω(logm P ) versus Ω(log2 P ), i.e., for any fixed m, the
bounds are the same.

6. Concluding remarks. It is now clear that in comparing on-line algorithms,
the competitive ratio on accommodating sequences can give different information
than the competitive ratio. This is true for Fair Bin Packing and two algorithms
investigated in this paper, but these results also indicate that the competitive ratio
on accommodating sequences and the accommodating function could be very useful
measures generally.

With respect to Fair Bin Packing, the choice as to which algorithm to use depends
on which ratio is more relevant in a specific situation. This, in turn, would depend
on the actual distribution of request sequences. However, one might guess that the
competitive ratio on accommodating sequences actually gives the more useful answer
in most cases, since the sequences which cause First-Fit to perform so poorly with
respect to the competitive ratio are in some sense rather artificial. The sequences are
designed so that OPT can arrange to reject certain “difficult” requests but continue
to be “fair.” This may simply be a blatant example of how some unusual request
sequences can cause the competitive ratio to be excessively pessimistic.
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We believe that there is a broad range of on-line problems for which analysis
using the competitive ratio on accommodating sequences and the accommodating
function will give interesting insights. More of these problems should be investigated.
In particular, an open problem left here is finding a minimization problem which has
a more gradual change from the competitive ratio on accommodating sequences to
the competitive ratio.

In this paper, the accommodating function was only investigated for α ≥ 1. It was
natural to use this restriction, since it spans from the competitive ratio on accommo-
dating sequences to the standard competitive ratio, the two known interesting points.
It has later been discovered [8] that the accommodating function is also interesting
for α < 1. There appear to be more problems which have interesting accommodating
functions if one considers α < 1, further distinctions can be made between known
algorithms, and new interesting algorithms can be developed.

Two of the upper bounds proven in this paper have since been improved. The
upper bound on First-Fit’s competitive ratio on accommodating sequences for Fair
Bin Packing has been improved to 5

8 [1]. Thus, we can conclude that the competitive
ratio of First-Fit on accommodating sequences is exactly 5

8 . In addition, it has been
shown [3] that for any deterministic algorithm for the fair unit price seat reservation
problem with three seats, the competitive ratio on accommodating sequences is at
most 1

2 + 3
k+5 , where k ≥ 7 and k ≡ 1 (mod 6). This gives an upper bound of

1
2 +

3n−3
2k+6n−(8+2c) for n seats with the same restrictions on k.

Recently, the restriction of input sequences has proven useful in another context,
congestion control on the Internet [24], where the competitive ratio is a function
of this restriction. It does not appear that the functions in [24] can be viewed as
accommodating functions.
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Abstract. A bracelet is the lexicographically smallest element in an equivalence class of strings
under string rotation and reversal. We present a fast, simple, recursive algorithm for generating (i.e.,
listing) k-ary bracelets. Using simple bounding techniques, we prove that the algorithm is optimal
in the sense that the running time is proportional to the number of bracelets produced. This is an
improvement by a factor of n (where n is the length of the bracelets being generated) over the fastest,
previously known algorithm to generate bracelets.
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1. Introduction. The rapid growth in the fields of combinatorial chemistry and
computational biology is resulting in an increased demand for efficient algorithms
which produce exhaustive lists of combinatorial objects [1]. Dan Gusfield (see [9, p.
xv]) claims that “significant contributions to computational biology might be made
by extending or adapting [string] algorithms from computer science, even when the
original algorithm has no clear utility in biology.” In particular, correspondences
between DNA sequences and restricted classes of circular strings are described in [3].

Within the mathematical sciences, researchers are constantly trying to find pat-
terns hidden in the structure of combinatorial objects. The growing trend of using
computers and algorithms to produce lists of such objects is allowing researchers to
obtain more information about the objects themselves. Often, this will lead to a more
thorough understanding of an object which may lead to new and interesting discov-
eries. In some cases, algorithms which produce exhaustive lists can be used to prove
the existence of a related object [12].

An important consideration for any algorithm is its running time. For generation
algorithms, the ultimate performance goal is an algorithm with computation propor-
tional to the number of objects generated (where the computation reflects the total
amount of change to the data structures, and not the time required to print out the
object). Such algorithms are said to be CAT, for constant amortized time.

Strings with equivalence under rotation is one of the most fundamental types
of combinatorial objects. Such objects, more commonly known as necklaces, arise
naturally in many areas including knot theory, color printing, DNA sequencing, and
the theory of free Lie algebras. Algorithms for generating necklaces and Lyndon
words (aperiodic necklaces) were first developed by Fredricksen and Kessler [6] and
Fredricksen and Maiorana [7]. These algorithms were proven to be CAT by Ruskey,
Savage, and Wang [11].

Many applications, however, do not require all necklaces, but instead only those
satisfying a particular restriction. A recursive necklace generation algorithm outlined
in [2] has led to several algorithms which efficiently generate restricted classes of
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support of Czech grant GAČR 201/99/0242 and ITI under project LN-00A 056.

http://www.siam.org/journals/sicomp/31-1/37703.html
†Department of Computer Science, University of Sydney, Sydney, Australia (sawada@cs.usyd.

edu.au).

259



260 JOE SAWADA

necklaces including binary unlabeled necklaces [2], fixed density necklaces [12], and
necklaces with forbidden substrings [13].

Another restricted class of necklaces are bracelets. More specifically, bracelets are
necklaces with equivalence under string reversal. Lists of bracelets are shown to have
application in the calibration of color printers by Emmel [5]. However, the problem
of efficiently generating these lists has remained open for some time. Previously,
the fastest known algorithm to generate bracelets was a modification of Savage and
Wang’s necklace algorithm [11] by Lisonek [10]. This algorithm has running time
O(n ·Bk(n)) (where Bk(n) denotes the number of k-ary bracelets of length n), which
is the same as the second algorithm outlined in the beginning of section 3.

The problem of efficiently generating bracelets is answered in this paper with the
development of a bracelet generation algorithm that runs in constant amortized time.
We begin with some background and definitions of the relevant objects in section 2.
In section 3, we outline our bracelet generation algorithm. In section 4, we discuss
strings with no 0i substring (forbidden substrings). These strings are then used when
we analyze our bracelet generation algorithm in section 5.

2. Background. We define a necklace to be the lexicographically smallest ele-
ment of an equivalence class of k-ary strings under rotation. The set of all necklaces of
length n is denoted Nk(n). The cardinality of Nk(n) is denoted Nk(n). An aperiodic
necklace is called a Lyndon word. The set of all k-ary Lyndon words of length n is
denoted Lk(n) and has cardinality Lk(n). A word α is called a prenecklace if it is
the prefix of some necklace. The set of all k-ary prenecklaces of length n is denoted
Pk(n). The cardinality of Pk(n) is denoted Pk(n).

A bracelet is the lexicographically smallest element of an equivalence class of k-ary
strings under string rotation and reversal (or a necklace that is also lexicographically
minimal among the circular rotations of its reversal). The set of all k-ary bracelets is
denoted Bk(n) and has cardinality Bk(n). In each equivalence class associated with a
given bracelet, there exists at most two necklaces: the bracelet itself and the necklace
corresponding to the reversal of the bracelet. (In some cases, the two may be the
same.) For example, the equivalence class that contains the bracelet 00112012 also
contains the necklace 00210211.

Necklaces, Lyndon words, and prenecklaces can all be generated using the re-
cursive necklace generation algorithm GenNecklaces(t, p) shown in Figure 2.1. It is
important to have a solid understanding of this algorithm because it will be the basis
for the bracelet generation algorithm developed in the following section. The basic
idea behind the algorithm is to generate all length n prenecklaces, and then perform
an appropriate test in the function PrintIt(p) to obtain the desired object. If necklaces
are required, then the prenecklace is printed only if p divides n; if Lyndon words are
required, then the prenecklace is printed if n = p. If α = a1 · · · at−1 is a prenecklace
with its longest Lyndon prefix having length p, then a length t prenecklace can be
obtained by appending any value greater than or equal to at−p to α. The initial call
is GenNecklaces(1,1) and a0 is initialized to 0.

The following theorem provides enumeration formulas for necklaces, Lyndon words,
prenecklaces, and bracelets.

Theorem 2.1. The following formulas are valid for all n ≥ 1, k ≥ 1:

Lk(n) =
1

n

∑

d|n
µ(d)kn/d,(2.1)
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procedure GenNecklaces ( t, p : integer );
local j : integer;
begin

if t > n then PrintIt( p )
else begin

at := at−p;
GenNecklaces( t+ 1, p );
for j ∈ {at−p + 1, . . . , k − 2, k − 1} do begin

at := j;
GenNecklaces( t+ 1, t );

end; end; end;

Fig. 2.1. The recursive necklace algorithm.

Nk(n) =
1

n

∑

d|n
φ(d)kn/d,(2.2)

Pk(n) =

n∑
i=1

Lk(i),(2.3)

Bk(n) =





1
2 (Nk(n) +

k+1
2 kn/2), n even,

1
2 (Nk(n) + k(n+1)/2), n odd.

(2.4)

Proof. The equations for Lk(n), Nk(n), and Bk(n) are proved by Gilbert and
Riordan in [8]. The equation for Pk(n) is proved in [2].

In the analysis of our bracelet algorithm it will be useful to look at another way
to count prenecklaces. Let P 0

k (n) count all k-ary prenecklaces of length n that begin
with 0. Notice that the number of k-ary prenecklaces of length n beginning with 1 is
equal to P 0

k−1(n). Similarly the number of k-ary prenecklaces of length n beginning
with 2 is P 0

k−2(n). This observation leads to the following equation:

Pk(n) =

k∑
j=1

P 0
j (n).(2.5)

3. Generating bracelets. In this section we outline a fast algorithm to generate
bracelets. Since when k = 1, the only bracelet is 0n, we assume k ≥ 2. One algorithm
for generating bracelets is to generate all k-ary necklaces of length n and then test
each necklace against all rotations of its reversal. If no reversed rotation is less than
the generated necklace, then the necklace is a bracelet. Since there are n rotations
and each test takes O(n) time, this näıve approach will give us an overall running
time of O(n2 ·Bk(n)) to generate all k-ary bracelets of length n.

A more sophisticated approach will use a necklace finding algorithm, which de-
termines the necklace of a length n string in O(n) time. Such an algorithm is easily
derived from Duval’s algorithm for factoring a string into Lyndon words [4] or from
Theorem 2.1 in [2]. Using this technique, we need only compare the generated neck-
lace with the necklace of its reversal. This approach yields a much better running
time of O(n ·Bk(n)) to generate bracelets; however, it is still far from being CAT.

In the quest to find a faster algorithm to generate bracelets, we return to the
original idea of comparing a generated necklace to every rotation of it reversal. We
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start by making a simple observation.

Observation 1. If a necklace α is of the form aiai+1 · · · an for some character
a �= ai+1, then we need only test the reversed rotations that also begin with ai.

Taking this observation into account, we are making a large improvement on the
number of reversed rotations we must check. For example, for the necklace 0010023003
we need only check the three reversed rotations that begin with 00: 0030032001,
0010030032, and 0032001003. To test each reversal we could wait until the entire
necklace has been generated, but this will take O(n) time per reversal and we will
see no improvement over the näıve algorithms. Instead, if a character is generated
in position j that satisfies the condition stated in Observation 1, we immediately
compare the prenecklace a1 · · · aj with its reversal aj · · · a1. This comparison will
yield one of three outcomes. If a1 · · · aj > aj · · · a1, then we terminate the generation
from this node since appending characters to the end of these strings will not affect
their relative ordering. If a1 · · · aj < aj · · · a1, then no additional testing is required
for this reversal. However, if a1 · · · aj = aj · · · a1, then more testing must be done on
the tail of the strings which has yet to be generated.

Following the above approach, we still need to perform additional testing for
the reversals starting at position j where a1 · · · aj = aj · · · a1. The number of such
reversals could be as many as n/2. The following theorem addresses this issue.

Theorem 3.1. If a1 · · · an is a necklace where a1 · · · aq = aq · · · a1 and there exists
an r in {q+1, . . . , n} such that a1 · · · ar = ar · · · a1 and ar+1 · · · an ≤ an · · · ar+1, then
aq+1 · · · an ≤ an · · · aq+1.

Proof. Let Pq = a1 · · · aq, Pr = a1 · · · ar, x = aq+1 · · · ar, and y = ar+1 · · · an.
Let x̂ and ŷ denote the reversals of x and y, respectively. Since Pr and Pq are
palindromes Pr = Pqx = x̂Pq. Thus, α = Pqxy = x̂Pqy. But since α is a necklace,
α = x̂Pqy ≤ Pqyx̂. Thus, since y ≤ ŷ, xy ≤ yx̂ ≤ ŷx̂ as required.

This theorem implies that we need only perform extra testing on the reversal
starting at the largest position r such that a1 · · · ar = ar · · · a1. This extra testing
is the comparison of ar+1 · · · an to an · · · ar+1. If ar+1 · · · an > an · · · ar+1, then the
generated string is not a bracelet. This test can be performed in constant time per
character for each character generated after position (n− r)/2 + r.

Finally, we note that if a1 = an, then the only strings that are bracelets (or
necklaces) must be of the form an for some character a.

The following is a summary of the modifications required to transform GenNeck-
laces(t, p) into an algorithm which generates bracelets. Notice that each modification
requires only a constant amount of computation per character generated except the
addition of the function CheckRev(t, i).

• Add the parameter u to maintain the value of i from Observation 1: the number
of consecutive equivalent characters at the start of the prenecklace (i.e., the
prenecklace starts with au).

• Add the parameter v to maintain the number of consecutive a’s at the end of
the prenecklace, where a = a1.

• Add the function CheckRev(t, i) to compare the prenecklace to its reversal (when
u = v). If the prenecklace is greater than its reversal, it returns −1; if the
prenecklace is less than its reversal, it returns 0; otherwise, the prenecklace
is the same as its reversal and 1 is returned.

• Add the parameter r to maintain the length of the longest prenecklace equal to
its reversal (i.e., the largest value r for which a1 · · · ar = ar · · · a1).

• Add a test to each character in a position greater than (n − r)/2 + r which
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function CheckRev( t, i: integer ) returns integer;
local j: integer;
begin

for j from i+ 1 to (t+ 1)/2 do begin
if aj < at−j+1 then return 0;
if aj > at−j+1 then return -1;

end;
return 1;

end;

procedure GenBracelets( t, p, r, u, v: integer; RS: boolean );
local rev, i: integer;
begin

if t− 1 > (n− r)/2 + r then begin
if at−1 > an−t+2+r then RS := FALSE;
else if at−1 < an−t+2+r then RS := TRUE;

end;
if t > n then begin

if RS = FALSE and n mod p = 0 then PrintIt();
end
else begin

at := at−p;
if at = a1 then v := v + 1;
else v := 0;
if u = t− 1 and at−1 = a1 then u := u+ 1;
if t = n and u �= n and an = a1 then begin end;
else if u = v then begin

rev := CheckRev( t, u );
if rev = 0 then GenBracelets( t+ 1, p, r, u, v, RS );
if rev = 1 then GenBracelets( t+ 1, p, t, u, v, FALSE );

end;
else GenBracelets(t+ 1, p, r, u, v, RS );
if u = t then u := u− 1;
for j ∈ {at−p + 1, . . . , k − 1} do begin

at := j;
if t = 1 then GenBracelets( t+ 1, t, r, 1, 1, RS )
else GenBracelets( t+ 1, t, r, u, 0, RS );

end; end; end;

Fig. 3.1. Bracelet generation algorithm.

will determine whether or not ar · · · an is greater than its reversal. This
will involve the additional parameter RS to hold intermediate boolean values
indicating whether or not the reversal is smaller (RS).

• Reject the string if a1 = an and the string is not equal to an (i.e., t = n and
u �= n).

The resulting algorithm GenBracelets(t, p, r, u, v, RS) is shown in Figure 3.1. The
initial call is GenBracelets(1,1,0,0,0,FALSE). To illustrate this algorithm we trace the
parameters as the string 0010023003 gets generated:



264 JOE SAWADA

α - 0 0 1 0 0 2 3 0 0 3

t 1 2 3 4 5 6 7 8 9 10 11
p 1 1 1 3 3 3 6 7 7 7 10
r 0 1 2 2 2 5 5 5 5 5 5
u 0 1 2 2 2 2 2 2 2 2 2
v 0 1 2 0 1 2 0 0 1 2 0

RS F F F F F F F F F F T

In the following section we give several counting results for strings with no 0i

substring. These results will then be applied when we analyze the algorithm, showing
that it runs in constant amortized time.

4. Forbidden substrings. We denote the set of all k-ary strings of length n
with no 0i substring by Ik(n, i). The cardinality of this set, denoted Ik(n, i), is given
by the following recurrence relation:

Ik(n, i) =





kn if 0 ≤ n < i,

(k − 1)
i∑

j=1

Ik(n− j, i) if n ≥ i .

It is easy to verify the correctness of this formula. If n < i, then the set Ik(n, i)
will contain all k-ary strings. Otherwise, we categorize the strings in Ik(n, i) by the
number of consecutive 0’s found at the tail of each string. Since there are k−1 choices
for the character appearing before this string of 0’s, we arrive at the given recurrence
relation.

We obtain another recurrence relation by considering a string α = a1 · · · an−1 in
the set Ik(n− 1, i). If we append a character an to α, then the string a1 · · · an is in
Ik(n, i) as long as an−i+1 · · · an �= 0i. The number of strings where an−i+1 · · · an = 0i
is exactly equal to Ik(n− i, i). Thus we arrive at a second recurrence relation:

Ik(n, i) =

{
kn if 0 ≤ n < i,
kIk(n− 1, i)− (k − 1)Ik(n− i− 1, i) if n ≥ i .

Lemma 4.1. If k, i ≥ 2, then

Ik(n, i) ≥
n−2∑
j=1

Ik(j, i).

Proof. The base cases when n ≤ i are trivial. If n > i, then we induct on n:

Ik(n, i) ≥ Ik(n− 1, i) + Ik(n− 2, i)

≥
n−3∑
j=1

Ik(j, i) + Ik(n− 2, i)

=

n−2∑
j=1

Ik(j, i).

Lemma 4.2. If n > 2 and k, i ≥ 2, then
Ik(n, i)

n
≥ Ik(n− 1, i)

n− 1 .
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Proof.

(n− 1)Ik(n, i) = k(n− 1)Ik(n− 1, i)− (k − 1)(n− 1)Ik(n− i− 1, i)
≥ nIk(n− 1, i) + (kn− n− k)Ik(n− 1, i)− (k − 1)(n− 1)Ik(n− 3, i)
≥ nIk(n− 1, i) + 2(kn− n− k)Ik(n− 3, i)− (kn− n− k + 1)Ik(n− 3, i)
= nIk(n− 1, i) + (kn− n− k − 1)Ik(n− 3, i)
≥ nIk(n− 1, i).

We now prove a theorem that will be used in the analysis of our bracelet generation
algorithm. The proof of the theorem uses the previous two lemmas.

Theorem 4.3. If n > 2 and k, i ≥ 2, then
n∑
j=1

1

j
Ik(j, i) ≤ 8

n
Ik(n, i).

Proof.

n∑
j=1

1

j
Ik(j, i) ≤ 2

n∑

j=�n/2�

1

j
Ik(j, i)

≤ 2
n
Ik(n, i) +

2

n− 1Ik(n− 1, i) + 2
n−2∑

j=�n/2�

1

j
Ik(j, i)

≤ 4
n
Ik(n, i) +

4

n

n−2∑

j=�n/2�
Ik(j, i)

≤ 8
n
Ik(n, i).

5. Analysis of the algorithm. In this section we show that the algorithm
GenBracelets for generating bracelets is CAT. We analyze the algorithm by looking at
the computation tree and determining the amount of computation done at each node.
To get a bound on the size of the bracelet computation tree, we observe the following
bounds obtained from (2.1) and (2.2) along with Lemma 4.4 from [12]:

Lk(n) ≤ kn

n
≤ Nk(n) ≤ 2k

n

n
.

Now using (2.4) we get the following bounds on the number of bracelets:

kn

2n
≤ Bk(n) ≤ 2k

n

n
.(5.1)

Since the necklace algorithm GenNecklaces is CAT [2], the size of its computation
tree is less than ckn/n for some constant c. This bound is also true for GenBracelets
since its computation tree is smaller than that of GenNecklaces. However, unlike the
necklace computation tree, the bracelet computation tree has some nodes that require
more than a constant amount of computation. From our algorithm, these nodes
are the ones that make a call to CheckRev. Thus, to prove the bracelet generation
algorithm GenBracelets is CAT, we must show that the computation performed by all
calls to CheckRev is bounded by some constant times the total number of bracelets
generated. The task of analyzing this extra computation is divided into the following
four subsections.
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5.1. Identifying the prenecklaces. From the algorithm, each node that makes
a call to CheckRev is a prenecklace of the form ai or aiγai where the nonempty
string γ begins and ends with a character lexicographically greater than a. Note
that the length of such prenecklaces is at most n − 1. Each call to CheckRev results
in computation proportional to (t − 2i)/2, where t is the length of the prenecklace.
Since any prenecklace of the form ai requires only constant computation in CheckRev
(because t = i), we can restrict our attention to prenecklaces of the form aiγai. To
simplify this task we consider only the prenecklaces beginning with 0, later using (2.5)
to account for the remaining prenecklaces. We also ignore the fact that many of these
prenecklaces are never generated by the algorithm (i.e., the prenecklace 002100300 is
never generated since the prenecklace 002100 is terminal).

The next series of observations are crucial to the success of the analysis. Notice
that the number of prenecklaces of the form 0iγ0i is less than or equal to the number
of prenecklaces of the form 0iγ. We now group these prenecklaces together according
to length. Such strings will have length of at least 2, but not greater than n−2. Define
the set of all k-ary prenecklaces of length n beginning with 0, ending with a nonzero
character, and with no 0i substring to be P′k(n, i). Equivalently, the set P

′
k(n, i)

contains all prenecklaces with length n of the form 0jγ for 1 ≤ j < i. The cardinality
of this set is denoted as P ′k(n, i). If we let Ek(n) denote the extra computation
that results from all calls made to CheckRev by prenecklaces beginning with 0 (while
generating Bk(n)), then we obtain the following bound:

Ek(n) ≤
n−2∑
i=2

n− i

2
P ′k(n− i, i).(5.2)

5.2. Bounding the restricted prenecklaces. In this subsection we find an
upper bound for P ′k(n, i) first using restricted Lyndon words, and then in terms of
strings with forbidden substrings. Because every prenecklace is obtained as a prefix
of a β∗ where β is some Lyndon word, we arrive at the formula given in (2.3):

Pk(n) =

n∑
j=1

Lk(j).

If we let Lk(j, i) denote the number of Lyndon words of length j with no 0i substring,
then we obtain the following upper bound for P ′k(n, i):

P ′k(n, i) ≤
n∑
j=1

Lk(j, i).(5.3)

Recall that the number of k-ary strings of length n with no 0i substring is denoted
by Ik(n, i). Using these strings we obtain an upper bound for Lk(n, i).

Lemma 5.1. If n ≥ 1 and i ≥ 1, then

Lk(n, i) ≤ 1
n
Ik(n, i).

Proof. Each string counted by Lk(n, i) is a representative of an equivalence class
of strings each with n elements. If we add up the elements from each equivalence class
we get nLk(n, i) unique strings each of length n with no 0i substring. The expression
Ik(n, i) counts the total number of strings with length n and no 0i substring. Therefore
Lk(n, i) ≤ 1

nIk(n, i).
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Using the previous lemma and Theorem 4.3 (n > 2) we can simplify the upper
bound in (5.3). Note that the latter bound is also satisfied when n = 2.

P ′k(n, i) ≤
n∑
j=1

1

j
Ik(j, i)

≤ 8
n
Ik(n, i).

5.3. Converting back to prenecklaces. Using the bound discovered in the
previous subsection, we can now substitute back into (5.2) and simplify:

Ek(n) ≤
n−2∑
i=2

n− i

2
P ′k(n− i, i)

≤ 4
n−2∑
i=2

Ik(n− i, i).

We now use a clever trick to bound this sum in terms of prenecklaces. Observe
that we can insert 0i1 at the front of each string in Ik(n− i, i) to obtain a new a set of
strings of length n+1. Notice that each new string is a unique prenecklace regardless
of the parameter i. Thus the number of strings in the union of the sets Ik(n − i, i)
for i = 2, . . . , n− 1 is less than Pk(n+1). We can divide this total by k− 1, since we
could have arbitrarily chosen any of k − 1 characters to insert after 0i. Thus

Ek(n) ≤ 4

k − 1Pk(n+ 1)

≤ 4k

k − 1Pk(n)

≤ 8
n∑
j=1

Lk(j)

≤ 8
n∑
j=1

kj

j

≤ 24k
n

n
.(5.4)

The simplification found in (5.4) is valid for k ≥ 2 and can easily be proved by
induction.

5.4. Accounting for all prenecklaces. Because the bound on Ek(n) is only
for prenecklaces beginning with 0, we use (2.5) to get an upper bound on the extra
computation performed by all prenecklaces. Note that E1(n) = 0.

ExtraWork ≤
k∑
j=2

Ej(n)

≤ 24
n

k∑
j=2

jn

≤ 48k
n

n
.
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From (5.1), the total number of bracelets generated is bounded below by kn/2n.
Thus, the running time of the algorithm GenBracelets is proportional to the number
of bracelets generated, which proves the following theorem.

Theorem 5.2. The k-ary bracelet generation algorithm GenBracelets is CAT.
Experimentally, the constant is less than 8 where we compare the number of

calls to GenBracelets plus the number of iterations of the for loop in CheckRev to the
number of bracelets generated.
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Abstract. In this paper, we study issues on disjunctions of propositional Horn theories. In
particular, we consider the problems of deciding whether a disjunction of Horn theories is Horn,
and, if not, computing a Horn core (i.e., a maximal Horn theory included in this disjunction) and
the Horn envelope (i.e., the minimum Horn theory including the disjunction), where a Horn core
and the Horn envelope are important approximations of the original theory in artificial intelligence.
The problems are investigated for two different representations of Horn theories, namely, for Horn
conjunctive normal forms (CNFs) and characteristic models. While the problems are shown to be
intractable in general, in the case of bounded disjunctions, we present polynomial time algorithms
for testing the Horn property in both representations and for computing a Horn core in the CNF
representation. Even in the case of bounded disjunction, no polynomial algorithm exists (unless
P=NP) for computing a Horn core in the characteristic model representation. Computing the Horn
envelope is polynomial in the characteristic model representation, while it is exponential in the CNF
representation, even for bounded disjunction.

Key words. computational issues in artificial intelligence, logic in computer science, Horn theory
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1. Introduction. Since deduction from a set of propositional clauses is a well-
known co-NP-complete problem, different approximation methods for reasoning from
a clausal theory Σ have been investigated (e.g., [21, 22, 19, 20, 4, 5, 1]). One of these
approaches [21, 22] uses a greatest Horn lower bound (also called Horn core [15]),
which is a maximal Horn theory Σc ⊆ Σ, if we view theories as sets of models, and
the least Horn upper bound (Horn envelope [15]), which is the minimal Horn theory
Σe ⊇ Σ such that Σ logically implies Σe. Note that, in general, different Horn cores
may exist, while it is known that the Horn envelope is always unique (e.g., [21, 22, 15]).

Computing Horn envelopes and Horn cores has been investigated in [21, 22, 15,
2, 3, 4, 5, 10, 7, 1]. It has been shown that a Horn core of a theory Σ, represented
by a given conjunctive normal form (CNF) ϕ, is computable in polynomial time with
an oracle for NP [2, 3], and that all Horn cores can be generated with polynomial
delay (i.e., the time between consecutive outputs is bounded by a polynomial in the
input size, and the first (resp., last) output also occurs in polynomial time after (resp.,
before) the start (resp., halt) of the algorithm) if the theory Σ is given by the set of
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its models. However, in the latter setting, computing a maximum (in terms of the
numbers of models) Horn core is co-NP-hard [15].

In this paper, we consider the issue of computing Horn cores of the disjunction Σ =⋃l
i=1 Σi of Horn theories Σi represented either by Horn CNFs or by their characteristic

models [13]. Characteristic models have been proposed as a model-based alternative
to the formula-based theory representation. These two approaches are orthogonal
with respect to space requirements, in the sense that one approach sometimes allows
for an exponentially smaller representation than the other; see [14, 17]. Observe that
a disjunction Σ of Horn theories is in general not Horn. Hence, in particular, it is of
interest to know whether Σ is Horn, since in this case the Horn core and the Horn
envelope coincide with Σ.

Disjunctions of Horn theories may be encountered in different applications. For
example, suppose that two groups have, respectively, formed logical hypotheses about
an application domain (the “world”), e.g., relationships between medical tests and
diseases, and they believe that the relationships amount to a Horn theory. The hy-
potheses Σ1 and Σ2 of two groups (which are the sets of models) may be obtained
from actual and conjectured cases, respectively, i.e., concrete measurement data (ob-
tained by experiments) and data which are believed to be true. Suppose that the
hypotheses Σ1 and Σ2 are merged. Then, at the logic level, the disjunction, i.e.,
union Σ = Σ1 ∪ Σ2 describes the merged hypotheses. It is of particular interest to
know whether Σ is Horn; if so, then the original hypotheses are compatible in the
sense that no further cases have to be adopted in order to preserve the Horn prop-
erty, which may indicate that the individual hypotheses are sound. However, if Σ is
not Horn, then either further cases have to be added to maintain the Horn property
(which corresponds to the logical consequence of the new case knowledge), or some
of the adopted hypothetical cases have to be abandoned. Applying Occam’s razor,
it is natural to add or to abandon a minimal set of cases. In the former case, this
amounts to finding the Horn envelope of Σ, and in the latter case, to finding a Horn
core Π of Σ. In finding a Horn core Π, it may also be asked to add such a constraint
because Π includes all actual cases Σ1. That is, computing a Horn core Π satisfying
Σ1 ⊆ Π ⊆ Σ can be seen as one of the important problems.

Another application concerns inference from knowledge bases. Suppose that Horn
theories Σ1,Σ2,. . . ,Σl represent knowledge bases which are located at different sites
s1, s2, . . . , sl, respectively. A formula ϕ is a logical consequence of all Σi, for i =
1, 2, . . . , l, only if ϕ is a logical consequence of the disjunction Σ =

⋃l
i=1 Σi. Thus,

in order to test whether ϕ is a consequence in all Σi, it is equivalent to test whether
ϕ is a consequence of Σ. This may be profitably used if the on-line access to the
theories Σi at the individual sites is for instance, costly or unreliable. If Σ is stored at
a distinguished site s∗, then by accessing this single site the query ϕ to all knowledge
bases can be answered. In the case where Σ is Horn, we can store a Horn CNF
(resp., the characteristic set) of Σ, which can be more compact than simply mirroring
the disjunction of Horn CNFs (resp., the characteristic sets) of the individual Horn
theories Σi at s∗, since redundancies can be avoided. For example, if each Σi is
represented by a Horn CNF ϕi = ψ ∧ (x ∨ yi), for i = 1, 2, . . . , l, then the Horn CNF

ϕ = ψ ∧ (x ∨ y1 ∨ y2 ∨ · · · ∨ yl) represents the disjunction Σ =
⋃l

i=1 Σi. Note that, in
this case, storing the individual ϕi requires more than l times space compared to ϕ.

In this paper, we first address the problem of checking if a disjunction Σ =
⋃l

i=1 Σi

of Horn theories Σi, represented either by Horn CNFs or by their characteristic models,
is a Horn theory. We show that the problem is in general co-NP-complete for both
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representations but is polynomially solvable if l is bounded by a constant. These
results indicate that computing a Horn core is difficult in general. The polynomiality
follows from syntactical and semantical characterizations of a disjunction of Horn
theories.

We next deal with the problem of computing a Horn core Π of Σ satisfying
Σ1 ⊆ Π ⊆ Σ. We show that, if l is bounded by some constant, then the problem is
polynomially solvable for Horn CNFs, while it is co-NP-hard for the representation
by characteristic models, even if l = 2. For the formula-based representations, we
first present a polynomial time algorithm CORE to compute a Horn core of the
disjunction of two Horn theories Σ1 and Σ2. Since the algorithm CORE cannot
be generalized directly to the case l (≥ 3), we develop an algorithm CORE∗ which
computes a Horn core of the disjunction of l (≥ 3) Horn theories by making use of
algorithm CORE repeatedly. It turns out that algorithm CORE∗ runs in polynomial
time if l is bounded by some constant. On the other hand, we show that computing a
Horn core in polynomial time is not possible for the representation by characteristic
models, by exhibiting a family of theories Σ1 and Σ2 having small characteristic sets,
while every Horn core of Σ1 ∪ Σ2 is exponentially large. We also give structural
characterizations of Horn cores of a disjunction of Horn theories.

As for the Horn envelope, we show that it can be computed for the representation
by characteristic models in polynomial time but cannot be efficiently computed for
Horn CNFs, even if l = 2. The negative result follows from the fact that there
exist Horn theories Σ1 and Σ2 such that their Horn CNFs are small, but the CNF
representing the Horn envelope of Σ = Σ1 ∪ Σ2 is exponentially large.

The rest of this paper is organized as follows. In the next section, we recall some
basic concepts and introduce notations. In sections 3 and 4, we consider Horn cores for
formula-based and model-based representations, respectively. Section 5 considers the
Horn envelope. Finally, section 6 discusses related work and concludes the paper. The
complexity results of all the above problems are summarized in Table 1 of section 6.

2. Preliminaries. We assume a supply of propositional variables (atoms) x1,
x2, . . . , xn, where each xi evaluates to either 1 (true) or 0 (false). Negated variables
are denoted by xi. These xi and xi are called literals. A clause is a disjunction
c = L1 ∨ · · · ∨Lk of literals, while a term is a conjunction t = L1 ∧ · · · ∧Lh of literals.
By P (c) and N(c) (resp., P (t) and N(t)), we denote the sets of variables occurring
positively and negatively in c (resp., t). By ⊥ (resp.,	) we denote the empty clause
(resp., empty term) representing falsity (resp., truth). A formula is composed of
literals and the following operators: or (∨), and (∧), negation ( ). In particular, a
conjunction of clauses ϕ =

∧
i ci (resp., a disjunction of terms ϕ =

∨
i ti ) is called

conjunctive normal form (CNF) (resp., disjunctive normal form (DNF)).

A model is a vector v ∈ {0, 1}n, whose ith component is denoted by vi, and a
theory is any set Σ ⊆ {0, 1}n of models. We denote by v ≤ w the usual componentwise
ordering of models, i.e., vi ≤ wi for all i = 1, 2, . . . , n, where 0 < 1. By min(Σ) and
max(Σ) we denote the sets of minimal and maximal models in Σ under <, respectively,
where v ∈ Σ is a maximal (resp., minimal) model in Σ, if there is no w ∈ Σ such that
w > v (resp., w < v). For B ⊆ {1, 2, . . . , n}, we denote by xB the model v such that
vi = 1 for i ∈ B and vi = 0 for i /∈ B.

For any formula ϕ, let T (ϕ) = {v ∈ {0, 1}n | ϕ(v) = 1} denote the set of models
of ϕ. We say that a formula ϕ represents a theory Σ if T (ϕ) = Σ. We sometimes do
not distinguish a formula from the theory it represents if no confusion arises. For any
formulas ϕ and ψ, we write ϕ ≤ ψ (also ϕ |= ψ) if T (ϕ) ⊆ T (ψ) holds. A clause c is
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called an implicate of a theory Σ if c(v) = 1 for all v ∈ Σ (i.e., T (c) ⊇ Σ); it is prime if
no proper subclause is an implicate of Σ. Similarly, a term t is called an implicant of
a theory Σ if t(v) = 0 for all v �∈ Σ (i.e., T (t) ⊆ Σ)); it is prime if no proper subterm
is an implicant of Σ.

A theory Σ is Horn if Σ = Cl∧(Σ) holds, where Cl∧(S) is the closure of a theory
S ⊆ {0, 1}n under componentwise AND (i.e., intersection) of models v, w, denoted
by v

∧
w. Observe that any Horn theory Σ has the least (unique smallest) model,

denoted lm(Σ), which is given by
∧

v∈Σ v.
A clause c is Horn if |P (c)| ≤ 1, and a CNF ϕ is Horn if it contains only Horn

clauses. It is well known that a theory Σ is Horn if and only if it is represented by
some Horn CNF (e.g., [18]) and that all prime implicates of a Horn theory are Horn
(e.g., [11]). If ϕ is a Horn CNF and c is any clause, then it is known that ϕ ≤ c can
be checked in linear time (cf. [6]).

A Horn theory Σc is a Horn core of a theory Σ if Σc ⊆ Σ holds and no Horn theory
Σ′ exists such that Σc ⊂ Σ′ ⊆ Σ. Observe that, in general, Σ has more than one Horn
core; e.g., Σ = {(110), (101)} has two Horn cores Σ1

c = {(110)} and Σ2
c = {(101)}.

The Horn envelope of Σ is the Horn theory Σe ⊇ Σ for which no Horn theory Σ′

satisfies Σe ⊃ Σ′ ⊇ Σ. For the above Σ, we have Σe = {(110), (101), (100)}. As is
easily seen, the Horn envelope is always unique (cf., e.g., [21, 22, 15]). Let ϕ be a
formula representing a theory Σ, and let ϕc and ϕe be formulas representing a Horn
core and the Horn envelope of Σ, respectively. Then ϕc and ϕe are also called a Horn
core and the Horn envelope of ϕ, respectively.

3. CNF representations. In this section, we deal with the case in which each
Horn theory is represented by a Horn CNF.

3.1. Horn property of a disjunction of Horn theories. Our first result
deals with the Horn property for a disjunction of Horn CNFs.

Theorem 3.1. Given Horn CNFs ϕ1, ϕ2, . . . , ϕl, deciding whether ϕ =
∨l

i=1 ϕi
is Horn is co-NP-complete.

Proof. The problem is in co-NP, since we can guess and verify models v and w of
ϕ such that v

∧
w is not a model of ϕ in polynomial time.

For the hardness part, we reduce the problem of checking whether a DNF ψ =∨m
i=1 ti is a tautology (which is known to be co-NP-complete) to our problem. Note

that each ti can be seen as a Horn CNF ϕi. Let xn+1 and xn+2 be two fresh variables,
and let tm+1 = xn+1 and tm+2 = xn+2. Then we claim that ϕ = ψ ∨ tm+1 ∨ tm+2 (=∨m+2

i=1 ti) is Horn if and only if ψ ≡ 	 (and hence ϕ ≡ 	). The if-direction is obvious.
For the only-if-direction, suppose ψ �≡ 	. Then there exists a (nontautological)

prime implicate c of ψ. It is then easy to see that c′ = c ∨ xn+1 ∨ xn+2 is a prime
implicate of ϕ. Since c′ is not Horn and all prime implicates of a Horn theory are
Horn, it follows that no Horn CNF is equivalent to ϕ. This proves the result.

Observe that the reduction proof of the above theorem makes use of an unbounded
number of Horn theories. For the case in which l is bounded by some constant k, we
have a positive result.

Let

ϕi =

mi∧
j=1

ci,j , i = 1, 2, . . . , l,

where ci,j are Horn clauses. Then it can be easily seen that ϕ =
∨l

i=1 ϕi is equivalent
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to the CNF

ϕ′ =

m1∧
i1=1

m2∧
i2=1

· · ·
ml∧
il=1

(c1,i1 ∨ c2,i2 ∨ · · · ∨ cl,il).(3.1)

We now introduce the following set.

HC(ϕ1, ϕ2, . . . , ϕl) : the set of all Horn clauses c defined by N(c) =
⋃l

i=1N(ci,ji)
and P (c) = P (ci,ji) for some i, where all the choices of ji ∈ {1, 2, . . . ,mi}
for i = 1, 2, . . . , l are considered under the constraint that the disjunction
c1,j1 ∨ c2,j2 ∨ · · · ∨ cl,jl of the selected clauses is not a tautology.

Namely, any Horn clause c in HC(ϕ1, ϕ2, . . . , ϕl) can be constructed by choosing
one clause ci,ji from each ϕi and then by disjuncting all negative literals in c′ =
(c1,i1∨c2,i2∨· · ·∨cl,il) and a positive literal in c′ (more precisely, if some ci,ji contains
no positive literal, then cmight have no positive literal). Note thatHC(ϕ1, ϕ2, . . . , ϕl)
contains all maximal Horn clauses c with c ≤ c′ for each nontautological clause c′ =
(c1,i1 ∨ c2,i2 ∨ · · · ∨ cl,il) in ϕ′ of (3.1).

Example 3.2. Let

ϕ1 = (x1 ∨ x3 ∨ x4)(x2 ∨ x5 ∨ x6),

ϕ2 = (x1 ∨ x2 ∨ x3)(x1 ∨ x3 ∨ x6).

Then

ϕ′ = (x1 ∨ x3 ∨ x4 ∨ x6)(x1 ∨ x2 ∨ x3 ∨ x5 ∨ x6)(x1 ∨ x2 ∨ x3 ∨ x5 ∨ x6),

where tautological clauses are eliminated. The set HC is given as follows:

HC(ϕ1, ϕ2) = {(x1 ∨ x3 ∨ x4), (x1 ∨ x3 ∨ x6), (x1 ∨ x2 ∨ x5 ∨ x6),

(x1 ∨ x2 ∨ x3 ∨ x5), (x1 ∨ x2 ∨ x3 ∨ x5 ∨ x6)}.

The following lemma relates a disjunction of Horn CNFs with clauses fromHC(ϕ1,
ϕ2, . . . , ϕl).

Lemma 3.3. Let ϕ1, ϕ2, . . . , ϕl be Horn CNFs, and let ϕ =
∨l

i=1 ϕi. Then ϕ
represents a Horn theory if and only if there exists an S ⊆ HC(ϕ1, ϕ2, . . . .ϕl) such
that ϕ ≡ ∧c∈S c.

Proof. The if-part is obvious because all clauses c ∈ HC(ϕ1, ϕ2, . . . .ϕl) are Horn.
For the only-if-part, let ϕ represent a Horn theory Σ. Recall that ϕ is equivalent
to the CNF ϕ′ of (3.1). Since this ϕ′ also represents the Horn theory Σ and all
prime implicates of a Horn theory are Horn, for each nontautological clause c′ =
(c1,i1 ∨ c2,i2 ∨ · · · ∨ cl,il) in ϕ′, there exists a Horn prime implicate c of Σ satisfying
ϕ′ ≤ c ≤ c′. Since HC(ϕ1, ϕ2, . . . , ϕl) contains all maximal Horn clauses c∗ with
c∗ ≤ c′, some clause c∗ in HC(ϕ1, ϕ2, . . . , ϕl) satisfies

ϕ′ (≡ ϕ) ≤ c ≤ c∗ ≤ c′.

Thus, replacing each c′ in ϕ′ by such a c∗ again produces Σ, which implies the only-
if-part.

Theorem 3.4. If l is bounded by a constant k, the problem in Theorem 3.1 can
be solved in polynomial time.
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Proof. By Lemma 3.3, for each clause c′ in ϕ′ of (3.1), we find only a clause c∗ in
HC(ϕ1, ϕ2, . . . , ϕl) such that ϕ ≤ c∗ ≤ c′. If every c′ has such a c∗, we can conclude
that ϕ is Horn; otherwise, we can conclude that ϕ is not Horn.

As for the time complexity, since ϕ ≤ c∗ is equivalent to the condition that ϕi ≤ c∗
holds for all i, and since each ϕi is Horn, ϕ ≤ c∗ can be checked in polynomial time.
Furthermore, if l is bounded by a constant, we have at most a polynomial number of
c′ and c∗. Thus, the overall time is polynomial.

3.2. Horn cores of a disjunction of Horn theories. Let us now consider the
problem of computing a Horn core. The following proposition, together with Theo-
rem 3.1, implies that this is a difficult problem if l is not bounded by some constant k.
In particular, a polynomial time computation of some Horn core is infeasible, as well
as the enumeration of Horn cores. As for enumeration problems, we measure their
complexity in the combined size of input and output. An algorithm is called of poly-
nomial total time (also called output polynomial) [12] if its running time is polynomial
in the length of input and output.

Corollary 3.5. Unless P=NP, there is no polynomial total time algorithm
which, given Horn CNFs ϕ1, ϕ2, . . . , ϕl, computes all Horn cores, or any given number
k ≥ 1 of Horn cores, of ϕ =

∨l
i=1 ϕi.

Proof. Let us assume that there is a polynomial total time algorithm A for
generating all Horn cores (resp., k Horn cores) of ϕ with polynomial running time
p(I,O), where I is the input length and O is the output length. Now in order to solve
the tautology problem in polynomial time, we apply this algorithm A to the instance
which is used to prove Theorem 3.1. Recall that, in this case, ϕ is Horn if and only
if ψ ≡ ϕ ≡ 	. Let us execute A until either (i) it halts or (ii) time p(I, 1) is reached,
where the length of 	 is considered to be 1, and if A computes k Horn cores the
number k is set to 1. In the case of (i), if A outputs exactly one Horn CNF 	, then
output “Yes”; otherwise, “No.” In the case of (ii), output “No,” since it implies that
the output length is more than 1. Therefore, the tautology problem can be solved in
polynomial time, implying P=NP.

Proposition 3.6. A theory Σ has a unique Horn core if and only if Σ is Horn.
Proof. The if-direction is trivial. For the only-if-direction, let Π be an arbitrary

Horn core of Σ, and let v ∈ Σ \Π. Since theory {v} is Horn, there exists a Horn core
Π′ such that v ∈ Π′, for which Π′ �= Π holds.

Corollary 3.7. Given Horn CNFs ϕ1, ϕ2, . . . , ϕl, deciding whether ϕ =∨l
i=1 ϕi has a unique Horn core is co-NP-complete.

These are rather negative results. However, the proofs do not apply in the case of
the disjunction of a small (bounded by a constant) number of Horn theories, as will
be seen in the next subsection.

3.2.1. Horn cores of a disjunction of two Horn theories. In this subsec-
tion, we describe a polynomial time algorithm which computes a Horn core of the
disjunction of two Horn theories. We start with the following lemma showing that
any Horn core of a disjunction of Horn CNFs can be represented by a Horn CNF
consisting of some clauses from HC(ϕ1, ϕ2, . . . , ϕl). This is a generalization of the
only-if-part of Lemma 3.3.

Lemma 3.8. Let ϕ1, ϕ2, . . . , ϕl be Horn CNFs, and let ψ be any Horn core of
ϕ =

∨l
i=1 ϕi. Then ψ ≡

∧
c∈S c holds for some subset S ⊆ HC(ϕ1, ϕ2, . . . .ϕl).

Proof. Recall that ϕ is equivalent to the CNF ϕ′ of (3.1) (which may not be
Horn). Since ψ is a Horn core of ϕ, each nontautological clause c′ in ϕ′ is subsumed
by some prime Horn implicate c of ψ (i.e., c ≤ c′). Recall that HC(ϕ1, ϕ2, . . . , ϕl) is
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the set of all the maximal Horn clauses subsuming at least one of the clauses in ϕ′.
From the maximality of the clauses in HC(ϕ1, ϕ2, . . . , ϕl), therefore, we have a clause
c∗ ∈ HC(ϕ1, ϕ2, . . . , ϕl) such that c ≤ c∗ ≤ c′. Let ψ∗ be the CNF obtained from ϕ′

by replacing each c′ by such a c∗. Then ψ ≤ ψ∗ ≤ ϕ′ (≡ ϕ) holds. Since ψ is a Horn
core of ϕ, it then follows that ψ ≡ ψ∗.

Note that the converse is not true in general; that is, not all Horn CNFs ψ =∧
c∈S c, where S ⊆ HC(ϕ1, ϕ2, . . . .ϕl), represent Horn cores of ϕ, even if ψ is a

CNF obtained from ϕ′ by replacing each nontautological clause c′ in ϕ′ by a clause
c∗ ∈ HC(ϕ1, ϕ2, . . . , ϕl) with c∗ ≤ c′. The following example gives such an instance.

Example 3.9. Let ϕ1 and ϕ2 be given in Example 3.2. Then ϕ′ of (3.1) is written
as

ϕ′ = (x1 ∨ x3 ∨ x4 ∨ x6)(x1 ∨ x2 ∨ x3 ∨ x5 ∨ x6)(x1 ∨ x2 ∨ x3 ∨ x5 ∨ x6),

where we exclude the tautological clauses from ϕ′. Let us consider a Horn CNF

ψ = (x1 ∨ x3 ∨ x4)(x1 ∨ x2 ∨ x3 ∨ x5)(x1 ∨ x2 ∨ x3 ∨ x5 ∨ x6).

Note that all clauses in ψ are contained inHC(ϕ1, ϕ2) (see Example 3.2), and that this
ψ is obtained from ϕ′ in the desired way, because (x1 ∨x3 ∨x4) ≤ (x1 ∨x3 ∨x4 ∨x6),
(x1 ∨ x2 ∨ x3 ∨ x5) ≤ (x1 ∨ x2 ∨ x3 ∨ x5 ∨ x6), and (x1 ∨ x2 ∨ x3 ∨ x5 ∨ x6) ≤
(x1 ∨ x2 ∨ x3 ∨ x5 ∨ x6). However, this ψ is not a Horn core of ϕ = ϕ1 ∨ ϕ2, since

ψ′ = (x1 ∨ x3 ∨ x4)(x1 ∨ x2 ∨ x5 ∨ x6)(x1 ∨ x2 ∨ x3 ∨ x5 ∨ x6)(3.2)

satisfies ψ < ψ′ ≤ ϕ′ (≡ ϕ). In fact, ψ ≤ ψ′ follows from ψ ≤ (x1 ∨ x2 ∨ x5 ∨ x6), and
this combined with ψ(110111) = 0 and ψ′(110111) = 1 implies ψ < ψ′. As will be
shown later, ψ′ of (3.2) is a Horn core of ϕ.

Now we give an algorithm that obtains a Horn core of the disjunction of two Horn
theories.

Algorithm CORE
Input: Horn CNFs ϕ1 =

∧m1

i=1 c1,i and ϕ2 =
∧m2

j=1 c2,j .
Output: A Horn core ψ of ϕ = ϕ1 ∨ ϕ2.

Step 1. Set S := {c∗i,j = c1,i ∨ c2,j | c∗i,j �≡ 	, i = 1, 2, . . . ,m1, j = 1, 2, . . . ,m2}
and

S2 := {c ∈ S | |P (c)| = 2}.
For each c∗i,j ∈ S, let c1i,j (resp., c2i,j) denote the Horn clause c such

that
N(c) = N(c∗i,j) and P (c) = P (c1,i) (resp., P (c) = P (c2,j)).

(Observe that HC(ϕ1, ϕ2) is the set of all clauses c1i,j and c2i,j .)
Step 2. Sa := S \ S2; Sb := S2;

for each c∗i,j ∈ S2 do

if ϕ1 ≤ c1i,j and ϕ2 ≤ c1i,j then
begin Sa := Sa ∪ {c1i,j}; Sb := Sb \ {c∗i,j} end
elseif ϕ1 ≤ c2i,j and ϕ2 ≤ c2i,j then
begin Sa := Sa ∪ {c2i,j}; Sb := Sb \ {c∗i,j} end;

Step 3. Output ψ :=
∧

c∈Sa
c ∧∧c∗

i,j
∈Sb

c1i,j .

Example 3.10. Let us apply algorithm CORE to Horn CNFs ϕ1 and ϕ2 given in
Example 3.2. In Step 1, we have S = {(x1∨x3∨x4∨x6), (x1∨x2∨x3∨x5∨x6), (x1∨
x2 ∨ x3 ∨ x5 ∨ x6)} and S2 = {(x1 ∨ x3 ∨ x4 ∨ x6), (x1 ∨ x2 ∨ x3 ∨ x5 ∨ x6)}. A clause
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c∗2,1 = (x1 ∨ x2 ∨ x3 ∨ x5 ∨ x6) satisfies the if-statement of Step 2 (i.e., ϕ1 ≤ c12,1 and
ϕ2 ≤ c12,1 holds for c12,1 = (x1 ∨ x2 ∨ x5 ∨ x6)); any other clause in S2 satisfies neither
the if- nor the elseif-statement. Thus, Step 3 outputs the Horn CNF of (3.2).

This algorithm runs in polynomial time. Indeed, both implication tests in Step
2 are done in linear time since ϕ1 and ϕ2 are Horn (cf. [6]), and all other steps are
clearly polynomial.

Theorem 3.11. Let ϕ1 and ϕ2 be Horn CNFs. Then, algorithm CORE computes
a Horn core ψ of ϕ = ϕ1 ∨ ϕ2 in polynomial time. Moreover, ϕ1 ≤ ψ holds.

Proof. Observe that

ϕ1 ≤ ψ ≤ ϕ1 ∨ ϕ2(3.3)

obviously holds. Indeed, each clause c in Sa of Step 3 is an implicate of ϕ1, and each
clause c1i,j ∈ Sb is subsumed by some clause of ϕ1; hence, the first implication holds.
The second holds since ϕ1 ∨ ϕ2 ≡

∧
c∗
i,j
∈S c

∗
ij holds by definition, and each clause

c = c∗i,j in ϕ1 ∨ ϕ2 is subsumed by some clause in ψ.
We claim that this ψ is a Horn core. Towards a contradiction, suppose that there

exists a Horn core ψ∗ such that ψ∗ > ψ. Then, ψ∗ ≡ ∧c∈Sa
c ∧∧c∗

i,j
∈Sb

c
h(i,j)
i,j must

hold for some h(i, j) ∈ {1, 2}, where Sa and Sb are the ones in Step 3. (The proof
is similar to that of Lemma 3.8.) Since ψ < ψ∗, it follows that ψ ≤ c2i,j must hold

for some c∗i,j ∈ Sb, and hence ϕ1 ≤ c2i,j by (3.3). On the other hand, since c2i,j is

subsumed by some clause in ϕ2, ϕ2 ≤ c2i,j also holds. However, this means that the
clause c∗i,j is removed from Sb in Step 2 and hence c∗i,j /∈ Sb in Step 3, which is a
contradiction. Consequently, ψ is maximal.

An analysis of the algorithm CORE reveals that it bears no nondeterminism in
computing a Horn core ψ that satisfies ϕ1 ≤ ψ ≤ ϕ1 ∨ ϕ2. This may indicate that a
Horn core including ϕ1 is unique. This is in fact the case.

Proposition 3.12. Let Σ1 and Σ2 be Horn theories, and let Σ = Σ1∪Σ2. Then,
there exists a unique Horn core Π that satisfies Σ1 ⊆ Π ⊆ Σ.

Proof. We show that for any Horn theories Π1 and Π2 such that Σ1 ⊆ Π1 ⊆ Σ
and Σ1 ⊆ Π2 ⊆ Σ, it holds that Π′ = Cl∧(Π1 ∪Π2) is Horn and satisfies Π1,Π2 ⊆ Π′

⊆ Σ; the uniqueness follows from this. Indeed, if Π1 and Π2 were different Horn cores
of Σ such that Σ1 ⊆ Π1 ⊆ Σ and Σ1 ⊆ Π2 ⊆ Σ, then Π′ = Cl∧(Π1 ∪ Π2) would be a
Horn theory such that Π1,Π2 ⊂ Π′ ⊆ Σ. This, however, contradicts that Π1 and Π2

are Horn cores of Σ.
Let w ∈ Π′ \ (Π1 ∪ Π2), and we show that w ∈ Σ. Note that w is of the form

w =
∧

u∈S1
u ∧ ∧v∈S2

v, where S1 ⊆ Π1 and S2 ⊆ Π2. Since Π1 and Π2 are Horn,
u′ =

∧
u∈S1

u ∈ Π1, v′ =
∧

v∈S2
v ∈ Π2, and w = u′

∧
v′. Since Π1,Π2 ⊆ Σ1 ∪Σ2, the

following four cases may occur: (1) u′, v′ ∈ Σ1, (2) u′, v′ ∈ Σ2, (3) u′ ∈ Σ1 , v′ ∈ Σ2,
and (4) u′ ∈ Σ2 , v′ ∈ Σ1. Clearly, w = u′ ∧ v′ ∈ Σ holds for case (1) or (2). As
for case (3), u′ ∈ Π2 holds by Σ1 ⊆ Π2. This implies that u′, v′ ∈ Π2, and hence
w ∈ Π2 ⊆ Σ holds. Case (4) is similar to (3).

From Proposition 3.12, we call the two Horn cores Π1 and Π2 satisfying Σ1 ⊆
Π1 ⊆ Σ1 ∪ Σ2 and Σ2 ⊆ Π2 ⊆ Σ1 ∪ Σ2, respectively, the canonical Horn cores of Σ1

and Σ2 with respect to Σ = Σ1 ∪Σ2 and denote them by can(Σ1,Σ) and can(Σ2,Σ),
respectively.

Observe that the generalization of Proposition 3.12 to a disjunction of k (≥ 3)
Horn theories does not hold. To see this, consider Σ = Σ1 ∪Σ2 ∪Σ3 and assume that
Σ1 = ∅ holds. Then, if Σ1 had the unique Horn core Π such that Σ1 ⊆ Π ⊆ Σ (=
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Σ2∪Σ3), then this Π would be the unique Horn core of Σ2∪Σ3. Clearly, this conflicts
with Proposition 3.6.

Finally, we have the following structural result.

Proposition 3.13. Let Σ1,Σ2, . . . ,Σl be Horn theories. Then ∆ =
⋂l

i=1 Σi is

contained in every Horn core of Σ =
⋃l

i=1 Σi.

Proof. Let Π be any Horn core of Σ. We show that Ω = Cl∧(Π∪∆) is contained
in Σ; this completes the proof, since the maximality of Π then implies ∆ ⊆ Π = Ω.

Take any model w ∈ Ω. Since Π and ∆ are Horn, we need only to consider the
case of w = u

∧
v for some u ∈ Π and v ∈ ∆. (The same reasoning is used in the proof

of Proposition 3.12.) Now, u ∈ Σi holds for some i. Since v ∈ ∆ is also contained
in this Σi and Σi is Horn, it holds that w ∈ Σi. Hence, w ∈ Σ holds, implying Ω ⊆
Σ.

3.2.2. Horn cores of a disjunction of more than two Horn theories.
In this subsection we develop an algorithm to compute a Horn core of a general
disjunction of ϕ = ϕ0 ∨ϕ1 ∨ϕ2 ∨ · · · ∨ϕl of Horn CNFs ϕi. Let us first show that the
direct generalization of algorithm CORE does not produce a Horn core for the case
l ≥ 2.

Example 3.14. Let

ϕ0 = (x1 ∨ x2 ∨ x4)(x2 ∨ x7)(x3 ∨ x5 ∨ x7),

ϕ1 = (x3 ∨ x5),

ϕ2 = (x1 ∨ x3 ∨ x6),

and let ϕ = ϕ0 ∨ ϕ1 ∨ ϕ2. Then ϕ is equivalent to the CNF

ϕ′ = (x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6)(x1 ∨ x2 ∨ x3 ∨ x5 ∨ x6 ∨ x7)(3.4)

(x1 ∨ x3 ∨ x5 ∨ x6 ∨ x7).

Since no clause c∗ in ϕ′ satisfies |P (c∗)| = 1 in this case, the Sb in the beginning of
Step 2 of the generalized algorithm CORE becomes the set of all clauses in ϕ′ of (3.4).
Thus, in Step 3, we have

ψ = (x1 ∨ x2 ∨ x3 ∨ x4)(x1 ∨ x2 ∨ x3 ∨ x7)(x1 ∨ x3 ∨ x5 ∨ x7).

However, this ψ is not a Horn core of ϕ, since

ψ′ = (x1 ∨ x2 ∨ x3 ∨ x5)(x1 ∨ x3 ∨ x5 ∨ x7)

satisfies ψ < ψ′ ≤ ϕ′ (≡ ϕ). We will show in Example 3.16 that this ψ′ is in fact a
Horn core of ϕ.

However, by using algorithm CORE repeatedly, we can get an algorithm to com-
pute a Horn core of ϕ = ∨li=0ϕi. This algorithm is polynomial if l is bounded by
a constant k. Informally, it constructs a sequence of nondecreasing Horn theories
ψ0 ≤ ψ1 ≤ ψ2 ≤ · · · which is contained in ϕ. The sequence converges to ψ∗, which is
a Horn core of ϕ.

Let ϕ0, ϕ1, . . . , ϕl be Horn CNFs, and let CORE(µ1, µ2) denote a Horn CNF of
the canonical Horn core can(µ1, µ1 ∨ µ2). We now define the following sequence ψk,
k ≥ 0:
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ψ0 = ϕ0;

ψ1 = CORE(ψ0, ϕ1);

ψ2 = CORE(ψ1, ϕ2);

...
...

ψl = CORE(ψl−1, ϕl);

...
...

ψi·l+j = CORE(ψi·l+j−1, ϕj) (i ≥ 0, 1 ≤ j ≤ l);
...

...

This sequence ψk is monotonically nondecreasing from ϕ0 to

ψ∗ = lim
k→∞

ψk,(3.5)

by first trying to increase it in ϕ1, then in ϕ2 and so on. However, note that ψl is not
necessarily a Horn core of ϕ. The reason is that in building ψ1 from ψ0, say, some
models of ϕ1 may have been excluded which now can be added to the ψl such that
the Horn property is still preserved. To catch this aspect, the algorithm cycles over
ϕ1, ϕ2, . . ., ϕl, until no further change is possible. Observe that ψ∗ = ψk holds for
some finite k ≥ 0 since there exist only finite models. Now we have the next lemma.

Lemma 3.15. Given Horn CNFs ϕ0, ϕ1, . . . , ϕl, the CNF ψ
∗ as defined in (3.5)

is a Horn core of ϕ = ∨li=0ϕi.
Proof. By an inductive argument, it is easy to show that every ψk is a Horn CNF

satisfying ψk ≤ ϕ. Hence, ψ∗ is a Horn CNF satisfying ψ∗ ≤ ϕ. Now assuming that
ψ∗ is not a Horn core of ϕ, we derive a contradiction.

In this case, by Lemma 4.5 (to be shown later), there exists a model v ∈ Σ \ Π∗

such that Π∗ ∪ {v} is Horn, where Π∗ and Σ are the theories represented by ψ∗

and ϕ, respectively. This model v satisfies v ∈ Σi for some i, where Σi is the Horn
theory represented by ϕi. Let k∗ be the index such that ψk∗ = ψ∗. Since ψ∗ is the
limit, ψk′ = ψ∗ holds for all k′ > k∗. Consider the smallest index k′ > k∗ such that
ψk′ = CORE(ψk′−1, ϕi). Since ψk′−1 = ψ∗ holds and Π∗ ∪ {v} is Horn, this implies
that ψ∗ is not a Horn core of ψ∗ ∨ ϕi, a contradiction.

Based on this lemma, we get the following algorithm.

Algorithm CORE∗

Input: Horn CNFs ϕi =
∧mi

j=1 ci,j , for i = 0, 1, . . . , l.
Output: A Horn core ψ∗ of ϕ = ϕ0 ∨ ϕ1 ∨ · · · ∨ ϕl.

Step 1. Set ψ := ϕ0; i := 0; changes := 0;
Step 2. while changes < l do begin

if i < l then i := i+ 1 else i := 1;
ψnew := CORE(ψ,ϕi);
if ψ < ψnew then
begin ψ :=

∧
c∈HC(ϕ0,ϕ1,...,ϕl) s.t.ψnew≤c c;

changes := 0;
end
else changes := changes + 1;

end{while};
Step 3. Output the Horn CNF ψ∗ = ψ.
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Note that, whenever ψnew = CORE(ψ,ϕi) increases from ψ during the iteration
of Step 2, the algorithm replaces it by

ψ =
∧

c∈HC(ϕ0,ϕ1,...,ϕl) s.t.ψnew≤c
c.(3.6)

By Lemma 3.8, this replacement does not affect the correctness of the algorithm. The
algorithm halts if no change within l consecutive calls is detected, i.e., CORE(ψ,ϕi) =
CORE(ψ,ϕi+1) = · · · = CORE(ψ,ϕi−1) holds, where i ≥ 1 and we interpret i−1 = l
if i = 1 (arithmetically, the last index in the sequence is (l + i− 2 mod l) + 1).

Example 3.16. Let us apply the algorithm CORE∗ to the disjunction ϕ = ϕ0 ∨
ϕ1 ∨ ϕ2, where ϕ0, ϕ1 and ϕ2 are given in Example 3.14.

In the first iteration of Step 2, by calling algorithm CORE described in subsection
3.2.1, we have

ψnew = CORE(ϕ0, ϕ1) = (x1 ∨ x2 ∨ x3 ∨ x5)(x2 ∨ x3 ∨ x5)(x3 ∨ x5 ∨ x7).

Based on

HC(ϕ0, ϕ1, ϕ2) = {(x1 ∨ x2 ∨ x3 ∨ x4)(x1 ∨ x2 ∨ x3 ∨ x5), (x1 ∨ x2 ∨ x3 ∨ x6),
(x1 ∨ x2 ∨ x3 ∨ x7), (x1 ∨ x3 ∨ x5 ∨ x7), (x1 ∨ x3 ∨ x6 ∨ x7)},

we have

ψ1 = (x1 ∨ x2 ∨ x3 ∨ x5)(x1 ∨ x3 ∨ x5 ∨ x7).

In the second iteration, we have ψnew = CORE(ψ1, ϕ2) = ψ1, and hence ψ2 = ψ1

holds. Since l (= 2) consecutive members ψ1 and ψ2 satisfy ψ1 = ψ2, the algorithm
outputs ψ1 and halts.

Theorem 3.17. Algorithm CORE∗ outputs a Horn core ψ of ϕ = ϕ0∨ϕ1∨· · ·∨ϕl
satisfying ϕ0 ≤ ψ ≤ ϕ. Moreover, it runs in polynomial time if l is bounded by some
constant.

Proof. The correctness of the algorithm is established by Lemma 3.15. Notice
that in the algorithm, each ψnew = CORE(ψ,ϕi) is replaced by the increased Horn
theory ψ of (3.6) for which ψnew ≤ ψ ≤ ϕ holds. The sequence ψ also converges to
ψ∗ of (3.5).

It thus remains to show that the algorithm is polynomial in l. Observe that
each CNF ψ (except for the initial ϕ0) contains only clauses from HC(ϕ0, ϕ1, . . . , ϕl).
There are at most l · Πl

i=0mi clauses in HC(ϕ0, ϕ1, . . . , ϕl), where mi is the number
of clauses in ϕi. Clearly, for a constant l, this number is polynomial in the input size
of ϕ0, ϕ1, . . . , ϕl. Moreover, since T (ψ) (i.e., its set of models) strictly increases in
every l iterations, the set of clauses HC(ϕ0, ϕ1, . . . , ϕl) which are logically entailed by
ψ monotonically decreases if ψ changes. Thus, the number of iterations is bounded
by l · |HC(ϕ0, ϕ1, . . . , ϕl)|, which is polynomial if l is bounded by a constant. Since
a call to CORE(ψ,ϕi) is done in polynomial time by Theorem 3.11, this implies that
CORE∗ requires polynomial time.

Remarks. (1) To keep ψ of (3.6) small, we may further replace it by a prime CNF
or an irredundant prime CNF, where a CNF ψ is called prime if it contains only prime
implicates of the function it represents and irredundant if no clause can be removed
from ψ while preserving logical equivalence. Note that an (irredundant) prime CNF
for any Horn CNF ψ is computable in quadratic time [11].
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(2) We can use CORE∗ as a reasonable “any time algorithm” for computing an
approximation of some Horn core. In fact, we can interrupt the algorithm at any step,
and the contents of ψ is a Horn theory that implies ϕ. The approximation improves
with iterations and eventually yields a Horn core.

4. Characteristic models. For a Horn theory Σ, a model v ∈ Σ is called char-
acteristic [13] if v �∈ Cl∧(Σ \ {v}) holds. The set of all characteristic models of Σ, the
characteristic set of Σ, is denoted by C∗(Σ). Note that every Horn theory Σ has the
unique characteristic set C∗(Σ) and that max(Σ) ⊆ C∗(Σ). For example, a Horn the-
ory Σ = {(0101), (1001), (1000), (0001), (0000)} has C∗(Σ) = {(0101), (1001), (1000)}
and max(Σ) = {(0101), (1001)}. Given the characteristic set C∗(Σ) of a Horn theory
Σ, and an arbitrary vector v, it can be checked in polynomial time whether v ∈ Σ
holds or not [13].

In the rest of this section, we reconsider the problems in the previous section,
assuming that Horn theories are now represented by their characteristic models.

4.1. Horn property of a disjunction of Horn theories. Like in the case
of CNFs, deciding whether a disjunction of Horn theories is Horn is intractable in
general.

Theorem 4.1. Given characteristic sets C∗(Σ1), C∗(Σ2), . . . , C∗(Σl) of Horn

theories Σ1, Σ2, . . . , Σl, respectively, deciding whether Σ =
⋃l

i=1 Σi is Horn is co-NP-
complete.

Proof. The membership part of co-NP is similar to the proof of Theorem 3.1.
The hardness part is also similar to the proof in Theorem 3.1. Observe that in

this reduction, each Horn theory Σi is represented by a single term ti, and hence it
has a small number of characteristic models.

For a term t, let Σ(t) denote the theory represented by t, i.e., Σ(t) = T (t). Then
the characteristic set of Σ(t) is represented by

C∗(Σ(t)) = {xV \A | N ⊆ A ⊆ V \ P, |A \N | ≤ 1},

where a term t has positive (resp., negative) literals whose indices are from P ⊆ V =
{1, 2, . . . , n} (resp., N ⊆ V ); recall that xB is the model v such that vi = 1 for i ∈ B
and vi = 0 for i /∈ B. Informally, C∗(Σ(t)) contains all models of t in which at most
one of the variables not occurring in t is set to 0 and all other such variables are set
to 1. Clearly, C∗(Σ(t)) is constructible from t in polynomial time. Hence, the DNFs
in the proof of Theorem 3.1 can be transformed in polynomial time into equivalent
theories Σi, i = 1, 2, . . . , l, and Σ =

⋃l
i=1 Σi, which are given by C∗(Σi) and C∗(Σ),

respectively. Thus the argument in the proof of Theorem 3.1 proves the result.
The next result follows from Theorem 4.1, where its proof is similar to that of

Corollary 3.5.
Corollary 4.2. Unless P=NP, there is no polynomial total time algorithm

which, given a positive integer k and characteristic sets C∗(Σ1), C∗(Σ2), . . ., C∗(Σl)

of Horn theories Σ1, Σ2, . . . ,Σl ⊆ {0, 1}n, computes k Horn cores of Σ =
⋃l

i=1 Σi.
The next result gives a precise semantical characterization of the Horn property

of a disjunction.
Lemma 4.3. Let Mi ⊆ {0, 1}n, i = 1, 2, . . . , l, be sets of models. Then Σ =⋃l

i=1 Cl∧(Mi) is Horn if and only if

∧
v∈S

v ∈ Σ holds for every S ⊆ ⋃l
i=1Mi such that 1 ≤ |S| ≤ l.(4.1)
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Proof. Since a Horn theory is closed under intersection, the only-if-part is obvious.
For the if-part, we show by induction on k ≥ l that (4.1) implies

∧
v∈S

v ∈ Σ holds for every S ⊆ ⋃l
i=1Mi such that 1 ≤ |S| ≤ k,(4.2)

which clearly implies that Σ =
⋃l

i=1 Cl∧(Mi) is Horn. For the base k = l, the
statement holds by (4.1). For the induction step, assume that (4.2) holds for some
k ≥ l and consider the case k + 1.

Take a set S ⊆ ⋃l
i=1Mi such that |S| = k+ 1 arbitrarily and consider the model

w =
∧

v∈S v. For each Sj ⊆ S such that |Sj | = |S| − 1, we denote u(j) =
∧

v∈Sj
v. All

u(j) belong to Σ by the induction hypothesis, and there are k + 1 such Sj . If these
contain different Sj1 and Sj2 such that u(j1) = u(j2), then w = u(j1) ∧ u(j2) = u(j1)

holds, and w ∈ Σ follows from the induction hypothesis. Otherwise, there are k+ 1 ≥
l + 1 different models u(1), u(2), . . . , , u(k+1). Hence, by the pigeonhole principle, u(1)

and u(2), say, are both contained in Cl∧(Mi∗) for some i∗. Since w = u(1)
∧
u(2) ∈

Cl∧(Mi∗) by definition, we have w ∈ Σ from the induction hypothesis.
As an immediate consequence, we obtain the following result.
Theorem 4.4. If l is bounded by a constant, the problem in Theorem 4.1 can be

solved in polynomial time.
In fact, the proof shows this result not only for sets of characteristic models but

for any sets of models representing Horn theories as in Lemma 4.3.
Theorems 4.1 and 4.4, respectively, are the characteristic model versions of The-

orems 3.1 and 3.4.

4.2. Computing Horn cores of a disjunction of Horn theories. Assuming
Horn CNF representations, we have presented in section 3 a polynomial time algorithm
for computing a Horn core ψ satisfying ϕ1 ≤ ψ ≤ ϕ1 ∨ ϕ2. For characteristic models,
a similar algorithm is hard to find. This is suggested by the following theorem (proved
after Lemma 4.5), which implies that recognizing a Horn core is intractable, even for
the case of two Horn theories.

Lemma 4.5. Let Σ1 be a Horn theory and Σ2 an arbitrary theory. Then, Σ1 is
not a Horn core of Σ = Σ1 ∪ Σ2 if and only if there exists some model v ∈ Σ2 \ Σ1

such that v
∧
w ∈ Σ1 ∪ {v} holds for all w ∈ C∗(Σ1).

Proof. Suppose Σ1 is not a Horn core, but Π is a Horn core such that Σ1 ⊂
Π ⊆ Σ1 ∪ Σ2. Let v be any minimal model in Π \ Σ1. Then v

∧
w ∈ Π holds for all

w ∈ C∗(Σ1). By the minimality, however, this implies v
∧
w ∈ Σ1∪{v}. Conversely, if

there is a model v satisfying v
∧
w ∈ Σ1∪{v} for all w ∈ C∗(Σ1), then v

∧
w ∈ Σ1∪{v}

holds for all w ∈ Σ1, since each w ∈ Σ1 can be represented by w =
∧

u∈S u for some
S ⊆ C∗(Σ1) and v

∧
u ∈ Σ1 for all u ∈ S. Hence, Σ1 ∪ {v} is Horn by Lemma 4.3,

which means that Σ1 is not a Horn core.
Theorem 4.6. Given characteristic sets C∗(Σ1) and C∗(Σ2) of Horn theories

Σ1,Σ2 ⊆ {0, 1}n, respectively, deciding whether Σ1 is a Horn core of Σ = Σ1 ∪ Σ2 is
co-NP-complete.

Proof. By Lemma 4.5, Σ1 is not a Horn core if and only if some v ∈ Σ2 \Σ1 exists
such that v

∧
w ∈ Σ1 ∪ {v} holds for every w ∈ C∗(Σ1). Such a v can be guessed and

verified in polynomial time; hence the problem is in co-NP.
We then prove the co-NP-hardness by a reduction from 3SAT [9]. For a given

3-CNF formula ϕ =
∧m

i=1 ci on n variables x1, x2, . . . , xn, we now define polynomially
computable sets M1 and M2 of models in {0, 1}2n+m+1 such that M1 = C∗(Σ1),
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M2 = C∗(Σ2) for Horn theories Σ1 and Σ2, and Σ1 is not a Horn core of Σ = Σ1 ∪Σ2

if and only if ϕ is satisfiable.
Without loss of generality, we assume that all literals in L = {xj , xj | 1 ≤ j ≤ n}

appear in ϕ. Obviously, this restriction on ϕ does not affect the NP-completeness of
3SAT. Define V = VL ∪ VC ∪ VT , where

VL = {1, 2, . . . , n, 1, 2, . . . , n},
VC = {n+ 1, n+ 2, . . . , n+m},
VT = {n+m+ 1}.

Intuitively, the elements in VL correspond to the literals in L, the elements i in VC to
the clauses ci in ϕ, and n+m+ 1 in VT is a special tag column. Now we define the
instance of our problem as follows: M1 = M1,1 ∪M1,2 ∪M1,3, where

M1,1 = {x(VC\{n+i})∪(VL\{q}) | n+ i ∈ VC , q ∈ ci},
M1,2 = {x(VL\{j,j})∪VT | 1 ≤ j ≤ n},
M1,3 = {x(VL\{j,j,q})∪VT | 1 ≤ j ≤ n, q ∈ VL \ {j, j} },

and M2 = M2,1 ∪M2,2, where

M2,1 = {x(VL\{q})∪VT | q ∈ VL},
M2,2 = {xVL\{j,j} | 1 ≤ j ≤ n}.

Intuitively, each model in M1,1 corresponds to the selection of a literal q from a clause
ci. The intersection of such models after choosing at least one model for each clause
ci corresponds to a choice of one literal from each clause. The models in M1,2 and
M1,3 serve to cover all choices in which two opposite literals are chosen for at least
one j. The models in M2,1 similarly correspond to the choice of a single literal, but
the special component n+m+ 1 is set to 1. The models in M2,2 have a similar role
as those in M1,2.

First, it is not hard to see that Mi = C∗(Mi) holds, for i = 1, 2, and hence Mi is
indeed the characteristic set of Σi = Cl∧(Mi). The sets M1 and M2 are constructible
in polynomial time from ϕ.

We claim that Σ1 is not a Horn core of Σ if and only if ϕ is satisfiable.
Let us first show the only-if-part. Suppose that Σ1 is not a Horn core of Σ. By

Lemma 4.5, there exists some v ∈ Σ2 \ Σ1 such that v
∧
w ∈ Σ1 ∪ {v} holds for all

w ∈M1. Consider the following two cases.
Case 1. The component vn+m+1 is 0. Then, v =

∧
w∈S w for some S ⊆ M2 such

that S∩M2,2 �= ∅. Hence, for some j ∈ {1, 2, . . . , n}, it holds that components j and j
of v are both 0. Thus, the model v can be generated in Σ1 by taking the intersection
of a model in M1,2 and models from M1,1 (recall that every literal occurs in some
clause). This means v ∈ Σ1, which is a contradiction.

Case 2. The component vn+m+1 is 1. Then, v must be the intersection of some
models in M2,1. Moreover, for each j = 1, 2, . . . , n, at least one of vj and vj is 1;
indeed, any model v ∈ Σ2 with vn+m+1 = 1 and vj = vj = 0 for some j can be
generated by intersections of models in M1,2∪M1,3, which would again imply v ∈ Σ1,
a contradiction. Now, by assumption, v

∧
w ∈ Σ1 ∪ {v} holds for all w ∈ M1. By

choosing a model w ∈M1,1 suitably, we obtain the vector u = v
∧
w which coincides

with v on VL and has all other components (including n+m+1) being 0. This implies
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u ∈ Σ1, and hence u can be generated in Σ1 only by the intersection of at least m

models from M1,1 including v(1), v(2), . . . , v(m) such that v
(i)
n+i = 0 holds for all i. By

the definition of M1,1, this corresponds to a choice of one literal from each clause ci
such that no opposite literals are chosen. It then follows that ϕ is satisfiable.

For the if-part, suppose that ϕ is satisfiable. Then, there exists a choice of one
literal qi from each clause ci, i = 1, . . . ,m, such that no opposite literals are chosen.
We claim that the model v = xB , where B = (VL \ {qi | i = 1, . . . ,m}) ∪ VT , satisfies
v ∈ Σ2 \ Σ1 and v

∧
w ∈ Σ1 for all w ∈ Σ1. Hence, by Lemma 4.5, it follows that Σ1

is not a Horn core of Σ.
Clearly, such a v satisfies v ∈ Σ2 (i.e., by the intersection of models in M2,1) and

v /∈ Σ1. Observe that the model v′ which results from v by switching component
n+m+ 1 to 0 is in Σ1 (by the intersection of models in M1,1). Hence, if w ∈ M1,1,
then v

∧
w = v′

∧
w ∈ Σ1. On the other hand, if w ∈M1,2 ∪M1,3, then v

∧
w (whose

component n + m + 1 takes value 1) is obtainable as the intersection of models in
M1,2 ∪M1,3; hence, v

∧
w ∈ Σ1 also holds.

Thus, computing a canonical Horn core is presumably difficult in general. We
next point out that the difficulty can be avoided if Σ2 is restricted in the following
sense. Call a Horn theory Σ sparse if |Σ| ≤ p(|C∗(Σ)|) holds for some polynomial p.
Then, based on the next lemma proved in [7], we have the following theorem.

Lemma 4.7. Given the characteristic set C∗(Σ) of a Horn theory Σ ⊆ {0, 1}n,
the models of Σ can be enumerated with O(n2|C∗(Σ)|) time delay.

Theorem 4.8. Given characteristic sets C∗(Σ1) and C∗(Σ2) of Horn theories
Σ1,Σ2 ⊆ {0, 1}n, respectively, computing C∗(Π1) for Π1 = can(Σ1,Σ1 ∪ Σ2) is poly-
nomial if Σ2 is known to be sparse.

Proof. We can compute C∗(Π1) for Π1 = can(Σ1,Σ1 ∪ Σ2) as follows.
(1) Using the algorithm in [7], construct Σ2 from C∗(Σ2). Set Π := C∗(Σ1).

(Here Cl∧(Π) will eventually become Π1.)
(2) Using Lemma 4.5, check whether some model v ∈ Σ2 \ Cl∧(Π) exists such

that Cl∧(Π) ∪ {v} is Horn.
(3) If such a model v is found, then set Π := Π ∪ {v} and return to (2).
(4) Compute C∗(Π) and output it as the result.
Step (1) can be done in polynomial time by Lemma 4.7, since Σ2 is sparse. In

step (2), Cl∧(Π)∪{v} is Horn if and only if v
∧
w ∈ Cl∧(Π)∪{v} holds for all w ∈ Π

by Lemma 4.3 (with l = 2), which can be checked in polynomial time; this avoids the
recomputation of C∗(Π) in each iteration. Overall, this procedure is polynomial since
Σ2 is sparse.

Observe that the Horn theory Σ2 in the proof of Theorem 4.6 is not sparse, and
hence the above algorithm requires exponential time.

4.3. Exponential sizes of Horn cores. The intractability of recognizing a
Horn core as well as that of computing a canonical Horn core does not immediately rule
out the possibility of computing one of the Horn cores in polynomial time. However,
our next result implies that a polynomial time algorithm (in the input length) for this
task is not possible.

Theorem 4.9. For every n ≥ 1, there exist Horn theories Σ1,Σ2 ⊆ {0, 1}4n+1

such that |C∗(Σ1)| = |C∗(Σ2)| = 2n, but every Horn core Π of Σ = Σ1 ∪ Σ2 has size
|C∗(Π)| not bounded by a polynomial in n.

Proof. Given a fixed n (≥ 1), define two sets of models S1, S2 ⊆ {0, 1}4n+1

as follows. Let Vk = {(k − 1)n + j | j = 1, 2, . . . , n} for k = 1, 2, 3, 4, and V =
∪4
k=1Vk ∪ {4n+ 1} = {1, 2, . . . , 4n+ 1}. Observe that V1 = {1, 2, . . . , n} contains the
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first n components, V2 the next n components, and so on. Then,

S1 = {xV \(V3∪{i,3n+i}), xV \(V3∪{n+i,3n+i}) | 1 ≤ i ≤ n},
S2 = {xV \(V4∪{i,2n+i,4n+1}), xV \(V4∪{n+i,2n+i,4n+1}) | 1 ≤ i ≤ n}.

Informally, each model v in S1 ∪ S2 consists of four blocks b1(v), . . . , b4(v), each of
which has n bits (addressed by V1, . . . , V4), plus an extra bit v4n+1. The set S1

contains all models v such that (1) exactly n+2 bits are 0, (2) b4(v)i = 0 (i.e., the ith
bit in b4(v) is 0) and either b1(v)i = 0 or b2(v)i = 0 for some i ∈ {1, 2, . . . , n}, and (3)
b3(v) is the zero vector (0,0, . . . ,0) (for short, 0). Similarly, S2 contains all models v
such that (1) exactly n+3 bits are 0, (2) b3(v)i = 0 and either b1(v)i = 0 or b2(v)i = 0
for some i ∈ {1, 2, . . . , n}, and (3) b4(v) is 0 and v4n+1 = 0. Intuitively, each v ∈ S1

represents a choice from two alternatives (either b1(v) or b2(v)) for assigning 0 to a
position i. This is similar for each v ∈ S2.

Clearly, |S1| = |S2| = 2n, and Sl = C∗(Sl) holds for l = 1, 2, since all the models
in Sl are incomparable. Hence Sl is the characteristic set of Σl = Cl∧(Sl). Note that
Σ1 ∩ Σ2 = ∅ holds.

Let

H0 = H0,1 ∪H0,2,(4.3)

where

H0,1 = {xI1∪I2 | I1 ⊆ V1, I2 ⊆ V2, I1 ∩ {j − n | j ∈ I2} = ∅ },
H0,2 = {xI1∪I2∪{4n+1} | I1 ⊆ V1, I2 ⊆ V2, I1 ∩ {j − n | j ∈ I2} = ∅ },

i.e., the set of all models v which have (1) b1(v)i = 0 or b2(v)i = 0 for all i = 1, 2, . . . , n,
(2) b3(v) = b4(v) = 0, and (3) v4n+1 is set arbitrarily.

Fact 1. Every Horn core Π of Σ = Σ1 ∪ Σ2 satisfies Π ⊇ H0.
To prove this fact, we note that H0 ⊆ Σ, and, for each v ∈ H0 and w ∈ Σ, it

holds that v
∧
w ∈ H0. Let Π be a Horn core of Σ. Then Π ∪ H0 ⊆ Σ holds, and

moreover, by Lemma 4.3 (with l = 1), Π ∪H0 is Horn. Hence, the maximality of a
Horn core implies H0 ⊆ Π.

Let us first consider the canonical Horn cores Πl = can(Σl,Σ) for l = 1, 2. It
follows from Fact 1 that H0,l ⊆ Πl holds. Denote, for any model v,

χ(v) = {j ∈ {1, 2, . . . , n} | b1(v)j = 1 or b2(v)j = 1},
i.e., χ(v) contains the positions of 1 in b1(v) or b2(v). Then we obtain

H0,l = {v | χ(v) = {1, 2, . . . , n}, b3(v) = b4(v) = 0, and v4n+1 = l − 1};
hence, |max(H0,l)| (i.e., the number of maximal models in H0,l) is obviously expo-
nential in n. We now claim that

max(H0,l) ⊆ C∗(Πl) for l = 1, 2,(4.4)

which implies that |C∗(Πl)| is exponential in n.
We consider only the case of l = 1, since the case of l = 2 is similar. Assume

that some v ∈ max(H0,1) is not contained in C∗(Π1). Note that v4n+1 = 0, and
furthermore w4n+1 = 1 holds for every w ∈ Σ1. Hence C∗(Π1) must contain at least
one model u ∈ Σ2 such that u > v. Since u ∈ Σ2, there exists an index j such
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that either b1(u)j = 0 or b2(u)j = 0. Let w ∈ S1(⊆ Σ1) be the vector that satisfies
b1(w)j = 0 if b1(u)j = 0 (resp., b2(w)j = 0 if b2(u)j = 0). Then, for x = u ∧ w,
we have b1(x) = b1(u), b2(x) = b2(u), b3(x) = b4(x) = 0, and x4n+1 = 0. Since
x ∈ Σ must hold, it follows that x ∈ Σ2. Thus, x =

∧
y∈S y for some S ⊆ S2. Since

b3(x) = 0, it follows that either b1(x)j = b1(u)j = 0 or b2(x)j = b2(u)j = 0 holds
for all j = 1, . . . , n. However, this implies u ∈ H0,1, which is a contradiction to
v ∈ max(H0,1). Hence (4.4) holds.

As is easily seen, besides Π1 and Π2, further Horn cores exist. Proposition 3.12
and Fact 1 imply that for any such Horn core Π, the sets H1 = (Σ1 ∩ Π) \ H0 and
H2 = (Σ2∩Π)\H0 are both nonempty. Indeed, if H1 = ∅ were true, then Σ1∩Π ⊆ H0

would hold and Fact 1 would imply Π = H0 ∪ (Σ2 ∩ Π); thus, by Proposition 3.12,
Π ⊆ Π2, which is a contradiction. For H2 = ∅, the argument is analogous. Moreover,
Π has the following property.

Fact 2. For all v(1) ∈ H1 and v(2) ∈ H2, it holds that v(1)
∧
v(2) ∈ H0.

To see this, let w = v(1)
∧
v(2). Then b3(w) = b4(w) = 0 holds, since v(1) ∈ Σ1

and v(2) ∈ Σ2. This together with w ∈ Π ⊆ Σ1 ∪Σ2 implies b1(w)j = 0 or b2(w)j = 0
for all j, and hence w ∈ H0.

By Fact 2, w = v(1)
∧
v(2) satisfies either b1(w)j = 0 or b2(w)j = 0 (or both)

for all j. Thus the models v(1) and v(2) satisfy χ(v(1)) ∪ χ(v(2)) = {1, 2, . . . , n}.
Since this holds for all such v(1) and v(2), every set χ(v(1)) must include {1, 2, . . . , n}\⋂

v(2)∈H2
χ(v(2)), and by symmetry every χ(v(2)) must include {1, 2, . . . , n}\⋂v(1)∈H1

χ

(v(1)). This implies the following fact.

Fact 3. There exists a set I ⊂ {1, 2, . . . , n} of size |I| ≥ n/2 such that either (1)
I ⊆ χ(v(1)) holds for every v(1) ∈ H1, or (2) I ⊆ χ(v(2)) holds for every v(2) ∈ H2.

To see this, let J =
⋂

v(1)∈H1
χ(v(1)). If |J | ≥ n/2, then (1) clearly holds for

I = J . On the other hand, if |J | < n/2, then we have (2) for I = {1, 2, . . . , n} \ J ,
since χ(v(2)) must include I.

Assume that (1) of Fact 3 holds; the case of (2) is similar. Choose v(1) ∈ max(H1)
arbitrarily. Then, the maximality of Horn core Π implies that every model w ∈ Σ1\H0

such that χ(w) = χ(v(1)) and w coincides with v(1) on the remaining part (i.e., on

V3∪V4∪{4n+1}) is contained in Π (cf. Facts 1 and 2). There exist 2|χ(v(1))| maximal
such models w, each of which chooses 0 either in block b1(w) or in b2(w), but not in
both, for the positions in χ(v(1)). Since I ⊆ χ(v(1)), at least 2|I| models from Σ1 \H0

are contained in Π. Note that these models are maximal in Π. Since max(Π) ⊆ C∗(Π),
it follows that |C∗(Π)| ≥ 2|I| ≥ 2n/2. Thus, the size of C∗(Π) is not bounded by a
polynomial in n. This proves the theorem statement.

Corollary 4.10. There is no polynomial time algorithm for computing C∗(Π)
of any Horn core Π for Σ1∪Σ2, from the characteristic sets C∗(Σ1), C∗(Σ2) of Horn
theories Σ1,Σ2 ⊆ {0, 1}n, respectively.

Let us remark that Theorem 4.9 and Corollary 4.10 do not rule out the existence
of a polynomial total time algorithm for this problem.

5. Horn envelope of a disjunction of Horn theories. In this section, we
briefly discuss the Horn envelope of a disjunction Σ =

⋃l
i=1 Σi of Horn theories Σi,

i = 1, 2, . . . , l. For model-based representation, we can compute the Horn envelope
in polynomial time. Indeed, the characteristic set of Σ is given by C∗(M), where

M =
⋃l

i=1 C
∗(Σi). Clearly, C∗(M) is computable from M in polynomial time by

removing all models v which are represented by the intersection of other models in
M . Thus we have the following theorem.
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Table 6.1
Complexity results for disjunction Σ =

⋃l

i=1
Σi.

Horn Core Envelope

CNF C∗ CNF C∗ CNF C∗

l is constant P P P EXP EXP P

l is general co-NPC co-NPC co-NPH EXP EXP P

P: polynomial time, co-NPH: co-NP-hard

EXP: exponential time, co-NPC: co-NP-complete

Theorem 5.1. Given characteristic sets C∗(Σ1), C∗(Σ2), . . . , C∗(Σl) of Horn
theories Σ1, Σ2, . . . , Σl, respectively, the characteristic set of the Horn envelope of
Σ =

⋃l
i=1 Σi can be computed in polynomial time.

As for the CNF representation, computing the Horn envelope requires, in general,
exponential time (and space). This is because any Horn CNF that represents the
envelope of Σ may be exponential in the size of Horn CNFs ϕ1, ϕ2, . . . , ϕl of Σ1,Σ2,. . . ,
Σl, even if l = 2. Note that for CNFs representing non-Horn theories, any Horn CNF
for the Horn envelope may be exponential even if l = 1 (cf., e.g., [22]).

For example, let ϕ1 = x0 and ϕ2 = (x1 ∨ x2 . . . ∨ xm) ∧ ∧m
j=1(xj ∨ yj). Then

ϕ = ϕ1 ∨ ϕ2 is equivalent to the CNF (x0 ∨ x1 ∨ x2 . . . ∨ xm) ∧ ∧m
j=1(x0 ∨ xj ∨ yj).

Thus the envelope of ϕ can be represented by

ψ =
∧

z1∈{x1,y1}

∧

z2∈{x2,y2}
· · ·

∧

zm∈{xm,ym}


x0 ∨

m∨
j=1

zj


 .

This CNF has 2m clauses. Since all clauses in ψ are prime and removing some clause
in ψ does not produce the envelope, we have the following theorem.

Theorem 5.2. There exist Horn CNFs ϕi, i = 1, 2, . . . , l, such that any Horn
CNF for the Horn envelope of ϕ =

∨l
i=1 ϕi has size exponential in the size of ϕi,

i = 1, 2, . . . , l, even if l = 2. Hence, the Horn envelope of ϕ cannot be computed in
polynomial time.

6. Related work and conclusion. In this paper, we have considered the prob-
lems with disjunction Σ =

⋃l
i=1 Σi of Horn theories Σi. The results for the three

problems, i.e., recognition of the Horn property, computation of cores, and compu-
tation of envelope, are shown in Table 6.1, where the results are categorized by the
representations of theories (i.e., CNFs and characteristic sets) and the values of l (i.e.,
constant and general).

The computation of a Horn core of a propositional theory Σ has been consid-
ered by several authors, and different algorithms have been proposed for different
representations; see, e.g., [21, 22, 2, 3, 1, 15]. The papers [21, 22, 2, 3, 1] present
algorithms for theories represented by CNFs, which require exponential time in the
worst case. It should be noted that these algorithms are not immediately applicable
if Σ is given by the disjunction of two Horn CNF formulas ϕ1 and ϕ2. This is because
these algorithms require a CNF formula ϕ (≡ ϕ1∨ϕ2) for input, but, since a smallest
CNF ϕ may be exponential in the sizes of ϕ1 and ϕ2, the resulting procedure requires
exponential time (and space) in general.

Concerning the model based representation, our intractability result on computing
a Horn core for a disjunction Σ =

⋃l
i=1 Σi of Horn theories Σi represented by their
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characteristic sets C∗(Σi) contrasts with a positive result in [15] that all Horn cores
of Σ can be enumerated with polynomial delay if all models of Σ are given for input.
Intuitively, this is explained by the fact that C∗(Σ) can be a succinct representation
of Σ, and eliciting all models from it, as needed by the algorithm in [15], is not feasible
in polynomial time in the input size of C∗(Σ).

Algorithms for computing the Horn envelope for certain classes of formula repre-
sentations of a theory Σ are contained in [4, 5, 15, 16, 21, 22]. In particular, [22, 4, 5]
explicitly consider formula representations, while [15, 16] implicitly cover formula
representations of theories in terms of disjunctions of minterms (i.e., terms such that
every variable occurs either positively or negatively in them). The papers [21, 22] sug-
gested a general framework for knowledge compilation, in which the concept of Horn
envelope is generalized to the envelope (i.e., least upper bound) of the knowledge base,
which is given in a source language, in a target language for compilation.

This approach was also pursued in the papers [4, 5], which made several con-
tributions: [4] presented improvements to [21] and preliminary versions of [22], gave
conditions on target clausal languages under which the algorithm in [22] for com-
puting the envelope is correct, by which new classes of theories could be handled,
and presented a modified procedure which works for all clausal propositional target
languages. The paper [5] presented a new algorithm for computing theory envelopes,
which works for a broad subclass of the target languages handled by the algorithm in
[21] and can have an exponential increase in efficiency in some cases. Furthermore,
it was shown in [5] that the algorithms in [21, 5] for envelope computation in the
propositional case can be lifted to the first-order case under certain conditions.

As for the case of computing a Horn CNF for the Horn envelope of a theory rep-
resented by a CNF, the algorithms in [21, 22, 4, 5] are either known to be exponential
in the worst case (in particular, as shown in [4] the algorithm in [21] uses exponential
space) or not polynomial unless P=co-NP. Indeed, a given CNF ϕ representing a
theory Σ is unsatisfiable if and only if any Horn CNF ψ for the Horn envelope of Σ
is unsatisfiable, which given ψ can be decided in polynomial time. Moreover, we can
also conclude from this that a polynomial total time (output-polynomial) algorithm,
i.e., polynomial in the size of the input and the output of any irredundant prime CNF
for the envelope, does not exist unless P=co-NP.

We have shown that the characteristic set of the Horn envelope of a disjunction
of Horn theories Σ1, . . . ,Σl can be computed from their characteristic sets C∗(Σ1),
. . . , C∗(Σl) in polynomial time. On the other hand, a Horn CNF for the Horn
envelope cannot be computed from Horn CNFs ϕ1, . . . , ϕl representing Σ1, . . . , Σl in
polynomial time in general, even if l = 2, since it may have exponential size. As for
a possible polynomial total time algorithm, we observe that results in [15, 16] imply
that such an algorithm—if one exists—is hard to find, even if each Horn theory Σi

has a single model (which is computable from a Horn CNF ϕi for Σi in polynomial
time). More precisely, if each ϕi is a minterm, then the problem is easily seen to be
polynomially equivalent to the problem SID in [16], which is computing an irredundant
prime CNF for the Horn envelope of a theory Horn Σ, given the set C∗(Σ) of its
characteristic models. By Theorem 1 in [15] and Theorem 9 in [16], this problem is at
least as hard computing the transversal hypergraph of a given hypergraph for which
no polynomial total time algorithm is known; see [16] for details.

Some problems remain for further work. One issue is on Horn cores when l is
bounded by some constant; construct an efficient algorithm for generating all Horn
cores for both representations and construct an output-efficient computation of a Horn
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core (under a suitable notion) for the characteristic set representation. Another issue
is a polynomial total time algorithm for computing the Horn envelope from Horn
CNFs.
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A FULLY DYNAMIC ALGORITHM FOR RECOGNIZING AND
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Abstract. In this paper we study the problem of recognizing and representing dynamically
changing proper interval graphs. The input to the problem consists of a series of modifications to
be performed on a graph, where a modification can be a deletion or an addition of a vertex or an
edge. The objective is to maintain a representation of the graph as long as it remains a proper
interval graph, and to detect when it ceases to be so. The representation should enable one to
efficiently construct a realization of the graph by an inclusion-free family of intervals. This problem
has important applications in physical mapping of DNA.

We give a near-optimal fully dynamic algorithm for this problem. It operates in O(logn) worst-
case time per edge insertion or deletion. We prove a close lower bound of Ω(log n/(log logn +
log b)) amortized time per operation in the cell probe model with word-size b. We also construct
optimal incremental and decremental algorithms for the problem, which handle each edge operation
in O(1) time. As a byproduct of our algorithm, we solve in O(logn) worst-case time the problem of
maintaining connectivity in a dynamically changing proper interval graph.

Key words. fully dynamic algorithms, graph algorithms, proper interval graphs, lower bounds
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1. Introduction. A graph G is called an interval graph if its vertices can be
assigned to intervals on the real line so that two vertices are adjacent in G if and only
if their assigned intervals intersect. The set of intervals assigned to the vertices of G
is called a realization of G. If the set of intervals can be chosen to be inclusion-free,
then G is called a proper interval graph. Proper interval graphs have been studied
extensively in the literature (cf. [7, 16]), and several linear-time algorithms are known
for their recognition and realization [3, 4].

This paper deals with the problem of recognizing and representing dynamically
changing proper interval graphs. The input is a series of operations to be performed
on a graph, where an operation is any of the following: adding a vertex (along with
the edges incident to it), deleting a vertex (and the edges incident to it), adding
an edge and deleting an edge. The objective is to maintain a representation of the
dynamic graph as long as it is a proper interval graph, and to detect when it ceases
to be so. The representation should enable one to efficiently construct a realization
of the graph. In the incremental version of the problem, only addition operations
are permitted, i.e., the set of operations includes only the addition of a vertex and
the addition of an edge. In the decremental version of the problem only deletion
operations are allowed.
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The motivation for this problem comes from its application to physical mapping
of DNA [1]. Physical mapping is the process of reconstructing the relative position
of DNA fragments, called clones, along the target DNA molecule, prior to their se-
quencing, based on information about their pairwise overlaps. In some biological
frameworks the set of clones is virtually inclusion-free—for example, when all clones
have similar lengths. (This is the case for instance for cosmid clones.) In this case,
the physical mapping problem can be modeled using proper interval graphs as follows.
A graph G is built according to the biological data. Each clone is represented by a
vertex and two vertices are adjacent if and only if their corresponding clones overlap.
The physical mapping problem then translates to the problem of finding a realization
of G, or determining that none exists.

Had the overlap information been accurate, the two problems would have been
equivalent. However, some biological techniques may occasionally lead to an incor-
rect conclusion about whether two clones intersect, and additional experiments may
change the status of an intersection between two clones. The resulting changes to
the corresponding graph are the deletion of an edge, or the addition of an edge. The
set of clones is also subject to changes, such as adding new clones or deleting “bad”
clones (such as chimerics [18]). These translate into addition or deletion of vertices in
the corresponding graph. Thus, we would like to be able to dynamically change our
graph, so as to reflect the changes in the biological data, as long as they allow us to
construct a map, i.e., as long as the graph remains a proper interval graph.

Several authors have studied the problem of dynamically recognizing and repre-
senting various graph families. Hsu [11] has given an O(m+n log n)-time incremental
algorithm for recognizing interval graphs. (Throughout, we denote the number of ver-
tices and edges in a graph by n and m, respectively.) Deng, Hell, and Huang [4] have
given a linear-time incremental algorithm for recognizing and representing connected
proper interval graphs. This algorithm requires that the graph will remain connected
throughout the modifications. In both algorithms [11, 4] only vertex additions are han-
dled. Recently, Ibarra [12] devised a fully dynamic algorithm for recognizing chordal
graphs which handles each edge operation in O(n) time. He also gave an optimal fully
dynamic algorithm for recognizing split graphs, which handles each edge operation in
O(1) time.

Our results are as follows: For the general problem of recognizing and representing
proper interval graphs we give a fully dynamic algorithm which handles each operation
in time O(d+ log n), where d denotes the number of edges involved in the operation.
Thus, in case a vertex is added or deleted, d equals its degree, and in case an edge
is added or deleted, d = 1. Our algorithm builds on the representation of proper
interval graphs given in [4]. We prove a close lower bound of Ω(logn/(log log n +
log b)) amortized time per edge operation in the cell probe model of computation
with word-size b [20]. It follows that our algorithm is nearly optimal (up to a factor
of O(log log n)). We also give a fast O(n) time algorithm for computing a realization
of a proper interval graph given its representation, improving the O(m + n) bound
of [4].

For the incremental version of the problem we give an optimal algorithm (up to
a constant factor) which handles each operation in time O(d). This generalizes the
result of [4] to arbitrary instances. The same bound is achieved for the decremental
problem.

As a part of our general algorithm we give a fully dynamic procedure for main-
taining connectivity in proper interval graphs. The procedure receives as input a
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sequence of operations each of which is a vertex addition or deletion, an edge addition
or deletion, or a query whether two vertices are in the same connected component. It
is assumed that the graph remains proper interval throughout the modifications, since
otherwise our main algorithm detects that the graph is no longer a proper interval
graph and halts. We show how to implement this procedure in O(d + log n) worst-
case time per operation involving d edges. In comparison, the best known algorithms
for fully dynamic connectivity in general graphs require O(log n(log log n)3) expected
amortized time per edge operation [17], or O(log2 n) amortized time per edge opera-
tion [10], or O(

√
n) worst-case time per edge operation [5]. Furthermore, we show that

the lower bound of Fredman and Henzinger [9] of Ω(logn/(log log n+log b)) amortized
time per edge operation (in the cell probe model with word-size b) for fully dynamic
connectivity in general graphs applies also to the problem of maintaining connectivity
in proper interval graphs.

The paper is organized as follows: In section 2 we give the basic background and
describe our representation of proper interval graphs and the realization it defines.
In sections 3 and 4 we present the incremental algorithm. In section 5 we extend
the incremental algorithm to a fully dynamic algorithm for proper interval graph
recognition and representation. We also derive an optimal decremental algorithm. In
section 6 we give a fully dynamic algorithm for maintaining connectivity in proper
interval graphs. Finally, in section 7 we prove lower bounds on the amortized time
per edge operation of fully dynamic algorithms for recognizing proper interval graphs
and for maintaining connectivity in proper interval graphs.

2. Preliminaries. Let G = (V,E) be a graph. We denote its set of vertices
also by V (G) and its set of edges also by E(G). For a vertex v ∈ V we define
N(v) ≡ {u ∈ V : (u, v) ∈ E} and N [v] ≡ N(v) ∪ {v}. Similarly, for a set S ⊆ V we
define N(S) ≡ ∪v∈SN(v) and N [S] = N(S)∪ S. Let R be an equivalence relation on
V defined by uRv if and only if N [u] = N [v]. Each equivalence class of R is called
a block of G. Note that every block of G is a complete subgraph of G. The size of a
block is the number of vertices in it. Two blocks A and B are adjacent, or neighbors,
in G if some (and hence all) vertices a ∈ A, b ∈ B, are adjacent in G. A straight
enumeration of G is a linear ordering Φ of the blocks in G, such that for every block,
the block and its neighboring blocks are consecutive in Φ.

Let Φ = B1 < · · · < Bl be a linear ordering of the blocks of G. For any 1 ≤
i < j ≤ l, we say that Bi is ordered to the left of Bj and that Bj is ordered to the
right of Bi in Φ. The out-degree of a block B with respect to Φ, denoted by o(B), is
the number of neighbors of B which are ordered to its right in Φ. A chordless cycle
is an induced cycle of length greater than 3. A claw is an induced K1,3 (a 3-degree
vertex connected to three 1-degree vertices). A graph is called claw-free if it contains
no induced claw. For other definitions in graph theory see, e.g., [7].

We now quote some well-known properties of proper interval graphs that will be
used in what follows.

Theorem 2.1 (see [13]). An interval graph (and in particular a proper interval
graph) contains no chordless cycle.

Theorem 2.2 (see [19]). A graph is a proper interval graph if and only if it is
an interval graph and is claw-free.

Theorem 2.3 (see [4]). A graph is a proper interval graph if and only if it has
a straight enumeration.

Lemma 2.4 (“the umbrella property” [14]). Let Φ be a straight enumeration
of a connected proper interval graph G. If A,B, and C are blocks of G, such that
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B CA

Fig. 2.1. The umbrella property.

A < B < C in Φ and A is adjacent to C, then B is adjacent to A and to C (see
Figure 2.1).

It is shown in [4] that a connected proper interval graph has a unique straight
enumeration up to reversal. This motivates our representation of proper interval
graphs: For each connected component of the dynamic graph we maintain a straight
enumeration. (In fact, for technical reasons we shall maintain both the enumeration
and its reversal.) The details of the data structure containing this information will
be described in section 3.1.

This information implicitly defines a realization of the dynamic graph (cf. [4])
as follows: Assign to each vertex in block Bi the interval [i, i + o(Bi) + 1 − 1

i ]. We
show in section 3.1 how to compute a realization of the dynamic graph from our data
structure in time O(n).

3. An incremental algorithm for vertex addition. In the following two sec-
tions we describe an optimal incremental algorithm for recognizing and representing
proper interval graphs. The algorithm receives as input a series of addition operations
to be performed on a graph. Upon each operation the algorithm updates its represen-
tation of the graph and halts if the current graph is no longer a proper interval graph.
The algorithm handles each operation in time O(d), where d denotes the number of
edges involved in the operation. (Thus, d = 1 in case of an edge addition, and d is the
degree in case of a vertex addition.) It is assumed that initially the graph is empty,
or alternatively, that the representation of the initial graph is known. We also show
how to compute in O(n) time a realization of a graph given its representation.

A contig of a connected proper interval graph G is a straight enumeration of G.
The first and the last blocks of a contig are called end-blocks, and their vertices are
called end-vertices. The rest of the blocks are called inner-blocks.

As mentioned above, each connected component of the dynamic graph has ex-
actly two contigs (which are reversals of each other) and both are maintained by the
algorithm. Each operation involves updating the representation. In the following we
concentrate on describing only one of the two contigs for each component. The second
contig is updated in a similar way.

3.1. The data structure. We now describe the details of how we keep our
representation. The following data is kept and updated by the algorithm:

1. For each vertex we keep the name of the block to which it belongs.
2. For each block we keep the following:

(a) The size of the block.
(b) Left and right near pointers, pointing to nearest neighbor blocks on the

left and on the right, respectively.
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(c) Left and right far pointers, pointing to farthest neighbor blocks on the
left and on the right, respectively.

(d) Left and right self pointers, pointing to the block itself.
(e) An end pointer which is null if the block is not an end-block of its contig,

and otherwise, points to the other end-block of that contig.

In the following we shall omit details about the obvious updates to the names of
the blocks containing each of the vertices (item 1) and to the block sizes (item 2a).

We introduce self pointers due to the possible need in the course of the algorithm
to update many far pointers pointing to a certain block, so that they point to another
block. In order to be able to do that in O(1) time we use the technique of nested
pointers: We make the far pointers point to a location whose content is the address
of the block to which the far pointers should point. The role of this special location
will be served by our self-pointers. The value of the left and right self-pointers of a
block B is always the address of B. When we say that a certain left (right) far pointer
points to B we mean that it points to a left (right) self-pointer of B. Let A and B
be blocks. In order to change all left (right) far pointers pointing to A so that they
point to B, we require that no left (right) far pointer points to B. If this is the case,
we simply exchange the left (right) self-pointer of A with the left (right) self-pointer
of B. This means that (1) the previous left (right) self-pointer of A is made to point
to B, and the algorithm records it as the new left (right) self-pointer of B; and (2)
the previous left (right) self-pointer of B is made to point to A, and the algorithm
records it as the new left (right) self-pointer of A.

We shall use the following notation: For a block B we denote its address in the
memory by &B. &∅ denotes the null pointer. When we set a far pointer to point to a
left or to a right self-pointer of B we shall abbreviate and set it to &B. We denote the
left and right near pointers of B by Nl(B) and Nr(B), respectively. We denote the
left and right far pointers of B by Fl(B) and Fr(B), respectively. We denote its end
pointer by E(B). In the rest of this paper we often refer to blocks by their addresses.
For example, if A and B are blocks and Nr(A) = &B, we sometimes refer to B by
Nr(A). We define Nr(∅) = Nl(∅) = Fr(∅) = Fl(∅) = &∅. When it is clear from the
context, we also use a name of a block to denote any vertex in that block. Given a
contig Φ we denote its reversal by ΦR. In general when performing an operation, we
denote the graph before the operation is carried out by G, and the graph after the
operation is carried out by G′.

Given this data structure we can compute a realization of a contig C of G as
follows: We first rank the blocks of C, starting with the leftmost block. This is done
by choosing an arbitrary block of C, and marching up the enumeration of blocks of
C using left near pointers, until we reach an end-block. We then set the rank of
this block to 1, and march down the enumeration of blocks using right near pointers,
until we reach the other end-block. We rank all the blocks of C along the way.
Let us denote by r(B) the rank of a block B. Then the out-degree of B is simply
o(B) = r(Fr(B)) − r(B), and the interval that we assign to the vertices of B is
[r(B), r(Fr(B)) + 1− 1/r(B)]. We conclude with the following theorem.

Theorem 3.1. A realization of a proper interval graph, which is represented
using the data structure described above, can be computed in time O(n).

3.2. The impact of a new vertex. In the following we describe the changes
made to the representation of the graph in case G′ is formed from G by the addition of
a new vertex v of degree d. We also give some necessary and some sufficient conditions
for deciding whether G′ is a proper interval graph.
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Let B be a block of G. We say that v is adjacent to B if v is adjacent to some
vertex in B. We say that v is fully adjacent to B if v is adjacent to every vertex in B.
We say that v is partially adjacent to B if v is adjacent to B but not fully adjacent
to B.

The following lemmas characterize the adjacencies of the new vertex, assuming
that G′ is a proper interval graph.

Lemma 3.2. If G′ is a proper interval graph then v can have neighbors in at most
two connected components of G.

Proof. Suppose to the contrary that x, y, and z are neighbors of v in three distinct
components of G. Then v, x, y, and z induce a claw in G′, a contradiction.

Lemma 3.3 (see [4]). Let C be a connected component of G containing neighbors
of v. Let B1 < · · · < Bk be a contig of C. Suppose that G′ is a proper interval graph
and let 1 ≤ a < b < c ≤ k. Then the following properties are satisfied:

1. If v is adjacent to Ba and to Bc, then v is fully adjacent to Bb.
2. If v is adjacent to Bb and not fully adjacent to Ba and to Bc, then Ba is not

adjacent to Bc.
3. If b = a+1, c = b+1, and v is adjacent to Bb, then v is fully adjacent to Ba

or to Bc.

One can view a contig Φ of a connected proper interval graph C as a weak linear
order <Φ on the vertices of C, where x <Φ y if and only if the block containing x is
ordered in Φ to the left of the block containing y. We say that Φ′ is a refinement of
Φ if either, for every x, y ∈ V (C), x <Φ y implies x <Φ′ y or, for every x, y ∈ V (C),
x >Φ y implies x <Φ′ y.

Lemma 3.4. If H is a connected induced subgraph of a proper interval graph H ′,
Φ is a contig of H, and Φ′ is a straight enumeration of H ′, then Φ′ is a refinement
of Φ.

Proof. By induction on the number of additional vertices in H ′: If H ′ = H then
the claim is obvious. Let k = |V (H ′) \ V (H)|. By the induction hypothesis, for a
proper interval graph H ′′ which contains H (as an induced subgraph) and is contained
inH ′, and for which |V (H ′′)\V (H)| = k−1, every straight enumeration is a refinement
of Φ. Let C be a connected component of H ′′ for which V (C) ⊇ V (H), and let Φ′′C
be a contig of C. Let C ′ be a connected component of H ′ for which V (C ′) ⊇ V (H)
(and therefore V (C ′) ⊇ V (C)), and let Φ′C be a contig of C ′. In [4] it is constructively
shown how Φ′C is obtained as a refinement of Φ′′C (see also section 3.3). Since Φ′′C is
a refinement of Φ, the claim follows.

Note that whenever v is partially adjacent to a block B in G, then the addition
of v will cause B to split into two blocks of G′, namely, B \ N(v) and B ∩ N(v).
Otherwise, if B is a block of G to which v is either fully adjacent or nonadjacent, then
one of B or B ∪ {v} is a block of G′.

Corollary 3.5. If B is a block of G to which v is partially adjacent, then
B \N(v) and B ∩N(v) occur consecutively in a straight enumeration of G′.

Lemma 3.6. Let C be a connected component of G containing neighbors of v.
Let {B1, . . . , Bk} denote the set of blocks in C which are adjacent to v, such that in
a contig of C, B1 < · · · < Bk. If G′ is a proper interval graph, then the following
properties are satisfied:

1. B1, . . . , Bk are consecutive in a contig of C.
2. If k ≥ 3 then v is fully adjacent to B2, . . . , Bk−1.
3. If v is adjacent to a single block B1 in C, then B1 is an end-block.
4. If v is adjacent to more than one block in C and has neighbors in another
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component, then B1 is adjacent to Bk, and one of B1 or Bk is an end-block
to which v is fully adjacent, while the other is an inner-block.

Proof. Claims 1 and 2 follow directly from part 1 of Lemma 3.3. Claim 3 follows
from part 3 of Lemma 3.3. To prove the last part of the lemma let us denote the other
component containing neighbors of v by D. Examine the induced connected subgraph
H of G′ whose set of vertices is V (H) = {v} ∪ V (C) ∪ V (D). H is a proper interval
graph since it is an induced subgraph of G′. It is composed of three types of blocks:
blocks whose vertices are from V (C), which we will henceforth call C-blocks; blocks
whose vertices are from V (D), which we will henceforth call D-blocks; and {v}, which
is a block of H, since H \ {v} is not connected. All blocks of C remain intact in H,
except B1 and Bk, each of which may split into Bj \N(v) and Bj ∩N(v), j = 1, k.

Surely, in a contig of H all C-blocks must be ordered completely before or com-
pletely after all D-blocks. Let Φ denote a contig of H, in which C-blocks are ordered
before D-blocks. Let X denote the rightmost C-block in Φ. By the umbrella prop-
erty, X < {v}, and moreover, X is adjacent to v. By Lemma 3.4, Φ is a refinement
of a contig of C. Hence, X ⊆ B1 or X ⊆ Bk (more precisely, X = B1 ∩ N(v) or
X = Bk ∩N(v)). Therefore, one of B1 or Bk is an end-block.

Without loss of generality, X ⊆ Bk. Suppose to the contrary that v is not fully
adjacent to Bk. Then by Lemma 3.4 we have Bk−1 ∩ N(v) < Bk \ N(v) < {v} in
Φ (note that these blocks are not consecutive), contradicting the umbrella property.
We conclude that v is fully adjacent to Bk. Furthermore, B1 must be adjacent to Bk,
or else G′ contains a claw consisting of v and one vertex from each of B1, Bk, and
V (D) ∩ N(v). It remains to show that B1 is an inner-block in C. Suppose it is an
end-block. Since B1 and Bk are adjacent, C consists of a single block, a contradiction.
Thus, claim 4 is proved.

3.3. The DHH algorithm. In our algorithm we rely on the incremental algo-
rithm of Deng, Hell, and Huang (DHH) [4]. This algorithm handles the insertion of a
new vertex into a connected proper interval graph in O(d) time, changing its straight
enumeration appropriately or determining that the new graph is not a proper interval
graph. We describe it briefly below. For simplicity, we assume throughout that the
modified graph is a proper interval graph.

Let H be a connected proper interval graph, and let v be a vertex to be added,
which is adjacent to d vertices in H. Let Φ = B1 < · · · < Bp denote a contig of H. By
Lemma 3.6, the blocks to which v is fully adjacent occur consecutively in Φ. Assume
that v is fully adjacent to Bl, . . . , Br, and for clarity we shall consider only the case
where 1 < l < r < p. Let a = l − 1 and c = r + 1. By Lemma 3.3(2), Ba and Bc are
nonadjacent. Let b > a be the largest index such that Bb is adjacent to Ba, and let
d < c be the smallest integer such that Bd is adjacent to Bc. It is shown in [4] that
a < b < d < c.

In order to construct a straight enumeration of the new graph we have to distin-
guish between two cases:

1. If v is adjacent either to Ba or to Bc, then a straight enumeration of the new
graph can be obtained as follows: If v is adjacent to Ba, we split Ba into
Ba \ N(v), Ba ∩ N(v), list them in this order, and add {v} as a block just
after Bb. If v is adjacent to Bc, we split Bc into Bc ∩N(v), Bc \N(v) in this
order, and add {v} as a block just before Bd. In case v is adjacent to both
Ba and Bc then these two instructions coincide, as shown in [4].

2. If v is adjacent neither to Ba nor to Bc then there are two possibilities: If
there exists a block Bj , b < j < d, such that Bj is adjacent to both Bl and
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Br, then a straight enumeration is obtained by adding v to Bj . Otherwise,
let u be the least integer greater than b such that Bu is adjacent to Br. Then
a straight enumeration is obtained by inserting a new block {v} just before
Bu.

In section 3.4 we show how to find the sequence of blocks Bl, . . . , Br from our data
structure in O(d) time. Using near and far pointers we can find, in O(1) time, Ba =
Nl(Bl), Bc = Nr(Br), Bb = Fr(Ba), and Bd = Fl(Bc). If v is adjacent to Ba or to Bc
then updating the straight enumeration can be done in O(1) time. Otherwise, finding
Bj (if such exists) can be done in O(d) time, and alternatively, finding Bu = Fl(Br)
can be done in O(1) time. Again in this case we can update the straight enumeration
in O(1) time. Hence, our data structure supports the insertion of a vertex of degree
d in O(d) time, when all its neighbors are in the same connected component.

3.4. Our algorithm. We perform the following upon a request for adding a new
vertex v: We make two passes over the neighbors of v. In the first pass we discover
all blocks adjacent to v, and for each such block we allocate a counter and initialize
it to zero. In the second pass, for each neighbor u of v we add one to the counter
of the block containing u. We call a block full if its counter equals its size, empty if
its counter equals zero, and partial otherwise. In order to find a set of consecutive
blocks which contain neighbors of v, we pick arbitrarily a neighbor of v and march
up the enumeration of blocks to the left using the left near pointers. We continue
till we hit an empty block or till we reach the end of the contig. We do the same to
the right and this way we discover a maximal sequence of nonempty blocks in that
component which contain neighbors of v. We call this maximal sequence a segment.
Only the two extreme blocks of the segment are allowed to be partial, or else we fail
(by Lemma 3.6(2)).

If the segment we found contains all the neighbors of v then we can use the DHH
algorithm in order to insert v into G, updating our internal data structure accordingly.
Otherwise, by Lemmas 3.2 and 3.6(1) there could be only one more segment which
contains neighbors of v. In that case, exactly one extreme block in each segment
is an end-block to which v is fully adjacent (if the segment contains more than one
block), and the two extreme blocks in each segment are adjacent, or else we fail (by
Lemma 3.6(3, 4)).

We proceed as above to find a second segment containing neighbors of v. We
can make sure that the two segments are from two different contigs by checking that
their end-blocks do not point to each other. We also check that conditions 3 and 4
in Lemma 3.6 are satisfied for both segments. If the two segments do not cover all
neighbors of v, we fail.

If v is adjacent to vertices in two distinct components C and D, then we should
merge their contigs. Let Φ = B1 < · · · < Bk and ΦR be the two contigs of C. Let
Ψ = B′1 < · · · < B′l and ΨR be the two contigs of D. The way the merge is performed
depends on the identity of the end-blocks to which v is adjacent in each segment. If v
is adjacent to Bk and B′1, then by the umbrella property the two new contigs (up to
refinements described below) are Φ < {v} < Ψ and ΨR < {v} < ΦR. In the following
we describe the necessary changes to our internal data structure in case these are the
new contigs. The three other cases (e.g., v is adjacent to B1 and B′1, etc.) are handled
similarly.

• Block enumeration: We merge the two enumerations of blocks and put a new
block {v} in-between the two contigs. Let the leftmost block which is adjacent
to v in the new ordering Φ < {v} < Ψ be Bi, and let the rightmost block
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adjacent to v be B′j . If Bi is partial we split it into two blocks B̂i = Bi \N(v)
and Bi = Bi ∩N(v) in this order. If B′j is partial we split it into two blocks

B′j = B′j ∩N(v) and B̂′j = B′j \N(v) in this order.
• End pointers: We set E(B1) = E(B′1) and E(B′l) = E(Bk). We then nullify

the end pointers of Bk and B′1.
• Near pointers: We update Nl({v}) = &Bk, Nr({v}) = &B′1, Nr(Bk) = &{v},
and Nl(B

′
1) = &{v}. Let B0 = ∅. If Bi was split we set Nr(B̂i) =

&Bi, Nl(Bi) = &B̂i, Nl(B̂i) = &Bi−1, and Nr(Bi−1) = &B̂i. Analogous
updates are made to the near pointers of B′j , B̂

′
j , and B′j+1, in case B′j was

split.
• Far pointers: If Bi was split we set Fl(B̂i) = Fl(Bi), Fr(B̂i) = &Bk, and
exchange the left self-pointer of Bi with the left self-pointer of B̂i. If B

′
j was

split we set Fr(B̂
′
j) = Fr(B

′
j), Fl(B̂

′
j) = &B′1 and exchange the right self-

pointer of B′j with the right self-pointer of B̂′j . In addition, we set all right
far pointers of Bi, Bi+1, . . . , Bk and all left far pointers of B′1, . . . , B

′
j−1, B

′
j

to &{v} (in O(d) time). Finally, we set Fl({v}) = &Bi and Fr({v}) = &B′j .
The algorithm is summarized in Figure 3.1.

Input: A representation of the current graph G and a list of neighbors in G of a
new vertex v.
Output: A representation of G ∪ {v} or a False value indicating that G ∪ {v} is
not a proper interval graph.

1. Find the number s of segments of blocks which are adjacent to v.
2. If s ≥ 3 then return False.
3. If s = 1 then apply the DHH algorithm.
4. Otherwise, proceed as follows (s = 2):

(a) Check that exactly one extreme block in each segment is an end-block
to which v is fully adjacent, and that the two extreme blocks in each
segment are adjacent. Otherwise, return False.

(b) Check that the two segments are in distinct contigs. Otherwise, return
False.

(c) Update the representation of the graph as described above.

Fig. 3.1. An incremental algorithm for vertex addition.

4. An incremental algorithm for edge addition. In this section we show
how to handle the addition of a new edge (u, v) in O(1) time. We characterize the
cases for which G′ = G∪{(u, v)} is a proper interval graph and show how to efficiently
detect them and how to update our representation of the graph.

Lemma 4.1. If u and v are in distinct connected components in G, then G′ is a
proper interval graph if and only if u and v are end-vertices in a straight enumeration
of G.

Proof. To prove the “only if” part let us examine the graphH = G′\{u} = G\{u}.
H is a proper interval graph as it is an induced subgraph of G. If G′ is also a
proper interval graph, then by Lemma 3.6(3) v must be an end-vertex in a straight
enumeration of G, since u is not adjacent to any other vertex in the component
containing v. The same argument applies to u.

To prove the “if” part we give a straight enumeration of the new connected
component containing u and v in G′. Denote by C and D the components containing
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u and v, respectively.

Let B1 < · · · < Bk be a contig of C, such that u ∈ Bk. Let B′1 < · · · < B′l be a
contig of D, such that v ∈ B′1. Then B1 < · · · < Bk \ {u} < {u} < {v} < B′1 \ {v} <
. . . < B′l is the required straight enumeration.

By the previous lemma if u and v are in distinct components in G, and G′ is a
proper interval graph, then they must reside in end-blocks of distinct contigs. We can
check that in O(1) time. In case u and v are end-vertices of two distinct contigs, we
update our internal data structure as follows:

• Block enumeration: Given in the proof of Lemma 4.1.
• End pointers: We set E(B1) = E(B′1) and E(B′l) = E(Bk). We then nullify
the end-pointers of Bk and B′1.

• Notation: Let B0 = ∅ and B′l+1 = ∅. Let Bk = Bk \ {u} and B′1 = B′1 \ {v}.
If Bk �= ∅, let x = k, and otherwise, let x = k − 1. If B′1 �= ∅ let y = 1, and
otherwise, let y = 2.
• Near pointers: We set Nr({u}) = &{v}, Nl({u}) = &Bx, Nl({v}) = &{u},
and Nr({v}) = &B′y. We also update Nr(Bx) = &{u} and Nl(B

′
y) = &{v}.

• Far pointers: We set Fl({u}) = Fl(Bk) and Fr({v}) = Fr(B
′
1). We exchange

the right self-pointer of Bk with the right self-pointer of {u}, and the left self-
pointer of B′1 with the left self-pointer of {v}. Finally, we set Fr({u}) = &{v}
and Fl({v}) = &{u}.

It remains to handle the case where u and v are in the same connected component
C in G. If N(u) = N(v), then by the umbrella property it follows that C contains only
three blocks which are merged into a single block in G′. In this case G′ is a proper
interval graph and updates to the internal data structure are trivial. The remaining
case is analyzed in the following lemma.

Lemma 4.2. Let B1 < · · · < Bk be a contig of C, such that u ∈ Bi and v ∈ Bj
for some 1 ≤ i < j ≤ k. Assume that N(u) �= N(v). Then G′ is a proper interval
graph if and only if Fr(Bi) = Bj−1 and Fl(Bj) = Bi+1 in G.

Proof. Let G′ be a proper interval graph. Since Bi and Bj are nonadjacent,
Fr(Bi) ≤ Bj−1 and Fl(Bj) ≥ Bi+1. Suppose to the contrary that Fr(Bi) < Bj−1. Let
z ∈ Bj−1. If in addition Fl(Bj) = Bi+1, then by the umbrella property N [v] ⊃ N [z].
(This is a strict containment.) As v and z are in distinct blocks, there exists a vertex
b ∈ N [v] \N [z]. But then v, b, z, and u induce a claw in G′, a contradiction. Hence,
Fl(Bj) > Bi+1 and therefore Fr(Bi+1) < Bj . Let x ∈ Bi+1 and let y ∈ Fr(Bi+1).
As u and x are in distinct blocks, we have either (u, y) �∈ E(G) or there exists a
vertex a ∈ N [u] \ N [x] (or both). In the first case, v, u, x, y, and the vertices on a
shortest path from y to v induce a chordless cycle in G′. In the second case u, a, x,
and v induce a claw in G′. Hence, in both cases we arrive at a contradiction. By a
symmetric argument we deduce that Fl(Bj) = Bi+1.

To prove the “if” part we provide a straight enumeration of C ∪ {(u, v)}. If
Bi = {u}, Fr(Bj−1) = Fr(Bj), and Fl(Bj−1) = Bi (i.e., N [v] = N [Bj−1] in G′), we
move v from Bj to Bj−1. Similarly, if Bj contained only v, Fl(Bi+1) = Fl(Bi) and
Fr(Bi+1) = Bj (i.e., N [u] = N [Bi+1] in G′), we move u from Bi to Bi+1. If u was
not moved and Bi contained vertices other than u, we split Bi into Bi = Bi \{u}, {u}
in this order. If v was not moved and Bj contained vertices other than v, we split
Bj into {v}, Bj = Bj \ {v} in this order. It is easy to see that the result is a straight
enumeration of C ∪ {(u, v)}.

If u and v are neither end-vertices of distinct contigs nor end-vertices of a three-
block contig, then, assuming that G′ is a proper interval graph, the condition of
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Lemma 4.2 must hold. We can check that in time O(1), and if it is the case, change
our data structure so as to reflect the new straight enumeration of blocks given in the
proof of Lemma 4.2. We describe below the changes to our data structure.

• Block enumeration: Given in the proof of Lemma 4.2.
• Near pointers: Let Bk+1 = ∅. If u was moved into Bi+1, then no change is
necessary with respect to u. If Bi ⊃ {u}, u forms a new block and we set
Nl({u}) = &Bi, Nr(Bi) = &{u}, Nr({u}) = &Bi+1, and Nl(Bi+1) = &{u}.
Analogous updates are made with respect to v.
• Far pointers: If u was moved into Bi+1, then no change is necessary with
respect to u. If Bi ⊃ {u}, we exchange the right self-pointer of Bi with the
right self-pointer of (the new block) {u}. Let B denote the block containing v
in G′. We also set Fl({u}) = Fl(Bi) and Fr({u}) = &B. Analogous updates
are made with respect to v.

The following theorem summarizes the results of sections 3 and 4.

Theorem 4.3. The incremental proper interval graph representation problem is
solvable in O(1) time per added edge.

5. The fully dynamic algorithm. In this section we give a fully dynamic
algorithm for recognizing and representing proper interval graphs. The algorithm
performs an operation involving d edges in O(d+ log n) time. It supports four types
of operations: adding a vertex, adding an edge, deleting a vertex, and deleting an
edge. It is based on the incremental algorithm. The main difficulty in extending the
incremental algorithm to handle all types of operations is updating the end pointers
of blocks when both insertions and deletions are allowed. To bypass this problem we
(implicitly) keep the identity of each block as an end/inner-block but do not keep
end pointers at all. Instead, we maintain the connected components of G and use
this information in our algorithm. In the next section we provide a fully dynamic
algorithm for maintaining the connected components of a proper interval graph. This
algorithm handles a modification request involving d edges in O(d + log n) time and
determines whether two blocks are in the same connected component in O(log n) time.
We describe below how each operation is handled by the fully dynamic proper interval
graph representation algorithm.

5.1. The addition of a vertex. This operation is handled in essentially the
same way as done by the incremental algorithm. However, in order to check if the
end-blocks of two distinct segments are in distinct components, we query our data
structure of connected components (in O(log n) time), rather than checking if the end
pointers of these blocks do not point to each other.

5.2. The addition of an edge. Again, handling this operation is similar to its
handling by the incremental algorithm, with the exception that in order to check if
the endpoints of an edge are in distinct components, we query our data structure of
connected components (in O(log n) time).

5.3. The deletion of a vertex. We show next how to update the contigs of G
after deleting a vertex v of degree d. Note, that in this case G′ is an induced subgraph
of G, and hence, also a proper interval graph.

Denote by X the block containing v. If X contains vertices other than v then the
data structure is simply updated by deleting v. Hence, we concentrate on the case
that X = {v}. In time O(d) we can find the segment of blocks which includes X and
all its neighbors. Let the contig containing X be B1 < · · · < Bk, and let the blocks
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of the segment be Bi < · · · < Bj , where X = Bl for some 1 ≤ i ≤ l ≤ j ≤ k. The
following updates should be performed:

• Block enumeration: If 1 < i < l, we check whether Bi can be merged with
Bi−1. If Fl(Bi) = Fl(Bi−1), Fr(Bi) = Bl, and Fr(Bi−1) = Bl−1, we merge
these blocks by moving all vertices from Bi to Bi−1 (in O(d) time) and delet-
ing Bi. If l < j < k we deal similarly with Bj and Bj+1.
Finally, we delete Bl. If 1 < l < k and Bl−1, Bl+1 are nonadjacent, then by
the umbrella property they are no longer in the same connected component,
and the contig should be split into two contigs, one ending at Bl−1 and the
other beginning at Bl+1.

• Near pointers: Let B0 = ∅, Bk+1 = ∅. If Bi and Bi−1 were merged, we
update Nr(Bi−1) = &Bi+1 and Nl(Bi+1) = &Bi−1. Similar updates are
made with respect to Bj−1 and Bj+1 in case Bj and Bj+1 were merged. If
the contig is split, we nullify Nr(Bl−1) and Nl(Bl+1). Otherwise, we update
Nr(Bl−1) = &Bl+1 and Nl(Bl+1) = &Bl−1.
• Far pointers: If Bi and Bi−1 were merged, we exchange the right self-pointer
of Bi with the right self-pointer of Bi−1. Similar changes should be made
with respect to Bj and Bj+1. We also set all right far pointers, previously
pointing to Bl, to &Bl−1 and all left far pointers, previously pointing to Bl,
to &Bl+1 (in O(d) time).

Note that these updates take O(d) time and require no knowledge about the
connected components of G.

5.4. The deletion of an edge. Let (u, v) be an edge of G to be deleted. Let C
be the connected component of G containing u and v. Let Bi and Bj be the blocks
containing u and v, respectively, in a contig B1 < · · · < Bk of C. If i = j = k = 1,
then B1 is split into {u}, B1 \ {u, v}, and {v}, in this order, resulting in a straight
enumeration of G′. Updates are trivial in this case. Henceforth we assume that k > 1.
We first observe that i �= j, i.e., N [u] �= N [v].

Lemma 5.1. If N [u] = N [v] then G′ is a proper interval graph if and only if C
is a clique.

Proof. To prove the “only if” part, we first show that every vertex x ∈ C \ {u, v}
is adjacent to both u and v. Suppose to the contrary that there exists a vertex
x ∈ C \ {u, v} which is not adjacent to u. Let x = x1, . . . , xk = u be a path in C from
x to u. Let xi be the first vertex on the path which is adjacent to u (and therefore
also to v). Then {xi, xi−1, u, v} induce a claw in G′, a contradiction. Finally, if a and
b are two nonadjacent vertices in C \ {u, v}, then {a, u, b, v} induce a chordless cycle
in G′, a contradiction.

To prove the “if” part, notice that since C is a clique, it is a block in G, and
therefore, {u}, C \ {u, v}, {v} is a straight enumeration of C \ {(u, v)}.

Since by our assumptions k > 1, we conclude that N [u] �= N [v], and therefore,
N(u) �= N(v). Without loss of generality, i < j. The updates to the straight enumer-
ation of C \ {(u, v)} are derived from the following lemma.

Lemma 5.2. Let B1 < · · · < Bk be a contig of C, such that u ∈ Bi and v ∈ Bj
for some 1 ≤ i < j ≤ k. Then G′ is a proper interval graph if and only if Fr(Bi) = Bj
and Fl(Bj) = Bi in G.

Proof. Suppose that G′ is a proper interval graph. We prove that Fr(Bi) = Bj .
A symmetric argument shows that Fl(Bj) = Bi. Since Bi and Bj are adjacent in G,
Fr(Bi) ≥ Bj . Suppose to the contrary that Fr(Bi) > Bj . Let x ∈ Fr(Bi). By the
umbrella property (x, v) ∈ E(G). Since x and v are in distinct blocks in G, either
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there exists a vertex a ∈ N [v]\N [x] or there exists a vertex b ∈ N [x]\N [v] (or both).
In the first case, by the umbrella property (a, u) ∈ E(G). Therefore, u, x, v, and a
induce a chordless cycle in G′. In the second case, x, b, u, and v induce a claw in G′.
Hence in both cases we arrive at a contradiction.

To prove the converse implication we give a straight enumeration of C \ {(u, v)}.
If Bi = {u}, Bj = {v}, and j = i+1, we have to split the contig into two contigs, one
ending at Bi and the other beginning at Bj . If Bj = {v}, Fl(Bi−1) = Fl(Bi), and
Fr(Bi−1) = Bj−1 (i.e., N [u] = N [Bi−1] in G′), we move u into Bi−1. If Bi contained
only u, Fr(Bj+1) = Fr(Bj) and Fl(Bj+1) = Bi+1 (i.e., N [v] = N [Bj+1] in G′), we
move v into Bj+1. If u was not moved and Bi contains vertices other than u, then
Bi is split into {u}, Bi = Bi \ {u} in this order. If v was not moved and Bj contains
vertices other than v, then Bj is split into Bj = Bj \{v}, {v} in this order. The result
is a straight enumeration of C \ {(u, v)}.

If the conditions of Lemma 5.2 are fulfilled, then the following updates should be
made:

• Block enumeration: Given in the proof of Lemma 5.2.
• Near pointers: Let B0 = ∅, Bk+1 = ∅. If Bi = {u}, Bj = {v}, and j = i+ 1,
we nullify Nr(u). If Bi was split, we set Nr({u}) = &Bi, Nl(Bi) = &{u},
Nl({u}) = &Bi−1 and Nr(Bi−1) = &{u}. If Bi contained only u, and u was
moved into Bi−1, we update Nr(Bi−1) = &Bi+1 and Nl(Bi+1) = &Bi−1.
Analogous updates are made with respect to v.
• Far pointers: If Bi = {u}, Bj = {v}, and j = i + 1, we nullify Fr(u). If Bi
was split, we exchange the left self-pointer of Bi with the left self-pointer of
{u}. We also set Fl({u}) = Fl(Bi) and Fr({u}) = &By, where y = j in case
v is no longer in Bj (that is, v was moved into Bj+1 or Bj was split), and
otherwise, y = j − 1. If Bi contained only u, and u was moved into Bi−1, we
exchange the right self-pointer of Bi with the right self-pointers of Bi−1, and
delete Bi. Analogous updates are made with respect to v.

Note that these updates take O(1) time and require no knowledge about the
connected components of G. Hence, from sections 5.3 and 5.4 there follows an optimal
algorithm for the decremental proper interval graph representation problem. The
following theorem summarizes this result.

Theorem 5.3. The decremental proper interval graph representation problem is
solvable in O(1) time per removed edge.

6. Maintaining the connected components. In this section we describe a
fully dynamic algorithm for maintaining connectivity in a proper interval graph G in
O(d + log n) time per operation involving d edges. In section 7 we shall establish a
lower bound of Ω(logn/(log log n+ log b)) amortized time per edge operation (in the
cell probe model of computation with word-size b) for this problem.

The algorithm receives as input a series of operations to be performed on a graph,
which can be any of the following: Adding a vertex, adding an edge, deleting a vertex,
deleting an edge, or querying if two vertices are in the same connected component.
It operates on the blocks of the graph rather than on its vertices. The algorithm
depends on a data structure which includes the blocks and the contigs of the graph. It
hence interacts with the proper interval graph representation algorithm. In response
to an update request, changes are made to the representation of the graph based
on the structure of its connected components prior to the update. Only then are
the connected components of the graph updated. We provide a data structure of
connected components which performs each operation in O(log n) time.
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Let us denote by B(G) the block graph of G, that is, a graph in which each
vertex corresponds to a block of G and two vertices are adjacent if and only if their
corresponding blocks are adjacent in G. The algorithm maintains a spanning forest
F of B(G). When a modification in the graph occurs, the spanning forest is updated
accordingly. In order to decide if two blocks are in the same connected component,
the algorithm checks if they belong to the same tree in F .

The key idea is to design F so that it can be efficiently updated upon a modi-
fication in G. We define the edges of F as follows: For every two vertices u and v
in B(G), (u, v) ∈ E(F ) if and only if their corresponding blocks are consecutive in a
contig of G (or equivalently, if the near pointers of these blocks point to each other
in our representation). Consequently, each tree in F is a path representing a contig.
The crucial observation about F is that an addition or a deletion of a vertex or an
edge in G induces O(1) modifications to the vertices and edges of F . This can be seen
by noting that each modification of G induces O(1) updates to near pointers in our
representation of G.

It remains to show a data structure for storing F that allows us to query for each
vertex to which path it belongs, and that enables splitting a path upon a deletion of
an edge in F , and linking two paths upon an addition of an edge to F . If we store
the vertices of each path of F in a balanced binary tree, then each of these operations
can be supported in O(log n) time (cf. [2]).

We are now ready to state our main result.
Theorem 6.1. The fully dynamic proper interval graph representation problem

is solvable in O(d+ log n) time per modification involving d edges.
We note, that the performance of our representation algorithm depends on the

performance of a data structure of connected components of a graph, which is a
union of disjoint paths, that supports the following operations: linking two paths,
splitting a path, and querying if two vertices belong to the same path. Given such
a data structure which supports each operation in O(f(n)) time, for some function
f , our representation algorithm can be implemented to run in O(d + f(n)) time per
modification involving d edges.

7. The lower bounds. In this section we prove a lower bound of Ω(logn/(log log n+
log b)) amortized time per edge operation for fully dynamic proper interval graph
recognition in the cell probe model of computation with word-size b (see [20] for de-
tails about the model). Furthermore, we prove the same lower bound also for the
problem of fully dynamic connectivity maintenance of a proper interval graph.

Fredman and Henzinger [9] have shown a lower bound of Ω(logn/(log log n+log b))
amortized time per operation (in the cell probe model of computation with word-size
b) for fully dynamic connectivity, by reduction from the helpful parity prefix sum
(HPPS) problem, which is defined below. We use similar constructions in our lower
bound proofs.

The HPPS problem is a modified parity prefix sum problem (see [6] for definition
of the latter problem). Its lower bound of Ω(logn/(log log n+ log b)) amortized time
per operation follows from the work of Fredman and Saks [6]. It is defined as follows:
Given an array A[0], . . . , A[n + 1] of zeros and ones such that initially all A[i] are 0,
except A[0] and A[n+ 1] which are 1, execute an arbitrary sequence of the following
operations:

Add(t, i, j): If 0 ≤ i < t < j ≤ n + 1, A[i] > 0, A[j] > 0, and A[k] = 0 for all
i < k < j, then A[t] = A[t] + 1. Otherwise, do nothing.

Sum(t): Return (
∑t
i=1 A[i]) mod 2.
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Theorem 7.1. Fully dynamic proper interval graph recognition takes amortized
time Ω(log n/(log log n+ log b)) per edge operation in the cell probe model of compu-
tation with word-size b.

Proof. Given an instance of the HPPS problem (i.e., a sequence of Add and Sum
operations) we construct an instance of the dynamic proper interval graph recognition
problem, such that each Add operation corresponds to O(1) edge modifications in the
dynamic proper interval graph instance, and each Sum operation corresponds to O(1)
temporary modifications in the dynamic graph: Depending on whether the modifica-
tions generate a proper interval graph we answer the Sum query and then reverse the
modification. Thus, the lower bound for the HPPS problem shows that there exists
a sequence of m operations for the dynamic proper interval recognition problem that
takes Ω(m log n/(log log n+ log b)) time in the cell probe model of computation with
word-size b.

Let S−1 = 0 and let S0 = 1. Given an instance of the HPPS problem, define
St ≡ (

∑t
i=1 A[i]) mod 2 for 1 ≤ t ≤ n. The reduction is as follows: We construct

a graph G = (V,E) with n + 2 vertices labeled −1, 0, 1, . . . , n, where each vertex v
represents Sv. If St = i for i = 0, 1, and t′ < t is the largest index such that St′ = i,
then G contains the edge (t′, t). In other words, vertices t for which St = 1 are
connected in a chain, which we henceforth call the odd chain, and all other vertices
are connected in a chain, which we henceforth call the even chain. Note that the
vertex labeled −1 lies on the even chain, and the vertex labeled 0 lies on the odd
chain.

To answer a Sum(t) query (1 ≤ t ≤ n) we do the following:

1. If (0, t) ∈ E or (0, t′), (t′, t) ∈ E for some vertex t′ ∈ V , we output 1.
2. Otherwise, let t′ be a vertex such that t′ > t and (t, t′) ∈ E. If such a vertex

exists, define H ≡ G \ {(t, t′)} ∪ {(0, t)}. Otherwise, let H ≡ G ∪ {(0, t)}.
If t is on the odd chain then this modification forms a chordless cycle. If t
is on the even chain then the new graph is a single path or a union of two
disjoint paths. Hence, H is a proper interval graph if and only if Sum(t) = 0.
Thus, if H is a proper interval graph we output 0, and otherwise, we output
1. Note, that G is not modified in this case.

To perform an Add(t, i, j) operation we do the following:

1. Let iodd (ieven) be the largest vertex on the odd (even) chain with iodd < t
(ieven < t). Let jodd (jeven) be the smallest vertex on the odd (even) chain
with jodd ≥ t (jeven ≥ t), if such a vertex exists.

2. Delete from G the edges (iodd, jodd) and (ieven, jeven).
3. Add to G the edges (iodd, jeven) and (ieven, jodd).

By [9, Lemma 3.1] iodd, jodd, ieven, and jeven can be found by querying Sum(t)
as follows: If Sum(t) = 1, then iodd = t − 1, jodd = t, ieven = i − 1 if i > 1, or
ieven = −1 otherwise; and jeven = j if j <= n, or jeven is undefined otherwise. If
Sum(t) = 0, then iodd = i− 1 if i > 0, or iodd = 0 otherwise; jodd = j if j ≤ n, or jodd
is undefined otherwise; ieven = t− 1 if t > 1, or ieven = −1 otherwise; and jeven = t.
This completes the reduction.

Note, that since the key to the reduction above is the ability to detect cycles,
similar arguments can be used to show that the same lower bound applies also to other
problems, e.g., fully dynamic interval graph recognition and fully dynamic chordal
graph recognition.

Theorem 7.2. There is a lower bound of Ω(log n/(log log n + log b)) amortized
time per edge operation in the cell probe model of computation with word-size b for
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fully dynamic connectivity maintenance of a proper interval graph.

Proof. We use the same reduction as in the proof of Theorem 7.1, with the
exception that in order to answer a Sum(t) query we check whether vertices 0 and
t are connected. If the answer is positive we output 1, and otherwise we output 0.
The reduction is valid, since the graph G, which is constructed in the reduction, is a
union of two disjoint paths and therefore is a proper interval graph.

Note added in proof. After the submission of the manuscript, we found out
that a simpler reduction was given from the parity prefix sum problem to fully dynamic
connectivity by Miltersen et al. [15]. This reduction allows the repeated modification
of A[t] for the same argument t and leads to alternative proofs of Theorems 7.1 and
7.2.
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Abstract. We give a greedy learning algorithm for reconstructing an evolutionary tree based
on a certain harmonic average on triplets of terminal taxa. After the pairwise distances between
terminal taxa are estimated from sequence data, the algorithm runs in O(n2) time using O(n) work
space, where n is the number of terminal taxa. These time and space complexities are optimal in the
sense that the size of an input distance matrix is n2 and the size of an output tree is n. Moreover,
in the Jukes–Cantor model of evolution, the algorithm recovers the correct tree topology with high
probability using sample sequences of length polynomial in (1) n, (2) the logarithm of the error
probability, and (3) the inverses of two small parameters.
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1. Introduction. Algorithms for reconstructing evolutionary trees are useful
tools in biology [16, 22]. These algorithms usually compare aligned character se-
quences for the terminal taxa in question to infer their evolutionary relationships. In
the past, such characters were often categorical variables of morphological features;
newer studies have taken advantage of available biomolecular sequences. This paper
focuses on datasets of the latter type.

We present a new learning algorithm, called fast harmonic greedy triplets (Fast-
HGT), using a greedy strategy based on a certain harmonic average on triplets of
terminal taxa. After the pairwise distances between terminal taxa are estimated from
their observed sequences, Fast-HGT runs in O(n2) time using O(n) work space, where
n is the number of terminal taxa. These time and space complexities are optimal in
the sense that n2 is the size of an input distance matrix and n is the size of an output
tree. An earlier variant of Fast-HGT takes O(n5) time [5]. In the Jukes–Cantor model
of sequence evolution generalized for an arbitrary alphabet [22], Fast-HGT is proven
to recover the correct topology with high probability while requiring sample sequences
of length � polynomial in (1) n, (2) the logarithm of the error probability, and (3) the
inverses of two small parameters (Theorem 3.8). In subsequent work [6], Fast-HGT
and its variants are shown to have similar theoretical performance in more general
Markov models of evolution.

Among the related work, there are four other algorithms which have essentially
the same guarantee on the length � of sample sequences. These are the dyadic clo-
sure method (DCM) [10] and the witness-antiwitness method (WAM) [11] of Erdős
et al., the algorithm of Cryan, Goldberg, and Goldberg (CGG) [4], and the DCM-
Buneman algorithm of Huson, Nettles, and Warnow [18]. Not all of these results
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analyzed the space complexity. In terms of time complexity, DCM-Buneman is not a
polynomial-time algorithm. CGG runs in polynomial time, whose degree has not been
explicitly determined but which appears to be higher than n2. DCM takes O(n5 log n)
time to assemble O(n4) quartets using O(n4) space. The two versions of WAM take
O(n6 log n) and O(n4 log n log �) time, respectively. In the uniform and Yule–Harding
models of randomly generating trees, with high probability, these two latter running
times are reduced to O(n3 polylogn) and O(n2 polylogn), respectively. Under these
two tree distributions, Erdős et al. [10] further showed that with high probability,
the required sample size of DCM is polylogarithmic in n; this bound also applies to
WAM, CGG, DCM-Buneman, and Fast-HGT.

Among the algorithms with no known comparbale guarantees on �, the neighbor
joining method of Saitou and Nei [22] runs in O(n3) time and reconstructs many
trees highly accurately in practice, although the best known upper bound on its
required sample size is exponential in n [3]. Maximum likelihood methods [15, 14] are
not known to achieve the optimal required sample size as such methods are usually
expected to [20]; moreover, all their known implementations take exponential time to
find local optima, and none can find provably global optima. Parsimony methods aim
to compute a tree that minimizes the number of mutations leading to the observed
sequences [13]; in general, such optimization is NP-hard [8]. Some algorithms strive
to find an evolutionary tree among all possible trees to fit the observed distances the
best according to some metric [1]; such optimization is NP-hard for L1 and L2 norms
[7] and for L∞ [1].

A common goal of the above algorithms is to construct a tree with the same
topology as that of the true tree. In contrast, the work on PAC-learning the true tree
in the j-state general Markov model [21] aims to construct a tree which is close to the
true tree in terms of the leaf distribution in the sense of Kearns et al. [19] but which
need not be the same as the true tree. Farach and Kannan [12] gave an O(n2�)-time
algorithm (FK) for the symmetric case of the 2-state model provided that all pairs of
leaves have a sufficiently high probability of being the same. Ambainis et al. [2] gave
a nearly tight lower bound on � for achieving a given variational distance between the
true tree and the reconstructed tree. As for obtaining the true tree, the best known
upper bound on � required by FK is exponential in n. CGG [4] also improves upon FK
to PAC-learn in the general 2-state model without the symmetry and leaf similarity
constraints.

The remainder of the paper is organized as follows. Section 2 reviews the gener-
alized Jukes–Cantor model of sequence evolution and discusses distance-based prob-
abilistic techniques. Section 3 gives Fast-HGT. Section 4 concludes the paper with
some directions for further research.

2. Model and techniques. Section 2.1 defines the model of evolution used in
the paper. Section 2.2 defines our problem of recovering evolutionary trees from bio-
logical sequences. Sections 2.3 through 2.5 develop basic techniques for the problem.

2.1. A model of sequence evolution. This paper employs the generalized
Jukes–Cantor model [22] of sequence evolution defined as follows. Let m ≥ 2 and
n ≥ 3 be two integers. Let A = {a1, . . . , am} be a finite alphabet. An evolutionary
tree T for A is a rooted binary tree of n leaves with an edge mutation probability pe for
each tree edge e. The edge mutation probabilities are bounded away from 0 and 1− 1

m ,
i.e., there exist f and g such that for every edge e of T , 0 < f ≤ pe ≤ g < 1− 1

m . Given
a sequence s1 · · · s� ∈ A� associated with the root of T , a set of n mutated sequences in
A� is generated by � random labelings of the tree at the nodes. These � labelings are
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mutually independent. The labelings at the jth leaf give the jth mutated sequence

s
(j)
1 · · · s(j)� , where the ith labeling of the tree gives the ith symbols s

(1)
i , . . . , s

(n)
i .

The ith labeling is carried out from the root towards the leaves along the edges. The
root is labeled by si. On edge e, the child’s label is the same as the parent’s with
probability 1−pe or is different with probability pe

m−1 for each different symbol. Such
mutations of symbols along the edges are mutually independent.

2.2. Problem formulation. The topology Ψ(T ) of T is the unrooted tree ob-
tained from T by omitting the edge mutation probability and by replacing the two
edges e1 and e2 between the root and its children with a single edge e0. Note that
the leaves of Ψ(T ) are labeled with the same sequences as in T , but Ψ(T ) need not be
labeled otherwise. The weighted topology Ψw(T ) of T is Ψ(T ) where each edge e 
= e0
of Ψ(T ) is further weighted by its edge mutation probability pe in T and for technical
reasons, the edge e0 is weighted by 1− (1− pe1)(1− pe2).

For technical convenience, the weight of each edge XY in Ψw(T ) is often replaced
by a certain edge length, such as ∆XY in (2.5), from which the weight of XY can be
efficiently determined.

The weighted evolutionary topology problem is that of taking n mutated sequences
as input and recovering Ψw(T ) with high accuracy and high probability. Fast-HGT
is a learning algorithm for this problem.

Remark. The special treatment for e1 and e2 is due to the fact that the root
sequence may be entirely arbitrary and thus, in general, no algorithm can place the
root accurately. This is consistent with the fact that the root sequence is not directly
observable in practice, and locating the root requires considerations beyond those of
general modeling [22]. If the root sequence is also given as input, Fast-HGT can be
modified to locate the root and the weights of e1 and e2 in a straightforward manner.

2.3. Probabilistic closeness. Fast-HGT is based on a notion of probabilistic
closeness between nodes. For the ith random labeling of T , we identify each node
of T with the random variable Xi that gives the labeling at the node. Note that since
s1 · · · s� may be arbitrary, the random variables Xi for different i are not necessarily
identically distributed. For brevity, we often omit the index i of Xi in a statement if
the statement is independent of i.

For nodes X and Y ∈ T , let pXY = Pr{X 
= Y } . The closeness of X and Y is

σXY = Pr{X = Y } − 1

m− 1
Pr{X 
= Y } = 1− αpXY ,where α =

m

m− 1
.(2.1)

Lemma 2.1 (folklore). If node Y is on the path between two nodes X and Z in
T , then σXZ = σXY σY Z .

If X and Y are leaves, their closeness is estimated from sample sequences as

σ̂XY =
1

�

�∑
i=1

IX̂iŶi
,(2.2)

where X̂1, . . . , X̂� and Ŷ1, . . . , Ŷ� are the symbols at positions 1, . . . , � of the observed
sample sequences for the two leaves, and

Ixy =

{ −1
m−1 if x 
= y;

1 if x = y.

The next lemma is useful for analyzing the estimation given by (2.2).
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Lemma 2.2. For ε > 0,

Pr

{
σ̂XY

σXY
≤ 1− ε

}
≤ exp

(
− 2

α2
�σ2

XY ε
2

)
;(2.3)

Pr

{
σ̂XY

σXY
≥ 1 + ε

}
≤ exp

(
− 2

α2
�σ2

XY ε
2

)
.(2.4)

Proof. By (2.2),

Pr

{
σ̂XY

σXY
≤ 1− ε

}
= Pr

{
�∑

i=1

(IXiYi
− σXY ) ≤ −�σXY ε

}
;

Pr

{
σ̂XY

σXY
≥ 1 + ε

}
= Pr

{
�∑

i=1

(IXiYi
− σXY ) ≥ �σXY ε

}
.

Since −1
m−1 ≤ IXiYi

≤ 1 and E[ IXiYi
− σXY ] = 0, we use Hoeffding’s inequality [17] on

sums of independent bounded random variables to have (2.3) and (2.4).

2.4. Distance and harmonic mean. The distance of nodes X and Y ∈ T is

∆XY = − lnσXY .(2.5)

For an edge XY in T , ∆XY is called the edge length of XY .
Fast-HGT uses Statement 2.3 of the next corollary to locate internal nodes of T .
Corollary 2.3. Let X, Y , and Z be nodes in T .
1. If X 
= Y , then ∆XY = ∆Y X > 0. Also, ∆XX = 0.
2. If Y is on the path between X and Z in T , then ∆XZ = ∆XY +∆Y Z .
3. For any σ with σXY ≤ σ < 1, there is a node P on the path between X

and Y in T such that σ(1− αg)1/2 ≤ σXP ≤ σ(1− αg)−1/2. Furthermore, if
σXY (1− αg)1/2 < σ < (1− αg)−1/2, then P is distinct from X and Y .

Proof. Statements 1 and 2 follow from (2.1) and Lemma 2.1. Statement 3 becomes
straightforward when restated in terms of distance as follows. For any ∆ with ∆XY ≥
∆ > 0, there is a node P on the path betweenX and Y in T such that ∆+− ln(1−αg)

2 ≥
∆XP ≥ ∆ − − ln(1−αg)

2 . Furthermore, if ∆XY − − ln(1−αg)
2 > ∆ > − ln(1−αg)

2 , then P
is distinct from X and Y .

If X and Y are leaves, their distance is estimated from sample sequences as

∆̂XY =

{ − ln σ̂XY if σ̂XY > 0;
∞ otherwise.

(2.6)

A triplet XY Z consists of three distinct leaves X, Y , and Z of T . There is an
internal node P in T at which the pairwise paths between the leaves in XY Z intersect;
see Figure 2.1. P is the center of XY Z, and XY Z defines P . Note that a star is
formed by the edges on the paths between P and the three leaves in XY Z.

By Corollary 2.3(2), the distance between P and a leaf in XY Z, say, X, can be
obtained as ∆XP = ∆XY +∆XZ−∆Y Z

2 , which is estimated by

∆̂XP =
∆̂XY + ∆̂XZ − ∆̂Y Z

2
.(2.7)

The closeness ofXY Z is σXY Z = 3
1

σXY
+ 1

σXZ
+ 1

σY Z

, which is estimated by σ̂XY Z =

3
1

σ̂XY
+ 1

σ̂XZ
+ 1

σ̂Y Z

. XY Z is called positive if σ̂XY , σ̂XZ , and σ̂Y Z are all positive.
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X Y Z

P

Fig. 2.1. P is the center of triplet XY Z.

The next corollary relates σXY Z and the pairwise closenesses of X, Y , and Z.
Corollary 2.4. If σXP ≤ σY P ≤ σZP , then σXY ≤ σXZ ≤ σY Z , σXZ ≥

2
3σXY Z , and σ

2
Y P ≥ 1

3σXY Z .
Proof. This corollary follows from Lemma 2.1 and simple algebra.
The next lemma relates σXY Z to the probability of overestimating the distance

between P and a leaf in XY Z using (2.7).
Lemma 2.5. For 0 < ε < 1,

Pr

{
∆̂XP −∆XP ≥ − ln(1− ε)

2

}
≤ 3 exp

(
− 2

9α2
�σ2

XY Zε
2

)
.

Proof. See section A.1.

2.5. Basis of a greedy strategy. Let dXY denote the number of edges in the
path between two leaves X and Y in T . By Lemma 2.1, σXY can be as small as
(1 − αg)dXY . Thus, the larger dXY is, the more difficult it is to estimate σXY and
∆XY . This intuition leads to a natural greedy strategy outlined below that favors
leaf pairs with small dXY and large σXY .

The g-depth of a node in a rooted tree T ′ is the smallest number of edges in a
path from the node to a leaf. Let e be an edge between nodes u1 and u2. Let T

′
1 and

T ′2 be the subtrees of T ′ obtained by cutting e which contain u1 and u2, respectively.
The g-depth of e in T ′ is the larger of the g-depth of u1 in T ′1 and that of u2 in T ′2.
The g-depth of a rooted tree is the largest possible g-depth of an edge in the tree.
(The prefix g emphasizes that this usage of depth is nonstandard in graph theory.)

Let d be the g-depth of T . Variants of the next lemma have proven very useful
and insightful; see, e.g., [9, 11, 10].

Lemma 2.6.
1. d ≤ 1 + �log2(n− 1).
2. Every internal node P of T except the root has a defining triplet XY Z such

that dXP , dY P , and dZP are all at most d+1 and thus, σXY Z ≥ (1−αg)2(d+1).
Every leaf of T is in such a triplet.

Proof. The proof is straightforward. Note that the more unbalanced T is, the
smaller its g-depth is.

In T , the star formed by a defining triplet of an internal node contains the three
edges incident to the internal node. Thus, Ψ(T ) can be reconstructed from triplets
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described in Lemma 2.6(2) or those with similarly large closenesses. This observation
motivates the following definitions. Let

σlg =
3
√
2

2

(√
2− 1√
2 + 1

)2

(1− αg)2d+4; σsm =
σlg√
2
; σmd =

σlg + σsm

2
.

Remark. The choice of σlg is obtained by solving (3.2), (3.3), and (3.4).
A triplet XY Z is large if σXY Z ≥ σlg; it is small if σXY Z ≤ σsm. Note that by

Lemma 2.6(2), each nonroot internal node of T has at least one large defining triplet.
Lemma 2.7. The first inequality below holds for all large triplets XY Z, and the

second holds for all small triplets.

Pr{ σ̂XY Z ≤ σmd } ≤ exp

(
−
(√

2− 1
)2

36α2
�σ2

lg

)
;(2.8)

Pr{ σ̂XY Z ≥ σmd } ≤ exp

(
−
(√

2− 1
)2

36α2
�σ2

lg

)
.(2.9)

Proof. See section A.2.
A nonroot internal node of T may have more than one large defining triplet.

Consequently, since distance estimates contain errors, we may obtain an erroneous
estimate of Ψ(T ) by reconstructing the same internal node more than once from its
different large defining triplets. To address this issue, Fast-HGT adopts a threshold

0 < ∆min <
− ln(1−αf)

2 based on the fact that the distance between two distinct nodes

is at least − ln(1−αf); also let c = ∆min

− ln(1−αf) . Fast-HGT considers the center P of a

triplet XY Z and the center Q of another triplet XUV to be separate if and only if

|∆̂XP − ∆̂XQ| ≥ ∆min,(2.10)

where ∆̂XP = (∆̂XY + ∆̂XZ − ∆̂Y Z)/2 and ∆̂XQ = (∆̂XU + ∆̂XV − ∆̂XV )/2. Notice
that two triplet centers can be compared in this manner only if the triplets share at
least one leaf. The next lemma shows that a large triplet’s center is estimated within
a small error with high probability.

Lemma 2.8. Let P be the center of a triplet XY Z. If XY Z is not small, then

Pr

{ ∣∣∣∆̂XP −∆XP

∣∣∣ ≥ ∆min

2

}
≤ 7 exp

(
− c

2

81
�σ2

lgf
2

)
.(2.11)

Proof. See section A.3.
We next define and analyze two key events Ec and Eg as follows. The subscripts

c and g denote the words greedy and center, respectively.

• Ec is the event that for every triplet XY Z that is not small,
∣∣∣∆̂XP −∆XP

∣∣∣ <
∆min

2 ,
∣∣∣∆̂Y P −∆Y P

∣∣∣ < ∆min

2 , and
∣∣∣∆̂ZP −∆ZP

∣∣∣ < ∆min

2 , where P is the

center of XY Z.
• Eg is the event that σ̂XY Z > σ̂X′Y ′Z′ for every large triplet XY Z and every
small triplet X ′Y ′Z ′.

Lemma 2.9.

Pr
{ Ec

} ≤ 21

(
n

3

)
exp

(
− c

2

81
�σ2

lgf
2

)
; Pr

{ Eg

} ≤
(
n

3

)
exp

(
−
(√

2− 1
)2

36α2
�σ2

lg

)
.
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Proof. The inequalities follow from (2.11) and Lemma 2.7, respectively.

3. Fast-HGT. Section 3.1 details Fast-HGT. Section 3.2 analyzes its running
time and work space. Section 3.3 proves technical lemmas for bounding the algo-
rithm’s required sample size. Section 3.4 analyzes this sample size.

Algorithm Fast Harmonic Greedy Triplets
Input:
• ∆min;
• ∆̂XY for all leaves X and Y of T which are computed via (2.2) and (2.6)
from n mutated length-� sequences generated by T .

Output: Ψw(T ).
F1 Select an arbitrary leaf A and find a triplet ABC with the maximum σ̂ABC .
F2 if ABC is not positive then let T ∗ be the empty tree, fail, and stop.
F3 Let T ∗ be the star with three edges formed by ABC and its center D.
F4 Use (2.7) to set ∆∗AD ← ∆̂AD, ∆

∗
BD ← ∆̂BD, ∆

∗
CD ← ∆̂CD.

F5 Set def(D)← {A,B,C}.
F6 First set all S[M ] to null; then for Q1Q2 ∈ {AD,BD,CD}, Update-S(Q1Q2).
F7 repeat
F8 if S[M ] = null for all leaves M ∈ T then fail and stop.
F9 Find S[N ] = 〈P1P2, NXY, P,∆

∗
P1P

,∆∗P2P
,∆∗NP 〉 with the maximum σ̂NXY .

F10 Split P1P2 into two edges P1P and P2P in T ∗ with lengths ∆∗P1P
and ∆∗P2P

.
F11 Add to T ∗ a leaf N and an edge NP with length ∆∗NP .
F12 Set def(P )← {N,X, Y }.
F13 For every M with S[M ] containing the edge P1P2, set S[M ]← null.
F14 For each Q1Q2 ∈ {P1P, P2P,NP}, Update-S(Q1Q2).
F15 until all leaves of T are inserted to T ∗; i.e., this loop has iterated n− 3 times.
F16 Output T ∗.

Fig. 3.1. The Fast-HGT algorithm.

Algorithm Update-S
Input: an edge Q1Q2 ∈ T ∗

U1 Find all splitting tuples for Q1Q2 ∈ T ∗.
U2 For each 〈Q1Q2,MUV,Q,∆∗Q1Q

,∆∗Q2Q
,∆∗MQ〉 at line U1, assign it to S[M ] if

σ̂MUV is greater than that of S[M ].

Fig. 3.2. The Update-S subroutine.

3.1. The description of Fast-HGT. Fast-HGT and its subroutines Update-S
and Split-Edge are detailed in Figures 3.1, 3.2, and 3.3, respectively.

Given ∆min and n mutated sequences as input, the task of Fast-HGT is to recover
Ψw(T ). The algorithm first constructs a star T ∗ formed by a large triplet at lines F1
through F3. It then inserts into T ∗ a leaf of T and a corresponding internal node per
iteration of the repeat at line F7 until T ∗ has a leaf for each input sequence. The T ∗

at line F16 is our reconstruction of Ψw(T ). For k = 3, . . . , n, let T ∗k be the version of
T ∗ with k leaves constructed during a run of Fast-HGT; i.e., T ∗3 is constructed at line
F3, and T ∗k with k ≥ 4 is constructed at line F11 during the (k− 3)th iteration of the
repeat. Note that T ∗n is output at line F16.
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Algorithm Split-Edge
Input: an edge P1P2 in T ∗ and a relevant triplet NXY with center P .
Output: If P is strictly between P1 and P2 in T and thus can be inserted on
P1P2, then we return the message “split” and the edge lengths ∆∗P1P

, ∆∗P2P
, and

∆∗NP . Otherwise, we return a reason why P cannot be inserted.

S1 Use (2.7) to compute ∆̂XP , ∆̂Y P , ∆̂NP for NXY .
S2 Let X1 ∈ {X,Y } ∩ def(P1) and X2 ∈ {X,Y } ∩ def(P2).
S3 For each i = 1 or 2, if Pi is an internal node of T ∗

S4 then use (2.7) to compute ∆̂XiPi
for the triplet formed by def(Pi)

S5 else set ∆̂XiPi
← 0.

S6 Set ∆1 ← ∆̂X1P − ∆̂X1P1
and ∆2 ← ∆̂X2P − ∆̂X2P2 .

S7 if |∆1| < ∆min or |∆2| < ∆min

S8 then return “too close”
S9 else begin
S10 if P2 (respectively, P1) is on the path between P1 and X1 (P2 and X2) in T

∗

S11 then set ∆′1 ← −∆1 (∆′2 ← −∆2)
S12 else set ∆′1 ← ∆1 (∆′2 ← ∆2).

(Remark. Since X1 may equal X2, the tests for P1 and P2 are both needed.)
S13 Set ∆′′1 ← (∆′1 +∆∗P1P2

−∆′2)/2 and ∆′′2 ← (∆′2 +∆∗P1P2
−∆′1)/2.

(Remark. ∆′′1 +∆′′2 = ∆∗P1P2
, ∆′′1 estimates ∆P1P , and ∆′′2 estimates ∆P2P .)

S14 if ∆′′1 ≥ ∆∗P1P2
or ∆′′2 ≥ ∆∗P1P2

S15 then return “outside this edge”
S16 else return “split”, ∆′′1 , ∆

′′
2 , ∆̂NP .

S17 end.

Fig. 3.3. The Split-Edge subroutine.

A node Q is strictly between nodes Q1 and Q2 in T if Q is on the path between
Q1 and Q2 in T but Q 
= Q1, Q 
= Q2, and Q is not the root of T . At each iteration of
the repeat, Fast-HGT finds an edge P1P2 in T ∗ and a triplet NXY where X,Y ∈ T ∗,
N 
∈ T ∗, and the center P of NXY is strictly between on P1 and P2 in T

∗. Such P1P2

and NXY can be used to insert N and P into T ∗. We record an insertion by letting
def(P ) = {N,X, Y }; for notational uniformity, let def(X) = {X} for all leaves X.

At line F6, S is an array indexed by the leavesM of T ∗. At the beginning of each
iteration of the repeat, S[N ] stores the most suitable P1P2 and NXY for inserting N
into T ∗. S is initialized at line F6; it is updated at lines F13 and F14 after a new leaf
and a new internal node are inserted into T ∗. The precise content of S is described
in Lemma 3.6.

To further specify S[N ], we call NXY relevant for P1P2 ∈ T ∗k if it is positive,
N 
∈ T ∗k , X ∈ def(P1), Y ∈ def(P2), and P1P2 is on the path between X and Y in T ∗k .
We use Split-Edge to determine whether the center P of a relevant NXY is strictly
between P1 and P2 in T . We also use Split-Edge to calculate an estimation ∆∗P ′P ′′ of
∆P ′P ′′ for each edge P ′P ′′ ∈ T ∗k , which is called the length of P ′P ′′ in T ∗k . Split-Edge
has three possible outcomes:

1. At line S8, P is too close to P1 or P2 to be a different internal node.
2. At line S15, P is outside the path between P1 and P2 in T and thus should

not be inserted into T ∗k on P1P2.
3. At line S16, P is strictly between P1 and P2 in T . Thus, P can be inserted

between P1 and P2 in T ∗k , and the lengths ∆∗P1P
,∆∗P2P

,∆∗NP of the possible
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new edges P1P , P2P , and NP are returned.
In the case of the third outcome, NXY is called a splitting triplet for P1P2 in T ∗k , and
〈P1P2, NXY, P,∆

∗
P1P

,∆∗P2P
,∆∗NP 〉 is a splitting tuple. Each S[N ] is either a single

splitting tuple or null. In the latter case, the estimated closeness of the triplet in S[N ]
is regarded as 0 for technical uniformity.

Fast-HGT ensures the accuracy of T ∗ in several ways. The algorithm uses only
positive triplets to recover internal nodes of T at lines F1 and F9. These two lines
together form the greedy strategy of Fast-HGT. The maximality of the triplet chosen
at these two lines favors large triplets over small ones based on Lemmas 2.6 and 2.7.
With a relevant triplet as input, Split-Edge compares P to P1 and P2 using the rule
of (2.10) and can estimate the distance between P and P1 or P2 from the same leaf
to avoid accumulating estimation errors in edge lengths.

The next lemma enables Fast-HGT to grow T ∗ by always using relevant triplets.
Lemma 3.1. For each k = 3, . . . , n − 1, at the start of the (k − 2)th iteration of

the repeat at line F7, def(P1) ∩ def(P2) 
= ∅ for every edge P1P2 ∈ T ∗k .
Proof. The proof is by induction on k. The base case follows from the fact that

the statement holds for T ∗3 at line F3. The induction step follows from the use of a
relevant triplet at line F9.

Remark. A subsequence work [6] shows that Fast-HGT can run with the same
time, space, and sample complexities without knowing f and ∆min; this is achieved
by slightly modifying some parts of Split-Edge.

3.2. The running time and work space of Fast-HGT. Before proving the
desired time and space complexities of Fast-HGT in Theorem 3.2 below, we note the
following three key techniques used by Fast-HGT to save time and space.

1. At line F1, ABC is selected for a fixed arbitrary A. This limits the number
of triplets considered at line F1 to O (n2

)
. This technique is supported by

the fact that each leaf in T is contained in a large triplet.
2. At lines F6 and F14, S keeps only splitting tuples. This limits the number of

triplets considered for each involved edge to O (n). This technique is feasible
since by Lemma 3.5, Ψ(T ) can be recovered using only relevant triplets.

3. At line F14, S includes no new splitting tuples for the edges Q1Q2 that
already exist in T ∗ before N is inserted. This technique is feasible because
the insertion of N results in no new relevant triplets for such Q1Q2 at all.

Theorem 3.2. Fast-HGT runs in O (n2
)
time using O (n) work space.

Proof. We analyze the time and space complexities separately as follows.
Time complexity. Line F1 takes O (n2

)
time. Line F6 takes O (n) total time to

examine 2(n − 3) triplets for each Q1Q2. As for the repeat at line F7, lines F8, F9,
and F13 take O (n) time to search through S. For the (k−3)th iteration of the repeat
where k = 4, . . . , n−1, line F14 takes O (n) total time to examine at most 9(n−k−1)
triplets for each of P1P, P2P , and NP . Thus, each iteration of the repeat takes O (n)
time. Since the repeat iterates at most n− 3 times, the time complexity of Fast-HGT
is as stated.

Space complexity. T ∗ and the sets def(G) for all nodes G in T ∗ take O (n) work
space. S takes O (n) space. Lines F1, F6, and F14 in Fast-HGT and lines U1 and U2
in Update-S can be implemented to use O (1) space. The other variables needed
by Fast-HGT take O (1) space. Thus, the space complexity of Fast-HGT is as
stated.

3.3. Technical lemmas for bounding the sample size. Let Lk be the set of
the leaves of Ψ(T ) that are in T ∗k . Let Ψk be the subtree of Ψ(T ) formed by the edges
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on paths between leaves in Lk. A branchless path in Ψk is one whose internal nodes
are all of degree 2 in Ψk. We say that T ∗k matches T if T ∗k without the edge lengths
can be obtained from Ψk by replacing every maximal branchless path with an edge
between its two endpoints.

For k = 3, . . . , n, we define the following conditions:
• Ak: T

∗
k matches T .

• Bk: For every internal node Q ∈ T ∗k , the triplet formed by def(Q) is not small.
• Ck: For every edge Q1Q2 ∈ T ∗k , |∆∗Q1Q2

−∆Q1Q2
| < 2∆min.

In this section, Lemmas 3.3, 3.4, and 3.5 analyze under what conditions Split-
Edge can help correctly insert a new leaf and a new internal node to T ∗k . Later in
section 3.4, we use these lemmas to show by induction in Lemma 3.7 that the events Eg
and Ec, which are defined before Lemma 2.9, imply that Ak, Bk, and Ck hold for all k.
This leads to Theorem 3.8, stating that Fast-HGT solves the weighted evolutionary
topology problem with a polynomial-sized sample.

Lemmas 3.3, 3.4, and 3.5 make the following assumptions for some k < n:
• The (k − 3)th iteration of the repeat at line F7 has been completed.
• T ∗k has been constructed, and Ak, Bk, and Ck hold.
• Fast-HGT is currently in the (k − 2)th iteration of the repeat.

Lemma 3.3. Assume that Ec holds and the triplet NXY input to Split-Edge is
not small. Then, the test of line S7 fails if and only if P 
= P1 and P 
= P2 in T .

Proof. There are two directions, both using the following equation. By line S6,

∆1 = (∆̂X1P −∆X1P )− (∆̂X1P1
−∆X1P1) + (∆X1P −∆X1P1

).(3.1)

(=⇒) To prove by contradiction, assume P = P1 or P = P2 in T . If P = P1,
then ∆X1P = ∆X1P1 , and by Ak, P1 is an internal node in T ∗k . By Bk, the triplet
formed by def(P1) is not small. Thus, by Ec and (3.1), |∆1| < ∆min. By symmetry, if
P = P2, then |∆2| < ∆min. In either case, the test of line S7 passes.

(⇐=) Since P 
= P1, ∆X1P − ∆X1P1
≥ − ln(1 − αf) ≥ 2∆min. If P1 is a leaf

in T ∗k , then by Ak, P1 is leaf X1 in T , and ∆̂X1P1 = ∆X1P1 = 0. By Ec and (3.1),
|∆1| > 1.5∆min. If P1 is an internal node in T ∗k , then by Bk, Ec, and (3.1), we have
|∆1| > ∆min. In either case, |∆1| > ∆min. By symmetry, since P 
= P2, |∆2| > ∆min.
Thus, the test of line S7 fails.

Lemma 3.4. In addition to the assumption in Lemma 3.3, also assume that
P 
= P1 and P 
= P2 in T , i.e., the test of line S7 has failed. Then, the test of line S14
fails if and only if P is on the path between P1 and P2 in T .

Proof. There are two directions.
(⇐=) From lines S6, S10, and Corollary 2.3(2),

(∆′1 −∆′2)− (∆P1P −∆P2P ) = ±
(
(∆̂X1P −∆X1P )− (∆̂X1P1 −∆X1P1)

)

±
(
(∆̂X2P −∆X2P )− (∆̂X2P2 −∆X2P2)

)
.

Thus, whether P1 and P2 are leaves or internal nodes in T ∗k , by Ak, Bk, and Ec,
|(∆′1 −∆′2)− (∆P1P −∆P2P )| < 2∆min. By line S13 and Corollary 2.3(2),

∆′′1 <
2∆min + (∆P1P −∆P2P ) + ∆∗P1P2

2

=
2(2∆min −∆P2P ) + (−2∆min +∆P1P2

) + ∆∗P1P2

2
.
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P2P1

Z

N

1

Y1

Z2

Y2

X

P

Fig. 3.4. This subgraph of T fixes some notation used in the proof of Case 1 of Lemma 3.5.
The location of Y1 relative to Y2 and Z2 is nonessential; for instance, Y1 can even be the same as
Y2. In T ∗

k , def(P1) = {X,Y1, Z1} and def(P2) = {X,Y2, Z2}. Neither XY1Z1 nor XY2Z2 is small,
and ∆P2Y2

≤ ∆P2Z2
. We aim to prove that there is a leaf N �∈ T ∗

k such that NXY2 or NZ1Y2 is
large and defines a node P strictly between P1 and P2 in T .

Then, since P 
= P2 and thus ∆P2P ≥ 2∆min, by Ck, we have ∆′′1 < ∆∗P1P2
. By

symmetry, ∆′′2 < ∆∗P1P2
. Thus, the test of line S14 fails.

(=⇒) To prove by contradiction, assume that P is not on the path between P1

and P2. By similar arguments, if ∆P1P > ∆P1P2
(respectively, ∆P2P > ∆P1P2

), then
∆′′1 > ∆∗P1P2

(respectively, ∆′′2 > ∆∗P1P2
). Thus, the test of line S14 passes.

Lemma 3.5. Assume that P1P2 is an edge in T ∗k and some node is strictly between
P1 and P2 in T . Then there is a large triplet NQ1Q2 with center P such that N 
∈ T ∗k ,
Q1 ∈ def(P1), Q2 ∈ def(P2), and P is strictly between P1 and P2 in T .

Proof. By Lemma 2.6(2), for every node P strictly between P1 and P2 in T , there
exists a leaf N 
∈ T ∗k with σPN ≥ (1− αg)d+1. To choose P , there are two cases: (1)
both P1 and P2 are internal nodes in T ∗k , and (2) P1 or P2 is a leaf in T ∗k .

Case 1: By Lemma 3.1, let def(P1) = {X,Y1, Z1} and def(P2) = {X,Y2, Z2}. By
Bk, neither XY2Z2 nor XY1Z1 is small. To fix the notation for def(P1) and def(P2)
with respect to their topological layout, we assume without loss of generality that
Figure 3.4 or equivalently the following statements hold:

• In T ∗k and thus in T by Ak, P2 is on the paths between P1 and Y2, between P1

and Z2, and between P1 and Y1, respectively.
• Similarly, P1 is on the paths between P2 and Z1 and between P2 and X.
• ∆P2Y2

≤ ∆P2Z2
.

Both NXY2 and NZ1Y2 define P , and the target triplet is one of these two for some
suitable P . To choose P , we further divide Case 1 into three subcases.

Case 1a: σXP2
< σY2P2

(1 − αg) and σY2P1
< σXP1

(1 − αg). The target triplet
is NXY2. Since σXY2

≤ √σXY2
, by Corollary 2.3(3), let P be a node on the path

between X and Y2 in T with
√
σXY2(1− αg) ≤ σXP ≤

√
σXY2(1− αg)−1 and thus

by Lemma 2.1
√
σXY2(1− αg) ≤ σY2P ≤

√
σXY2(1− αg)−1. By the condition of

Case 1a and Lemma 2.1, P is strictly between P1 and P2 in T . Also, by Corollary 2.4,
σXY2

≥ 2
3σXY2Z2

. Thus, by Lemma 2.1, since XY2Z2 is not small,

σNXY2 =
3

1
σXPσPN

+ 1
σY2PσPN

+ 1
σXY2

(3.2)

≥ 1√
2
3σ
−1/2
XY2Z2

(1− αg)−d−3/2 + 1
2σ
−1
XY2Z2

> σlg.
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So NXY2 is as desired for Case 1a.
Case 1b: σXP2 ≥ σY2P2

(1− αg). The target triplet is NXY2. Let P be the first
node after P2 on the path from P2 toward P1 in T . Then, σY2P ≥ σY2P2(1 − αg).
By Corollary 2.4, σ2

Y2P
≥ σXY2Z2(1− αg)2/3. Next, since σXY2 ≥ σXZ2 and σP2Y2 ≥

σP2Z2 ,

σXY2Z2
≤ 3

2σ−1
XY2

+ σ−1
Y2P2

σ−1
P2Z2

≤ 3

2σ−1
XP2

σ−1
Y2P2

+ σ−2
Y2P2

≤ 3σ2
XP2

2(1− αg) + (1− αg)2 .

So σ2
XP > σ2

XP2
> σXY2Z2(1− αg)2. Since σXY2

≥ 2
3σXY2Z2 and XY2Z2 is not small,

σNXY2 =
3

1
σXPσPN

+ 1
σY2PσPN

+ 1
σXY2

(3.3)

>
1(

1+
√

3
3

)
σ
−1/2
XY2Z2

(1− αg)−d−2 + 1
2σ
−1
XY2Z2

> σlg.

So NXY2 is as desired for Case 1b.
Case 1c: σY2P1 ≥ σXP1(1 − αg). If σZ1P1

> σXP1 , the target triplet is NZ1Y2;
otherwise, it is NXY2. The two cases are symmetric, and we assume σXP1

≥ σZ1P1
.

Let P be the first node after P1 on the path from P1 toward P2 in T . Then, σXP ≥
σXP1

(1 − αg). By Corollary 2.4, σ2
XP ≥ σ2

XP1
(1 − αg)2 ≥ σXY1Z1

(1 − αg)2/3. Since
σXY2 ≥ σXZ2

and σY2Z2
> 0,

σXY2Z2 <
3

2σ−1
XY2

≤ 3

2σ−1
Y2P1

σ−1
XP1

≤ 3σ2
Y2P1

2(1− αg) .

Hence σ2
Y2P

> σ2
Y2P1

> 2σXY2Z2(1− αg)/3. Then, since neither XY2Z2 nor XY1Z1 is

small and σXY2 ≥ 2
3σXY2Z2

,

σNXY2 =
3

1
σXPσPN

+ 1
σY2PσPN

+ 1
σXY2

(3.4)

>
1

1√
3
σ
−1/2
XY1Z1

(1− αg)−d−2 + 1√
6
σ
−1/2
XY2Z2

(1− αg)−d−3/2 + 1
2σ
−1
XY2Z2

> σlg.

So NXY2 is as desired for Case 1c with σXP1 ≥ σZ1P1 .
Case 2: By symmetry, assume that P2 = X is a leaf in T ∗k . Since k ≥ 3, P1

is an internal node in T ∗k . Let def(P1) = {X,Y, Z}. By symmetry, further assume
σY P1 ≥ σZP1 . There are two subcases. If σXP1 < σY P1(1 − αg), the proof is similar
to that of Case 1a and the desired P is in the middle of the path between X and
Y in T . Otherwise, the proof is similar to that of Case 1b and P is the first node
after P1 on the path from P1 toward X in T . In both cases, the desired triplet is
NXY .

3.4. The sample size required by Fast-HGT. The next lemma analyzes S.
For k = 3, . . . , n − 1 and each leaf M ∈ T , let Sk[M ] be the version of S[M ] at the
start of the (k − 2)th iteration of the repeat at line F7.

Lemma 3.6. Assume that for a given k ≤ n− 1, Eg, Ec, Ak′ , Bk′ , and Ck′ hold
for all k′ ≤ k.

1. If Sk[M ] is not null, then it is a splitting tuple for some edge in T ∗k .
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2. If an edge Q1Q2 ∈ T ∗k and a triplet MR1R2 with M 
∈ T ∗k satisfy Lemma 3.5,
then Sk[M ] is a splitting tuple for Q1Q2 in T

∗
k that contains a triplet MR′1R

′
2

with σ̂MR′
1R

′
2
≥ σ̂MR1R2

.
Proof. The two statements are proved as follows.
Statement 1. This statement follows directly from the initialization of S at line

F6, the deletions from S at line F13, and the insertions into S at lines F6 and F14.
Statement 2. The proof is by induction on k.
Base case: k = 3. By Ec, A3, B3, C3, and Lemmas 3.3 and 3.4, MR1R2 is a

splitting triplet for Q1Q2 in T ∗3 . By the maximization in Update-S at line F6, S[M ]
is a splitting tuple for some edge Q′1Q

′
2 ∈ T ∗3 that contains a triplet MR′1R

′
2 with

σ̂MR′
1R

′
2
≥ σ̂MR1R2 . By Eg, MR′1R

′
2 is not small. By Lemmas 3.3 and 3.4, Q′1Q

′
2 is

Q1Q2.
Induction hypothesis. Statement 2 holds for k < n− 1.
Induction step. We consider how Sk+1 is obtained from Sk during the (k − 2)th

iteration of the repeat at line F7. There are two cases.
Case 1: Q1Q2 also exists in T

∗
k . ByAk, Q1Q2 andMR1R2 also satisfy Lemmas 3.3

and 3.4 for T ∗k . By the induction hypothesis, Sk[M ] is a splitting tuple for Q1Q2 in T
∗
k

that contains a triplet MR′1R
′
2 with σ̂MR′

1R
′
2
≥ σ̂MR1R2

. Then, since Q1Q2 
= P1P2

and M 
= N at line F13, Sk[M ] is not reset to null. Thus, it can be changed only
through replacement at line F14 by a splitting tuple for some edge Q′1Q

′
2 in T ∗k+1 that

contains a triplet MR′′1R
′
2 with σ̂MR′′

1 R
′′
2
≥ σ̂MR′

1R
′
2
. By Eg, MR′′1R

′′
2 is not small.

Thus, by Ec, Ak+1, Bk+1, Ck+1, and Lemmas 3.3 and 3.4, Q′1Q
′
2 is Q1Q2.

Case 2: Q1Q2 
∈ T ∗k . This case is similar to the base case but uses the maximiza-
tion in Update-S at line F14.

Lemma 3.7. Eg and Ec imply that Ak, Bk, and Ck hold for all k = 3, . . . , n.
Proof. The proof is by induction on k.
Base case: k = 3. By Lemma 2.6(2), Ec, and the greedy selection of line F1, line

F3 constructs T ∗3 without edge lengths. Then, A3 holds trivially. B3 follows from Ec,
Eg, and line F1. C3 follows from B3, Ec and the use of (2.7) at line F4.

Induction hypothesis. Ak, Bk, and Ck hold for some k < n.
Induction step. The induction step is concerned with the (k − 2)th iteration of

the repeat at line F7. Right before this iteration, by the induction hypothesis, since
k < n, some N ′Q1Q2 satisfies Lemma 3.5. Therefore, during this iteration, by Ec and
Lemmas 3.3, 3.4, and 3.6, S at line F8 has a splitting tuple for T ∗k that contains a
triplet NXY with σ̂NXY ≥ σ̂N ′Q1Q2 . Furthermore, line F9 finds such a tuple. By
Eg, NXY is not small. Lines F10 and F11 create T ∗k+1 using this triplet. Thus, Bk+1

follows from Bk. By Lemmas 3.3 and 3.4, Ak+1 follows from Ak. Ck+1 follows from
Ck since the triplets involved at line S13 are not small.

Theorem 3.8. For any 0 < δ < 1, using sequence length

� = O
(

log 1
δ + log n

(1− αg)4d+8f2c2

)
,

Fast-HGT outputs T ∗ with the properties below with probability at least 1− δ:
1. Disregarding the edge lengths, T ∗ = Ψw(T ).
2. For each edge Q1Q2 in T ∗, |∆∗Q1Q2

−∆Q1Q2 | < 2∆min.

Proof. By Lemma 2.9, Pr
{ Eg

} ≤ δ
2 if

� ≥ �g
def
= 210α2 3 lnn+ ln 3

δ

σ2
lg

.
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Similarly, by Lemma 2.9, Pr
{ Ec

} ≤ δ
2 if

� ≥ �c
def
= 81

3 lnn+ ln 7
δ

σ2
lgf

2c2
.

We choose � = �max{�g, �c}�. Consequently, Pr{ Eg and Ec } ≥ 1− δ. By Lemma 3.7,
with probability at least 1 − δ, Fast-HGT outputs T ∗n , and An and Cn hold, which
correspond to the two statements of the theorem.

4. Further research. We have shown that theoretically, Fast-HGT has the op-
timal time and space complexity as well as a polynomial sample complexity. It would
be important to determine the practical performance of the algorithm by testing it
extensively on empirical and simulated trees and sequences. Furthermore, as conjec-
tured by one of the referees and some other researchers, there might be a trade-off
between the time complexity and the practical performance. If this is indeed true
empirically, it would be significant to quantify the trade-off analytically.

Appendix. Proofs of technical lemmas.

A.1. Proof of Lemma 2.5. Let hXY = σ̂XY

σXY
; hXZ = σ̂XZ

σXZ
; hY Z = σ̂Y Z

σY Z
. By

(2.6) and (2.7), and by conditioning on the events {hXZ ≤ 1− r} and {hY Z ≥ 1+ s}
for some r, s > 0,

Pr

{
∆̂XP −∆XP ≥ − ln(1− ε)

2

}
= Pr{hXY hXZ ≤ hY Z(1− ε) }

≤ Pr{hXZ ≤ 1− r }+ Pr{hY Z ≥ 1 + s }+ Pr

{
hXY ≤ (1− ε)1 + s

1− r
}
.

Setting 1−r
1+s > 1− ε, by (2.3) and (2.4),

Pr

{
∆̂XP −∆XP ≥ − ln(1− ε)

2

}
≤

exp

(
− 2

α2
�σ2

XZr
2

)
+ exp

(
− 2

α2
�σ2

Y Zs
2

)
+ exp

(
− 2

α2
�σ2

XY

(
1− (1− ε)1 + s

1− r
)2
)
.

Equating these exponential terms yields equations for r and s. The solution for r is

r =
t−√t2 − u
2σXZσY Z

; t = σXY σY Z + σXZσY Z + (1− ε)σXY σXZ ; u = 4σXY σ
2
Y ZσXZε.

Using Taylor’s expansion, for u > 0, (t−√t2 − u)2 > u2

4t2 . Thus,

r2 >
ε2(

1
σXZ

+ 1−ε
σY Z

+ 1
σXY

)2

σ2
XZ

>
ε2σ2

XY Z

9σ2
XZ

.

So Pr
{
∆̂XP −∆XP ≥ − ln(1−ε)

2

}
≤ 3 exp

(− 2
α2 �σ

2
XZr

2
)
< 3 exp

(− 2
9α2 �σ

2
XY Zε

2
)
.

A.2. Proof of Lemma 2.7. We use the following basic inequalities.

min

{
σ̂XY

σXY
,
σ̂XZ

σXZ
,
σ̂Y Z

σY Z

}
≤ σ̂XY Z

σXY Z
≤ max

{
σ̂XY

σXY
,
σ̂XZ

σXZ
,
σ̂Y Z

σY Z

}
;(A.1)
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σXY Z

3
≤ min {σXY , σXZ , σY Z} .(A.2)

The proof of (2.9) is symmetric to that of (2.8). So we only prove the latter. Pick
λ ≥ 1 with σXY Z = σlgλ. Without loss of generality, we assume min{ σ̂XY

σXY
, σ̂XZ

σXZ
, σ̂Y Z

σY Z
} =

σ̂XY

σXY
. By (2.3), (A.1), and (A.2),

Pr{ σ̂XY Z ≤ σmd } = Pr

{
σ̂XY Z

σXY Z
≤ σmd

σlgλ

}
≤ Pr

{
σ̂XY

σXY
≤ σmd

σlgλ

}

≤ exp

(
− 2

α2
�

(
1− σmd

σlgλ

)2

σ2
XY

)
≤ exp


−

2
(
1− σmd

σlg

)2

9α2
�σ2

lg


 .

Then, (2.8) follows from the fact that by the choice of σmd,

2
(
1− σmd

σlg

)2

9α2
=

(
√
2− 1)2

36α2
.

A.3. Proof of Lemma 2.8. Since Lemma 2.5 can help establish only one half
of the desired inequality, we split the probability on the left-hand side of (2.11):

Pr

{ ∣∣∣∆̂XP −∆XP

∣∣∣ ≥ ∆min

2

}

≤ Pr

{
∆̂XP −∆XP ≥ ∆min

6

}
+ Pr

{
∆̂Y P −∆Y P ≥ ∆min

6

}

+ Pr

{
∆̂XP −∆XP ≤ −∆min

2

∣∣∣∣ ∆̂Y P −∆Y P <
∆min

6

}
.

Then, since ∆̂XY −∆XY = (∆̂XP −∆XP ) + (∆̂Y P −∆Y P ), we have

Pr

{
∆̂XP −∆XP ≤ −∆min

2

∣∣∣∣ ∆̂Y P −∆Y P <
∆min

6

}

≤ Pr

{
∆̂XY −∆XY ≤ −∆min

3

}
.

Consequently,

Pr

{ ∣∣∣∆̂XP −∆XP

∣∣∣ ≥ ∆min

2

}
≤ Pr

{
∆̂XP −∆XP ≥ ∆min

6

}
(A.3)

+ Pr

{
∆̂Y P −∆Y P ≥ ∆min

6

}

+ Pr

{
∆̂XY −∆XY ≤ −∆min

3

}
.

By Lemma 2.5,

Pr

{
∆̂XP −∆XP ≥ ∆min

6

}
≤ 3 exp

(
− 2

9α2
�σ2

XY Z

(
1− e−∆min

3

)2
)
.
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By Taylor’s expansion, (1− e−∆min
3 )2 ≥ (1− (1− αf) c

3

)2
> c2

9 α
2f2, and thus

Pr

{
∆̂XP −∆XP ≥ ∆min

6

}
≤ 3 exp

(
− c

2

81
�σ2

lgf
2

)
.(A.4)

By symmetry,

Pr

{
∆̂Y P −∆Y P ≥ ∆min

6

}
≤ 3 exp

(
− c

2

81
�σ2

lgf
2

)
.(A.5)

By (2.4), Pr{∆̂XY − ∆XY ≤ −∆min

3 } ≤ exp(− 2
α2 �σ

2
XY (e

∆min
3 − 1)2). From (A.2),

σXY ≥ (1−αg)2d+2

3
√

2
. By Taylor’s expansion, (e

∆min
3 −1)2 ≥ ((1−αf)− c

3 −1)2 > c2

9 α
2f2.

Therefore,

Pr

{
∆̂XY −∆XY ≤ −∆min

3

}
≤ exp

(
− c

2

81
�σ2

lgf
2

)
.(A.6)

Lemma 2.8 follows from the fact that putting (A.3) through (A.6) together, we have

Pr{|∆̂XY −∆XY | ≥ ∆min

2 } ≤ 7 exp(− c2

81�σ
2
lgf

2).
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Abstract. PROPORTION EXTEND SORT is a new sorting algorithm, the basic principle of
which is similar to PROPORTION SPLIT SORT. This algorithm sorts a sequence by constructing
three subproblems, using a QuickSort-like pivot technique and solving recursively each subproblem.
The original problem and three subproblems all are of such a structure: a sorted subsequence followed
by an unsorted subsequence. The size of the original problem always equals the size of the third
subproblem, but in general, the sorted subsequence of the third subproblem is p+1 times as much as
the sorted subsequence of the original, where p is a fixed positive constant. The worst case number
of comparisons required by this algorithm is less than 1/ log(1 + 1/(2p2 + 2p− 1))n logn for p ≥ 1.
Empirical results show that the average number of comparisons is close to n logn − O(n) for some
p. From our experiments for sorting integers, when p = 16, this algorithm is yet faster, on average,
than PROPORTION SPLIT SORT which is faster than CLEVER QUICKSORT.

Key words. algorithm, partition, sort, quick sort, insertion sort
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1. Introduction. It has been studied for a long time whether there exists a
simple, practical, and efficient sorting algorithm that sorts n elements using constant
extra space and making O(n log n) comparisons in the worst case, and has an expected
number of comparisons approaching log(n!) = n log n − 1.442695n. (All logarithms
throughout the paper are base two.) Notice, log(n!) is the lower bound on the worst
and average case number of comparisons for comparison based sequential sorting
algorithms.

MERGESORT, BINARY INSERTION SORT, and WEAK-HEAP SORT [6], etc.
are sorting algorithms approaching this lower bound in terms of the number of com-
parisons. MERGESORT requires n log n − 1.2645n comparisons [1], [2] on average,
but uses extra storage of length n. BINARY INSERTION SORT is not efficient in
practice, primarily because of its O(n2) data movements. WEAK-HEAP SORT intro-
duced by Dutton(1993) is the fastest variant of HEAPSORT [3], [5], and the average
number is conjectured to be approximately (n − 0.5) log n − 0.413n. Unfortunately,
WEAK-HEAP SORT uses n extra bits, and by the empirical results of [8], the com-
parison plus exchange total required exceeds that required by the best-of-three version
of QUICKSORT called CLEVER QUICKSORT.

Most versions of QUICKSORT [4] require O(n2) comparisons in the worst case
but O(n log n) comparisons in the average case. CLEVER QUICKSORT is a practical
version of QUICKSORT and runs in approximately 1.188(n+1) log(n−1)−2.255n+
2.507 (see [7]) comparisons on average.

PROPORTION SPLIT SORT introduced by Chen [8] splits a sequence into two
blocks in the ratio of 1 : p − 1, then divides them into four blocks in a QuickSort-
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like pivot step, finally, sorts recursively the left two blocks and the right two blocks
separately. The worst case number of comparisons of PROPORTION SPLIT SORT
is bounded by 1/ log(2p/(2p − 1))n log n for p > 1 [8]. The simulation results of
[8] revealed that for some p (e.g., p = 16), the average number of comparisons and
exchanges required by PROPORTION SPLIT SORT is fewer than that required by
CLEVER QUICKSORT.

This paper introduces a new algorithm called PROPORTION EXTEND SORT.
The basic principle of this algorithm is similar to PROPORTION SPLIT SORT.
PROPORTION EXTEND SORT assumes that a sequence to be sorted has such a
structure: a sorted subsequence followed by an unsorted subsequence, then constructs
three subproblems which have the same structure as the original, and solves recursively
each subproblems. In general, the sorted subsequence of the third subproblem is
p + 1 times as much as the sorted subsequence of the original, where p is a positive
constant given. The worst case number of comparisons of this algorithm is bounded by
1/log(1+1/(2p2+2p−1))n log n for p ≥ 1. By experimental results, the performance
of PROPORTION EXTEND SORT is better than that of PROPORTION SPLIT
SORT.

                                    Si                                            UAi

                                            SEi

Step 1                           s
                                                                       Ui(p|Si|)

                                              partition

                            Si                                       Ui

Step 2                            s
                         SLi              SRi                ULi              URi

                                                  exchange

Step 3
                        SLi               ULi               SRi                 URi

                         sort(SLi,ULi)                    sort(SRi,URi)   
                                                  SEi                                                    UEi

                                                                                             sort(SEi,UEi)                     

Fig. 2.1. The basic principle of the sorting algorithm.

2. The algorithm. The algorithm assumes that an initial array of arbitrary
values A[1..n] is given; it then sorts the array A in ascending order. We will design and
analyze the algorithm by the following subarrays: Si = A[s1..s2], SEi = A[se1..se2],
Ui = A[u1..u2], UAi = A[ua1..ua2], ULi = A[ul1..ul2], URi = A[ur1..ur2], SLi =
A[sl1..sl2], SRi = A[sr1..sr2], and UEi = A[ue1..ue2]. |Si| will denote the length of
Si. Swap(i, j), which appears below, is a procedure that interchanges the values in
A[i] and A[j]. The basic idea of PROPORTION EXTEND SORT is to regard the
array A as a sequence which has such a structure: a sorted subsequence Si followed
by an unsorted subsequence UAi, create three subproblems: (SLi, ULi), (SRi, URi),
and (SEi, UEi), using a QuickSort-like pivot technique, and solve recursively each
subproblem. The basic idea of the algorithm is shown in Figure 2.1.
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Step 1. Suppose that the first |Si| elements are sorted, and we want to extend
that to |SEi|(= (1+ p)|Si|) elements, where p is a positive constant. That is,
se1 := s1, se2 := s1+(1+p)|Si|−1. Let the median of Si be s and the unsorted
subsequence in the SEi be Ui. Use s to partition Ui into two subsequences
ULi and URi in a QuickSort-like pivot step, such that max(ULi) ≤ s ≤
min(URi).

Step 2. Refer to the subsequences to the left and right of s as SLi and SRi, re-
spectively. Exchange the subsequences SRi and ULi by shifting A[sr2],
A[sr2 − 1],. . . , A[sr1] to A[ul2], A[ul2 − 1], . . . , A[ul2 − (sr2 − sr1)]. This
step means the following code:
for i := 0 to sr2− sr1 do Swap (sr2− i, ul2− i).

Step 3. After Step 2 is done, the two subproblems (SLi, ULi) and (SRi, URi)
have the same structure as the original(a sorted subsequence followed by an
unsorted subsequence ). Let the right subsequence contiguous to SEi be UEi.
After the two subproblems are solved, the subproblem (SEi, UEi) has also
the same structure as the original. Hence, the algorithm is called recursively
to sort (SLi, ULi), (SRi, URi), and (SEi, UEi).

We implement the algorithm by way of a recursive routine. It is easy to replace
this recursive routine by way of an iterative routine. Next we describe the main
algorithm ProportionExtendSort with Pascal-like procedures.

ProportionExtendSort(Si, UAi) denotes that it sorts the two contiguous subse-
quences Si and UAi by using the parameters s1, s2, and ua2 in Si and UAi, where Si
is a sorted subsequence and UAi is an unsorted subsequence. Notice, in this proce-
dure, the parameter ua1 in UAi is not used, since ua1 = s2+1. Initially Si = A[1..1],
UAi = A[2..n].

ProportionExtendSort(Si, UAi)
if s2 < s1 then s2 := s1 { Si = A[s1..s2] is sorted }
if UAi =empty then return { UAi = A[ua1..ua2] is unsorted }
se2 := s1 + (1 + p)|Si| − 1 { Extend Si to SEi = A[se1..se2] }

(2.1) if (1 + p)p|Si| > |Si|+ |UAi| then se2 := ua2
mid := �(s1 + s2)/2�
u1 := s2 + 1, u2 := se2 { Ui = A[u1..u2] }
ur1 := Partition(mid, Ui) { Split Ui into ULi and URi }

(2.2) for i = 0 to s2−mid do { shift A[s2..mid] to A[ur1-1...] }
Swap (s2− i, ur1− 1− i)

sr1 := ur1− (s2−mid), sr2 := ur1− 1 { SRi = A[sr1..sr2] is sorted }
ur2 := u2 { URi = A[ur1..ur2] is unsorted }
sl1 := s1, sl2 := mid− 1 { SLi = A[sl1..sl2] is sorted }
ul2 := sr1− 2 { ULi = A[ul1..ul2] is unsorted }

(2.3) ProportionExtendSort(SLi, ULi)
(2.4) ProportionExtendSort(SRi, URi)

se1 := s1
ue2 := ua2 { UEi = A[ue1..ue2] is unsorted }
ProportionExtendSort (SEi, UEi)

end ProportionExtendSort

The routine Partition divides Ui into two subsequences and returns their bound-
ary. The first subsequence consists of all A[i] ≤ A[mid], and the second subsequence
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consists of all A[j] ≥ A[mid]. Partition is described as follows.

Partition (mid, Ui)
{ Suppose Ui = A[u1..u2] }
i := u1, j := u2
while i ≤ j do begin
while i ≤ j and A[i] ≤ A[mid] do i := i+ 1
while i < j and A[j] ≥ A[mid] do j := j − 1
if i ≥ j then return i
Swap(i, j)
i := i+ 1, j := j − 1

end while
return i

end Partition

The routine Partition first searches from left to right (by increasing i) until the
element > A[mid] is found, then searches from right to left (by decreasing j) until
the element < A[mid] is found. When both searches have paused, if i < j, then we
exchange A[i] and A[j] and resume the process, otherwise, the algorithm terminates
and returns i.

p in the algorithm is a fixed positive constant. Depending on p, we obtain various
algorithms with different complexities.

Different algorithms can be obtained from this algorithm by replacing line (2.1).
QUICKSORT is obtained by se2 := ua2, and BINARY INSERTIONSORT by se2 :=
s2 + 1. That is, QUICKSORT and BINARY INSERTIONSORT are two extreme
cases of this algorithm.

ProportionExtendSort requires space for a pushdown stack which stores the ar-
guments of pending recursive calls. We infer easily that maximal stack depth is O(n).
Maximal stack depth can be kept to 2 logn if we make a slight modification of Pro-
portionExtendSort: always solve the smaller subproblem first, i.e., replace lines (2.3)
and (2.4) with

if |ULi| < |URi|
then ProportionExtendSort(SLi, ULi)

ProportionExtendSort(SRi, URi)
else ProportionExtendSort(SRi, URi)

ProportionExtendSort(SLi, ULi)
end if

3. Analysis and simulation results.

Theorem 3.1. Let W (n) denote the worst case number of comparisons required
by the algorithm for sorting n elements, then

W (n) ≤ 1/ log(1 + 1/(2p2 + 2p− 1))n log n, for p ≥ 1.

Proof. In PROPORTION EXTEND SORT, comparisons occur only in the routine
Partition. Partition(median of Si, Ui) takes exactly |Ui| comparisons to split Ui, where
Si and Ui denote the sorted set and the unsorted set upon entering the Partition for
the ith time, respectively.
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Let q denote the total number of the call to Partition, then we have

W (n) =

q∑
i=1

|Ui| =
q∑
i=1

n∑
j=1

b(A[j] ∈ Ui) =
n∑
j=1

q∑
i=1

b(A[j] ∈ Ui)

≤ n× n
max
j=1

(
q∑
i=1

b(A[j] ∈ Ui)
)
,

where b(A[j] ∈ Ui) is one when A[j] is in Ui, and zero otherwise.

Suppose maxnj=1(
∑q
i=1b(A[j] ∈ Ui)) =

∑q
i=1b(y ∈ Ui) = k. For the sake of

simplicity, it will be assumed that y is in Ui for 1 ≤ i ≤ k, and is not in Ut for t > k.

By lines (2.1) in the algorithm, we have

|Ui| =
{ |UAi| when (p+ 1)p|Si| > |Si|+ |UAi|,
p|Si| otherwise.

(3.1)

(p+ 1)p|Si| > |Si|+ |UAi| implies

|UAi| < (p2 + p− 1)|Si| for p ≥ 1.(3.2)

By (3.1) and (3.2), we can imply

|Ui| ≤ (p2 + p− 1)|Si| for p ≥ 1.

Thus, we have

|Ui|+ (p2 + p− 1)|Ui| ≤ (p2 + p− 1)(|Si|+ |Ui|) for p ≥ 1.

That is,

|Ui| ≤ (p2 + p− 1)

p2 + p
(|Si|+ |Ui|) for p ≥ 1.(3.3)

By the relation of UAi+1 and Ui+1, we have

|Ui+1| ≤ |UAi+1|.(3.4)

From lines (2.3) and (2.4) in the algorithm, we have

Si+1 = SLi and UAi+1 = ULi, or
Si+1 = SRi and UAi+1 = URi.

(3.5)

By the relation of ULi, URi, and Ui, clearly

|ULi| ≤ |Ui| and |URi| ≤ |Ui|.(3.6)

Since SLi and SRi are the left and right half of Si, we infer easily

|SLi| ≤ |Si|
2

and |SRi| ≤ |Si|
2
.(3.7)
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By (3.4)−(3.7) and (3.3), we obtain

|Si+1|+ |Ui+1| ≤ |Si+1|+ |UAi+1|
≤ max(|SLi|+ |ULi|, |SRi|+ |URi|)
≤ |Si|

2
+ |Ui|

≤ |Si|+ |Ui|
2

+
|Ui|
2

≤ |Si|+ |Ui|
2

+
(p2 + p− 1)

2(p2 + p)
(|Si|+ |Ui|)

≤ (2p2 + 2p− 1)

2(p2 + p)
(|Si|+ |Ui|).(3.8)

Clearly, we have

|S1|+ |U1| ≤ n and 2 ≤ |Sk|+ |Uk|.(3.9)

by (3.8) and (3.9), we have

2 ≤ |Sk|+ |Uk|
≤ (2p2 + 2p− 1)

2(p2 + p)
(|Sk−1|+ |Uk−1|)

≤ (
(2p2 + 2p− 1)

2(p2 + p)
)k−1(|S1|+ |U1|)

≤ (
(2p2 + 2p− 1)

2(p2 + p)
)k−1 × n for p ≥ 1.

We solve this inequality to obtain

k ≤ log n

log(1 + 1/(2p2 + 2p− 1))
.

Hence,

W (n) ≤ k × n ≤ n log n

log(1 + 1/(2p2 + 2p− 1))
for p ≥ 1.

The worst case behavior of PROPORTION EXTEND SORT seems to occur on
the completely sorted sequence as QUICKSORT. Even so, it takes only O(n log n)
comparisons, and by empirical results, the actual number of comparisons required is
far fewer than the formula given in the above theorem.

Since the “ripple swap”[8] technique can reduce the overall number of moves, the
experimental results given below for PROPORTION EXTEND SORT are obtained
by replacing line (2.2) with “ripple swap.”

Table 3.1 summarizes experimental results on the average case performance we
observed. For each input size n, we provided 20 distinct sets, each of which consists
of randomly generated distinct values. The columns Compares and Moves reflect the
average number of compares and exchanges for each instance, respectively. Columns
EXSORT(p = 2) and EXSORT(p = 6) are the results of PROPORTION EXTEND
SORT with p = 2 and p = 6, respectively. Columns SPSORT and QSORT are
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Table 3.1
The average number of compares and moves.

Size EXSORT(p=2) EXSORT(p=6) SPSORT QSORT
n Compares Moves Compares Moves Compares Moves Compares Moves
10 23 9 22 9 23 9 23 13
50 227 89 243 68 247 64 229 94

100 551 316 592 157 605 155 582 212
500 3895 2536 4154 1102 4201 1091 4202 1332

1000 8815 5925 9416 2452 9449 2474 9595 2899
5000 55538 25065 58835 15432 59053 15744 62240 17207

10000 121391 45971 127064 33536 127830 34432 135178 36874
50000 727550 314952 756987 196526 758823 208778 814311 209780

Table 3.2
The average-case results of PROPORTION SPLIT SORT when n = 50000.

p COMPARES MOVES p COMPARES MOVES
3/2 717525 938807 8 743257 246753
7/4 719502 741052 16 758823 208778
2 720214 619809 24 767910 197504
3 725147 413725 32 775507 192418
4 730272 340538 64 793430 184692

the results reported for PROPORTION SPLIT SORT with p = 16 and CLEVER
QUICKSORT, respectively, from [8].

Among the four algorithms given in Table 3.1, the average number of compares
observed for EXSORT(p = 2) is the smallest, and is less than the values of n log n−n
consistently. SPSORT(p = 16) is one of the best results of PROPORTION SPLIT
SORT. Nevertheless, the average number of compares observed for EXSORT(p = 6)
is fewer than that observed for SPSORT(p = 16); furthermore, when n ≥ 1000,
EXSORT(p = 6) used fewer moves than SPSORT(p = 16). For Table 3.1, exclusive of
the number of compares with n = 50 and n = 100, data observed for EXSORT(p = 6)
are all lower than those observed for QSORT.

To compare PROPORTION EXTEND SORT with PROPORTION SPLIT SORT
in further details, we present empirical results of these two sorting algorithms for some
p in Tables 3.2 and 3.3, respectively. For each p, we employed 20 distinct sets, each
of which consists of randomly generated distinct values as the simulation above. In
Tables 3.2 and 3.3, Columns COMPARES and MOVES are the average number of
comparisons and exchanges required to sort 50000 elements, respectively. Table 3.2
shows the results reported from [8].

As can be seen from Tables 3.2 and 3.3, the performance of PROPORTION EX-
TEND SORT is better than the performance of PROPORTION SPLIT SORT, since
in the case of the same number of comparisons, in general, PROPORTION EXTEND
SORT uses fewer moves than PROPORTION SPLIT SORT. Like PROPORTION
SPLIT SORT, one can choose also the best version of PROPORTION EXTEND
SORT by comparing the practical overall cost of comparisons and movements for
each p based on the property of the input sequence given.

Table 3.4 shows the average execution time required by the algorithms running on
Pentium II/350. All the algorithms are written in C and run under the MS-DOS op-
erating system. Both QsortN and QsortR are the best-of-three versions of Quicksort,
but when selecting three values to decide a pivot, QsortR adopts a random strategy
while QsortN does not. SPSORT(p = 24) and EXSORT(p = 16) are the fastest
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Table 3.3
The average-case results of PROPORTION EXTEND SORT when n = 50000.

p COMPARES MOVES p COMPARES MOVES
1 717413 893189 7 757438 199929
2 727550 314952 8 762434 195925
3 732150 276479 9 768442 189230
4 741935 226547 10 778984 186906
5 746513 220086 12 777409 188825
6 756987 196526 16 786726 184675

Table 3.4
Average execution time to sort n integers (in milliseconds, Pentium II/350MHz).

n SPSORT(p = 24) QsortN QsortR EXSORT(p = 16)
50 0.233 0.261 0.346 0.227

100 0.556 0.610 0.783 0.549
500 3.775 4.083 4.963 3.734

1000 8.445 9.025 10.790 8.385
5000 50.40 55.80 64.60 50.20

10000 113.3 120.1 137.7 112.4
50000 674 703 794 658

versions of PROPORTION SPLIT SORT and PROPORTION EXTEND SORT, re-
spectively, for sorting integers. From the empirical results given in Table 3.4, our
algorithm is the fastest.

4. Comments. PROPORTION EXTEND SORT is a simple, competitive, and
efficient sorting algorithm that sorts n elements, using O(log n) extra space and mak-
ing O(n log n) comparisons in the worst case. Since an average case theoretic analysis
seems to be quite sophisticated, it is left as an open problem. However, in our simu-
lation, this sorting algorithm is better than PROPORTION SPLIT SORT, and used
fewer data moves and fewer comparisons, and its number of comparisons is close to
log(n!). Therefore, we believe that it is possible to replace CLEVER QUICKSORT
by PROPORTION EXTEND SORT.
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Abstract. We consider the following fundamental scheduling problem. The input to the problem
consists of n jobs and k machines. Each of the jobs is associated with a release time, a deadline, a
weight, and a processing time on each of the machines. The goal is to find a nonpreemptive schedule
that maximizes the weight of jobs that meet their respective deadlines. We give constant factor
approximation algorithms for four variants of the problem, depending on the type of the machines
(identical vs. unrelated) and the weight of the jobs (identical vs. arbitrary). All these variants are
known to be NP-hard, and the two variants involving unrelated machines are also MAX-SNP hard.
The specific results obtained are as follows:

• For identical job weights and unrelated machines: a greedy 2-approximation algorithm.
• For identical job weights and k identical machines: the same greedy algorithm achieves a

tight (1+1/k)k

(1+1/k)k−1
approximation factor.

• For arbitrary job weights and a single machine: an LP formulation achieves a 2-approximation
for polynomially bounded integral input and a 3-approximation for arbitrary input. For
unrelated machines, the factors are 3 and 4, respectively.

• For arbitrary job weights and k identical machines: the LP-based algorithm applied re-

peatedly achieves a (1+1/k)k

(1+1/k)k−1
approximation factor for polynomially bounded integral

input and a (1+1/2k)k

(1+1/2k)k−1
approximation factor for arbitrary input.

• For arbitrary job weights and unrelated machines: a combinatorial (3 + 2
√
2 ≈ 5.828)-

approximation algorithm.
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1. Introduction. We consider the following fundamental scheduling problem.
The input to the problem consists of n jobs and k machines. Each of the jobs is
associated with a release time, a deadline, a weight, and a processing time on each of
the machines. The goal is to find a nonpreemptive schedule that maximizes the weight
of the jobs that meet their deadline. Such scheduling problems are frequently referred
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to as real-time scheduling problems, and the objective of maximizing the value of
completed jobs is frequently referred to as throughput. We consider four variants of
the problem depending on the type of the machines (identical vs. unrelated) and the
weight of the jobs (identical vs. arbitrary). In the standard notation for scheduling
problems, the four problems we consider are P |ri|

∑
(1 − Ui), P |ri|

∑
wi(1 − Ui),

R|ri|
∑
(1− Ui), and R|ri|

∑
wi(1− Ui).

Garey and Johnson [17] (see also [18]) show that the simplest decision problem
corresponding to this problem is already NP-hard in the strong sense. In this decision
problem the input consists of a set of n jobs with release time, deadline, and processing
time. The goal is to decide whether all the jobs can be scheduled on a single machine,
each within its time window. We show that the two variants involving unrelated
machines are also MAX-SNP hard.

In this paper we give constant factor approximation algorithms for all four vari-
ants of the problem. To the best of our knowledge, this is the first paper that gives
approximation algorithms with guaranteed performance (approximation factor) for
these problems. We say that an algorithm has an approximation factor ρ for a max-
imization problem if the weight of its solution is at least 1/ρ · OPT, where OPT is
the weight of an optimal solution. (Note that we defined the approximation factor so
that it would always be at least 1.)

The specific results obtained are listed below and summarized in Table 1.1.

• For identical job weights and unrelated machines, we give a greedy
2-approximation algorithm.
• For identical job weights and k identical machines, we show that the same

greedy algorithm achieves a tight (1+1/k)k

(1+1/k)k−1
approximation factor.

• For arbitrary job weights, we round a fractional solution obtained from a
linear programming relaxation of the problem. We distinguish between the
case where the release times, deadlines, and processing times are integral
and polynomially bounded, and the case where they are arbitrary. In the
former case, we achieve a 2-approximation factor for a single machine and a
3-approximation factor for unrelated machines. In the latter case, we get a
3-approximation factor for a single machine and a 4-approximation factor for
unrelated machines.
• For arbitrary job weights and k identical machines, we achieve a (1+1/k)k

(1+1/k)k−1

approximation factor for polynomially bounded integral input and a
(1+1/2k)k

(1+1/2k)k−1
approximation factor for arbitrary input. Note that as k tends to

infinity these factors tend to e
e−1 ≈ 1.58198 and

√
e√
e−1
≈ 2.54149, respectively.

• For arbitrary job weights and unrelated machines we also present a combina-
torial (3 + 2

√
2)-approximation factor (3 + 2

√
2 ≈ 5.828).

The computational difficulty of the problems considered here is due to the “slack
time” available for scheduling the jobs. In general, the time window in which a job
can be scheduled may be (much) larger than its processing time. Interestingly, the
special case where there is no slack time can be solved optimally in polynomial time
even for multiple machines [3] using dynamic programming. Moreover, the problem
can be solved optimally on a single machine with the execution window strictly less
than twice the length of the job, since it reduces to the case of no slack time.

Another special case that was considered earlier in the literature is the case in
which all jobs are released at the same time (or equivalently, the case in which all
deadlines are the same). This special case remains NP-hard even for a single machine.
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Table 1.1
Each entry contains the approximation factors as a function of the number of machines (k) in

the form (1, 2, 3, . . . , k, . . . , k →∞).

Weight function Identical machines Unrelated machines

Identical job weights
(
2, 1.8, 1.73, . . . , (1+1/k)k

(1+1/k)k−1
, . . . , 1.58

)
(2, 2, 2, . . . , 2)

Arbitrary job weights
(
2, 1.8, 1.73, . . . , (1+1/k)k

(1+1/k)k−1
, . . . , 1.58

)
(2, 3, 3, . . . , 3)

Integral, poly-size, input

Arbitrary job weights
(
3, 2.78, 2.7, . . . , (1+1/2k)k

(1+1/2k)k−1
, . . . , 2.54

)
(3, 4, 4, . . . , 4)

Arbitrary input

However, Sahni [30] gave a fully polynomial approximation scheme for this special
case.

The problems considered here have several applications. Hall and Magazine [21]
considered the single machine version of our problem in the context of maximizing the
scientific, military, or commercial value of a space mission. This means selecting and
scheduling in advance a set of projects to be undertaken during the space mission,
where an individual project is typically executable during only part of the mission. It
is indicated in [21] that up to 25% of the budget of a space mission may be spent in
making these decisions. Hall and Magazine [21] present eight heuristic procedures for
finding a near optimal solution together with computational experiments. However,
they do not provide any approximation guarantees on the solutions produced by their
heuristics. They also mention the applicability of such problems to patient scheduling
in hospitals. For more applications and related work in the scheduling literature
see [11, 15] and the survey of [27].

The preemptive version of our problem for a single machine was studied by
Lawler [26]. For identical job weights, Lawler showed how to apply dynamic program-
ming techniques to solve the problem in polynomial time. He used the same techniques
to obtain a pseudopolynomial algorithm for the NP-hard variant 1|ri, pmtn|

∑
wi(1−

Ui) in which the weights are arbitrary [26]. Lawler [25] also obtained polynomial time
algorithms that solve the problem in two special cases: (i) the time windows in which
jobs can be scheduled are nested, and (ii) the weights and processing times are in
opposite order. Kise, Ibaraki, and Mine [23] showed how to solve the special case
where the release times and deadlines are similarly ordered. For multiple machines,
we note that P |ri, pmtn|

∑
wi(1 − Ui) is NP-hard [27], yet there is a pseudopolyno-

mial algorithm for this problem [26]. (However, it does not imply a fully polynomial
approximation scheme [32].)

A closely related problem is considered by Adler et al. [1] in the context of com-
munication in linear networks. In this problem, messages with release times and
deadlines have to be transmitted over a bus that has a unit bandwidth, and the goal
is to maximize the number of messages delivered within their deadline. It turns out
that our approximation algorithms for the case of arbitrary weights can be applied
to the weighted version of the unbuffered case considered in [1], yielding a constant
factor approximation algorithm. No approximation algorithm is given in [1] for this
version.
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Spieksma [31] considered the interval scheduling problem on a single machine. In
this problem, the possible instances of a job are given explicitly as a set of time inter-
vals. The goal is to pick a set of maximum cardinality (or weight) of nonintersecting
time intervals such that at most one interval from each set of job instances is picked.
This problem can be viewed as the discrete version of our problem. Spieksma [31]
considered the unweighted version of the interval scheduling problem. He proved
that it is MAX-SNP hard, gave a 2-approximation algorithm which is similar to our
greedy algorithm, and showed that the integrality gap of a linear programming for-
mulation for this problem approaches 2 as well. We note that our results imply a
2-approximation algorithm for the weighted interval scheduling problem.

In the on-line version of our problems, the jobs appear one by one, and are not
known in advance. Lipton and Tomkins [28] considered the nonpreemptive version
of the on-line problem, while Koren and Shasha [24] and Baruah et al. [8] considered
the preemptive version. The special cases where the weight of a job is proportional
to the processing time were considered in the on-line setting in several papers [5, 14,
16, 19, 20, 7]. Our combinatorial algorithm for arbitrary weights borrows some of the
techniques used in the on-line case.

Some of our algorithms are based on rounding a fractional solution obtained from
a linear programming (LP) relaxation of the problem. In the LP formulation for a
single machine we have a variable for every feasible schedule of each of the jobs, a
constraint for each job, and a constraint for each time point. A naive implementation
of this approach would require an unbounded number of variables and constraints. To
overcome this difficulty, we first assume that all release times, deadlines, and process-
ing times are (polynomially bounded) integers. This yields a polynomial number of
variables and constraints, allowing for the LP to be solved in polynomial time. For the
case of arbitrary input, we show that we need not consider more than O(n2) variables
and constraints for each of the n jobs. This yields a strongly polynomial running time
at the expense of a minor degradation in the approximation factor. The rounding
of the fractional solution obtained from the LP relaxation is done by decomposing it
into a convex sum of integral solutions, and then choosing the best one among them.
We show that the bounds obtained by rounding a fractional solution are the best
possible bounds that can be obtained, since they match the integrality gap of the LP
relaxation.

We extend our algorithms from a single machine to multiple machines by apply-
ing a single machine algorithm repeatedly, machine-by-machine, and provide a rather
general analysis for such a paradigm. Interestingly, it turns out that the approx-
imation factor for the case of identical machines is superior to the approximation
factor of the single machine algorithm which served as our starting point. A similar
phenomenon (in a different context) has been observed by Cornuejols, Fisher, and
Nemhauser [12]. In the unrelated machines case, our analysis is similar to the one
described (in a different context) by Awerbuch et al. [4]. It is also similar to the O(1)-
reduction described by Kalyasundaram and Pruhs [22] (in the preemptive case) from
P |ri, pmtn|

∑
wi(1 − Ui) to 1|ri, pmtn|

∑
wi(1 − Ui). Unlike the identical machines

case, in the unrelated machines case the extension to multiple machines degrades the
performance relative to a single machine.

2. Definitions and notations. Let the job system contain n jobs
J = 〈J1, . . . , Jn〉 and k machines M = 〈M1, . . . ,Mk〉. Each job Ji is character-
ized by the quadruple (ri, di, Li, wi), where Li = {�i,1, . . . , �i,k}. The interpretation
is that job Ji is available at time ri, the release time; it must be executed by time
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di, the deadline; its processing time on machine Mj is �i,j ; and wi is the weight (or
profit) associated with the job. We note that our techniques can also be extended to
the more general case where the release time, deadline, and weight of each job differ
on different machines. However, for simplicity, we consider only the case where the
release time, deadline, and weight of each job are the same on all machines. The
hardness results are also proved under the same assumption.

We refer to the case in which all job weights are the same as the unweighted
model, and the case in which job weights are arbitrary as the weighted model. (In the
unweighted case our goal is to maximize the cardinality of the set of scheduled jobs.)
We refer to the case in which the processing times of the jobs on all the machines are
the same as the identical machinesmodel, and the case in which processing times differ
as the unrelated machines model. In the identical machines model with unweighted
jobs, job Ji is characterized by a triplet (ri, di, �i) where di ≥ ri + �i. Without loss of
generality, we assume that the earliest release time is at time t = 0.

A feasible scheduling of job Ji on machine Mj at time t, ri ≤ t ≤ di − �i,j , is
referred to as a job instance, denoted by Ji,j(t). A job instance can also be represented
by an interval on the time line [0,∞). We say that the interval Ji,j(t) = [t, t + �i,j)
belongs to job Ji. In general, many intervals may belong to a job. A set of job in-
stances J1,j(t1), . . . , Jh,j(th) is a feasible schedule on machineMj , if the corresponding
intervals are independent, i.e., they do not overlap, and they belong to distinct jobs.
The weight of a schedule is the sum of the weights of the jobs to which the intervals
(job instances) belong. In the case of multiple machines, we need to find a feasible
schedule of distinct jobs on each of the machines. The objective is to maximize the
sum of the weights of all schedules.

We distinguish between the case where the release times, processing times, and
deadlines are integers bounded by a polynomial in the number of jobs, and between
the case of arbitrary inputs. The former case is referred to as polynomially bounded
integral input and the latter case is referred to as arbitrary input.

3. Unweighted jobs. In this section we consider the unweighted model. We
define a greedy algorithm and analyze its performance in both the unrelated and
identical models. In the former model, we show that it is a 2-approximation algorithm,
and in the latter model, we show that it is a ρ(k)-approximation algorithm, where

ρ(k) =
(k + 1)k

(k + 1)k − kk =
(1 + 1/k)k

(1 + 1/k)k − 1
.

For k = 1, 2 we get ρ(1) = 2 and ρ(2) = 9/5, and for k −→ ∞ we have ρ(k) −→
e/(e− 1) ≈ 1.58198.

3.1. The greedy algorithm. The greedy strategy for a single machine is as
follows. At each time step t (starting at t = 0), the algorithm schedules the job
instance that finishes first among all jobs that can be scheduled at t or later. Note
that the greedy algorithm does not take into consideration the deadlines of the jobs,
except for determining whether jobs are eligible for scheduling. The greedy algorithm
for multiple machines executes the greedy algorithm (for a single machine) machine
by machine, updating the set of jobs to be scheduled on each machine to include only
jobs that have not been scheduled on previous machines.

We now give a more formal definition of our strategy and introduce some nota-
tions. Define the procedure NEXT(t, j,J ). The procedure determines the job instance
Ji,j(t

′), t′ ≥ t, such that t′ + �i,j is the earliest among all instances of jobs in J that
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start at time t or later on machine Mj . If no such interval exists, the procedure
returns null.

Algorithm 1-GREEDY(j,J ) finds a feasible schedule on machine Mj among the
jobs in J by calling procedure NEXT(t, j,J ), repeatedly.

1. The first call is for Ji1,j(t1) = NEXT(0, j,J ).
2. Assume the algorithm has already computed Ji1,j(t1), . . . , Jih,j(th). Let the

current time be t = th + �ih,j and let the current set of jobs be J := J \
{Ji1,j , . . . , Jih,j}.

3. The algorithm calls NEXT(t, j,J ) that returns either Jih+1,j(th+1) or null.
4. The algorithm terminates in round r+1 when procedure NEXT returns null.

It returns the set {Ji1,j(t1), . . . , Jir,j(tr)}.
Algorithm k-GREEDY(J ) finds k schedules such that a job appears at most once in

the schedules. It calls Algorithm 1-GREEDY machine by machine, each time updating
the set J of jobs to be scheduled. Assume that the output of 1-GREEDY(j,J ) in
the first i − 1 calls is G1, . . . , Gi−1, where Gj is a feasible schedule on machine Mj ,
for 1 ≤ j ≤ i − 1. Then, the algorithm calls 1-GREEDY(i,J \ ∪j=1,...,i−1Gj) to get
schedule Gi.

The following property of Algorithm 1-GREEDY is used in the analysis of the
approximation factors of our algorithms.

Proposition 3.1. Let the set of jobs found by 1-GREEDY(j,J ) for a job system
J be G. Let H be any feasible schedule on machine Mj among the jobs in J \ G.
Then, |H| ≤ |G|.

Proof. For each interval (job instance) in H there exists an interval in G that
overlaps with it and terminates earlier. Otherwise, 1-GREEDY would have chosen this
interval. The proposition follows from the feasibility of H, since at most one interval
in H can overlap with the endpoint of any interval in G.

3.2. Unrelated machines. Based on Proposition 3.1, the following theorem
states the performance of the k-GREEDY algorithm in the unweighted jobs and unre-
lated machines model.

Theorem 3.2. Algorithm k-GREEDY achieves an approximation factor of 2 in
the unweighted jobs and unrelated machines model.

Proof. Let G(k) = G1 ∪ · · · ∪Gk be the output of k-GREEDY and let OPT (k) =
O1 ∪ · · · ∪ Ok be the sets of intervals scheduled on the k machines by an optimal
solution OPT. (We note that these sets will be considered as jobs and job instances
interchangeably.) Let Hj = Oj \ G(k) be the set of all jobs scheduled by OPT
on machine Mj that k-GREEDY did not schedule on any machine, and let H =
H1 ∪ · · · ∪Hk. Let OG = OPT (k)∩G(k) be the set of jobs taken by both k-GREEDY
and OPT. It follows that OPT (k) = OG ∪H.

Proposition 3.1 implies that |Hj | ≤ |Gj |. This is true since Hj is a feasible
schedule on machine Mj among the jobs that were not picked by k-GREEDY while
constructing the schedule for machine Mj . Since the sets Hj are mutually disjoint
and the same holds for the sets Gj , |H| ≤ |G(k)|. Since |OG| ≤ |G(k)|, we get that
|OPT (k)| ≤ 2|G(k)| and the theorem follows.

3.3. Identical machines. In this section we analyze the k-GREEDY algorithm
for the unweighted jobs and identical machines model. We show that the approxima-
tion factor in this case is

ρ(k) =
(k + 1)k

(k + 1)k − kk .
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Recall that for k −→∞ we have ρ(k) −→ e/(e− 1) ≈ 1.58198.
The analysis below is quite general and it only uses the fact that the algorithm is

applied sequentially, machine by machine, and that the machines are identical (and
that no job migration is allowed). Let OPT (k) be an optimal schedule for k identical
machines. Let A be any algorithm for one machine. Define by αA(k) (or by α(k) when
A is known) the approximation factor of A compared with OPT (k). That is, if A is
the set of jobs chosen by A, then |A| ≥ (1/α(k))|OPT (k)|. Note that the comparison
is done between an algorithm that uses one machine and an optimal schedule that
uses k machines.

Let A(k) be the algorithm that applies algorithm A, machine by machine, k times.
In the next theorem we bound the performance of A(k) using α(k).

Theorem 3.3. Algorithm A(k) achieves an α(k)k

α(k)k−(α(k)−1)k
approximation factor

for k identical machines.
Proof. Let Ai be the set of jobs chosen by A(k) for the ith machine. Suppose

that the algorithm has already determined A1, . . . , Ai−1. Consider the schedule given
by removing from OPT (k) all the jobs in A1, . . . , Ai−1. Clearly, this is still a feasible

schedule of cardinality at least |OPT (k)| −∑i−1
j=1 |Aj |. Therefore, by the definition of

α(k), the set Ai satisfies |Ai| ≥ (1/α(k))(|OPT (k)| −∑i−1
j=1 |Aj |). Adding

∑i−1
j=1 |Aj |

to both sides gives us

i∑
j=1

|Aj | ≥ |OPT (k)|
α(k)

+
α(k)− 1

α(k)

i−1∑
j=1

|Aj | .(3.1)

We prove by induction on i that

i∑
j=1

|Aj | ≥ α(k)
i − (α(k)− 1)i

α(k)i
|OPT (k)| .

When i = 1, by definition, |A1| ≥ |OPT (k)|
α(k) . Assume the claim holds for i−1. Applying

the induction hypothesis to (3.1) we get

i∑
j=1

|Aj | ≥ |OPT (k)|
α(k)

+
α(k)− 1

α(k)
· α(k)

i−1 − (α(k)− 1)i−1

α(k)i−1
|OPT (k)| .

Rearranging terms yields the inductive claim. Setting i = k proves the theorem,
namely,

k∑
j=1

|Aj | ≥ α(k)
k − (α(k)− 1)k

α(k)k
|OPT (k)| .

We now apply the above theorem to Algorithm k-GREEDY. We compute the
value of α(k) for Algorithm 1-GREEDY, and observe that Algorithm k-GREEDY indeed
applies Algorithm 1-GREEDY k times, as assumed by Theorem 3.3.

Theorem 3.4. The approximation factor of k-GREEDY is ρ(k) = (k+1)k

(k+1)k−kk in
the unweighted jobs and identical machines model.

Proof. Recall that Algorithm 1-GREEDY scans all the intervals ordered by their
endpoints and picks the first possible interval belonging to a job that was not picked
before. Let G be the set picked by the greedy algorithm, and consider the schedule
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of H = OPT (k) − G on machines M1, . . . ,Mk. Similar to the arguments of Propo-
sition 3.1, in each of the machines, if a particular job of H was not chosen, then
there must be a job in progress in G. Also this job must finish before the particular
job in H finishes. Thus, the number of jobs in H executed on any single machine
by the optimal schedule has to be at most |G|. Since the jobs executed by the op-
timal schedule on different machines are disjoint, we get |H| ≤ k|G|. Consequently,
|OPT (k)| ≤ (k + 1)|G| and α(k) = k + 1. The theorem follows by setting this value
for α(k) in Theorem 3.3.

Remark. It is not difficult to see that α(k) ≤ kα(1); that is, if the approximation
factor of A compared with OPT (1) is α(1), then the approximation factor of A
compared with OPT (k) is no more than kα(1). However, applying Theorem 3.3
using this bound for α(k) would yield an approximation factor for k identical machines
which is inferior to the α(1) bound on this approximation ratio that can be achieved
directly. We note that for this reason Theorem 3.3 cannot be applied to improve the
result in [22].

3.4. Tight bounds for GREEDY. In this subsection we construct instances for
which our bounds in the unweighted model for algorithm GREEDY are tight. We
first show that for one machine (where the unrelated and identical models coincide),
the 2-approximation is tight. Next, we generalize this construction for the unrelated
model and prove the tight bound of 2 for k > 1 machines. Finally, we generalize the
construction for one machine to k > 1 identical machines and prove the tight bound
of ρ(k).

Recall that in the unweighted model each job is characterized by a triplet (ri, di, �i)
in the identical machines model and by a triplet (ri, di, Li), where Li = {�i,1, . . . , �i,k},
in the unrelated machines model.

3.4.1. A single machine. For a single machine the system contains two jobs:
G1 = (0, 3, 1) and H1 = (0, 2, 2). Algorithm 1-GREEDY schedules the instance G1(0)
of job G1 and cannot schedule any instance of H1. An optimal solution schedules the
instances H1(0) and G1(2). Clearly, the ratio is 2. We could repeat this pattern on
the time axis to obtain this ratio for any number of jobs.

This construction demonstrates the limitation of the approach of Algorithm
1-GREEDY. This approach ignores the deadlines and therefore does not capitalize
on the urgency in scheduling job H1 in order not to miss its deadline. We generalize
this idea further for k machines.

Note that an algorithm that does not consider job lengths and schedules solely
according to deadlines may produce even worse results. Consider the following n+ 1
jobs: n jobs Hi = (0, 2n+ 1, 2), 1 ≤ i ≤ n, and one job G1 = (0, 2n, 2n). An optimal
solution schedules all the H-type jobs whereas an algorithm that schedules jobs with
earliest deadline first schedules the G-type job first and then is unable to schedule
any of the H-type jobs.

3.4.2. Unrelated machines. For k ≥ 1 machines the job system contains 2k
jobs: G1, . . . , Gk and H1, . . . , Hk. The release time of all jobs is 0. The deadline of
all the G-type jobs is 3 and the deadline of all the H-type jobs is 2. The length of
job Gi on machine Mi is 1 and it is 4 on all other machines. The length of job Hi on
machine Mi is 2 and it is 3 on all other machines.

Note that only jobs Gi and Hi can be scheduled on machine Mi, since all other
jobs are too long to meet their deadline. Hence, Algorithm k-GREEDY considers
only these two jobs while constructing the schedule for machine Mi. As a result,
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k-GREEDY selects the instance Gi(0) of job Gi to be scheduled on machine Mi and
cannot schedule any of the H-type jobs. On the other hand, an optimal solution
schedules the instances Hi(0) and Gi(2) on machine Mi.

Overall, Algorithm k-GREEDY schedules k jobs while an optimal algorithm sched-
ules all 2k jobs. This yields a tight approximation factor of 2 in the unweighted jobs
and unrelated machines model.

3.4.3. Identical machines. We define job systems J (k) for any given k ≥
1. We show that on J (k) the performance of k-GREEDY(J (k)) is no more than
(1/ρ(k)) · OPT(J (k)). The J (1) system is the one defined in subsection 3.4.1. The
J (2) job system contains 2 · 32 = 18 jobs: 2 · 3 = 6 jobs of type G1 = (0, d1, �), 2

2 = 4
jobs of type G2 = (0, d2, � + 1), and 23 = 8 jobs of type H = (0, d, � + 2). If we set
� = 10, d1 = 100, d2 = 70, and d = 48, we force Algorithm 2-GREEDY to make the
following selections:

• On the first machine, 2-GREEDY schedules all the 6 jobs of type G1. This
is true since the length of these jobs is less than the lengths of the jobs of
type G2 and the jobs of type H. The last G1-type interval terminates at time
60. Hence, there is no room for a G2-type (H-type) interval, the deadline of
which is 70 (48), and the length of which is 11 (12).
• On the second machine, 2-GREEDY schedules all 4 jobs of type G2 since they
are shorter than the jobs of type H. The last G2-type job terminates at time
44 which leaves no room for another job of type H.

Overall, 2-GREEDY schedules only 10 jobs. We show now an optimal solution that
schedules all 18 jobs. It schedules 9 jobs on each machine as follows:

H(0), H(12), H(24), H(36), G2(48), G2(59), G1(70), G1(80), G1(90) .

Note that all the instances terminate before their deadlines. As a result we get a ratio
ρ(2) = (2 · 32)/(2 · 32 − 23) = 9/5.

We are ready to define J (k) for any k ≥ 1. The job system contains k(k + 1)k

jobs. Algorithm k-GREEDY is able to schedule only k(k+1)k−kk+1 out of them and
there exists an optimal solution that schedules all of them. As a result we get the
ratio

k(k + 1)k

k(k + 1)k − kk+1
= ρ(k) .

The J (k) system is composed of k + 1 types of jobs: G1, G2, . . . , Gk and H. There
are ki(k + 1)k−i jobs (0, di, �+ i− 1) in Gi and k

k+1 jobs (0, d, �+ k) in H. Indeed,

kk+1 +
∑k
i=1 k

i(k + 1)k−i = k(k + 1)k. (To see this, divide the equation by kk+1 to

get 1+(1/k) ·∑k−1
i=0 (1+1/k)i = (1+1/k)k.) Note also that the length of the Gi-type

jobs is monotonically increasing in i and that the H-type jobs are the longest.
We show how by fixing d1, . . . , dk and d and by setting � as a large enough number,

we force Algorithm k-GREEDY to select for machine i all the jobs of type Gi but no
other jobs. Thus, k-GREEDY does not schedule any of the H-type jobs. On the
other hand, an optimal solution is able to construct the same schedule for all the k
machines. It starts by scheduling 1/k of the H-type jobs on each machine, and then
it schedules in turn 1/k of the jobs from Gk, Gk−1, . . . , G1 in this order.

We fix the values of d, dk, . . . , d1 to allow for such an optimal schedule. The
optimal solution starts by scheduling on each machine (1/k) · kk+1 = kk of the H-
type jobs each of length � + k. Thus, we set d = kk · (� + k) = kk� + kk+1. Next,
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(1/k) · kk = kk−1 of the Gk-type jobs each of length � + k − 1 are scheduled. Thus,
we set dk = d+ k

k−1 · (�+ k − 1). Similarly, for i = k − 1, . . . , 1,

di = di+1 + (1/k) · ki(1 + k)k−i · (�+ i− 1)

= di+1 + k
i−1(1 + k)k−i · (�+ i− 1)

= di+1 + k
i−1(1 + k)k−i · �+ ki−1(1 + k)k−i · (i− 1) .

Observe that d < dk < · · · < d1.
We now have to show that with the values fixed above Algorithm k-GREEDY

schedules all the jobs of type Gi but no other jobs on machine i. Note that we have
not set yet the value of �; we set it to be large enough to force such a behavior
of k-GREEDY. First, we find the general solution to the recurrence for d(k+1)−i,
1 ≤ i ≤ k. The coefficient of � in d(k+1)−i is

i∑
j=1

kk−j(k + 1)j−1 + kk = kk−i(k + 1)i .

It follows that

dk+1−i = kk−i(k + 1)i�+ kk+1 +

i∑
j=1

kk−j(k + 1)j−1(k − j) .

For the analysis below we need to break the expression for di into two components:
one is the term that depends (linearly) on �, and the other that depends only on i
and k. For convenience denote dk+1 = d. It follows that for 1 ≤ i ≤ k + 1,

di = k
i−1(k + 1)k−i+1�+ f(i, k)

for some function f(i, k) independent of �.
Algorithm k-GREEDY starts by scheduling all the jobs of type G1 on machine

1, since these are the shortest length jobs. The time taken is k(k + 1)k−1�. Since
our goal is not to have any other jobs scheduled on machine 1, we must make the
deadline of the other jobs early enough so that they cannot be scheduled after this
time. In particular, to prevent scheduling G2-type jobs on machine 1 we must have
k(k + 1)k−1� + (� + 1) > d2. Note that since the deadlines di are monotonically
decreasing and the lengths of the Gi-type jobs are monotonically increasing, if a job
of type Gi cannot be scheduled, then a job of type Gi+1 cannot be scheduled as well.
The same is true for jobs of type H. It follows that if k(k + 1)k−1� + (� + 1) > d2,
then after all the jobs of type G1 are scheduled on machine 1, no other jobs can be
scheduled on machine 1.

In general, assume that Algorithm k-GREEDY starts the scheduling on machine i
after all jobs of typeG1, . . . , Gi−1 have already been scheduled on machines 1, . . . , i−1,
respectively. In this case Algorithm k-GREEDY schedules all the jobs of type Gi on
machine i, since these are the shortest length jobs that have not been scheduled yet.
The time taken is ki(k + 1)k−i(�+ i− 1). Thus, if

ki(k + 1)k−i(�+ i− 1) + (�+ i) > di+1,

then the jobs of type Gi+1 cannot be scheduled on machine i. This implies that also
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all jobs of types Gi+2, . . . , Gk and H cannot be scheduled at this point on machine i.

We conclude that in order to force the desired behavior of Algorithm k-GREEDY
we must have for all 1 ≤ i ≤ k

ki(k + 1)k−i(�+ i− 1) + (�+ i) > di+1 .

By the recurrence relation for di+1 it follows that the above inequality holds if and
only if the following holds:

ki(k + 1)k−i(�+ i− 1) + (�+ i) > ki(k + 1)k−i�+ f(i+ 1, k) .

This is equivalent to

� > f(i+ 1, k)− i− (i− 1)ki(k + 1)k−i .

Since f(i + 1, k) does not depend on �, it follows that the above inequality holds for
a sufficiently large �. This provides a tight bound for the k-GREEDY schedule.

4. Weighted jobs. In this section we present approximation algorithms for
weighted jobs. We first present algorithms for a single machine and for unrelated
machines that are based on rounding an LP relaxation of the problem. Then, we
reapply the analysis of Theorem 3.3 to get better approximation factors for the iden-
tical machines model. We conclude with a combinatorial algorithm for unrelated
machines which is efficient and easy to implement. However, it achieves a weaker
approximation guarantee than the bound obtained by rounding a fractional solution
obtained from the LP relaxation.

4.1. Approximation via linear programming. In this subsection we describe
an LP based approximation algorithm. We first describe the algorithm for the case
of a single machine, and then generalize it to the case of multiple machines. Our LP
formulation is based on discretizing time. Suppose that the time axis is divided into
N time slots. The complexity of our algorithms depends on N . However, we assume
for now that N is part of the input, and that the discretization of time is fine enough
so as to represent any feasible schedule, up to small shifts that do not change the
value of the objective function. Later, we show how to get rid of these assumptions
at the expense of a slight increase in the approximation factor.

4.1.1. A single machine. In this subsection we describe our linear program
assuming that the number of slots N is part of the input.

The linear program relaxes the scheduling problem in the following way. A frac-
tional feasible solution is one which distributes the processing of a job among the job
instances or intervals belonging to it with the restriction that at any given point of
time t, the sum of the fractions assigned to all the intervals at t (belonging to all jobs)
does not exceed 1. To this end, for each job Ji ∈ J , define a variable xit for each
interval [t, t + �i) belonging to it, i.e., for which t ≥ ri and t + �i ≤ di. It would be
convenient to assume that xit = 0 for any other value of t between 1 and N . The
linear program is as follows.
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maximize

n∑
i=1

di−�i∑
t=ri

wi · xit

subject to

for each time slot t, 1 ≤ t ≤ N ,

n∑
i=1

t∑
t′=t−�i+1

xit′ ≤ 1,

for each job i, 1 ≤ i ≤ n,
di−�i∑
t=ri

xit ≤ 1,

for all 1 ≤ i ≤ n and 1 ≤ t ≤ N , 0 ≤ xit ≤ 1.

It is easy to see that any feasible schedule defines a feasible integral solution to the
linear program and vice versa. Therefore, the value of an optimal (fractional) solution
to the linear program is an upper bound on the value of an optimal integral solution.

We compute an optimal solution to the linear program and denote the value of
variable xit in this solution by qit. Denote the value of the objective function in an
optimal solution by OPT. We now show how to round an optimal solution to the
linear program to an integral solution.

We define the following coloring of intervals. The collection of all intervals be-
longing to a set of jobs J can be regarded as an interval representation of an interval
graph I. We define a set of intervals in I to be independent if (i) no two intervals in
the set overlap and (ii) no two intervals in the set belong to the same job. (Note that
this definition is more restrictive than the regular independence relation in interval
graphs.) Clearly, an independent set of intervals defines a feasible schedule. The
weight of an independent set P , w(P ), is defined to be the sum of the weights of the
jobs to which the intervals belong.

Our goal is to color intervals in I such that each color class induces an independent
set. We note that not all intervals are required to be colored and that an interval may
receive more than one color. Suppose that a collection of color classes (independent
sets) P1, . . . , Pm with nonnegative coefficients α1, . . . , αm satisfies (i)

∑m
i=1 αi ≤ 2 and

(ii)
∑m
i=1 w(Pi) ·αi ≥ OPT. By convexity, there exists a color class Pi, 1 ≤ i ≤ m, for

which w(Pi) ≥ OPT/2. This color class is defined to be our approximate solution, and
the approximation factor is 2. It remains to show how to obtain the desired coloring.

We now take a short detour and define the group constrained interval coloring
problem. Let Q = 〈Q1, . . . , Qp〉 be an interval representation in which the maximum
number of mutually overlapping intervals is t1. Suppose that the intervals are parti-
tioned into disjoint groups g1, . . . , gr, where a group contains at most t2 intervals. A
legal group constrained coloring of the intervals in Q is a coloring in which (i) over-
lapping intervals are not allowed to get the same color and (ii) intervals belonging to
the same group are not allowed to get the same color.

Theorem 4.1. There exists a legal group constrained coloring of the intervals in
Q that uses at most t1 + t2 − 1 colors.

Proof. We use a greedy algorithm to obtain a legal coloring using at most t1+t2−1
colors. Sort the intervals in Q by their left endpoint and color the intervals from left
to right with respect to this ordering. When an interval is considered by the algorithm
it is colored by any one of the free colors available at that time. We show by induction
that when the algorithm considers an interval, there is always a free color.
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This is true initially. When the algorithm considers interval Qi, the colors that
cannot be used for Qi are occupied either by intervals that overlap with Qi or by
intervals that belong to the same group as Qi. Since we are considering the intervals
sorted by their left endpoint, all intervals overlapping with Qi also overlap with each
other, and hence there are at most t1 − 1 such intervals. There can be at most t2 − 1
intervals that belong to the same group as Qi. Since the number of available colors
is t1 + t2 − 1, there is always a free color.

We are now back to the problem of coloring the intervals in I. Let N ′ = N2 · n2.
We can round down each fraction qit in the optimal solution to the closest fraction
of the form a/N ′, where 1 ≤ a ≤ N ′. Each qit decreases by at most 1/(N2n2) by
this rounding, and hence the rounding decreases the objective function by at most
maxiwi/(Nn). Since the optimal solution value is at least maxiwi, it follows that
the rounding incurs a negligible error (of at most 1/(Nn) factor) in the value of the
objective function. We now generate an interval graph I ′ from I by replacing each
interval Ji(t) ∈ I by qit ·N ′ “parallel” intervals. Define a group constrained coloring
problem on I ′, where group gi, 1 ≤ i ≤ n, contains all instances of job Ji. Note that
in I ′, the maximum number of mutually overlapping intervals is bounded by N ′, and
the maximum number of intervals belonging to a group is also N ′.

By Theorem 4.1, there exists a group constrained coloring of I ′ that uses at most
2N ′ − 1 colors. Attach a coefficient of 1/N ′ to each color class. Clearly, the sum of
the coefficients is less than 2. Also, by our construction, the sum of the weights of the
intervals in all the color classes, multiplied by the coefficient 1/N ′, is at least OPT
(up to a factor of 1− 1/(Nn), due to the rounding). We conclude with the following
theorem.

Theorem 4.2. The approximation factor of the algorithm that rounds an optimal
fractional solution is 2.

We note that the technique of rounding a fractional solution by decomposing it
into a convex combination of integral solutions was used in [2, 10].

The 2-approximation factor obtained by the rounding algorithm is the best pos-
sible bound that can be obtained through our linear programming relaxation. The
following example shows that the integrality gap between the fractional LP solution
and the integral solution can approach 2. There are two jobs: G1 = (0, d, 1) and
H1 = (0, d, d), both of unit weight. Any integral solution can process only a single
job. A fractional solution may assign a fraction of 1−1/d to job H1, and then assign a
fraction of 1/d to all job instances of G1 of the form [i, i+1), 0 ≤ i ≤ d−1. Thus, the
integrality gap is 2− 1/d. Note that the integrality gap depends on the discretization
of time and it approaches 2 as d goes to infinity.

4.1.2. A strongly polynomial bound for a single machine. The difficulty
with the linear programming formulation and the rounding algorithm is that the
complexity of the algorithm depends on N , the number of time slots. We now show
how we choose N to be a polynomial in the number of jobs, n, at the expense of losing
an additive term of one in the approximation factor.

First, we note that in case the release times, deadlines, and processing times are
integral, we may assume without loss of generality that each job is scheduled at an
integral point of time. If, in addition, they are restricted to integers of polynomial
size, then the number of variables and constraints is bounded by a polynomial.

We now turn our attention to the case of arbitrary inputs. Partition the jobs in
J into two classes:

• big slack jobs: Ji ∈ J for which di − ri ≥ n2 · �i,
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• small slack jobs: Ji ∈ J for which di − ri < n2 · �i.
We obtain a fractional solution separately for the big slack jobs and small slack

jobs. We first explain how to obtain a fractional solution for the big slack jobs. For
each big slack job Ji ∈ J , find n2 nonoverlapping job instances and assign a value
of 1/n2 to each such interval. Note that this many nonoverlapping intervals can be
found since di − ri is large enough. We claim that this assignment can be ignored
when computing the solution (via LP) for the small slack jobs. This is true because
at any point of time t, the sum of the fractions assigned to intervals at t belonging
to big slack jobs can be at most 1/n, and thus their effect on any fractional solution
is negligible. (In the worst case, scale down all fractions corresponding to small slack
jobs by a factor of (1−1/n).) Nevertheless, a big slack job contributes all of its weight
to the fractional objective function because it has n2 nonoverlapping copies.

We now restrict our attention to the set of small slack jobs and explain how
to compute a fractional solution for them. To bound the number of variables and
constraints in the LP we partition the time axis into at most n · (n2 + 1) time slots.
Instead of having a variable for each job instance we consider at most n2 · (n2 + 1)
variables, where for each job Ji ∈ J , there are at most n · (n2 + 1) variables, and
the jth variable “represents” all the job instances of Ji that start during the jth time
slot. Similarly, we consider at most n · (n2 + 1) constraints, where the jth constraint
“covers” the jth time slot. For each small slack job Ji ∈ J , define n2 + 1 “dividers”
along the time axis at points ri + j

di−ri
n2 for j = 0, . . . , n2. After defining all the

n · (n2+1) dividers, the time slots are determined by the adjacent dividers. The main
observation is that for each small slack job Ji, no interval can be fully contained in a
time slot, i.e., between two consecutive dividers.

The LP formulation for the modified variables and constraints is slightly different
from the original formulation. To see why, consider a feasible schedule. As mentioned
above, a job instance cannot be fully contained in a time slot t. However, the schedule
we are considering may consist of two instances of jobs such that one terminates within
time slot t and the other starts within t. If we keep the constraints that stipulate
that the sum of the variables corresponding to intervals that intersect a time slot
is bounded by 1, then we would not be able to represent such a schedule in our
formulation. To overcome this problem, we relax the linear program and allow that
at every time slot t, the sum of the fractions assigned to the intervals that intersect t
can be at most 2. The relaxed linear program is the following.

maximize

n∑
i=1

∑
ri≤t≤di−�i

wi · xit

subject to

for each time slot t,
n∑
i=1

∑
t−�i+1≤t′≤t

xit′ ≤ 2,

for each job i, 1 ≤ i ≤ n,
∑

ri≤t≤di−�i
xit ≤ 1,

for all i and t, 0 ≤ xit ≤ 1.

It is easy to see that our relaxation guarantees that the value of the objective
function in the above linear program is at least as big as the value of an optimal
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schedule. We round an optimal fractional solution in the same way as in the previous
section. Since we relaxed our constraints, we note that when we run the group con-
strained interval coloring algorithm, the number of mutually overlapping intervals can
be at most twice the number of intervals in each group. Therefore, when we generate
the color classes P1, . . . , Pm with coefficients α1, . . . , αm, we can guarantee only that
(i)
∑m
i=1 αi < 3 and (ii)

∑m
i=1 w(Pi) · αi = OPT, yielding an approximation factor of

3. We conclude the following.

Theorem 4.3. The approximation factor of the strongly polynomial algorithm
that rounds a fractional solution is 3.

4.1.3. Unrelated machines. In this section we consider the case of k unrelated
machines. We first present an LP formulation. For clarity, we give the LP formulation
for polynomially bounded integral inputs. However, the construction given in the
previous section that achieves a strongly polynomial algorithm for arbitrary inputs
can be applied here as well. Assume that there are N time slots. For each job Ji ∈ J
and for each machine Mj ∈ M, define a variable xitj for each instance [t, t + �i,j ] of
Ji.

maximize

k∑
j=1

n∑
i=1

di−�i,j∑
t=ri

wi · xitj

subject to

for each time slot t, 1 ≤ t ≤ N ,

and machine j, 1 ≤ j ≤ k,
n∑
i=1

t∑
t′=t−�i,j+1

xit′j ≤ 1,

for each job i, 1 ≤ i ≤ n,
k∑
j=1

di−�i,j∑
t=ri

xitj ≤ 1,

for all 1 ≤ i ≤ n, 1 ≤ j ≤ k,
and 1 ≤ t ≤ N , 0 ≤ xitj ≤ 1.

The algorithm rounds the fractional solution machine by machine. Let S =
{S1, . . . , Sk} denote the rounded solution. When rounding machine i, we first discard
from its fractional solution all intervals belonging to jobs assigned to S1, . . . , Si−1.
Let c denote the approximation factor that can be achieved when rounding a single
machine. Namely, c = 2 for integral polynomial size inputs and c = 3 for arbitrary
inputs.

Theorem 4.4. The approximation factor of the algorithm that rounds a k-
machine solution is (c+ 1).

Proof. Let Fj , 1 ≤ j ≤ k, denote the fractional solution of machine j, and
let w(Fj) denote its value. Denote by F ′j the fractional solution of machine j after
discarding all intervals belonging to jobs chosen to S1, . . . , Sj−1.

We know that for all j, 1 ≤ j ≤ k,

w(Sj) ≥ 1

c
· w(F ′j) .
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Adding up all the inequalities, since the sets Sj (F ′j) are mutually disjoint, we get
that

w(S) ≥ 1

c
·
k∑
j=1

w(F ′j).

Recall that for each job i, the sum of the values of the fractional solution assigned to
the intervals belonging to it in all the machines does not exceed 1. Therefore,

k∑
j=1

w(F ′j) ≥
k∑
j=1

w(Fj)− w(S) .

Yielding that

w(S) ≥
∑k
j=1 w(Fj)

c+ 1
.

4.1.4. Identical machines. In this subsection we apply Theorem 3.3 for the
case of weighted jobs and identical machines. We distinguish between the cases of
polynomially bounded integral input and arbitrary input.

Theorem 4.5. There exists an algorithm for the weighted jobs and identical

machines case that achieves an approximation factor of ρ(k) = (k+1)k

(k+1)k−kk for polyno-

mially bounded integral input and ρ′(k) = (2k+1)k

(2k+1)k−(2k)k
for arbitrary input.

Proof. As shown above, a linear program can be formulated such that the value
of its optimal solution is at least as big as the value of an optimal schedule. Let N ′

be chosen in the same way as in the discussion preceding Theorem 4.2. We claim
that using our rounding scheme, this feasible solution defines an interval graph that
can be colored by (k + 1)N ′ − 1 colors for integral polynomial size inputs and by
(2k + 1)N ′ − 1 colors for arbitrary inputs.

Consider first the case of integral polynomial size input. In the interval graph that
is induced by the solution of the LP, there are at most N ′ intervals (that correspond
to the same job) in the same group, and at most kN ′ intervals mutually overlap at
any point of time. Applying our group constrained interval coloring, we get a valid
coloring with (k + 1)N ′ − 1 colors. Similarly, for arbitrary inputs, in the interval
graph which is induced by the solution of the LP, there are at most N ′ intervals (that
correspond to the same job) in the same group, and at most 2kN ′ intervals mutually
overlap. Applying our group constrained interval coloring, we get a valid coloring
with (2k + 1)N ′ − 1 colors.

This implies that α(k) = k+1 for integral polynomial size input and α(k) = 2k+1
for arbitrary input. In other words, this is the approximation factor that can be
achieved with a single machine when compared to an optimal algorithm that uses k
identical machines. Setting these values of α(k) in our paradigm for transforming an
algorithm for a single machine to an algorithm for k identical machines yields the
claimed approximation factors.

Remark. Note that as k tends to infinity, the approximation factor is e
e−1 ≈

1.58192 for both unweighted jobs and for weighted jobs with integral polynomial size

inputs. For arbitrary input, the approximation factor is
√
e√
e−1
≈ 2.54149. Setting

k = 1 we get that these bounds coincide with the bounds for a single machine. For
every k ≥ 2 and for both cases these bounds improve upon the bounds for unrelated
machines (of 3 and 4).
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4.2. A combinatorial algorithm. In this section we present a combinatorial
algorithm for the weighted jobs model. We first present an algorithm for the single-
machine version and then we show how to extend it to the case where there are k > 1
machines, even in the unrelated machines model.

4.2.1. A single machine. The algorithm is inspired by on-line call admission
algorithms (see [16, 8]). We scan the job instances (or intervals) one by one. For each
job instance, we either accept it or reject it. We note that rejection is an irrevocable
decision, where as acceptance can be temporary, i.e., an accepted job may still be
rejected at a later point of time. We remark that in the case of nonpreemptive on-line
call admission, a constant competitive factor cannot be achieved by such an algorithm.
The reason is that due to the on-line nature of the problem jobs must be considered
in the order of their release time. Our algorithm has the freedom to order the jobs in
a different way, yielding a constant approximation factor.

We now outline the algorithm. All feasible intervals of all jobs are scanned from
left to right (on the time axis) sorted by their endpoints. The algorithm maintains a
set A of currently accepted intervals. When a new interval, I, is considered according
to the sorted order, it is immediately rejected if it belongs to a job that already has an
instance in A, and immediately accepted if it does not overlap with any other interval
in A. In case of acceptance, interval I is added to A. If I overlaps with one or more
intervals in A, it is accepted only if its weight is more than β (β > 1, to be determined
later) times the sum of the weights of all overlapping intervals. In this case, we say
that I “preempts” these overlapping intervals. We add I to A and discard all the
overlapping intervals from A. The process ends when there are no more intervals to
scan.

A more formal description of our algorithm, called Algorithm ADMISSION, is
given in Figure 4.1.

Algorithm ADMISSION:
1. Let A be the set of accepted job instances.

Initially, A = ∅.
2. Let I be the set of the yet unprocessed job instances.

Initially, I is the set of all feasible job instances.
3. While I is not empty repeat the following procedure:

Let I ∈ Ji be the job instance that terminates earliest among all
instances in I and let w be its weight.
Let W be the sum of the weights of all instances I1, . . . , Ih in A that
overlap I.
(a) I := I \ {I}.
(b) If Ji ∩ A �= ∅ then reject I.
(c) Else if W = 0 then accept I;
A := A ∪ {I}.

(d) Else if w
W > β then accept I and preempt I1, . . . , Ih;

A := A ∪ {I} \ {I1, . . . , Ih}.
(e) Otherwise (i.e., w

W ≤ β) then reject I.
end ADMISSION

Fig. 4.1. Algorithm ADMISSION.

We relegate the details of implementing the above algorithm (keeping track of
intervals) after we show the approximation guarantee.
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We say that an interval I “caused” the rejection or preemption of another interval
J , either if interval I directly rejected or preempted interval J or if, for some h ≥ 2,
there exists a sequence of intervals I = I0, I1, . . . , Ih = J such that Ii preempted Ii+1

for 0 ≤ i ≤ h− 2 and Ih−1 directly rejected or preempted interval Ih. Fix an interval
I that was accepted by the algorithm, and consider all the intervals chosen by the
optimal solution, the rejection, or the preemption of which was caused by interval I.
We prove that the total weight of these intervals is at most f(β) times the weight of
the accepted interval I, for some function f . Optimizing β, we get the 3+2

√
2 ≈ 5.828

bound.
Theorem 4.6. The approximation factor of Algorithm ADMISSION is 3 + 2

√
2.

Proof. Let O be the set of intervals chosen by an optimal algorithm OPT. Let
the set of intervals accepted by Algorithm ADMISSION be denoted by A. For each
interval I ∈ A we define a set R(I) of all the intervals in O that are “accounted for”
by I. This set consists of I in case I ∈ O, and of all the intervals in O the rejection
or preemption of which was caused by I. More formally, we have the following.

• Assume I is accepted by rule 3(c). Then, the set R(I) is initialized to be I
in case I ∈ O and the empty set ∅, otherwise.

• Assume I is accepted by rule 3(d). Then R(I) is initialized to contain all
those intervals from O that were directly preempted by I and the union of
the sets R(I ′) of all the intervals I ′ that were preempted by I. In addition,
R(I) contains I in case I ∈ O.
• Assume J ∈ O is rejected by rule 3(b). Let I ∈ A be the interval that caused
the rejection of J . Note that both I and J belong to the same job. In this
case add J to R(I).

• Assume J ∈ O was rejected by rule 3(e) and let I1, . . . , Ih be the intervals in
A that overlapped with J at the time of rejection. Let w be the weight of
J and let wj be the weight of Ij for 1 ≤ j ≤ h. We view J as h imaginary
intervals J1, . . . , Jh, where the weight of Jj is

wj ·w∑h
i=1 wi

for 1 ≤ j ≤ h. Set

R(Ij) := R(Ij) ∪ {Jj}. Note that due to the rejection rule it follows that the
weight of Jj is no more than β times the weight of Ij .

It is not hard to see that each interval from O, or a portion of it if we use rule 3(e),
belongs exactly to one set R(I) for some I ∈ A. Thus, the union of all sets R(I) for
I ∈ A covers O.

We now fix an interval I ∈ A. Let w be the weight of I and let W be the sum of
weights of all intervals in R(I). Define ρ = W

w . Our goal is to bound ρ from above.
Interval I may directly reject at most one interval from O. Let wr be the weight

of (the portion of) the interval Ir ∈ O ∩R(I) that was directly rejected by I, if such
exists. Otherwise, let wr = 0. Observe that wr ≤ βw, since, otherwise, Ir would not
have been rejected. Let I ′ ∈ O be the interval that belongs to the same job as the
one to which I belongs (it may be I itself), if such exists. By definition, the weight of
I ′ is w. Let W ′ ≥ W − w − wr be the sum of the weights of the rest of the intervals
in R(I). Define α = W ′

w . It follows that ρ ≤ α+ β + 1.
We now assume inductively that the ρ bound is valid for intervals with earlier

endpoint than the endpoint of I. Since the overall weight of the jobs that I directly
preempted is at most w/β, we get that w

β · ρ ≥ α · w. This implies that α+β+1
β ≥ α.

Or equivalently, α ≤ β+1
β−1 = 1 + 2

β−1 . Therefore, ρ ≤ 2 + β + 2
β−1 . This equation

is minimized for β = 1 +
√
2 which implies that ρ ≤ 3 + 2

√
2. Finally, since the ρ

bound holds for all the intervals in A and since the union of all R(I) sets covers all
the intervals taken by OPT, we get that the value of OPT is at most ρ times the value
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of A. Hence, the approximation factor is 3 + 2
√
2.

Implementation. Observe that step 3 of the algorithm has to be invoked only
when there is a “status” change, i.e., either a new job becomes available (n times) or
a job in the schedule ends (n times). Each time step 3 is invoked the total number of
jobs instances that have to be examined is at most n (at most one for each job). To
implement the algorithm we employ a priority queue that holds intervals according
to their endpoint. At any point of time it is enough to hold at most one job instance
for each job in the priority queue. It turns out that the total number of operations
for retrieving the next instance is O(n log n), totaling to O(n2 log n) operations.

4.2.2. Unrelated machines. If the number of unrelated machines is k > 1, we
call Algorithm ADMISSION k times, machine by machine, in an arbitrary order, where
the set of jobs considered in the ith call does not contain the jobs already scheduled
on machines M1, . . . ,Mi−1. The analysis that shows how the 3 + 2

√
2 ≈ 5.828 bound

carries over to the case of unrelated machines is very similar to the analysis presented
in the proof of Theorem 4.6. The main difference is in the definition of R(I). For each
interval I ∈ A that was executed on machine Mi, we define the set R(I) to consist of
I in case I ∈ O, and of all the intervals that (i) were executed on machine Mi in the
optimal schedule, and (ii) the rejection or preemption of these jobs was caused by I.

5. The MAX-SNP hardness. We show that the problem of scheduling un-
weighted jobs on unrelated machines is MAX-SNP hard. This is done by reducing
a variant of Max-2SAT, in which each variable occurs at most three times, to this
problem. In this variant of Max-2SAT, we are given a collection of clauses, each con-
sisting of two (Boolean) variables, with the additional constraint that each variable
occurs at most three times, and the goal is to find an assignment of values to these
variables that would maximize the number of clauses that are satisfied (i.e., contain
at least one literal that has a “true” value). This problem is known to be MAX-SNP
hard (cf. [33]).

Given an instance of the Max-2SAT problem we show how to construct an instance
of the problem of unweighted jobs, unrelated machines, such that the value of the
Max-2SAT problem is equal to the value of the scheduling problem. Each variable
xi is associated with a machine Mi. Each clause Cj is associated with a job. The
release time and deadline of every job is 0 and 3, respectively. A job can be executed
only on the two machines corresponding to the variables the clause Cj contains. (The
processing time of this job in the rest of the machines is set to be infinite.)

Suppose that clause Cj contains a variable xi as a positive (negative) literal.
The processing time of the job corresponding to Cj on machine Mi is 3/k, where
k ∈ {1, 2, 3} is the number of occurrences of variable xi as a positive (negative)
literal. Note that in case variable xi occurs in both positive and negative forms, it
occurs exactly once in one of the forms, since a variable xi occurs at most three times
overall. It follows that in any feasible schedule, machine Mi cannot execute both a
job that corresponds to a positive literal occurrence and a job that corresponds to a
negative literal occurrence.

We conclude that if m jobs can be scheduled, then m clauses can be satisfied. In
the other direction, it is not hard to verify that if m clauses can be satisfied, then m
jobs can be scheduled. Since Max-2SAT with the restriction that each variable occurs
at most three times is MAX-SNP hard, the unweighted jobs and unrelated machines
case is MAX-SNP hard as well.
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6. Discussion and open problems. In this paper we considered the problem
of finding a schedule that maximizes the weight of jobs completed before their deadline
on either a single machine or multiple machines. We presented constant approximation
algorithms for four variants of the problem depending on the type of the machines
(identical vs. unrelated) and the weight of the jobs (identical vs. arbitrary). Most
of our algorithms are based on LP rounding. We also presented a combinatorial
algorithm for arbitrary job weights and unrelated machines.

Many open problems remain. In what follows we discuss some of them.

• The computational difficulty of the problems considered here is due to the
“slack time” available for scheduling the jobs. Interestingly, we do not know
if the simple case in which the slack equals the length of the job is as hard as
the general case, or is as easy as the case with less slack.
• We showed that the problem of scheduling unweighted jobs on unrelated
machines is MAX-SNP hard. We do not know whether this holds in the case
of identical machines.
• We did not consider the preemptive version of our problems. Lawler [25, 26]
presented some results for the preemptive case (see discussion in the intro-
duction), yet open problems remain. In particular, the migration issue is still
open. We note that it does not seem that our LP-based rounding algorithms
are of use in the preemptive case.
• Several recent papers [29, 6, 9] addressed the following generalization of our
problems. A job has a width that could be an integral number (i.e., the job
requires more than one machine) or a real fraction (as is the case in bandwidth
allocation). Constant factor approximation algorithms for this problem were
obtained by [29] by generalizing our LP rounding technique, and by [6, 9] using
the local ratio technique (and deriving combinatorial algorithms as well).
• Phillips, Uma, and Wein [29] used our LP-based algorithms to achieve ap-
proximation algorithms for other scheduling problems. For example, consider
a problem in which an estimate of the completion time of the jobs can be com-
puted by solving a fractional relaxation of the problem. Then, using these
estimated completion times as deadlines, our algorithms can be applied so as
to get a schedule where a constant fraction of the jobs indeed finish by these
completion times. This observation yields new approximation algorithms for
various problems, among them the minimum flow-time problem.
• Erlebach and Jansen [13] generalized our LP rounding technique and devel-
oped a general procedure for converting a coloring algorithm into an (approx-
imate) maximum weight independent set algorithm. Using this, they obtain
improved approximation factors for several problems.

Acknowledgments. We are indebted to Joel Wein for many helpful discus-
sions, and especially for his suggestion to consider the general case of maximizing the
throughput of jobs with release times and deadlines. We thank David Shmoys for
helpful comments.
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Abstract. A static dictionary is a data structure storing subsets of a finite universe U , answering
membership queries. We show that on a unit cost RAM with word size Θ(log |U |), a static dictionary
for n-element sets with constant worst case query time can be obtained using B+O(log log |U |)+o(n)
bits of storage, where B = �log2

(|U|
n

)� is the minimum number of bits needed to represent all n-
element subsets of U .
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1. Introduction. Consider the problem of storing a subset S of a finite set U ,
such that membership queries, “u ∈ S?”, can be answered in worst case constant time
on a unit cost RAM. We are interested only in membership queries, so we assume that
U = {0, . . . ,m− 1}. Also, we restrict attention to the case where the RAM has word
size Θ(logm). In particular, elements of U can be represented within a constant
number of machine words, and the usual RAM operations (including multiplication)
on numbers of size mO(1) can be done in constant time.

Our goal will be to solve this, the static dictionary problem, using little memory,
measured in consecutive bits. We express the complexity in terms of m = |U | and
n = |S|, and often consider the asymptotics when n is a function of m. Since the
queries can distinguish any two subsets of U , we need at least

(
m
n

)
different memory

configurations, that is, at least B = �log (mn
)� bits. (Log is base 2 throughout this

paper.) We will focus on the case n ≤ m/2 and leave the symmetry implications to
the reader. Using Stirling’s approximation to the factorial function, one can derive
the following (where e = 2.718 . . . denotes the base of the natural logarithm):

B = n log(em/n)−Θ(n2/m)−O(log n).(1.1)

It should be noted that using space very close to B is only possible if elements of
S are stored implicitly, since explicitly representing all elements requires n logm =
B +Ω(n log n) bits.

Previous work. The static dictionary is a very fundamental data structure and
has been much studied. We focus on the development in space consumption for
schemes with worst case constant query time. A bit vector is the simplest possible
solution to the problem, but the space complexity of m bits is poor compared to B
unless n ≈ m/2. By the late 1970s, known dictionaries with a space complexity of
O(n) words (i.e., O(n logm) bits) either had nonconstant query time or worked only
for restricted universe sizes [4, 16, 17].
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The breakthrough paper of Fredman, Komlós, and Szemerédi [7] described a
general constant time hashing scheme, from now on referred to as the FKS dictionary,
using O(n) words. A refined solution in the paper uses B+O(n log n+log logm) bits,
which is O(B) when n = m1−Ω(1). Brodnik and Munro [2] constructed the first static
dictionary using O(B) bits with no restrictions on m and n. They later improved the
bound to B +O(B/ log log logm) bits [3].

No nontrivial space lower bound is known in a general model of computation.
However, various restrictions on the data structure and the query algorithm have
been successfully studied. Yao [17] showed that if words of the data structure must
contain elements of S, the number of words necessary for o(log n) time queries cannot
be bounded by a function of n. Fich and Miltersen [6] studied a RAM with standard
unit cost arithmetic operations but without division and bit operations, and showed
that query time o(log n) requires Ω(m/nε) words of memory for any ε > 0. Miltersen
[11] showed that on a RAM with bit operations but without multiplication, one needs
mε words, for some ε > 0, when n = mo(1).

This paper. In this paper we show that it is possible to achieve space usage
very close to the information theoretical minimum of B bits. The additional term of
the space complexity, which we will call the redundancy, will be o(n) + O(log logm)
bits. More precisely we show the following.

Theorem 1.1. The static dictionary problem with worst case constant query time
can be solved using B +O(n (log log n)2/ log n+ log logm) bits of storage.

Theorem 1.1 improves the redundancy of Ω(min(n log logm,m/(log n)o(1))) ob-
tained by Brodnik and Munro [3] by a factor of Ω(min(n, log logm (log n)1−o(1))).
For example, when n = Ω(m) we obtain space B + B/(logB)1−o(1) as compared to
B + B/(logB)o(1). For n = Θ(logm) our space usage is B + n/(log n)1−o(1) rather
than B +Ω(n log n).

We will also show how to associate satellite data from a finite domain to each
element of S, with nearly the same redundancy as above.

Our main observation is that one can save space by “compressing” the hash table
part of data structures based on (perfect) hashing, storing in each cell not an element
of S but only a quotient — information that distinguishes the element from the part of
U that hashes to the cell.1 This technique, referred to as quotienting, is presented in
section 2, where a B+O(n+ log logm) bit dictionary is exhibited. Section 3 outlines
how to improve the dependency on n to that of theorem 1.1. The construction uses
a dictionary supporting rank and predecessor queries, described in section 4. Section
5 gives the details of the construction and an analysis of the redundancy. The sizes
of the data structures described are not computed explicitly. Rather, indirect means
are employed to determine the number of redundant bits. While direct summation
and comparison with (1.1) would be possible, it is believed that the proofs given here
contain more information about the “nature” of the redundancy.

Without loss of generality, we will assume that n is greater than some sufficiently
large constant. This is to avoid worrying about special cases for small values of n.

2. First solution. This section presents a static dictionary with a space con-
sumption of B +O(n+ log logm) bits. Consider a minimal perfect hash function for
S, i.e., hperfect : U → {0, . . . , n− 1} which is 1-1 on S. Defining an n-cell hash table T

1The term “quotient” is inspired by the use of modulo functions for hashing, in which case the
integer quotient is exactly what we want in the cell.
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such that T [i] = si for the unique si ∈ S with hperfect(si) = i, the following program
implements membership queries for S:

function lookup(x)
return (T [hperfect(x)] = x);

end.

A more compact data structure results from the observation that T [i] does not
need to contain si itself (�logm� bits), but only enough information to identify si
within Ui = {u ∈ U | hperfect(u) = i} (�log |Ui|� bits). We will be slightly less
ambitious, though, and not necessarily go for the minimal number of bits in each
hash table cell. In particular, to allow efficient indexing we want the number of bits
to be the same for each table cell. Note that log(m/n) bits is a lower bound on the
size of a cell, since the average size of the Ui is m/n.

To compute the information needed in the hash table, we define a quotient function
(for hperfect) as a function q : U → {0, . . . , r − 1}, r ∈ N, which is 1-1 on each set Ui.
Given such a function, let T ′[i] = q(T [i]), and the following program is equivalent to
the above:

function lookup’(x)
return (T ′[hperfect(x)] = q(x));

end.

Thus it suffices to use the hash table T ′ of �log r�-bit entries. By the above discussion,
we ideally have that r is close to m/n.

Although the FKS dictionary [7] is not precisely of the form “minimal perfect
hash function + hash table,” it is easy to modify it to be of this type. We will thus
speak of the FKS minimal perfect hash function, hFKS. It has a quotient function
which is evaluable in constant time, and costs no extra space in that its parameters
k, p, and a are part of the data structure already:

q : u 
→ (u div p) �p/a�+ (k u mod p) div a.(2.1)

Intuitively, this function gives the information that is thrown away by the modulo
applications of the scheme’s top-level hash function:

h : u 
→ (k u mod p) mod a,(2.2)

where k and a are positive integers and p > a is prime. We will not give a full proof
that q is a quotient function of hFKS, since our final result does not depend on this.
However, the main part of the proof is a lemma that will be used later, showing that
q is a quotient function for h.

Lemma 2.1. For Ui = {u ∈ U | h(u) = i} where i ∈ {0, . . . , a − 1}, q is 1-1 on
Ui. Further, q[U ] ⊆ {0, . . . , r − 1}, where r = �m/p� �p/a�.

Proof. Let u1, u2 ∈ Ui. If q(u1) = q(u2) we have that u1 div p = u2 div p
and (k u1 mod p) div a = (k u2 mod p) div a. From the latter equation and h(u1) =
h(u2), it follows that k u1 mod p = k u2 mod p. Since p is prime and k �= 0
this implies u1 mod p = u2 mod p. Since also u1 div p = u2 div p it must be the
case that u1 = u2, so q is indeed 1-1 on Ui. The bound on the range of q is straight-
forward.
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In the FKS scheme, p = Θ(m) and a = n, so the range of q has size O(m/n)
and log(m/n) +O(1) bits suffice to store each hash table element. The space needed
to store hFKS, as described in [7], is not good enough to show the result claimed at
the beginning of this section. However, Schmidt and Siegel [15] have shown how to
implement (essentially) hFKS using O(n + log logm) bits of storage (which is opti-
mal up to a constant factor; see, e.g., [10, Theorem III.2.3.6]). The time needed to
evaluate the hash function remains constant. Their top-level hash function is not of
the form (2.2), but the composition of two functions of this kind, h1 and h2. Call
the corresponding quotient functions q1 and q2. A quotient function for h2 ◦ h1 is
u 
→ (q1(u), q2(h1(u))), which has a range of size O(m/n). One can thus get a space
usage of n log(m/n) +O(n) bits for the hash table, and O(n+ log logm) bits for the
hash function, so by (1.1) we have the following proposition.

Proposition 2.2. The static dictionary problem with worst case constant query
time can be solved using B +O(n+ log logm) bits of storage.

As a by-product we get the following corollary.
Corollary 2.3. When n > c log logm/ log log logm, for a suitable constant

c > 0, the static dictionary problem with worst case constant query time can be solved
using n words of �logm� bits.

Proof. The dictionary of Proposition 2.2 uses n logm−n log n+O(n+ log logm)
bits. For suitable constants c and N , the O(n + log logm) term is less than n log n
when n > N . If n ≤ N we can simply list the elements of S.

The previously best result of this kind needed n ≥ (logm)c for some constant
c > 0 [5]. (An interesting feature of this nonconstructive scheme is that it is implicit,
i.e., the n words contain a permutation of the elements in S.) The question whether
n words suffice in all cases was posed in [6].

3. Overview of final construction. This section describes the ideas which al-
low us to improve the O(n) term of Proposition 2.2 to o(n). There are two redundancy
bottlenecks in the construction of the previous section:

• The Schmidt–Siegel hash function is Ω(n) bit redundant.
• The hash table is Ω(n) bit redundant.

The first bottleneck seems inherent to the Schmidt–Siegel scheme: it appears there is
no easy way of improving the space usage to 1 + o(1) times the minimum, at least if
constant evaluation time is to be preserved. The second bottleneck is due to the fact
that m/n may not be close to a power of two, and hence the space consumption of
n �log r� bits, where r ≥ m/n, may be Ω(n) bits larger than the ideal of n log(m/n)
bits. Our way around these bottlenecks starts with the following observations:

• We need only to solve the dictionary problem for some “large” subset S1 ⊆ S.
• We can look at some universe U1 ⊆ U , where S1 ⊆ U1 and |U1|/|S1| is “close
to” a power of 2.

The first observation helps by allowing “less than perfect” hash functions which occupy
much less memory. The remaining elements, S2 = S\S1, can be put in a more
redundant dictionary, namely the refined FKS dictionary [7]. The second observation
gives a way of minimizing redundancy in the hash table.

We will use a hash function of the form (2.2). The following result from [7] shows
that (unless a is not much larger than n) it is possible to choose k such that h is 1-1
on a “large” set S1.

Lemma 3.1. If u 
→ u mod p is 1-1 on S, then for at least half the values of
k ∈ {1, . . . , p− 1}, there exists a set S1 ⊆ S of size |S1| ≥ (1−O(n/a)) |S|, on which
h is 1-1.
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Without loss of generality we will assume that |S1| = n1, where n1 only depends
on n and a, and n2 = n − n1 = O(n/a). The hash function h is not immediately
useful, since it has a range of size a� n1. To obtain a minimal perfect hash function
for S1, we compose with a function g : {0, . . . , a− 1} → {0, . . . , n1 − 1} ∪ {⊥} which
has g[h[S1]] = {0, . . . , n1 − 1}. (In particular, it is 1-1 on h[S1].) The extra value of
g allows us to look at U1 = {u ∈ U | g(h(u)) �=⊥}, which clearly contains S1. We
require that g(v) =⊥ when v �∈ h[S1], since this makes q a quotient function for g ◦ h
(restricted to inputs in U1).

The implementation of the function g has the form of a dictionary for h[S1] within
{0, . . . , a−1}, which apart from membership queries answers rank queries. (The result
of a rank query on input v is |{w ∈ h[S1] | w < v}|.) So we may take g as the function
that returns ⊥ if its input v is not in the set, and otherwise returns the rank of v.
The details on how to implement the required dictionary are given in section 4.

The dictionary of section 4 will also be our dictionary of choice when m ≤ n log3 n
(the “dense” case). Only when m > n log3 n do we use the scheme described in this
section. This allows us to choose suitable values of hash function parameters p and
a (where p = O(n2 logm) and a = Θ(n (log n)2) ≤ m), such that the range of the
quotient function, r = �m/p� �p/a�, is close to m/a. The details of this, along with
an analysis of the redundancy of the resulting dictionary, can be found in section 5.

4. Dictionaries for dense subsets. In this section we describe a dictionary
which has the redundancy stated in Theorem 1.1 when m = n (log n)O(1). Apart
from membership queries, it will support queries on the ranks of elements (the rank
of u is |{v ∈ S|v < u}|), as well as queries on predecessors (the predecessor of u is
max{v ∈ S | v < u}).

As a first step, we describe a dictionary which has redundancy dependent on
m, namely O(m log logm/ logm) bits. The final dictionary uses the first one as a
substructure.

4.1. Block compression. The initial idea is to split the universe into blocks
Ui = {b i, . . . , b (i+1)−1} of size b = � 12 logm�, and store each block in a compressed
form. (This is similar to the ideas of range reduction and “a table of small ranges”
used in [3].) To simplify things we may assume that b divides m (otherwise consider
a universe at most b− 1 elements larger, increasing the space usage by O(b) bits). If
a block contains j elements from S, the compressed representation is the number j
(�log logm� bits) followed by a number in {1, . . . , (bj

)} corresponding to the particular
subset with i elements (�log (bj

)� bits). Extraction of information from a compressed
block is easy, since any function of the block representations can be computed by table
lookup. (The crucial thing being that, since representations have size at most 1

2 logm+
log logm bits, the number of entries in such a table makes its space consumption
negligible compared to O(m log logm/ logm) bits.)2

Let ni = |S ∩ Ui| and Bi = �log
(
b
ni

)�. The overall space consumption of the
above encoding is

∑
iBi+O(m log logm/ logm). Let s denote the number of blocks,

s = O(m/ logm). A lemma from [2] bounds the above sum by B + s.
Lemma 4.1 (Brodnik–Munro). Let m0, . . . ,ms−1 and n0, . . . , ns−1 be nonnega-

tive integers. The following inequality holds:

s−1∑
i=0

�log (mi

ni

)� < log

(∑s−1
i=0 mi∑s−1
i=0 ni

)
+ s.

2Alternatively, assume that the RAM has instructions to extract the desired information.
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Proof. We have
∑s−1
i=0 �log

(
mi

ni

)� <
∑s−1
i=0 log

(
mi

ni

)
+ s ≤ log

(∑s−1
i=0 mi∑s−1
i=0 ni

)
+ s. The

latter inequality follows from the fact that there are at least
∏s−1
i=0

(
mi

ni

)
ways of picking∑s−1

i=0 ni elements out of
∑s−1
i=0 mi elements (namely, by picking n1 among the m1 first,

n2 among the m2 next, etc.).

We need an efficient mechanism for extracting rank and predecessor information
from the compressed representation. In particular we need a way of finding the start
of the compressed representation of the ith block. The following result, generalizing
a construction in [16], is used.

Proposition 4.2 (Tarjan–Yao). A sequence of integers z1, . . . , zk, where for all
1 < i ≤ k we have |zi| = nO(1) and max(|zi|, |zi − zi−1|) = (logn)O(1), can be stored
in a data structure allowing constant time random access, using O(k log log n) bits of
memory.

Proof. Every �log n�th integer is stored “verbatim,” using a total of O(k) bits.
All other integers are stored as either an offset relative to the previous of these values,
or as an absolute value. (One of these has size (log n)O(1).) This uses O(k log log n)
bits in total.

Placing the compressed blocks consecutively in numerical order, the sequence of
pointers to the compressed blocks can be stored by this method. Also, the rank of the
first element in each block can be stored like this. Finally, we may store the distance
to the predecessor of the first element in each block (from which the predecessor
is simple to compute). All of these data structures use O(m log logm/ logm) bits.
Ranks and predecessors of elements within a block can be found by table lookup, as
sketched above. So we have the following proposition.

Proposition 4.3. A static dictionary with worst case constant query time, sup-
porting rank and predecessor queries, can be stored in B+O(m log logm/ logm) bits.

4.2. Interval compression. The dictionary of section 4.1 has the drawback
that the number of compressed blocks, and hence the redundancy, grows almost lin-
early with m. For m ≤ n (log n)c, where c is any integer constant, the number of
“compressed units” can be reduced to O(n log log n/ log n) by instead compressing
intervals of varying length. We make sure that the compressed representations have
length (1− Ω(1)) log n (so that information can be extracted by lookup in a table of
negligible size) by using intervals of size O((log n)c+1) with at most log n/(2c log log n)
elements. We must be able to retrieve the interval number and position within the
interval for any element of U in constant time. The block compression scheme of sec-
tion 4.1 is then trivially modified to work with intervals, and the space for auxiliary
data structures becomes O(n (log log n)2/ log n) bits.

We now proceed to describe the way in which intervals are formed and repre-
sented. Let d = �√log n�, and suppose without loss of generality that d2c divides
m. (Considering a universe at most d2c elements larger costs O(d2c) bits, which
is negligible.) Our first step is to partition U into “small blocks” Ui, satisfying
|S ∩ Ui| ≤ log n/(2c log log n). These will later be clustered to form the intervals.
The main tool is the dictionary of Proposition 4.3, which is used to locate areas with
a high concentration of elements from S. More specifically, split U into at most n
blocks of size d2c and store the indices of blocks that are not small, i.e., contain more
than logn/(2c log log n) elements from S. Since at most 2cn log log n/ log n blocks are
not small, the memory for this data structure is O(n (log log n)2/ log n) bits. The part
of the universe contained in nonsmall blocks has size at most 2cm log log n/ log n ≤
nd2c−1. A rank query can be used to map the elements of nonsmall blocks injectively
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and in an order preserving way to a subuniverse of this size. The splitting is repeated
recursively on this subuniverse, now with at most n blocks of size d2c−1. Again, the
auxiliary data structure uses O(n (log log n)2/ log n) bits. At the bottom of the re-
cursion we arrive at a universe of size at most nd, and every block of size d is small.
This defines our partition of U into O(n) small blocks, which we number 0, 1, 2, . . .
in order of increasing elements. Note that the small block number of any element in
U can be computed by a rank query and a predecessor query at each level.

As every small block has size at most (log n)c, intervals can be formed by up
to log n consecutive small blocks, together containing at most log n/(2c log log n) ele-
ments of S. The “greedy” way of choosing such compressible intervals from left to right
results in O(n log log n/ log n) intervals, as no two adjacent intervals can both contain
less than log n/(4c log log n) elements and be shorter than (logn)c+1. To map the
O(n) block numbers to interval numbers, we use the dictionary of Proposition 4.3 to
store the number of the first small block in each interval, using O(n (log log n)2/ log n)
bits. A rank query on a small block number then determines the interval number.
Finally, the first element of each interval is stored using Proposition 4.2, allowing
positions within intervals to be computed, once again using O(n (log log n)2/ log n)
bits.

Theorem 4.4. For m = n (log n)O(1), a static dictionary with worst case con-
stant query time, supporting rank and predecessor queries, can be stored in B +
O(n (log log n)2/ log n) bits.

5. Dictionary for sparse subsets. In this section we fill out the remaining
details of the construction described in section 3, and provide an analysis of the
redundancy obtained. By section 4 we need only consider the case m > n (log n)c for
some constant c. (It will turn out that c = 3 suffices.)

5.1. Choice of parameters. We need to specify how hash function parameters
a and p are chosen. (A choice of k then follows by Lemma 3.1.) Parameter a will
depend on p, but is bounded from above by A(n) and from below by A(n)/3, where
A is a function we specify later. For now, let us just say that A(n) = n (log n)Θ(1).
(Our construction requires A(n) = n (log n)O(1), and we want A(n) large in order to
make S\S1 small.) Parameter p will have size O(n2 logm), so it can be stored using
O(log n + log logm) bits. It is chosen such that u 
→ u mod p is 1-1 on S, and such
that r = �m/p� �p/a� is not much larger than m/a.

Lemma 5.1. For m larger than some constant, there exists a prime p in each of
the following ranges, such that u 
→ u mod p is 1-1 on S:

1. n2 lnm ≤ p ≤ 3n2 lnm.
2. m ≤ p ≤ m+m2/3.

Proof. The existence of a suitable prime between n2 lnm and 3n2 lnm is guaran-
teed by the prime number theorem (in fact, at least half of the primes in the interval
will work). See [7, Lemma 2] for details. By [9] the number of primes between m and
m+mθ is Ω(mθ/ logm) for any θ > 11/20. Take θ = 2/3 and let p be such a prime;
naturally the map is then 1-1.

A prime in the first range will be our choice for p when m > A(n)n2 lnm; other-
wise we choose a prime in the second range. In the first case, r < (m/p+1)(p/a+1) =
(1 + a/p + p/m + a/m)m/a. In the second case, r = �p/a� < (m + m2/3)/a + 1 ≤
(1 + a/m + m−1/3)m/a. Since we can assume m > a log n, we have in both cases
that r = (1+O(1/ log n))m/a. We make r close to a power of 2 by suitable choice of
parameter a.
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Lemma 5.2. For any x, y ∈ R+ and z ∈ N, with x/z ≥ 3, there exists z′ ∈
{z + 1, . . . , 3z}, such that �log�x/z′�+ y� ≤ log(x/z′) + y +O(z/x+ 1/z).

Proof. Since x/z ≥ 3, it follows that log�x/z� + y and log�x/3z� + y have dif-
ferent integer parts. So there exists z′, z < z′ ≤ 3z, such that �log�x/z′�+ y� ≤
log�x/(z′ − 1)�+y. A simple calculation gives log�x/(z′ − 1)�+y = log(x/(z′−1))+
y+O(z/x) = log(x/z′)+log(z′/(z′−1))+y+O(z/x) = log(x/z′)+y+O(z/x+1/z),
and the conclusion follows.

Since log r = log�p/a�+log�m/p� and p/A(n) ≥ 3 (for n large enough), the lemma
gives an a satisfying A(n)/3 ≤ a ≤ A(n), such that �log r� = log r +O(a/p+ 1/a) =
log((1 +O(1/ log n))m/a).

To conclude, we can choose p and a such that the number of bit patterns in each
hash table cell, 2�log r�, is (1 +O(1/ log n))m/a.

5.2. Storing parameters. A slightly technical point remains, concerning the
storage of parameters in the data structure. If the universe size m is supposed to be
implicitly known, there is no problem storing the parameters using O(log n+log logm)
bits (say, using O(log logm) bits to specify the number of bits for each parameter).
However, if m is considered a parameter unknown to the query algorithm, it is not
clear how to deal with, e.g., queries for numbers larger than m, without actually using
O(logm) extra bits to store m. Our solution is to look at a slightly larger universe
U ′, whose size is specified using O(log n+ log logm) bits. Using O(log n+ log logm)
bits we may store �logm� (by assumption we know the number of bits needed to store
this number within an additive constant) and the �log n� most significant bits of m.
This defines m′ = (1 + O(1/n))m, the universe size of U ′. We need to estimate the

information theoretical minimum of the new problem, B′ = �(m′

n

)�.
Lemma 5.3. For n < m1 < m2 we have log

(
m2

n

)− log
(
m1

n

)
< n log(m2−n

m1−n ).

Proof. We have
(
m2

n

)
/
(
m1

n

)
= m2 (m2−1)...(m2−n+1)

m1 (m1−1)...(m1−n+1) < (m2−n
m1−n )

n.

Thus, since n ≤ m/2, B′ = B + O(n log(m′/m)) = B + O(n/ log n). So our slight
expansion of the universe is done without affecting the redundancy of Theorem 1.1.

5.3. Redundancy analysis. First note that we can assume all parts of the
data structure to have size depending only on m and n (that is, not on the particular
set stored). Hence, the entire data structure is a bit pattern of size B + f(n,m), for
some function f . To show the bound f(n,m) = O(n (log log n)2/ log n+log logm), we
construct a function φ, mapping n-element subsets of U to subsets of {0, 1}B+f(n,m),
such that

• log |φ(S)| = O(n (log log n)2/ log n+ log logm).
• ⋃S φ(S) = {0, 1}B+f(n,m) .

This implies B + f(n,m) ≤ log(
∑
S |φ(S)|) = B +O(n (log log n)2/ log n+ log logm),

as desired. Recall that the data structure consists of
• hash function parameters and pointers (b1 = O(log n+ log logm) bits);
• a dictionary supporting rank, representing the function g via a set of n1

elements in {0, . . . , a− 1} (b2 = log
(
a
n1

)
+O(n (log log n)2/ log n) bits);

• a hash table (b3 = n1 �log r� bits);
• a dictionary representing a set of size n2 in U (b4 = log

(
m
n2

)
+O(n2 log n2 +

log logm) bits).
Since the dictionary supporting rank has redundancyO(n (log log n)2/ log n), there

exists a function φ′ from the n1-element subsets of {0, . . . , a−1} to {0, 1}b2 , such that
∪S̃1

φ′(S̃1) = {0, 1}b2 and log |φ′(S̃1)| = O(n (log log n)2/ log n). Similarly, there exists

a function φ′′ from the n2-element subsets of U to {0, 1}b4 , such that ∪S̃2
φ′′(S̃2) =
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{0, 1}b4 and log |φ′′(S̃2)| = O(n2 log n2 + log logm). Choosing A(n) = n log2 n we
have n2 = O(n/ log2 n), and hence log |φ′′(S̃2)| = O(n/ log n+ log logm).

Let h1 denote the hash function u 
→ (u mod p) mod a. (Any hash function of the
form (2.2) would do; we pick this one for simplicity.) By Lemma 5.3 we can assume
that p divides m, since either m ≤ p ≤ m+m2/3, in which case expanding the universe
to {0, . . . , p − 1} increases the information theoretical minimum by O(n/m1/3), or
p = O(m/n), in which case the increase by rounding m to the nearest higher multiple
of p is O(1).

When p divides m, the number of elements hashed to a cell by h1 is at least
�m/a�. Hence for any function g, there is a set T (g) of at least (m/a− 1)n1 possible
bit patterns in the hash table. The total number of bit patterns is 2�log r�n1 =
((1 +O(1/ log n))m/a)n1 , so the ratio between this and the |T (g)| patterns used is

(
1+O(1/ logn)

1−a/m
)n1

= (1 +O(1/ log n))n1 = 2O(n/ logn).

Thus, there exists a function φg from T (g) onto {0, 1}b3 , such that log |φg(z)| =
O(n/ log n). For notational convenience we will from now on denote bit patterns in
the hash table simply by the corresponding set of universe elements.

We will take φ(S) as the union of sets φ(S̃1, S̃2), over all S̃1, S̃2 ⊆ S with |S̃1| = n1

and |S̃2| = n2. If |h1[S̃1]| �= n1, we set φ(S̃1, S̃2) = ∅. Otherwise h1[S̃1] defines the
function g, and we set

φ(S̃1, S̃2) = {s1 s2 s3 s4 | s1 ∈ {0, 1}b1 , s2 ∈ φ′(h1[S̃1]), s3 ∈ φg(S̃1), s4 ∈ φ′′(S̃2)} .

By our bounds on the sizes of φ′(h1[S̃1]), φh1,g(S̃1), and φ′′(S̃2), we conclude that

log |φ(S̃1, S̃2)| = O(n (log log n)2/ log n + log logm). Since φ(S) is the union of the
2O(n/ logn) sets of the form φ(S̃1, S̃2), it follows that the requirement on |φ(S)| holds.

To see that
⋃
S φ(S) = {0, 1}B+f(n,m), take any x ∈ {0, 1}B+f(n,m). Let x =

s1 s2 s3 s4, where si ∈ {0, 1}bi . By definition of φ′ and φ′′, there is some set T ⊆
{0, . . . , a − 1}, |T | = n1, such that s2 ∈ φ′(T ), and a set S̃2 ⊆ U , |S̃2| = n2, such
that s4 ∈ φ′′(S2). The set T corresponds to a function g. From the way we defined
φg, there exists a bit pattern z ∈ T (g), such that s3 ∈ φg(z). Let S̃1 be the set of

size n1 corresponding to h1, g, and z. We then have that x ∈ φ(S̃1, S̃2), so if we take
S ⊇ S̃1 ∪ S̃2, we get x ∈ φ(S) as desired.

6. Satellite information. We now discuss how to associate information with
dictionary elements. More specifically, we consider the setting where each element of
S has an associated piece of satellite information from some set V = {0, . . . , s − 1},
where s = mO(1). The information theoretical minimum for this problem is Bs =
�log (mn

)
+ n log s�.

The quotienting technique generalizes to this setting. We simply extend the
quotient function to take an extra parameter from V as follows: q′(u, v) = q(u) + r v.
Note that from q′(u, v) it is easy to compute q(u) and v and that the range of q′ has
size r s. With this new quotient function, the remaining parts of the construction for
m > n (log n)3 are unchanged.

In the dense range, the rank dictionary can be used to index into a table of V -
values, but in general Ω(n) bits will be wasted in the table since |V | need not be a
power of 2. Thus we have the following theorem.

Theorem 6.1. The static dictionary problem with satellite data and worst case
constant query time can be solved with storage:
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• Bs +O(n (log log n)2/ log n+ log logm) bits, for m > n (log n)3.
• Bs +O(n) bits, otherwise.

Using the data structure for the sparse case, it is in fact possible to achieve
redundancy o(n) when n = o(m). The dictionary of Proposition 2.2 is then used to
store S2, and parameter a is chosen around

√
nm.

7. Construction. We now sketch how to construct the static dictionaries in
expected time O(n + (log logm)O(1)). The dictionaries of section 4 can in fact be
constructed in time O(n) when m = nO(1). The construction algorithm is quite
straightforward, so we do not describe it here. As for the dictionary described in
sections 3 and 5, the hardest part is finding appropriate parameters for the hash
function. Once this is done, the dictionary for h[S1], the hash table, and the dictionary
for S2 can all be constructed in expected time O(n) (see [7] for the latter construction
algorithm).

The prime p is found by randomly choosing numbers from the appropriate in-
terval of Lemma 5.1. Each number chosen is checked for primality (using a proba-
bilistic check which uses expected time polylogarithmic in the number checked [1],
that is, time (log n + log logm)O(1)). When a prime is found, it is checked whether
u 
→ u mod p is 1-1 on S (the element distinctness problem on the residues, taking
expected O(n) time using universal hashing). The process is repeated until this is the
case. Inspecting the proof of Lemma 5.1 it can be seen that the expected number of
iterations is O(1), so the expected total time is O(n+ (log logm)O(1)).

Parameter a is simple to compute according to Lemma 5.2, for example by binary
search on the interval in which it is wanted.

Parameter k is tentatively chosen at random and checked in time O(n) for the
inequality of Lemma 3.1, with some constant c in the big-oh. For sufficiently large c,
the expected number of attempts made before finding a suitable k is constant, and
thus the expected time for the choice is O(n).

Theorem 7.1. The data structure of Theorem 1.1 can be constructed in expected
time O(n+ (log logm)O(1)).

8. Conclusion and final remarks. We have seen that for the static dictionary
problem it is possible to come very close to using storage at the information theoretic
minimum, while retaining constant query time. From a data compression point of
view this means that a sequence of bits can be coded in a number of bits close to the
first-order entropy, in a way that allows efficient random access to the original bits.

The important ingredient in the solution is the concept of quotienting. Quoti-
enting was recently applied in a space efficient dictionary supporting rank [14]. In
general, quotienting can be used to save around n log n bits in hash tables. Thus,
the existence of an efficiently evaluable quotient function is a desirable property for
a hash function. For the quotient function to have a small range, it is necessary that
the hash function used hashes U quite evenly to the entire range.

Quotienting works equally well in a dynamic setting, where it can be used directly
to obtain an O(B) bit scheme, equaling the result of Brodnik and Munro [2]. However,
lower bounds on the time for maintaining ranks under insertions and deletions (see
[8]) show that our construction involving the dictionary supporting rank will not
dynamize well.

It would be interesting to determine the exact redundancy necessary to allow
constant time queries. In particular, it is remarkable that no lower bound is known
in the cell probe model (where only the number of memory cells accessed is consid-
ered). As for upper bounds, a less redundant implementation of the function g would
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immediately improve the asymptotic redundancy of our scheme. There seems to be
no hope of getting rid of the O(log logm) term using our basic approach, since any
hash function family ensuring that some function is 1-1 on a “large” subset of S has
size Ω(logm) [13].
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Abstract. We present the first fully dynamic algorithm for maintaining a minimum spanning
forest in time o(

√
n) per operation. To be precise, the algorithm uses O(n1/3 logn) amortized time

per update operation. The algorithm is fairly simple and deterministic. An immediate consequence
is the first fully dynamic deterministic algorithm for maintaining connectivity and bipartiteness in
amortized time O(n1/3 logn) per update, with O(1) worst case time per query.
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1. Introduction. We consider the problem of maintaining a minimum spanning
forest during an arbitrary sequence of edge insertions and deletions. Given an n-vertex
graph G with edge weights, the fully dynamic minimum spanning forest problem is to
maintain a minimum spanning forest F under an arbitrary sequence of the following
update operations:

insert(u,v). Add the edge {u, v} to G. Add {u, v} to F if it connects two pre-
viously unconnected trees of F or if it reduces the cost of F . If the latter,
return the edge of F that has been replaced.

delete(u,v). Remove the edge {u, v} from G. If {u, v} ∈ F , then (a) remove {u, v}
from F and (b) return the minimum-cost edge e of G \ F that reconnects F
if e exists or return null if e does not exist.

In addition, the data structure permits the following type of query:
connected(u,v). Determine if vertices u and v are connected.
In 1985 [7], Fredrickson introduced a data structure known as topology trees for

the fully dynamic minimum spanning forest problem with a worst-case cost of O(
√
m)

per update His data structure permitted connectivity queries to be answered in O(1)
time. In 1992, Eppstein, Galil, and Italiano [3] and Eppstein et al. [4] improved the
update time to O(

√
n) using the sparsification technique. If only edge insertions are

allowed, the Sleator–Tarjan dynamic tree data structure [13] can be used to maintain
the minimum spanning forest in time O(log n) per insertion or query. If only edge
deletions are allowed (“deletions-only”), then no algorithm faster than the Ω(

√
n)

fully dynamic algorithm is known.
Using randomization, it was recently shown that the fully dynamic connectivity

problem, i.e., the restricted problem where all edge costs are the same, can be solved
in amortized time O(log2 n) per update and O(log n) per connectivity query [9, 10].
However, this approach could not be extended to arbitrary edge weights, leaving the
question open as to whether the fully dynamic minimum spanning forest problem can
be solved in time o(

√
n).
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In this paper we give a positive answer to this question: We present a fully
dynamic minimum spanning forest data structure that uses O(n1/3 log n) amortized
time per update and O(1) worst case time per query when update time is averaged over
any sequence of Ω(min) updates for min the initial size of the graph. Our technique
is very different from [7].

The result is achieved in two steps: First, we give a deletions-only minimum
spanning forest algorithm that uses O(m′1/3 log n + nε) amortized time per update
and O(1) worst case time per query when the update time is averaged over any
sequence of Ω(min) updates. Here ε is any constant such that 0 < ε < 1/3, and m′ is
the number of nontree edges at the time of the update.

Then we present a general technique which, given a deletions-only minimum
spanning forest data structure with a certain property, generates a fully dynamic
data structure with the same running time as the deletions-only data structure. Let
f(m′, n) be the amortized time per deletion in the deletions-only data structure with
m′ nontree edges and n vertices. The property required is that, upon inserting into
the graph no more thanm′ edges at the same time (a “batch insertion”), the deletions-
only data structure can be modified to reflect these insertions and up tom′ subsequent
deletions can be performed in a total of O(m′f(m′, n)) time.

Using this technique, we develop a fully dynamic minimum spanning forest algo-
rithm with amortized time per update of O(m1/3 log n) for a sequence of updates of
length Ω(min), where m is the size of G at the time of the update. In other words,
letting m(i) denote the size of G (vertices and edges) after update i, the total amount

of work for processing a sequence of updates of length l is O(
∑l
i=0 m(i)

1/3 log n).
We then apply sparsification [3, 4] to reduce the running time for the sequence to
O(ln1/3 log n).

Our result immediately gives faster deterministic fully dynamic algorithms for
the following problems: connectivity, bipartiteness, k-edge witness, maximal spanning
forest decomposition, and Euclidean minimum spanning tree. See [9] for all but the
last reduction; see Eppstein [2] for the last reduction. For these problems, the new
algorithm achieves an O(n1/6/ log n) factor improvement over the previously best
deterministic running time. If randomization is allowed, however, much faster times
are achievable [9, 10].

Additionally, improvements can be achieved in the following static problems
(see [4, 3]): randomly sampling spanning forests of a given graph [6] and finding
a color-constrained minimum spanning tree [8].

The paper is structured as follows: In section 2 we give a deletions-only minimum
spanning forest algorithm. In section 3, we show how to use a sequence of deletions-
only data structures to create a fully dynamic data structure.

2. Maintaining a minimum spanning forest—Deletions-only. In this sec-
tion, we give an algorithm which maintains a minimum spanning forest while edges
are being deleted. The amortized update time is O(m1/3 log n) and the query time is
O(1) for queries of the form “Are vertices i and j connected?”. Let G = (V,E) be an
undirected graph with edge weights. Without loss of generality, we assume that edge
weights are distinct.

Initially, we compute the minimum spanning forest F of G. Let m′in be the
number of nontree edges in G initially and k = m′1/3in log n. We sort the nontree edges
by weight and partition them into m′in/k levels of size k so that the k lightest are in
level 0, the next k lightest are in level 1 and so on. The set of edges in a level i is
denoted by Ei. In addition, all tree edges of the initial minimum spanning forest F
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are placed in level 0. (We omit floors and ceilings to simplify notation; either can be
used without affecting the asympotic analysis.)

Throughout the algorithm, the level of an edge remains unchanged, and F de-
notes the minimum spanning forest. For i = 0, 1, . . . , (m′in/k) − 1, let Fi denote
the minimum spanning forest of the graph with vertex set V and edgeset ∪j≤iEj .
(Initially, all Fi = F , but in later stages, an edge from any level may become a tree
edge. Thus, F0 ⊆ F1 ⊆ . . . ⊆ F(m′

0/k)−1 = F .) Let Ti(x) denote the tree in Fi which
contains x and let T (x) without the subscript denote the tree in F containing x.

The main idea is the following. If a nontree edge is deleted, then the minimum
spanning forest F is unchanged. Suppose a tree edge {u, v} in level i is deleted. Then
for each Fj , j ≥ i, the deletion splits the tree in Fj containing u and v into Tj(u) and
Tj(v). We search for the minimum weight nontree edge e (called the “replacement
edge”) that connects T (u) and T (v) by gathering and then testing a set S of candidate
edges on level i. If none is found, we repeat the procedure on level i + 1, etc., until
one is found or all levels are exhausted.

We now describe the update operations.
delete(u, v). Delete edge {u, v} from any data structures in which it occurs. If

a tree edge {u, v} from level i is deleted, then remove {u, v} from F and search for
a replacement by calling Replace(i, u, v). We refer to i as the level of the call to
Replace.

In the algorithm below, the subroutine Search when applied to a tree in Fi finds
all nontree edges in level i which are incident to the tree. A phase consists of the
examination of a single edge. (Its exact definition and the details of Search are given
in section 2.2 below.)

Replace(i, u, v).
1. Alternating in lockstep, one phase at a time, Search(Ti(u)) and Search(Ti(v))
until k/ log n phases are executed (Case A) or one of the searches has stopped
(Case B).
• Case A: Let S be the set of all nontree edges in level i.
• Case B: Let S be the set of (nontree) edges produced by the Search
that stopped.

2. Test every edge in S to see if it connects T (u) and T (v).
• If a connecting edge is found, insert the minimum weight connecting
edge into F and the data structures representing the Fj , j ≥ i.

• Else if i is not the last level, call Replace(i+ 1, u, v).

2.1. Data structures. The idea here is to use the ET-tree data structure de-
veloped in [9]: (1) to represent and update each tree in F , so that in constant time,
we can quickly test if a given edge joins two trees; and (2) to represent each tree in an
Fi in such a way that we can quickly retrieve nontree edges in Ei which are incident
to the tree. To avoid excessive cost, we explicitly maintain only those Fi where i is a

multiple of m′1/3in / log n. An undesirable consequence of this is that when retrieving
nontree edges in Ei, other nontree edges are also retrieved.

Below, we refer to input graph vertices as “vertices” and use “node” to mean
nodes of the B-tree in which we store the “ET-sequences.”

ET-trees. An ET-sequence is a sequence generated from a tree by listing each
vertex each time it is encountered (“an occurrence of the vertex”) as a tree is searched
depth-first. Each ET-sequence is stored in a B-tree of degree d. This allows us to
implement the deletion or insertion of an edge in the forest as follows: we split a tree
by deleting an edge or join two trees by inserting an edge in time O(d logd n), using



DYNAMIC MSF ALGORITHM 367

a constant number of splits and joins on the corresponding B-trees. Also we can test
two vertices of the forest to determine whether they are in the same tree in time
O(logd n), by searching up to the roots and testing for equality. See, for example,
[1, 11] for operations on B-trees. If d = nα, for α a positive constant, then the join
and split operations take time O(d) and the test operation takes time O(1). We refer
to the B-trees used to store ET-sequences as ET-trees.

This data structure allows us to keep information about a vertex so that the
cumulative information about all vertices in a tree can be maintained. To do so, we
make one arbitrary occurrence of each vertex a “designated” occurrence and, in each
internal node of the ET-tree, we keep cumulative information about the designated
occurrences in the subtree of the ET-tree rooted at that node. Here, for example,
we want to know if there is at least one nontree edge incident to a vertex in a tree.
We mark the vertex’s designated occurrence in the ET-tree if there is a nontree edge
in the graph incident to that vertex. We mark each internal node of the ET-tree if
some node in its subtree is marked. We can find the endpoint of a nontree edge by
starting at the root of the ET-tree and following a path of marked nodes down to
a marked designated occurrence. In a degree d ET-tree, each split or join operation
or each change to the number associated with an occurrence requires the adjustment
of O(logd n) internal nodes with each adjustment taking O(d) timesteps. For other
applications of ET-trees, see [9].

We maintain the following data structures.
• Each edge is labelled by its level and a bit which indicates if it is a tree edge.
• Let dF = max{m′1/3in log n, nε}, for any constant 0 < ε ≤ 1/3. Each tree in F
is represented as an ET-sequence which is stored in a degree dF B-tree. Note
that these B-trees have a constant number of levels, so that two vertices can
be tested to determine if they lie in the same tree of F in O(1) time.

• Let c = m′1/3in / log n. We partition consecutive levels into classes of size c.
Each class is represented by the smallest level in the class, i.e., the level j such
that c|j (“c divides j”). That is, level i is mapped to the class f(i) = ci/c�.
For each representative level j,

– we represent each tree in Fj as an ET-sequence which is stored in a
binary B-tree;

– for each vertex v, we create a list Lj(v) which contains
(i) all nontree edges incident to v which are in any level i ∈ f−1(j) and
(ii) all tree edges incident to v which are in any level i > j, i ∈ f−1(j);

– we mark each designated occurrence of a vertex v whose list Lj(v) is
nonempty. Each internal node of the ET-tree is marked if its subtree
contains a marked occurrence.

2.2. The Search routine. Search(Ti(u)) returns all nontree edges in level i
incident to Ti(u). It begins by searching Tf(i)(u) which is a subtree of Ti(u). It
proceeds by examining all edges in Lf(i)(v) for all vertices v in the tree being searched.
Nontree edges in level i are picked out and tree edges in levels i′, f(i) < i′ ≤ i, are
followed to other trees of Ff(i) which are then searched in turn. Note that all such
tree edges lead to other trees of Ff(i) which are subtrees of Ti(u); and all subtrees
of Ti(u) will be found by this procedure. A phase of the algorithm consists of the
examination of one edge e in a list L.

Search(Ti(u)).
1. S′ ← ∅;
2. treelist← Tf(i)(u);
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3. Repeat until treelist is empty:
• Remove an ET-tree from the treelist.
• For each marked vertex x in the ET-tree and for each edge {x, y} in each

Lf(i)(x),
– if {x, y} is a nontree edge on level i, add it to the set S′ of edges to
return;

– else if {x, y} is a tree edge on level l such that l ≤ i, then add
Tf(i)(y) to treelist.

2.3. Analysis. Initialization. We compute the minimum spanning forest F ,
create the ET-trees for Fj , for each j such that c|j, and partition the nontree edges
by weight. Recall that m′in is the number of nontree edges in the initial graph. Let t
be the number of edges in the initial minimum spanning forest. The creation of all the
lists L takes time proportional to the number of nontree edges m′in. The building of
ET-trees for F and all Fj such that c|j and the marking of internal nodes takes time
proportional to the size of each forest or O(((m′in/k)/c)t+m′in) = O(m′1/3in t+m′in).

Deletions of nontree edges. Deleting a nontree edge on any level may require
unmarking a designated occurrence of a vertex in some ET-tree, which may require
unmarking internal nodes on the path to the root in O(log n) time.

Deletions and insertions of tree edges. Deleting a tree edge takes worst-case time
O(dF ) to delete it from the ET-tree of F and worst-case time O(log n) to delete it
from the ET-tree of each Fj such that c|j, for a total of O(dF + ((m′in/k)/c) log n)
time per edge. Inserting a replacement edge takes the same time.

Finding a replacement edge. We first analyze the cost of Search. Let the weight
w(T ) of a tree T of some Fi be

∑ |Lf(i)(v)| summed over all vertices v in T . It
costs O(log n) to move down the path from the root to a leaf in an ET-tree to find a
marked occurrence of a vertex, or to move up a tree from an occurrence to the root.
Thus, the cost of Search(Ti(x)) is O(log n) times the number of edges examined, or
O(w(Ti(x)) log n), if Search is carried out until it ends, and O(k), if it is run for
k/ log n phases.

In Replace(u, v, i), if w(Ti(u)) ≤ w(Ti(v)), then we refer to Ti(u) as the smaller
component T1; otherwise, T1 is Ti(v). The cost of a call to Replace(u, v, i) is the
cost of the Search plus the cost of testing each edge in S. The number of edges in S
is O(min{k,w(T1)}). We can use the dF -degree ET-tree representation for F to test
each edge at cost O(1). Thus the cost of a call to Replace is O(min{k,w(T1) log n}).

To pay for these costs, If a replacement edge is found on level i then we charge the
cost of Replace(u, v, i) to the deletion. In addition, we charge the cost of modifying
F to the deletion so the total cost charged to the deletion is O(min{k,w(T1) log n}+
((m′in/k)/c) log n+ dF ) = O(((m′in/k)/c) log n+ dF ).

If no replacement edge is found on level i then a tree of Fi which was split by the
deletion remains split. We use the following.

Claim 2.1. O(
∑

w(T1)) summed over all smaller components T1 which split
from a tree T on any given level during all Replace operations is O(w(T ) log n).

The proof of the claim follows [5]. The first time a smaller component T1 of
a tree T is searched, it can have weight no greater than w(T )/2. Between two
successive times that |Lf(i)(v)| contributes to the weight of a smaller component
T1 and that component splits off, the weight of a smaller component T1 contain-
ing v is no more than half its weight the previous time. Hence |Lf(i)(v)| con-
tributes to the weight of any T1 no more than log2w(T ) = O(log n) times. That
is, O(

∑
w(T1)) = O(

∑
v∈T |Lf(i)(v)|) log n) = O(w(T ) log n).
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There are at most k edges per level (except for level 0, which has at most
k nontree edges). Each Lj(v) consists of edges from c levels. Since level 0 tree
edges do not belong to any list Lj(v), the maximum weight of a tree w(T ) is ck.
Thus the total cost charged to a level is O(ck log2 n). Summing over all levels we
have O((m′in/k)(ck log2 n) = O(m′inc log2 n), or an amortized cost per deletion of
O(c log2 n) = O(m′1/3in log n), if Ω(m′in) edges are deleted.

The cost charged to each deletion is O((m′in/ck)(log n) + dF ). For dF = max

{m′1/3in log n, nε} and c = m′1/3in / log n, this is O(m′1/3in log n+ nε).
To summarize the cost of initialization when amortized over Ω(min) operations

is O(m′1/3in ) and the cost per deletion of an edge and finding replacement edges, when

amortized over Ω(m′in) operations is O(m′1/3in log n + nε). Thus for a sequence of

Ω(min) operations, the amortized time per update is O(m
′1/3
in log n+ nε).

Finally, we note that the query of the form “Are vertices i and j connected?” can
be answered using the ET-tree data structure for F in O(1) time.

3. From deletions-only to fully dynamic. In this section, we show a general
technique to develop a fully dynamic data structure using several deletions-only data
structures with an added operation. (We call these “extended” deletions-only data
structures.) As before, we assume the edge weights are distinct.

First, we define the following operation on a deletions-only data structure A.
batch add(G,E′, F ′): Given a graph G = (V,E) with minimum spanning forest

F , insert all edges of E′ into G, if they are not already there. The resulting spanning
forest F ′ is given.

We refer to the period of time which occurs between two consecutive calls to
batch add on a graph G, or between the start of the algorithm and the first batch add
on G as a period of G. Alternatively, a period may be terminated prematurely (see
below).

We prove the following theorem.
Theorem 3.1. Suppose for any value of n andm′in, there is an extended deletions-

only data structure for any dynamic graph G = (V,E) with |V | = n and the number
of nontree edges in the edgeset E is initially m′in, such that (n +m′in)f

0(m′in, n) is
the worst case time needed to initialize A, and (y +m′in)f(m

′
in, n) is an upper bound

on the time to process y deletions.
Suppose we can process a batch add(H,E′, F ′), following any period in which y

edges were deleted from G, in time O((y +m′in + |F ′ \ F |)fB(m′in, n)), where m′in is
an upper bound on the total number of nontree edges in G after the batch add.

We also assume that f0, f , fB are monotone nondecreasing functions.
For any value d there is a fully dynamic minimum spanning forest data structure

that runs in amortized cost per edge deletion or insertion of O(d logd n +
∑s
i=0(s −

i+ 1)[f0(2i, n) + f(2i, n) + fB(2i, n)]) where s ≤ 3 + lgm and m is the size (vertices
plus edges) of the dynamic graph at the time of the update. Here, costs are amortized
over a sequence of min update operations, where min is the size of the initial graph.

In section 3.4, we show that the following corollary holds by choosing d = nε for
any constant 1/3 ≥ ε > 0 and using the data structure of the previous section.

Corollary 3.2. A minimum spanning forest can be maintained in a fully dy-
namic graph with amortized cost per update of O(m1/3 log n), where m is the size of
the graph at the time of the update, for a sequence of Ω(min) operations.

Noting that the function f(m,n) = O(m1/3 log n) is “well behaved” in the sense
of Theorem 3.3.2 of [4] gives the main result of the paper.
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Corollary 3.3. A minimum spanning forest can be maintained in a fully dy-
namic graph with amortized cost per update of O(n1/3 log n), where n is the number of
vertices in the graph at the time of the update, for a sequence of Ω(min) operations.

We prove our theorem by constructing a fully dynamic data structure from ex-
tended deletions-only data structures.

Definitions. We refer to the current minimum spanning forest of G as the (global)
MSF . Let m′ be the number of nontree edges in the current graph, m′in denote the
number of nontree edges in the initial graph, and m denote the current size (vertices
and edges) of G.

During the course of the algorithm, we simultaneously maintain up to s ≤
max{lg n, lg(4m′)} extended deletions-only data structures A0, A1, . . . , As, where each
Ai is an extended deletions-only minimum spanning forest data structure for a sub-
graph Gi + (V,Ei) of the global graph G = (V,E). We call this the composite data
structure. We maintain each tree of the MSF as a Sleator–Tarjan dynamic tree [13]
and also as an ET-tree of degree d.

The minimum spanning forest of Gi as maintained by Ai is referred to as a local
spanning forest and denoted F i. A local nontree edge of Ai is an edge of G

i which is
not in Ai’s local spanning forest or the MSF. We maintain xi to be the number of
local nontree edges in ∪j≤iAj .

Whenm′ falls below 2s/4 and s > lg n, s is reset and the composite data structure
is reinitialized. Between two consecutive resets, we define the period of time which
occurs between two consecutive calls to batch add on a graph G, or between the
initialization or reinitialization of the composite data structure and the first batch add
on G as a period of G. A reset terminates all periods.

The size of a graph refers to the number of vertices plus edges.

We maintain the following invariants.

Invariant. (1) Every edge in the local forest of some Ai is (a) in the MSF or (b)
is a local nontree edge in some Aj , j �= i.

(2) E = (∪Ei) ∪MSF .

We now describe the algorithm.

To initialize, Let the initial value of s = �lgm′in�. We initialize As as an extended
deletions-only data structure for Gs = G with F s =MSF and the set of local nontree
edges being all nontree edges of G.

To perform an insertion operation, insert(u, v) is called, where (u, v) is an edge
to be inserted into G.

insert(e):

1. Use the dynamic tree to determine if e should be added to the MSF:
Determine if there is a path between e’s endpoints in the MSF. If so, set f to
the maximum weight edge on the path.

2. If e is lighter than f , remove f from the MSF.
If there is no path between e’s endpoints, either because f has been removed
or there was none previously, call insert nontree(f), and add e to the MSF.

3. Else call insert nontree(e).

The following subroutine inserts a nontree edge e into the composite data struc-
ture.

insert nontree(e). Let i = min{ j | xj < 2j}. Let E′ be the set of local nontree
edges in ∪j<iEj ∪ {e} .

1. Delete the edges of E′ from Aj , j < i.
Set xj = 0.
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2. If Ai is not initialized, initialize Ai on the empty graph Gi consisting of n
vertices and no edges.

3. Call batch add(Gi, E′ ∪MSF,MSF ).
Adjust xi accordingly.

After the procedure, the local nontree edges of Gi are the nontree edges previously
contained in ∪j≤iAj . Its local forest F i = MSF . Note that at the beginning of a
period of Gi, xj = 0 for j < i.

To delete an edge e from G:

delete(e):

1. Delete e from all data structures in which it appears, including all Gi, and
update corresponding Ai accordingly. Thus for each local spanning forest F

i

which contained e, the local replacement edge e′ is determined, if there is one.
2. If e was in the MSF, use the ET-tree representation of the tree containing e in
the MSF to determine which of those local replacement edges reconnect the
two subtrees which result from the deletion of e. Insert the lightest connecting
edge into the MSF.

3. All other local replacement edges are reinserted into the composite data struc-
ture using the procedure insert nontree.

4. If n < xs ≤ 2s−2, reinitialize the composite data structure. That is, set
s = �lg xs�; initialize As as an extended deletions-only data structure for
Gs = G with F s =MSF and the set of local nontree edges being all nontree
edges of G.

3.1. Proof of correctness. It is easy to see that the invariants are maintained,
by induction on the number of operations. Initially, the invariants hold since Gs = G.
Invariant (2) is preserved after each insertion, since each edge when added to G is
either added to the MSF or some Gi. Each edge, when deleted from G, is deleted
from all data structures in which it appears. Invariant (1) holds for Ai when Ai is
initialized or a batch add is executed since the local forest Fi =MSF . The local forest
of Ai changes only when an edge is deleted and is replaced by some edge e. Edge e is
then either put into the MSF or reinserted into the composite data structure. In that
case, it is added to some Aj by a batch add operation. If e is not in the MSF, then e
becomes a local nontree edge of Aj . In either case, invariant (1) is preserved.

The correctness of the algorithm follows easily from the invariants. We use the
well-known fact that an edge is in the minimum spanning tree iff it is not the heaviest
edge in any cycle (“red rule” [14]). We also note that every edge in the composite
data structure is an edge in G.

Let e be an edge of the MSF which is deleted. Let e′ be the correct replacement
edge. Consider the state of the composite data structures right before the deletion of
e. By the invariant, since e′ was not in the MSF, it was a local nontree edge in some
Ai.

Suppose e′ is a local nontree edge in Ai. Since e′ is the correct replacement edge
for e in the MSF, then after e’s deletion, e′ is not the heaviest edge in any cycle of G
and therefore is not the heaviest edge of any cycle of Gi. Hence, after e’s deletion, e′

becomes a local forest edge, i.e., e′ is a local replacement edge for e in Gi. Recall that
e′ is the minimum weight edge which connects the two subtrees of the MSF resulting
from the deletion of e. Thus, e′ is the lightest connecting edge from the set of local
replacement edges and is chosen in Step 2 of the delete algorithm.
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3.2. Analysis. We first prove the following claims.

Claim 3.4. During any full period of Gi, there were at least 2i−1/(s − i + 1)
updates to G.

Proof. For i > 0, immediately before batch add is executed on Gi, xi−1 ≥ 2i−1.
Immediately afterwards, xi−1 = 0.

We examine the types of insertions into the composite data structure to see how
they affect xi: (a) when a nontree edge is inserted into G, (b) when an edge is replaced
in the MSF after an insertion, and (c) when an edge is deleted in G and it is replaced
in up to s local spanning forests. The first two cases cause xi to increase by no more
than one. The third case may cause up to s insertions. However, the s insertions do
not affect all Ai the same. Each insertion in this case results from a local nontree edge
e becoming a local forest edge. Hence if this occurs in some Aj , j ≤ i, the increase of
xi resulting from the insertion of a copy of e into the composite data structure is offset
by the decrease of xi caused by the change in status of e from a local nontree edge
to a local tree edge. Thus xs is unchanged by a case-(c) insertion into the composite
data structure, xs−1 is increased by at most 1, and in general, xi is increased by at
most s− i.

Hence, at least 2i−1/(s − i + 1) insertions or deletions occurred during any full
period of Gi. This concludes the proof of the claim.

We are now ready to analyze the costs of the algorithm.

Initialization. Since each Ai is initialized once, the cost for initialization during
the algorithm is (n + 2i)f0(2i, n). Note that Ai is initialized only if the number of
nontree edges exceed 2i−1.

We amortize the initialization costs of the first data structure As and all Ai for
i < lg n by requiring there to be Ω(min) operations, where min is the size (vertices
and edges) of the initial graph. We note that for at least half these operations, the
current size of the graph m ≥ min/2.

We amortize the cost of initializing Ai, i ≥ lg n over the operations of the preced-
ing period when at least 2i−1/(s− i+ 1) operations occurred.

The cost of reinitialization of the composite data structure can be charged to the
2s/2 deletions which must have occurred since the previous reset. Note that a reset
only occurs when 2s > n, so that the initialization cost of (n+2s−2)f0(2s−2, n) results
in a charge of f0(2s−2, n) per operation.

Execution of batch add. By assumption, (y + 2i + |MSF \ F i|)fB(2i, n) is an
upper bound on the time to perform batch add(Gi, E′ ∪MSF \ F i,MSF ), where y
is the number of deletions performed on Gi in the preceding period.

We can charge the cost of yfB(2i, n) to the y deletions for a cost of fB(2i, n)
each.

To charge the 2ifB(2i, n), by the claim, batch add is called on Gi after at least
2i−1/(s− i+ 1) insertions and deletions occurred in the preceding period. Charging
the 2ifB(2i, n) to those updates gives a cost per update of (s− i+ 1)fB(2i, n).

To charge the |MSF \ F i|fB(2i, n), we note that at the start of the period,
F i = MSF , and for each i, each insertion or deletion in G can cause at most one
edge to be added to and/or one edge to be deleted from F i. Thus we can charge
the |MSF \ F i|fB(2i, n) to the operations in the preceding period, for a cost of
O(fB(2i, n)) each.

Performing deletions during a period of Gi. The cost of maintaining Ai during
a period containing y deletions of edges in Gi is, by assumption, bounded above by
(y+2i)f(2i, n). These costs can be charged in the same way as the costs for batch add



DYNAMIC MSF ALGORITHM 373

were charged to the operations of the preceding period.

In the unique case of the initial As, where s = �lgm′in� when there was no
preceding period, costs are amortized over the initial sequence of Ω(min) deletions
and insertions, as in the analysis of the initialization costs.

After a reset of s, the cost of performing deletions in As, after As is reinitial-
ized, is charged to the deletions which resulted in the reset, as in the analysis of the
reinitialization costs.

Summary. For each i, the cost per operation is therefore O((s− i+1)[f0(2i, n)+
f(2i, n) + fB(2i, n)]).

Except for the initialization and reinitialization of As, we have charged operations
of the preceding period for all costs incurred in the following period. Since the pre-
ceding periods occur in between resets of the value of s, we know that for the indices
of the Ai, i ≤ s ≤ max{lg 4m′, lg n}. Hence s ≤ 2 + lgm, m being the size of the
graph at the time of the operation.

For the initialization and reinitialization of As, we charge operations which oc-
curred when s may have been smaller by 1. Hence s ≤ 3 + lgm, m is the size of the
graph at the time of the operation.

Each operation requires a constant number of updates in the dynamic tree data
structure and the degree-d ET-tree data structure storing the MSF. This takes time
O(d logd n).

Summing over i, we have of O(d logd n +
∑s
i=0(s − i + 1)[f0(2i, n) + f(2i, n) +

fB(2i, n)], where m is the current size of G at the time of the operation, when amor-
tized over a sequence of min update operations and min is the size of the initial
graph.

3.3. Implementing batch add. In this section, we show how a deletions-only
data structure A in section 2 for a graph G which initially had m′in nontree edges can
be extended so that the operation batch add which occurs after a sequence σ of y edge

deletions can be implemented in time O((y +m′in + |F ′ \ F |)(m′in1/3
log n)).

We begin by restoring the ET-trees of A toMSFold, the minimum spanning forest
of G before the start of the sequence σ of deletions. The cost of joining two ET-trees
is asympotically the same as splitting them; thus the calculations of section 2 apply.

For each deletion, the cost of restoration is O((m′1/3in ) log n+ nε).

We next transformMSFold toMSF by again modifying the ET-trees. We remove
every edge in MSFold \MSF and insert every edge in MSF \MSFold for a cost of

O(m′1/3in log n+ nε).

To determine the transformations required, we keep a list of sorted changes which
occurred since the last batch add .

We remove all nontree edges which are stored in A and sort the nontree edges of
E ∪ E′, assign them to levels, and store them with the appropriate list L. The cost
per edge of removing, sorting, and then storing is O(log n) per edge for the unique
(binary) ET-tree in which the edge is stored.

Let f ′(m,n) = m1/3 log n+ nε. We have shown an extended deletions-only data
structure such that O((n+m′in)f

′(min, n)) is an upper bound on the worst case time
needed to initialize A, and O((y +m′in)f

′(min, n)) is an upper bound on the time to
process y deletions.

We can process a batch add(G,E′, F ′), following any period in which y edges were
deleted from G, in time O((y + m′in + |F ′ \ F |)f ′(m′in, n)), where m′in is an upper
bound on the total number of nontree edges in G after the batch add.
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3.4. Proof of corollary. Choose d = nε for any constant ε with 0 < ε ≤
1/3. Substituting f ′ for fB , f , and f0, we conclude that there is a fully dynamic
minimum spanning forest data structure that runs in amortized cost per edge deletion
or insertion of O(

∑s
i=0(s− i+ 1)f ′(2i, n)), where s ≤ 3 + lgm.

Substituting for f ′ and 2i, we have O(
∑s
i=0(i + 1)(2s−i)1/3 log n + nε) =

O((2s)1/3 log n+ nε log n) = O(m1/3 log n+ nε
′
) for ε′ any constant.
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Abstract. The j-state general Markov model of evolution (due to Steel) is a stochastic model
concerned with the evolution of strings over an alphabet of size j. In particular, the two-state general
Markov model of evolution generalizes the well-known Cavender–Farris–Neyman model of evolution
by removing the symmetry restriction (which requires that the probability that a “0” turns into a “1”
along an edge is the same as the probability that a “1” turns into a “0” along the edge). Farach and
Kannan showed how to probably approximately correct (PAC)-learn Markov evolutionary trees in
the Cavender–Farris–Neyman model provided that the target tree satisfies the additional restriction
that all pairs of leaves have a sufficiently high probability of being the same. We show how to remove
both restrictions and thereby obtain the first polynomial-time PAC-learning algorithm (in the sense
of Kearns et al. [Proceedings of the 26th Annual ACM Symposium on the Theory of Computing,
1994, pp. 273–282]) for the general class of two-state Markov evolutionary trees.

Key words. computational learning theory, evolutionary trees, PAC-learning, learning of dis-
tributions, Markov model
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1. Introduction. The j-state general Markov model of evolution was proposed
by Steel in 1994 [14]. The model is concerned with the evolution of strings (such
as DNA strings) over an alphabet of size j. The model can be described as follows.
A j-state Markov evolutionary tree consists of a topology (a rooted tree, with edges
directed away from the root), together with the following parameters. The root of
the tree is associated with j probabilities ρ0, . . . , ρj−1 which sum to 1, and each
edge of the tree is associated with a stochastic transition matrix whose state space
is the alphabet. A probabilistic experiment can be performed using the Markov
evolutionary tree as follows: The root is assigned a letter from the alphabet according
to the probabilities ρ0, . . . , ρj−1. (Letter i is chosen with probability ρi.) Then the
letter propagates down the edges of the tree. As the letter passes through each edge,
it undergoes a probabilistic transition according to the transition matrix associated
with the edge. The result is a string of length n which is the concatenation of the
letters obtained at the n leaves of the tree. A j-state Markov evolutionary tree
thus defines a probability distribution on length-n strings over an alphabet of size j.
(The probabilistic experiment described above produces a single sample from the
distribution.1)
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1Biologists would view the n leaves as being existing species, and the internal nodes as being
hypothetical ancestral species. Under the model, a single experiment as described above would
produce a single bit position of (for example) DNA for all of the n species.
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To avoid getting bogged down in detail, we work with a binary alphabet. Thus,
we will consider two-state Markov evolutionary trees.

Following Farach and Kannan [9], Erdös et al. [7, 8], and Ambainis et al. [2], we
are interested in the problem of learning a Markov evolutionary tree, given samples
from its output distribution. Following Farach and Kannan and Ambainis et al., we
consider the problem of using polynomially many samples from a Markov evolutionary
tree M to “learn” a Markov evolutionary tree M ′ whose distribution is close to that
of M . We use the variation distance metric to measure the distance between two
distributions, D and D′, on strings of length n. The variation distance between D
and D′ is ∑s∈{0,1}n |D(s) − D′(s)|. If M and M ′ are n-leaf Markov evolutionary

trees, we use the notation var(M,M ′) to denote the variation distance between the
distribution of M and the distribution of M ′.

We use the probably approximately correct (PAC) distribution learning model of
Kearns et al. [11]. Our main result is the first polynomial-time PAC-learning algorithm
for the class of two-state Markov evolutionary trees (which we will refer to as METs).

Theorem 1. Let δ and ε be any positive constants. If our algorithm is given
poly(n, 1/ε, 1/δ) samples from any METM with any n-leaf topology T , then with prob-
ability at least 1−δ, the MET M ′ constructed by the algorithm satisfies var(M,M ′) ≤
ε.

Interesting PAC-learning algorithms for biologically important restricted classes
of METs have been given by Farach and Kannan in [9] and by Ambainis et al. in [2].
These algorithms (and their relation to our algorithm) will be discussed more fully in
section 1.1. At this point, we simply note that these algorithms only apply to METs
which satisfy the following restrictions.

Restriction 1. All transition matrices are symmetric (the probability of a “1”
turning into a “0” along an edge is the same as the probability of a “0” turning into
a “1”).

Restriction 2. For some positive constant α, every pair of leaves (x, y) satisfies
Pr(x �= y) ≤ 1/2− α.

We will explain in section 1.1 why the restrictions significantly simplify the prob-
lem of learning Markov evolutionary trees (though they certainly do not make it
easy!). The main contribution of our paper is to remove the restrictions.

While we have used variation distance (L1 distance) to measure the distance be-
tween the target distribution D and our hypothesis distribution D′, Kearns et al. for-
mulated the problem of learning probability distributions in terms of the Kullback–
Leibler (KL) divergence distance from the target distribution to the hypothesis
distribution (see [6]). This distance is defined as the sum over all length-n strings s of
D(s) log(D(s)/D′(s)). Kearns et al. point out that the KL distance gives an up-
per bound on variation distance, in the sense that the KL distance from D to D′
is Ω(var(D,D′)2). Hence if a class of distributions can be PAC-learned using KL
distance, it can be PAC-learned using variation distance. We justify our use of the
variation distance metric by showing that the reverse is true. In particular, we prove
the following lemma in the appendix.

Lemma 2. A class of probability distributions over the domain {0, 1}n that is
PAC-learnable under the variation distance metric is PAC-learnable under the KL-
distance measure.

The lemma is proved using a method related to the ε-Bayesian shift of Abe and
Warmuth [3]. Note that the result requires a discrete domain of support for the target
distribution, such as the domain {0, 1}n which we use here.
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The rest of this section is organized as follows: Subsection 1.1 discusses previous
work related to the general Markov model of evolution, and the relationship between
this work and our work. Subsection 1.2 gives a brief synopsis of our algorithm for
PAC-learning Markov evolutionary trees. Subsection 1.3 discusses an interesting con-
nection between the problem of learning Markov evolutionary trees and the problem
of learning mixtures of Hamming balls, which was studied by Kearns et al. [11].

1.1. Previous work and its relation to our work. The two-state general
Markov model [14] which we study in this paper is a generalization of the Cavender–
Farris–Neyman model of evolution [5, 10, 13]. Before defining the Cavender–Farris–
Neyman Model, let us return to the two-state general Markov model. We will fix
attention on the particular two-state alphabet {0, 1}. Thus, the stochastic transition
matrix associated with edge e is simply the matrix

(
1− e0 e0

e1 1− e1

)
,

where e0 denotes the probability that a “0” turns into a “1” along edge e and e1

denotes the probability that a “1” turns into a “0” along edge e. The Cavender–Farris–
Neyman model is simply the special case of the two-state general Markov model in
which the transition matrices are required to be symmetric. That is, it is the special
case of the two-state general Markov model in which Restriction 1 holds (so e0 = e1

for every edge e).
We now describe past work on learning Markov evolutionary trees in the general

Markov model and in the Cavender–Farris–Neyman model. Throughout the paper,
we will define the weight w(e) of an edge e to be |1− e0 − e1|.

Steel [14] showed that if a j-state Markov evolutionary tree M satisfies (i) ρi > 0
for all i, and (ii) the determinant of every transition matrix is outside of {−1, 0, 1},
then the distribution of M uniquely determines its topology. In this case, he showed
how to recover the topology, given the joint distribution of every pair of leaves. In
the two-state case, it suffices to know the exact value of the covariances of every pair
of leaves. In this case, he defined the weight Λ(e) of an edge e from node v to node w
to be

Λ(e) =

{
w(e)

√
Pr(v = 0)Pr(v = 1) if w is a leaf, and

w(e)
√

Pr(v=0) Pr(v=1)
Pr(w=0) Pr(w=1) otherwise.

(1)

Steel observed that these distances are multiplicative along a path and that the dis-
tance between two leaves is equal to their covariance. Since the distances are mul-
tiplicative along a path, their logarithms are additive. Therefore, methods for con-
structing trees from additive distances such as the method of Bandelt and Dress [4]
can be used to reconstruct the topology. Steel’s method does not show how to recover
the parameters of a Markov evolutionary tree, even when the exact distribution is
known and j = 2. In particular, the quantity that he obtains for each edge e is a one-
dimensional distance rather than a two-dimensional vector giving the two transition
probabilities e0 and e1. Our method shows how to recover the parameters exactly,
given the exact distribution, and how to recover the parameters approximately (well
enough to approximate the distribution), given polynomially-many samples from M .

Farach and Kannan [9] and Ambainis et al. [2] worked primarily in the special
case of the two-state general Markov model satisfying the two restrictions on page 2.
Farach and Kannan’s paper was a breakthrough, because prior to their paper nothing
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was known about the feasibility of reconstructing Markov evolutionary trees from
samples. For any given positive constant α, they showed how to PAC-learn the class of
METs which satisfy the two restrictions. However, the number of samples required is a
function of 1/α, which is taken to be a constant. Ambainis et al. improved the bounds
given by Farach and Kannan to achieve asymptotically tight upper and lower bounds
on the number of samples needed to achieve a given variation distance. These results
are elegant and important. Nevertheless, the restrictions that they place on the model
do significantly simplify the problem of learning Markov evolutionary trees. In order
to explain why this is true, we explain the approach of Farach et al.: Their algorithm
uses samples from an MET M , which satisfies the restrictions above, to estimate the
“distance” between any two leaves. (The distance is related to the covariance between
the leaves.) The authors then relate the distance between two leaves to the amount
of evolutionary time that elapses between them. The distances are thus turned into
times. Then the algorithm of [1] is used to approximate the inter-leaf evolutionary
times with times which are close, but form an additive metric, which can be fitted onto
a tree. Finally, the times are turned back into transition probabilities. The symmetry
assumption is essential to this approach because it is symmetry that relates a one-
dimensional quantity (evolutionary time) to an otherwise two-dimensional quantity
(the probability of going from a “0” to a “1” and the probability of going from a “1” to
a “0”). The second restriction is also essential: If the probability that x differs from y
were allowed to approach 1/2, then the evolutionary time from x to y would tend to
∞. This would mean that in order to approximate the inter-leaf times accurately,
the algorithm would have to get the distance estimates very accurately, which would
require many samples. Ambainis et al. [2] generalized their results to a symmetric
version of the j-state evolutionary model, subject to the two restrictions above.

Erdös et al. [7, 8] also considered the reconstruction of Markov evolutionary trees
from samples. Like Steel [14] and unlike our paper or the papers of Farach and
Kannan [9] and Ambainis et al. [2], Erdös et al. were interested in reconstructing
only the topology of an MET (rather than its parameters or distribution), and they
were interested in using as few samples as possible to reconstruct the topology. They
showed how to reconstruct topologies in the j-state general Markov model when the
Markov evolutionary trees satisfy the following: (i) every root probability is bounded
above 0, (ii) every transition probability is bounded above 0 and below 1/2, and
(iii) for positive quantities λ and λ′, the determinant of the transition matrix along
each edge is between λ and 1 − λ′. The number of samples required is polynomial
in the worst case, but is only polylogarithmic in certain cases including the case in
which the MET is drawn uniformly at random from one of several (specified) natural
distributions. Note that restriction (iii) of Erdös et al. is weaker than Farach and
Kannan’s Restriction 2. However, Erdös et al. show only how to reconstruct the
topology (thus they work in a restricted case in which the topology can be uniquely
constructed using samples). They do not show how to reconstruct the parameters of
the Markov evolutionary tree or how to approximate its distribution.

1.2. A synopsis of our method. In this paper, we provide the first polynomial-
time PAC-learning algorithm for the class of METs. Our algorithm works as follows:
First, using samples from the target MET, the algorithm estimates all of the pairwise
covariances between leaves of the MET. Second, using the covariances, the leaves of
the MET are partitioned into “related sets” of leaves. Essentially, leaves in different
related sets have such small covariances between them that it is not always possible
to use polynomially many samples to discover how the related sets are connected
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in the target topology. Nevertheless, we show that we can closely approximate the
distribution of the target MET by approximating the distribution of each related set
closely, and then joining the related sets by “cut edges.” The first step, for each
related set, is to discover an approximation to the correct topology. Since we do not
restrict the class of METs which we consider, we cannot guarantee to construct the
exact induced topology (in the target MET). Nevertheless we guarantee to construct
a good enough approximation. The topology is constructed by looking at triples of
leaves. We show how to ensure that each triple that we consider has large inter-leaf
covariances. We derive quadratic equations which allow us to approximately recover
the parameters of the triple, using estimates of inter-leaf covariances and estimates
of probabilities of particular outputs. We compare the outcomes for different triples
and use the comparisons to construct the topology. Once we have the topology, we
again use our quadratic equations to discover the parameters of the tree. As we show
in section 2.4, we are able to prevent the error in our estimates from accumulating,
so we are able to guarantee that each estimated parameter is within a small additive
error of the “real” parameter in a (normalized) target MET. From this, we can show
that the variation distance between our hypothesis and the target is small.

1.3. Markov evolutionary trees and mixtures of Hamming balls. A
Hamming ball distribution [11] over binary strings of length n is defined by a cen-
ter (a string c of length n) and a corruption probability p. To generate an output from
the distribution, one starts with the center, and then flips each bit (or not) according
to an independent Bernoulli experiment with probability p. A linear mixture of j
Hamming balls is a distribution defined by j Hamming ball distributions, together
with j probabilities ρ1, . . . , ρj which sum to 1 and determine from which Hamming
ball distribution a particular sample should be taken. For any fixed j, Kearns et al.
give a polynomial-time PAC-learning algorithm for a mixture of j Hamming balls,
provided all j Hamming balls have the same corruption probability.2

A pure distribution over binary strings of length n is defined by n probabilities,
λ1, . . . , λn. To generate an output from the distribution, the ith bit is set to “0”
independently with probability λi, and to “1” otherwise. A pure distribution is a
natural generalization of a Hamming ball distribution. Clearly, every linear mixture
of j pure distributions can be realized by a j-state MET with a star-shaped topology.
Thus, the algorithm given in this paper shows how to learn a linear mixture of any
two pure distributions. Furthermore, a generalization of our result to a j-ary alphabet
would show how to learn any linear mixture of any j pure distributions.

2. The algorithm. Our description of our PAC-learning algorithm and its anal-
ysis requires the following definitions. For positive constants δ and ε, the input to
the algorithm consists of poly(n, 1/ε, 1/δ) samples from an MET M with an n-leaf
topology T . We will let ε1 = ε/(20n2), ε2 = ε1/(4n

3), ε3 = ε42/2
6, ε4 = ε1/(4n),

ε5 = ε2ε4/2
10, and ε6 = ε5ε

3
2/2

7. We have made no effort to optimize these con-
stants. However, we state them explicitly so that the reader can verify below that
the constants can be defined consistently. We define an ε4-contraction of an MET
with topology T ′ to be a tree formed from T ′ by contracting some internal edges e

2The kind of PAC-learning that we consider in this paper is generation. Kearns et al. also
show how to do evaluation for the special case of the mixture of j Hamming balls described above.
Using the observation that the output distributions of the subtrees below a node of an MET are
independent, provided the bit at that node is fixed, we can also solve the evaluation problem for
METs. In particular, we can calculate (in polynomial time) the probability that a given string is
output by the hypothesis MET.



380 M. CRYAN, L. A. GOLDBERG, AND P. W. GOLDBERG

for which Λ(e) > 1− ε4, where Λ(e) is the edge-distance of e as defined by Steel [14]
(see (1)). If x and y are leaves of the topology T then we use the notation cov(x, y)
to denote the covariance of the indicator variables for the events “the bit at x is 1”
and “the bit at y is 1.” Thus,

cov(x, y) = Pr(xy = 11)− Pr(x = 1)Pr(y = 1).(2)

We will use the following observations.

Observation 3. If MET M ′ has topology T ′ and e is an internal edge of T ′

from the root r to node v and T ′′ is a topology that is the same as T ′ except that
v is the root (so e goes from v to r) then we can construct an MET with topology
T ′′ which has the same distribution as M ′. To do this, we simply set Pr(v = 1)
appropriately (from the distribution of M ′). If Pr(v = 1) = 0 we set e0 to be
Pr(r = 1) (from the distribution of M ′). If Pr(v = 1) = 1 we set e1 to be Pr(r = 0)
(from the distribution of M ′). Otherwise, we set e0 = Pr(r = 1)(old e1)/Pr(v = 0)
and e1 = Pr(r = 0)(old e0)/Pr(v = 1).

Observation 4. If MET M ′ has topology T ′ and v is a degree-2 node in T ′ with
edge e leading into v and edge f leading out of v and T ′′ is a topology which is the
same as T ′ except that e and f have been contracted to form edge g then there is an
MET with topology T ′′ which has the same distribution as M ′. To construct it, we
simply set g0 = e0(1− f1) + (1− e0)f0 and g1 = e1(1− f0) + (1− e1)f1.

Observation 5. If MET M ′ has topology T ′ then there is an MET M ′′ with
topology T ′ which has the same distribution on its leaves as M ′ and has every internal
edge e satisfy e0 + e1 ≤ 1.

Proof of Observation 5. We will say that an edge e is “good” if e0 + e1 ≤ 1.
Starting from the root we can make all edges along a path to a leaf good, except
perhaps the last edge in the path. If edge e from u to v is the first nongood edge in
the path we simply set e0 to 1− (old e0) and e1 to 1− (old e1). This makes the edge
good but it has the side effect of interchanging the meaning of 0 and 1 at node v.
As long as we interchange 0 and 1 an even number of times along every path we will
preserve the distribution at the leaves. Thus, we can make all edges good except
possibly the last one, which we use to get the parity of the number of interchanges
correct.

We will now describe the algorithm. In subsection 2.6, we will prove that with
probability at least 1 − δ, the MET M ′ that it constructs satisfies var(M,M ′) ≤ ε.
Thus, we will prove Theorem 1.

2.1. Step 1: Estimate the covariances of pairs of leaves. For each pair
(x, y) of leaves, obtain an “observed” covariance ĉov(x, y) such that, with probability
at least 1− δ/3, all observed covariances satisfy

ĉov(x, y) ∈ [cov(x, y)− ε3, cov(x, y) + ε3].

Lemma 6. Step 1 requires only poly(n, 1/ε, 1/δ) samples from M .

Proof. Consider leaves x and y and let p denote Pr(xy = 11). By a Chernoff
bound (see [12]), after k samples the observed proportion of outputs with xy = 11 is
within ±ε3/4 of p, with probability at least 1− 2 exp(−kε23/23). For each pair (x, y)
of leaves, we estimate Pr(xy = 11), Pr(x = 1), and Pr(y = 1) within ±ε3/4. From
these estimates, we can calculate ĉov(x, y) within ±ε3 using (2).
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2.2. Step 2: Partition the leaves of M into related sets. Consider the
following leaf connectivity graph whose nodes are the leaves of M . Nodes x and y
are connected by a “positive” edge if ĉov(x, y) ≥ (3/4)ε2 and are connected by a
“negative” edge if ĉov(x, y) ≤ −(3/4)ε2. Each connected component in this graph
(ignoring the signs of edges) forms a set of “related” leaves. For each set S of related
leaves, let s(S) denote the leaf in S with smallest index. METs have the property
that for leaves x, y, and z, cov(y, z) is positive iff cov(x, y) and cov(y, z) have the
same sign. To see this, use the following equation, which can be proved by algebraic
manipulation from (2):

cov(x, y) = Pr(v = 1)Pr(v = 0)(1− α0 − α1)(1− β0 − β1),(3)

where v is taken to be the least common ancestor of x and y and α0 and α1 are the
transition probabilities along the path from v to x and β0 and β1 are the transition
probabilities along the path from v to y. Therefore, as long as the observed covariances
are as accurate as stated in Step 1, the signs on the edges of the leaf connectivity graph
partition the leaves of S into two sets S1 and S2 in such a way that s(S) ∈ S1, all
covariances between pairs of leaves in S1 are positive, all covariances between pairs of
leaves in S2 are positive, and all covariances between a leaf in S1 and a leaf in S2 are
negative.

For each set S of related leaves, let T (S) denote the subtree formed from T by
deleting all leaves which are not in S, contracting all degree-2 nodes, and then rooting
at the neighbour of s(S). Let M(S) be an MET with topology T (S) which has the
same distribution as M on its leaves and satisfies the following:

• Every internal edge e of M(S) has e0 + e1 ≤ 1.(4)

• Every edge e to a node in S1 has e0 + e1 ≤ 1.

• Every edge e to a node in S2 has e0 + e1 ≥ 1.

Observations 3, 4, and 5 guarantee that M(S) exists.
Observation 7. As long as the observed covariances are as accurate as stated in

Step 1 (which happens with probability at least 1− δ/3), then for any related set S
and any leaf x ∈ S there is a leaf y ∈ S such that |cov(x, y)| ≥ ε2/2.

Observation 8. As long as the observed covariances are as accurate as stated in
Step 1 (which happens with probability at least 1− δ/3), then for any related set S
and any edge e of T (S) there are leaves a and b which are connected through e and
have |cov(a, b)| ≥ ε2/2.

Observation 9. As long as the observed covariances are as accurate as stated in
Step 1 (which happens with probability at least 1− δ/3), then for any related set S,
every internal node v of M(S) has Pr(v = 0) ∈ [ε2/2, 1− ε2/2].

Proof of Observation 9. Suppose to the contrary that v is an internal node of
M(S) with Pr(v = 0) ∈ [0, ε2/2) ∪ (1− ε2/2, 1]. Using Observation 3, we can re-root
M(S) at v without changing the distribution. Let w be a child of v. By (3), every
pair of leaves a and b which are connected through (v, w) satisfy |cov(a, b)| ≤ Pr(v =
0)Pr(v = 1) < ε2/2. The observation now follows from Observation 8.

Observation 10. As long as the observed covariances are as accurate as stated
in Step 1 (which happens with probability at least 1− δ/3), then for any related set
S, every edge e of M(S) has w(e) ≥ ε2/2.

Proof of Observation 10. This follows from Observation 8 using (3). (Recall that
w(e) = |1− e0 − e1|.)



382 M. CRYAN, L. A. GOLDBERG, AND P. W. GOLDBERG

2.3. Step 3: For each related set S, find an ε4-contraction T ′(S) of
T (S). In this section, we will assume that the observed covariances are as accurate
as stated in Step 1. (This happens with probability at least 1−δ/3.) Let S be a related
set. With probability at least 1− δ/(3n) we will find an ε4-contraction T ′(S) of T (S).
Since there are at most n related sets, all ε4-contractions will be constructed with
probability at least 1 − δ/3. Recall that an ε4-contraction of M(S) is a tree formed
from T (S) by contracting some internal edges e for which Λ(e) > 1 − ε4. We start
with the following observation, which will allow us to redirect edges for convenience.

Observation 11. If e is an internal edge of T (S) then Λ(e) remains unchanged if
e is redirected as in Observation 3.

Proof. The observation can be proved by algebraic manipulation from (1) and
Observation 3. Note (from Observation 9) that every endpoint v of e satisfies Pr(v =
0) ∈ (0, 1). Thus, the redirection in Observation 3 is not degenerate and Λ(e) is
defined.

We now describe the algorithm for constructing an ε4-contraction T ′(S) of T (S).
We will build up T ′(S) inductively, adding leaves from S one by one. That is, when we
have an ε4-contraction T ′(S′) of a subset S′ of S, we will consider a leaf x ∈ S−S′ and
build an ε4-contraction T ′(S′∪{x}) of T (S′∪{x}). Initially, S′ = ∅. The precise order
in which the leaves are added does not matter, but we will not add a new leaf x unless
S′ contains a leaf y such that |ĉov(x, y)| ≥ (3/4)ε2. When we add a new leaf x we
will proceed as follows. First, we will consider T ′(S′), and for every edge e′ = (u′, v′)
of T ′(S′), we will use the method in the following section (section 2.3.1) to estimate
Λ(e′). More specifically, we will let u and v be nodes which are adjacent in T (S′) and
have u ∈ u′ and v ∈ v′ in the ε4-contraction T ′(S′). We will show how to estimate
Λ(e). Afterwards (in section 2.3.2), we will show how to insert x.

2.3.1. Estimating Λ(e). In this section, we suppose that we have an MET
M(S′) on a set S′ of leaves, all of which form a single related set. T (S′) is the
topology of M(S′) and T ′(S′) is an ε4-contraction of T (S′). The edge e′ = (u′, v′) is
an edge of T ′(S′). e = (u, v) is the edge of T (S′) for which u ∈ u′ and v ∈ v′. We
wish to estimate Λ(e) within ±ε4/16. We will ensure that the overall probability that
the estimates are not in this range is at most δ/(6n).

The proof of the following equations is straightforward. We will typically apply
them in situations in which z is the error of an approximation:

x+ z

y − z
=

x

y
+

(
z

y − z

)(
1 +

x

y

)
,(5)

1 + z

1− z
≤ 1 + 4z if z ≤ 1/2,(6)

1− z

1 + z
≥ 1− 2z if z ≥ 0.(7)

Case 1: e′ is an internal edge. We first estimate e0, e1, Pr(u = 0), and Pr(v = 0)
within ±ε5 of the correct values. By Observation 9, Pr(u = 0) and Pr(v = 0) are in
[ε2/2, 1− ε2/2]. Thus, our estimate of Pr(u = 0) is within a factor of (1± 2ε5/ε2) =
(1± ε42

−9) of the correct value. Similarly, our estimates of Pr(u = 1), Pr(v = 0), and
Pr(v = 1) are within a factor of (1± ε42

−9) of the correct values. Now using (1) we
can estimate Λ(e) within ±ε4/16. In particular, our estimate of Λ(e) is at most
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(w(e) + 2ε5)

√
Pr(v = 0)Pr(v = 1)

Pr(w = 0)Pr(w = 1)

(1 + ε42
−9)

(1− ε42−9)

≤ (w(e) + 2ε5)

√
Pr(v = 0)Pr(v = 1)

Pr(w = 0)Pr(w = 1)
(1 + ε42

−7)

≤ Λ(e) + ε4/16.

In the inequalities, we used (6) and the fact that Λ(e) ≤ 1. Similarly, by (7), our
estimate of Λ(e) is at least

(w(e)− 2ε5)

√
Pr(v = 0)Pr(v = 1)

Pr(w = 0)Pr(w = 1)

(1− ε42
−9)

(1 + ε42−9)

≥ (w(e)− 2ε5)

√
Pr(v = 0)Pr(v = 1)

Pr(w = 0)Pr(w = 1)
(1− ε42

−8)

≥ Λ(e)− ε4/16.

We now show how to estimate e0, e1, Pr(u = 0), and Pr(v = 0) within ±ε5. We
say that a path from node α to node β in an MET is strong if |cov(α, β)| ≥ ε2/2. It
follows from (3) that if node γ is on this path, then

|cov(γ, β)| ≥ |cov(α, β)|,(8)

|cov(α, β)| ≥ |cov(α, γ)| |cov(γ, β)|,(9)

We say that a quartet (c, b | a, d) of leaves a, b, c, and d is a good estimator of the
edge e = (u, v) if e is an edge of T (S′) and the following hold in T (S′) (see Figure 1):

1. a is a descendent of v.
2. The undirected path from c to a is strong and passes through u then v.
3. The path from u to its descendent b is strong and only intersects the (undi-

rected) path from c to a at node u.
4. The path from v to its descendent d is strong and only intersects the path

from v to a at node v.
We say that (c, b | a, d) is an apparently good estimator of e′ if the following hold in
the ε4-contraction T ′(S′):

1. a is a descendent of v′.
2. The undirected path from c to a is strong and passes through u′ then v′.
3. The path from u′ to its descendent b is strong and only intersects the (undi-

rected) path from c to a at node u′.
4. The path from v′ to its descendent d is strong and only intersects the path

from v′ to a at node v′.
Observation 12. If e is an edge of T (S′) and (c, b | a, d) is a good estimator of

e, then any leaves x, y ∈ {a, b, c, d} have |cov(x, y)| ≥ (ε2/2)
3
.

Proof. The observation follows from (8) and (9) and from the definition of a good
estimator.
Lemma 13. If (c, b | a, d) is a good estimator of e, then it can be used (along with

poly(n, 1/ε, 1/δ) samples from M(S′)) to estimate e0, e1, Pr(u = 0), and Pr(v = 0)
within ±ε5. (If we use sufficiently many samples, then the probability that any of the
estimates is not within ±ε5 of the correct value is at most δ/(12n7)).
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u

❄
e

v

❄
a

❄
b

c

q0, q1

u

a
❄

p0, p1

❄
d

Fig. 1. Finding Pr(u = 1), e0, and e1.

Proof. Let q0 and q1 denote the transition probabilities from v to a (see Figure 1)
and let p0 and p1 denote the transition probabilities from u to a. We will first show
how to estimate p0, p1, and Pr(u = 1) within ±ε6. Without loss of generality (by
Observation 3) we can assume that c is a descendant of u. (Otherwise we can re-root
T (S′) at u without changing the distribution on the nodes or p0 or p1.) Let β be the
path from u to b and let γ be the path from u to c. We now define

cov(b, c, 0) = Pr(abc = 011)Pr(a = 0)− Pr(ab = 01)Pr(ac = 01),(10)

cov(b, c, 1) = Pr(abc = 111)Pr(a = 1)− Pr(ab = 11)Pr(ac = 11).

(These do not quite correspond to the conditional covariances of b and c, but they are
related to these.) We also define

F =
1

2

(
cov(b, c) + cov(b, c, 0)− cov(b, c, 1)

cov(b, c)

)
, and

D = F 2 − cov(b, c, 0)/cov(b, c).

The following equations can be proved by algebraic manipulation from (10), (2), and
the definitions of F and D.

cov(b, c, 0) = Pr(u = 1)Pr(u = 0)(1− β0 − β1)(1− γ0 − γ1)p1(1− p0),(11)

cov(b, c, 1) = Pr(u = 1)Pr(u = 0)(1− β0 − β1)(1− γ0 − γ1)p0(1− p1),

F =
1 + p1 − p0

2
,(12)

D =
(1− p0 − p1)

2

4
.(13)

Case 1a: a ∈ S1. In this case, by (4) and by Observation 10, we have 1−p0−p1 >
0. Thus, by (13), we have

√
D =

1− p0 − p1

2
.(14)

Equations (12) and (14) imply

p1 = F −
√
D,(15)

p0 = 1− F −
√
D.(16)
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Also, since Pr(a = 0) = Pr(u = 1)p1 + (1− Pr(u = 1))(1− p0), we have

Pr(u = 1) =
1

2
+

F − Pr(a = 0)

2
√
D

.(17)

From these equations, it is clear that we could find p0, p1, and Pr(u = 1) if we knew
Pr(a = 0), cov(b, c), cov(b, c, 0), and cov(b, c, 1) exactly. We now show that with
polynomially many samples, we can approximate the values of Pr(a = 0), cov(b, c),
cov(b, c, 0), and cov(b, c, 1) sufficiently accurately so that using our approximations
and the above equations, we obtain approximations for p0, p1, and Pr(u = 1) which
are within ±ε6. As in the proof of Lemma 6, we can use (2) and (10) to estimate
Pr(a = 0), cov(b, c), cov(b, c, 0), and cov(b, c, 1) within ±ε′ for any ε′ whose inverse is
at most a polynomial in n and 1/ε. Note that our estimate of cov(b, c) will be nonzero

by Observation 12 (as long as ε′ ≤ (ε2/2)
3
), so we will be able to use it to estimate F

from its definition. Now, using the definition of F and (5), our estimate of 2F is at
most

2F +
3ε′

cov(b, c)− 3ε′
(1 + 2F ).

By Observation 12, this is at most

2F +
3ε′

(ε2/2)
3 − 3ε′

(1 + 2).(18)

The error is at most ε′′ for any ε′′ whose is inverse is at most polynomial in n and
1/ε. (This is accomplished by making ε′ small enough with respect to ε2 according
to (18).) We can similarly bound the amount that we underestimate F . Now we use
the definition of D to estimate D. Our estimate is at most

(F + ε′′)2 − cov(b, c, 0)− ε′

cov(b, c) + ε′
.

Using (5), this is at most

D + 2ε′′F + ε′′2 +
ε′

cov(b, c) + ε′

(
1 +

cov(b, c, 0)

cov(b, c)

)
.

Once again, by Observation 12, the error can be made within ±ε′′′ for any ε′′′ whose
inverse is polynomial in n and 1/ε (by making ε′ and ε′′ sufficiently small). It follows
that our estimate of

√
D is at most

√
D(1+ε′′′/(2D)) and (since Observation 12 gives

us an upper bound on the value of D as a function of ε2), we can estimate
√
D within

±ε′′′′ for any ε′′′′ whose inverse is polynomial in n and 1/ε. This implies that we can

estimate p0 and p1 within ±ε6. Observation 12 and (3) imply that w(p) ≥ (ε2/2)
3
.

Thus, the estimate for
√
D is nonzero. This implies that we can similarly estimate

Pr(u = 1) within ±ε6 using (17).
Now that we have estimates for p0, p1, and Pr(u = 1) which are within ±ε6 of

the correct values, we can repeat the trick to find estimates for q0 and q1 which are
also within ±ε6. We use leaf d for this. Observation 4 implies that

e0 =
p0 − q0

1− q0 − q1
and e1 =

p1 − q1
1− q0 − q1

.
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u

✚✙

✛✘u′

❄
v

✚✙

✛✘

v′

❄
a

❄
b

c

❄
d

Fig. 2. (c, b | a, d) is a good estimator of e = (u, v) and an apparently good estimator of
e′ = (u′, v′).

Using these equations, our estimate of e0 is at most

p0 − q0 + 2ε6
1− q0 − q1 − 2ε6

.

Equation (5) and our observation above that w(p) ≥ (ε2/2)
3
imply that the error is

at most

2ε6

(ε2/2)
3 − 2ε6

(
1 +

p0 − q0
1− q0 − q1

)
,

which is at most 27ε6/ε
3
2 = ε5. Similarly, the estimate for e0 is at least e0 − ε5

and the estimate for e1 is within ±ε5 of e1. We have now estimated e0, e1, and
Pr(u = 0) within ±ε5. As we explained in the beginning of this section, we can use
these estimates to estimate Λ(e) within ±ε4/16.

Case 1b: a ∈ S2. In this case, by (4) and by Observation 10, we have 1−p0−p1 <
0. Thus, by (13), we have

√
D = −

(
1− p0 − p1

2

)
.(19)

Equations (12) and (19) imply

p1 = F +
√
D,(20)

p0 = 1− F +
√
D.(21)

Equation (17) remains unchanged. The process of estimating p0, p1, and Pr(u = 1)
(from the new equations) is the same as for Case 1a. This concludes the proof of
Lemma 13.

Observation 14. Suppose that e′ is an edge from u′ to v′ in T ′(S′) and that
e = (u, v) is the edge in T (S′) such that u ∈ u′ and v ∈ v′. There is a good
estimator (c, b | a, d) of e. Furthermore, every good estimator of e is an apparently
good estimator of e′. (Refer to Figure 2.)

Proof. Leaves c and a can be found to satisfy the first two criteria in the definition
of a good estimator by Observation 8. Leaf b can be found to satisfy the third criterion
by Observation 8 and (8) and by the fact that the degree of u is at least 3 (see the
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u′′

✫✪

✬✩
u′

❄

❄
b

c

u

❄
v

❄
v′′

✫✪

✬✩

v′

❄
a ❄

d

Fig. 3. (c, b | a, d) is an apparently good estimator of e′ = (u′, v′) and a good estimator of
p = (u′′, v′′). Λ(p) ≤ Λ(u, v).

text just before (4)). Similarly, leaf d can be found to satisfy the fourth criterion.
(c, b | a, d) is an apparently good estimator of e′ because only internal edges of T (S′)
can be contracted in the ε4-contraction T ′(S′).

Observation 15. Suppose that e′ is an edge from u′ to v′ in T ′(S′) and that
e = (u, v) is an edge in T (S′) such that u ∈ u′ and v ∈ v′. Suppose that (c, b | a, d)
is an apparently good estimator of e′. Let u′′ be the meeting point of c, b, and a
in T (S′). Let v′′ be the meeting point of c, a, and d in T (S′). (Refer to Figure 3.)
Then (c, b | a, d) is a good estimator of the path p from u′′ to v′′ in T (S′). Also,
Λ(p) ≤ Λ(e).

Proof. The fact that (c, b | a, d) is a good estimator of p follows from the definition
of good estimator. The fact that Λ(p) ≤ Λ(e) follows from the fact that the distances
Λ are multiplicative along a path, and bounded above by 1.

Observations 14 and 15 imply that in order to estimate Λ(e) within ±ε4/16, we
need only estimate Λ(e) using each apparently good estimator of e′ and then take
the maximum. By Lemma 13, the failure probability for any given estimator is at
most δ/(12n7), so with probability at least 1− δ/(12n3), all estimators give estimates
within ±ε4/16 of the correct values. Since there are at most 2n edges e′ in T ′(S′),
and we add a new leaf x to S′ at most n times, all estimates are within ±ε4/16 with
probability at least 1− δ/(6n).

Case 2: e′ is not an internal edge. In this case v = v′ since v′ is a leaf of T (S′).
We say that a pair of leaves (b, c) is a good estimator of e if the following holds
in T (S′): The paths from leaves v, b, and c meet at u and |cov(v, b)|, |cov(v, c)|, and
|cov(b, c)| are all at least (ε2/2)

2
. We say that (b, c) is an apparently good estimator

of e′ if the following holds in T ′(S′): The paths from leaves v, b, and c meet at u′ and
|cov(v, b)|, |cov(v, c)|, and |cov(b, c)| are all at least (ε2/2)

2
. As in the previous case,

the result follows from the following observations.

Observation 16. If (b, c) is a good estimator of e then it can be used (along with
poly(n, 1/ε, 1/δ) samples from M(S′)) to estimate e0, e1, and Pr(u = 0) within ±ε5.
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(The probability that any of the estimates is not within ±ε5 of the correct value is at
most δ/(12n3).)

Proof. This follows from the proof of Lemma 13.
Observation 17. Suppose that e′ is an edge from u′ to leaf v in T ′(S′) and that

e = (u, v) is an edge in T (S′) such that u ∈ u′. There is a good estimator (b, c) of e.
Furthermore, every good estimator of e is an apparently good estimator of e′.

Proof. This follows from the proof of Observation 14 and from (9).
Observation 18. Suppose that e′ is an edge from u′ to leaf v in T ′(S′) and that

e = (u, v) is an edge in T (S′) such that u ∈ u′. Suppose that (b, c) is an apparently
good estimator of e′. Let u′′ be the meeting point of b, v, and c in T (S′). Then (b, c)
is a good estimator of the path p from u′′ to v in T (S′). Also, Λ(p) ≤ Λ(e).

Proof. This follows from the proof of Observation 15.

2.3.2. Using the estimates of Λ(e). We now return to the problem of showing
how to add a new leaf x to T ′(S′). As we indicated above, for every internal edge
e′ = (u′, v′) of T ′(S′), we use the method in section 2.3.1 to estimate Λ(e) where
e = (u, v) is the edge of T (S′) such that u ∈ u′ and v ∈ v′. If the observed value
of Λ(e) exceeds 1 − 15ε4/16, then we will contract e. The accuracy of our estimates
will guarantee that we will not contract e if Λ(e) ≤ 1 − ε4, and that we definitely
contract e if Λ(e) > 1− 7ε4/8. We will then add the new leaf x to T ′(S′) as follows.
We will insert a new edge (x, x′) into T ′(S′). We will do this by either (i) identifying
x′ with a node already in T ′(S′), or (ii) splicing x′ into the middle of some edge
of T ′(S′).

We will now show how to decide where to attach x′ in T ′(S′). We start with the
following definitions. Let S′′ be the subset of S′ such that for every y ∈ S′′ we have
|cov(x, y)| ≥ (ε2/2)

4
. Let T ′′ be the subtree of T ′(S′) induced by the leaves in S′′. Let

S′′′ be the subset of S′ such that for every y ∈ S′′′ we have |ĉov(x, y)| ≥ (ε2/2)
4 − ε3.

Let T ′′′ be the subtree of T ′(S′) induced by the leaves in S′′′.
Observation 19. If T (S′ ∪ {x}) has x′ attached to an edge e = (u, v) of T (S′)

and e′ is the edge corresponding to e in T ′(S′) (that is, e′ = (u′, v′), where u ∈ u′ and
v ∈ v′), then e′ is an edge of T ′′.

Proof. By Observation 14 there is a good estimator (c, b | a, d) for e. Since x is
being added to S′ (using (8)), |cov(x, x′)| ≥ ε2/2. Thus, by Observation 12 and (9),

every leaf y ∈ {a, b, c, d} has |cov(x, y)| ≥ (ε2/2)
4
. Thus, a, b, c, and d are all in S′′

so e′ is in T ′′.
Observation 20. If T (S′ ∪ {x}) has x′ attached to an edge e = (u, v) of T (S′)

and u and v are both contained in node u′ of T ′(S′) then u′ is a node of T ′′.
Proof. Since u is an internal node of T (S′), it has degree at least 3. By Observa-

tion 8 and (8), there are three leaves a1, a2, and a3 meeting at u with |cov(u, ai)| ≥
ε2/2. Similarly, |cov(u, v)| ≥ ε2/2. Thus, for each ai, |cov(x, ai)| ≥ (ε2/2)

3
so a1, a2,

and a3 are in S′′.
Observation 21. S′′ ⊆ S′′′.
Proof. This follows from the accuracy of the covariance estimates in Step 1.
We will use the following algorithm to decide where to attach x′ in T ′′′. In the

algorithm, we will use the following tool. For any triple (a, b, c) of leaves in S′ ∪ {x},
let u denote the meeting point of the paths from leaves a, b, and c in T (S′∪{x}). Let
Mu be the MET which has the same distribution as M(S′ ∪ {x}), but is rooted at u.
(Mu exists, by Observation 3.) Let Λc(a, b, c) denote the weight of the path from u
to c in Mu. By observation 11, Λc(a, b, c) is equal to the weight of the path from u
to c in M(S′ ∪ {x}). (This follows from the fact that re-rooting at u only redirects
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a1 ❣

u′
❣

v′
b

a2 �
�

�

Fig. 4. The setting for Test 1(u′, v′, a1, a2, b) and Test 2(u′, v′, a1, a2, b) when v′ is an internal
node of T ′′′. (If v′ is a leaf, we perform the same tests with v′ = b.)

a1 x′

x

f
u

a2

v b

Fig. 5. Either Test 1(u′, v′, a1, a2, b) fails or Test 2(u′, v′, a1, a2, b) fails.

internal edges.) It follows from the definition of Λ (as in (1)) and from (3) that

Λc(a, b, c) =

√
cov(a, c)cov(b, c)

cov(a, b)
.(22)

If a, b, and c are in S′′′∪{x}, then by the accuracy of the covariance estimates and (8)
and (9), the absolute value of the pairwise covariance of any pair of them is at least
ε82/2

10. As in section 2.3.1, we can estimate cov(a, c), cov(b, c), and cov(a, b) within a
factor of (1± ε′) of the correct values for any ε′ whose inverse is at most a polynomial
in n, and 1/ε. Thus, we can estimate Λc(a, b, c) within a factor of (1± ε4/16) of the
correct value. We will take sufficiently many samples to ensure that the probability
that any of the estimates is outside of the required range is at most δ/(6n2). Thus,
the probability that any estimate is outside of the range for any x is at most δ/(6n).

We will now determine where in T ′′′ to attach x′. Choose an arbitrary internal
root u′ of T ′′′. We will first see where x′ should be placed with respect to u′. For
each neighbor v′ of u′ in T ′′′, each pair of leaves (a1, a2) on the “u′” side of (u′, v′),
and each leaf b on the “v′” side of (u′, v′) (see Figure 4), perform the following two
tests.

• Test 1(u′, v′, a1, a2, b): The test succeeds if the observed value of
Λx(a1, x, b)/Λx(a2, x, b) is at least 1− ε4/4.
• Test 2(u′, v′, a1, a2, b): The test succeeds if the observed value of

Λb(a1, a2, b)/Λb(a1, x, b) is at most 1− 3ε4/4.
We now make the following observations.

Observation 22. If x is on the “u side” of (u, v) in T (S′′′ ∪ {x}) and u is in u′

in T ′′′ and v is in v′ �= u′ in T ′′′ then some test fails.
Proof. Since u′ is an internal node of T ′′′, it has degree at least 3. Thus, we can

construct a test such as the one depicted in Figure 5. (If x′ = u then the figure is still
correct; that would just mean that Λ(f) = 1. Similarly, if v′ is a leaf, we simply have
Λ(f ′) = 1 where f ′ is the edge from v to b.) Now we have
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Fig. 6. Test 1(u′, v′, a1, a2, b) and Test 2(u′, v′, a1, a2, b) succeed for all choices of a1, a2, and b.

1

Λ(f)
=

Λx(a1, x, b)

Λx(a2, x, b)
=

Λb(a1, a2, b)

Λb(a1, x, b)
.

However, Test 1(u′, v′, a1, a2, b) will succeed only if the left hand fraction is at least
1 − ε4/4. Furthermore, Test 2(u′, v′, a1, a2, b) will only succeed if the right hand
fraction is at most 1 − 3ε4/4. Since our estimates are accurate to within a factor of
(1± ε4/16), at least one of the two tests will fail.

Observation 23. If x is between u and v in T (S′′′ ∪ {x}) and the edge f from
u to x′ has Λ(f) ≤ 1 − 7ε4/8 then Test 1(u′, v′, a1, a2, b) and Test 2(u′, v′, a1, a2, b)
succeed for all choices of a1, a2, and b.

Proof. Every such test has the form depicted in Figure 6, where again g might be
degenerate, in which case Λ(g) = 1. Observe that Λx(a1, x, b)/Λx(a2, x, b) = 1, so its
estimate is at least 1− ε4/4 and Test 1 succeeds. Furthermore,

Λb(a1, a2, b)

Λb(a1, x, b)
= Λ(f)Λ(g) ≤ Λ(f) ≤ 1− 7ε4/8,

so the estimate is at most 1− 3ε4/4 and Test 2 succeeds.
Observation 24. If x is on the “v side” of (u, v) in T (S′′′ ∪ {x}) and Λ(e) ≤ 1−

7ε4/8 (recall from the beginning of section 2.3.2 that Λ(e) is at most 1−7ε4/8 if u and
v are in different nodes of T ′′′), then Test 1(u′, v′, a1, a2, b) and Test 2(u′, v′, a1, a2, b)
succeed for all choices of a1, a2, and b.

Proof. Note that this case only applies if v is an internal node of T (S′′′). Thus,
every such test has one of the forms depicted in Figure 7, where some edges may be
degenerate. Observe that in both cases Λx(a1, x, b)/Λx(a2, x, b) = 1, so its estimate
is at least 1− ε4/4 and Test 1 succeeds. Also in both cases

Λb(a1, a2, b)

Λb(a1, x, b)
= Λ(e)Λ(f)Λ(g) ≤ Λ(e) ≤ 1− 7ε4/8,

so the estimate is at most 1− 3ε4/4 and Test 2 succeeds.
Now note (using Observation 22) that node u′ has at most one neighbor v′ for

which all tests succeed. Furthermore, if there is no such v′, Observations 23 and 24
imply that x′ can be merged with u′. The only case that we have not dealt with is
the case in which there is exactly one v′ for which all tests succeed. In this case, if v′

is a leaf, we insert x′ in the middle of edge (u′, v′). Otherwise, we will either insert x′

in the middle of edge (u′, v′), or we will insert it in the subtree rooted at v′. In order
to decide which, we perform similar tests from node v′, and we check whether Test
1(v′, u′, a1, a2, b) and Test 2(v′, u′, a1, a2, b) both succeed for all choices of a1, a2, and
b. If so, we put x′ in the middle of edge (u′, v′). Otherwise, we recursively place x′ in
the subtree rooted at v′.
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Fig. 7. Test 1(u′, v′, a1, a2, b) and Test 2(u′, v′, a1, a2, b) succeed for all choices of a1, a2, and b.

2.4. Step 4: For each related set S, construct an MET M ′(S) which is
close to M(S). For each set S of related leaves we will construct an METM ′(S) with
leaf-set S such that each edge parameter of M ′(S) is within ±ε1 of the corresponding
parameter of M(S). The topology of M ′(S) will be T ′(S). We will assume without
loss of generality that T (S) has the same root as T ′(S). The failure probability for S
will be at most δ/(3n), so the overall failure will be at most δ/3.

We start by observing that the problem is easy if S has only one or two leaves.
Observation 25. If |S| < 3 then we can construct an MET M ′(S) such that each

edge parameter of M ′(S) is within ±ε1 of the corresponding parameter of M(S).
We now consider the case in which S has at least three leaves. Any edge of T (S)

which is contracted in T ′(S) can be regarded as having e0 and e1 set to 0. The fact
that these are within ±ε1 of their true values follows from the following lemma.
Lemma 26. If e is an internal edge of M(S) from v to w with Λ(e) > 1− ε4 then

e0 + e1 < 2ε4 = ε1/(2n).
Proof. First observe from Observation 9 that Pr(w = 0) �∈ {0, 1} and from

Observation 10 that e0 + e1 �= 1. Using algebraic manipulation, one can see that

Pr(v = 1) =
Pr(w = 1)− e0

1− e0 − e1
,

Pr(v = 0) =
Pr(w = 0)− e1

1− e0 − e1
.

Thus, by (1),

Λ(e)2 =

(
1− e0

Pr(w = 1)

)(
1− e1

Pr(w = 0)

)
.

Since Λ(e)2 ≥ 1 − 2ε4, we have e0 ≤ 2ε4 Pr(w = 1) and e1 ≤ 2ε4 Pr(w = 0), which
proves the observation.

Thus, we need only show how to label the remaining parameters within ±ε1. Note
that we have already shown how to do this in section 2.3.1. Here the total failure
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probability is at most δ/(3n) because there is a failure probability of at most δ/(6n2)
associated with each of the 2n edges.

2.5. Step 5: Form M ′ from the METs M ′(S). Make a new root r for M ′

and set Pr(r = 1) = 1. For each related set S of leaves, let u denote the root of M ′(S),
and let p denote the probability that u is 0 in the distribution of M ′(S). Make an
edge e from r to u with e1 = p.

2.6. Proof of Theorem 1. Let M ′′ be an MET which is formed from M as
follows.

• Related sets are formed as in Step 2.
• For each related set S, a copy M ′′(S) of M(S) is made.
• The METs M ′′(S) are combined as in Step 5.

Theorem 1 follows from the following lemmas.
Lemma 27. Suppose that for every set S of related leaves, every parameter of

M ′(S) is within ±ε1 of the corresponding parameter in M(S). Then var(M ′′,M ′) ≤
ε/2.

Proof. First, we observe (using a crude estimate) that there are at most 5n2

parameters in M ′. (Each of the (at most n) METs M ′(S) has one root parameter
and at most 4n edge parameters.) We will now show that changing a single parameter
of a MET by at most ±ε1 yields at MET whose variation distance from the original
is at most 2ε1. This implies that var(M ′′,M ′) ≤ 10n2ε1 = ε/2. Suppose that e is an
edge from u to v and e0 is changed. The probability that the output has string s on
the leaves below v and string s′ on the remaining leaves is

Pr(u = 0)Pr(s′ | u = 0)(e0 Pr(s | v = 1) + (1− e0) Pr(s | v = 0))

+ Pr(u = 1)Pr(s′ | u = 1)(e1 Pr(s | v = 0) + (1− e1) Pr(s | v = 1)).

Thus, the variation distance between M ′′ and an MET obtained by changing the value
of e0 (within ±ε1) is at most

ε1
∑
s

∑
s′

Pr(u = 0)Pr(s′ | u = 0)(Pr(s | v = 1) + Pr(s | v = 0))

≤ ε1 Pr(u = 0)

(∑
s′

Pr(s′ | u = 0)

) ((∑
s

Pr(s | v = 1)

)
+

(∑
s

Pr(s | v = 0)

))

≤ 2ε1.

Similarly, if ρ1 is the root parameter of an MET then the probability of having output s
is

ρ1 Pr(s | r = 1) + (1− ρ1) Pr(s | r = 0).

So the variation distance between the original MET and one in which ρ1 is changed
within ±ε1 is at most

∑
s

ε1(Pr(s | r = 1) + Pr(s | r = 0)) ≤ 2ε1.

Lemma 28. var(M ′′,M) ≤ ε/2.
Before we prove Lemma 28, we provide some background material. Recall that

the weight w(e) of an edge e of an MET is |1− e0 − e1| and define the weight w(*) of
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a leaf * to be the product of the weights of the edges on the path from the root to *.
We will use the following lemma.
Lemma 29. In any MET with root r, the variation distance between the distribu-

tion on the leaves conditioned on r = 1 and the distribution on the leaves conditioned
on r = 0 is at most 2

∑
� w(*), where the sum is over all leaves *.

Proof. We proceed by induction on the number of edges in the MET. In the base
case there are no edges so r is a leaf, and the result holds. For the inductive step,
let e be an edge from r to node x. For any string s1 on the leaves below x and any
string s2 on the other leaves,

Pr(s1s2 | r = 0) = Pr(s2 | r = 0)(e0 Pr(s1 | x = 1) + (1− e0) Pr(s1 | x = 0)).

Algebraic manipulation of this formula shows that Pr(s1s2 | r = 1)−Pr(s1s2 | r = 0)
is

(1− e0 − e1) Pr(s2 | r = 1) (Pr(s1 | x = 1)− Pr(s1 | x = 0))

+ Pr(s1 | r = 0) (Pr(s2 | r = 1)− Pr(s2 | r = 0)).(23)

It follows that the variation distance is at most the sum over all s1s2 of the absolute
value of the quantity in (23), which is at most

|1− e0 − e1|
(∑

s2

Pr(s2 | r = 1)

)(∑
s1

|Pr(s1 | x = 1)− Pr(s1 | x = 0)|
)

+

(∑
s1

Pr(s1 | r = 0)

) (∑
s2

|Pr(s2 | r = 1)− Pr(s2 | r = 0)|
)

.

The result follows by induction.
Lemma 30. Suppose that m is an MET with n leaves and that e is an edge from

node u to node v. Let m′ be the MET derived from m by replacing e0 with Pr(v = 1)
and e1 with Pr(v = 0). Then var(m,m′) ≤ n2z, where z is the maximum over all
pairs (x, y) of leaves which are connected via e in m of |cov(x, y)|.

Proof. By Observation 3, we can assume without loss of generality that u is the
root of m. For any string s1 on the leaves below v and any string s2 on the remaining
leaves, we find (via a little algebraic manipulation) that the difference between the
probability that m outputs s1s2 and the probability that m′ does is

Pr(u = 1)Pr(u = 0)(1− e0 − e1)(Pr(s2 | u = 1)

− Pr(s2 | u = 0))(Pr(s1 | v = 1)− Pr(s1 | v = 0)).

Thus, the variation distance between m and m′ is Pr(u = 1)Pr(u = 0)(1 − e0 − e1)
times the product of the variation distance between the distribution on the leaves
below v conditioned on v = 1 and the distribution on the leaves below v conditioned
on v = 0 and the variation distance between the distribution on the remaining leaves
conditioned on u = 1 and the distribution on the remaining leaves conditioned on u =
0. By Lemma 29, this is at most

Pr(u = 0)Pr(u = 1)


2

∑

* below v

w(*)




2

∑

other *

w(*)


 ,
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which by (3) is

4
∑

(x, y) connected via e

|cov(x, y)|,

which is at most 4(n/2)
2
z = n2z.

Lemma 31. If, for two different related sets, S and S′, an edge e from u to v is
in M(S) and in M ′(S), then e0 + e1 ≤ n2ε2/(n+ 1).

Proof. By the definition of the leaf connectivity graph in Step 2, there are leaves
a, a′ ∈ S and b, b′ ∈ S′ such that the path from a′ to a and the path from b′ to b both
go through e = u→ v and

|ĉov(a, a′)| ≥ (3/4)ε2 and |ĉov(b, b′)| ≥ (3/4)ε2,

and the remaining covariance estimates amongst leaves a, a′, b, and b′ are less than
(3/4)ε2. Without loss of generality (using Observation 3), assume that u is the root
of the MET. Let pu,a′ denote the path from u to a′ and use similar notation for the
other leaves. By (3) and the accuracy of the estimates in Step 1,

Pr(u = 0)2 Pr(u = 1)2w(e)2w(pu,a′)w(pv,a)w(pu,b′)w(pv,b) ≥ ((3/4)ε2 − ε3)
2
,

Pr(u = 0)Pr(u = 1)w(pu,a′)w(pu,b′) < (3/4)ε2 + ε3,

Pr(v = 0)Pr(v = 1)w(pv,a)w(pv,b) < (3/4)ε2 + ε3.

Thus,

w(e) ≥
(
1− 2ε3

(3/4)ε2 + ε3

)√
Pr(v = 1)Pr(v = 0)

Pr(u = 1)Pr(u = 0)
.

By (1),

Λ(e) ≥ 1− 2ε3
(3/4)ε2 + ε3

.

The result now follows from the proof of Lemma 26. (Clearly, the bound in
the statement of Lemma 31 is weaker than we can prove, but it is all that we will
need.)

Proof of Lemma 28. Let M∗ be the MET which is the same as M except
that every edge e which is contained in M(S) and M(S′) for two different related
sets S and S′ is contracted. Similarly, let M ′′∗ be the MET which is the same
as M ′′ except that every such edge has all of its copies contracted in M ′′∗. Clearly,
var(M,M ′′) ≤ var(M,M∗)+var(M∗,M ′′∗)+var(M ′′∗,M ′′). Lemma 31 then implies
that var(M,M∗) + var(M ′′∗,M ′′) ≤ *n2ε2, where * is the number of edges in M that
are contracted. We now wish to bound var(M∗,M ′′∗). By construction, M∗(S) and
M∗(S′) do not intersect in an edge (for any related sets S and S′). Now suppose that
M∗(S) and M∗(S′) both contain node u. We can modify M∗ without changing the
distribution in a way that avoids this overlap. To do this, we just replace node u with
two copies of u, and we connect the two copies by an edge e with e0 = e1 = 0. Note
that this change will not affect the operation of the algorithm. Thus, without loss of
generality, we can assume that for any related sets S and S′, M∗(S) and M∗(S′) do
not intersect. Thus, M∗ and M ′′∗ are identical, except on edges which go between the
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sub-METs M∗(S). Now, any edge e going between two sub-METs has the property
that for any pair of leaves, x and y connected via e, |cov(x, y)| ≤ ε2. (This follows from
the accuracy of our covariance estimates in Step 1.) Thus, by Lemma 30, changing
such an edge according to Step 5 adds at most n2ε2 to the variation distance. Thus,
var(M∗,M ′′∗) ≤ *′n2ε2, where *′ is the number of edges that are modified according
to Step 5. We conclude that var(M,M ′′) ≤ (2n)n2ε2 = ε1/2 ≤ ε/2.

3. Appendix.

3.1. Proof of Lemma 2.
Lemma 2. A class of probability distributions over the domain {0, 1}n that is

PAC-learnable under the variation distance metric is PAC-learnable under the KL-
distance measure.

Proof. Let K be a polynomial in three inputs and let A be an algorithm which
takes as input K(n, 1/ε, 1/δ) samples from a distribution D from the class of dis-
tributions and, with probability at least 1 − δ, returns a distribution D′ such that
var(D,D′) ≤ ε. Without loss of generality, we can assume that ε is sufficiently small.
For example, it will suffice to have ε ≤ 2/15.

Define algorithm A′ as follows. Let ξ = ε2/(12n). Run A with sample size
K(n, 1/ξ, 1/δ). (Note that the sample size is polynomial in n, 1/ε, and 1/δ.) Let D′
be the distribution returned by A. Let U denote the uniform distribution on {0, 1}n
and let D′′ be the distribution defined by

D′′(s) = (1− (ξ))D′(s) + ξ U(s).
With probability at least 1−δ, var(D,D′) ≤ ξ. By definition of D′′, var(D′,D′′) ≤

2ξ. Thus, with probability at least 1 − δ, var(D,D′′) < 3ξ. Note that for all s,
D′′(s) ≥ ξ 2−n. Let S be the set of all output strings s satisfying D′′(s) < D(s). S
contains all the strings which contribute positively to the KL-distance from D to D′′.
Thus,

KL(D,D′′) ≤
∑
s∈S
D(s)(logD(s)− logD′′(s))

=
∑
s∈S

(D(s)−D′′(s))(logD(s)− logD′′(s)) +
∑
s∈S
D′′(s)(logD(s)− logD′′(s)).

We have seen that var(D,D′′) ≤ 3ξ. Thus,
∑
s∈S(D(s) − D′′(s)) ≤ 3ξ. So, the first

term is at most

max
s∈S

(logD(s)− logD′′(s))
∑
s∈S

(D(s)−D′′(s))

≤ 3ξ max
s∈S

(logD(s)− logD′′(s))
≤ 3ξ max

s∈S
(− logD′′(s))

≤ 3ξ(− log(ξ 2−n))
= 3ξ(n− log(ξ)).

Furthermore, the second term is at most
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∑
s∈S
D′′(s)(logD(s)− logD′′(s))

=
∑
s∈S
D′′(s)(log(D′′(s) + hs)− logD′′(s)),

where hs = D(s)−D′′(s), which is a positive quantity for s ∈ S. By concavity of the
logarithm function, the above quantity is at most

∑
s∈S
D′′(s)hs

[ d

dx
(log(x))

]
x=D′′(s)

=
∑
s∈S

hs ≤ 3ξ.

Thus, KL(D,D′′) ≤ 3ξ(1 + n− log ξ). This quantity is at most ε for all n ≥ 1 by the
definition of ξ.

The method in the proof of Lemma 2 converts a hypothesis distribution which
is close (in variation distance) to the target distribution to a hypothesis distribution
which is close (in KL-distance) to the target distribution. However, if the original
hypothesis is given as a two-state MET, then the modified hypothesis would require
a three-state MET to realize it. We conclude the paper by explaining how to perform
a similar trick using only two-state METs. The distribution obtained is not quite the
same as the one used in the proof of Lemma 2, but it has the properties needed to
show that small KL-distance is achieved.

Let M be the target Markov evolutionary tree. We run the PAC learning algo-
rithm with accuracy parameter ξ = ε2/(12n3) to obtain MET M ′. Now we construct
a new hypothesis M ′′ by adjusting some of the parameters of M ′ as follows:

For each edge e = (u, l) of M ′ where l is a leaf, let e0 and e1 be its parameters.
If e0 < ξ then we set e0 = ξ and if e0 > 1 − ξ then set e0 = 1 − ξ. We make
the same change to e1. By the proof of Lemma 27, var(M ′,M ′′) ≤ 4nξ, since 2n
parameters have each been changed by at most ξ. Hence, with probability at least
1− δ, var(M,M ′′) ≤ (1 + 4n)ξ.

For each string s ∈ {0, 1}n, M ′′(s) ≥ ξn (where M ′′(s) denotes the probability
that M ′′ outputs s). Using a similar argument to the proof of Lemma 2,

KL(M,M ′′) ≤ (1 + 4n)ξ(1− log(ξn)) = (1 + 4n)ξ(1− n log ξ)

= (1 + 4n)
ε2

12n3
(1− n(2 log ε− 3 log n− log 12))

which as before is at most ε for all n ≥ 1.
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Abstract. We show that a number of graph-theoretic counting problems remain NP-hard,
indeed #P-complete, in very restricted classes of graphs. In particular, we prove that the problems
of counting matchings, vertex covers, independent sets, and extremal variants of these all remain
hard when restricted to planar bipartite graphs of bounded degree or regular graphs of constant
degree. We obtain corollaries about counting cliques in restricted classes of graphs and counting
satisfying assignments to restricted classes of monotone 2-CNF formulae. To achieve these results,
a new interpolation-based reduction technique which preserves properties such as constant degree is
introduced.
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polynomial interpolation
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1. Introduction. From the time that Valiant [48, 49] introduced the class #P
of counting problems and gave a complexity-theoretic explanation for the apparent
difficulty of enumeration, counting has held an important place in theoretical com-
puter science. Although many researchers have continued Valiant’s work by adding
to the list of #P-complete problems, our understanding of the complexity of counting
still pales in comparison to our understanding of decision problems.

This is unfortunate because, aside from being mathematically interesting, count-
ing is closely related to important practical problems. For instance, reliability prob-
lems are often equivalent to counting problems. Computing the probability that a
graph remains connected given a probability of failure on each edge is essentially
equivalent to counting the number of ways that the edges could fail without los-
ing connectivity. Counting problems also arise naturally in artificial intelligence re-
search [33, 36, 40]. As explained by Roth [40], various methods used in reasoning,
such as computing “degree of belief” and “Bayesian belief networks” are computation-
ally equivalent to counting the number of satisfying assignments to a propositional
formula. Thus, understanding the types of propositional formulae for which count-
ing satisfying assignments is feasible tells us the extent to which these reasoning
techniques might be useful. Graph-theoretic counting problems such as the ones we
consider also appear often in statistical physics (cf. [15, 22, 19, 29]).

Perhaps the most significant deficiency in our understanding of counting is that,
in many cases, we do not know whether hard counting problems remain hard when ad-
ditional restrictions are placed on the problem instances. A quick glance at Garey and
Johnson’s famous catalogue of NP-complete problems [13] reveals that the restricted-
case complexity of most difficult decision problems is understood in detail. This in-
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formation is useful, because a complexity-theoretic hardness result often leads us to
ask whether the instances we are interested in possess special properties which make
the problem tractable. Restricted-case complexity results tell us when such special
properties do not make a problem any easier, closing the gap between what we can
do and what we know we cannot.

While researchers have managed to prove a number of restricted-case hardness
results for counting problems, the techniques have been somewhat ad hoc, requir-
ing new ideas for each problem. One reason for this is that many of the known
reductions between counting problems employ “blow-up” techniques, which destroy
special properties of the original problem instance. This makes it difficult to deduce
additional restricted-case results from known restricted-case results. For example,
although Dagum and Luby [8] have shown that counting perfect matchings remains
#P-complete when restricted to 3-regular bipartite graphs, the standard reduction
from counting perfect matchings to counting matchings in [49] blows up the degree
of the graph and does not enable us to conclude that counting matchings remains
difficult in either regular or bounded-degree graphs.

Our results. In this paper, we introduce a new reduction technique that yields
restricted-case complexity results for many problems of interest. In particular, we
show in Theorem 4.1 that counting matchings, vertex covers, independent sets, and
variants of these structures remains difficult in planar bipartite graphs of bounded
degree and in regular graphs of constant degree. As immediate corollaries, we deduce
hardness results for counting cliques and satisfying assignments in restricted classes
of graphs and formulae. Our main reduction technique, like some of those in [49], is
based on polynomial interpolation. However, in contrast to the reductions in most
earlier papers on the complexity of counting, our reductions preserve graph properties
such as regularity and degree-boundedness. Moreover, the technique is quite general,
and it can be applied to different problems in an almost mechanical manner.

A summary of our results, together with previous work, is given in Tables 1.1 and
1.2. Precise definitions of the problems we consider can be found in sections 3 and 4
and a more detailed summary of related work is given in section 2. We note that our
results for vertex covers, independent sets, monotone 2-CNF satisfying assignments,
and cliques are essentially restatements of each other via well-known equivalences
(cf. Propositions 3.1 and 3.2), but we list them separately on Tables 1.1 and 1.2 for
clarity and comparison to previous work.

Several of our results answer open problems explicitly stated in previous work:
counting maximal matchings in unrestricted graphs [49], counting satisfying assign-
ments to monotone 2-CNF formulae in which every variable appears a bounded num-
ber of times [40], and counting satisfying assignments to planar 2-CNF formulae [17].

When counting remains hard even in restricted cases, the natural alternative is
to seek approximate counting algorithms. However, restricted-case complexity results
for approximate counting are even harder to come by than ones for exact counting.
In Proposition 4.3, we obtain such a result, as we show that counting minimum
cardinality vertex covers is NP-hard even in graphs of maximal degree 3. Perhaps
this could be used as a starting point for achieving other such results.

Techniques. Our main technique is best illustrated with an example: reducing
#Perfect Matchings to #Matchings while preserving the sparsity of the input
graph. Suppose we are given an oracle which counts all matchings in a graph, and we
want to use this oracle to count the number of perfect matchings in a graph G. Let
v1, . . . , vn be the vertices of G. For s = 0, . . . , n, consider the graph Gs obtained by
adding disjoint chains vi − vi,1 − vi,2 − · · · − vi,s to each vertex vi of G.
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Table 1.1 #P-completeness results for counting problems in restricted classes of graphs.

Problem Polynomial-time solvable Previous results This paper

#Perfect Matchings
• planar [12, 27, 43]
• ∆ ≤ 2

• k-regular bipartite, any k ≥ 3 [8]
• (n− k)-regular bipartite, any k ≥ 3 [8]

#Matchings • ∆ = 2
• bipartite [49]
• planar [19]

• bipartite, ∆ = 4
• planar bipartite, ∆ = 6
• k-regular, any k ≥ 5

#Maximal Matchings • ∆ = 2
• bipartite, ∆ = 5
• planar bipartite, ∆ = 7

#Vertex Covers
#Independent Sets

• ∆ = 2
• n− δ constant

• bipartite [38]
• planar bipartite, ∆ = 4
• k-regular, any k ≥ 51

#Min Cardinality Ver-
tex Covers
#Max Cardinality In-
dependent Sets

• ∆ = 2
• n− δ constant

• bipartite [38]
• planar [17]

• planar bipartite, ∆ = 3
• k-regular, any k ≥ 4

#Minimal Vertex Cov-
ers
#Maximal Independent
Sets

• ∆ = 2
• n− δ constant

• bipartite [38]2
• planar bipartite, ∆ = 5
• regular

#Cliques, #Maximal
Cliques
#MaxCardinality
Cliques3

• δ = n− 2
• ∆ constant
• planar
• bipartite

• unrestricted [49]2
• regular
• δ = n− 5

#Bipartite Cliques,
#Maximal Bipartite
Cliques
#Max Cardinality
Bipartite Cliques3

• δ = n− 2
• ∆ constant
• planar

• bipartite [38]2
• bipartite
• δ = n− 5

Remarks.
• ∆ (resp., δ) denotes an upper (resp., lower) bound on the maximum (resp., minimum) vertex degree.
• k is always a constant.
• n denotes the number of vertices, except when referring explicitly to bipartite graphs, in which case it refers to the number of vertices
on each side.
1 Greenhill [14] has improved this to k = 3.
2 These results are not stated explicitly in [49, 38], but follow readily from the results and reductions in those papers.
3 In general, any result for independent sets also holds for cliques in the complement graph, and conversely (cf. Proposition 3.1). An
analogous relationship holds between independent sets in bipartite graphs and bipartite cliques in the bipartite complement graph
(cf. Proposition 3.2). For brevity, we do not enumerate all the results we obtain in this way.
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Table 1.2 #P-completeness results for counting satisfying assignments in restricted classes of formulae.

Problem Polynomial-time solvable Previous results This paper

#Sat

• monotone 2-CNF, each variable
appears at most twice [40]
• monotone 2-CNF, each variable
fails to appear in a clause with only
a constant number of other variables
• acyclic monotone 2-CNF [40]
• acyclic Horn 2-CNF [40]
• Horn 2-CNF, each variable ap-
pears at most twice [40]

• planar 3-CNF [17]1

• bipartite monotone 2-CNF [38]
• Horn 2-CNF, each variable appears at most
3 times [40]
• CNF, each literal appears exactly once [5]
• monotone CNF, each variable appears at
most twice [5]

• planar bipartite monotone 2-CNF,
each variable appears at most 4
times
• monotone 2-CNF, each variable
appears exactly k times, any k ≥ 52

#Minterms

• monotone 2-CNF, each variable
appears at most twice
• monotone 2-CNF, each variable
fails to appear in a clause with only
a constant number of other variables

• bipartite monotone 2-CNF [49, 38]3

• planar bipartite monotone 2-CNF,
each variable appears at most 5
times
• monotone 2-CNF, each variable
appears the same number of times

#Min Weight Sat

• monotone 2-CNF, each variable
appears at most twice
• monotone 2-CNF, each variable
fails to appear in a clause with only
a constant number of other variable

• bipartite monotone 2-CNF [49, 38]3

• planar monotone 2-CNF [17]3

• planar bipartite monotone 2-CNF,
each variable appears at most 3
times
• monotone 2-CNF, each variable
appears exactly k times, and k ≥ 4

Remarks.
• Terms such as planar, acyclic, etc., refer to properties of the graph obtained from a CNF formula by having a vertex for each variable and
connecting two vertices if they appear in the same clause.
• k is always a constant.
1 In [17], the graph associated to a CNF formula is the bipartite graph on variables and clauses in which a clause is connected to the variables it
contains. For 2-CNF, the planarity of this graph is equivalent to the planarity of the graphs we consider.
2 Greenhill [14] has improved this to k = 3.
3 These results are not stated explicitly in [49, 38, 17], but follow readily from the results and reductions in those papers.
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We will describe the number of matchings in Gs in terms of matchings in G.
Consider any matching M in G, and let us count the number of ways M can be
extended to a matching in Gs. For each vertex vi of G which is matched by M ,
the edge (vi, vi,1) cannot be added to the matching, but we can choose an arbitrary
matching for the chain vi,1 − · · · − vi,s. For each vertex vi which is not matched by
M , we can add an arbitrary matching of the chain vi − vi,1 − · · · − vi,s to M . Thus
the number of ways to extend M to a matching in Gs is exactly x

j
sx
n−j
s+1 , where j is

the number of vertices matched by M and xt denotes the number of matchings in a
chain of t nodes. Therefore, if we let Aj denote the number matchings in G in which

exactly j nodes are matched, then Gs has exactly
∑n
j=0 Ajx

j
sx
n−j
s+1 matchings. We

can obtain these values for s = 0, . . . , n with n+ 1 oracle calls. Dividing by xns+1, we
obtain the evaluation of the polynomial f(x) =

∑n
j=0 Ajx

j at the points (xs/xs+1)
for s = 0, . . . , n. Now, we would like to use polynomial interpolation to recover the
coefficients of f , and in particular, the leading coefficient An which is the number of
perfect matchings in G. We can do this provided we can compute the values xs and
the evaluation points xs/xs+1 are distinct.

Luckily, it is not hard to get a handle on xs, the number of matchings in a chain
of s nodes. It turns out that xs is simply the sth Fibonacci number! One can use the
Fibonacci recurrence to compute the values xs, and the well-known closed form for the
Fibonacci numbers (cf. [44, section 7.3]) can be used to show that their consecutive
ratios xs/xs+1 never repeat. (We formally prove all this in Lemma 6.3.)

In contrast to the previously known reduction from #Perfect Matchings to
#Matchings [49], the above reduction only increases the maximum vertex degree
by one. It also preserves other graph properties, such as bipartiteness and planarity.
Moreover, this technique generalizes quite easily to other problems and graph prop-
erties (such as regularity). We used only a few properties of chains and matchings in
the reduction:

1. The number of matchings in the graphs Gs is related to matchings in the
original graph G via polynomial evaluation.

2. The evaluation points can be expressed in terms of the number of matchings in
a chain of length s (and the number in which one end vertex is not matched).

3. The evaluation points can be computed efficiently.
4. The evaluation points do not repeat.

We will see by inspection that analogues of the first two conditions still hold when
we replace matchings with a variety of other problems, and when chains are replaced
with other gadgets. For the last two conditions, we will use gadgets possessing a
repetitive structure, so that the evaluation points satisfy simple linear recurrence
relations. These recurrences will certainly allow the evaluation points to be computed
efficiently, but we are left with proving that they do not repeat. To this end, in
section 6 we prove the following lemma, which gives general conditions under which
(ratios of) sequences defined by 2× 2 linear recurrences do not repeat.

Lemma 6.2. Let A,B,C,D, x0, and y0 be rational numbers. Define the sequences
{xn} and {yn} recursively by xn+1 = Axn + Byn and yn+1 = Cxn +Dyn. Then the
sequence {zn = xn/yn} never repeats as long as all of the following conditions hold:

AD −BC �= 0,(1)

D2 − 2AD +A2 + 4BC �= 0,(2)

D +A �= 0,(3)

D2 +A2 + 2BC �= 0,(4)
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D2 +AD +A2 +BC �= 0,(5)

D2 −AD +A2 + 3BC �= 0,(6)

By2
0 − Cx2

0 − (A−D)x0y0 �= 0.(7)

Greenhill [14] has observed that when the coefficients A,B,C,D are all positive,
Conditions (2)–(6) are guaranteed to hold, so only the first and last must be checked.

This lemma, with the approach outlined above, gives an almost mechanical way
to find reductions that preserve properties such as sparsity and regularity. We will
refer to this method as the Fibonacci technique, in reference to its simplest incarna-
tion described above. The reductions we obtain from the Fibonacci technique have
some interesting features not present in many previous interpolation-based reductions,
such as those in [49]. First, our interpolation points are typically rapidly converging
sequences of rational numbers (e.g., the consecutive ratios of Fibonacci numbers con-
verge to the golden ratio), whereas previous methods often interpolated at distinct
integer points, which seems difficult to do without losing special properties of the
original graph. Second, we do not know how to reduce the number of oracle calls
in these reductions to a constant. This is in contrast to the reductions done in [49].
There, Valiant asserts that all the reductions can be done with a single oracle call,
because the arithmetic can be simulated by operations on the graph or formula in
question. Here that does not appear to work, because the graph operations used by
Valiant blow up the degree.

Of course, it is not enough to have reductions that preserve properties such as
sparsity and regularity; we need initial hardness results for restricted classes of graphs
from which to reduce. For this, we rely heavily on results and techniques from previous
work, such as [8, 38, 19, 49, 40]. In particular, to obtain results about planar graphs,
we use the Fibonacci technique to refine the reduction of Jerrum [19] so that properties
such as sparsity and bipartiteness are preserved, and also extend his approach to
problems involving vertex covers.

2. Related work. Our results for counting in sparse bipartite graphs first ap-
peared in the author’s undergraduate thesis [45], and the first version of this paper [47]
added our results for planar and regular graphs. Some of the related work, namely
that of Luby and Vigoda [28] and Bubley and Dyer [5, 6], was done subsequent to
[45], but independently of [47]. We describe those works, together with more recent
developments, under the heading “subsequent work.” Throughout this section, we
discuss only works that address the same counting problems as we do. The reader
is referred to [50, 34, 45, 20] for more general surveys on the complexity of counting,
and [41, 25, 31, 46, 23] for approximate counting.

Previous work. In his seminal paper [48], Valiant introduced the class #P of
counting problems and proved that counting perfect matchings in bipartite graphs
is #P-complete. In [49], he showed that a number of other counting and reliability
problems are #P-complete, including the unrestricted versions of most of the problems
we study in this paper. Some of these problems, such as #Vertex Covers, were
shown to remain hard in bipartite graphs by Provan and Ball [38], who also proved
hardness results for reliability problems. Provan [37] obtained restricted-case results
(acyclic planar graphs of maximum degree 3) for some reliability problems, but not
the problems that we investigate. Jerrum [19] showed that counting matchings in
planar graphs is #P-complete, in striking contrast to perfect matchings which can
efficiently counted in planar graphs via algorithms due to Fisher, Kasteleyn, and
Temperley [12, 27, 43]. Broder [4] proved that counting perfect matchings in bipartite
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graphs of minimum vertex degree at least n/2 is #P-complete. Dagum and Luby [8]
obtained even stronger results, showing that counting perfect matchings remains hard
even in k-regular and (n− k)-regular bipartite graphs, for any constant k ≥ 3.

From the start, the #P-completeness of counting satisfying assignments to a
propositional formula was seen to follow immediately from parsimonious versions of
Cook’s reduction [48]. Valiant [49] proved that the problem remained just as hard in
the dramatically restricted case of monotone 2-CNF, which was restricted further to
bipartite monotone 2-CNF by Provan and Ball [38]. Roth [40] showed that counting
satisfying assignments is #P-complete even in 2-CNF Horn formulae in which each
variable appears at most 3 times, along with giving a number of polynomial-time al-
gorithms to count satisfying assignments in other restricted types of 2-CNF formulae.
Hunt et al. [17] showed that counting satisfying assignments to planar 3-CNF formu-
lae is #P-complete, and gave a number of other counting problems that are hard in
planar graphs, including counting minimum cardinality vertex covers.

The general theory of approximate counting was developed in the works of Stock-
meyer [42], Karp and Luby [26], and Jerrum, Valiant, and Vazirani [24]. The first
positive result for approximate counting that relates to our work is due to Karp and
Luby [26], who gave a polynomial-time algorithm for approximately counting sat-
isfying assignments to a DNF formula. After that, most of the positive results on
approximate counting have come via the theory of “rapidly mixing Markov chains.”
In the first dramatic application of this approach to approximating a #P-complete
counting problem, Jerrum and Sinclair [21] analyzed a Markov chain proposed by
Broder [4] and thereby showed that it is possible to approximately count the number
of perfect matchings in a graph of minimum vertex degree at least n/2 in polyno-
mial time. They also gave an algorithm for approximately counting all matchings in
an arbitrary graph. Their perfect matching algorithm was simplified by Dagum and
Luby [8], who thereby obtained algorithms for approximately counting perfect match-
ings in αn-regular bipartite graphs for any constant α (and in fact a more general
class of graphs).

For the counting problems we consider, the only previous inapproximability re-
sults involved approximately counting independent sets (equivalently, vertex covers
or cliques) in general graphs [41, 51]. Specifically, Sinclair [41] used the “blow-up”
technique introduced in [24] to show that it is NP-hard to approximate the num-
ber of independent sets in a graph, even up to an approximation factor of 2n

1−ε

, for
any constant ε > 0. This result directly translates to the NP-hardness of approxi-
mately counting the number of satisfying assignments to a monotone 2-CNF formula
to within a factor of 2n

1−ε

[40] (cf. Proposition 3.1). Zuckerman [51], using techniques
from the theory of probabilistically checkable proofs (PCP) [11, 2, 1], showed that it
is hard to approximate arbitrarily iterated logarithms of the number of independent
sets in a graph unless NP has slightly superpolynomial-time randomized algorithms.

Subsequent work. Since this work was done, there has been a substantial improve-
ment in our understanding of counting independent sets (equivalently, vertex covers)
in sparse graphs. With respect to exact counting, our results left a gap between the
easy and hard cases; specifically, we showed that counting independent sets in graphs
of maximal degree 4 is #P-complete, whereas the problem is polynomial-time solvable
in graphs of maximal degree 2. For regular graphs, our hardness result only held for
degrees ≥ 5. Greenhill [14] has closed these gaps, showing that counting independent
sets in 3-regular graphs is #P-complete. We note that her hardness result uses ours
as a starting point and also makes use of (generalizations of) our Fibonacci technique.
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For approximately counting independent sets in sparse graphs, almost nothing
was known at the time of this work. There were no polynomial-time approximation
algorithms and no inapproximability results other than Sinclair’s [41] and Zucker-
man’s [51] results for unrestricted graphs and our result about counting maximum
cardinality independent sets. Luby and Vigoda [28] have remedied this situation in
both respects. First, using the Markov chain approach, they have given a polynomial-
time algorithm to approximately count independent sets in graphs of maximal degree
at most 4. (Extensions and improvements can be found in [10, 29, 39].) Second, com-
bining a blow-up technique of [41] with PCP-based inapproximability results [35, 2, 1],
they proved that for some (large) constant ∆, approximately counting independent
sets in graphs of maximal degree ∆ is NP-hard. Using a more sophisticated reduction
and results in [16], Dyer, Frieze, and Jerrum [9] reduce the degree for this inapprox-
imability result to ∆ = 25, and give evidence that the Markov chain approach is
unlikely to work for any ∆ ≥ 6. These results suggest that the PCP theorem, which
has yielded many inapproximability results for optimization problems, may also be
the right starting point for proving hardness of approximate counting.

Bubley and Dyer [6] have considered the problem of counting independent sets
of a given size s in a graph of maximal degree ∆. Our results on counting maximum
cardinality independent sets imply that the exact (resp., approximate) version of this
problem is #P-complete (resp., NP-hard) even when ∆ = 3, if there is no restriction
on s. They show that in fact the approximate counting problem can be solved in
polynomial time for s < n/2(∆+1)+1, whereas the exact counting problem remains
#P-complete under this restriction.

In another work, Bubley and Dyer [5] have proven some new results about count-
ing satisfying assignments in restricted classes of formulae. Instead of looking at
2-CNF formulae (as we do, and as happens when translating results about indepen-
dent sets), they do not restrict the number of variables per clause, but only allow each
variable to appear at most twice. They have shown that it is possible to efficiently
approximate the number of satisfying assignments to such formulae. On the other
hand, they show that exactly counting satisfying assignments remains #P-complete
in CNF formula in which each literal appears exactly once, and monotone CNF for-
mulae in which each variable appears at most twice. They also relate these versions
of #Sat to counting “sink-free orientations” in directed graphs.

3. Preliminaries. Nearly all of the counting problems we will be considering
are in Valiant’s class #P, and the remainder are closely related to #P. Below, we
informally review some basic definitions. For a more detailed discussion of #P, the
reader is referred to any of [50, 45, 20, 34].

Following [24], #P can be defined in terms of p-relations. Let Σ be a finite
alphabet. A relation R ⊂ Σ∗ × Σ∗ is said to be a p-relation iff it is polynomially-
balanced, i.e., there exists a polynomial p such that 〈x, y〉 ∈ R ⇒ |y| ≤ p(|x|); and
it can be “checked quickly,” i.e., the language L = {〈x, y〉 ∈ R} can be decided in
polynomial time. The counting problem #R associated with R is the following: Given
x ∈ Σ∗, output |R(x)| = |{y ∈ Σ∗ : 〈x, y〉 ∈ R}|. #P is the class of all such counting
problems.

In the above definition, x should be thought of as an instance of a problem, such
as a boolean formula F , and R(x) as the set of solutions associated with x, such as the
satisfying assignments to F . It is easy to see that NP consists exactly of problems of
the following form: Given x, decide whether R(x) is nonempty. Thus #P is the set
of counting problems naturally associated with NP languages.
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In contrast to NP, it turns out that standard Karp reductions (i.e., polynomial-
time many-one reductions) are not sufficient to describe the relative difficulty of count-
ing problems. It is easy to construct counting problems which are obviously equivalent
in difficulty, but for which there can be no one-to-one correspondence between solution
sets. Hence, following [48], we consider a problem Π to be as hard as a problem Γ iff
Γ can be solved by a polynomial-time algorithm with an oracle for Π, and we denote
this by Γ ∝ Π. Such a reduction is known as a Cook reduction (or polynomial-time
Turing reduction), and this is the only form of reduction we will refer to in this paper.
A problem Π is said to be #P-hard iff all problems in #P reduce to it; if, in addition,
Π ∈ #P it is called #P-complete. Last, a problem is said to be #P-easy if it can be
reduced to some problem in #P. Occasionally, we will be able to reduce one problem
to another via a polynomial-time mapping of problem instances that preserves the
number of solutions. Such a reduction is called a parsimonious reduction and these
are important because they preserve inapproximability.

Having defined all the complexity-theoretic notions we will need, we proceed to
define the combinatorial objects we will be studying. Let G = (V,E) be an undirected
graph. The (maximum) degree of G is the maximum number of edges incident to any
vertex, and the minimum degree of G is defined similarly. A vertex cover in G is
a subset S of V such that every edge in E has at least one endpoint in S. An
independent set in G is a subset S of V such that no two vertices in S are connected
by an edge in E. A clique in G is a subset S of V such that every two vertices in
S are connected by an edge in E. It is well known that cliques, vertex covers, and
independent sets are intimately related objects. Their relationship is formalized by
the following proposition.

Proposition 3.1. Let G = (V,E) be an undirected graph and let G = (V,E) be
its (edge-)complement. Let F be the monotone 2-CNF formula on variables V given
by F =

∧
(u,v)∈E(u∨ v). For S ⊂ V , let χS :V →{0, 1} be the assignment which maps

v ∈ V to 1 iff v ∈ S. Then the correspondence S ↔ (V − S) ↔ (V − S) ↔ χS
establishes bijections between the vertex covers in G, the independent sets in G, the
cliques in G, and the satisfying assignments of F .

Proof. The proof is by definition.
We will also be examining the complexity of these problems in bipartite graphs.

However, the study of cliques in bipartite graphs is not very interesting, as the only
cliques are edges. So, for a bipartite graph G = (V,E), we will instead look at bipartite
cliques, which are subsets S ⊂ V of vertices which can be partitioned S = S1 ∪ S2 so
that S1 × S2 ⊂ E. To obtain an analogue of Proposition 3.1, we say that bipartite
graphs G = (V,E) and H = (V, F ) are bipartite complements if V can be partitioned
V = V1 ∪ V2 such that E ⊂ V1 × V2 and F = V1 × V2 \ E. Note that a bipartite
complement of a graph can be found in polynomial time, and is unique if the graph
is connected. Proposition 3.1 has the following bipartite analogue.

Proposition 3.2. Let bipartite graphs G = (V,E) and H = (V, F ) be bipartite
complements. Then S ⊂ V is an independent set in G iff it is a bipartite clique in H.

Proof. The proof is by definition.
The above propositions will enable us to immediately deduce hardness results for

all of the above problems given a hardness result for one of them. Therefore, we will
concentrate primarily on the vertex cover problem.

We will also study extremal variants of all of the above problems. A vertex cover
S is said to be minimal iff no proper subset of S is a vertex cover. It is said to be
of minimum cardinality iff there is no vertex cover with fewer vertices. Similarly, we
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speak of maximal and maximum cardinality independent sets or cliques.
By Proposition 3.1, it is easy to see that minimal vertex covers correspond to

minterms of a monotone 2-CNF formula — that is, satisfying assignments for which
changing any variable from true to false would no longer satisfy the formula. It is
clear that the smallest DNF form for a monotone formula F is simply the disjunction
of all minterms, writing an individual minterm M as the conjunction of the variables
in M . Hence, restricted-case hardness results for counting minimal vertex covers
immediately imply that determining the size of the minimal DNF form is hard even
for restricted classes of CNF formulae.

It is clear that if the decision problem associated with a p-relation isNP-complete,
then the associated counting problem is also NP-hard. Thus, complexity of count-
ing results are only interesting when the related decision problem is easy. The
first nontrivial result of this form, due to Valiant, involved another type of graph-
theoretic structure, known as a perfect matching. A matching in an undirected graph
G = (V,E) is a set M ⊂ E of edges, no two of which share an endpoint. A perfect
matching is a matching M in which every vertex in V is the endpoint of an edge in
M . Valiant’s theorem [48] states that counting perfect matchings in bipartite graphs
is #P-complete. Matchings can be related to the other structures we mentioned via
the following construction.

Let G = (V,E) be an undirected graph. The line graph of G is the undirected
graph L(G) = (E,H), where (e1, e2) ∈ H iff e1 and e2 share an endpoint in G.

Lemma 3.3. Let G = (V,E) be an undirected graph. Then M ↔ E −M estab-
lishes a bijective correspondence between matchings in G and vertex covers in the line
graph of G.

Proof. Notice that M ⊂ E is a matching in G iff M is an independent set in
L(G). The relationship with vertex covers follows from Proposition 3.1.

One of the restricted classes of graphs that we will examine is the class of planar
graphs. A graph is said to be planar iff there exists an embedding of the graph in the
plane (where the vertices are points and the edges are curves connecting the points)
in which no two edges intersect. The bijection of Proposition 3.1 suggests how to
define planarity for CNF formulae. If F is a formula in conjunctive normal form, we
define G(F ) to be the graph whose vertices are the variables of F , where two vertices
are connected if they lie in a common clause. We call F planar iff G(F ) is planar.

There are several reasons for studying the problems described above. One is that
manyNP-completeness results have come via reduction from decision versions of these
problems, so it reasonable to guess that many restricted-case #P-completeness results
could come via reduction from restricted versions of these counting problems. An-
other reason is that these problems are closely related to important problems in other
areas. As discussed in the introduction, several problems in artificial intelligence are
equivalent to counting satisfying assignments to a propositional formula [33, 36, 40].
In addition, the counting problems we consider arise naturally in statistical physics;
specifically, counting matchings amounts to counting arrangements of monomer-dimer
systems, and counting independent sets is tantamount to computing the partition
function in the hard-core model of a gas (cf. [15, 19, 29]).

For their simplicity, their relationships to other important problems, and their
potential to serve as starting points for further results, the problems of counting
matchings, vertex covers, and independent sets are important ones to consider. So
motivated, we now proceed to classify the cases in which these problems are and are
not tractable.
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4. Formal statement of results. Before stating our negative results, we ex-
plain the entries in the “Polynomial-time solvable” columns of Tables 1.1 and 1.2 for
which no reference is given. The tractability of problems such as counting matchings,
vertex covers, and their variants in graphs of maximal degree at most 2 follows from
the simple structure of these graphs: The connected components of such graphs are
cycles and chains, and objects such as matchings and vertex covers multiply across
connected components, so it suffices to count them in cycles and chains. It is not hard
to write down closed forms or recurrences which can be used to count these structures
in chains and cycles. This is done explicitly in [45]. The polynomial-time solvability
of counting cliques in graphs of maximal degree at most ∆ follows from the fact that
the largest clique in such a graph is of size at most ∆. Thus, one can exhaustively
check the ≤ n∆ possibilities in polynomial time. Similarly, a planar graph cannot
contain any clique of size ≥ 5, nor any bipartite clique involving at least 3 vertices
on both sides of the partition, as these structures are nonplanar (cf. [44, section 1.4]).
Finally, as noted earlier, the only cliques in a bipartite graph are singletons and pairs.
All the other entries follow from the above observations via Propositions 3.1 and 3.2.

We now state our negative results. Below, the counting problems are named as
follows: the beginning of the name indicates any restrictions on the input graph or
formula, and the end of the name contains the structures to be counted. A prefix of
k∆ indicates that the maximum degree of the graph is at most k. An example of a
problem denoted this way is the following.

#7∆-Planar Bipartite Maximal Matchings.
Input: A planar bipartite graph G of degree ≤ 7.
Output: The number of maximal matchings in G.
Theorem 4.1. The following problems are #P-complete (except for Problem 8,

which is #P-hard1):
1. #4∆-Bipartite Matchings,
2. #6∆-Planar Bipartite Matchings,
3. #k-Regular Matchings, any fixed k ≥ 5,
4. #5∆-Bipartite Maximal Matchings,
5. #7∆-Planar Bipartite Maximal Matchings,
6. #Planar Bipartite Vertex Covers,
7. #3∆-Planar Bipartite Minimum Cardinality Vertex Covers,
8. #k-Regular Minimum Cardinality Vertex Covers, any fixed k ≥ 4,
9. #4∆-Planar Bipartite Vertex Covers,
10. #k-Regular Vertex Covers, any fixed k ≥ 5,
11. #5∆-Planar Bipartite Minimal Vertex Covers,
12. #Regular Minimal Vertex Covers.
In the following corollary, we use the same naming conventions as above, with

some additional ones. When Bipartite Cliques appears, it refers to counting bi-
partite cliques in bipartite graphs. A prefix of kδ means that the minimum vertex
degree is at least k. n refers to the number of vertices in the graph, except when the
input is restricted to be bipartite, in which case n is the number of vertices on each
side of the bipartition.

1Problem 8 is not likely to be in #P, because testing whether a vertex cover is of minimum
cardinality is NP-hard [13, Theorem 3.3]. But we will reduce it to a #P problem, proving that it is
#P-easy. The failure of #P to be closed under reductions and even simpler operations is discussed
in [32].

In contrast, Problem 7 is in #P because in bipartite graphs, the size of the minimum cardinality
vertex cover equals the size of the maximum cardinality matching. The latter quantity can be found
using any of the standard maximum cardinality matching algorithms. See [34, Problem 9.5.25].
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For problems involving satisfying assignments, 2Sat denotes the problem of
counting the satisfying assignments of the input formula F , Minterms the prob-
lem of counting the minterms of F (i.e., the number of clauses in the smallest DNF
formula equivalent to F ), and Min Weight 2Sat the problem of counting satisfying
assignments with the fewest variables set to true. A prefix of k∆ (resp., k-Regular)
indicates that each variable appears at most (resp., exactly) k times. A bipartite
2-CNF formula is one in which the variables can be partitioned into two sets such
that no clause contains two variables from the same set. For example, we have the
following.

#3∆-Planar Bipartite Monotone Min Weight 2Sat.
Input: A planar monotone formula F = (c1,1∨c1,2)∧· · ·∧(cr,1∨cr,2) on variables

X ∪ Y , where X ∩ Y = ∅; ci,1 ∈ X, ci,2 ∈ Y for each i; and each variable appears at
most 3 times.

Output: The number of satisfying assignments to F with the fewest variables set
to “true.”

Corollary 4.2. The following problems are #P-complete (except for Prob-
lems 2, 9, and 17, which are #P-hard):

1. #3∆-Planar Bipartite Maximum Cardinality Independent Sets,
2. #k-Regular Maximum Cardinality Independent Sets, any fixed k ≥ 4,
3. #4∆-Planar Bipartite Independent Sets,
4. #k-Regular Independent Sets, any fixed k ≥ 5,
5. #5∆-Planar Bipartite Maximal Independent Sets,
6. #Regular Maximal Independent Sets,
7. #(n− 3)δ-Maximum Cardinality Cliques,
8. #(n− 3)δ-Maximum Cardinality Bipartite Cliques,
9. #(n− k)-Regular Maximum Cardinality Cliques, any fixed k ≥ 4,
10. #(n− 4)δ-Cliques,
11. #(n− 4)δ-Bipartite Cliques,
12. #(n− k)-Regular Cliques, any fixed k ≥ 5,
13. #(n− 5)δ-Maximal Cliques,
14. #(n− 5)δ-Maximal Bipartite Cliques,
15. #Regular Maximal Cliques,
16. #3∆-Planar Bipartite Monotone Min Weight 2Sat,
17. #k-Regular Monotone Min Weight 2Sat, any fixed k ≥ 5,
18. #4∆-Planar Bipartite Monotone 2Sat,
19. #k-Regular Monotone 2Sat, any fixed k ≥ 5,
20. #5∆-Planar Bipartite Minterms,
21. #Regular Minterms.
The following proposition contains our inapproximability result. The prefix of

f-approx indicates the problem of solving the given counting problem within a mul-
tiplicative approximation factor of f . Though we have adopted Cook reductions as
our notion of reducibility, the following results are actually proved via Karp reductions
to “gap promise problems” (cf. [3]).

Proposition 4.3. The following problems are NP-hard for every ε > 0:
1. 2n

1−ε

-Approx #3∆-Minimum Cardinality Vertex Covers,
2. 2n

1−ε

-Approx #3∆-Maximum Cardinality Independent Sets,
3. 2n

1−ε

-Approx #(n− 3)δ-Maximum Cardinality Cliques,
4. 2n

1−ε

-Approx #3∆-Min Weight Monotone 2Sat.
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5. The reductions. We state three facts about polynomial interpolation here
that we will use repeatedly in our reductions. Let K be a finite extension of Q. For
any z ∈ K, let ‖z‖ denote the number of bits needed to represent z. (If K is a degree d
extension, elements ofK are represented by polynomials of degree≤ d−1 with rational
coefficients, and arithmetic is done modulo some irreducible polynomial defining K.)
For a polynomial f in several variables over K, let ‖f‖ be the number of bits needed
to represent f , which is the sum of ‖a‖ for the coefficients a of f . We use a dense
representation of polynomials, which means that if some monomial xd11 · xd22 · · ·xdnn
has a nonzero coefficient in f , then the coefficients of all smaller monomials (i.e., any
xe11 · · ·xenn such that ei ≤ di for all i) must be included when computing ‖f‖. (Zero
coefficients count as one bit). For a rational function q = f/g, let ‖q‖ = ‖f‖+ ‖g‖.

Fact 5.1. Let F = K(y1, y2, . . . , yk) be the field of rational functions over K in k

variables for some constant k. Let f(x) =
∑d
i=0 aix

i be a polynomial with coefficients
in F . If (α0, β0), . . . , (αd, βd) such that f(αi) = βi are known for distinct αi ∈ F ,
then the coefficients of f can be recovered in time polynomial in maxi ‖αi‖, maxi ‖βi‖,
and d.

Fact 5.2. Let f(x, y) =
∑
i+j≤n aijx

iyj be a polynomial in two variables with
coefficients in K. If for each of n + 1 distinct xi ∈ K, n + 1 distinct yij ∈ K along
with the values zij = f(xi, yij) are known, then the coefficients of f can be recovered
in time polynomial in maxij ‖aij‖,maxi ‖xi‖,maxij ‖yij‖, and maxij ‖zij‖.

Fact 5.3. Let f(x) =
∑d
i=0 aix

i be a polynomial with nonnegative integer co-
efficients. If (α, β) is known, where f(α) = β and α is a rational number satisfying
α ≥ (ai + 1) for each i, then the coefficients of f can be recovered in time polynomial
in ‖α‖, ‖β‖, and d.

Proof of Fact 5.1. Here we just use the Lagrange interpolation formula:

f(x) =

d∑
i=0

βi

(
(x− α1) · · · (x− αi−1)(x− αi+1) · · · (x− αd)
(αi − α1) · · · (αi − αi−1)(αi − αi+1) · · · (αi − αd)

)
.

This is a polynomial which agrees with f at d + 1 distinct points, so it must be
the same polynomial. By multiplying out and collecting terms, we can obtain the
coefficients of f all at once, in polynomial time.

Proof of Fact 5.2. Define, for each 0 ≤ r ≤ n, gr(y) =
∑
i,j aijx

i
ry
j . For each r,

we know the evaluation of gr(y) at the n + 1 points yr0, . . . , yrn, so we can recover
the polynomials gr(y) by Fact 5.1. These are the evaluations of f(x, y), considered as
a polynomial in x with coefficients in K(y), at the points x0, . . . , xn. By Fact 5.1, we
can recover the coefficients of f .

Proof of Fact 5.3. All we need to do is write β as a number in base α and the digits
are our coefficients. In more detail, note that

∑d−1
i=0 aiα

i ≤∑d−1
i=0 (α−1)αi = αd−1 <

αd, so ad = �β/αd�, which we can obtain quickly by just integer multiplication and
division. Now consider f1(x) = f(x) − adx

d. We can repeat this process for f1,
obtaining the coefficients in sequence.

Proof of Theorem 4.1.
1. #4∆-Bipartite Matchings. The reduction given in the introduction re-

duces #Perfect Matchings to #Matchings while only increasing the degree
by 1 and preserving bipartiteness. Dagum and Luby [8] have proven the former to
be #P-complete in 3-regular bipartite graphs; our result follows. (The facts about
matchings in chains and Fibonacci sequences needed for the reduction are given by
Lemma 6.3.)
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2. #6∆-Planar Bipartite Matchings. The starting point for this proof is
the work of Jerrum [19] which shows that counting matchings in planar graphs is
#P-complete. As is, his reduction produces graphs that are neither bipartite nor of
bounded degree. We show how an additional step added in the middle of his reduction
can transform the graphs produced into bipartite ones. We then show how a reduction
like the one in Reduction 1 can replace the final step of his reduction so that the degree
does not blow up.

In the course of his reduction, Jerrum considers a weighted form of#Matchings:
Let G = (V,E) be a graph in which each vertex v ∈ V is assigned a weight w(v) ∈ C.
If M ⊂ E is a matching in G, then we let C(M) be the set of vertices in V which
are covered by M , i.e., are endpoints of edges in M . Then the weight of M is
w(M) =

∏
v/∈C(M) w(v), i.e., the product of the weights of all vertices not covered

by M ; for a perfect matching M , w(M) = 1. The weighted matching sum W (G) of
G is

∑
M w(M), where this sum is taken over all matchings in G. Thus if all vertices

have weight 1, W (G) is simply the number of matchings in G. We say that G has k
weights if the number of distinct values other than 1 occurring as weights in G is at
most k. The #kλ-Weighted Matchings problem is the following.

#kλ-Weighted Matchings.
Input: A vertex-weighted graph G with k weights.
Output: W (G).
As usual, we also consider variants of this problem for bipartite, planar, and

bounded degree graphs. The prefix d∆ is used to restrict to graphs of degree at most
d. Our reduction will proceed in three stages. The first will show that computing
W (G) is hard for planar graphs of bounded degree. The second will transform any
graph into a bipartite graph without changing W (G), losing planarity, or increasing
the degree. The third will remove weights one by one without losing any of the graph
properties, showing that counting matchings in bipartite planar graphs of bounded
degree is hard.

2a. #3-Regular Perfect Matchings∝#5∆-2λ-Planar Weighted Match-
ings. Jerrum [19] gives a reduction from #Perfect Matchings to #2λ-Planar
Weighted Matchings. We observe that his reduction produces a graph of degree
5 when applied to a graph of degree 3.

2b. #5∆-2λ-Planar Weighted Matchings ∝ #5∆-4λ-Planar Bipar-
tite Weighted Matchings. Consider the weighted graph H with vertex set
{v1, v2, v3, v4}, edges (v1, v2), (v1, v3), (v2, v4), (v3, v4), and vertex weights w(v1) =
w(v4) = 1, w(v2) = ζ, w(v3) = ζ2, where ζ = e2πi/3 is a primitive cube root of unity.
(See Figure 5.1.) Straightforward calculations show the following:

1. W (H) =W (H \ {v1, v4}) = 1,
2. W (H \ {v1}) =W (H \ {v4}) = 0.

Above, the notation H \S denotes the graph formed by removing from H all vertices
in S and any edges incident to them.

Now let G be a planar weighted graph with 2 weights and let e = (u, v) be any
edge in G. Consider the graph G′ obtained from G by removing edge e; adding a
disjoint copy of H; and adding edges e1 = (u, v1) and e2 = (v, v4). (See Figure 5.2.)
We will show that W (G′) = W (G). Let M be any matching in G′ that does not
contain any of the edges of H. Then observation 2 above tells us that if M contains
exactly one of e1 and e2, the net contribution to W (G

′) of all matchings formed
by adding H-edges to M will be zero. If M contains neither e1 nor e2, then, since
w(H) = 1, the net contribution of all matchings formed by adding H-edges to M will
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Fig. 5.1. The graph H in Reduction 2b.
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Fig. 5.2. The transformation of Reduction 2b.

be
∏
w(x) where the product is taken over all vertices x /∈ C(M) ∪ {v1, v2, v3, v4}.

This is the same as the G-weight of M . Similarly, since w(H \ {v1, v4}) = 1, if M
contains both e1 and e2 the net contribution will be the same as the G-weight of
(M −{e1, e2})∪{e}. Thus, the net weight of all matchings in G′ accounts exactly for
the net weight of all matchings in G and W (G′) = W (G). Therefore, if we do this
procedure to all edges in G, we will end up with a planar bipartite graph Ĝ with 4
weights (ζ and ζ2 are the only new weights) such that W (Ĝ) =W (G). It is clear that
this reduction can be carried out in polynomial time.

In the next part of the reduction, we remove weights one by one, only increasing
the degree by 1. We use the prefix kµ to restrict to graphs with k weights in which
all vertices with weight 1 have degree at most 6 and all other vertices have degree
at most 5. In particular, an instance of #5∆-4λ-Planar Bipartite Weighted
Matchings satisfies this condition for k = 4.

2c. #kµ-Planar Bipartite Weighted Matchings ∝ #(k − 1)µ-Planar
Bipartite Weighted Matchings. Jerrum [19] gives a reduction which removes
weights one by one, but his reduction blows up the degree. To replace his reduction,
we use the Fibonacci technique.

Let G be a bipartite planar graph with k weights, in which all vertices with weight
1 have degree at most 6 and all other vertices have degree at most 5. Let α �= 1 be a
vertex weight that occurs in G and let v1, . . . , vm be the vertices with weight α. For
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x0 y0 x1 y1 x2 y2

Fig. 5.3. The graph L32 in Reduction 3.

each s = 0, . . . ,m, construct a graph Gs as follows: Add nodes vi,j to G for 1 ≤ i ≤ m.
Add edges to create disjoint chains vi − vi,1 − vi,2 − · · · − vi,s of s+ 1 nodes. Assign
each of the new vertices weight 1, assign v1, . . . , vm weight 1, and keep all other vertex
weights the same as in G. Notice that Gs is a valid instance of #(k − 1)µ-Planar
Bipartite Weighted Matchings.

Now, for every matching M in G, we can obtain matchings in Gs by adding
some of the new edges to M . Suppose M covers exactly i of v1, . . . , vm. Then the
net contribution to W (Gs) of the matchings formed by adding new edges to M is
xis(xs+1/α)

m−iwG(M), where xt is the number of matchings in a chain of t vertices.
Let Ai =

∑
wG(M), where the sum is taken over all matchings in G which match

exactly i of v1, . . . , vm. Then W (Gs) = (xs+1/α)
m
∑m
i=0 Ai(αxs/xs+1)

i. As in the
original application of the Fibonacci technique, we can recover the coefficients Ai
with m+1 oracle calls and polynomial interpolation, using Lemma 6.3 to verify that
the evaluation points are distinct. Then it is easy to compute W (G) =

∑m
i=0 Ai, as

desired.
It may seem odd that the graphs Gs constructed in this reduction do not depend

on the value of α. This is because this reduction works even if α is regarded as an
indeterminate—W (G) is then a polynomial in α, and we are essentially recovering this
polynomial. Finally, note that #0µ-Planar Bipartite Weighted Matchings is
exactly #6∆-Planar Bipartite Matchings.

3. #k-Regular Matchings, any fixed k ≥ 5. We reduce from #(k − 2)-
Regular Bipartite Perfect Matchings, which was shown to be #P-complete
by Dagum and Luby [8]. Let H be the complete graph on k+1 vertices with one edge
removed. Consider the graph Lks formed by taking s+1 disjoint copies of H, labelled
H0, . . . , Hs, and attaching yi to xi+1 for each 0 ≤ i < s, where xi and yi are the two
vertices in Hi of degree k − 1. (See Figure 5.3.)

Now let G be any (k − 2)-regular graph on n nodes u1, u2, . . . , un. For any
0 ≤ s ≤ n, consider the disjoint union of G with n copies of Lks . Let the vertices of
degree k−1 in the ith copy of Lks be labelled vi and wi. We can form a k-regular graph
Gs by connecting ui to both vi and wi for each i. Let Ai be the number of matchings
in G in which exactly i vertices are unmatched. Then the number of matchings in Gs
is
∑n
i=0 Ai(xs + 4ys + 3zs)

i(xs + 2ys + zs)
n−i, where xs is the number of matchings

in Lks in which v and w—the two vertices of degree k − 1—are both matched, ys is
the number in which v but not w is matched, and zs is the number in which neither v
nor w is matched. By Lemma 6.4, we can compute xs, ys, and zs in polynomial time
and the sequence (xs + 4ys + 3zs)/(xs + 2ys + zs) = 1 + 2(ys + zs)/(xs + 2ys + zs)
never repeats. So, with n + 1 oracle calls and interpolation, we can recover A0, the
number of perfect matchings in G.

4. #4∆-Bipartite Matchings∝#5∆-Bipartite Maximal Matchings. The
reduction we use is from [38], though they use it for vertex cover problems. Given a
bipartite undirected graph G = (V,E) of degree ≤ 4, construct G′ = (V ′, E′), where
V ′ = V ∪ {v′ : v ∈ V } and E′ = E ∪ {(v, v′) : v ∈ V }. Note that every matching W
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in G yields a unique maximal matching W ′ =W ∪ {(v, v′) : v not matched by W} in
G′ and every maximal matching of G′ can be obtained in this fashion.

5. #6∆-Planar Bipartite Matchings∝#7∆-Planar Bipartite Maximal
Matchings. Notice that Reduction 4 preserves planarity, so it applies here, too.

6. #Planar Bipartite Vertex Covers. This result will come via a sequence
of reductions beginning with #Vertex Covers, whose #P-completeness follows
immediately from Lemma 3.3 and the #P-completeness of #Matchings. In the
spirit of Reduction 2, the intermediate problems involve a generalization of vertex
covers which we call edge-weighted sets. Suppose G is a graph in which each edge
e = (u, v) is labelled with a triple de/se/ne and S is a set of vertices in G. Then
define the weight of S with respect to e as

we(S) =





de if |{u, v} ∩ S| = 2,
se if |{u, v} ∩ S| = 1,
ne if |{u, v} ∩ S| = ∅,

so that de, se, and ne correspond to weights if e is “doubly covered,” “singly cov-
ered,” or “not covered” by S, respectively. The weight of S with respect to G is then
defined as wG(S) =

∏
e we(S). We now define the edge-weighted sum EW(G) to be∑

S⊂V wG(S). Notice that if all the edges in G are labelled 1/1/0, then EW(G) is
simply the number of vertex covers in G, so we have indeed generalized #Vertex
Covers. With this in mind, we call an edge of such a labelled graph normal if its
label is 1/1/0. For technical reasons, we will restrict to graphs with only a constant
number of distinct labels. We will say a graph labelled as above has k labels if the
number of distinct labels other than 1/1/0 is at most k.

Our first aim in reducing #Vertex Covers to planar graphs is to simplify the
types of graphs we deal with. We call an embedding of a labelled graph G in the plane
simple iff only normal edges are involved in crossings and each edge is in at most one
crossing. Consider the following computational problem:

kλ-Simple Edge-Weighted Sum.
Input: A labelled graph G with k labels and a simple embedding of G in the

plane.
Output: EW(G).
We now reduce #Vertex Covers to this problem.
6a. #Vertex Covers ∝ #1λ-Simple Edge-Weighted Sum. Let m be the

number of edges in G = (V,E). For any s ≥ 2m and any t ≥ 0 consider the graph
Gs,t = (Vs,t, Es,t) formed by removing each edge e = (u, v) of G and replacing it with
the s+ 2 vertices ue, ve, and we1, . . . , w

e
s. Also add the edges (u, u

e), (v, ve), (u,we1),
(v, wes), and (w

e
i , w

e
i+1) for i = 1, . . . , s − 1. Furthermore, label the edges (u, ue)

and (v, ve) with the label (tFs−1/Fs)/0/1, where Fs is the sth Fibonacci number, as
defined in Lemma 6.3. Label all other edges 1/1/0. Notice that it is easy to obtain a
simple embedding of Gs,t from any embedding of G in the plane, as we have broken
each edge of G into ≥ 2m pieces and the edges of the form (u, ue) clearly make no
difference.

For each set of vertices S in G, let us consider the (weighted) number of ways
that we may extend S to Gs,t, i.e., let us compute

∑
T :T∩V=S

wGs,t(T ).

If an edge e = (u, v) of G is doubly covered by S, then there are xs(tFs−1/Fs)
2

(weighted) ways of adding vertices ue, ve, and we1, . . . , w
e
s to S, where xk is the
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z1/ 0/ -1
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0/ 1/ 0

Fig. 5.4. The AND gadget in Reduction 6b.

number of vertex covers in a chain of k vertices. If e is singly covered by S, then there
are xs−1tFs−1/Fs ways to add these vertices. Finally, if e is not covered by S, there
are xs−2 ways. Thus, if Aij is the number of subsets of V which doubly cover i edges
in G and which singly cover j edges, then

EW(Gs,t) =
∑
i,j

Aij(xs(tFs−1/Fs)
2)i(xs−1tFs−1/Fs)

j(xs−2)
m−i−j .

Writing rk for Fk/Fk−1 and using the fact that xk = Fk+1 (from Lemma 6.3), we get

EW(Gs,t) =
∑
i,j

Aij((Fs+1/Fs−1)(t/rs)
2)itjFms−1.

Using the relation rs+1 = 1+1/rs, we get Fs+1/Fs−1 = rs+1rs = rs+1. Substituting
this above, we get

EW(Gs,t) = Fms−1

∑
i,j

Aij(t
2(r−1

s + r−2
s ))

itj .

Lemma 6.3 tells us that the sequence {rs} does not repeat. Since x−1 + x−2 �=
y−1+y−2 for any two distinct positive real numbers x and y, the sequence {r−1

s +r−2
s }

also does not repeat. Thus, by Fact 5.2, evaluating EW(Gs,t) for each t = 0, . . . ,m
and for each s = 2m, . . . , 3m+1 enables us to recover the coefficients Aij .

∑
i+j=mAij

is the number of vertex covers of G.
We have reduced the problem to dealing with simple embeddings of graphs; the

next step is to the problem of computing EW for planar graphs, as defined below:
kλ-Planar Edge-Weighted Sum.
Input: A labelled graph G with k labels and a planar embedding of G.
Output: EW(G).
The aim of the next reduction will be to replace crossings with planar gadgets

without changing the value of EW (G).
6b. #1λ-Simple Edge-Weighted Sum ∝ #5λ-Planar Edge-Weighted

Sum. First we make planar gadgets to compute elementary boolean formulae. We
will write sets of vertices as functions from the set of all vertices to {0, 1}, where
S(v) = 1 indicates that v ∈ S and S(v) = 0 indicates that v /∈ S. Consider the AND
gadget in Figure 5.4.

It is easy to see that for any a, b, c ∈ {0, 1},
∑

S:S(x)=a,S(y)=b,S(z)=c

wAND(S) =

{
1 if c = a ∧ b,
0 otherwise.
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Fig. 5.5. The OR gadget in Reduction 6b.
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Fig. 5.6. Replacing crossings in Reduction 6b.

Thus, this gadget “forces” S(z) to be S(x) ∧ S(y). Similarly, the OR gadget of
Figure 5.5 forces S(z) to be S(x) ∨ S(y). Observe that an edge labelled 1/0/1 forces
its endpoints to take on the same value and an edge labelled 1/0/0 forces both its
endpoints to take on the value 1. The AND and OR gadgets constructed above along
with these observations, enable us to form a complex gadget to replace crossings:
Take any simple embedding of G = (V,E) in the plane. Consider any two (normal)
edges e1 = (a, c) and e2 = (b, d) which cross, where a, b, c, d is the order of the
endpoints going clockwise around the crossing starting with a. Let G′ be the graph
with these edges removed. For any S ⊂ V , wG′(S) = wG(S) if S contains at least
one endpoint of both e1 and e2 and wG(S) = 0 otherwise. The key observation is
that S contains at least one endpoint of both e1 and e2 iff S contains some pair
of vertices in {a, b, c, d} which are adjacent, when these vertices are considered in
clockwise order. Thus, if we replace the crossing with a gadget which simply forces
(S(a)∧S(b))∨(S(b)∧S(c))∨(S(c)∧S(d))∨(S(d)∧S(a)) = 1, then the edge-weighted
sum does not change. This can be done with the planar gadget of Figure 5.6.

If we replace all crossings of G in this manner, we obtain a planar labelled graph
G′ such that EW(G) = EW(G′). The gadgets only use the labels 1/0/0, 0/1/0,
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a/ b/ c

s

t

Fig. 5.7. The transformation of Reduction 6c.

1/0/−1, and 1/0/1 in addition to the labels already present in G, so G′ uses 5 labels.
Finally, notice that the transformation can be performed in polynomial time.

Now we show that we can reduce the number of labels one at a time until there
are none, showing that planar vertex cover is #P-complete.

6c. #kλ-Planar Edge-Weighted Sum∝#(k−1)λ-Planar Edge-Weighted
Sum. Let G = (V,E) be any planar graph. Pick any label λ = (a, b, c) used in G,
let L be the set of edges with label λ and let 8 = |L|. Let Gs,t be the graph formed
by replacing all edges e = (u, v) with label λ in the following fashion: Remove e, add
vertices

Ve = {we1, . . . , wes, ue1, . . . , uet , ve1, . . . , vet },

and add (normal) edges (u,wei ), (v, w
e
i ), (u, u

e
j), (u

e
j , v

e
j ), (v

e
j , v) for each 0 ≤ i ≤ s, 0 ≤

j ≤ t. See Figure 5.7.
Let S be a subset of V . For each edge e ∈ L doubly covered by S, there are 2s3t

(weighted) ways to extend S using vertices of Ve. For each edge e ∈ L singly covered,
there are 2t ways. For each e ∈ L not covered, there is only 1 way. Thus, if Cij is the
collection of subsets of V which doubly cover i edges of L and singly cover j edges of
L, and

Aij =
1

aibjc�−i−j
∑
S∈Cij

wG(S),

then

EW(Gs,t) =
∑
i,j

Aij(2
s3t)i(2t)j .

By Fact 5.2, if we can compute EW(Gs,t) for t = 0, . . . , 8, s = 0, . . . , 8, we can recover
the coefficients Aij and thereby compute

EW(G) =
∑
i,j

Aija
ibjc�−i−j .

Notice that #0λ-Planar Edge-Weighted Sum is exactly Planar Vertex Cov-
ers.
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Fig. 5.8. The transformation of Reduction 7.

6d. #Planar Vertex Covers ∝ #Planar Bipartite Vertex Covers.
Observe that the reduction of Provan and Ball [38] from #Vertex Covers to #Bi-
partite Vertex Covers preserves planarity.

7. #Planar Bipartite Vertex Covers ∝ #3∆-Planar Bipartite Mini-
mum Cardinality Vertex Covers. Let G be a bipartite planar graph. Consider
the graph G′ formed by taking each vertex v in G, replacing it with a cycle Cv of
2d(v) vertices, where d(v) is the degree of v in G, and connecting the neighbors of v
to alternate vertices on Cv. In order for this to preserve planarity, the neighbors must
be connected with the same orientation as they have in a planar embedding of G. Let
Mv be the vertices in Cv which are connected to vertices outside Cv, so |Cv| = 2|Mv|.
See Figure 5.8 for an example.

Notice that every vertex cover inG′ must be of size at least s =
∑
v∈V d(v) to cover

each cycle. Further notice that the vertex covers in G are in bijective correspondence
with the covers of size s in G, under the map

S �→
⋃
v∈S

Mv ∪
⋃

v/∈S
(Cv \Mv).

Finally, observe that G′ is bipartite (since G is), planar, and of degree at most 3.
8a. #k-Regular Bipartite Perfect Matchings ∝ #(2k − 2)-Regular

Minimum Cardinality Vertex Covers, any fixed k ≥ 3. This follows immediately
from Lemma 3.3, noting that the line-graph of a k-regular graph is a (2k− 2)-regular
graph.

8b. #(k − 1)-Regular Minimum Cardinality Vertex Covers ∝ #k-
Regular Minimum Cardinality Vertex Covers, any odd k ≥ 5. Let H be
the complete graph on k + 1 vertices with one edge removed. Consider the se-
quence of graphs {Hk

n : n ≥ 0} defined as follows: Hk
0 is the complete graph on

k+2 vertices, labelled u1, v1, . . . , u(k−1)/2, v(k−1)/2, u, v, w, with the edges (u1, v1), . . .,

(u(k−1)/2, v(k−1)/2), (u, v), (v, w) removed. H
k
n+1 is formed by taking the disjoint union

of Hk
n and a new copy of H and and connecting one of the vertices of degree k− 1 in

H to the unique vertex in Hk
n of degree k − 1. See Figure 5.9.

Let G be any (k − 1)-regular graph on n nodes u1, u2, . . . , un. For any s ≥ 0,
consider the disjoint union of G with n copies of Hk

2s. Let the vertex of degree k−1 in
the ith copy of Hk

2s be labelled vi. We can form a k-regular graph Gs by connecting ui
to vi for each i. Lemma 6.5 tells us that there are minimum cardinality vertex covers
(mcvc’s) in the ith copy of Hk

2s both containing vi and not containing vi. Hence, any
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Fig. 5.9. The graph H3
3 in Reduction 8b.

Fig. 5.10. The graph I34 in Reduction 10b.

mcvc in Gs must be formed by taking an mcvc in G and taking mcvc’s in each copy of
Hk

2s. If G has N mcvc’s and they are of size c, then Gs has N(xs+ys)
c(xs)

n−c mcvc’s,
where xs is the number of mcvc’s in H

k
2s containing the vertex of degree k− 1 and ys

is the number not containing the vertex of degree k− 1. With a single oracle call, we
obtain the evaluation of the polynomial f(x) = Nxc at the point zs = 1+ys/xs, which
equals 1 + ((k + 1)s+ 4)/(k − 1) by Lemma 6.5. Notice that f(z0)/f(z1) = (z0/z1)

c,
so with just two oracle calls we can recover c and then N . (In fact, Reduction 8a
produces instances G in which we know c, so actually only one oracle call is necessary
here.)

9. #3∆-Planar Bipartite Minimum Cardinality Vertex Covers ∝
#4∆-Planar Bipartite Vertex Covers. This is a standard application of the
Fibonacci technique, almost identical to Reduction 1: Form Gs by attaching chains of
length s to each vertex of the input graph G for s = 0, . . . , n. The number of vertex
covers in Gs is essentially the evaluation of a polynomial whose coefficients are the
number of vertex covers in G of each size. By Lemma 6.3, these evaluation points are
consecutive ratios of Fibonacci numbers, which do not repeat, so by interpolation we
can recover the number of minimum cardinality vertex covers in G.

10a. #4-Regular Minimum Cardinality Vertex Covers∝ #5-Regular
Vertex Covers. This is another application of the Fibonacci technique. Let G be
any 4-regular graph on n nodes. As in Reduction 8b, for 0 ≤ s ≤ n, form a 5-regular
graph Gs by attaching n disjoint copies of the gadget H

5
s defined in that reduction.

We recover the number of minimum cardinality vertex covers in G by polynomial
interpolation, using Lemma 6.6 to guarantee that the evaluation points are distinct.

10b. #(k − 2)-Regular Minimum Cardinality Vertex Covers ∝ #k-
Regular Vertex Covers. This yet another application of the Fibonacci technique,
with slightly different gadgets. Let H be the complete graph on k+1 vertices with two
edges incident to some vertex v removed. Consider the sequence of graphs {Ikn : n ≥ 0}
defined as follows: Ik0 is the complete graph on k + 1 vertices with a single edge
removed. Ikn+1 is formed by taking the disjoint union of I

k
n and a new copy of H and

connecting the vertex of degree k − 2 in H to the two vertices of degree k − 1 in Ikn.
See Figure 5.10. Let (Ikn)

+ be the graph formed by adding to Ikn a new vertex p and
connecting p to the two vertices of degree k − 1 in Ikn.

Let G be any (k− 2)-regular graph on n nodes u1, u2, . . . , un. For any 0 ≤ s ≤ n,
consider the disjoint union of G with n copies of Iks . Let the vertices of degree
k − 1 in the ith copy of Iks be labelled vi and wi. We can form a k-regular graph
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Fig. 5.11. The transformation in Reduction 12 for r = 2.

Gs by connecting ui to both vi and wi for each i. By Lemma 6.7 and polynomial
interpolation, the number of minimum cardinality vertex covers in G can be recovered
from the number of vertex covers in Gs for s = 0, . . . , n.

11. #4∆-Planar Bipartite Vertex Covers ∝ #5∆-Planar Bipartite
Minimal Vertex Covers. This reduction is identical to Reduction 4.

12. #5-Regular Vertex Covers ∝ #Regular Minimal Vertex Covers.
Let G be any 5-regular graph on n nodes u1, u2, . . . , un. For r ≥ 0, let Jr be the
complete bipartite graph on (5 + 2r) + (5 + 2r) vertices with one edge removed.
Consider the disjoint union of G with nr copies of Jr, where these copies are named
Hi,j for 1 ≤ i ≤ n, 1 ≤ j ≤ r. Let G′ be the graph formed by attaching each ui to
the two vertices of degree of 4 + 2r in each of Hi,1, Hi,2, . . . , Hi,r. See Figure 5.11.
Notice that G′ is a (5 + 2r)-regular graph. Notice that if G has Ai vertex covers of
size i, G′ has

∑n
i=0 Ai(3

r)i(2r)n−i minimal vertex covers. Dividing by 2rn, we get the
evaluation of f(x) =

∑n
i=0 Aix

i at (3/2)r. If we choose r = n, we can, by Lemma 5.3,
recover the coefficients of f in a single oracle call. The number of vertex covers in G
is simply the sum of the coefficients.

Proof of Corollary 4.2. These follow immediately from Theorem 4.1, Proposi-
tion 3.1, and Proposition 3.2.

Proof of Proposition 4.3. Here we prove only that the given problems are hard to

approximate within a factor 2n
1/2−ε

. Proving inapproximability within 2n
1−ε

is more
involved, and details can be found in [45] or [47].

By Proposition 3.1, we may focus on vertex covers, and the other results follow.
We reduce from 2n

1−ε

-Approx #Vertex Covers, which was shown to be NP-hard
by Sinclair [41] (see also Roth [40]). Note that, ignoring the planarity and bipartite-
ness conditions, Reduction 7 in the proof of Theorem 4.1 is a parsimonious reduction
from #Vertex Covers to #3∆-Minimum Cardinality Vertex Covers. That
is, it transforms graphs G to graphs G′ such that the number of minimum cardi-
nality vertex covers in G′ equals the number of vertex covers in G. Note that if G
has n vertices, then the number of vertices in G′ is n′ < 2n2, so an approximation

within 2(n′)1/2−ε

for G′ gives an approximation within 2n
1−ε

for G (for sufficiently
large n).

6. Proving that sequences do not repeat. In this section, we develop general
tools for proving that sequences defined by 2×2 linear recurrences do not repeat, and
apply them to deduce that the interpolation points in our reductions are distinct.
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Lemma 6.1. Let a, b, c, d be rational numbers and let α and β be nonzero complex
numbers. Let the sequence zn be defined by

zn =
aαn + bβn

cαn + dβn
.

Then the sequence {zn} repeats iff ad− bc = 0 or α/β is a root of unity.
Proof. Cross-multiplying, we see that zn = zm iff (ad − bc)(αmβn − βmαn) = 0

iff ad− bc = 0 or (α/β)n−m = 1.
Lemma 6.2. Let A,B,C,D, x0, and y0 be rational numbers. Define the sequences

{xn} and {yn} recursively by xn+1 = Axn + Byn and yn+1 = Cxn +Dyn. Then the
sequence {zn = xn/yn} never repeats as long as all of the following conditions hold:

AD −BC �= 0,(1)

D2 − 2AD +A2 + 4BC �= 0,(2)

D +A �= 0,(3)

D2 +AD +A2 +BC �= 0,(4)

D2 +A2 + 2BC �= 0,(5)

D2 −AD +A2 + 3BC �= 0,(6)

By2
0 − Cx2

0 − (A−D)x0y0 �= 0.(7)

Proof. Let α and β be the eigenvalues of the matrix
(

A B
C D

)
. By basic linear

algebra, as long as α and β are distinct, the general solution to the 2 × 2 system of
linear recurrences describing xn and yn is given by xn = aαn+bβn and yn = cαn+bβn,
for some a, b, c, d ∈ C. By the previous lemma, as long as α �= β and neither α nor β
is zero, {zn} can repeat only if ad− bc = 0 or α/β is a root of unity.

If α/β is a root of unity, it must be one of degree 1 or 2 over Q, as α/β ∈ Q(α, β) =
Q(α), which is a field extension of degree ≤ 2 over Q. The degree of a primitive nth
root of unity over Q is φ(n) (see, e.g., [18, section 13.2, Theorem 1]), where φ is
Euler’s totient function. By the formula φ(

∏
pαi
i ) =

∏
pαi−1
i (pi − 1) for distinct

primes pi, one sees that only n for which φ(n) ≤ 2 are 1, 2, 3, 4, and 6. The irreducible
polynomials over Q for the corresponding primitive roots of unity are x − 1, x + 1,
x2+x+1, x2+1, and x2−x+1. So to check that α/β is not a root of unity, we need
only check that α/β does not satisfy any of these polynomials. Using the quadratic
formula, we can express α and β in terms of A,B,C, and D. The first 6 conditions
in the lemma come from substituting these expressions into the polynomials that test
whether (1) α or β is zero, (2) α = β, and (3)–(6) α/β is a 2nd, 3rd, 4th, or 6th root
of unity.

As long as α �= β and neither are zero, we can solve for a, b, c, and d in terms
of A,B,C,D, and the initial conditions x0, y0. Condition (7) amounts to testing
whether ad − bc = 0 (given that D2 − 2AD + A2 + 4BC �= 0, which is tested by
condition (2).

As observed by Greenhill [14], if A, B, C, and D are all positive (or if all are
nonnegative and A �= D), then only conditions (1) and (7) must be checked in the
above lemma. We now apply this lemma to the various sequences that arise in our
reductions.

Lemma 6.3. Let Fn denote the nth Fibonacci number. That is, F0 = 1, F1 = 1,
and Fn+2 = Fn+1+Fn for all n ≥ 0. The number of matchings (resp., vertex covers)
in a chain of n vertices is Fn (resp., Fn+1). Moreover, Fn+1/Fn �= Fm+1/Fm for any
n �= m.
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Proof. Let xn be the number of matchings in a chain of n vertices. Given a
chain Cn = v1 − v2 − · · · − vn with n ≥ 1, the number of matchings in Cn in which
v1 is matched is xn−2 and the number in which v1 is unmatched is xn−1. Thus,
xn = xn−1 + xn−2, which is the Fibonacci recurrence. Also note that x0 = 1 and
x1 = 1. To obtain the result for vertex covers, observe that Cn is the line-graph
of Cn+1 and apply Lemma 3.3. The “moreover” part of the lemma follows from
Lemma 6.1 with A = B = C = x0 = y0 = 1 and D = 0.

Lemma 6.4. For k ≥ 4, let Lks be the graph defined in Reduction 3 of the proof
of Theorem 4.1. Let v and w be the vertices in Lks of degree k − 1. Let xs be the
number of matchings in Lks in which both v and w are matched, let ys be the number
in which v is matched but w is not, and let zs be the number in which neither v nor
w is matched. Then xs, ys, and zs can be computed in time polynomial in s and the
sequence {ws = (ys + zs)/(xs + 2ys + zs)} never repeats.

Proof. For all m, let Mm denote the number of matchings in the complete graph
on m vertices. Observe that Mm+1 = Mm +mMm−1. By inspection, we can verify
that the sequences xs and ys satisfy the following recurrences:

xs+1 = (k − 1)Mk−1xs + (k − 1)Mk−1ys + (k − 1)Mk−2ys

= (k − 1)Mk−1xs + (Mk + (k − 2)Mk−1)ys,

ys+1 =Mkxs + (Mk +Mk−1)ys.

It is easy to see that ys and zs satisfy the same recurrence relations:

ys+1 = (k − 1)Mk−1ys + (Mk + (k − 2)Mk−1)zs,

zs+1 =Mkys + (Mk +Mk−1)zs.

The initial conditions are

z0 =Mk−1,

y0 =Mk − z0 =Mk −Mk−1,

x0 =Mk+1 − 2y0 − 2x0 = kMk−1 −Mk.

We can compute xs, ys, and zs in polynomial time using the above recurrences. Be-
cause we have three sequences here, we cannot apply Lemma 6.2 directly. How-
ever, the proof here is nearly identical to the one of Lemma 6.2, so we do not in-
clude the details that are worked out there. Since the two pairs of sequences satisfy
the same recurrence relations, closed forms for these sequences will be of the form
xs = aαs + bβs, ys = cαs + dβs, zs = eαs + fβs. So

ws =
(c+ e)αs + (d+ f)βs

(a+ 2c+ e)αs + (b+ 2d+ f)βs
.

This sequence will not repeat as long as α/β is not a root of unity and (c + e)(b +
2d + f) − (d + f)(a + 2c + e) �= 0. The conditions for α/β to not be a root of
unity are the same as conditions (1)–(6) of Lemma 6.2; of these, conditions (2)–(6)
are automatically satisfied since the recurrence coefficients are all positive. After
simplification, condition (1) becomes

−M2
k −MkMk−1 + (k − 1)M2

k−1 �= 0.
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Dividing by M2
k−1 and applying the quadratic formula, we can reformulate this

condition as

Mk

Mk−1
�= 1±

√
4k − 3
2

.

Moser and Wyman [30] have shown the following2:

1 +
√
4k − 3
2

≤ Mk

Mk−1
≤ 1 +

√
4k + 1

2
.

The proof of this fact is by straightforward induction, applying the recurrenceMk+1 =
Mk + kMk−1. The same proof actually shows that strict inequality holds (on both
sides) for all k ≥ 4, as long as we use k = 4 as our base case. Thus condition (1) is
also satisfied.

The only condition left to check is (c+ e)(b+ 2d+ f)− (d+ f)(a+ 2c+ e) �= 0.
Using the initial conditions to solve for these values, this reduces to

−2M3
k + (6− 2k)Mk−1M

2
k + (4k − 6)M2

k−1Mk + (2k
2 − 6k + 4)M2

k−1 �= 0.
Dividing by M3

k−1, we obtain a cubic polynomial in Mk/Mk−1 which vanishes iff

Mk

Mk−1
∈
{
−k + 2, 1±

√
4k − 3
2

}
.

The strengthened Moser–Wyman result shows that this cannot hold for any
k ≥ 4.

Lemma 6.5. Fix k to be an odd integer ≥ 3. Let Hk
n be the graph defined in

Reduction 8b of the proof of Theorem 4.1. Let v be the unique vertex in Hk
n of degree

k − 1. Then the number of minimum cardinality vertex covers in Hk
2m containing v

is (k − 1)m+1/2 and the number not containing v is (k − 1)m((k + 1)m+ 4)/2.
Proof. First, let H be the complete graph on k+1 vertices with one edge removed.

We now prove the lemma by induction on m.
m = 0: It is easily verified that the size of the mcvc in Hk

0 is k, that there are
(k− 1)/2 such covers containing v, and that there are 2 such covers not containing v.

Induction step: Let v′ be the vertex of degree k − 1 in Hk
2(m+1) and let v be

the vertex of degree k − 1 in Hk
2m. Now observe that the smallest vertex cover in

H is of size k − 1 and the only such cover omits both the vertices of degree k − 1.
The two copies of H added to Hk

2m to form Hk
2(m+1) cannot both simultaneously be

covered by covers of size k−1, for this would leave the edge between them uncovered.
Hence, the smallest possible cover for Hk

2(m+1) could only come from taking an mcvc

on Hk
2m, a cover of size k − 1 on one of the added copies of H and a cover of size

k on the other copy of H. It is now easy to treat the problem in cases: For each
mcvc of Hk

2m that contains v, there are k − 1 mcvc’s in Hk
2(m+1) containing v

′ and
k + 1 mcvc’s not containing v′. For each mcvc of Hk

2m not containing v, there are 0
mcvc’s containing v′ and k − 1 mcvc’s not containing v′. By induction hypothesis,
this gives a total of (k − 1)((k − 1)m+1/2) = (k − 1)m+2/2 mcvc’s containing v′ and
(k+1)((k−1)m+1/2)+(k−1)[(k−1)m((k+1)m+4)/2] = (k−1)m+1((k+1)(m+1)+4)/2
not containing v′.

2Moser and Wyman discuss the number of solutions to x2 = 1 in the symmetric group on k
elements. It is easy to see that this quantity is exactly Mk.
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Lemma 6.6. Fix k to be an odd integer ≥ 3. Let Hk
n be the graph defined in

Reduction 8b of the proof of Theorem 4.1. Let v be the unique vertex in Hk
n of degree

k − 1. Define xs to be the number of vertex covers in Hk
s containing v and ys to be

the number not containing v. Then xs and ys can be computed in time polynomial in
s and the sequence {xs/ys} never repeats.

Proof. The sequences xs and ys satisfy the following recurrences:

xs+1 = (k + 1)xs + kys,

ys+1 = 2xs + ys,

with initial conditions x0 = (3k + 3)/2 and y0 = 3. Conditions (1) and (7) of
Lemma 6.2 are

−k + 1 �= 0,
(9k − 9)/2 �= 0.

It is clear that these hold for all odd integers k ≥ 3.
Lemma 6.7. Fix k to be an integer ≥ 3. Let (Ikn)

+ be the graph defined in
Reduction 10b of the proof of Theorem 4.1. Let p be the vertex in (Ikn)

+ of degree
2. Define xs to be the number of vertex covers in Iks containing v and let ys be the
number not containing v. Then xs and ys can be computed in time polynomial in s
and the sequence {xs/ys} never repeats.

Proof. The sequences xs and ys satisfy the following recurrences:

xs+1 = (k + 1)xs + 3ys,

ys+1 = (k − 1)xs + ys,

with initial conditions x0 = k + 3 and y0 = k. Conditions (1) and (7) of Lemma 6.2
are

−2k + 4 �= 0,
k2 − 3k + 9 �= 0.

It is easily verified that these hold for all integers k ≥ 3.
7. Conclusion. The study of counting and its computational complexity is both

interesting and important. However, we have only a limited understanding of how the
complexity of counting problems behaves in restricted cases. The results of this paper
have improved the situation somewhat, but there are still many open problems. We
believe that the tools developed here are likely to prove useful in obtaining restricted-
case results for other counting problems.

Even regarding just the problems studied here, several unanswered questions
stand out. For one, we have shown that a number of problems are hard in bounded-
degree bipartite graphs and constant-degree regular graphs, but we do not know what
happens if these conditions are imposed simultaneously. Do these problems remain
hard in bipartite k-regular graphs, or even just bipartite regular graphs? In addition,
we know that all the problems become tractable in degree 2, but some of our re-
sults only show hardness for degree 4 or higher. Recall that, subsequent to this work,
Greenhill [14] has closed this degree gap for counting independent sets, but other gaps
still remain.

For approximate counting, the gaps between positive and negative results are even
larger. For instance, Luby and Vigoda [28] have given a polynomial-time algorithm for
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approximately counting independent sets in graphs of degree 4, but the problem is only
known to becomeNP-hard at degree 25, as shown by Dyer, Frieze, and Jerrum [9]. An
even larger gap in our knowledge is the long-standing open problem of approximately
counting perfect matchings in general graphs. (Recall that this can be solved in
polynomial time for dense graphs [21].) In the context of optimization problems, a
substantial body of work has yielded numerous tight inapproximability results based
on the PCP Theorem (cf. [7]). There is a need to develop analogous general techniques
for the inapproximability of counting problems, perhaps by designing PCP systems
that are tailored for this purpose.

Note added in proof. The open problem mentioned above, about approxi-
mately counting perfect matchings in general graphs, has been resolved in the positive
by Jerrum, Sinclair, and Vigoda (to appear in STOC 2001).
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MATCHINGS MEETING QUOTAS AND THEIR IMPACT ON THE
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Abstract. A bipartite graph G = (U, V ;E) is called ε-regular if the edge density of every
sufficiently large induced subgraph differs from the edge density of G by no more than ε. If, in
addition, the degree of each vertex in G is between (d− ε)n and (d+ ε)n, where d is the edge density
of G and |U | = |V | = n, then G is called super (d, ε)-regular. In [Combinatorica, 19 (1999), pp. 437–
452] it was shown that if S ⊂ U and T ⊂ V are subsets of vertices in a super-regular bipartite graph
G = (U, V ;E), and if a perfect matching M of G is chosen randomly, then the number of edges of M
that go between the sets S and T is roughly |S||T |/n. In this paper, we derandomize this result using
the Erdős–Selfridge method of conditional probabilities. As an application, we give an alternative
constructive proof of the blow-up lemma of Komlós, Sárközy, and Szemerédi (see [Combinatorica,
17 (1997), pp. 109–123] and [Random Structures Algorithms, 12 (1998), pp. 297–312]).

Key words. ε-regular graphs, perfect matchings, conditional probabilities, randomized algo-
rithms, derandomization, blow-up lemma
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1. A politically correct cultural revolution and its impact on the blow-
up lemma. Let X be a radical politician who, in an attempt to run a politically
correct presidential election campaign, makes a promise to each minority group that
it will enjoy “statistically equal” status with respect to every quality of life, such
as wealth, health, or education. After winning the election, he asks his advisors
how to fulfill his commitments. Fortunately, one of the advisors has a background
in mathematics and she proposes a sound solution: take all citizens’ social security
numbers and reassign them randomly, and then let all citizens assume their new
lives accordingly. Thus, with high probability every group (e.g., women, elderly,
African-American, gay, etc.) will each be proportionally represented in every category
of quality of life (see Proposition 1 in section 2). President X does not want to
take any chances, however, and asks for a “no-risk” solution. As there are more
than 250,000,000 legal citizens, searching through all posssible permutations is not an
option. Hence, the mathematically inclined advisor must design an algorithm which,
in reasonable time, produces a reassignment that fulfills the president’s promises (see
Proposition 2 in section 3).

Then another obstacle arises. One of the other advisors observes that each person
can realistically be reassigned to the lives of only a subcollection of other people. As
a result, the advisors produce a huge chart that illustrates all such pairs of people (a
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“who can be whom” chart). Fortunately for President X, the talented female advisor
notices that the chart enjoys a great deal of regularity and that each citizen can
be assigned to a significant proportion of all citizens. After several years of intense
research, she proves that a random reassignment, consistent with the “who can be
whom” chart, is also very likely to produce a satisfiable outcome (see Theorem 2.2
in section 2). Moreover, the procedure can be “derandomized” in reasonable time to
yield the required “no-risk” solution (see Theorem 4.1 in section 4).

Unfortunately, by the time the advisor proposes her solution, President X is no
longer in office. So that her research does not go to waste, she searches for another
real-life application and finds it in the “blow-up lemma” (see section 5).

2. The catching lemma. A permutation σ : [n] → [n] can be viewed as a
perfect matching of the complete bipartite graph Kn,n. A random perfect matching
of a graph is a perfect matching drawn randomly, with uniform distribution, from the
set of all perfect matchings in that graph.

Suppose that two subsets S and T of [n] are given. If σ : [n] → [n] is a random
permutation of the set [n], then the number |σ(S) ∩ T | of elements of S mapped
onto the elements of T has a hypergeometric distribution with expectation |S||T |/n.
Equivalently, given a random perfect matching σ of Kn,n, and a pair of sets (S, T )
with S and T on opposite sides, the number of edges |σ(S)∩T | “caught” in between S
and T is a hypergeometric random variable with expectation |S||T |/n. In fact, in the
following proposition we shall see that using Chernoff’s bound for the hypergeometric
distribution, one can obtain sharp concentration results simultaneously for the number
of edges caught by many pairs (Si, Ti), i = 1, 2, . . . , k.

The following statement of Chernoff’s inequality is valid for every binomial or
hypergeometric random variable X on n trials (see [7, pp. 28–29]): for t ≥ 0,

P (|X − E(X)| ≥ t) ≤ 2 exp
(
−2t

2

n

)
.(1)

In Proposition 1 below, as well as in other statements, the sets Si and Ti may
be repeated; in other words, it is possible that Si = Sj for some i �= j. In fact, in
our “real-life” application from section 1, the sets S range through all the minority
groups, and, for a fixed set Si, the sets Tj range through all categories of qualities of
life. On the other hand, we shall see in section 5 that in other applications all sets Si
(and all sets Ti) may be pairwise distinct.

Proposition 1 (the complete catching lemma). Given positive integers n, k,
and 0 < λ < 1, let U and V , |U | = |V | = n, be the two vertex classes of a complete
bipartite graph Kn,n, and let Si ⊂ U , Ti ⊂ V , i = 1, 2, . . . , k. If σ : U → V is a
random perfect matching in Kn,n, then the event that the inequality

|Si||Ti|/n− λn < |σ(Si) ∩ Ti| < |Si||Ti|/n+ λn(2)

holds for all i = 1, . . . , k occurs with probability at least 1− 2k exp{−2λ2n}.
Proof. Set si = |Si|, ti = |Ti|, and ai = �siti/n − λn�, bi = siti/n + λn�,

i = 1, . . . , k. Let Xi = |σ(Si) ∩ Ti|, and let Ai denote the event that ai ≤ Xi ≤ bi,
i = 1, 2, . . . , k. For every integer x, we have

P (Xi = x) =

(
ti
x

)(
n−ti
si−x

)
(
n
si

)
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and

P (Ai) =
∑

x∈[ai,bi]

P (Xi = x).

By (1), it follows that

P (Ai) =
∑

x∈[ai,bi]

P (Xi = x) ≤ 2 exp{−2λ2n}.

Now if X counts the number of events Ai that do not occur, then the probability that
(2) fails to hold for some i = 1, 2, . . . , k is

P (X > 0) ≤ E(X) =
∑
i

P (Ai) < 2k exp
{−2λ2n

}
.

In [13], a generalization of Proposition 1 was proved. Given a bipartite graph G
with bipartition (U, V ) and two subsets U ′ ⊂ U and V ′ ⊂ V , denote by EG(U

′, V ′) the
set of edges of G with one endpoint in U ′, and the other in V ′, and set eG(U ′, V ′) =
|EG(U ′, V ′)|. Define the density dG(U ′, V ′) of the pair (U ′, V ′) in G by dG(U

′, V ′) =
eG(U ′,V ′)
|U ′||V ′| . The quantity dG(U, V ) is also called the density of G.

The graph G is called ε-regular if for every pair of sets (U ′, V ′), U ′ ⊂ U , V ′ ⊂ V ,
|U ′| > ε|U |, |V ′| > ε|V |, we have

|dG(U ′, V ′)− dG(U, V )| < ε.

A bipartite graph G whose bipartition classes each have size n is referred to as a
bipartite graph with 2n vertices. Let NG(u) stand for the neighborhood of vertex u in
graph G, and let degG(u) = |NG(u)|. It is easy to check that in an ε-regular bipartite
graph G with 2n vertices, all but at most 3εn2 pairs of vertices u1, u2 ∈ U satisfy

(d− ε)n < deg(u1), deg(u2) < (d+ ε)n

and

(d− ε)2n < |NG(u1) ∩NG(u2)| < (d+ ε)2n.

In fact, this implication can be reversed at the cost of enlarging ε slightly (see [1]).
Lemma 2.1. Given a positive integer n and ε > 0, if G = (U, V ;E), |U | = |V | =

n, is a bipartite graph containing at least (1−5ε)n2/2 pairs of vertices u1, u2 ∈ U that
satisfy

(i) deg(u1), deg(u2) > (d− ε)n,
(ii) |NG(u1) ∩NG(u2)| < (d+ ε)2n,

then G is (16ε)1/5-regular.
Sometimes it is desired that all vertices have their degrees close to the average.

Given ε > 0 and 0 < d < 1, an ε-regular bipartite graph G with 2n vertices is called
super (d, ε)-regular if the minimum degree δ(G) and the maximum degree ∆(G) of G
satisfy

(d− ε)n ≤ δ(G) ≤ ∆(G) ≤ (d+ ε)n.

Using Hall’s theorem, it is straighforward to show the following.
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Fact 1. Every ε-regular bipartite graph with 2n vertices and minimum degree at
least εn contains a perfect matching.

Moreover, in [2] it was shown that in every large super (d, ε)-regular bipartite
graph, the number of perfect matchings is roughly the same as the number of perfect
matchings expected in the random bipartite graph with edge probability d. More
precisely, ifM(G) denotes the number of perfect matchings in G, then, for 0 < ε < d/2
and n sufficiently large,

(d− 2ε)nn! ≤M(G) ≤ (d+ 2ε)nn!.

If G is only ε-regular with density d, then the upper bound still holds. This estimate
was used to prove the following result (see [13]). Unlike the original statement, the
probability bound is given explicitly here.

Theorem 2.2 (catching lemma). Given real numbers 0 < d < 1, 0 < ε < (d/2)4,
λ > 0, and a sufficiently large integer n0 = n0(ε), the following holds. Let G be
a super (d, ε)-regular graph with bipartition (U, V ), |U | = |V | = n > n0, and let
Si ⊂ U , Ti ⊂ V , i = 1, 2, . . . , k. If σ : U → V is a random perfect matching of G,
then the event that (2) holds for each i = 1, 2, . . . , k occurs with probability at least
1− 2k exp{4ε1/4n− 2λ2n}.

The main goal of this paper is to show how to derandomize this probabilistic
result; that is, we show how to efficiently construct a perfect matching with the
property described in Theorem 2.2. For this, we use the standard Erdős–Selfridge
method of conditional probabilities ([4]; cf. [3]) but in a nonstandard setting. First,
we illustrate this method by proving the following lemma.

Lemma 2.3. Let m, n, and r be positive integers such that

(r − 1)(n+ 1) exp{−m1/3/2} < 1,

and let N1, . . . , Nn be subsets of V = {v1, . . . , vm}. Given 0 < pj < 1, j = 1, 2, . . . , r,
where

∑r
j=1 pj = 1, there exists a polynomial (in m and n) time algorithm PARTI-

TION that constructs a partition V = R1∪· · ·∪Rr such that for each j = 1, 2, . . . , r,
|Rj | = pjm, and for each i = 1, . . . , n, ||Rj ∩Ni| − pj |Ni|| < m2/3.

Proof. For unification, we set Nn+1 = V . First notice that if a set R was
constructed randomly by m independent coin flippings, each with probability p, then
by (1) for the binomial distribution, the probability that for some i = 1, 2, . . . , n+ 1,
|R ∩Ni| − p|Ni|| > 1

2m
2/3, would be at most

(n+ 1) exp{−m4/3/2m} = (n+ 1) exp{−m1/3/2} < 1/(r − 1).(3)

We shall derandomize the above probabilistic statement simultaneuosly for all
sets Ni and for all partition sets Rj . We restrict ourselves to the case r = 2 in the
proof below for clarity of exposition. The proof for arbitrary r follows along the same
lines; alternatively, the general case is implied by repeated applications of the case
r = 2 (at the cost of error accumulation of at most rm2/3).

With r = 2, p = p1, and R = R1, we sequentially construct a binary sequence
{ξ1, . . . , ξm}, where ξl = 1 if and only if vl ∈ R. Let Rl denote R ∩ {v1, . . . , vl}; in
particular, let R0 = ∅. Let Y be a random variable that counts how many of the n+1
inequalities are not satisfied. By (3), we know that E(Y ) < 1.

Assuming ξ1, . . . , ξl−1 have been determined, we choose ξl ∈ {0, 1} to minimize
the conditional expectation E(Y |ξ1, . . . , ξl), which is given by

n+1∑
i=1

∑

x�∈[ai,l,bi,l]

(
ni,l
x

)
px(1− p)ni,l−x,(4)
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where

ai,l = p|Ni| −m2/3 − |Rl ∩Ni|, bi,l = p|Ni|+m2/3 − |Rl ∩Ni|,
and

ni,l = |Ni| − |Rl ∩Ni|.
It is straightforward to check that

E(Y |ξ1, . . . , ξl−1) = pE(Y |ξ1, . . . , ξl−1, 1) + (1− p)E(Y |ξ1, . . . , ξl−1, 0),

and thus, for each l = 1, . . . ,m,

E(Y |ξ1, . . . , ξl) ≤ E(Y |ξ1, . . . , ξl−1) < 1.

In particular, when l = m, we have

0 < Y (ξ1, . . . , ξm) = E(Y |ξ1, . . . , ξm) < 1,

which implies that the integer Y (ξ1, . . . , ξm) equals zero.

Hence, we have for all i = 1, . . . , n+1, ||R ∩Ni| − p|Ni|| ≤ 1
2m

2/3. To obtain the

desired set R of order pm, the values of at most 1
2m

2/3 elements ξi are interchanged
(from 0 to 1 or vice versa) at the cost of doubling the errors in the approximations of
|R ∩Ni|, i = 1, 2, . . . , n.

3. Derandomizing the complete catching lemma. In this section, we warm
up by derandomizing Proposition 1, the special case of Theorem 2.2 in which G =
Kn,n.

Proposition 2. Let n and k be positive integers, and let 0 < λ < 1 such that
2k exp{−2λ2n} < 1. There exists a deterministic polynomial (in both n and k) time
algorithm which, given a complete bipartite graph Kn,n with vertex classes U and V ,
and k pairs of subsets Si ⊂ U , Ti ⊂ V , i = 1, 2, . . . , k, constructs a perfect matching
of Kn,n such that inequality (2) holds for all i = 1, 2, . . . , k.

Proof. To construct the desired perfect matching, we shall apply the Erdős–
Selfridge method of conditional probabilities. However, unlike Lemma 2.3, the choices
of edges in the matching are not independent, and hence the underlying probability
space is not binomial. In this case, the method succeeds due to a combinatorial
identity enjoyed by the hypergeometric distribution (cf. Claim 1 below).

Let si = |Si|, ti = |Ti|, ai = �siti/n − λn�, and bi = siti/n + λn�, and let Ai
denote the event that ai ≤ |σ(Si)∩Ti| ≤ bi, i = 1, 2, . . . , k. Let X count the number of
events Ai that do not hold. By applying Chernoff’s inequality to the hypergeometric
random variable X, we have

E(X) =
∑
i

P (Ai) =

k∑
i=1

∑

x�∈[ai,bi]

(
ti
x

)(
n−ti
si−x

)
(
n
si

) < 2k exp
{−2λ2n

}
< 1.

We shall sequentially select edges to form a perfect matching that satisfies (2).
Having chosen one edge e1 = uv, u ∈ U , v ∈ V , we restrict our subsequent search to
the complete bipartite graph Kn−1,n−1 obtained by removing the two endpoints of e1.
Then we update the sets Si and Ti by setting Si,1 = Si \ {u} and Ti,1 = Ti \ {v}. We
also update the intervals [ai, bi] by shifting them to the left one unit if e1 is “caught”
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by the pair (Si, Ti); that is, if u ∈ Si and v ∈ Ti. We denote the new interval limits
by ai,1 and bi,1. If A

1
i is the event (in the space of all perfect matchings of Kn−1,n−1)

that ai,1 ≤ |σ(Si,1) ∩ Ti,1| ≤ bi,1, i = 1, 2, . . . , k, then

P (Ai|e1) = P (A1
i ).

In general, we define the following function f on the set of all matchings of Kn,n. For
each l = 0, 1, 2, . . . , n, let nl = n− l. Given a matching σ = {e1, . . . , el} we set

f(σ) =

k∑
i=1

∑

x/∈[ai,σ,bi,σ ]

(
ti,σ
x

)(
nl−ti,σ
si,σ−x

)
(
nl

si,σ

) ,(5)

where

si,σ = |Si \ {e1 ∪ · · · ∪ el}|, ti,σ = |Ti \ {e1 ∪ · · · ∪ el}|,
and where

ai − ai,σ = bi − bi,σ = |E(Si, Ti) ∩ {e1 ∪ · · · ∪ el}|.
Of course, for the empty matching σ = ∅, we have f(∅) = E(X), and thus f(∅) <

2ke−2λ2n < 1.
This function can also be defined recursively. For each l = 1, 2, . . . , n, and each

matching σ = {e1, . . . , el−1}, set

f(e1, . . . , el) =

k∑
i=1

∑

x/∈[ai,l,bi,l]

(
ti,l
x

)(
nl−ti,l
si,l−x

)
(
nl

si,l

) ,(6)

where si,l−1 = si,σ, ti,l−1 = ti,σ, ai,l−1 = ai,σ, and bi,l−1 = bi,σ. Then for el = uv we
have

si,l =

{
si,l−1 − 1 if u ∈ Si,
si,l−1 if u /∈ Si,

ti,l =

{
ti,l−1 − 1 if v ∈ Ti,
ti,l−1 if v /∈ Ti,

(7)

ai,l−1 − ai,l = bi,l−1 − bi,l =

{
1 if u ∈ Si, v ∈ Ti,
0 otherwise,

(8)

where si,0 = si, ti,0 = ti, ai,0 = ai, bi,0 = bi.
It is crucial that f(e1, . . . , el−1) is the average of f(e1, . . . , el) over all (n− l+1)2

choices of el.
Claim 1. Let E0 be the set of all edges of Kn,n, and for each l = 1, 2, . . . , n, let

El be the set of all edges in the complete bipartite graph that remain after deleting the
endpoints of the edges e1, . . . , el. Then

1

(n− l + 1)2

∑
el∈El−1

f(e1, . . . , el) = f(e1, . . . , el−1).

This claim shall be proved at the end of this section. Observe that as a conse-
quence of Claim 1, there is always a choice of el for which

f(e1, . . . , el) ≤ f(e1, . . . , el−1).(9)
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Since si,l, ti,l, ai,l, and bi,l are updated by (7)–(8) after each edge of σ is chosen,
for each l = 1, 2, . . . , n we have

E(X|e1, . . . , el) =
∑
i

P (Ai|e1, . . . , el) = f(e1, . . . , el).

In particular, when l = n we may observe that nn = ti,n = si,n = 0, while P (Ai|e1, . . . ,
en) = 1 if 0 �∈ [ai,n, bi,n], and P (Ai|e1, . . . , en) = 0 otherwise. Thus, for each event Ai
that fails, there is a corresponding term in (6) that equals 1 (with x = 0). By (9),

E(X|e1, . . . , en) = f(e1, . . . , en) ≤ E(X) < 1,

which means that X(e1, . . . , en) = 0. Hence, the perfect matching σ = {e1, . . . , en}
satisfies (2).

Proof of Claim 1. For clarity, we shall prove only the claim for l = 1; that is, we
shall prove that 1

n2

∑
e1∈E0

f(e1) = f(∅) = E(X). The general case is similar. We
begin by interchanging the first two summations so that

1

n2

∑
e1∈E0

f(e1) =
1

n2

k∑
i=1

∑
e1∈E0

Φi,(10)

where

Φi =
∑

x/∈[ai,1,bi,1]

(
ti,1
x

)(
n1−ti,1
si,1−x

)
(
n1

si,1

) .

Now observe that for each i = 1, 2, . . . , k, the summand
(ti,1x )(

n1−ti,1
si,1−x )

( n1
si,1
)

depends exclu-

sively on which of the four positions, relative to the pair (Si, Ti), the edge e1 takes
(see Figure 1).

n

n

Si

Ti

K n,n

Fig. 1. The four possible positions of e1.

Hence, we may write (10) as

Φi =
siti
n2

∑
x

pi,1 +
si(n− ti)

n2

∑
x

pi,2

+
(n− si)ti

n2

∑
x

pi,3 +
(n− si)(n− ti)

n2

∑
x

pi,4,(11)
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where the four summations are taken over all x /∈ [ai,1, bi,1] and where

pi,1 =

(
ti−1
x

)(
n−ti
si−1−x

)
(
n−1
si−1

) , pi,2 =

(
ti
x

)(
n−1−ti
si−1−x

)
(
n−1
si−1

) ,

pi,3 =

(
ti−1
x

)(
n−ti
si−x

)
(
n−1
si

) , pi,4 =

(
ti
x

)(
n−1−ti
si−x

)
(
n−1
si

) .

Let us write f(∅) =∑k
i=1Ψi, where

Ψi =
∑

x�∈[ai,bi]

(
ti
x

)(
n−ti
si−x

)
(
n
si

) .

It can now be checked algebraically that for each i = 1, 2, . . . , k, we have Φi = Ψi.
Alternatively, for fixed i, imagine the following two-stage random experiment:

an edge e1 is first chosen uniformly at random; then a perfect matching is chosen
randomly from the remaining subgraph Kn−1,n−1 to form a random perfect matching
σ of Kn,n. Let Bj , j = 1, 2, 3, 4, denote the event that, relative to the pair (Si, Ti),
the edge e1 takes a position that corresponds to the term pi,j . Then we have P (B1) =
siti
n2 , P (B2) =

si(n−ti)
n2 , P (B3) =

(n−si)ti
n2 , and P (B4) =

(n−si)(n−ti)
n2 . Moreover,

P (Ai|Bj) =
∑
x/∈[ai,bi]

pi,j . Hence, by the law of total probability, every term of (11)

is equal to the corresponding term of the sum (6) with l = 0.
Remark. One might think that it would be simpler to fix in each step an un-

matched vertex u of U and choose the next edge only from among those incident with
u. Unfortunately, as we shall see in section 4, this technique does not carry over to the
general case of super-regular graphs since we have no control over the neighborhoods
of individual vertices.

4. Derandomizing the catching lemma. Some say that super (d, ε)-regular
graphs are like complete bipartite graphs, only sparser. In a super (d, ε)-regular graph,
the number of edges between sets of sizes s and t is roughly dst, and the number of
perfect matchings in such a graph is, very roughly, dnn!. Hence, it might seem that
derandomizing Theorem 2.2 involves a mere repetition of the above argument, only
with the presence of a factor of d. However, we shall see that this is not so.

One difficulty we must cope with is that we can no longer enjoy the hereditary
property possessed by complete bipartite graphs, namely, that every induced subgraph
of a complete bipartite graph, no matter how large or how small, is itself a complete
bipartite graph. This hereditary property was exploited at each step in the proof of
Proposition 1 as we sequentially constructed a perfect matching of Kn,n.

By contrast, in a super (d, ε)-regular graph, we have no control over the regular-
ity of subgraphs of size smaller than εn. Furthermore, even in large subgraphs, we
cannot guarantee “high” minimum vertex degree, nor can we rule out the possibility
of isolated vertices. Thus, it is possible that if edges are not chosen properly at each
stage, then we may end up with a subgraph which contains no matching at all.

To circumvent this problem we shall construct the perfect matching as we did in
the case of the complete graph, only now we shall rapidly change the strategy when
we have but εn vertices left on each side. At this stage, and with no respect to the
sets (Si, Ti), we would be satisfied to find any perfect matching in the leftover graph.
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After merging this smaller matching in the leftover subgraph with the larger matching
already constructed, the error term in (2) is then enlarged only slightly.

One obstacle still remains: the leftover subgraph may have no perfect matching at
all. To remedy this, we shall randomly enlarge the set of leftover unmatched vertices
by selecting roughly (ε1/3− ε)n vertices from the set of matched vertices in one vertex
class (along with their matched partners in the other vertex class). We shall then
“unmatch” these vertices and add them to the leftover graph to form an induced
subgraph. The randomness guarantees (by Chernoff’s bound) that the resulting ε2/3-
regular graph will have sufficiently large minimum degree, and hence will contain a
perfect matching. Of course, this step must be derandomized as well, but this can
easily be accomplished by applying Lemma 2.3. Once we construct a perfect matching
in the enlarged leftover subgraph (using any algorithm we like), then the construction
of σ is complete. The term ε1/3n is then incorporated into the error term in (2).

Theorem 4.1 (derandomized catching lemma). Let ε > 0, 1 > γ > 3ε1/3,
λ > 6ε1/4, and let k and n be positive integers such that

2k exp
{√

εn− 2λ2n
}
<
( ε
e

)εn
.

There exists a deterministic polynomial time algorithm CATCH which, given an ε-
regular bipartite graph G = (U, V ;E), |U | = |V | = n, with minimum degree at least
γn, and given k pairs of subsets Si ⊂ U , Ti ⊂ V , i = 1, 2, . . . , k, constructs a perfect
matching in G such that the inequality

|Si||Ti|/n− 2λn < |σ(Si) ∩ Ti| < |Si||Ti|/n+ 2λn(12)

holds for all i = 1, 2, . . . , k.
Proof. Without loss of generality we may assume that for each i = 1, 2, . . . , k,

εn < |Si|, |Ti| < n − εn. Otherwise the entire range of the random variable |σ(Si) ∩
Ti| is contained in an interval of length εn, and since λ > ε, inequality (12) would
automatically be satisfied by any perfect matching σ of G. This assumption shall be
used only in the proof of Claim 2 below.

Let si = |Si|, ti = |Ti|, ai = �siti/n−λn�, and bi = siti/n+λn�, i = 1, 2, . . . , k.
First, as in the proof of Proposition 2, we shall construct a partial matching σ′ =
{e1, . . . , eL} of size L = n− �εn�, so that for all i,

ai − εn ≤ |σ′(Si) ∩ Ti| ≤ bi.(13)

The obvious modification is that the next edge is chosen only from the set El−1 of
all edges of the subgraph of G resulting from deleting the endpoints of e1, . . . , el,
l = 1, . . . , L. By the ε-regularity of G, |El−1| > (d − ε)(n − l + 1)2, where d is the
density of G.

Let f(σ) be defined as in the proof of Proposition 2. While Claim 1 is no longer
true, we shall instead prove that having chosen e1, . . . , el−1, there is always a choice
of an edge el so that f(e1, . . . , el) ≤ (1 +

√
ε)f(e1, . . . , el−1).

Claim 2. Let E0 be the set of all edges of G, and for each l = 1, . . . , L = n−�εn�,
let El be the set of all edges of the subgraph of G that remain after deleting the
endpoints of e1, . . . , el. Then

1

|El−1|
∑

el∈El−1

f(e1, . . . , el) ≤ (1 +
√
ε)f(e1, . . . , el−1).



MATCHINGS MEETING QUOTAS 437

We prove Claim 2 at the end of this section. As a consequence, if σ′ is the
partial matching of order L constructed by the algorithm described in the proof of
Proposition 2 (with the obvious modification; cf. Claims 1 and 2), then

f(σ′) ≤ (1 +√ε)Lf(∅) < 2k exp{√εn− 2λ2n}.(14)

Now we prove that (13) holds for all i = 1, 2, . . . , k. Let us set σi = |σ′(Si) ∩ Ti| for
convenience. Thus, ai,L = ai − σi and bi,L = bi − σi. Suppose that for some i, (13)
does not hold. If σi > bi, then bi,L < 0, and thus there exists an integer x /∈ [ai,L, bi,L]
such that

max{0, si,L + ti,L − εn} ≤ x ≤ min{si,L, ti,L}.(15)

Consequently, at least one term of (5) is positive, and hence

f(σ′) ≥ 1(
εn
si,L

) ≥ 2−εn,

which contradicts (14). If, on the other hand, σi < ai − εn, then ai,L > εn ≥
si,L + ti,L − εn, and again there is an integer x �∈ [ai,L, bi,L] that satisfies (15). This
leads to a contradiction to (14).

If we let U ′ ⊂ U and V ′ ⊂ V be the two sets matched by σ′, then we may view
σ′ as a bijection σ′ : U ′ → V ′. Let N1,. . . ,Nn and M1, . . . ,Mn be the neighborhoods
of the vertices of U and V restricted to V ′ and U ′, respectively; that is,

Nj = NG(uj) ∩ V ′, uj ∈ U, Mj = NG(vj) ∩ U ′, vj ∈ V.(16)

Now we apply algorithm PARTITION from Lemma 2.3 to the set V ′ and the
input sets N1, . . . , Nn, σ

′(M1), . . . , σ
′(Mn) (with r = 2, m = L, and p = p1 =

ε1/3−ε
1−ε ).

As a result, PARTITION constructs a subset R of V ′ of order |R| = (ε1/3 − ε)n
such that for all i = 1, 2, . . . , n,

|Ni ∩R| > p|Ni| − 2L2/3 >
ε1/3 − ε

1− ε
(γ − ε)n− 2n2/3 > ε2/3n,

and the same inequality holds for the sets σ′(Mi), i = 1, 2, . . . , n. Thus, every vertex
of G has at least ε2/3n neighbors in R or (σ′)−1(R), respectively.

Finally, consider the subgraph H of G induced by the vertex sets R ∪ (V \ V ′)
and (σ′)−1(R) ∪ (U \ U ′). It is ε2/3-regular and has minimum degree at least ε2/3n.
Consequently, by Fact 1, it contains a perfect matching, and we may apply, say, the
Hopcroft–Karp algorithm [6] to find such a perfect matching σ′′ in H. Now if σ′′′ is
the matching obtained from σ′ by removing the edges incident to the set R, then by
(13), and since λ > ε1/3+ε, the combined perfect matching σ′′∪σ′′′ satisfies inequality
(12) for all i = 1, 2, . . . , k.

Proof of Claim 2. We apply induction on l. For l = 1 we basically follow the
proof of Claim 1, writing e(Si, Ti) instead of siti, and so on. However, because
min{si, ti, n−si, n−ti} > εn, by the ε-regularity of G, we obtain the bound e(Si, Ti) <
(d+ ε)siti, and so on. Thus, with the notation from the proof of Claim 1, we have

1

|E0|
∑
e1∈E0

f(e1) ≤ d+ ε

d− ε

k∑
i=1

Φi ≤ (1 +
√
ε)f(∅),
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where

Φi =
siti
n2

∑
x

pi,1 +
si(n− ti)

n2

∑
x

pi,2 +
(n− si)ti

n2

∑
x

pi,3 +
(n− si)(n− ti)

n2

∑
x

pi,4.

The last inequality results from the fact that d ≥ γ ≥ 2
√
ε. Now assume that the

claim is true for all j = 1, 2, . . . , l − 1, and let

Φi =
∑

el∈El−1

∑

x/∈[ai,l,bi,l]

(
ti,l
x

)(
nl−ti,l
si,l−x

)
(
nl

si,l

) , Ψi =
∑

x/∈[ai,l−1,bi,l−1]

(
ti,l−1

x

)(
nl−1−ti,l−1

si,l−1−x
)

(
nl−1

si,l−1

) .

In this setting we shall prove that Φi ≤ (1 +
√
ε)|El−1|Ψi.

Towards this end, note that Ψi = 0 if and only if

ai,l−1 ≤ max{0, si,l−1 + ti,l−1 − nl−1} ≤ min{si,l−1, ti,l−1} ≤ bi,l−1 .

However, then for every el ∈ El−1, we also have

ai,l ≤ max{0, si,l + ti,l − nl} ≤ min{si,l, ti,l} ≤ bi,l ,

and so Φi = 0. In other words, if at some point the above inequality is satisfied
for a particular pair (Si, Ti), then it is irrelevant with respect to that pair how the
construction of σ proceeds in the future. Inequality (2) is guaranteed to hold in such
a case since at any given time l the number of edges of σ that could be caught by the
pair (Si, Ti) lies between si,l + ti,l − nl and min{si,l, ti,l}.

If Ψi > 0, then a straightforward calculation shows that

min{si,l−1, ti,l−1, n− si,l−1, n− ti,l−1} > εn;

hence, we can essentially repeat the proof of the case l = 1 (or Claim 1 for that
matter). Indeed, there exists x /∈ [ai,l, bi,l] such that

(
ti,l−1

x

)(
nl−1−ti,l−1

si,l−1−x
) ≥ 1. Now

suppose that si,l−1 < εn. Then

f(e1, . . . , el−1) ≥ 1(
nl−1

si,l−1

) ≥ 1(
n

si,l−1

) >
( ε
e

)εn
.

Clearly, the same inequality is obtained if nl−1− si,l−1 < εn (by the symmetry of the
binomial coefficients) and also if ti,l−1 < εn or nl−1 − ti,l−1 < εn (by the symmetry
of the hypergeometric distribution). However, by the induction assumption we have

f(e1, . . . , el−1) < (1 +
√
ε)l−1f(∅) < 2k exp{√εn− 2λ2n},

which, by our assumption, is less than
(
ε
e

)εn
. This completes the proof.

We wrap up this section with a more formal description of algorithm CATCH;
a different version of this algorithm was outlined in [14].
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Algorithm CATCH.
Input: An ε-regular bipartite graph G = (U, V ;E), |U | = |V | = n, with
minimum degree at least γn and subsets Si ⊂ U , Ti ⊂ V , i = 1, 2, . . . , k, as
defined in Theorem 4.1.
Output: A perfect matching σ : U → V such that for each i = 1, 2, . . . , k,
inequality (12) holds.

1. Let σ′ = ∅, L = n− �εn�.
2. For l = 1, 2, . . . , L, and given a partial matching σ′ = {e1, . . . , el−1},

(i) choose an edge el so that the function f(e1, . . . , el) defined in (6)
is minimized;

(ii) replace σ′ by σ′ ∪ {el};
(iii) let U ′ and V ′ be the sets matched by σ′.

3. Apply PARTITION to the set V ′ and the input sets
N1, . . . , Nn, σ

′(M1), . . . , σ
′(Mn) defined in (16) and denote the

output by R.
4. Apply the Hopcroft–Karp algorithm to the subgraph induced by the
sets R ∪ (V \ V ′) and (σ′)−1(R) ∪ (U \ U ′) and denote the output by
σ′′.

5. Let σ = σ′′ ∪ (σ′ \ {e : e is incident with R}).
5. An algorithmic version of the blow-up lemma. In [8], Komlós, Sárközy,

and Szemerédi proved a striking result called the blow-up lemma that, loosely speak-
ing, enables one to embed any bounded degree graph H as a spanning subgraph of a
large super-regular graph G. By an embedding, we mean a bijection f : V (H)→ V (G)
such that if x1x2 ∈ E(H), then f(x1)f(x2) ∈ E(G). Their proof was based on a prob-
abilistic argument and, subsequently, they derandomized their approach to provide
a deterministic embedding [9]. It is worth noting that the blow-up lemma has been
used to affirmatively answer two well-known conjectures, the approximate form of
the Pósa–Seymour conjecture on squares of Hamiltonian cycles and the Alon–Yuster
conjecture on graph packings (see [10] and [11], respectively).

In [13], an alternative probabilistic proof of the blow-up lemma was presented.
In this probabilistic version, first the vertex set of H is partitioned using the Hajnal–
Szemerédi theorem (see [5]). Then, a corresponding partition of V (G) is achieved
with a random partition. Finally, a version of the catching lemma (Theorem 2.2
above) is used to embed H into G. In this section, we give a constructive proof of
the blow-up lemma by derandomizing the approach just described. First, instead
of using the Hajnal–Szemerédi theorem to obtain the partition of V (H), we shall
use the constructive Sauer–Spencer packing lemma (see [15]). Then to construct the
partition of V (G), we shall use a deterministic polynomial time procedure based on
Lemma 2.3 (see section 2). Finally, with the derandomized catching lemma (Theorem
4.1) in hand, we shall then embed H into G by finding suitable perfect matchings in
super-regular bipartite graphs. Consequently, we prove the following theorem.

Theorem 5.1 (algorithmic blow-up lemma). Given positive integers r and ∆,
and 0 < d < 1, let δ = δ(r,∆, d) > 0 be a sufficiently small real number and n0 =
n0(δ) a sufficiently large integer. There exists an algorithm EMBED which, in time
polynomial in n, does the following. Let G be an r-partite graph with partition sets
V1, . . . , Vr such that

(i) |Vi| = n ≥ n0, i = 1, . . . , r,
(ii) all

(
r
2

)
bipartite subgraphs G[Vi, Vj ] are super (d, δ)-regular.

Let H be an r-partite graph with partition sets X1, . . . , Xr such that
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(iii) |Xi| = n, i = 1, . . . , r,

(iv) ∆(H) ≤ ∆.
Then EMBED constructs an embedding f of H into G that maps Xi onto Vi, i =
1, . . . , r.

Algorithm EMBED consists of two phases, which we shall first outline here and
then describe in more detail later in this section.

In the preliminary phase (Phase I), the partitions of V (H) and V (G) are refined,
and then edges are added to H and G. For clarity, we assume that n is divisible
by 2∆2; otherwise, a simple adjustment is necessary (see [13]). Then with t = 2∆2,
m = n/t, s = rt, and ε = tδ, Phase I results in graphs H ′ and G′ that satisfy the
following conditions. G′ is an s-partite graph with partition sets W1, . . . ,Ws such
that

(i′) |Wi| = m, i = 1, . . . , s,

(ii′) all
(
s
2

)
bipartite subgraphs G′[Wi,Wj ] are super (d, ε)-regular.

H ′ is an s-partite graph with partition sets Y1, . . . , Ys such that

(iii′) |Yi| = m, i = 1, . . . , s,

(iv′) all
(
s
2

)
bipartite subgraphs H ′[Yi, Yj ] are perfect matchings.

In Phase II, EMBED recursively constructs an embedding f of H ′ into G′ that maps
Yi onto Wi, i = 1, . . . , s, so that the edges added to G in Phase I can be only images
of the edges that were added to H. Hence, f is the desired embedding.

To execute Phase I, we invoke four subroutines: PACK, PARTITION (from
Lemma 2.3), SATURATE, and AUGMENT. The last two algorithms are simple
and shall be described below as we go.

Procedure PACK is an algorithmic version of a graph packing result by Sauer
and Spencer presented in [15]. Given two graphs Γ and Γ′ on the same vertex set V , we
say that a bijection π : V → V is a packing of Γ and Γ′ if E(Γ)∩π(E(Γ′)) = ∅, where
π(E(Γ′)) = {π(u)π(v) : uv ∈ E(Γ′)}. It is straightforward to show that Sauer and
Spencer’s original existence proof yields the following result (see [17] for the details).

Lemma 5.2. There exists a polynomial time algorithm PACK that finds a packing
of two given n-vertex graphs, Γ and Γ′, provided 2∆(Γ)∆(Γ′) < n.

In Phase I, PACK shall be used to pack vertex disjoint cliques onto the squares
of certain graphs. Recall that given a graph F , the square of F , denoted by F 2,
is the graph obtained from F by joining with an edge each pair of distinct vertices
of F whose distance is at most two. By definition of F 2, any pair of vertices in an
independent set I of F 2, are in F at distance at least three from each other. Therefore
the subgraph of F induced by two such sets is a matching.

PHASE I.

Phase I takes as its input the graphs H and G which satisfy properties (i)–(iv)
in Theorem 5.1. First, we use algorithm PACK to partition each set Xi ⊂ V (H),
i = 1, 2, . . . , r, into t = 2∆2 sets Xi,j , j = 1, . . . , t, of size m, where m = n/t, so that
each pair of distinct sets (Xi1,j1 , Xi2,j2) induces a (possibly empty) matching in H.
For a fixed set Xi, this is achieved by applying PACK to the graphs Γ = H2[Xi] and
Γ′, where Γ = H2[Xi] is the subgraph of H

2 induced by Xi and where Γ
′ denotes the

vertex-disjoint union of t cliques of order m. Note that since ∆(Γ) ≤ ∆(∆ − 1) and
∆(Γ′) ≤ m − 1, the hypothesis 2∆(Γ)∆(Γ′) < n of Lemma 5.2 indeed holds. As a
result, the procedure packs Γ′ onto Γ and thus splits each Xi into t subsets Xi,j , each
of which has size m, and more importantly, each of which is independent in H2. Since
the vertices of an independent set in H2 are at a distance of at least three from each
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other in H, any subgraph of H induced by two such sets Xi1,j1 , Xi2,j2 is a (possibly
empty) matching.

In the next step of Phase I, we construct a corresponding finer partition of G.
For this, we use algorithm PARTITION from Lemma 2.3 to partition each set Vi,
i = 1, . . . , r, into t sets Vi,j , j = 1, 2, . . . , t, of size m = n/t, and so that each pair
of sets (Vi1,j1 , Vi2,j2) with i1 �= i2 induces a super (d, tδ)-regular subgraph. More
precisely, to each set Vi, we apply PARTITION with pj = t−1, j = 1, . . . , t, and
with the sets Nv where, for each v /∈ Vi, Nv = NG(v)∩ Vi (cf. Lemma 2.3 above). As
a result, for each i = 1, . . . , r we obtain a partition Vi =

⋃t
j=1 Ri,j with all sets Ri,j of

size m such that all induced subgraphs G[Ri1,j1 , Ri2,j2 ], i1 �= i2, have minimum and
maximum degree bounded between (d− δ)m− n2/3 and (d+ δ)m+ n2/3.

By the δ-regularity of G, all resulting pairs (Vi1,j1 , Vi2,j2) with i1 �= i2 induce in
G tδ-regular subgraphs. Since for large n, we have δ+ o(1) < tδ, we conclude that all
pairs (Vi1,j1 , Vi2,j2) in G induce super (d, tδ)-regular subgraphs.

The last two stages of Phase I involve two simple procedures called SATURATE
and AUGMENT, which are performed solely to unify all steps of the recursive
embedding in Phase II. For each pair (Xi1,j1 , Xi2,j2) of sets in H that does not induce
a perfect matching, procedure SATURATE adds edges between the pair so that a
perfect matching is induced. The resulting graph is denoted by H ′.

Similarly, between each pair of sets (Vi1,j1 , Vi2,j2) in G that induces a subgraph
with density 0 (i.e., for which i1 = i2), procedure AUGMENT inserts edges so
that the pair induces a super (d, tδ)-regular subgraph. For this purpose, we use the
same (our favorite) super (d, tδ)-regular graph on 2m vertices. The resulting graph is
denoted by G′.

For convenience, we denote the new partition sets by Y1, . . . , Ys and W1, . . . ,Ws,
with s = rt, respectively. Hence, at the conclusion of Phase I we have two graphs
H ′ and G′, and partitions V (H ′) = Y1 ∪ · · · ∪ Ys and V (G′) = W1 ∪ · · · ∪Ws, which
satisfy conditions (i′)–(iv′).

PHASE II.
This phase takes as its input the graphs H ′ and G′ and their partitions that

satisfy conditions (i′)–(iv′). In this phase, algorithm EMBED recursively constructs
an embedding of H ′ into G′ so that each Yj is mapped onto the set Wj . Note that
every such embedding yields the desired embedding of H into G. Indeed, every edge
from E(G′) \E(G) connects two sets (Vi1,j1 , Vi2,j2) with i1 = i2, and thus it can only
be the image of an edge from E(H ′) \ E(H).

The main procedure involved in constructing the embedding is algorithmCATCH
from Theorem 4.1; for technical reasons which shall be described later, another sub-
routine called DELETE is also used.

Before describing how the embedding is constructed, we introduce some defini-
tions and notation. For convenience, we relabel H ′ and G′ as H and G, respectively.
For every 1 ≤ j ≤ s − 1 and each vertex x ∈ Yj+1 ∪ · · · ∪ Ys, let Nj(x) denote the
set of precisely j neighbors of x which belong to Y1 ∪ · · · ∪ Yj . Given a bijection fj
between Y1 ∪ · · · ∪ Yj and W1 ∪ · · · ∪Wj , let Mj(x) = fj(Nj(x)). Given fj , for each
l = j+1, . . . , s, we define a bipartite auxiliary graph Alj with bipartition (Yl,Wl) and
edge set

E(Alj) = {xw : x ∈ Yl, w ∈Wl and uw ∈ E(G) for each u ∈Mj(x)}.(17)

We call the graphs Alj candidacy graphs because the edges of A
l
j join a vertex x ∈ Yl

to all vertices of Wl which, after fj embeds Y1 ∪ · · · ∪ Yj onto W1 ∪ · · · ∪Wj , are still
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Fig. 2. xw ∈ E(Al
j).

good candidates for the image of x (see Figure 2).
Said another way, every neighbor w of x in Alj is joined in G to the images of

the already embedded neighbors of x, and thus fl(x) could be set to w if the lth step
(i.e., Yl being mapped onto Wl) were next.

The construction of the embedding proceeds as follows. Let f1 be any bijection
between Y1 and W1. At this initial stage the graph Al1 is isomorphic to G[W1,Wl] for
all l = 2, . . . , s, and thus it is super (d, ε)-regular. We set ε1 = ε.

Assume that there exists an embedding fj of H[Y1∪· · ·∪Yj ] into G[W1∪· · ·∪Wj ]
such that the candidacy graphs Alj , l = j + 1, . . . , s, are super (dj , εj)-regular. Our
goal is to extend fj to fj+1 by constructing a perfect matching σj+1 : Yj+1 → Wj+1

in Aj+1
j such that all graphs Alj+1, l = j + 2, . . . , s, are super (dj+1, εj+1)-regular for

some εj+1 to be fixed later. Then we shall set fj+1(x) = fj(x) for x ∈ Y1 ∪ · · · ∪ Yj
and fj+1(x) = σj+1(x) for x ∈ Yj+1. The requirement that all graphs A

l
j+1 are super

(dj+1, εj+1)-regular serves to carry the recursion through.
When this procedure reaches the stage j = s − 1, then j + 2 > s and thus there

are no candidacy graphs whose super-regularity must be maintained in the future.
At this point, all that is needed is any perfect matching σs in Ass−1, and we use our
favorite algorithm from [6] to find one. Then f = fs is the desired embedding of H
into G.

To guarantee that there is at least one perfect matching in Ass−1, we use the
fact that, by our construction, Ass−1 is super (d

s−1, εs−1)-regular. A sufficiently small
choice of δ (cf. Theorem 5.1) ensures that ds−1 > 2εs−1. Thus, the minimum degree
in Ass−1 is at least d

s−1m− εs−1m > εs−1m, and by Fact 1, this last candidacy graph
contains a perfect matching.

In light of the preceding discussion, it suffices to show how to extend fj to an
embedding fj+1 such that all graphs A

l
j+1, l = j+2, . . . , s, will be super (dj+1, εj+1)-

regular. Let us fix 2 ≤ j < s−1. For every j+1 < l ≤ s let Bl be the bipartite graph
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with bipartition (Yj+1,Wl) such that xw ∈ E(Bl) if and only if yw ∈ E(Alj), where y
is the unique neighbor of x in Yl (see Figure 3).
Observe that Bl is isomorphic to Alj . Also, set G

l = G[Wj+1,Wl].

In preparation for finding a perfect matching in the candidacy graph Aj+1
j which

would ensure the super-regularity of all future candidacy graphs, we apply procedure
DELETE to remove every edge e = xw of Aj+1

j for which the inequality

(dj+1 − 2εj)m < |NBl(x) ∩NGl(w)| < (dj+1 + 2εj)m(18)

is violated for some l = j + 2, . . . , s. (We omit a formal description of this proce-
dure.) As shown in [13], the resulting subgraph, which we denote by Āj+1

j , is super

(dj , 2s
√
εj)-regular.

Note that the minimum degree in Āj+1
j is at least γm, where γ = dj − 2s√εj .

We choose δ in Theorem 5.1 so small that γ > 3(2s
√
εj)

1/3, and we set λ = λj −
7(2s
√
εj)

1/4. These choices guarantee that the hypotheses of Theorem 4.1 are satisfied.
At this point, the stage is almost set for algorithm CATCH to find the desired

perfect matching σj+1 in Āj+1
j .

We apply CATCH to the graph Āj+1
j , where the sets Si are the sets NBl(w) and

NBl(w1)∩NBl(w2), and the sets Ti are, respectively, the sets NGl(w) and NGl(w1)∩
NGl(w2) for all w ∈ Wl and all pairs w1, w2 of vertices of Wl, l = j + 2, . . . , s. (Note
that k ≤ m+m2.)

As a result, a perfect matching σ = σj+1 of Ā
j+1
j is constructed so that for all

l = j + 2, . . . , s, all w ∈Wl, and all pairs w1, w2 of vertices of Wl,

|NBl(w)||NGl(w)|/m− 2λm < |σ(NBl(w)) ∩NGl(w)|
< |NBl(w)||NGl(w)|/m+ 2λm(19)

and

|NBl(w1) ∩NBl(w2)||NGl(w1) ∩NGl(w2)|/m− 2λm
< |σ(NBl(w1) ∩NBl(w2)) ∩ (NGl(w1) ∩NGl(w2))|

< |NBl(w1) ∩NBl(w2)||NGl(w1) ∩NGl(w2)|/m+ 2λm,(20)

where |σ(S)∩ T | stands for the number of edges of σ that connect a vertex in S with
a vertex in T .

It remains to be shown that for each l = j + 2, . . . , s, the graph Alj+1 is super

(dj+1, εj+1)-regular, where εj+1 = (64λ)1/5. Let Bl
σ be the subgraph of Bl such that

xw ∈ E(Bl
σ) if and only if xw ∈ E(Bl) and σ(x)w ∈ E(Gl). By definition, the graph

Bl
σ is isomorphic to Alj+1 (see Figure 4).
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We now make three crucial observations.
(a) For every vertex x ∈ Yj+1,

degBl
σ
(x) = |NGl(σ(x)) ∩NBl(x)|.

(b) For every vertex w ∈Wl,

degBl
σ
(w) = |σ(NBl(w)) ∩NGl(w)|.

(c) For every pair of vertices w1, w2 ∈Wl,

|NBl
σ
(w1) ∩NBl

σ
(w2)| = |σ(NBl(w1) ∩NBl(w2)) ∩ (NGl(w1) ∩NGl(w2))|.

These observations shall be used in conjunction with Lemma 2.1 to verify the
super-regularity of the graphs Alj+1.

Towards this end, inequality (18) guarantees that for every perfect matching σ of
Āj+1
j , and for each l, the degree degBl

σ
(x) of each vertex x ∈ Yj+1 satisfies

(dj+1 − 2εj)m < degBl
σ
(x) < (dj+1 + 2εj)m.(21)

Also, since Gl is super (d, ε)-regular, the following inequality holds for all but at
most εm2 pairs w1, w2 ∈Wl:

|NGl(w1) ∩NGl(w2)| ≤ (d2 + ε)m.(22)

Similarly, since Bl is super (dj , εj)-regular, it follows that for all but εjm
2 pairs

w1, w2 ∈Wl, we have

|NBl(w1) ∩NBl(w2)| ≤ (d2j + εj)m.(23)

We call a pair w1, w2 ∈Wl good if both (22) and (23) hold. Hence, in total there
are at least (1− 2εj)m2 good pairs in Wl.

By the super (d, ε)-regularity of Gl and the super (dj , εj)-regularity of B
l, we

have |NGl(w)| > (d− ε)m and |NBl(w)| > (dj − εj)m. Hence, conditions (b) and (19)
imply that for each w ∈Wl

degBl
σ
(w) = |σ(NBl(w)) ∩NGl(w)|

> |NBl(w)||NGl(w)|/m− 2λm
> (dj+1 − 4λ)m.
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On the other hand, by (c) and (20), for all good pairs w1, w2 ∈Wl we have

|NBl
σ
(w1) ∩NBl

σ
(w2)| = |σ(NBl(w1) ∩NBl(w2)) ∩ (NGl(w1) ∩NGl(w2))|

< (dj+1 + 4λ)2m.

It follows from Lemma 2.1 that for all l = j + 2, . . . , s, the graph Bl
σ, and thus the

graph Alj+1 (since they are isomorphic), is super (d
j+1, (64λ)1/5)-regular. We conclude

this section with a more formal description of algorithm EMBED.

Algorithm EMBED.
Input: r-partite graphs H and G as in Theorem 5.1.
Output: An embedding f ofH intoG so that eachXi is mapped onto Vi, i = 1, . . . , r.
Phase I:

1. Apply PACK to V (H) and PARTITION to V (G) and denote the output
by V (H) = Y1 ∪ · · · ∪ Ys and V (G) =W1 ∪ · · · ∪Ws, where
|Y1| = |W1| = · · · = |Ys| = |Ws| = m.

2. Apply SATURATE to H and AUGMENT to G and denote the output
by H ′ and G′.

3. Reset H and G to H ′ and G′, respectively.

Phase II:

1. Let f1 be any bijection from Y1 to W1.

2. For j = 1, 2, . . . , s− 2,

(a) apply DELETE to Aj+1
j and denote the output by Āj+1

j ;

(b) apply CATCH to the graph Āj+1
j and to the pairs

(NBl(w), NGl(w)), w ∈Wl, l = j + 2, . . . , s,
(NBl(w1) ∩NBl(w2), NGl(w1) ∩NGl(w2)) for all good pairs w1, w2 ∈
Wl, l = j + 2, . . . , s, and denote the output by σj+1;

(c) set fj+1(x) =

{
fj(x) if x ∈ Y1 ∪ · · · ∪ Yj ,
σj+1(x) if x ∈ Yj+1.

3. Use the Hopcroft–Karp algorithm to construct a perfect matching σs in A
s
s−1

and set

f(x) =

{
fs−1(x) if x ∈ Y1 ∪ · · · ∪ Ys−1,
σs(x) if x ∈ Ys.
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two-person games
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1. Introduction. In an online problem, an online algorithm B is given one
input at a time from a sequence of inputs. B takes an action on each input before
seeing any remaining input. In contrast, an offline algorithm sees the entire input
sequence before it takes any action. Each action yields a positive accumulation. Let
E denote the set of all admissible input sequences. Let C(�e) denote the (expected)
total accumulation of an online or offline algorithm C on �e ∈ E. Let A denote the
optimal offline algorithm, i.e., one that produces the largest total accumulation on
each admissible input sequence. In competitive analysis [4, 25, 27], B’s performance is
measured by its competitive ratio

ΥB = sup
�e∈E

A(�e)

B(�e)
.(1.1)

The online player seeks to minimize this ratio by choosing a suitable B, while the
adversary attempts to maximize it by picking �e after examining B. This paper assumes
that the adversary is oblivious, i.e., it fixes the input sequence before B performs any
computation such as generating random bits.

A planning game is an abstract online problem where the length of the input
sequence is fixed and known a priori to B. This time horizon feature captures many
important online problems including those for portfolio rebalancing [7, 8, 21], asset
trading [2, 5, 11, 12], secretary selection [1, 6, 13, 16], and bipartite matching [15, 17].
A planning game is finite if the numbers of admissible sequences of actions and inputs
are both finite; otherwise, it is infinite. A finite planning game corresponds to a linear
programming problem, where an optimal randomized online algorithm corresponds to
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Exchange Circuit Breaker
α−1 β

Amsterdam 90% 110%
Bangkok 90% 110%

Paris 95% 110%
Taipei 93% 107%

Tel-Aviv 95% 110%
Tokyo 95% 130%
Vienna 95% 105%

Fig. 1. Circuit breaker rules in various exchanges.

an optimal feasible solution. Consequently, we can show that the smallest competitive
ratio of any randomized online algorithm for such a game is the reciprocal of the value
of the game as a zero-sum two-person game.

In this general optimization framework, we investigate the buy-and-hold trading
problem defined as follows. An investor starts with some capital, which is normalized
to one dollar, and trades it for a certain security over n days, which is referred to
as the investment horizon. To avoid triviality, we assume n ≥ 2. On each day, the
security has only one exchange rate, i.e., the number of shares of the security which
one unit of capital can buy. Upon seeing the exchange rate, the investor executes one
transaction for that day and may trade all or part of the remaining capital. All the
capital must be traded by the nth day, and converting the acquired security back to
capital is prohibited. The total accumulation of the investor is the number of shares
of the security she accumulates at the end of the investment horizon. Note that the
competitive ratio between the adversary’s and the investor’s accumulations is exactly
the competitive ratio between the dollar values of the accumulations. This problem is
faced by millions of investors who save for retirement purposes on a long-term basis;
for instance, a widely popular security for today’s investors would be a stock index
fund.

We employ the bounded daily return model, in which the next day’s exchange rate
e′ depends on the current day’s exchange rate e with e/β ≤ e′ ≤ eα for some fixed
α, β > 1. The values n, α, and 1/β are known a priori to the investor. We call α and
1/β the daily return bounds. Figure 1 gives some stock markets which enforce such
ratios through circuit breakers. This model can also be regarded as an approximation
to the geometric Brownian motion model used extensively in the finance community
[3, 9, 14, 18, 20, 24, 26].

A static algorithm is an online algorithm for the buy-and-hold trading problem
such that for 1 ≤ i ≤ n, the (expected) amount of dollars invested by the algorithm
on the ith day is the same for all exchange rate sequences. A dynamic algorithm refers
to any online algorithm for the problem which is not necessarily static. The static
buy-and-hold trading problem refers to the case of the problem where the investor
can use only a static algorithm.

We prove that the smallest possible competitive ratio for any randomized or de-

terministic static algorithm is nαβ−(n−1)(α+β)+(n−2)
αβ−1 . We also obtain a deterministic

static algorithm with this competitive ratio, called the balanced strategy, and prove
that it is the only optimal deterministic static algorithm. In comparison, the popular
dollar averaging strategy has a strictly greater competitive ratio and thus is not op-
timal. The balanced strategy is so simple that it can be executed even by those who
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are not mathematically sophisticated. Starting with one dollar initially, the algorithm

invests α(β−1)
nαβ−(n−1)(α+β)+(n−2) dollar on the first day, (α−1)β

nαβ−(n−1)(α+β)+(n−2) dollar on

the last day, and (α−1)(β−1)
nαβ−(n−1)(α+β)+(n−2) dollar on each of the other days.

Previously, El-Yaniv [10] and El-Yaniv et al. [11, 12] obtained optimal online
algorithms for this unidirectional trading problem under the assumption that the
daily exchange rates, instead of the daily returns, are between a pair of upper and
lower bounds. Al-Binali [2] further studied the same setting in a framework of risk
and reward [19]. Our model and that of El-Yaniv et al. [11, 12] are each formulated
for real but different regulations of stock and foreign currency markets. A subtle
difference between these models is that their model fixes a upper bound and a lower
bound on the daily exchange rates globally for the entire investment horizon, while our
model sets new bounds dynamically every day. Interestingly, although this difference
might seem minor, they give rise to mathematical results of very distinct flavors using
significantly different techniques.

Section 2 discusses how to compute optimal randomized online algorithms for
finite planning games. Section 3 uses the general analysis in section 2 to derive
the balanced strategy and compare it with the dollar averaging strategy. Section 4
concludes the paper with some open problems.

2. General analysis of finite planning games. A finite planning game G can
be regarded as a finite zero-sum two-person game ΓH(m,n) defined as follows. For
any integer k > 0, let Zk = {1, 2, . . . , k}. The maximizing player is the online player,
whose pure strategies are the deterministic online algorithms Bi of G indexed with
i ∈ Zm. The minimizing player is the adversary of G, whose pure strategies are the
input sequences �σj of G indexed with j ∈ Zn. The payoff matrix1 H of ΓH(m,n) is
defined by

H(i, j) =
Bi(�σj)
A(�σj)

> 0, i ∈ Zm and j ∈ Zn.(2.1)

Let Φ(Zk) be the set of all probability density functions defined on Zk. For k = n or
m, each h ∈ Φ(Zk) is regarded as a point in the k-dimensional Euclidean space and
represents a mixed strategy that applies the �th pure strategy indexed by Zk with
probability h(�). By von Neumann’s minimax theorem [22],

max
f∈Φ(Zm)

min
g∈Φ(Zn)

m∑
i=1

n∑
j=1

f(i)g(j)H(i, j) = min
g∈Φ(Zn)

max
f∈Φ(Zm)

m∑
i=1

n∑
j=1

f(i)g(j)H(i, j)

= max
f∈Φ(Zm)

min
j∈Zn

m∑
i=1

f(i)H(i, j)(2.2)

= min
g∈Φ(Zn)

max
i∈Zm

n∑
j=1

g(j)H(i, j),

which is called the value v∗ of ΓH(m,n).

1In (1.1), we use
A(�e)
B(�e) instead of

B(�e)
A(�e)

so that the competitive ratios of different online algorithms

are greater than 1 and therefore are easier to distinguish visually in Figures 6 and 9. In contrast, in

(2.1), we choose
Bi(�σj)

A(�σj)
instead of

A(�σj)

Bi(�σj)
in order to simplify the linear algebra involved.
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Let r∗ be the smallest possible competitive ratio of any randomized online algo-
rithm for G; i.e.,

r∗ = min
f∈Φ(Zm)

max
j∈Zn

A(�σj)∑m
i=1 f(i)Bi(�σj) .

A randomized online algorithm is optimal if its competitive ratio is r∗.
The next theorem relates G and ΓH(m,n).
Theorem 2.1.
1. r∗ = 1

v∗ .
2. An optimal mixed strategy of the online player of ΓH(m,n) induces an optimal

randomized online algorithm for G and vice versa.
Proof. This theorem follows from (2.2).
In light of Theorem 2.1, we use G and ΓH(m,n) interchangeably. A main purpose

of this paper is to derive the exact value of r∗ and an optimal randomized online
algorithm for G. To do so by means of Theorem 2.1, the primal and dual problems of
ΓH(m,n) or G are defined as follows:

Primal: Dual:
minimize xTum maximize yTun
subject to xTH ≥ uTn , subject to Hy ≤ um,

x ≥ 0; y ≥ 0,

where uk is the column vector of k copies of 1.
For each j ∈ Zn, let Hj denote the jth column of H. Moreover, let X and Y

be the sets of feasible solutions to the primal and dual problems of G, respectively.
Let X̄ and Ȳ be the sets of optimal feasible solutions to these problems. Let X∗ and
Y ∗ be the sets of optimal mixed strategies of the online player and the adversary,
respectively.

The next lemma is useful for computing an optimal randomized online algorithm
for G and its competitive ratio via linear programming.

Lemma 2.2.
1. For all nonzero x ∈ X and y ∈ Y , x

xTum
and y

yTun
are mixed strategies for

the online player and the adversary, respectively.
2. minx∈X xTum = r∗ = maxy∈Y yTun.
3. X∗ = 1

r∗ ·X̄ 
= ∅, and Y ∗ = 1
r∗ ·Ȳ 
= ∅.

4. For each nonzero x ∈ X, if j ∈ Zn satisfies xTHj = min�∈Zn xTH�, then �σj
is a worst-case input sequence for the online player’s mixed strategy x

xTum
.

Proof. This lemma follows from Theorem 2.1 and the basics of linear programming
[22].

The next fact is useful for analyzing the uniqueness of an optimal randomized
online algorithm for G.

Fact 2.3 (see [23]). For any x ∈ X̄ and y ∈ Ȳ , x and y are extreme points of the
convex polyhedra X̄ and Ȳ if and only if there is a square submatrix H ′ = (hij)i∈I,j∈J
of H for some I ⊆ Zm and J ⊆ Zn with the following properties:

1. H ′ is nonsingular.
2.
∑
i∈I hijxi = 1 for all j ∈ J .

3.
∑
j∈J hijyj = 1 for all i ∈ I.

4. For all i 
∈ I, xi = 0.
5. For all j 
∈ J , yj = 0.
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The next theorem combines Lemma 2.2 and Fact 2.3 for the case m = n.
Theorem 2.4. Assume that m = n and H−1 exists. Let x = (uTnH

−1)T and
y = H−1un. Further assume x ≥ 0 and y ≥ 0. Let b = x

xTun
.

1. Then, x and y are optimal feasible solutions to the primal and dual problems
of G, respectively.

2. ΥB = r∗ = xTun, where B is the randomized online algorithm corresponding
to the online player’s mixed strategy b; in other words, B is optimal for G.

3. For all j = 1, . . . , n,
A(�σj)
B(�σj)

= ΥB; i.e., B has the same performance relative

to the adversary’s on every input sequence.
4. If every component of x and y is strictly greater than 0, then x and y are

the only optimal feasible solutions to the primal and dual problems of G, and,
consequently, B is the only optimal randomized online algorithm.

Proof.
Statement 1. By direct verification, x ∈ X and y ∈ Y . Then, since xTun =

(yTun)T = yTun, by Lemma 2.2(2) x ∈ X̄ and y ∈ Ȳ .
Statement 2. Note that xTun = r∗ by Statement 1 and Lemma 2.2(2). Then, by

Statement 1 and Lemma 2.2(3), b is an optimal mixed strategy of the online player.
Thus, this statement follows from Theorem 2.1.

Statement 3. As pointed out in Statement 2, xTun = r∗. By direct evaluation
and Statement 2 bTH = 1

r∗ un = 1
ΥB

un. Then this statement follows from the fact

that by definition, the jth component of bTH equals
B(�σj)
A(�σj)

.

Statement 4. To prove the uniqueness of B, by Theorem 2.1(2) and Lemma 2.2
(3), it suffices to show that X̄ has a unique element. By basics of linear programming
[22], X̄ has only a finite number of extreme points, and any element in X is a finite
convex combination of these extreme points. Thus, it suffices to show that x is the
only extreme point of X̄ as follows. Since H−1 exists, x and y are extreme points of
X̄ and Ȳ by Fact 2.3 with I = J = Zn. On the other hand, let z be any extreme point
of X̄. Since y is an extreme point of Ȳ , there is a square submatrix H ′ = (hij)i∈I,j∈J
of H such that z and y satisfy the five conditions in Fact 2.3. Since yj > 0 for j ∈ Zn,
J = Zn by Condition 5. Since H ′ is square, I = Zn and H ′ = H. Then, by Condition
2, zTH = uTn . Since xTH = uTn , we have z = x as desired.

3. Optimal static algorithms. This section applies the general tools in sec-
tion 2 to the static buy-and-hold trading problem to derive the smallest possible
competitive ratio for static algorithms.

3.1. Notations. As specified in section 1, the investor in the buy-and-hold trad-
ing problem is given α, β, and n prior to an n-day investment horizon.

For i ∈ Zn, let ei be the given security’s exchange rate on the ith day of the
investment horizon. Let e0 be the exchange rate on the 0th day, i.e., the day right
before the investment horizon. Without loss of generality, we normalize e0 to 1 to sim-
plify the discussion. An admissible exchange rate sequence is any �e = 〈e1, e2, . . . , en〉
where ei ∈ [ei−1β

−1, ei−1α].
As in section 1, let E denote the set of all admissible exchange rate sequences.

Let A denote the optimal offline trading algorithm. Let B be the investor’s online
trading algorithm. After the adversary examines B but before the investor starts
executing B, the adversary picks and fixes some �e ∈ E. On the ith day for i ∈ Zn,
upon seeing ei, B decides the amount of remaining capital to be traded for shares
of the security without knowing any future exchange rate, i.e., ej with j > i. Note
that A(�e) = max1≤i≤n ei, and B(�e) =

∑n
i=1 aiei, where ai is the (expected) amount



452 G.-H. CHEN, M.-Y. KAO, Y.-D. LYUU, AND H.-S. WONG

of dollars invested by B on the ith day and depends only on the current and past
exchange rate e1, e2, . . . , ei.

For i ∈ Zn, the algorithm Si which trades the entire initial capital of one dollar
on the ith day is called the trade-once algorithm on the ith day. Note that Si is static
and Si(�e) = ei.

Let S be a randomized static algorithm. Let si be the expected amount of dollars
invested by S on the ith day. Note that si ≥ 0 for all i and

∑n
i=1 si = 1. Thus, let

S ′ be the deterministic static algorithm that invests si on the ith day. Also, since
the amounts s1, . . . , sn define a probability density function in Φ(Zn), let S ′′ be the
randomized static algorithm that applies Si with probability si.

Lemma 3.1. S, S ′, and S ′′ are equivalent in the sense that for all �e ∈ E,
S(�e) = S ′(�e) = S ′′(�e).

Proof. The proof is straightforward.
By Lemma 3.1, we identify S,S ′, and S ′′. Also, let r∗s be the smallest competitive

ratio for the static algorithms; then by Lemma 3.1,

r∗s = inf
f∈Φ(Zn)

sup
�e∈E

A(�e)∑n
i=1 f(i)Si(�e)

.(3.1)

3.2. Reduction to finite games. The static buy-and-hold trading problem
is an infinite planning game because the adversary has an infinite number of pure
strategies, while by Lemma 3.1 the online player has n pure strategies Si. In order to
use the tools in section 2, we need to reduce the game to a finite one by eliminating the
adversary’s dominated pure strategies, i.e., non-worst-case exchange rate sequences,
so that the remaining exchange rate sequences are finite in number.

For j = 1, . . . , n, let

�ej = 〈
j︷ ︸︸ ︷

α, α2, . . . , αj ,

n−j︷ ︸︸ ︷
αjβ−1, αjβ−2, . . . , αjβj−n〉.

We call these n exchange rate sequences the downturns; see Figure 2 for an illustration.
Lemma 3.2.
1. Given a static algorithm S, each �e ∈ E is dominated by downturn �ej, i.e.,
A(�e)
S(�e) ≤ A(�ej)

S(�ej)
, where ej = maxni=1 ei.

2. The smallest competitive ratio for the static algorithms is

r∗s = inf
f∈Φ(Zn)

max
1≤j≤n

A(�ej)∑n
i=1 f(i)Si(�ej) .

3. The static buy-and-hold trading problem can be regarded as a finite zero-sum
two-person game ΓK(n, n) with the payoff matrix K defined by K(i, j) = αi−j

if i ≤ j or βj−i if i > j, i.e.,

K =




1 α−1 α−2 · · · α1−n

β−1 1 α−1 · · · α2−n

β−2 β−1 1 · · · α3−n
...

...
...

. . .
...

β1−n β2−n β3−n · · · 1




.

Proof. Statement 1 follows from the fact that
ej
ei
≤ αj−i if i ≤ j and

ej
ei
≤ βi−j

otherwise. Statement 2 follows from (3.1) and Statement 1. For Statement 3, we
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Fig. 2. The downturns.

let Si be the online player’s ith pure strategy and let �ej be the adversary’s jth pure

strategy. As in section 2, the payoff matrix K is defined by K(i, j) =
Si(�ej)
A(�ej)

. The

statement then follows from the facts that A(�ej) = αj and that Si(�ej) = αi if i ≤ j
or αjβj−i otherwise.

In light of Lemma 3.2, an optimal mixed strategy of the online player of ΓK(n, n)
corresponds to an optimal static algorithm. Thus, we next solve ΓK(n, n) to derive
an optimal static algorithm.

3.3. Deriving an optimal static algorithm.
Lemma 3.3. For n ≥ 2, det(K) = (1− α−1β−1)n−1 > 0.
Proof. We use Kn to emphasize the dimension n of K. Let Aij be the submatrix

of Kn obtained by deleting row i and column j. To expand det(Kn) along the first
row of Kn, observe that A11 = Kn−1. Furthermore, the first column of A12 equals
β−1 times that of A11, while the other columns of A12 equal the corresponding ones
of A11; thus det(A12) = β−1 det(A11). For j = 3, . . . , n, det(A1j) = 0 because
in A1j , the first column equals β−1 times the second column. Hence, det(Kn) =
det(A11)−α−1 det(A12) = det(Kn−1)−α−1β−1 det(Kn−1) = (1−α−1β−1) det(Kn−1).
The lemma immediately follows by induction on n.

Let b∗ be the column vector of n components defined by

b∗i =





α(β−1)
nαβ−(n−1)(α+β)+(n−2) , i = 1;

(α−1)(β−1)
nαβ−(n−1)(α+β)+(n−2) , 1 < i < n;

(α−1)β
nαβ−(n−1)(α+β)+(n−2) , i = n.

(3.2)

Since b∗ > 0 and b∗Tun = 1, b∗ represents a mixed strategy of the online player.
Therefore let BAL denote the static algorithm which applies Si with probability b∗i ;
note that by Lemma 3.1, BAL is equivalent to the deterministic static algorithm which
invests b∗i dollars on the ith day. Let c∗ be the vector obtained by swapping the first
and nth components of b∗. Similarly, c∗ > 0 and c∗Tun = 1, and we intend c∗ to
represent a mixed strategy of the adversary.

The next theorem analyzes BAL. In light of Statement 3 of the theorem, we call
BAL the balanced strategy.
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Theorem 3.4. Let r = nαβ−(n−1)(α+β)+(n−2)
αβ−1 .

1. BAL is an optimal static algorithm, and ΥBAL = r∗s = r.
2. BAL is the only optimal static algorithm subject to the equivalence stated in

Lemma 3.1.
3. For j = 1, . . . , n,

A(�ej)
BAL(�ej)

= ΥBAL; in other words, BAL has the same perfor-

mance relative to the adversary’s on every downturn.
Proof. Let b̄ = rb∗, and c̄ = rc∗. By Lemma 3.3, K−1 exists. Below we prove

b̄T = uTnK
−1 and c̄ = K−1un. Then, Statement 1 follows from Theorem 2.4(2) and

the fact that b̄ ≥ 0, c̄ ≥ 0, and b̄Tun = r. Statement 2 follows from Theorem 2.4(4)
and the fact that every component of b̄ and c̄ is greater than 0. Statement 3 follows
from Theorem 2.4(3)

To prove b̄T = uTnK
−1 and c̄ = K−1un, observe that c̄ can be obtained by

swapping α and β in b̄, and the jth column Kj of K can be obtained from the jth
row of K by the same operation. Therefore, b̄TK = uTn if and only if Kc̄ = un, and
we need only to establish b̄TK = uTn . Since b̄TK1 = 1 if and only if b̄TKn = 1, we
show only b̄TKj = 1 for 1 ≤ j < n as follows:

b̄TKj =

n∑
i=1

b̄iK(i, j)

=
1

αβ − 1


α(β − 1)α1−j +

∑
1<i≤j

(α− 1)(β − 1)αi−j

+
∑
j<i<n

(α− 1)(β − 1)βj−i + (α− 1)ββj−n




=
1

αβ − 1

[
α2−j(β − 1) + (α− α2−j)(β − 1)

+(α− 1)(1− βj−n+1) + (α− 1)βj−n+1
]

=
1

αβ − 1
(αβ − 1)

= 1.

3.4. Comparison with the dollar averaging strategy. The dollar averaging
strategy (DA) is the static algorithm which invests an equal amount of capital, i.e., 1/n
dollars, on each trading day. Thus, by Lemma 3.1, DA is the uniformly mixed strategy
for the online player in the game ΓK(n, n). By Theorem 3.4, DA is not an optimal
static algorithm, and ΥBAL < ΥDA. The next lemma gives a closed-form formula of
ΥDA. Figure 3 plots the relationship between ΥDA and ΥBAL for 2 ≤ n ≤ 100.

Lemma 3.5. ΥDA = max{n(1−α−1)
1−α−n , n(1−β−1)

1−β−n }.
Proof. Let Bj =

∑n
i=1 K(i, j). By Lemma 3.2, ΥDA = max1≤j≤n n

Bj
. By algebra,

Bj+1 −Bj is a decreasing function of j. Thus, Bj is a function of j whose minimum
occurs at one end of the domain {1, . . . , n}. The lemma follows from this concavi-
ty.

We have also experimented with BAL and DA using Taiwan’s market data. As
shown in Figure 1, the Taipei Stock Exchange (TSE) adopts α = 1/0.93 and β = 1.07.
We select the Taiwan Semiconductor Manufacturing Company (TSMC) and Acer
Computer Company (Acer) for experimental analysis. TSMC is the largest foundry
of wafer manufacturing in the world and is listed on both TSE and the New York
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Fig. 3. The dashed and solid dotted lines denote ΥDA and ΥBAL, respectively, with α = 1/0.93
and β = 1.07.
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Fig. 4. TSMC’s daily closing stock prices in 1997.

Stock Exchange (NYSE) under the symbol TSM. Acer is the world’s third largest PC
manufacturer as well as the fifth largest mobile PC manufacturer.

Figure 4 shows the daily closing prices of TSMC in 1997. All stock prices are
quoted in the New Taiwan dollar (NT dollar). One investment plan is executed each
month. Each plan buys shares of TSMC with an initial capital of one NT dollar
as in section 3; however, the exchange rate of a day is the reciprocal of that day’s
share price without an initial normalization to one. A monthly accumulation is the
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Fig. 5. Accumulations of BAL and DA on TSMC.
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Fig. 6. Realized competitive ratios of BAL and DA on TSMC.

total number of shares acquired over a month. For ease of comparison, a monthly
accumulation is expressed in NT dollar by converting the acquired shares into NT
dollars at the price of the last trading day of each month. Figure 5 shows the monthly
accumulations of BAL and DA on TSMC for each month of 1997. Notice that BAL
and DA are money-making except in September, October, and December. Figure
6 shows the realized competitive ratios of BAL and DA, which are the performance
ratios as defined in (1.1) but with �e set to the actual exchange rate sequences. Note
that for all 12 months, these ratios are less than 1.35. For visual clarity, we join the
monthly accumulations and competitive ratios by line segments and use the solid and
dotted lines to denote the graphs of BAL and DA, respectively. Observe that, overall,
BAL outperforms DA.



OPTIMAL BUY-AND-HOLD STRATEGIES 457

1 2 3 4 5 6 7 8 9 10 11 12
Month

50

60

70

80

90

100

Stock

Price

Fig. 7. Acer’s daily closing stock prices in 1997.
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Fig. 8. Accumulations of BAL and DA on Acer.

Figure 7 shows the daily closing prices of Acer in 1997. Figures 8 and 9 show the
monthly accumulations and realized competitive ratios of BAL and DA, respectively.
The experimental results for Acer lead to similar conclusions to those for TSMC.

4. Open problems. We have presented the balanced strategy BAL and proved
its unique optimality among the static algorithms. Furthermore, each of its exact
competitive ratio and daily investment amounts has a closed-form expression which
takes O(1) time to evaluate. In light of these results, an immediate open problem is
whether there are similar results for dynamic online trading algorithms. There are
two orthogonal directions for further research as follows.

One direction is to change the assumption that the time horizon is fixed and
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Fig. 9. Realized competitive ratios of BAL and DA on Acer.

known a priori to B. For instance, it would be meaningful to consider the scenario
that there is a cash stream instead of a one-time capital at the beginning of the
investment horizon. For this scenario, an investor might need to guess when the cash
stream will end.

The other direction is to replace α and β with a known probability distribution
of the ratio e′

e . This would be an example of the standard approach in finance of con-
sidering the average-case performance under an assumed probabilistic model. While
the worst-case approach in computer science is unnecessarily pessimistic, the average-
case approach in finance is overly dependent on the chosen model. In general, it
would be of interest to combine these two approaches to formulate more informative
computational problems than either approach could.

Acknowledgment. We wish to thank the anonymous referees for very thought-
ful comments. Some of the comments have resulted in open problems in section 4.
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Abstract. We show that Nechiporuk’s method [I. Wegener, The Complexity of Boolean Func-
tions, Teubner-Wiley, New York, 1987] for proving lower bounds for Boolean formulas can be ex-
tended to the quantum case. This leads to an Ω(n2/ log2 n) lower bound for quantum formulas
computing an explicit function. The only known previous explicit lower bound for quantum for-
mulas [A. Yao, Proceedings of 34th IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Los Alamitos, CA, 1993, pp. 352–361] states that the majority function
does not have a linear-size quantum formula. We also show that quantum formulas can be simulated
by Boolean circuits of almost the same size.
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1. Introduction. Computational devices based on quantum physics have at-
tracted much attention lately, and quantum algorithms that perform much faster than
their classical counterparts have been developed [12, 21, 22]. To provide a systematic
study of the computational power of quantum devices, models similar to those for
classical computational devices have been proposed. Deutsch [9] formulated the no-
tion of quantum Turing machine. This approach was further developed by Bernstein
and Vazirani [5], and the concept of an efficient universal quantum Turing machine
was introduced. As in the case of classical Boolean computation, there is also a quan-
tum model of computation based on circuits (or networks). Yao [27] proved that the
quantum circuit model, first introduced by Deutsch [10], is equivalent to the quantum
Turing machine model.

Since every Boolean circuit can be simulated by a quantum circuit, with at most a
polynomial factor increase in its size, any nontrivial lower bound for quantum circuits
could have far-reaching consequences. In classical Boolean circuit theory, all non-
trivial lower bounds are for proper subclasses of Boolean circuits such as monotone
circuits, formulas, bounded-depth circuits, etc. In the quantum case it also seems
that the only hope to prove nontrivial lower bounds is for proper subclasses of quan-
tum circuits. So far the only such known lower bound has been derived by Yao [27]
for quantum formulas.1 The quantum formula is a straightforward generalization of
the classical Boolean formula: in both cases, the graph of the circuit is a tree. Yao
has proved that the quantum formula size of the majority function MAJn is not lin-
ear;2 i.e., if L(MAJn) denotes the minimum quantum formula size of MAJn, then
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1There are exponential lower bounds on the time of quantum computation for the black-box

model (see, e.g., [3]), but they do not apply to the size of quantum circuits.
2The value of MAJn(x1, . . . , xn) is 1 if at least �n/2� of inputs are 1.
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limn−→∞ L(MAJn)/n = ∞. This bound is derived from a bound on the quantum
communication complexity of Boolean functions.

In this paper, we prove an almost quadratic lower bound for quantum formula size.
The key step in the derivation of this lower bound is the extension of Nechiporuk’s
method to quantum formulas; for a detailed discussion of Nechiporuk’s method in the
Boolean setting, see [11, 26]. Nechiporuk’s method has been used in several different
areas of Boolean complexity (see, e.g., [11] for details). It has also been applied to
models where the gates do not take on binary or discrete values, but the input/output
map still corresponds to a Boolean function. For example, in [23] this method has
been used to get a lower bound for arithmetic and threshold formulas. The challenging
part of this method is a step that we shall refer to as “path squeezing” (see section 4
for the exact meaning of it). Although in the case of Boolean gates this part can be
solved easily, in the case of analog circuits it is far from obvious (see [23]). For the
quantum formulas “path squeezing” becomes even more complicated, because here we
should take care of any quantum entanglement and interference phenomena. We show
that it is still possible to squeeze a path with an arbitrary number of constant inputs
to a path with a fixed number of inputs. This leads to a lower bound of Ω(n2/ log2 n)
on the size of quantum formulas computing a class of explicit functions. For example,
we get such a bound for the element distinctness function EDn. The input of EDn,
for n = 2� log �, is of the form (z1, . . . , z�), where each zj is a string of 2 log � bits.
Then EDn(z1, . . . , z�) = 1 if and only if all these strings are pairwise distinct.

At the end of the paper we compare the powers of quantum formulas and Boolean
circuits. Surprisingly, in some sense quantum formulas are not more powerful than
Boolean circuits. Any quantum formula of size s and depth d can be approximated
by a Boolean circuit of size O(s log s log log s) and depth O(d log log s). Similar results
are not known, and most probably are not true, for quantum circuits and other models
which are depending on real number parameters (like arithmetic circuits [23]). The
key idea for this simulation is that the computation of a quantum formula on an input
(which is a pure state in the Hilbert space) can be described as performing a sequence
of unitary operations on 4× 4 density matrices of mixed states.

In this paper we use the notation | · | for two different purposes. When α is a
complex number, |α| denotes the absolute value of α; i.e., |α| = √α · α∗. While if X
is a set, then |X| denotes the cardinality of X.
2. Preliminaries. A quantum circuit is defined as a straightforward generaliza-

tion of an acyclic classical (Boolean) circuit (see [10]). For constructing a quantum
circuit, we begin with a basis of quantum gates as elementary gates. Each elementary
gate g with d inputs represents a unitary operation Ug ∈ U(2d), where U(m) denotes
the group of m×m unitary complex matrices. The gates are interconnected by quan-
tum “wires.” Each wire represents a quantum bit, qubit, which is a 2-state quantum
system represented by a unit vector in C

2. Let {|0〉 , |1〉} be the standard orthonormal
basis of C

2. The |0〉 and |1〉 values of a qubit correspond to the classical Boolean 0
and 1 values, but a qubit can also be in a superposition of the form α |0〉+β |1〉, where
α, β ∈ C and |α|2+ |β|2 = 1. Note that the output of such a gate, in general, is not a
tensor product of its inputs but an entangled state, e.g., a state like 1√

2
|00〉+ 1√

2
|11〉

which cannot be written as a tensor product.
If the circuit has m inputs, then for each d-input gate g, the unitary operation

Ug ∈ U(2d) can be considered in a natural way as an operator in U(2m) by acting
as the identity operator on the other (m− d) qubits. Hence, a quantum circuit with
m inputs computes a unitary operator in U(2m), which is the product of successive
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unitary operators defined by successive gates.
The size of a quantum circuit C, denoted by size(C), is the number of gates

occurring in C. The depth of C, denoted by depth(C), is the length of the longest
path in C from an input to an output gate.

In this paper, we consider quantum circuits that compute Boolean functions.
Consider a quantum circuit C with m inputs. Suppose that C computes the unitary
operator UC ∈ U(2m). We say C computes the Boolean function f : {0, 1}n −→ {0, 1}
if the following holds. The inputs are labeled by the variables x1, x2, . . . , xn or the
constants |0〉 or |1〉. (Different inputs may be labeled by the same variable xj .) We
consider one of the output wires, say, the first one, as the output of the circuit. To
compute the value of the circuit at (a1, . . . , an) ∈ {0, 1}n, let the value of each input
wire with label xj be |aj〉. These inputs, along with the constant inputs to the circuit,
define a unit vector |α〉 in C

2m

. In fact, this vector is a standard basis vector of the
following form (up to some repetitions and a permutation):

|α〉 = |a1〉 ⊗ · · · ⊗ |an〉 ⊗ |0〉 ⊗ · · · ⊗ |1〉 .
The action of the circuit C on the input |α〉 is the same as UC(|α〉). Note that since
UC is unitary, ‖UC(|α〉)‖ = 1. We decompose the vector UC(|α〉) ∈ C

2m

with respect
to the output qubit. Let the result be

UC(|α〉) = |0〉 ⊗ |A0,α〉+ |1〉 ⊗ |A1,α〉 .
Then we define the probability that C outputs 1 (on the input α) as pα = ‖|A1,α〉‖2,
i.e., the square of the length of |A1,α〉 ∈ C

2m−1

. Finally, we say that the quantum
circuit C computes the Boolean function f if for every α ∈ {0, 1}n, if f(α) = 1, then
pα > 2/3; and if f(α) = 0, then pα < 1/3.

Following Yao [27], we define quantum formulas as a subclass of quantum circuits.
A quantum circuit C is a formula if for every input there is a unique path that connects
it to the output qubit. To make this definition more clear we define the computation
graph of C, denoted by GC . The nodes of GC correspond to a subset of the gates of
C. We start with the output gate of C, i.e., the gate which provides the output qubit,
and let it be a node of GC . Once a node v belongs to GC , then all gates in C that
provide inputs to v are considered as adjacent nodes of v in GC . Then C is a formula
if the graph GC is a tree. Figure 2.1 provides examples of quantum circuits of both
kinds, i.e., circuits that are also quantum formulas and circuits that are not formulas.

All circuits that we consider are over some fixed quantum basis. The lower bound
does not depend on the basis; the only condition is that the number of inputs (and
therefore the number of outputs) of each gate be bounded by some fixed constant
number. (This condition is usually considered as part of the definition of a quantum
basis.) For example, this basis can be the set of all 2-input 2-output quantum gates,
and, as is shown in [2], this basis is universal for computation with quantum circuits.

It is well known that any Boolean circuit can be efficiently simulated by a quan-
tum circuit over a universal basis. Indeed, for this purpose, the 3-bit Toffoli gate is
enough (see, e.g., [4, 17]). Similarly, any Boolean formula can be efficiently simu-
lated by a quantum formula using only a Toffoli gate or a basis universal for classical
computation. In the special case, from [24] it follows that there is a polynomial-size
log-depth quantum formula computing the majority function MAJn. This fact implies
that for quantum formulas over reasonable bases (i.e., universal for classical compu-
tation) the threshold probability of the correct answer (23 in the above definition) can
be efficiently boosted to a number arbitrarily close to one.
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Fig. 2.1. Quantum circuits and their computation graphs; the top circuit is not a formula,
while the bottom one is a formula.

For our proof we also need a Shannon-type result for quantum circuits. Knill
[15] has proved several theorems about the quantum circuit complexity of almost all
Boolean functions. We will use the following theorem.

Theorem 2.1 (see [15]). The number of different n-variable Boolean functions
that can be computed by size N quantum circuits (n ≤ N) with d-input d-output
elementary gates is at most 2cN logN , where c depends only on d.

For the sake of completeness, in the appendix we have provided a proof for a
slightly weaker bound. Our approach is different from that in [15], and it seems that
it is shorter and simpler than the proof in [15]. Although the bound that we get is a
little weaker than the bound provided by the above theorem (it is of the form 2O(nN)),
our bound results in the same bound of Theorem 2.1 if log(N) = Ω(n), which is true
for almost all Boolean functions. Thus our result provides the same bound for the
complexity of almost all functions and is sufficient for the bound we get in this paper.

We also need to consider general orthonormal bases in the space C
2n

other than
the standard basis. In the context of quantum physics, we identify the Hilbert space
C

2n

as the tensor product space
⊗n

j=1 C
2, and the standard basis consists of the

vectors

|c1〉 ⊗ · · · ⊗ |cn〉 = |c1 · · · cn〉 , cj ∈ {0, 1}.

Fact 2.2. Let |Aj〉 ∈ C
2k

and |B�〉 ∈ C
2m

be unit vectors (for j and � in some
index sets). If |Aj〉 are pairwise orthogonal and |B�〉 are pairwise orthogonal, then the
family

{
|Aj〉 ⊗ |B�〉 ∈ C

2k+m

: j, �
}

is an orthonormal set.
The following lemma, although seemingly obvious, is crucial for the “path squeez-

ing” technique in the proof of the lower bound.
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Fig. 2.2. Decomposition of a quantum subcircuit acting on disjoint sets of qubits (Lemma 2.3(a)).
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Fig. 2.3. Postponing the gates (Lemma 2.3(b)).

Lemma 2.3. (a) Suppose that C is a subcircuit of a quantum circuit. Let the
inputs of C be divided into two disjoint sets of qubits Q1 and Q2. Suppose that each
gate of C either acts only on qubits from Q1 or only on qubits from Q2. Then there
are subcircuits C1 and C2 such that Cj acts only on qubits from Qj, and the operation
of C is the composition of operations of C1 and C2 no matter in which order they act;
i.e., C = C1 ◦ C2 = C2 ◦ C1. Therefore the subcircuit C can be substituted by C1 and
C2 (see Figure 2.2).

(b) Let C be a subcircuit of a quantum circuit with distinct input qubits q and
r1, . . . , rt. Suppose that only t gates g1, . . . , gt in C act on q. Moreover, suppose that
each gj acts on q and rj. Then, without loss of generality (w.l.o.g.), we can assume
that each qubit rj after entering the gate gj will not interact with any other qubit until
the gate gt is performed (see Figure 2.3).

Proof. Part (a) is based on the following simple observation. If M ∈ U(2m) and
N ∈ U(2n), then

M ⊗N = (M ⊗ In) ◦ (Im ⊗N)

= (Im ⊗N) ◦ (M ⊗ In),

where It is the identity map in U(2
t). Note that the inputs of the subcircuit C may

be in an entangled state; but to see that the equality C = C1 ◦ C2 = C2 ◦ C1 holds,
it is enough to check this equality for the standard basis and extend it to the whole
space by linearity.

Part (b) follows simply from part (a); as in Figure 2.4, part (a) can be applied
on the subcircuit consisting of gates h2 and h3. Note that in this case input qubits rj
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Fig. 2.4. Changing the order of gates (Lemma 2.3(b)).

of gj ’s may also be in an entangled state. Again a linearity argument shows that we
have to consider only the case in which rj ’s are in a product state.

The above lemma is a special case of a more general fact that operations on one
part of a bipartite quantum system do not affect the result of operations on the other
part (for more details see, e.g., [18]).

3. A new equivalent definition for quantum formulas. Kitaev [14] has
brought to our attention that quantum formulas are equivalent to a model that is
very similar to the classical formulas. In this model the inputs and the intermedi-
ate results are density matrices. Each gate is a completely positive trace-preserving
super-operator, which maps density matrices of d-qubit systems to one-qubit density
matrices. The underlying graph, like a classical formula, is a directed tree; i.e., from
each input there is a unique path to the output gate. Thus the output of such a cir-
cuit is a density matrix of a single qubit which provides the probability of the output
“0” or “1.” To make the paper self-contained, we first present the definitions of the
notions mentioned in this new definition.

By a pure state |α〉 we mean a unit vector in some Hilbert space C
2n

. A mixed

state {ψ} in C
2n

is a probability distribution on pure states in this Hilbert space. We
denote such a mixed state as {ψ} = {pk, |ψk〉}, where pk ≥ 0 and

∑
k pk = 1. Then

{ψ} picks the pure state |ψk〉 with probability pk.
The density matrix of a pure state |α〉 is the matrix ρ|α〉 of the linear mapping

|α 〉〈α|; i.e, the mapping |x〉 −→ 〈α |x〉 |α〉. Therefore, if |0〉 , |1〉 , . . . , |2n − 1〉 rep-
resent the standard computational basis of C

2n

and |α〉 = ∑k λk |k〉, then the (i, j)
entry of ρ|α〉 is λiλ

�
j . The importance of the density matrix is that it suffices to char-

acterize the quantum state of the system. Specially, this matrix is enough to find
the probabilities of measurements. In general, the result of each measurement can
be represented by action of a projection operator P on the given state |α〉, where P

is a projection onto some subspace E. Then the probability that the result of the
measurement is in the subspace E is equal to Tr(P ρ|α〉).

The density matrix of a mixed state {ψ} = {pk, |ψk〉} is defined as

ρ{ψ} =
∑
k

pkρ|ψk〉 =
∑
k

pk |ψk 〉〈ψk| .

Like the case of pure states, the probability that the result of the measurement is in
the subspace E is equal to Tr(P ρ{ψ}).

If the (pure or mixed) state |ψ〉 can be written as the tensor product |φ〉 ⊗ |χ〉,
then the density matrix ρ|ψ〉 is equal to the tensor (Hadamard) product ρ|φ〉 ⊗ ρ|χ〉.

The next important notion is partial trace. Consider the Hilbert spaces H1 = C
2n

and H1 = C
2m

, and H = H1 ⊗H2; thus H is isomorphic with C
2n+m

. Let

B1 = { |ui〉 : i = 1, . . . , 2n } and B2 = { |vj〉 : j = 1, . . . , 2m }
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be orthonormal bases for H1 and H2, respectively. Then

B1 ⊗B2 = { |ui〉 ⊗ |vj〉 : i = 1, . . . , 2n, j = 1, . . . , 2m }

is a basis for H. Let ρ be the density matrix of a mixed state |ψ〉 in the space H.
It is possible to restrict the state |ψ〉 to the subspace H1. The result is a partial
trace ρ|H1

= TrH2
ρ, which is the density matrix of some mixed state in the subspace

H1. We also say that the subspace H2 is traced out. The partial trace ρ|H1 enables
us to calculate probabilities of the results of the measurements bearing only on the
subspace H1. We assume that the rows and columns of the matrices ρ and ρ|H1

are labeled by the vectors in the basis B1 ⊗ B2 and B1, respectively. For example,
ρ (|ui1〉 |vj1〉 , |ui2〉 |vj2〉) is the entry of ρ at the row labeled by |ui1〉 ⊗ |vj1〉 and the
column labeled by |ui2〉 ⊗ |vj2〉. With this notation, the partial trace ρ|H1 is defined
as follows:

ρ|H1 (|ui1〉 , |ui2〉) =
2m∑
j=1

ρ (|ui1〉 |vj〉 , |ui2〉 |vj〉) .

Again let E be a subspace of H1. We can identify it with subspace E ⊗ H2 of H.
Let P : H1 −→ E be the projection operator associated with E. The operator P can
be extended to the whole space H in a natural way as the operator P⊗ IdH2

, where
IdH2 is the identity operator on H2. Then the probability that the result of the

measurement is in the subspace E is equal to Tr(P ρ|H1). (For more details on density
matrices of mixed states and the partial trace, see, e.g., [8].)

Let C be a quantum circuit. For inputs of C it is possible to consider mixed
states along with pure states. Toward this end, each input is substituted by its
density matrix and each gate g of C by a superoperator g̃ that maps density matrices
to density matrices. In fact, if the unitary operator of the gate g is U , then the action
of g̃ on the density matrix ρ is as follows:

g̃(ρ) = g ◦ ρ = Uρ U†.(3.1)

Lemma 3.1 (see [1]). If the gates g1 and g2 operate on disjoint sets of qubits,
then for any density matrix ρ we have g1 ◦ g2 ◦ ρ = g2 ◦ g1 ◦ ρ.

First we show that every quantum formula is equivalent to a circuit based on this
new definition. Let F be a quantum formula on a basis of d-bit gates. Construct a
circuit C from F by the following transformations. In each gate g, performing the
unitary operation U ∈ U (2d), keep the only output which is connected to the output
and substitute the operator U by the superoperator [g] = TrH ◦ g̃, where H is the
(d− 1)-dimensional subspace spanned by the qubits removed from the output of this
gate. The fact that the circuit C computes the same function as the formula F follows
from Lemma 2.3. Thus the underlying graph of the circuit C is the same as the
computation tree of the formula F, where the node corresponding with the gate g
computes the superoperator [g].

Now let C be a circuit based on this new definition. We construct a quantum
formula F from C by simply substituting each gate of C, computing the superoperator
T , by a (d + 2)-input (d + 2)-output unitary gate U ; only one output of this gate
is connected to the next gate and the other outputs never interact with any other
qubit. Therefore F satisfies our original definition of quantum formula. The only
thing that remains is to show how we can choose the unitary operators U such that
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the formula F computes the same Boolean function as C. The following theorem
guarantees the existence of the correct operator U for each gate of C. Here L(H) is
the space of linear operators on the Hilbert space H and for unitary operator U on
H, the operator OU ∈ L(H) is defined as OU (M) = U M U†.

Theorem 3.2 (see [7, 13, 16, 20]). Suppose that T : L (H1) −→ L (H2) is a
trace-preserving and completely positive superoperator. Then there are Hilbert spaces
G1 and G2, where dim (G1) = (dim (H2))

2
and dim (G2) = dim (H1) · dim (H2), and

there is a unitary operator U : H1 ⊗ G1 −→ H2 ⊗ G2 such that T = TrG2
◦ OU .

We would like to mention that from now on it might be more useful to accept the
new modified definition as the standard one for quantum formulas in the literature.

4. The lower bound. Let f(x1, . . . , xn) be a Boolean function. Let X =
{x1, . . . , xn} be the set of the input variables. Consider a partition {S1, . . . , Sk} of
X; i.e.,

X =

k⋃
j=1

Sj and Sj1 ∩ Sj2 = ∅ for j1 �= j2.

Let nj = |Sj | for j = 1, . . . , k. Let Fj be the set of all subfunctions of f on Sj obtained
by fixing the variables outside Sj in all possible ways. We denote the cardinality of
Fj by σj .

As an example, we compute the above parameters for the element distinctness
function EDn (see [6]). Let n = 2� log � (so � = Ω(n/ log n)) and divide the n inputs
of the function into � strings each of 2 log � bits. Then the value of EDn is 1 if and
only if these � strings are pairwise distinct. We consider the partition (S1, . . . , S�)
such that each Sj contains all variables of the same string. Thus nj = |Sj | = 2 log �.
Each string in Sj represents an integer from the set {0, 1, . . . , �2 − 1}. The function
EDn is symmetric with respect to Sj ’s; so |Fj | = |Fj′ |. To estimate |F1|, note that if
the strings (z2, . . . , z�) in S2, . . . , S� represent distinct integers, then the correspond-
ing subfunction is different from any subfunction corresponding to any other string.

Therefore σj = |F1| ≥
(

�2

�−1

)
> ��−1.

Theorem 4.1. Every quantum formula computing f has size

Ω


 ∑

1≤j≤k

log(σj)

log log(σj)


 .

Proof. We give a proof for any basis consisting of 2-input 2-output quantum gates.
The proof for bases with more than two inputs is a simple generalization of this proof.

Let F be a formula computing f . Let Σj be the set of input wires of F labeled
by a variable from Sj , and let sj = |Σj |. Then

size(F ) = Ω


 ∑

1≤j≤k
sj


 .(4.1)

We want to consider the formulas obtained from F by letting the input variables not
in Σj to be some constant value |0〉 or |1〉. In this regard, let Pj be the set of all paths
from an input wire in Σj to the output of F . Finally, let Gj be the set of gates of F
where two paths from Pj intersect. Then |Gj | ≤ sj .
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Let τ be an assignment of |0〉 or |1〉 to the input variable wires not in Σj .
We denote the resulting formula by Fτ . Thus Fτ computes a Boolean function
fτ : {0, 1}nj −→ {0, 1} which is a subfunction of f and a member of Fj . Consider a
path

π = (g1, g2, . . . , gm), m > 2,(4.2)

in Fτ , where g1 is an input wire or a gate in Gj , gm is a gate in Gj or the output wire
of F , and g� �∈ Gj for 1 < � < m.

To show how we can squeeze paths like (4.2) (this is the essence of the Nechiporuk’s
method), we introduce the following notations. We consider a natural ordering
γ1, γ2, . . . , γt on the gates of the formula Fτ , and regard Fτ as a computation in
t steps, where at step � the corresponding gate γ� is performed. We say two qubits
q1 and q2 are strong companions of each other at step � if there is a gate γj such that
j ≤ � and q1 and q2 are inputs of γj . We say qubits q1 and q2 are companions of each
other at step � if there exists a sequence r1, r2, . . . , rp of qubits such that r1 = q1,
rp = q2, and rj and rj+1 (for 1 ≤ j ≤ p − 1) are strong companions of each other
at step � (see Figure 4.1). If q1 and q2 are companions at step �, then they are also
companions at any step after �. For a gate g = γk, we define the set of companions
of g as the union of all companions of input qubits of g at step k.

Suppose that in the path (4.2), g1 = γj0 , gm = γj1 , the inputs of g1 are q0 and q1,
the output of γj0 from the path (4.2) is the qubit q0, and the input of γj1 not from the
path (4.2) is the qubit q2 (see Figure 4.2). Note that q0 is the companion of q2 at step
j1. Let Qπ be the union of all sets of companions of g2, . . . , gm−1 minus q0 and q1 and
their companions at step j1. Let C0 be the circuit defined by the gates g1, . . . , gm−1

from the path (4.2). Suppose that |Qπ| = v and consider C0 as an operation acting on

H = C
2⊗C

2⊗C
2v

. To study the action of the subcircuit C0, it is enough to consider
the action of C0 on the computational basis vectors of the space H. Therefore, while
the inputs of C0 as a subcircuit of Fτ are in general entangled states, we have to study
only the action of C0 on the computational basis vectors which are product states.
We label the inputs |α0〉⊗ |α1〉⊗ |α〉 ∈ H of C0 in such a way that when C0 acts as a
subformula of Fτ , then |α0〉, |α1〉, and |α〉 are replaced by q0, q1, and the companion
qubits in Qπ, respectively. Note that because Fτ is a formula, all qubits in Qπ are
constant inputs of Fτ and do not intersect any other path like (4.2). Therefore, when
C0 acts as a subformula of Fτ , the input |α〉 of the subcircuit C0 is the same for all

possible inputs for |α0〉 and |α1〉. Therefore, let C̃0 be a circuit such that on input

|α0〉⊗|α1〉⊗|0 · · · 0〉 ∈ C
2⊗C

2⊗C
2v

, it first computes |α0〉⊗|α1〉⊗|α〉 then performs
the action of C0 on |α0〉 ⊗ |α1〉 ⊗ |α〉. Then if we replace C0 by C̃0 and assign the
value |0〉 to the qubits in Qπ, the result is a circuit equivalent to Fτ . Suppose that

the action of C̃0 is defined as follows:

|α0〉 ⊗ |α1〉 ⊗ |0 · · · 0〉 −→
∑

c0,c1∈{0,1}
|c0〉 ⊗ |c1〉 ⊗

∣∣Aα0,α1
c0,c1

〉
,(4.3)

where α0, α1 ∈ {0, 1}, and
∣∣Aα0,α1

c0,c1

〉 ∈ C
2v

may be not a unit vector. Let Aπ ⊆ C
2v

be the vector space spanned by
∣∣Aα0,α1

c0,c1

〉
for α0, α1, c0, c1 ∈ {0, 1} and d = dim(Aπ).

Then 1 ≤ d ≤ 16. Let |Aπ
1 〉 , . . . , |Aπ

d 〉 be an orthonormal basis for Aπ. Then we can
rewrite (4.3) as follows:

|α0〉 ⊗ |α1〉 ⊗ |0 · · · 0〉 −→
∑

c0,c1∈{0,1}

∑
1≤j≤d

λα0,α1

j,c0,c1
|c0〉 ⊗ |c1〉 ⊗

∣∣Aπ
j

〉
.(4.4)
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γ�+1

❘

✲
γ�+2

❘

✒ ✒

q3

Fig. 4.1. The qubits q1 and q2 are strong companions at step �; the qubits q2 and q3 are
companions at step �+ 2.

✲

✲
q1

q0
q0

g1 = γj0
✲

❘

g2
✲ gm−1 gm = γj1

✲q0

❘ ❘

❘ ❘❘

q2

Mπ

Qπ

︷ ︸︸ ︷

︸ ︷︷ ︸

Fig. 4.2. Squeezing a path.

Let Mπ be the set of those unitary operations that are performed after one of the
gates g1, . . . , gm−1 on some qubits in Qπ before the step j1. Since qubits in Qπ do
not interact with any other path of the form (4.2), by Lemma 2.3(b) we can postpone
all operations in Mπ after we have computed the output of gm. Let π1, . . . , πk be a
natural ordering on the paths like (4.2) on all paths in Pj (i.e., the last gate of πj+1 is
not performed before the last gate of πj). Consider the sets of postponed operations
Mπ1 , . . . ,Mπk

. Once again Lemma 2.3 implies that we can postpone operations in
Mπ1 after the last gate of π2; then we can postpone operations in Mπ1 and Mπ2 after
the last gate of π3, and so on. Repeating this argument shows that we can postpone
all operations in Mπ1

, . . . ,Mπk
after we compute the output qubit. In this way, the

state of the output qubit, before the postponed operations Mπ1 , . . . ,Mπk
are applied,

is of the form

|0〉 ⊗ |M〉+ |1〉 ⊗ |N〉 ,(4.5)

where the first qubit is the output qubit, and |M〉 and |N〉 are superpositions of
tensor products of orthonormal vectors

∣∣Aπj

k

〉
used in (4.4). By Fact 2.2, these tensor

products of the vectors
∣∣Aπj

k

〉
are unit vectors and pairwise orthogonal. The unitary

operations in the setsMπj (for paths πj of the form (4.2)), which are postponed to the
end, do not change the lengths of |M〉 and |N〉. Thus, as far as the computation of the
Boolean function fτ is concerned, we can ignore all the postponed unitary operations.
For this reason we construct the circuit Fτ from the formula Fτ by eliminating all
postponed operations in Mπj , substituting for each path πj of the form (4.2) the
companion qubits in Qπj

by four new qubits, and the unitary operation (4.4) by the
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operation defined as

|α0〉 ⊗ |α1〉 ⊗ |0000〉 −→
∑

c0,c1∈{0,1}

∑
0≤j≤15

λα0,α1

j,c0,c1
|c0〉 ⊗ |c1〉 ⊗ |j〉 .(4.6)

The output of the circuit Fτ , instead of (4.5), is of the form

|0〉 ⊗ |M ′〉+ |1〉 ⊗ |N ′〉 ,(4.7)

where ‖|M〉‖ = ‖|M ′〉‖ and ‖|N〉‖ = ‖|N ′〉‖. Therefore the circuit Fτ computes fτ .
Moreover,

size(Fτ ) = O(sj),

and for another assignment τ ′, the corresponding circuit Fτ ′ differs from Fτ only at
unitary operations defined by (4.6).

The above discussion implies that σj , the number of subfunctions on Sj , is at most
the number of different Boolean functions computed by size O(sj) quantum circuits.
Therefore, by Theorem 2.1, we get

σj ≤ 2O(sj log sj).

Therefore sj = Ω(log(σj)/log log(σj)). Now the theorem follows from (4.1).
We would like to mention that the fact that a path like (4.2) can be squeezed to a

path of constant length is a special case of the general property of the superoperators
stated in Theorem 3.2.

To apply the general bound of the above theorem, we could consider any of the
several explicit functions used in the case of Boolean formulas (see [11, 26]). As
we mentioned in the beginning of this section, we consider the element distinctness
function EDn. For this function, σj > ��−1, where � = Ω(n/ log n). Therefore, we get
the lower bound Ω(�2) = Ω(n2/ log2 n) for the formula size.

Theorem 4.2. Any quantum formula computing EDn has size Ω(n2/ log2 n).

5. Quantum formulas vs. Boolean circuits. In this section we show that
quantum formulas are not more powerful than Boolean circuits. Therefore as a model
of computation, their strength lies between Boolean formulas and Boolean circuits.

Following the idea developed in section 3, we consider a quantum formula as a
quantum circuit operating on mixed states. For the details of quantum circuits with
mixed states, see [1, 13]. Before we start the proof of the main result of this section,
we need to see how we can bound errors in quantum circuits with mixed states.
Toward this end we need a suitable norm on superoperators. Each superoperator
T which maps density matrices to density matrices is a linear mapping of the form
L(H1) −→ L(H2), where H1 and H2 are finite-dimensional Hilbert spaces and L(Hj)
is the set of linear operators on Hj . Note that L(Hj) itself is a linear space. Let
H be an m-dimensional Hilbert space. There are several norms on the space L(H),
of which we need the following ones. Let A ∈ L(H). We identify A with its m ×m
matrix (aij). The first norm is

M(A) = mmax
i,j
|aij |.

The usual norm is defined as

‖A‖ = sup
|x〉�=0

‖A |x〉‖
‖|x〉‖ = max

{√
λ : λ ∈ Spec(A†A)

}
,
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where Spec(M) is the spectrum of the matrix M , i.e., the set of the eigenvalues of M .
The other norm is the trace norm

‖A‖Tr =
∑

λ∈Spec(A†A)

√
λ.

We need the next norm ‖·‖� to define another norm: let T be a linear operator that
maps matrices to matrices; i.e., T ∈ L(L(H)); then

‖T‖� = sup
A �=0

‖TA‖Tr

‖A‖Tr

.

The last norm we consider is the diamond norm, defined in [13] and also in [1]. To
define this norm, we consider a Hilbert space G such that dim(G) ≥ dim(H) and we
let

‖T‖� = ‖T ⊗ IG‖� ,

where IG is the identity operator on G. The following are the basic properties of these
norms:

(i) 1
mM(A) ≤ ‖A‖ ≤M(A).

(ii) ‖A‖Tr ≤ m ‖A‖.
(iii) ‖T (ρ)‖Tr ≤ ‖T‖� ‖ρ‖Tr, for the density matrix ρ.
(iv) ‖TR‖� ≤ ‖T‖� ‖R‖�.
(v) ‖T ⊗R‖� = ‖T‖� ‖R‖�.
(vi) If T = g̃, for some quantum gate g, or T = TrF, then ‖T‖� = 1.

The properties (iii)–(vi) are proved in [1, 13].
For any operator V ∈ L(H) we define the operator OV ∈ L(L(H)) as

OV (M) = V M V †, M ∈ L(H).(5.1)

In [1, 13] it is proved that ‖OV − OW ‖� ≤ 2 ‖V −W‖ if ‖V ‖ ≤ 1 and ‖W‖ ≤ 1. We
need the following general form of this inequality.

Lemma 5.1. Let dim(H) = m. For any V,W ∈ L(H) we have

‖OV − OW ‖� ≤ 2m ‖V −W‖ min(‖V ‖ , ‖W‖) +m ‖V −W‖2 .

Proof. We have (for A ∈ L (H ⊗H))

‖OV − OW ‖� = sup
A �=0
‖(OV ⊗ IH)A− (OW ⊗ IH)A‖Tr / ‖A‖Tr

= sup
A �=0

∥∥(V ⊗ IH)A (V
† ⊗ IH)− (W ⊗ IH)A (W

† ⊗ IH)
∥∥

Tr
/‖A‖Tr

= sup
A �=0
‖(V ⊗ IH)A (V

† ⊗ IH)

− ((V + (W − V ))⊗ IH)A ((V
† + (W † − V †))⊗ IH)‖Tr/ ‖A‖Tr

≤ sup
A �=0

∥∥(V ⊗ IH)A ((W
† − V †)⊗ IH)

∥∥
Tr

/ ‖A‖Tr

+ sup
A �=0

∥∥((W − V )⊗ IH)A (V
† ⊗ IH)

∥∥
Tr

/ ‖A‖Tr(5.2)

+ sup
A �=0

∥∥((W − V )⊗ IH)A ((W
† − V †)⊗ IH)

∥∥
Tr

/ ‖A‖Tr .
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Since ‖MN‖ ≤ ‖M‖ · ‖N‖, ‖M‖ ≤ ‖M‖Tr ≤ m ‖M‖, ‖M ⊗N‖ = ‖M‖ · ‖N‖,∥∥M†∥∥ = ‖M‖, and ‖IH‖ = 1, it follows that
∥∥(V ⊗ IH)A ((W

† − V †)⊗ IH)
∥∥

Tr
≤ m

∥∥(V ⊗ IH)A ((W
† − V †)⊗ IH)

∥∥
≤ m ‖V ⊗ IH‖ · ‖A‖ ·

∥∥(W † − V †)⊗ IH

∥∥
≤ m ‖V ‖ · ‖A‖Tr · ‖W − V ‖ .

By applying a similar reduction to the other terms of (5.2), we derive the following
inequality:

‖OV − OW ‖� ≤ 2m ‖V −W‖ · ‖V ‖+m ‖V −W‖2 .

We can also derive a similar inequality with ‖V ‖ substituted by ‖W‖. This completes
the proof.

We say two n ×m matrices A = (aij) and B = (bij) are δ-close to each other if
|aij − bij | ≤ δ for every 1 ≤ i ≤ n and 1 ≤ j ≤ m. If the m ×m matrices A and B
are δ-close to each other, then

‖A−B‖ ≤M(A−B) ≤ mδ.(5.3)

The following theorem formalizes the general form of the error bound for quantum
circuits when approximating the unitary operator of each gate. This theorem is
actually a generalization of a weaker theorem which has appeared in several papers
(see, e.g., [1, 5, 13]). We need this generalization because once we substitute any
unitary gate S of the original quantum circuit by some approximated gate T , in
general we do not know whether ‖T‖ ≤ 1 or not. (This is the assumption of the
weaker version of this theorem.)

Theorem 5.2. Let Sj , Tj ∈ L(L(C2d

)), 1 ≤ j ≤ �, be defined as Sj = OUj and
Tj = OVj , where Uj ∈ U(2d) is unitary and Vj is δ-close to Uj. Then

‖S� · · ·S3S2S1 − T� · · ·T3T2T1‖� ≤ eη(d,δ)� − 1,

where η(d, δ) = 22d+1δ
(
1 + 2dδ

)
.

Proof. First note that

‖Sj − Tj‖� =
∥∥OUj − OVj

∥∥
�

≤ 2d+1 ‖Uj − Vj‖ (1 + ‖Uj − Vj‖) by Lemma 5.1

≤ 22d+1δ
(
1 + 2dδ

)
by (5.3)

= η(d, δ);

and, by (vi),

‖Tj‖� ≤ ‖Sj‖� + ‖Sj − Tj‖� ≤ 1 + η(d, δ).(5.4)

We also have the following simple inequality:

‖M2M1 −N2N1‖� = ‖M2(M1 −N1)− (M2 −N2)N1‖�
≤ ‖M2‖� ‖M1 −N1‖� + ‖N1‖� ‖M2 −N2‖� .(5.5)
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Now, by repeated applications of (5.4) and (5.5), we have

‖S� · · ·S3S2S1 − T� · · ·T3T2T1‖� ≤ ‖S� · · ·S3S2‖� ‖S1 − T1‖�
+ ‖T1‖� ‖S� · · ·S3S2 − T� · · ·T3T2‖�

≤ η(d, δ) + (1 + η(d, δ)) ‖S� · · ·S3S2 − T� · · ·T3T2‖�
≤ η(d, δ) + η(d, δ)(1 + η(d, δ))

+ (1 + η(d, δ))2 ‖S� · · ·S3 − T� · · ·T3‖�
...

...

≤ η(d, δ)

�−1∑
j=0

(
1 + η(d, δ)

)j

= (1 + η(d, δ))� − 1
≤ eη(d,δ)� − 1.

The following theorem is the immediate consequence of the above theorem. Note
that for a gate g the superoperator g̃ is defined by (3.1).

Theorem 5.3. Let C be a quantum circuit composed of the gates g1, . . . , gs.
Suppose that each gj is a d-bit gate computing the unitary operator Uj ∈ U(2d). For
each 1 ≤ j ≤ s, let Vj ∈ L(C2d

) be a δ-close matrix to Uj. Let Tj ∈ L(L(C2d

)) be
defined as Tj = OVj . For any input density matrix ρ0, let

ψ = (g̃s ⊗ IHs) ◦ · · · ◦ (g̃2 ⊗ IH2
) ◦ (g̃1 ⊗ IH1

) ρ0

be the output of C, where Hj is the Hilbert space generated by the qubits not involved
with the gate gj. Also, let

ζ = (Ts ⊗ IHs
) · · · (T2 ⊗ IH2

)(T1 ⊗ IH1
) ρ0

be the approximated output of C. Then

‖ψ − ζ‖Tr ≤
(
eη(d,δ)s − 1

)
‖ρ0‖Tr ,

where η(d, δ) = 22d+1δ
(
1 + 2dδ

)
.

Theorem 5.4. Let B be a quantum basis. Then each quantum formula of size
� and depth d over the basis B can be simulated with error at most ε by a Boolean
circuit of size O (� µ logµ log logµ) and depth O (d logµ), where µ = �log �− log ε�.

Proof. The basic idea of the simulation is to look at the behavior of a quantum
formula as a quantum circuit acting on density matrices of mixed states. We assume,
w.l.o.g., that each gate in the basis B is a 2-bit gate.

Consider a quantum formula F over the basis B; suppose that F has t inputs
(constant or variable) and computes the Boolean function f : {0, 1}n −→ {0, 1}. We
show that there is a Boolean circuit C that for any input a = (a1, . . . , an) ∈ {0, 1}n
simulates the action of F on a. Let |α〉 = |0〉 ⊗ |A0〉+ |1〉 ⊗ |A1〉 be the output of F

on the input a. Suppose that the first qubit is the output bit. If we trace out the
nonoutput bits of |α〉, the result is a 2 × 2 density matrix ρfinal = ρ||α〉. From ρfinal

it is easy to calculate the probability of acceptance of F. The formula structure of
F allows us to calculate the density matrix ρfinal without going to the 2

t-dimensional
space. The Boolean circuit C finds the density matrix ρfinal by simulating the gates
of F step by step.
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Since the trace norm of a density matrix is equal to its trace, it follows that
‖ρ0‖Tr = 1, where ρ0 is the density matrix of the input.

Now the gates of F are no longer acting on pure states, but they are acting on
mixed states. If the input of a gate gj (performing the unitary operation Uj) is the

4 × 4 density matrix ρ, then the output is the density matrix ρ′ = Uj ρ Uj
†. Of the

two output bits q1 and q2 of this gate, only one, say, q1, is connected to the output
bit of F. Therefore we trace out the system representing q2 and consider the new
density matrix ρ|q1 = Trq2ρ′ for q1. By repeating this process for each gate of F we
finally get the desired density matrix ρfinal. The correctness of this process follows
from Lemma 3.1.

The Boolean circuit C can simulate the calculations of these density matrices ρq1 .
The only problem for this simulation is the proper approximation of the entries of
unitary matrices Uj . If we substitute each entry of Uj by its first µ = −�log2 δ� bits,
then we get a matrix that is δ-close to Uj . Let F̃ be the resulting formula and ρ̃final

be the output of F̃. Then, by Theorem 5.3, ‖ρfinal − ρ̃final‖Tr ≤ eη(d,δ)�−1. Therefore
if δ = O

(
ε
�

)
, i.e., µ = O (log �− log ε), then the simulation of F by F̃ has at most ε

error. The theorem now follows from the fact that addition and multiplication of m
bits numbers can be carried out by Boolean circuits of size O(m logm log logm) and
depth O(logm) (see [19, 26]).

Why does this proof not provide a Boolean formula instead of a Boolean circuit?
The reason is that to calculate ρ′ = Uj ρ Uj

†, we need four copies of each entry of ρ.
Thus the fan-out of the gates in the Boolean circuit obtained from the formula F̃ is 4.
This means that the Boolean formula equivalent to this Boolean circuit, in general,
has size exponential in �; this size is at least Ω

(
�3
)
if the graph of F is a full binary

tree.

6. Concluding remarks. We have extended a classical technique for proving
lower bound for Boolean formula size to quantum formulas. The difficult part was
to effectively deal with the phenomenon of entanglement of qubits. While we have
been successful in extending a classical technique to the quantum case, the challenges
encountered indicate that in general the problem of extending methods of Boolean case
to the quantum case may not have simple solutions. For example, even the seemingly
simple issue of the exact relationship between quantum formulas and quantum circuits
has not been resolved. In the Boolean case, simulation of circuits by formulas is a
simple fact, but in the quantum case it is not clear whether every quantum circuit can
be simulated by a quantum formula. In particular, it is not clear in the process of going
from quantum circuits to formulas how we can modify the underlying entanglement of
qubits while keeping the probability of reaching the final answer the same. We were
also able to show that it is possible to simulate quantum formulas with Boolean circuits
of almost the same size. It does not seem that Boolean formulas could efficiently
simulate their quantum counterparts. Therefore evidently quantum formulas, as a
model of computation, are more powerful than Boolean formulas and less powerful
than Boolean circuits. A better understanding of the relations between these models
remains a challenging problem.

Appendix. Counting the number of Boolean functions computed by
quantum circuits of a given size.

In this appendix we prove the following upper bound.
Theorem A.1. The number of different n-variable Boolean functions that can

be computed by size N quantum circuits (n ≤ N) with d-input d-output elementary
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gates (for some constant d) is at most 2O(nN)+O(N logN).
Proof. Our proof is based on Warren’s bound on the number of different sign-

assignments to real polynomials [25]. We begin with some necessary notations.
Let P1(x1, . . . , xt), . . . , Pm(x1, . . . , xt) be real polynomials. A sign-assignment

to these polynomials is a system of inequalities

P1(x1, . . . , xt)∆1 0, . . . , Pm(x1, . . . , xt)∆m 0,(A.1)

where each ∆j is either “<” or “>.” The sign-assignment (A.1) is called consistent
if this system has a solution in R

t.
Theorem A.2 (Warren [25]). Let P1(x1, . . . , xt), . . . , Pm(x1, . . . , xt) be real

polynomials, each of degree at most d. Then there are at most (4edm/t)t consistent
sign-assignments of the form (A.1).

We consider the class of quantum circuits of size N with d-bit gates computing n-
variable Boolean functions. W.l.o.g., we can assume that n′, the number of input wires
of such circuits, is at most d ·N . We define an equivalence relation ✶ on such circuits:
we write C1 ✶ C2 if and only if C1 and C2 differ only in the label of their gates; in
other words, C1 and C2 have the same underlying graph, but the corresponding gates
in these circuits may compute different unitary operations. The number of different
equivalence classes is at most

(
n′

d

)N

≤ (dN)dN = 2O(N logN).

Now we find an upper bound for the number of different Boolean functions that can
be computed by circuits in the same equivalence class. Fix an equivalence class E.
We use the variables a1 + ib1, a2 + ib2, . . . , aµ + ibµ, where µ = d2N , to denote the
entries of the matrices of the gates of a circuit C in E. By substituting appropriate
values to the variables a1, . . . , aµ, b1, . . . , bµ, we get all circuits in E. On input α =
(α1, . . . , αn) ∈ {0, 1}n, the probability that C outputs 1 can be represented by a real
polynomial

Pα(a1, . . . , aµ, b1, . . . , bµ).

The degree of Pα is at most 2N . There are 2
n polynomials Pα, and the number of

different Boolean functions which can be computed by C by changing the unitary
operators of its gates is at most the number of different consistent sign-assignments
to the following system:

Pα(a1, . . . , aµ, b1, . . . , bµ)− 2
3 ,

Pα(a1, . . . , aµ, b1, . . . , bµ)− 1
3 ,

for α ∈ {0, 1}n. By Theorem A.2 this number is bounded from the above by

(
4e(2N)2n+1

2µ

)2µ

= 2O(nN)+O(N logN).
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[8] C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics. I, John Wiley and Sons,
New York, 1977.

[9] D. Deutsch, Quantum theory, the Church–Turing principle and the universal quantum com-
puter, Proc. Roy. Soc. London Ser. A, 400 (1985), pp. 97–117.

[10] D. Deutsch, Quantum computational networks, Proc. Roy. Soc. London Ser. A, 425 (1989),
pp. 73–90.

[11] P. E. Dunne, The Complexity of Boolean Networks, Academic Press, London, 1988.
[12] L. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the

28th ACM Symposium on Theory of Computing, ACM Press, New York, 1996, pp. 212–
219.

[13] A. Kitaev, Quantum computations: Algorithms and error correction, Russian Math. Surveys,
52 (1997), pp. 1191–1249.

[14] A. Kitaev, private communication, 2000.
[15] E. Knill, Approximating by Quantum Circuits, Los Alamos National Laboratory e-print quant-

ph/9508006, 1995.
[16] K. Kraus, States, Effects, and Operations: Fundamental Notions of Quantum Theory,

Springer-Verlag, Berlin, New York, 1983.
[17] R. Y. Levine and A. T. Sherman, A note on Bennett’s time-space tradeoff for reversible

computation, SIAM J. Comput., 19 (1990), pp. 673–677.
[18] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cam-

bridge University Press, New York, 2000.
[19] A. Schönhage and V. Strassen, Schnelle multiplikation grosser zahlen, Computing, 7 (1971),

pp. 281–292.
[20] B. Schumacher, Sending entanglement through noisy quantum channels, Phys. Rev. A (3), 54

(1996), pp. 2614–2628.
[21] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a

quantum computer, SIAM J. Comput., 26 (1997), pp. 1484–1509.
[22] D. R. Simon, On the power of quantum computation, SIAM J. Comput., 26 (1997), pp. 1474–

1483.
[23] Gy. Turán and F. Vatan, On the computation of Boolean functions by analog circuits of

bounded fan-in, J. Comput. System Sci., 54 (1997), pp. 199–212.
[24] L. G. Valiant, Short monotone formulae for the majority function, J. Algorithms, 5 (1984),

pp. 363–366.
[25] H. E. Warren, Lower bounds for approximation by nonlinear manifolds, Trans. Amer. Math.

Soc., 133 (1968), pp. 167–178.
[26] I. Wegener, The Complexity of Boolean Functions, Teubner-Wiley, New York, 1987.
[27] A. Yao, Quantum circuit complexity, in Proceedings of the 34th IEEE Symposium on Foun-

dations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1993,
pp. 352–361.
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Abstract. A directed multiway cut separates a set of terminals T = {s1, . . . , sk} in a directed
capacitated graph G = (V,E). Finding a minimum directed multiway cut is an NP-hard problem.
We give a polynomial-time algorithm that achieves an approximation factor of 2 for this problem.
This improves the result of Garg, Vazirani, and Yannakakis [Proceedings of the 21st International
Colloquium on Automata, Languages, and Programming, Jerusalem, Israel, 1994, pp. 487–498], who
gave an algorithm that achieves an approximation factor of 2 log k. Our approximation algorithm
uses a novel technique for relaxing a multiway flow function in order to find a directed multiway cut.
It also implies that the integrality gap of the linear program for the directed multiway cut problem
is at most 2.

Key words. approximation algorithms, combinatorial optimization, multicommodity flow, mul-
tiway cut, directed graph

AMS subject classifications. 05C85, 68R10, 68Q20, 68Q25, 68Q35, 90C05, 94C15, 68W25
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1. Introduction. We consider the minimum directed multiway cut problem in
this paper. Let G = (V,E) be a directed graph and let ce, for all e ∈ E, be a
nonnegative capacity associated with the edge set E. Let T = {s1, . . . , sk} ⊆ V be
a set of terminals. A directed multiway cut in G is a set of edges whose deletion
disconnects all directed paths between pairs of terminals. This notion is a natural
generalization of {s, t}-cuts. The capacity of a multiway cut is defined to be the sum
of the capacities of the edges belonging to it. A minimum directed multiway cut is
a directed multiway cut of minimum capacity. The minimum directed multiway cut
problem was considered by Garg, Vazirani, and Yannakakis [4], who showed that it is
NP-hard and MAX SNP-hard even for two terminals [4] and also gave an algorithm
that achieves an approximation factor of 2 log k.

We present a polynomial-time approximation algorithm for the minimum directed
multiway cut problem that achieves an approximation factor of 2, thus improving on
the approximation factor obtained by [4]. Our factor is very close to the approximation
factors known for the undirected version of the problem. Dahlhaus et al. [2] gave a
(2 − 2/k)-approximation algorithm for the undirected edge multiway cut problem.
This result was recently improved by [1] to 3/2−1/k and further by [6] to 1.3438−εk,
where εk > 0. For the undirected vertex multiway cut problem, Garg, Vazirani, and
Yannakakis [4] gave a (2 − 2/k)-approximation algorithm. Note that in the directed
case there is no need to distinguish between the edge and vertex versions of the
problem.

The minimum directed multiway cut problem can be cast as an integer linear
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program. The linear relaxation of this program is an assignment of lengths to the
edges such that the distance between every pair of terminals is at least 1. The dual
program of the linear relaxation is a multicommodity flow function, where commodity
i, 1 ≤ i ≤ k, is defined to be the flow that originates in any terminal j �= i, 1 ≤ j ≤ k,
and whose destination is terminal si. The goal is to maximize the net flow entering
the terminals. We refer to this problem as the multiway flow problem. By the duality
theorem, the optima of the multiway flow problem and the linear relaxation of the
multiway cut problem are equal.

The main technique used by our algorithm is a novel relaxation of the multiway
flow problem. A relaxed multiway flow function allows the total flow on an edge e ∈ E
(taken over all commodities) to go up to 2 · ce. However, the flow on edge e belonging
to the same commodity is not allowed to exceed the capacity ce. We call the dual
problem of the relaxed multiway flow problem the relaxed multiway cut problem. A
relaxed multiway cut attaches multiple lengths to each edge that correspond to the
(primal) constraints on it. The constraints are with respect to the distances between
pairs of terminals.

We present an approximation algorithm that achieves a factor of 2 for the directed
multiway cut problem and is based on rounding an optimal relaxed multiway cut. We
show that the value of the multiway cut produced by the approximation algorithm
does not exceed the value of an optimal relaxed multiway flow function. A relaxed
multiway flow function can ship at most twice the amount of flow that a (standard)
multiway flow function can ship. By the duality theorem, the optima of the relaxed
multiway flow problem and the relaxed multiway cut problem are equal. Hence, we get
that the approximation factor of our algorithm is 2. We also get that the integrality
gap of the (standard) linear program for the multiway cut problem is at most 2.
However, we do not see a direct way for proving this. A more intuitive explanation
for this might be that a relaxed multiway flow function provides more “information”
about the integral solution than a standard multiway flow function.

A relaxation similar in “spirit” of a multicommodity flow function was previously
used by Even, Naor, and Zosin [3] for approximating the undirected subset feedback
vertex set. However, their analysis completely differs from ours and is much more com-
plicated. We believe that our technique for relaxing a multicommodity flow function
will find more applications in the future. We note that our approximation algorithm
uses complementary slackness in a way similar to the (2 − 2/k)-approximation algo-
rithm of Garg, Vazirani, and Yannakakis [4] for the undirected vertex multiway cut
problem.

2. Relaxed multiway flow. A multiway flow function is defined as follows.
Define commodity i, 1 ≤ i ≤ k, to be the flow that originates in any terminal j �= i, 1 ≤
j ≤ k, and whose destination is terminal si. Thus, each commodity is a multisource,
single-sink flow function. An optimal multiway flow function maximizes the net flow
entering the terminals subject to standard multicommodity flow constraints. We
henceforth refer to this flow function as the standard multiway flow function.

We now define a relaxed version of the standard multiway flow function. Denote
by f i the nonnegative flow function of commodity i and denote by f i(e) the flow on
edge e belonging to commodity i. Let N+(v) (N−(v)) denote the set of incoming
(outgoing) edges into (from) vertex v.
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Objective function.

Maximize

k∑
i=1


 ∑

e∈N+(si)

f i(e)−
∑

e∈N−(si)

f i(e)


 .

Preservation. For commodity i, 1 ≤ i ≤ k, for each vertex v ∈ V −T , the amount
of flow of commodity i entering v is equal to the amount of flow of commodity i
leaving v.

Intracommodity constraints. For each commodity i, 1 ≤ i ≤ k, and for each edge
e ∈ E,

f i(e) ≤ ce.

Intercommodity constraints. For each edge e ∈ E,

k∑
i=1

f i(e) ≤ 2 · ce.

The following lemma is immediate.
Lemma 1. A relaxed multiway flow function can ship at most twice the amount

of flow that an optimal (standard) multiway flow function ships.
We now define the relaxed multiway cut problem which is the dual problem of the

relaxed multiway flow problem. Recall that the linear relaxation of the (standard)
multiway cut problem assigns a length to each edge such that the distance between
every pair of terminals is at least 1. In the relaxed multiway cut problem we assign to
each edge e ∈ E nonnegative length variables as follows: variable �(e) corresponds to
the intercommodity constraint on e, and variables di(e), 1 ≤ i ≤ k, correspond to the
intracommodity constraints on e. Define the i-length of a path p to be

∑
e∈p(d

i(e) +
�(e)). The linear program of the relaxed multiway cut problem is defined as follows:

Minimize

k∑
i=1

∑
e∈E

ce · di(e) + 2 ·
∑
e∈E

ce · �(e)

subject to

∀ i, j (i �= j), ∀ path p from sj to si,
∑
e∈p

(di(e) + �(e)) ≥ 1

∀ i, e, di(e), �(e) ≥ 0.

It is implicit that in an optimal solution, all variables are upper bounded by 1. The
above linear program can be solved in polynomial time by the ellipsoid method [5].
This follows by observing that for a given solution, a shortest path computation
between each pair of terminals can either determine that all constraints are satisfied
or discover a violated constraint.

3. The approximation algorithm. We present in this section the approxi-
mation algorithm for the directed multiway cut problem. The algorithm derives a
near-optimal multiway cut from an optimal relaxed multiway cut. The algorithm is
summarized as follows.
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Algorithm. Directed Multiway Cut

Input: A directed graph G = (V,E) with special vertices s1, . . . , sk;
Output: A multiway cut C of G;

1. Compute an optimal relaxed multiway cut.
2. For each terminal si, 1 ≤ i ≤ k, compute a cut Ci.
3. C ← C1 ∪ · · · ∪ Ck.

We now elaborate on the steps of the algorithm. In the first step, an optimal
relaxed multiway cut is computed. In the second step, for each terminal si, 1 ≤ i ≤ k,
define a cut Ci as follows. Let Si be the set of vertices such that for all v ∈ Si, there
exists a path in G from si to v whose j-length is zero for all 1 ≤ j ≤ k and j �= i.
Then, Ci = (Si, V − Si), i.e., the set of (directed) edges going from Si to V − Si in
G. The multiway cut C is defined to be the union of the cuts Ci, 1 ≤ i ≤ k.

Theorem 2. The cut C is a multiway cut with respect to the terminals s1, . . . , sk.
Proof. Suppose, in contradiction, that terminal sj ∈ Si for some i �= j. This can

happen only if there exists a path in G from si to sj whose j-length is zero. This
means that the solution computed in the first step of the algorithm does not satisfy
the constraints of the relaxed multiway cut problem, yielding a contradiction.

3.1. Analysis. We prove that the capacity of the multiway cut C computed
by the algorithm is not greater than the value of an optimal relaxed multiway flow
function. Lemma 1 states that the value of an optimal relaxed multiway flow function
is at most twice the value of an optimal (standard) multiway flow function. By duality,
the value of an optimal multiway cut is greater than or equal to the value of an optimal
(standard) multiway flow function, yielding the desired approximation factor of 2.

Theorem 3. Let f be an optimal relaxed multiway flow function. Then, the
capacity of the multiway cut C is not greater than the value of f .

Proof. We decompose f into a set of flow paths connecting pairs of terminals.
The idea of the proof is to charge the edges of C to flow paths and show that each
flow path is charged at most once. By charging a flow path we mean that it “pays”
the value of the flow it carries. We allow a set of flow paths to be charged by an edge
e if and only if the sum of the flow they carry is at least as big as ce. We denote by
Pe the set of flow paths which edge e ∈ C charges. We show that for any e1, e2 ∈ C,
the intersection of Pe1 and Pe2 is empty.

The complementary slackness conditions for the relaxed multiway cut problem
state that

• the length of each flow path is precisely 1;
• if, for edge e, di(e) > 0, then the corresponding intracommodity constraint

with respect to commodity i is tight;
• if, for edge e, �(e) > 0, then the corresponding intercommodity constraint is

tight.
We first define for each edge e ∈ C the set of flow paths Pe to which it is charged.

If e is an edge in C, then there exists a terminal si such that e ∈ Ci. Edge e must
satisfy at least one of the following:

(1) There exists a commodity j �= i such that dje > 0.
(2) The intercommodity constraint is tight, i.e., �(e) > 0.
Suppose that edge e satisfies (1). In this case, by complementary slackness, the

intracommodity constraint for edge e with respect to commodity j is tight. We define
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Pe to be the set of all flow paths that run between sh, 1 ≤ h ≤ k and h �= j, and sj ,
and use edge e. By definition, the total amount of flow carried by the flow paths in
Pe is equal to ce. Suppose that edge e satisfies (2). In this case, by complementary
slackness, the intercommodity constraint for edge e is tight. By definition,

∑
j

f je = f i(e) +
∑
j �=i

f j(e).

The intracommodity constraint for edge e and commodity j implies that the first
summand can be at most ce. Therefore,

∑
j �=i

f je ≥ ce.

We define Pe to be the set of flow paths that contribute to the left-hand side. If edge
e satisfies both (1) and (2), then we define Pe in accordance with (1).

It remains to show that for any e1, e2 ∈ C, the intersection of Pe1 and Pe2 is
empty. Assume the contrary, that is, a flow path p that runs from sx to sy is charged
by both e1 = (v1, u1) and e2 = (v2, u2), which appear on p in this order. Let si1
and si2 be terminals such that e1 ∈ Ci1 and e2 ∈ Ci2 . (Note that i1 and i2 are not
necessarily distinct.) The sets Pe1 and Pe2 are chosen such that i1 �= y and i2 �= y.

By the definition of Ci2 , there exists a path from si2 to v2 whose y-length is
zero. By construction, either �(e1) > 0 or dye1 > 0. By complementary slackness, the
y-length of p is precisely 1. Hence, there exists a path from si2 to sy whose y-length
is strictly smaller than 1, in contradiction to the requirements of a relaxed multiway
cut. This completes the proof.

4. Discussion. Our approximation algorithm derives a 2-approximate multiway
cut by rounding an optimal relaxed multiway cut solution. We note that it is also
possible to compute a 2-approximate multiway cut from an optimal relaxed multiway
flow function. However, that would require computing an optimal relaxed multiway
flow function f which has the following property. If, for edge e, some constraint is
tight in f , then this constraint has to be tight in every optimal relaxed multiway
flow function. Computing an optimal relaxed multiway flow function which has the
latter property is computationally more expensive than computing an optimal re-
laxed multiway cut solution. Also, the analysis of a “flow-based” algorithm is slightly
more complicated than the analysis of the “cut-based” algorithm. For more details
regarding the flow-based algorithm, the reader is referred to [7].

A simple example shows that an approximation factor of 2 is the best factor
that can be achieved by our algorithms. Garg, Vazirani, and Yannakakis [4] show
that the integrality gap for the undirected multiway cut problem is 2. There exists a
simple reduction from the undirected multiway cut problem to the directed multiway
cut problem, which implies that the same gap holds for the directed multiway cut
problem as well.
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Abstract. We consider separations of reducibilities by random sets. First, we show a result on
polynomial time-bounded reducibilities that query their oracle nonadaptively: for every p-random
set R, there is a set that is reducible to R with k + 1 queries but is not reducible to any other
p-random set with at most k queries. This result solves an open problem stated in a recent survey
paper by Lutz and Mayordomo [EATCS Bulletin, 68 (1999), pp. 64–80]. Second, we show that the
separation result above can be transferred from the setting of polynomial time-bounds to a setting
of rec-random sets and recursive reducibilities. This extends the main result of Book, Lutz, and
Martin [Inform. and Comput., 120 (1995), pp. 49–54] who, by using different methods, showed a
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1. Introduction and related work. We consider separations of reducibilities
in the context of resource-bounded measure theory. In the following, we use the sym-
bol ≤ with appropriate sub- or superscripts to denote binary relations on Cantor
space, the class of all sets of natural numbers. These binary relations are meant as re-
ducibilities and, in particular, we will consider polynomial time-bounded reducibilities
of the following types: Turing (p-T), truth-table (p-tt), bounded truth-table (p-btt),
and bounded truth-table restricted to at most k queries (p-btt(k)); see section 2 for
more precise definitions. We say two reducibilities ≤r and ≤s are separated by an
oracle A if the lower spans of A with respect to these reducibilities, i.e., the classes
{X : X ≤r A} and {X : X ≤s A}, differ. It is easy to see that two reducibilities are
different (as binary relations on Cantor space) iff they are separated by some oracle.
Beyond this simple observation, the question of which reducibilities are separated by
what kind of oracles has been the object of intensive studies. Here, for a given pair of
reducibilities, typical questions are the following. Are there separating oracles of low
complexity? How comprising is the class of separating oracles? Which properties are
sufficient for being a separating oracle?

Ladner, Lynch, and Selman [12] considered separations of the usual polynomial
time-bounded reducibilities in the range between many-one- (p-m-) and p-T-reduci-
bility. They showed that for every distinct pair of such reducibilities, there is a
separating oracle that can be computed in exponential time. In their seminal paper [6],
Bennett and Gill then obtained results about separations by random oracles, i.e., they
showed that certain pairs of reducibilities are separated by almost all oracles in the
sense that the class of separating oracles has measure 1 with respect to uniform
measure on Cantor space. Subsequently, for any k > 0 it was shown for p-T-, p-
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tt-, p-btt-, p-btt(k + 1)-, and p-btt(k)-reducibility that the two latter reducibilities
are separated by almost all tally oracles [10] and that in fact every pair of distinct
reducibilities chosen from this list can be separated by random oracles [16, 21].

A separation by random oracles can be expressed equivalently by saying that the
class of oracles that do not separate the reducibilities under consideration has uniform
measure 0. Lutz and Mayordomo [16] could show for certain pairs of polynomial
time-bounded reducibilities of truth-table type that the class of nonseparating oracles
does not just have uniform measure 0 but can in fact be covered by a martingale
that is computable in polynomial time. Typically, their results are derived from
the assumption that for both reducibilities the number of queries is bounded by a
function in the input length and that the two bounding functions are related in a
specific way, say, one is growing faster than the square of the other. In the special
case where the bounding functions are constant, they showed that for every natural
number k, there is a martingale computable in polynomial time that covers all oracles
that do not separate p-btt(k+1)- and p-btt(k)-reducibility; hence, in particular, these
reducibilities are separated by every p-random oracle. The latter can be rephrased by
saying that these reducibilities are locally separated by the class of p-random oracles.
Here, formally, a nonempty class C locally separates two given reducibilities if and
only if for every set A in C, the lower spans of A with respect to these reducibilities
are different.

We say a class C globally separates two given reducibilities in case for every set A
inC there is a set B that is reducible to A with respect to one of the given reducibilities
but B is not reducible to any set in C with respect to the other reducibility. Moreover,
in case such a set B exists not for all but just for some sets A in C, we say that C
yields a weak global separation of the reducibilities under consideration.

The definitions of the concepts of separations given above are meant for being
applied with pairs of reducibilities ≤r and ≤s where X ≤r Y implies X ≤s Y . In this
situation, the definitions are no more symmetric in the sense that for example sets A
and B witnessing a global separation by a class C must satisfy B ≤s A and B �≤r Z
for all Z in C. In distinguishing local and global separation we follow Book, Lutz,
and Martin [8], who discuss such separations for the classes of Martin-Löf-random,
tally, and sparse sets.

In the sequel we will consider global separations by various classes of random
sets. Such investigations can be viewed as part of a more comprising research project
where one asks which types of reductions are able to transform random objects into
what types of far from random objects. For results in this direction and for further
discussion and references see Juedes, Lathrop, and Lutz [11] as well as Lutz and
Schweizer [18].

Remark 1.1. By definition, every local or global separation by a class C extends
trivially to every nonempty subclass of C. This is false in general, however, for weak
global separations. For example given an oracle A that separates p-btt(2)- and p-
btt(1)-reducibility, the class {A, ∅}, but not its subclass {∅}, yields a weak global
separation of these two reducibilities.

Remark 1.2. By definition, global separations always imply the corresponding
local separation. A similar remark for weak global separations in place of global
separations, however, is false. In order to obtain a counterexample, consider the
class C that consist of all p-random sets plus a single set A that is computable in
polynomial time. Then C does not locally separate p-btt(1)- and p-btt(2)-reducibility
because A does not separate these reducibilities. On the other hand, C yields a weak
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global separation of these reducibilities. The latter fact follows from Theorem 4.1 and
the observation that none of the sets that witness a global separation by the class of
p-random sets will be p-btt(1)-reducible to A.

In Theorem 4.1, we show that the class of p-random oracles yields a global separa-
tion of p-btt(k+1)- and p-btt(k)-reducibility. This, together with Remark 4.3, solves
Problem 7 in a recent survey article by Lutz and Mayordomo [17], where it has been
asked to prove or disprove that, in our terms, the class of p-random oracles yields a
weak global separation of these reducibilities. In section 5, we obtain by basically the
same proof as for Theorem 4.1 that for every natural number k and any rec-random
set R, there is a set that is p-btt(k + 1)-reducible to R but is not btt(k)-reducible
to any rec-random set, where btt(k)-reductions are restricted to at most k nonadap-
tive queries and are computed by total Turing machines that might run in arbitrary
time and space. Thus in particular, the class of rec-random sets globally separates
btt(k + 1)-reducibility from btt(k)-reducibility. By an easy argument similar to the
one given in Remark 1.1, this yields as a special case the main result of Book, Lutz,
and Martin [8], who showed, by using different methods, a corresponding separation
result with respect to the class of Martin-Löf-random sets, which is a proper subclass
of the class of rec-random sets. Moreover, we will argue that in both settings, i.e.,
for polynomial time-bounded, as well as for recursive reductions and martingales, the
corresponding random sets globally separate the corresponding notions of truth-table
and bounded truth-table reducibility.

2. Notation. The notation used in the following is mostly standard, for unex-
plained notation refer to the surveys and textbooks cited in the bibliography [4, 7, 15].
All strings are over the alphabet Σ = {0, 1}. We identify strings with natural numbers
via the isomorphism that takes the length-lexicographical ordering on {λ, 0, 1, 00, . . . }
to the usual ordering on ω, the set of natural numbers. If not explicitly stated differ-
ently, the terms set and class refer to sets of natural numbers and to sets of sets of
natural numbers, respectively.

A partial characteristic function is a (total) function from some subset of the
natural numbers to {0, 1}. A partial characteristic function is finite iff its domain
is finite. The restriction of a partial characteristic function β to a set I is denoted
by β|I and thus, in particular, for any set X, the partial characteristic function X|I
has domain I and agrees there with X. We identify strings of length n in the natural
way with a partial characteristic function with domain {0, . . . , n−1} and hence strings
can be viewed as prefixes of sets. For a partial characteristic function α with domain
{z0 < · · · < zn−1}, the string associated with α is the (unique) string β with domain
{0, . . . , n − 1} defined by β(j) = α(zj). For a set X and a partial characteristic
function σ we write 〈X,σ〉 for the set that agrees with σ for all arguments in the
domain of σ and agrees with X, otherwise.

We will consider the following polynomial time-bounded reducibilities: p-T, p-tt,
where the queries have to be asked nonadaptively, p-btt, where for each reduction
the number of queries is bounded by a constant, and, even more restrictive, p-btt(k)-
reducibility, where for all reductions this constant is bounded by the natural number k.
The relation symbol ≤p

btt refers to p-btt-reducibility, and relation symbols for other
reducibilities are defined in a similar fashion. Expressions such as p-T-reduction and
≤p

T-reduction will be used interchangeably. We represent p-btt-reductions by a pair
of functions g and h computable in polynomial time where g(x) gives the set of strings
queried on input x and h(x) is a truth-table of a Boolean function over k variables
that specifies how the answers to the queries in the set g(x) are evaluated. Here we
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assume, first, via introducing dummy variables, that the cardinality of g(x) is always
exactly k and, second, by convention, that for i = 1, . . . , k, the ith argument of the
Boolean function h(x) is assigned the ith query in g(x) where the queries are ordered
by length-lexicographical ordering. All reducibilities mentioned above can be defined
by specifying an appropriate sequence of total oracle Turing machines that compute
the corresponding reductions. For any total oracle Turing machine M there is a
corresponding functional Γ where Γ(B) = A iff M computes the set A on oracle B.
Equivalently, the functional Γ can be viewed as a binary function from pairs of sets
and strings to {0, 1} such that Γ(B, x) = 1 iff M accepts x on oracle B.

Given a reducibility r, the lower r-span of a set A is the class {X : X ≤r A} of
sets that are r-reducible to A, and the lower r-span of a class C is the class of all sets
that are r-reducible to some set in C.

3. Resource-bounded measure. We give a brief introduction to resource-
bounded measure, which focuses on the concepts that will be used in subsequent
sections. For more comprehensive accounts of resource-bounded measure theory see
the recent survey papers by Ambos-Spies and Mayordomo [4] and by Lutz [15].

The theory of resource-bounded measure is usually developed in terms of mar-
tingales, which can be viewed as payoff functions of gambles of the following type.
A player successively places bets on the individual bits of the characteristic sequence
of an unknown set A or, for short, the player bets on A. The betting proceeds in
rounds i = 1, 2, . . . , where during round i, the player receives the length i − 1 prefix
of A and then, first, decides whether to bet on the ith bit being 0 or 1 and, second,
determines the stake by specifying the fraction of the current capital that shall be
bet. Formally, a player can be identified with a betting strategy b : {0, 1}∗ → [−1, 1]
where the bet is placed on the next bit being 0 or 1 depending on whether b(w) is
negative or nonnegative, respectively, and where the absolute value of the real b(w)
is the fraction of the current capital that shall be at stake.

The player starts with strictly positive, finite capital. At the end of each round, in
case the current guess has been correct, the capital is increased by this round’s stake
and, otherwise, is decreased by the same amount. So given a betting strategy b, we can
inductively compute the corresponding payoff function d by applying the equations

d(w0) = d(w)− b(w) · d(w), d(w1) = d(w) + b(w) · d(w).
Intuitively speaking, the payoff d(w) is the capital the player accumulates till the end
of round |w| by betting on a set that has the string w as a prefix. Conversely, any
function d from strings to nonnegative reals that for all strings w satisfies the fairness
condition

d(w) =
d(w0) + d(w1)

2
(3.1)

induces canonically a betting function b, where

b(w) =
d(w1)− d(w0)

2
· 1

d(w)

in case d(w) differs from 0 and b(w) = 0 otherwise. We call a function d from strings to
nonnegative reals a martingale iff d(λ) > 0 and d satisfies the fairness condition (3.1)
for all strings w.

By the preceding discussion it follows for gambles as described above that for any
martingale there is an equivalent betting strategy and vice versa. We will frequently
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identify martingales and betting strategies via this correspondence and, if appropriate,
notation introduced for martingales will be extended to the induced betting strategies.

We say a martingale d succeeds on a set A if d is unbounded on the prefixes of A,
i.e., if

lim sup
n∈ω

d(A|{0, . . . , n}) = ∞,

and d succeeds on or covers a class iff d succeeds on every set in the class.
It is easy to see that every countable class C = {C1, C2, . . . } is covered by the

following betting strategy. On input w, let i be the minimal index such that w is a
prefix of Ci, then bet half of the current capital on the next bit agreeing with the
corresponding bit of Ci (and abstain from betting if such an index does not exist). As
a consequence, most of the classes considered in complexity and recursion theory can
be covered by martingales. In order to distinguish such classes in terms of coverability,
one has to restrict the class of admissible martingales. Here, in general, for a given
class C we want to specify a class of admissible martingales that allows the covering of
interesting subclasses of C, but not of C itself. In the context of recursion theory, this
led to the consideration of recursive martingales [23, 24, 25, 27], whereas in connection
with complexity classes one has to impose additional resource-bounds [1, 4, 14, 15, 20].
An effective martingale d is always confined to rational values and there is a Turing
machine that on input w outputs some appropriate finite representation of d(w).

Recall the definition of the uniform measure (or Lebesgue measure) on Cantor
space, which describes the distribution obtained by choosing the individual bits of
a set by independent tosses of a fair coin. It has been shown by Ville that a class
has uniform measure 0 iff the class can be covered by some martingale [4, 26]. The
latter result justifies the following notation: a class has measure 0 with respect to a
given class of martingales iff it is covered by some martingale in the class. The aim
stated above can then be rephrased: for a given class C, we want to specify a class of
admissible martingales such that interesting subclasses of C have measure 0, but not
C itself.

In connection with measure on complexity classes, most attention has been re-
ceived by measure concepts for the exponential time-bounded classes

E = DTIME(2lin) and EXP = DTIME(2poly).

For example, in the case of the class E, Lutz proposed to use martingales that on
input w are computable in time polynomial in the length of w. Observe that the lat-
ter time-bound yields the same class of martingales as the time-bound 2O(|x|) where
x is the minimal string not in the domain of w; i.e., if w is viewed as prefix of a
set A, then x is the minimal string y such that A(y) is not encoded in w. Lutz could
show that for every constant c, the subclass DTIME(2c·n) of E can be covered by
such a martingale, but not E itself. The class of polynomial time-bounds used to
define measure on E is so robust that, similar to the case of unrestricted martingales,
martingales and betting strategies that can be computed in polynomial time are essen-
tially equivalent. (However, in general, a fixed polynomial bound on the running time
might not be preserved in the transition from a betting strategy to the corresponding
martingale [3].) Furthermore, there is a similar correspondence between martingales
and betting strategies in the case of martingales used to define measure on EXP [3]
and in the case of recursive martingales [24].

We say a set is p-random if the set cannot be covered by a martingale that is
computable in polynomial time, and we write p-RAND for the class of all p-random
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sets. The notion rec-random set and the class rec-RAND of all rec-random sets are de-
fined likewise with recursive martingales in place of martingales that are computable
in polynomial time. Moreover, we will consider Martin-Löf-random sets [19]. These
have been characterized in terms of martingales by Schnorr [24]. A set is Martin-Löf-
random if and only if it cannot be covered by a subcomputable martingale. A mar-
tingale d is subcomputable iff there is a recursive function g in two arguments such
that for all strings w, the sequence g(w, 0), g(w, 1), . . . is nondecreasing and converges
to d(w).

The classes of p-random, rec-random, and Martin-Löf random sets all have uni-
form measure 1 because the class of sets on which a single martingale succeeds always
has uniform measure 0 and, by σ-additivity, the same holds for every countable union
of such classes. By definition, any rec-random set is p-random but the reverse impli-
cation is false as one can construct a recursive p-random set by diagonalizing against
an appropriate weighted sum of all p-betting strategies. By the characterization of
Martin-Löf-random sets stated above, it is immediate that the class of Martin-Löf-
random sets is a subclass of rec-RAND. Schnorr [24] has implicitly shown that this
containment is proper. For a proof, it suffices to recall that the prefixes of a Martin-
Löf-random set can not be compressed by more than a constant while a corresponding
statement for rec-random sets is false [13, Theorem 3.6.1 and Exercise 2.5.13].

We conclude this section by two remarks in which we describe standard techniques
for the construction of martingales.

Remark 3.1. Let a finite set D be given, as well as a list 〈D1, . . . , Dm〉 of pairwise
disjoint subsets of D that all have the same cardinality k > 0. Then for a partial
characteristic function σ with domain D and a string w of length k we might ask for
the frequency

α(σ,w, 〈D1, . . . , Dm〉) :=
|{j : w is the associated string of σ|Dj}|

m

with which w occurs in σ as associated string at the positions specified by the Di.
In case the sets Di are clear from the context, we suppress mentioning them and we
write α(σ,w) for short.

If we choose the bits of σ by independent tosses of a fair coin, then for every w of
length k, the expected value of α(σ,w) is 1/2k. For large m, only for a small fraction
of all partial characteristic functions with domain D will the frequency of w deviate
significantly from the expected value, as can, for example, be shown by using Chernoff
bounds [22, Lemma 11.9 ]. By using such bounds it is indeed straightforward to show
that given k and a rational ε > 0, we can compute a natural number m(k, ε) such
that for all m ≥ m(k, ε) and for all D and D1, . . . , Dm as above we have

|{σ : D → {0, 1} : 1
2 · 1

2k < α(σ,w, 〈D1, . . . , Dm〉) < 3
2 · 1

2k }|
2|D|

≥ 1− ε.(3.2)

Remark 3.2. Let I be a finite set and let Θ be a subset of all partial characteristic
functions with domain I. We can easily construct a martingale that by betting on
places in I, increases its capital by a factor of 2|I|/|Θ| for all sets B where B|I is
in Θ. Here the martingale takes the capital available when betting on the minimal
element of I and distributes it evenly among the elements of Θ, then computing values
upwards according to the fairness condition for martingales.

4. Separations by p-random oracles. Lutz and Mayordomo [16] have shown
that for any p-random set R, the lower p-btt(k)-span of R is strictly contained in the
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lower p-btt(k+1)-span of R, i.e., the class p-RAND yields a local separation of these
reducibilities. In Theorem 4.1, we extend this local separation to a global separation,
i.e., we show that for any p-random set R there is a set that is p-btt(k+1)-reducible
to R but is not p-btt(k)-reducible to any p-random set.

Theorem 4.1. Let R be a p-random set and let k be a natural number. Then the
lower p-btt(k+1)-span of R is not contained in the lower p-btt(k)-span of p-RAND.

Proof. In order to define a set A and a p-btt(k + 1)-reduction (g0, h0) from A
to R, we let h0(x) be the truth-table of the (k + 1)-place conjunction and we let

g0(x) := {x011k+1, x021k, . . . , x0k+111}, A := {x : g0(x) ⊆ R}.(4.1)

We are done if we can show that if A is p-btt(k)-reducible to a set, then this set cannot
be p-random. So let B be an arbitrary set and assume that A is reducible to B via
the p-btt(k)-reduction (g, h). We will construct a martingale d that is computable in
polynomial time and succeeds on B. To this end, let m(., .) be the function defined
in Remark 3.1 and define a sequence n0, n1, . . . with

n0 = 0, ni+1 > 2ni , log ni+1 > m

(
k + 1,

1

2i+1

)
(4.2)

such that given x of length n, we can compute in time O(n2) the maximal i with
ni ≤ n. Such a sequence can be obtained by standard methods as described in the
chapter on uniform diagonalization and gap languages in Balcázar, Dı́az, and Gabarró
[7]. For example, we can first define a sufficiently fast growing time-constructible
function r : ω → ω and then let ni be the value of the i-fold iteration of r applied
to 0.

It is helpful to view the betting strategy of the martingale d as being performed
in stages i = 0, 1, . . . where the bets of stage i depend on the g-images of the strings
of length ni. While considering the queries made for strings of length ni with i > 0,
we will distinguish short queries with length strictly less than

li :=
⌊ni
2k

⌋
(4.3)

and long queries, i.e., queries of length at least li. We call two strings x and y
equivalent iff, for some i, both have identical length ni and in addition we have

h(x) = h(y) and g(x) ∩ {z : |z| < li} = g(y) ∩ {z : |z| < li} ,(4.4)

i.e., two strings of length ni are equivalent iff they have the same truth-table and the
same set of short queries. Then for some constant c, the number of equivalence classes
of strings of length ni can be bounded from above by

22k
k∑
j=0

(
2li − 1

j

)
≤ 22k

(k + 1) · 2li·k ≤ c · 2ni
2k ·k = c · 2ni

2 .

So the 2ni strings of length ni are partitioned into at most c · 2ni
2 equivalence classes,

hence there is i0 such that for all i > i0, there is an equivalence class of cardinality at
least mi := �log ni�. For all such i, among all equivalence classes of strings of length ni
we choose one with maximal cardinality (breaking ties by some easily computable but
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otherwise arbitrary rule), we let Ji contain the first mi strings in this equivalence
class, and we let

αi =
|A ∩ Ji|
|Ji| .(4.5)

We show now that due to R being p-random, almost all αi are close to 1/2k+1.
Claim 1. For almost all i, αi is contained in the open interval K defined by

K :=

(
1

2
· 1

2k+1
,
3

2
· 1

2k+1

)
.(4.6)

Proof. Fix any index i > i0. Let z1 < · · · < zmi
be the elements of Ji, let Dj

be equal to g0(zj) for j = {1, . . . ,mi}, and let D be the union of D1 through Dmi
.

Recall from Remark 3.1 the definition of the function α. For any partial characteristic
function σ with domain D and any string w of length k + 1, α(σ,w) is equal to the
fraction of all indices i among 1, . . . ,mi such that the string associated with σ|Di

is equal to w. Now the truth table h0 is just the conjunction of the queries given
by g0 and thus by construction, zi is in A iff all strings in Di are in R. Hence by
the definitions of αi and α, we obtain αi = α(σi, v) where v = 1k+1 and σi is the
restriction of R to places in D.

On the other hand, by choice of the mi and by (4.2), we know that mi = �log ni�
is larger than m(k + 1, 1/2i). By definition of the function m in Remark 3.1, it is
then immediate that for all but a 1/2i-fraction of all partial characteristic functions σ
with domain D the value α(σ, v) is in K. If αi, and hence also α(σi, v), is not in K,
then σi = R|D belongs to this exceptional fraction. Remark 3.2 shows that in this
situation, by betting on the places in D, a martingale can increase its capital by a
factor of 2i when betting against the unknown set R.

Now consider the following martingale, where we leave it to the reader to show
that the martingale can be computed in polynomial time. The initial capital 1 is split
into infinitely many parts c1, c2, . . . where ci = 1/2i is exclusively used to place bets
on the strings in the set D that corresponds to the index i, i.e., the strings that are
in g0(x) for some x in Ji. By the preceding discussion, the martingale can increase the
capital ci to at least 1 for all i > i0 such that αi is not in K. But if this were the case
for infinitely many values of i, the martingale would succeed on R, thus contradicting
the assumption that R is p-random.

By Claim 1 for almost all i, the density of the set A on Ji is confined to the small
interval K with center 1/2k+1. While constructing the martingale d that is meant
to succeed on B, we will exploit that thus in particular for almost all i, this density
differs from 0 and is less than

ρ =
3

2
· 1

2k+1
.(4.7)

Recall from the introduction that one can view reductions as functionals and let Γ
be the functional that corresponds to the btt(k)-reduction given by (g, h), hence for
example A is equal to Γ(B). For all i ≥ i0, let

Hi =
⋃
x∈Ji
{z : z in g(x) and |z| ≥ li},

i.e., Hi is the set of all long queries made by strings in Ji. Then we can argue
that only for a fraction of all partial characteristic functions σ with domain Hi the
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set Γ(〈B, σ〉) has density less than ρ on Ji. Formally, for every i > i0 and for every
partial characteristic function σ with domain Hi, we let

βi(σ) =
|Γ(〈B, σ〉) ∩ Ji|

|Ji|
and, further,

Θi = {σ : σ partial characteristic function with domain Hi and βi(σ) < ρ}.

By Claim 1 for almost all i, the density αi of the set A = Γ(B) on Ji is less than ρ,
hence the restriction of B to Hi must be contained in Θi by definition of Θi.

We will argue next that there is some δ < 1 such that for almost all i, the set Θi
comprises at most a δ-fraction of all partial characteristic functions with domain Hi.
We will then exploit the latter fact in the construction of the martingale d by betting
against the (1 − δ)-fraction of partial characteristic functions outside of Θi, which
have already been ruled out as possible restriction of B to Hi.

For the moment, let τx be the Boolean function obtained from h(x) by hard-
wiring B(z) into h(x) for all short queries z in g(x). By definition for all x, the
queries in g(x) are assigned to the variables of h(x) in length-lexicographical order,
hence for equivalent strings x and y, the Boolean functions τx and τy are identical.
Thus for every i > i0, all strings in Ji are mapped to the same Boolean function,
which we denote by τi. We call a Boolean function constant iff it evaluates to the
same truth value for all assignments to its arguments (and hence in particular all
0-place Boolean functions are constant).

Claim 2. For almost all i, τi is not constant.
Proof. If τi is constant, then the value A(x) must be the same for all x in Ji. But

then αi is either 0 or 1, while Claim 1 implies that this is the case for at most finitely
many i.

Claim 3. There is a constant δ < 1 such that for almost all i, the set Θi comprises
at most a δ-fraction of all partial characteristic functions with domain Hi.

Proof. For a given i > i0 such that τi is not constant, consider the random
experiment where we use independent tosses of a fair coin in order to choose the
individual bits of a random partial characteristic function σ̂ with domain Hi. Then
all partial characteristic functions of this type occur with the same probability; hence
the fraction we want to bound is just the probability of picking an element in Θi.

For every string x in Ji, define a 0-1-valued random variable bx, and define a
random variable γi with rational values in the closed interval [0, 1] by

bx(σ̂) := Γ(〈B, σ̂〉, x), γi(σ̂) :=
1

|Ji|
∑
x∈Ji

bx(σ̂).

Consider an arbitrary string x in Ji. By assumption, τi is not constant, hence there is
at least one assignment to σ̂ such that bx(σ̂) is 1. Moreover such an assignment occurs
with probability at least 1/2k because h(x), and thus also τi, has at most k variables.
Thus the expected value of bx is at least 1/2k and by linearity of expectation we
obtain

E(γi) =
1

|Ji|
∑
x∈Ji

E(bx) ≥ 1

|Ji|
∑
x∈Ji

1

2k
=

1

2k
.(4.8)
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If we let p be the probability of the event “γi < ρ,” we have

1

2k
≤ E(γi) ≤ p · ρ+ (1− p) · 1 ≤ ρ+ (1− p) =

3

4
· 1
2k

+ (1− p),(4.9)

where the relations follow, from left to right, by (4.8), by definition of p and by
γi ≤ 1, because the probability p is bounded by 1, and by the choice of ρ in (4.7).
By comparing the first and last term in (4.9) we then obtain that p is bounded from
above by δ := 1− 1/2k+2.

For all i, let Ii = {x : li ≤ |x| < li+1}. The values of ni grow sufficiently fast such
that for some i1 and for all i > i1, the set Hi is contained in Ii. Moreover, by Claim 3,
for some i2 > i0 and all i > i2, there is a set Θi of partial characteristic functions
with domain Hi where Θi contains only a δ-fraction of all such partial characteristic
functions and contains the restriction of B to Hi. Let i3 be the maximum of i1 and i2.

Now we are in a position to describe a betting strategy that succeeds on B.
For a given input w, let x be the (|w| + 1)th string, i.e., the string on which we
might bet. We first compute the index i such that x is in Ii, together with the
corresponding set Hi. In case i ≤ i3 or if x is not in Hi, we abstain from betting.
Otherwise, we place a bet on x according to the betting strategy as described in
Remark 3.2, which, while placing bets on the strings in Hi, increases the capital by
a factor of at least 1/δ by betting against the partial characteristic functions that
are not in Θi. Here all necessary computations can be performed in time 2O(ni) and
hence, by |x| ≥ li = �ni/2k�, in time 2O(|x|). It follows that this betting strategy
induces a martingale computable in polynomial time that on interval Ii preserves its
capital in case i ≤ i3 and increases its capital by a factor of at least 1/δ for all i > i3.

This finishes the proof of Theorem 4.1. Observe that the current proof would
for example also go through if we had chosen the cardinality mi of Ji to be equal
to ni. The actual choice of the mi emphasizes that for given k, the complexity of
the martingale d covering the set B in the upper p-btt(k)-span of A is dominated
by the complexity of computing the sets Ji, whereas the complexity of handling the
assignments on the sets Hi can be neglected.

Remark 4.2. The assertion of Theorem 4.1 remains valid if we simply require
the set R to be n-random instead of p-random, (i.e., if we require that there is no
martingale computable in time O(n) that succeeds on R). For a proof, note that
Ambos-Spies, Terwijn, and Zheng [5] have shown that for every n2-random set R,
there is a p-random set R0 that is p-m-reducible to R while, in fact, the latter assertion
is true for n-random R. Now the relaxed version of Theorem 4.1 follows because the
existence of a separating set A as required in the theorem extends directly from R0

to R.
Remark 4.3. Theorem 4.1 states that the lower p-btt(k + 1)-span of every p-

random set R contains a set A that is not in the lower p-btt(k)-span of any p-random
set. As already noted by Book, Lutz, and Martin [8], for a set R that is not just
p-random but is even Martin-Löf-random, such a set A cannot be recursive. This
follows from the fact that every recursive sets that is p-btt(k + 1)-reducible to a
Martin-Löf-random set is in fact computable in polynomial time. The latter fact is
attributed to folklore by Lutz and Schweizer [18] and can be obtained as a special
case of a result of Book, Lutz, and Wagner [9]. They have shown from rather general
assumptions on the reducibility under consideration that every recursive set that is
reducible to a Martin-Löf-random set must be contained in the corresponding almost-
class, i.e., in the class of sets that have an upper span of uniform measure 1. Their
assumptions are satisfied for most bounded reducibilities considered in the literature
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and, in particular, their result applies to p-btt(k)-reducibility for all k ≥ 0. Moreover,
for the latter reducibilities it was shown by Ambos-Spies [2] that the corresponding
almost-classes are all equal to the class of sets computable in polynomial time. As
a consequence, any recursive set A in the lower p-btt(k + 1)-span of a Martin-Löf-
random set is computable in polynomial time and is hence in the lower p-btt(k)-span
of every Martin-Löf-random set.

From the proof of Theorem 4.1 we obtain the following corollary.
Corollary 4.4. For every p-random set R, the lower p-tt-span of R is not

contained in the lower p-btt span of p-RAND.
Proof. For a given p-random set R and for every k, let the set Ak+1 be defined

in the same way as the set A has been defined in (4.1) in the proof of Theorem 4.1.
Then Ak+1 is p-btt(k + 1)-reducible to R, but is not p-btt(k)-reducible to any p-
random set. Moreover, the set

B = {x : x = 1k0y and y in Ak}
is p-tt-reducible to R by construction of the sets Ak. On the other hand, if B were
p-btt-reducible to some p-random set R0, then B would be in fact p-btt(k)-reducible
to R0 for some k. Hence, in particular, Ak+1 were p-btt(k)-reducible to R0, thus
contradicting the choice of Ak+1.

5. Separations by rec-random oracles. Lutz [14] showed that recursive mar-
tingales yield a reasonable measure concept for the class of recursive sets, where in
particular the class of all recursive sets cannot be covered by a recursive martingale.1

Recall from the introduction that a set is recursively random iff it cannot be cov-
ered by a recursive martingale and that rec-RAND denotes the class of all such sets.
Next we state two results on recursively random sets that correspond rather closely
to Theorem 4.1 and Corollary 4.4 on p-random sets.

Theorem 5.1. Let the set R be in rec-RAND and let k be a natural number.
Then the lower p-(k + 1)-tt-span of R is not contained in the lower btt(k)-span of
rec-RAND.

Corollary 5.2. For every set R in rec-RAND, the lower p-tt-span of R is not
contained in the lower btt-span of rec-RAND.

In connection with Theorem 5.1 and Corollary 5.2, recall that btt-reducibility is
defined like p-btt-reducibility, except that a btt-reduction is required to be computed
by a total Turing machine that might run in arbitrary time and space and that
btt(k)-reducibility is the restriction of btt-reducibility where the number of queries is
bounded by k.

We omit the proofs of Theorem 5.1 and Corollary 5.2, which are almost literally
the same as in the case of p-random sets. Besides the fact that now we consider
effective martingales and reductions instead of polynomial time-bounded ones, the
main difference is that for arbitrary recursive reductions from A to B we cannot
compute an a priori bound on the size of the queries. Hence in order to ensure that
the sets Hi are pairwise disjoint, the definition of the ni will now depend on the given
reduction (g, h). Here we choose ni+1 so large that all strings queried on inputs of
length ni are short queries with respect to ni+1, i.e., have length strictly less than
�ni+1/2k�.

Remark 5.3. Recall from the discussion preceding Remark 3.1 that the class
of Martin-Löf-random sets is a proper subclass of rec-RAND. As a consequence,

1For further discussion of measure concepts for the class of recursive sets see for example
Schnorr [24], Terwijn [25], and Wang [27].
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by an easy argument similar to the one used in Remark 1.1, from the separation
by the class rec-RAND stated in Theorem 5.1 we obtain the main result of Book,
Lutz, and Martin [8], who showed that for all k, the lower p-btt(k + 1)-span of a
Martin-Löf-random set is never contained in the lower btt(k)-span of the class of all
Martin-Löf-random sets.
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Abstract. We suggest an approach based on geometric invariant theory to the fundamental
lower bound problems in complexity theory concerning formula and circuit size. Specifically, we
introduce the notion of a partially stable point in a reductive-group representation, which generalizes
the notion of stability in geometric invariant theory due to Mumford [Geometric Invariant Theory,
Springer-Verlag, Berlin, 1965]. Then we reduce fundamental lower bound problems in complexity
theory to problems concerning infinitesimal neighborhoods of the orbits of partially stable points. We
also suggest an approach to tackle the latter class of problems via construction of explicit obstructions.
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1. Introduction. It is generally agreed by now [41] that the problems in com-
plexity theory such as P vs. NP [10, 25, 20] and the related lower bound problems
for formula or arithmetic-circuit size are of fundamental importance and may have
connections with deep issues in other areas of mathematics. In this article we suggest
an approach based on geometric invariant theory [37, 38] to several such lower bound
problems concerning formula and circuit size. We shall focus on formulae and circuits
over integers or algebraically closed fields of arbitrary characteristic before addressing
the ones over finite fields. Our work is based on the classical geometric invariant
theory developed by Hilbert [19], Weyl [46], and others, as well as on the modern
theory developed by Mumford, Fogarty, and Kirwan [37], Nagata [31], Seshadri [40],
Haboush [17], Luna [27], Kempf [23], and others. Especially central in this paper is
the powerful notion of stability in geometric invariant theory [19, 37, 23, 27, 40].

For a survey of earlier algebraic and geometric techniques in lower bound prob-
lems, see [5]; for a survey of earlier combinatorial techniques, see [3]. A starting point
for our investigation was a result by one of the authors [33] that provided a concrete
support for the P �= NC conjecture by an unconditional proof of its weaker impli-
cation in a restricted but natural and realistic PRAM model without bit operations,
which contains virtually all known fast parallel algorithms for algebraic and weighted-
combinatorial-optimization problems. In [33] it is shown that well-known network flow
problems such as min-cost flow and max-flow, which can be solved efficiently without
bit operations sequentially—i.e., they have the so-called strongly polynomial time al-
gorithms [16]—cannot be solved efficiently in this model. Specifically, consider the
max-flow problem. Since it is P -complete, the P �= NC conjecture implies that it
cannot be solved in the usual PRAM model in O(polylog(N)) time using poly(N)
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processors, where N is the total bitlength of the input. Since the PRAM model with-
out bit operations is just a restricted version of the usual PRAM model, obtained
by not allowing the bit operations in the usual model, it follows from the P �= NC
conjecture that the max-flow problem cannot be solved in the PRAM model without
bit operations as well in O(polylog(N)) time using poly(N) processors. In [33], this
weaker implication of the P �= NC conjecture is proved unconditionally using some
algebraic geometry. (In fact, a stronger lower bound is proved.)

This was a turning point that provided a compelling argument for believing that
algebraic geometry will play a crucial role in the P vs. NC and other separation
problems in complexity theory. The approaches attempted earlier (cf., e.g., [3]) were
combinatorial, but they had a serious natural-proof limitation as pointed out in [39].
The present approach does not have this limitation, since it is based on explicit
constructions (cf. section 5 and Part II [34]) and the results, such as the Hilbert–
Mumford–Kempf criterion [37, 23] for stability (cf. section 3), which work only for
points with specific types of stabilizers. Such points are very rare because almost all
points in the representations under consideration have trivial stabilizers.1 (Loosely
speaking, according to the terminology in [39], the probabilistic proof for existence
of expanders would be natural because it ends up proving that a significant fraction
of graphs are expanders, whereas the proof based on explicit construction [26, 29]
would be unnatural because it works for only a specific graph.) A closer analysis of
the limitation of the techniques in [33] in the context of the usual P vs. NC problem
suggested that geometric invariant theory may help. This led us to explore the role
of geometric invariant theory in the fundamental lower bound problems of complexity
theory.

Geometric invariant theory is the study of the action of an algebraic reductive
group on an algebraic variety. One important problem here is to understand the
structure of this action in the vicinity of the orbit of any fixed point. If the variety
is affine and smooth, the characteristic is zero, and the point is stable in the sense of
Mumford [36] and Kempf [23], i.e., its orbit is closed, then Luna’s étale slice theorem
(cf. [27] and the appendix of [37]), based on the earlier work on stability of Mumford
[36] and others, says that the orbit has a neighborhood which looks like a certain
homogeneous fiber bundle. This gives a complete understanding of the structure of the
action in the vicinity of the orbit of a stable point. The action in the vicinity of the null
cone, i.e., the set of points in V on which all nonconstant homogeneous G-invariant
polynomial functions on V vanish, is, however, not well understood, though there
are some results concerning the structure of the null cone, e.g., the Hilbert–Mumford
criterion [37] and Luna’s stratification [38]. The reason is that the action in the vicinity
of the orbit of an arbitrary point of the null cone may be too complex. However, the
situation may be better if the point under consideration has some weaker form of
stability. We define one such notion, called partial stability, that is also applicable
to the points in the null cone. Then we show that an in-depth understanding of the
structure of a reductive-group action in the vicinity of the orbit of a partially stable
point would lead to resolution of the lower bound problems mentioned above. We also
suggest an approach, which will be developed in depth in Part II [34], for studying
the group action in the vicinity of the orbit of a partially stable point in the null cone.
Such a study is of independent mathematical interest in geometric invariant theory.

1For example, the proof of Theorem 4.1 works only for points that are stabilized by the stabilizer
R of the determinant. However, in the space P (V ) under consideration, the determinant is the only
point that is stabilized by R.
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We mentioned above that the max-flow problem does not have an efficient algo-
rithm in the PRAM model without bit operations. Its dual is the problem of comput-
ing a minimum-weight s-t-mincut in a flow network. This is the weighted optimization
problem associated with s-t-mincuts. The corresponding weighted counting problem
is the problem of computing total weight of all s-t-mincuts in a flow network. Up to
fast parallel reductions, this problem is equivalent in the PRAM model without bit
operations to the problem of computing the permanent of a matrix, which is #P -
complete [44]. Hence it is expected to be much harder than the problem of computing
a minimum-weight s-t-mincut. And yet, paradoxically, the task of proving a lower
bound for this harder problem in the PRAM model without bit operations seems
harder. This is so even if the model is restricted even further by allowing the running
time or the number of processors to depend only on the number of input parameters
and not their bitlength and, furthermore, by not allowing any branching or indirect
references. The lower bound problem in this substantially restricted model is then
equivalent to the one concerning formula size over integers. Valiant [45] conjectured
that the permanent has no formula of polynomial size; this was posed as an algebraic
analogue of the P vs. NP problem with the hope that techniques used in resolving
it may shed light on the P vs. NP problem. Indeed, it is the first problem that we
address in this paper.

The rest of this paper is organized as follows. In section 2 we outline our unified
approach, which reduces the fundamental lower bound problems under consideration
to instances of a certain orbit-closure problem in geometric invariant theory. In sec-
tion 3 we review the main results in geometric invariant theory that we need. In
section 4, we illustrate our approach on the lower bound problem for the formula
size of the permanent. In section 5, we formulate an approach to the orbit-closure
problem via explicit obstructions; these will be studied in depth in Part II of this
paper. In sections 6, 7, and 8 we consider the P vs. NP problem with emphasis on
its arithmetic implication.

2. A unified approach. Let F be an algebraically closed field. Let V be the
vector space of homogeneous forms of degree m in l variables over F . Let Y denote the
l-vector whose entries are these variables. Consider the reductive group G = SLl(F ).
It has a natural action on V . The action of any σ ∈ SLl(F ) on a form h ∈ V is
given by (σh)(Y ) = h(σ−1Y ). Let P (V ) denote the projective space associated with
V . Then G acts on P (V ) as well. We shall think of a form as belonging to either V
or P (V ) depending upon the context. Following Mumford [36], Mumford, Fogarty,
and Kirwan [37], and Kempf [23], we shall say that the form f ∈ P (V ) is stable if the
G-orbit of f in the affine space V is (Zariski) closed.

We shall reduce all lower bound problems under consideration for formulae or cir-
cuits over integers or algebraically closed fields of arbitrary characteristic to instances
of the following general problem.

The orbit closure problem. Given fixed forms g, f ∈ P (V ), does f belong to
the (projective) Zariski closure ∆[g] of the G-orbit of g in P (V )?

The explicitly given forms g and f will depend on the lower bound problem
under consideration. They will be parametrized by l, the number of variables, which
asymptotically goes to infinity. The orbit closure ∆[g] is a compactification of the
homogeneous space G/H, where H is the stabilizer of g. The algebraic geometry of
compactifications of homogeneous spaces is well understood in some special cases such
as toric varieties [13], spherical embeddings [28], and compactifications of symmetric
spaces [9]. In general, however, it seems very complex: a rough measure of this
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complexity, proposed by Luna and Vust [28], is the difference between the dimension
of the compactification and that of the orbit of a Borel subgroup. This is zero for
spherical embeddings but quite high—roughly half of dim(G)—in our case. This is
one reason why the orbit-closure problem might well be intractable if f and g were
arbitrary. The crucial result in this paper, which gives structure to this otherwise
wild problem and connects complexity theory and geometric invariant theory, is that
f , which arises in the context of lower bound problems in complexity theory studied
here, has certain stability property, in the sense of geometric invariant theory [37], and
moreover, both f and g have large nontrivial stabilizers that in a sense characterize
them. We then formulate an approach to the orbit-closure problem, based on so-called
explicit obstructions, that exploits this stability and presence of large characterizing
stabilizers (section 5). This approach is developed in depth in Part II [34].

Specifically, f that arises in our context turns out to be a partially stable point
in the null cone of G (Theorems 4.3 and 7.2). Partial stability (section 3) is a version
of stability for points in the null cone obtained by relaxing the notion of stability
due to Mumford [36], which is for points outside the nullcone. Roughly this means
that (1) f is “almost” stable with respect to a reductive subgroup L ⊆ G that is a
Levi subgroup of a maximal parabolic subgroup P ⊆ G, (2) the orbit Gf is a fiber
bundle over the base space G/P (whose algebraic geometry is very well understood
[24]) such that each fiber is isomorphic to the L-orbit of f , and (3) the dimension
of the fiber is sufficiently large in comparison to that of the orbit Gf . The precise
relationship between these two dimensions will depend on the lower bound problem
under consideration. Generally, the dimension of the orbit Gf will be bounded by a
polynomial in the dimension of the orbit Lf , as the parameter l goes to infinity. If
one could show that the answer to such an instance of the orbit-closure problem in a
particular lower bound problem is negative for all large enough (or, more generally,
infinitely many) l, then it would imply the desired lower bound.

Since g that arises in our context has a nontrivial reductive stabilizer that in a
sense characterizes its structure, it is possible to reduce the orbit-closure problem
further to a certain stabilizer problem as follows. Let Dg denote the stabilizer of g
in SLl(F ). First, we observe that if f lies in the closure of the SLl(F )-orbit of g
in P (V ), then, thinking of f and g as elements of the affine space V , f will lie in
the closure of the GLl(F )-orbit of g in V . However, the stabilizer within SLl(F ) of
any point in the GLl(F )-orbit of g is a conjugate within SLl(F ) of Dg. Hence, every
(Zariski) open neighborhood of f within V will contain a point whose stabilizer in
SLl(F ) is a conjugate of Dg, and the same will hold for any point in the SLl(F )-orbit
of f in V . When this happens we will say that the group Dg ⊆ SLl(F ) is present in
the infinitesimal neighborhood of the SLl(F )-orbit of f . The orbit-closure problem
can now be reduced to the following.

The stabilizer problem. Let D ⊆ G = SLl(F ) be an explicitly given reductive
subgroup and f ∈ V an explicitly given form. Can D occur as a stabilizer in the
infinitesimal neighborhood of the G-orbit of f in V ?

If f ∈ V were a stable form, then Luna’s étale slice theorem provides a satisfactory
answer to this problem. Luna’s result in our setting can be roughly stated as follows.
Let H be the stabilizer of f . If f is stable, then there exists an affine variety N with
an H-action such that some G-invariant affine neighborhood of the orbit of f “looks
like” the homogeneous fiber bundle G ×H N . This is a fiber bundle over the base
space G/H with fiber N , and it is associated with the primary bundle G→ G/H. It
easily follows from this result that if D were to occur in the infinitesimal neighborhood
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of the SLl(F )-orbit of f , then some conjugate of D must be contained in H. This
implies, in turn, that if there exists a G-representation W that contains a trivial H-
representation but not a trivialD-representation, thenD cannot lie in the infinitesimal
neighborhood of SLl(F )-orbit of f , and hence f cannot lie in the (projective) closure
of the SLl(F )-orbit of a form g ∈ P (V ) with Dg = D. We say that such a W is an
obstruction for the pair (f, g); i.e., its existence acts as a guarantee that f cannot lie
in the projective closure of the orbit of g ∈ P (V ).

In our problem, f would be only partially stable. Therefore what we need is an
extension of the preceding approach based on Luna’s result from the stable to the
partially stable situation. We suggest one such approach in this paper (section 5)
based on explicit construction of representation-based obstructions, as above, in the
partially stable situation; this serves as a starting point for our work in Part II [34].
In the context of lower bound problems in complexity theory, one can argue that
obstructions ought to exist in plenty, assuming that the conjectured lower bound
really holds. However, the problem is such that one has to prove their existence
by constructing them more or less explicitly. Explicit construction has already been
useful in complexity theory in a different context. For example, Margulis [29] and
Lubotzky, Phillips, and Sarnak [26] give an explicit construction of expanders that
are useful in a pseudorandom generation. The essential difference is that proving
existence of expanders is easy, while proving existence of obstructions is itself a main
problem.

The lower bound problem that arises in the context of the actual P vs. NP
question (nonuniform boolean version) is for circuits defined over finite fields.2 We
shall reduce it (section 7) to a family of orbit-closure and stabilizer problems where
f ranges over forms that are so-called Fp-equivalent to a certain base form fb. We
show that fb is partially stable and conjecture the same for all forms Fp-equivalent
to it. In any case, the lower bound problem for circuits (or formulae) over integers
is a weaker version of the one over finite fields, in the sense that if g is a polynomial
function with integer coefficients (e.g., the permanent) and Fp a fixed finite field, then
a lower bound on the size of a circuit (or formula) over Fp for computing g, modulo
Fp, implies the same lower bound on the size of a circuit (or formula) over integers for
computing g. As such, it seems preferable to focus at first only on circuits or formulae
over integers. In turn, the lower bound problem for circuits or formulae over integers
for computing g is a weaker version of the problem over complex numbers. Hence,
we shall concentrate mainly on circuits or formulae over complex numbers, or more
generally, over algebraically closed fields of arbitrary characteristic.

3. Preliminaries. Geometric invariant theory is the study of actions of alge-
braic groups on algebraic varieties. Here reductive algebraic groups, such as the
special linear group SLn(F ), F algebraically closed, play a special role because they
are geometrically reductive: this means that if V is a representation of a reductive
group G, then there are enough polynomial functions on V which are invariant under
G to distinguish disjoint closed G-invariant subsets of V . This was proved by Mum-
ford [36] for linearly reductive groups, which include the classical simple groups over
the complex field (cf. Weyl [46]), and was conjectured in general. It was eventually
established by Seshadri [40] for SL2(F ) and by Haboush [17] in general. What we
shall really need is geometric reductivity of the special linear group SLn(F ), where F
is an algebraically closed field of arbitrary characteristic; for general n this was proved

2This finite field is usually taken to be F2, but Fp, for any fixed prime p, will also do.
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by Formanek and Procesi [12] independently of Haboush’s general result.

3.1. Stability and partial stability. Consider the action of a reductive group
G on an algebraic variety X . It turns out that one cannot always put the structure
of an algebraic variety on the set of all orbits of G in X but only on a subset chosen
judiciously. For this purpose Mumford [36] introduced the notion of stability, building
on the classical work of Hilbert [19], and exploited it systematically in his construction
of quotients and moduli spaces. The definition of stability in the literature, though,
has been anything but stable. Here we shall give a simplified definition following
Kempf [23], which is somewhat different from the one in [36, 37].

Let V be a representation of a reductive group G. Then G acts on the projective
space P (V ) of lines in V through the origin. Let y be a point in P (V ) and x ∈ V any
nonzero point on y. We say that y is G-stable, or simply stable if G is clear from the
context, iff the orbit G.x is (Zariski) closed and properly stable iff, in addition, the
stabilizer of y in G is finite. By abuse of notation, we shall sometimes say that x is
stable. We say that y is semistable iff the closure of the orbit G.x does not contain
zero. These definitions clearly do not depend on the choice of x on y. We will say
that x ∈ V is unstable or nilpotent if the closure of its orbit G.x contains zero. The
set of all nilpotent points in V is called the null cone. It can also be characterized
as the set of common zeroes of all homogeneous invariants of positive degree. The
concept of the null cone, important to us, was introduced by Hilbert [19].

Next, we define a weaker form of stability called partial stability, which will play
a crucial role in this paper, and will be studied in depth in Part II. First assume that
the characteristic is zero. Roughly, a point is partially stable if it is stable with respect
to a large, nicely embedded, regular3 reductive subgroup of G. Formally, we say that
y is partial stable if there exists a maximal parabolic subgroup P ⊆ G containing the
stabilizer H of x in G such that

1. H contains the unipotent radical R of P—in other words, the unipotent
radical fixes x;

2. y is “almost” stable with respect to a Levi subgroup L ⊆ P : This means
the stabilizer L′ of x in L is reductive (as it would be if y were stable with
respect to L [32]), and y is stable with respect to a regular reductive subgroup
K ⊆ L, whose rank is less than that of L by a small defect δ (in our case δ
will be one);

3. the dimension of the orbit Lx = L/L′ is large enough in comparison with the
dimension of the orbit Gx. The exact ratio ∆ between these two dimensions
will depend on the lower bound problem under consideration. Generally, the
dimension of Gx will be bounded by a polynomial in the dimension of Lx.

When P = G, δ = 0, and ∆ = 1, this coincides with the usual notion of stability.
Therefore δ and ∆ measure deviation from (complete) stability. It follows from the
definition that H has a Levi decomposition of the form L′R, where L′ is a reductive
subgroup of L. It also follows that the orbit Gx is a fiber bundle over G/P such that
each fiber is an affine subvariety of V isomorphic to L/L′, the L-orbit of x. Moreover,
the dimension of the fiber is sufficiently large in comparison with the dimension of Gx.
That Gx is a fiber bundle over G/P with affine fiber has an important consequence
for us: computation of the cohomology of a quasi-coherent sheaf over Gx can be
reduced to a similar problem over G/P (cf. Theorem 5.4), where it is well understood
[24]. Such explicit computation of cohomology will turn out to be important in our

3This means that the root system of the subgroup is a subsystem of the root system of G.
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approach to the orbit closure problem (section 5).
If the characteristic is positive, we assume in the preceding definition of partial

stability that G is a connected split reductive F -group (i.e., defined over a finite field
F ) and that P and H are also F -groups [42]. This is required to ensure that the Levi
decomposition holds [4, 42].

3.2. Example. Let Y be a vector space of dimension m + 1 with coordinates
y0, . . . , ym; X its subspace with coordinates x0, . . . , xn, n < m, where xi = yi, i ≤ n;
and X̂ ⊆ X the subspace with coordinates x1, . . . , xn. We shall also think of yi’s
as variables and, abusing the notation, denote by Y the variable vector with entries
y0, . . . , ym, and so on. Let V = Symr(Y ∗) be the space of forms of degree r in
y0, . . . , ym, and W = Syms(X̂∗), s < r, the space of forms of degree s in x1, . . . , xn.
We can embed W in V in a natural way using x0 as the homogenizing variable.
Formally, let φ be an embedding of W in V given by (φh)(Y ) = xr−s0 h(X̂). Suppose

h ∈ W is stable with respect to the natural action of SLn = SL(X̂) on W with
(reductive) stabilizer K ⊆ SL(X̂).

Claim 3.1. The embedded form φh ∈ V is partially stable with respect to the
action of SLm+1 = SL(Y ) on V . In other words, any stable form in the SL(X̂)-
representation W becomes partially stable when embedded in the SL(Y )-representation
V .

Proof. First notice that the stabilizer of φ(h) in SL(X) ⊆ SL(Y ) is just K,
assuming r− s is larger than n. Although φh is not stable with respect to SL(X)—in
fact, it lies in its null cone—it is stable with respect to SL(X̂). Let P ⊆ SL(Y ) be the
maximal parabolic subgroup that preserves the space X, i.e., consisting of matrices,
acting on columns, of the form

[ ∗ ∗
0 ∗

]
,(1)

where the diagonal stars denote matrices of dimension n+1 and m−n−1, respectively.
This contains the stabilizer H of φh, as the reader can easily show. The unipotent
radical R of P (i.e., the top right ∗) acts trivially on φh and so belongs to H. Let L
be the Levi subgroup of P consisting of block diagonal matrices. The lower block of
matrices in L also acts trivially on φh. Therefore only the action of the upper block
matters. Thus the stabilizer H has a Levi decomposition L′R, where L′ ⊆ L consists
of matrices of the form




α 0 0
0 C 0
0 0 D


 ,(2)

where α is a nonzero constant, a multiple of C belongs to K, and D ∈ SL(X̄), X̄
being the complement of X in Y . Since φh is stable with respect to SL(X̂), whose
rank is one less than that of SL(X), it is clear that φh is almost stable with respect
to L with defect δ = 1.

Thus each SL(X̂)-stable point in P (W ) gives rise to a partially stable point in
P (V ) with respect to SL(Y )-action with defect one. The partially stable points in
all our applications will arise from stable points in this simple fashion. Notice that
the SL(Y )-orbit of φy is a fiber bundle over G/P , which is just a Grassmanian in
this case. In our applications, m will be typically polynomial in n, and so is the ratio
∆ between the dimension of the SL(Y )-orbit and the dimension of the fiber. The
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dimension of the fiber will be sufficiently large, in this sense, compared to that of the
SL(Y )-orbit; the importance of this condition will become clear in sections 4 and 6.

Also notice that explicit decomposition of V as an SL(X̂)-module can be deter-
mined by successive applications of the Pieri formula for the branching rule. The
point φh belongs to the unique irreducible SL(X̂)-module isomorphic to Syms(X̂∗)
in this decomposition, and it is (completely) stable in this module with respect to the
SL(X̂)-action. This is another way of looking at partially stable points that would
arise in our context.

3.3. Criterion for stability. Given a point x ∈ V , how can one effectively
decide if it belongs to the null cone? This is rather important, because although the
ring of invariants for a reductive group action on affine varieties is finitely generated,
only in rare cases can one determine an explicit set of generators for this ring. For
SLn(C), Hilbert [19] proved a remarkable criterion that quite often enables one to
prove instability or semistability without explicitly writing down a single invariant.
This criterion was generalized to arbitrary reductive groups over any characteristic by
Mumford [36]. The resulting Hilbert–Mumford criterion is a powerful tool for proving
semistability. Actually, Mumford proved the following more general result, which is
what we shall need.

For any closed G-invariant subset S of V , define x ∈ V to be S-unstable if the
closure of the orbit G.x meets S. In the preceding classical case, i.e., when x belongs
to the null cone, S contains only the zero point of V . In general, if the orbit of x
is not closed, the boundary of this orbit contains a unique closed orbit of minimum
dimension. We can let S be this closed orbit, and then x is S-unstable. Mumford [36]
proved that if x is S-unstable, then there is a one-parameter subgroup λ of G which
drives x to S; i.e., the closure of the orbit λ.x also meets S. Kempf [23] generalized
this result significantly. His result will provide us the main technical tool for proving
stability of various forms that arise in the context of lower bound problems.

Kempf’s criterion for stability. Assume that G has no nontrivial central one-
parameter subgroup. If the stabilizer of y ∈ P (V ) in G is not contained in any proper
parabolic subgroup of G, then y is stable.

Kempf’s other results relevant to us may be summarized as follows. Suppose
x ∈ V is S-unstable. Then we have the following:

1. One can identify a nonempty subset ∆S,x of one-parameter subgroups λ which
drive x to S “most rapidly.”

2. With every one-parameter subgroup λ, there is associated a parabolic sub-
group P (λ) ofG consisting of those elements g ∈ G such that limt→0 λ(t)gλ

−1(t)
exists in G. Then there is a parabolic subgroup PS,x of G such that P (λ) =
PS,x for all λ ∈ ∆S,x.

3. Every maximal torus of PS,x contains a unique element of ∆S,x.
4. If G′ is the stabilizer of x in G, then PS,x contains G′.
5. If, in addition, the characteristic is zero, and H is a reductive subgroup of G

fixing x, then there is an element of ∆S,x contained in the centralizer ZG(H)
of H in G. The result also holds in positive characteristic, provided G is
an F -group, F a finite field, and the Levi decomposition holds for parabolic
F -subgroups of G, as it will in our case.

3.4. Slice theorem. A powerful tool in the analysis of actions of reductive
groups around orbits of stable points is Luna’s étale slice theorem. Let x be a stable
point in a linear representation V of a reductive group. Let H be the stabilizer of
x, which is reductive [32]. Then the orbit Gx of x is isomorphic to G/H. Let T
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denote the tangent space of the orbit at x; it has a natural H-action. Assume that
the characteristic is zero. Since H is reductive, V has an H-module decomposition
T ⊕M , where M can be thought of as a “normal” space at x. Luna’s slice theorem
says that the orbit Gx = G/H has a neighborhood in V that looks like (or more
precisely, has a finite sheeted covering by) the induced fiber bundle G×H N for some
algebraic H-subvariety N ⊆M . Formally, the following result holds.

Theorem 3.1 (see [27, 37, 38]). There is an excellent map φ from G×H N to a
G-invariant Zariski-open neighborhood U of Gx.

The map φ is called excellent (or strongly étale) if the induced map φ/G : G×H
N/G→ U/G is étale and φ is obtained from φ/G by base extension. Here G×H N is
the quotient of G×N with respect to the action of H given by

h(g, n) = (gh−1, hn).

It has a natural G-action induced by the G-action (left multiplication) on G×N via
the translation of the first factor.

When the base field is the field of complex numbers, the slice theorem implies that
the orbit Gx has an analytic neighborhood that is actually isomorphic as a G-variety
to G×H N for some analytic (but not necessarily algebraic) H-variety N ⊆M ; N is
called the slice at x. The slice theorem also implies that if Q occurs as a stabilizer in
the infinitesimal neighborhood of the orbitGx, then some conjugate ofQ is a subgroup
of H. However, determining if some conjugate of a given Q ⊆ G is a subgroup of
another given H ⊆ G is, in general, nontrivial. This problem can be handled using
explicit obstructions as in section 5.

4. Formula size. In this section we illustrate our approach by addressing a
concrete lower bound problem for the formula size over an algebraically closed field.
Suppose we are given a homogeneous form g(X) of degree d in the n-dimensional
vector variable X = (x1, . . . , xn) over an algebraically closed field F of arbitrary
characteristic. We want to know if g(X) has a formula of poly(n) (polynomial in n)
size, i.e., of size ≤ na, for some fixed constant a. By the formula size we mean the
number of arithmetic operators in the formula. The formula size of a function is a
good indicator of its parallel complexity [11, 45].

For example, suppose n = k2 for some k. Think of X as a k × k matrix; so we
shall denote the entries of X by xij instead of xi. Let g(X) be the permanent function

g(X) = perm(X) =
∑
σ

∏
i

Xiσ(i),

where σ runs over all permutations of size k. This formula for the permanent has size
k · k!. However, there is a nonobvious substantially smaller formula of size O(2O(k))
[30]. Valiant [44] conjectured that the permanent does not have a formula of size
polynomial in k. No nonlinear lower bound is known so far; cf. [15] for a linear lower
bound.

We shall now reduce the general lower bound problem for the formula size to an
instance of the orbit-closure problem in section 2. Let Y be an m×m variable matrix,
where m > n. Identify X with any n× n-submatrix φ(X) of Y . Use some entry y of
Y not in φ(X) as a homogenizing variable. Then any homogeneous polynomial g of
degree d on X can be trivially identified with a homogeneous polynomial gφ of degree
m in the entries of the variable Y , where gφ(Y ) = ym−dg(φ(X)).

Let V be the vector space of homogeneous forms of degree m in Y . Let P (V ) be
the associated projective space. Let W be the vector space of homogeneous forms of
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degree d in X and P (W ) the associated projective space. Then the function φ, which
maps g to gφ, is an embedding of W (P (W )) in V (resp., P (V )).

Let G = SLm2(F ). It has a natural action on V . Specifically, any σ ∈ SLm2(F )
acts on an h ∈ V as (σh)(Y ) = h(σ−1Y ), where we think of Y as an m2-vector, by
linearly ordering its entries in any way, so that the m2 ×m2-matrix σ−1 acts on Y
in the usual way. This induces a natural action on P (V ) as well. The space V (and
P (V )) contains the determinant form det(Y ). Let G(det(Y )) ⊆ P (V ) denote the
orbit of det(Y ) under this action (thinking of det(Y ) as an element of P (V ).) Let
∆[det(Y )] denote its Zariski closure in P (V ).

Proposition 4.1. If f(X) has a formula of size l, then fφ(Y ) lies in the pro-
jective orbit closure ∆[det(Y )] of the determinant, where m = dim(Y ) = 2l.

Proof. We use the well-known fact that the determinant is a complete function
for the class of polynomials having small formulae [11, 45]. Formally [45], if f(X) had
a formula of size l, there would exist a matrix M of size at most 2l, whose each entry
is either a constant or some entry xij of X such that

f(X) = det(M).

If we identify the entries xij with the entries of the submatrix φ(X) of Y , and multiply
each constant entry in M with the variable y of Y not in φ(X), we get a possibly
singular matrix whose each entry is a linear combination of the entries of Y . In
other words, we get a possibly singular linear transformation A : Fm

2 → Fm
2

, where
m ≤ 2l, such that

fφ(Y ) = det(AY ),(3)

where Y is treated as an m2-vector as above. However, GLm2(F ) is dense in the space

of all linear transformations from Fm
2

to itself. Therefore fφ(Y ) is in the closure of
the GLm2(F )-orbit of det(Y ) in V . The proposition follows from this.

Thus we are led to the following instance of the orbit closure problem in section 2.
The orbit-closure problem. Can f(Y ) = permφ(Y ) lie in the projective orbit

closure ∆[det(Y )] of g(Y ) = det(Y ) in P (V )?
The orbit-closure problem can in turn be reduced to an instance of the stabilizer

problem in section 2. Towards that end, let us compute the stabilizer R of det(Y )
in G = SLm2(F ). It is known to be a reductive subgroup which consists of linear
transformations in G of the form (thinking of Y as an m×m matrix)

Y → AY ∗B−1,(4)

where Y ∗ is either Y or Y T , A,B ∈ GLm(F ). The determinant is completely charac-
terized by its stabilizer in the following sense.

Proposition 4.2. Every form h(Y ) ∈ V stabilized by R is a multiple of det(Y ).
Proof. The proof is easy.
Now the preceding orbit-closure problem for the determinant can be reduced as

in section 2 to the following.
The stabilizer problem. Can R occur as a stabilizer in the infinitesimal neigh-

borhood of the SLl(F )-orbit of permφ(Y ) in V ?
We conjecture that this cannot happen if m = poly(n). Formally, we conjecture

the following.
Conjecture 4.3. If m = na, where a is any fixed constant, then permφ(Y )

cannot lie in the projective orbit closure ∆[det(Y )]. More specifically, R cannot occur
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as a stabilizer in the infinitesimal neighborhood of the SLl(F )-orbit of permφ(Y ) in
V .

By Proposition 4.1, this would imply that the permanent does not have a formula
of size polynomial in n. In section 5 we shall suggest an approach to this conjecture
based on the construction of so-called explicit obstructions. The conjecture is not
equivalent to the the original lower bound question (cf. section 4.2). However, it is
“almost” equivalent in the following sense.

Proposition 4.4. Suppose F is the field of complex numbers. If Conjecture 4.3
were false, then perm(X) can be approximated infinitesimally closely by a formula
of quasi-polynomial nO(log n) size (in the sense that the coefficients of the polynomial
computed by this formula would be infinitesimally close to those of the permanent).

Proof. If the conjecture were false, permφ(Y ) lies in the closure of the SLm2-
orbit of det(Y ) in P (V ) with m = poly(n). This means that, as a point in V , it
lies in the closure of the GLm2-orbit of det(Y ). Therefore it can be approximated
infinitesimally closely by a function of the form det(σ−1Y ) for some σ ∈ GLm2 .
Let us ignore the terms in this approximation that involve variables other than y or
entries of X = φ(X), which cannot occur in permφ(Y ); i.e., think of setting these
variables of Y to zero. What remains is still an approximation to permφ(Y ). Setting
y to one, we get an infinitesimally close approximation to perm(X) by a function of
the form det(W ), where W is an m2 × m2-matrix whose each entry is a (possibly
nonhomogeneous) linear combination of the entries of X. However, such a function
det(W ) has a formula of size mO(logm) = nO(log n) [2].

However, such an approximation is not expected in view of Valiant’s completeness
result for the permanent [44]. This provides a good support for the conjecture.

As we remarked in section 2, the general orbit-closure or the stabilizer problem
seems intractable if f and g were arbitrary forms. The situation is better here because
they have the following nice properties: (1) g is stable and f is partially stable (sec-
tion 4.1), and (2) both have large nontrivial stabilizers that capture their structure
(Propositions 4.2 and 4.5).

We have already seen that det(Y ) has a large characteristic stabilizer (Proposi-
tion 4.2). Now let us turn to perm(X), where the dimension of X is k. Assume that
the characteristic is not equal to two. (Otherwise the permanent is equal to the deter-
minant.) X can also be thought of as an n-vector, where n = k2. Consider the natural
action of SLn(F ) on the projective space P (W ) of forms in X of degree k. Then the
stabilizer K of perm(X) in SLn(F ) is generated [30] by linear transformations of the
form (thinking of X as a k × k matrix)

X → λXµ−1,(5)

where λ and µ are either diagonal or permutation matrices, and k ≥ 3. The connected
component K0 of K is a (2k − 1)-dimensional torus.

The following is an analogue of Proposition 4.2 that says that the permanent is
completely characterized by its stabilizer.

Proposition 4.5. Every form h(X) ∈ W stabilized by K is a multiple of
perm(X).

Proof. The proof is easy.

4.1. Stability. Now we turn to the issue of stability.
Theorem 4.1. The point det(Y ) ∈ P (V ) is stable with respect to the action of

G = SLm2(F ) on P (V ), where V is the space of homogeneous forms of degree m in
Y .



GEOMETRIC COMPLEXITY THEORY 507

Proof. The stabilizer R of det(Y ) is not contained in any parabolic subgroup of G
because its representation over the space of m×m matrices given by (4) is irreducible.
Therefore stability follows from Kempf’s criterion [23] (cf. section 3).

Remark. Stability of det(Y ) is not needed in our approach to Conjecture 4.3 in
section 5; only the stability of perm(X) is needed. However, stability of det(Y ) is
needed in other problems, where the determinant plays the role of f in the orbit-
closure problem, e.g., in the NC1 vs. NC2 problem [11].

Theorem 4.2. The point perm(X) ∈ P (W ), where dim(X) = k, is stable with
respect to the action of SLn(F ) on P (W ), where n = k2.

Proof. The stabilizer of perm(X) in SLn(F ) is, again, not contained in a proper
parabolic subgroup because the space of n×nmatrices is an irreducible representation.
Therefore the assertion again follows from Kempf’s criterion (section 3).

We shall also give another proof based on the property (5) of Kempf’s one-
parameter subgroups (cf. section 3.3) because it illustrates in a simple setting an
idea that will be used later (section 8) in proving the stability of another form. This
second proof ignores the discrete part of the stabilizer.

Let X be the vector space whose coordinates are the entries xij of X. It is a
representation of K0 as given by (5). Let Eij be the one-dimensional vector space of
all matrices with the only nonzero entry in the (i, j)th spot. It is easy to check that X
decomposes as a K0-module into ⊕i,jEi,j and that this representation is multiplicity-
free; i.e., all characters are distinct. Now assume that perm(X) is not stable. Let S
be an SLn(F )-orbit of minimum dimension in the closure of the orbit of perm(X) in
V . It must be closed; cf. Borel [4]. In fact, since SLn(F ) is reductive, and hence
geometrically reductive (cf. Haboush [17]), there is a unique closed orbit S in the
closure of the orbit of perm(X) in V .

By Kempf’s result, there would be a one-parameter subgroup λ : F ∗ → SLn(F )
which drives perm(X) into S and which commutes with K0. Schur’s lemma forces
the action of λ(t) on X to be of the form

ei,j → tαi,jei,j ,

where eij ∈ Eij and αij is an integer. We also have the constraint that
∑
i,j αi,j = 0

because λ(t) ∈ SLn(F ). The effect of λ(t) on any monomial mσ =
∏m
i=1 xi,σ(i) in the

expansion of perm(X) is as follows:

mσ → t
∑
αi,σ(i)mσ.

Thus for limt→0 λ(t)(mσ) to exist,
∑k
i=1 αi,σ(i) must be nonnegative for every permu-

tation on [k] (since there is no cancellation across monomials). This is possible only
when each sum is actually zero, as can be seen using Hall’s theorem that every regular
bipartite graph is a disjoint union of perfect matchings. Thus if limt→0 λ(t)(perm(X))
exists, then it is perm(X) itself. In other words, perm(X) cannot be S-unstable for
any G-invariant closed S.

In contrast, the point permφ(Y ) ∈ P (V ) is not stable with respect to the action
of G = SLm2(F ). In fact, it belongs to the null cone; this can be shown using the
Hilbert–Mumford criterion [37]. However, the following result holds.

Theorem 4.3. The point permφ(Y ) ∈ P (V ) is partially stable with respect to the
action of G = SLm2(F ) with defect δ = 1.

Proof. If h ∈ P (W ) is stable, then hφ ∈ P (V ) is partially stable with defect δ = 1,
arguing exactly as in Example 3.2. Specifically, X and Y are now matrices instead of
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vectors, and the homogenizing variable is y here instead of x0. The parabolic group P
consists of the linear transformations that transform the variables in Y to their linear
combinations. The Levi subgroup L ⊆ P consists of the linear transformations that
transform the variables in Y and X \ Y to the linear combinations of the variables in
Y and X \Y , respectively. The subgroup L′ ⊆ L consists of the linear transformations
that transform y to its constant multiple, and the variables in Y and X \ (Y ∪ {y})
to the linear combinations of the variables in Y and X \ (Y ∪ {y}), respectively.

The partial stability of permφ(Y ) then follows from Theorem 4.2.

The SLm2-orbit Z of permφ(Y ) in V is a fiber bundle overG/P , where P is similar
to the one in (1), and so G/P is a Grassmanian variety. The fiber is isomorphic to the
SLn2-orbit of perm(X) in W . The stabilizer H of permφ(Y ) is related to the stabilizer
K of perm(X) just as in (2). The dimension of Z is equal to dim(SLm2) − dim(H),
and that of the fiber W is dim(SLn2)− dim(K). In our problem, m is not too large
compared to n; in fact, it is polynomial in n. Hence the dimension of the global
orbit Z is also polynomial in the dimension of the fiber. The parameters δ and ∆
in the definition of partial stability (section 3) that measure deviation from complete
stability are not too large: we have δ = 1 and ∆ = poly(n). Roughly, this says that
although permφ(Y ) belongs to the null cone, it is not “too unstable.”

Remark. The role of the determinant in this section can also be played by
the trace: specifically, the analogues of Proposition 4.1 and Theorem 4.1 hold for
trace(Y m) as well.

4.2. Exterior limit points. Here we shall indicate why Conjecture 4.3 is ex-
pected to be somewhat stronger than the original lower bound question for the formula
size of the permanent. It is because ∆[det(Y )] may contain points that do not have
polynomial size formulae. Let g = det(Y ). We call a point in ∆[g] an interior limit
point if it is of the form det(σY ) for some possibly singular linear transformation σ.
In other words, the set of interior points is the image of the map α : Mm2(F )→ ∆[g],
where Mm2(F ) is the set of m2×m2-matrices over F , and α maps a possibly singular
matrix σ ∈ Mm2(F ) to det(σY ). This image is a constructible subset [18] of ∆[g];
i.e., it is a finite disjoint union of locally closed subsets. However, it is not expected
to be equal to ∆[g]. The points of ∆[g] not in this image will be called exterior limit
points. Interior limit points have formulae of quasi-polynomial size (see the proof of
Proposition 4.4), whereas exterior limit points need not.

We now describe some classes of conjectured exterior limit points in ∆[g]. For-
mally proving that a given point is an exterior limit point amounts to showing that
it does not have a formula of Ω(poly(n)) size because the determinant is complete for
the class of polynomials with small formulae; cf. the proof of Proposition 4.1. This is
a lower bound problem in itself, beyond our reach at present.

If f is an interior limit point of ∆[g], then f = det(σY ), where σ is possibly
singular. Since diagonalizable matrices are dense in Mm2(F ), it follows that some
conjugate f ′ of f is of the form β(g′), β is diagonal, and g′ is some conjugate of g. Let
β(t) be the one-parameter subgroup obtained by replacing the zero diagonal entries
of β by t. Then β = limt→0 β(t). We shall now give an example of a point f in ∆[g],
which is of the form limt→0 det(α(t)Y ) for some one-parameter group α(t), but it is
not expected to be of the form β(g), where β = limt→0 β(t) for some one-parameter
group β(t).

Let G be a nonbipartite graph on m vertices whose edges have nonnegative integer
weights. Consider its skew-symmetric Tutte matrix M whose (i, j)th entry Mij , i < j,
is the variable yij if G has an edge joining vertices i and j and zero otherwise. We



GEOMETRIC COMPLEXITY THEORY 509

have

det(M) =
∑
π

sign(π)wt(π),

where π ranges over all permutations of [1, . . . ,m], and wt(π) is the product of the
entries Miπ(i). Define the cycle graph of π with nonzero weight to be the subgraph of
G formed by the edges (i, π(i)). Then it is known and easy to see that

det(M) =
∑
π′

sign(π′)wt(π′),(6)

where π′ ranges over only those permutations with nonzero weight whose cycle graphs
contain only cycles of even length. The contributions of other permutations cancel
out.

Construct a modified Tutte matrix M̃ by replacing every variable yij , if it indeed
occurs in M , by twijyij , where t is an indeterminate parameter and wij is the weight

of the edge joining the nodes i and j. In other words, M̃ = β(t)(M), where β(t) is
the one-parameter subgroup that maps such yij to twijyij . Let Y be the vector of the
variables yij . Then (6) implies that

D(Y ) = det(M̃) = t2Wh(Y ) + higher order terms in t,

where W is the weight of a minimum-weight perfect matching in G and

h(Y ) =
∑
π

sign(π)wt(π),

where π ranges over all permutations with nonzero weight whose cycle graphs can be
decomposed as the union of two minimum-weight perfect matchings, not necessarily
distinct. Clearly, D(Y ) = det(M̃) belongs to the projective orbit closure ∆[det(Y )]
for every t. Projectively, D(Y ) is equal to h(Y ) plus higher order terms in t. Since

h(Y ) = lim
t→0

t−2WD(Y ),

in the projective space P (V ), we have

h(Y ) = lim
t→0

D(Y ) = lim
t→0

det(β(t)M).

In other words, h(Y ) belongs to the projective closure ∆[det(Y )]; notice, however,
that det(βM), β = limt→0 β(t), is not well defined in the projective space P (V ). We
conjecture that for every m there are weighted graphs G such that h(Y ) does not have
a small polynomial size formula. This would imply that h(Y ) is an exterior point of
∆[det(Y )], since the determinant is complete for the class of polynomials with small
formulae.

For most weight assignments on the edges of G, there is a unique minimum-weight
perfect matching (this follows from the so-called isolation lemma [35]), which means
h(Y ) contains just one monomial, and hence surely has a small formula. What the
conjecture says is that there exist pathological weighted graphs. Nonbipartiteness
of G is essential here. Because if G is bipartite, then for any weight-assignment
on G consider the subgraph G′ formed by the union of all minimum-weight perfect
matchings in G. It easily follows from Hall’s theorem that the set of perfect matchings
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in G′ is equal to the set of minimum-weight perfect matchings in G. Therefore h(Y )
for G is equal to the determinant of the Tutte matrix for G′ and thus has a small
formula [2].

Though h(Y ) is an exterior limit point, it can be approximated infinitesimally
closely by a formula of quasi-polynomial size (Proposition 4.4), whereas this is not
expected for the permanent because of its completeness.

5. Explicit obstructions. Let V be a linear representation of a reductive group
G and P (V ) be the associated projective space. A nonzero point v ∈ V also corre-
sponds to a point in P (V ). By abuse of notation, we denote the corresponding point
in P (V ) by v as well. Suppose we are given two explicit points f, g ∈ V , and the
goal is to show that that f is not in the closure of the G-orbit of g in the projective
space P (V ). Conjecture 4.3 is a special case of this problem, where V is the space
of homogeneous forms of degree m in the entries of an m × m variable matrix Y ,
f = permφ(Y ), g = det(Y ), and G = SL(Y ). Here f lies in the closure of the G-orbit
of g in P (V ) iff it lies, considered as a point in V , in the closure of the GL(Y )-orbit
of g in V .

We call a mathematical structure an obstruction for the pair (f, g) if its existence
acts as a guarantee that f does not lie in the closure ∆[g] of the G-orbit of g in the
projective space P (V ).

5.1. Polynomials as obstructions. Let Z denote the closure of the G-orbit
of g in P (V ). Let I(Z) denote the ideal of polynomial functions vanishing on Z.
Any polynomial in I(Z) that does not vanish at f is an obstruction for the pair (f, g)
because it vanishes on the orbit of g but not on the orbit of f . We say that it separates
the two orbits. If f does not lie in Z, then “almost every” polynomial in I(Z) is an
obstruction. In the setting of Conjecture 4.3, where g = det(Y ) and f = permφ(Y ),
it is thus expected that almost every polynomial in I(Z) will be an obstruction for
the pair (f, g) when m is polynomial in n. To prove Conjecture 4.3 it suffices to
construct an obstruction for every such m and n. Even though we know, assuming
Conjecture 4.3, that such obstructions exist in plenty, the problem is such that one
has to prove their existence by constructing them more or less explicitly.

One approach to constructing an explicit polynomial obstruction is to construct
an explicit set of generators of I(Z) and then isolate a generator that does not vanish
at f . This problem is addressed in Part II [34], where we give a sufficiently explicit set
Σg of generators for the ideal of the G-orbit of g in the affine space V , assuming that
g is stable and has a “nice” stabilizer, and conjecture that this set actually generates
I(Z) for g’s that arise in the context of the lower bound problems in this paper. The
generators in Σg are quite complex and verifying that one of them does not vanish
at f is a difficult task. However, they have nice representation-theoretic properties.
In Part II we develop in detail an approach to the orbit-closure problem via explicit
construction of obstructions based on these properties.

Here we wish only to indicate how representation theory comes into play by
briefly considering explicit construction of obstructions in the context of the related
stabilizer problem. The scheme for explicit construction suggested here depends on
the representation-theoretic properties of the stabilizers of f and g, and serves as a
starting point for the work in Part II.

Specifically, the scheme will exploit the fact that, in our context, f is partially
stable (cf. Theorem 4.3) and both f and g have nontrivial reductive stabilizers that
capture their structure (Propositions 4.5 and 4.2); g may or may not be stable. The
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obstructions that one hopes to construct this way are not polynomials but rather
representations having certain properties (cf. Theorems 5.1 and 5.2).

5.2. Representations as obstructions. In this section, we shall present our
scheme when f is (completely) stable with respect to the G-action. In section 5.5
we shall suggest an extension of this scheme to the case when f is only partially
stable as in Conjecture 4.3. There we shall also point out the main problems that are
encountered in such an extension.

When f is stable, obstructions based on representations can be constructed using
the following immediate consequence of Luna’s slice theorem.

Theorem 5.1 (characteristic zero). Let H ⊆ G be the stabilizer of f ∈ V and
Q ⊆ G the stabilizer of g ∈ V . Suppose f is stable with respect to the action of G.
Then a (nonzero) representation W of G is an obstruction for the pair (f, g) if W
contains a trivial H-submodule but not a trivial Q-submodule. In other words, if such
a W exists, then f cannot lie in the closure of the G-orbit of g in the projective space
P (V ). More generally, W is an obstruction for (f, g) if the multiplicity of the trivial
H-representation within W exceeds that of the trivial Q-representation.

Proof. Since f is stable, by Luna’s slice theorem (section 3), there is a slice N at
f , a G-invariant neighborhood U of the orbit Gf , and a map τ : G ×H N → U that
is excellent. This implies that (cf. [38]) the stabilizer of any point in U is a conjugate
of a subgroup of H.

Suppose, to the contrary, that f , considered as a point in P (V ), lies in the closure
of the G-orbit of g in P (V ). Then the neighborhood U must contain a point p whose
some multiple p′ lies in the G-orbit of g in the affine space V . The stabilizer of p is
equal to the stabilizer of p′, which is a conjugate of the stabilizer Q of g. Since some
conjugate of the stabilizer of p is contained in H, it follows that some conjugate of
Q is contained in H. Hence the multiplicity of the trivial Q-representation in any
G-module must exceed that of the trivial H-representation.

Therefore if there exists a G-module W such that the multiplicity of the trivial
H-representation within W exceeds that of the trivial Q-representation, then f cannot
lie in the closure of the orbit of g in P (V ).

Second proof. We now prove the first criterion of Theorem 5.1 (though not the
second) without using Luna’s slice theorem but using Peter–Weyl theorem instead; the
idea in this proof will be useful later in section 5.5. We shall denote the algebraically
closed base field of characteristic zero by k. Because Gf is a closed affine subvariety
of V and the characteristic is zero,

k[V ] = k[Gf ]⊕ I,(7)

as a G-module, where I is the G-invariant ideal of Gf . Thus k[Gf ] = k[G/H] can
always be embedded equivariantly within k[V ]. Now we shall determine an explicit
G-module decomposition of the ring k[G/H]. First, consider k[G], the ring of regular
functions onG, as aG×Gmodule by letting one copy ofG act on it by left translations
and the other by right translations. Then k[G] has the following decomposition as a
G×G module [6]:

k[G] =
∑
P

P ⊗ P̄ ,(8)

where P runs over all finite-dimensional G-modules, and P̄ is its dual. This follows
by applying the Peter–Weyl theorem to the Hilbert space L2(K) of L2-functions on
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a maximal compact subgroup K of G and using the fact that the K-finite vectors
in L2(K) correspond to the regular polynomial functions on G; cf. [6, 22]. Since f
is stable, H is reductive [32]. Then k[G/H] is simply the ring of k[G]H of (right)
H-invariants within k[G] [37]. Therefore the decomposition in (8) implies that

k[Gf ] = k[G/H] =
∑
P

P ⊗ P̄H ,(9)

where P runs over all finite-dimensional G-modules, P̄H is the sum of all trivial
H-submodules of P̄ , and G acts on the first factor of P ⊗ P̄H .

Let W be an irreducible representation containing a trivial H-module but not a
trivial Q-module. It can be equivariantly embedded within k[G/H] = k[Gf ], by (9),
and hence within k[V ] by (7). Thus each element in W corresponds to a polynomial
function on V . Now suppose to the contrary that the G-orbit of f in P (V ) lies in
the projective closure ∆[g] of the G-orbit of g in P (V ). Not all functions in W can
vanish on the affine cone C in V corresponding to the G-orbit of g in P (V ) because
then they will also vanish on the affine cone in V corresponding to ∆[g], and hence
on the G-orbit of f in V , since f ∈ ∆[g]. But this is impossible since W is a nonzero
submodule of k[Gf ]. Therefore W contains at least one function φ which does not
vanish at some point of the cone C, say, p. The stabilizer Qp ⊆ G of p is conjugate to
the stabilizer Q of g. Let Wφ ⊆W be the Qp-submodule generated by φ. Consider the
evaluation map from Wφ to k, which maps any function in Wφ to its value at p. Since
φ is nonzero at p, this evaluation map is nonzero. It is also equivariant with respect
to the Qp-action. Since k is the trivial Qp-representation, and the characteristic is
zero, Wφ, as a Qp-module, contains a trivial Qp-submodule, and so does W . Since
W is a G-module and Qp is a conjugate of Q in G, it follows that W must contain a
trivial Q-module; a contradiction.

To use the obstruction criterion in this theorem effectively, one needs an explicit
formula for the dimension of the trivial H (or Q) representation within a G-module
W . This is an instance of the subgroup restriction problem, which will also arise later
(section 5.5).

5.2.1. Example 1. Let X be the variable matrix of size d, V = Symd(X), the
space of forms in X of degree d, and G = SL(X) = SLd2(C). Let f = perm(X) and
g = det(X) with stabilizers H and Q, respectively. We want to show that f is not in
the closure of the G-orbit of g in P (V ).

In the present case, this can be shown by only dimension considerations. Indeed,
if f were in the closure of the G-orbit of g in P (V ), then by Luna’s slice theorem
some conjugate of Q will be contained within H. However, since the dimension of Q
exceeds that of H this is not possible.

However the dimension-based criterion seems too crude to be generalized to the
partially stable case. Because when (f, g) = (permφ(Y ),det(Y )) as in Conjecture 4.3,
the dimension of the stabilizer of f is far greater than that of g when m is only mildly
larger than n. On the other hand, representations as obstructions, as in Theorem 5.1,
seem suited even for the partially stable case (section 5.5). With that in mind, we
construct an obstruction for the pair (f, g) using Theorem 5.1, which is applicable
since f = perm(X) is stable with respect to the action of G = SL(X) (Theorem 4.2).

Let W = Symr(X) be the G-module of homogeneous polynomials of degree r in
the entries of X, where r is a multiple ad of d for some integer a > 1. The multiplicity
of the trivial H-representation in W exceeds one, because perm(X)a ∈W is fixed by
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H, and so is the permanent of the matrix obtained by replacing each entry of X by
its ath power. As a Q-module [7]

W =
∑
λ

Sλ ⊗ S̄λ,

where λ ranges over all Young diagrams of size r with at most d rows or columns, Sλ
denotes the corresponding Weyl module, and S̄λ denotes its dual. Here the elements
in Q of the form (A,B), A,B ∈ GLd, det(AB−1) = 1, act on Sλ ⊗ S̄λ in the obvious
manner, and the transpositions in Q interchange the two factors. When r = ad,
Sλ ⊗ S̄λ is trivial as a Q-module precisely when λ is rectangular with d rows and a
columns. Hence the multiplicity of the trivial Q-module in W is precisely one. This
trivial module is generated by deta(X). By Theorem 5.1, any Symr(X), r = ad,
a > 1, is an obstruction for the pair (f, g).

The preceding obstructions were constructed using the second multiplicity-based
criterion of Theorem 5.1. It would be interesting to construct obstructions using the
first criterion based on absence or presence of trivial representations. Specifically, it
would be interesting to construct a representation W , for each d, such that W contains
a trivial H-representation but not a trivial Q-representation. For this one needs to
know how a given G-representation W splits when considered as a Q-module or as
an H-module. Q contains a copy of SLd ⊗ SLd, and H contains a copy of Sd × Sd,
where Sd is the symmetric group. Hence this problem is closely linked to the so-called
plethysm problem of representation theory. This asks for explicit decomposition of
Sλ(V ⊗W ) as a GL(V )×GL(W )-module and that of Sλ(SµV ) as a GL(V )-module,
where Sλ is the Schur-functor [14].

5.3. Importance of stability. The stability of f is crucial for Theorem 5.1 to
hold. Otherwise, the first proof does not apply because Luna’s slice theorem may fail
when f is not stable even if the stabilizer H of f is reductive (cf. Example 2 below).
The second proof also fails when f is not stable because it may not be possible to
extend the functions in the module W ⊆ k[Gf ] = k[G/H] there equivariantly to the
whole of V , since Gf is not closed. It may happen that k[V ] contains a G-submodule
W that contains a trivial H-representation but not a trivial Q-representation. That
still does not guarantee that W is an obstruction because all functions in W may
vanish identically on the the affine cones in V corresponding to the G-orbits of g and
f in P (V ). In other words, an abstract representation W need not be an obstruction
even if it contains a trivial H-module but no trivial Q-module. However, such a W
becomes an obstruction if it has a concrete realization as a G-submodule of k[V ] that
does not vanish when restricted to the G-orbit of f in V . When this happens (as it
does when f is stable), a slight modification of the argument in the second proof of
Theorem 5.1 shows that it contains a function that separates the orbits of f and g,
i.e., vanishes on the orbit of g but not on the orbit of f , though such a separating
function is not explicitly constructed. Thus representation-based obstructions provide
an indirect way of constructing—or more precisely, guaranteeing the existence of—
separating functional obstructions as in section 5.1.

5.3.1. Example 2. We give a simple example that demonstrates why stability
of f is crucial for Theorem 5.1 to hold. Let V be the space of forms of total degree 3
in variables x and y, and G = SL2. Let f = x2y, and g = x3+y3 [38]. Then it is easy
to show that f lies in the projective closure ∆[g] of the G-orbit of g in P (V ). (The
G-orbit of g in P (V ) is three-dimensional, and that of f is two-dimensional, since the
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G-stabilizer of the line in V containing f and the origin is one-dimensional.) The
stabilizer H ⊆ G of f for the G-action on V is trivial, hence reductive, but f is not
stable for the G-action. The stabilizer Q of g is equal to {diag(ε, ε−1)|ε3 = 1}. Since
H is trivial, any G-representation contains a trivial H-representation. Now there are
G-representations which do not contain a trivial Q-representation, e.g., the standard
representation. Yet none of these is an obstruction for the pair (f, g), since we already
know that f lies in ∆[g].

5.4. Positive characteristic.
Theorem 5.2. With the same terminology as in Theorem 5.1, suppose, in addi-

tion, that the orbit map is separable and that the ambient space V has an H-module
decomposition in which the tangent space of the orbit Gf at f splits off as a direct
summand. Then the obstruction criterion given there holds.

Here, by multiplicity of the trivial H- or Q-representation in W , we now mean the
total dimension of the sum of such trivial submodules of W . This need not be equal
to the number trivial quotients in a Jordan-series filtration of W , since, in positive
characteristic, W need not decompose into irreducible Q- or H-submodules.

Proof. Luna’s slice theorem holds in arbitrary characteristic if the orbit map is
separable and V has an H-module decomposition as above [1]. Therefore the proof
of Theorem 5.1 holds.

This points out the issues that arise in positive characteristic because of the lack
of linear reductivity.

5.5. Partially stable case. In the preceding section we gave a method (The-
orem 5.1 and 5.2) for constructing representation-theoretic obstructions for the pair
(f, g) when f is stable. We now suggest an extension of this approach to produce
obstructions when f is only partially stable. The setting in Conjecture 4.3 falls in
this category. Let H denote the stabilizer of f . Let Q denote the stabilizer of g; we
assume that it is reductive.

Let α denote the embedding of the orbit Z = Gf in the ambient space V . Let
OV denote the sheaf of analytic functions on V . Let OZV = α−1OV denote the inverse
image sheaf on Z (cf. Hartshorne [18]). The stalk of OZV at any point z ∈ Z coincides
with the stalk of OV at z. The global sections, i.e., the elements of H0(Z,OZV ), of
this sheaf correspond to germs of analytic functions that are defined in some analytic
open neighborhood of Z in V . The space H0(Z,OZV ) is a G-module in a natural way.

We denote the algebraically closed base field by k in this section.
Proposition 5.1. Assume that the characteristic is zero. Let W be any finite-

dimensional G-module in H0(Z,OZV ) that does not vanish identically under the (nat-
ural) restriction to Z. Then W is an obstruction for the pair (f, g) if it does not
contain a trivial Q-representation.

Proof. Fix such a G-module W that does not vanish when restricted to Z. Since
the G-action on Z is transitive, there exists a global section φ ∈ W that does not
vanish at f when restricted to Z. Let Uφ be an analytic neighborhood of Z in V
on which φ is well defined. Suppose to the contrary that the closure of the G-orbit
of g in P (V ) contains f . Then Uφ contains a point p arbitrarily close to f whose
multiple p̂ lies in the G-orbit of g in the affine space V . Choose p close enough to f
so that φ does not vanish at p. The stabilizer of p is the same as that of p̂, which in
turn is equal to the conjugate Qα of Q for some α ∈ G. Consider any β ∈ Qα. The
function β(φ) is defined in the neighborhood β(Uφ) of Z which contains p, since it is
fixed by β. Thus all functions in the Qα-submodule Wφ ⊆W generated by φ are well
defined at p. Consider the evaluation map from Wφ to k, which maps any function
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in Wφ to its value at p. Since φ is nonzero at p, this evaluation map is nonzero. It is
also equivariant with respect to the Qα-action. Since k is a trivial Q-representation,
and the characteristic is zero, Wφ contains a trivial Qα-module in its decomposition
into irreducible Qα-modules, and so does W . Since W is a G-module and α ∈ G, its
decomposition into irreducible Q-modules also contains a trivial Q-module.

To construct an obstruction using this proposition, one needs to calculate ex-
plicitly an interesting family of finite-dimensional G-submodules within H0(Z,OZV ).
When f is stable, one gets such a family as follows.

Theorem 5.3. Suppose k = C, and f is stable. Then every irreducible G-
representation W that contains a trivial representation as an H-module occurs in
H0(Z,OZV ) (with multiplicity at least equal to the multiplicity of the trivial H-
representation in W ).

Proof. By Luna’s slice theorem (section 3), the orbit Gf ∼= G/H has an analytic
G-invariant neighborhood of the form G×HN , where N is an analytic slice at f . This
implies that any function φ ∈ k[Gf ] can be extended canonically to a function φ̄ on
this neighborhood so that it is constant on the slice at any point of the orbit. This
extension is G-equivariant. Therefore we get a canonical G-equivariant embedding of
k[Gf ] = k[G/H] in H0(Z,OZV ). The Peter–Weyl theorem (cf. (9)) gives the following
explicit G-module decomposition of the ring k[G/H]:

k[Gf ] = k[G/H] =
∑
P

P ⊗ P̄H ,(10)

where P runs over all finite-dimensional G-modules, P̄H is the sum of all trivial
H-submodules of P̄ , and G acts on the first factor of P ⊗ P̄H . This means every G-
representation that contains a trivial representation as an H-module occurs in k[Gf ],
and hence in H0(Z,OZV ).

In conjunction with Proposition 5.1, Theorem 5.3 again implies the first criterion
of Theorem 5.1. The proof of Theorem 5.3 fails when f is not stable because then it
may not be possible to embed W ⊆ k[Gf ] = k[G/H] equivariantly within H0(Z,OZV )
since Luna’s slice theorem can fail (cf. Example 2), and so Proposition 5.1 may not
be applied to such a W even if it contains a trivial H-module (see also section 5.3).

To construct an obstruction using Proposition 5.1 when f is only partially stable,
one needs to calculate explicitly an interesting class of finite-dimensional G-modules
that occur within H0(Z,OZV ), as we did in the stable case (Theorem 5.3). Just as in
the completely stable case, we expect that partial stability of f should play a crucial
role in this calculation (cf. Theorem 5.4).

When f is stable, the orbit Z is affine, and the stabilizer of f is reductive [32].
In this case, it can be shown that the higher cohomology groups Hi(Z,OZV ), i > 0,
all vanish; we omit the proof. This statement is analogous to the Cartan–Serre–
Grothendick vanishing theorem for the vanishing of higher cohomology of a (quasi-)
coherent algebraic sheaf on an affine variety (or more generally on a formal scheme)
[18] and the Cartan–Oka vanishing theorem for coherent analytic sheaves on Stein
spaces [43]. However, it does not formally follow from the Cartan–Oka vanishing
theorem because, in general, OZV is neither coherent in the sense of Cartan and Oka
nor an inverse limit of coherent sheaves.

When f is only partially stable, the higher cohomology groups need not vanish,
and they can be expected to play a role in the construction of representation-theoretic
obstructions. When f is stable, Theorem 5.3 and Proposition 5.1 together say that
H0(Z,OZV ) contains information in the form of finite-dimensional G-submodules that
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puts fairly strong constraints on the stabilizers that can occur in the infinitesimal
neighborhood of the orbit of f in V . Analogously, we expect Hi(Z,OZV ), i ≥ 0,
to contain similar information, when f is partially stable, that will constrain the
(reductive) stabilizers that can occur in the infinitesimal neighborhood of the orbit
of f in V . With this in mind, our approach for constructing representation-theoretic
obstructions, when f is partially stable, can be formulated as follows.

1. Prove a generalization of the obstruction-based criterion in Proposition 5.1
to higher cohomology groups.

2. Explicitly calculate an interesting class of finite-dimensional G-submodules
that occur within H0(Z,OZV ), and more generally, in Hi(Z,OZV ), generalizing
the method in the proof of Theorem 5.3 for the stable case.

3. Explicitly isolate a G-submodule in this class that satisfies the obstruction
criterion for the pair (f, g). Thus, in the setting of Conjecture 4.3, one hopes
to get an explicit obstruction this way when m is polynomial in n, thereby
proving that the permanent has no polynomial size formula.

Now we elaborate on the main problems that arise in these three steps.

Generalization of the obstruction criterion. The proof of Proposition 5.1
uses evaluation of functions in H0(Z,OZV ). As it is, this does not work for higher
cohomology, since we do not have an appropriate notion of evaluation for elements of
higher cohomology representations.

Explicit computation of Hi(Z,OZ
V ). Here partial stability is expected to be

crucial, just as stability was crucial in the computation of H0(Z,OZV ) based on Luna’s
slice theorem and Peter–Weyl theorem (Theorem 5.3) when f was stable. Indeed one
important feature of our definition of partial stability is the following theorem.

Theorem 5.4. Let F be a coherent (algebraic or analytic) sheaf over the orbit Z.
Let F∗ be its direct image over G/P with respect to the projection of the fiber bundle
Z = Gf → G/P . Then Hi(Z,F) = Hi(G/P,F∗).

Proof. By the definition of partial stability, the fiber of the bundle Z → G/P
is affine, since it is isomorphic to L/L′, where L is a Levi subgroup of P and L′ is
a stabilizer of f within L that is reductive. Since higher cohomology of a coherent
algebraic (or analytic) sheaf over an affine variety vanishes, by the Cartan–Serre
theorem [18] (resp., the Cartan–Oka theorem [43]), the result follows by the Leray
spectral sequence.

This indicates why the group action in the vicinity of the orbit of a partially
stable point in the null cone ought to have more structure than in the vicinity of an
arbitrary point in the null cone. The sheaf OZV is not coherent. However, the idea in
the preceding proof can be pushed towards computation of some interesting families
of finite-dimensional G-submodules in Hi(Z,OZV ). This will be reported elsewhere.

Construction of an explicit G-module satisfying an obstruction crite-
rion. This step gives rise to the subgroup restriction problem of calculating an explicit
decomposition of a G-module W when the action is restricted to a reductive subgroup
of G. We have already seen this happen when f is completely stable (cf. Theorem 5.1
and the remark following its proof); the same is expected in the partially stable
case. As pointed out in Example 5.2.1, the specific version of the subgroup restric-
tion problem that arises in the context of the determinant vs. permanent problem is
the plethysm problem of representation theory, which has no satisfactory solution so
far. An explicit combinatorial formula for multiplicities of irreducible Weyl modules
within Sλ(V ⊗W ) and Sλ(SµV ), based on Weyl’s character formula, is known [21].
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However, this involves alternating signs, and so it is difficult to ascertain from the
formula whether the specific multiplicity is zero or nonzero. What is desirable is a
formula for decomposition that does not involve signs, analogous to the Littlewood–
Richardson rule for the decomposition of the tensor product of two Weyl modules.
Such a decomposition for the plethysm problem is so far not known.

It would be interesting to use the scheme in this section (using, say, the obstruction
criterion in Proposition 5.1) on a computer to come up with explicit representation-
based obstructions for the pair (f, g) in Conjecture 4.3 for small values of m and n,
say, m = 3 and n = 2. Unfortunately, even for very small values, this computa-
tional problem seems quite hard. (The plethysm problem is one of the computational
bottlenecks. For m = 3 one requires explicit decomposition of Sλ(V ⊗ V ), where
dim(V ) = 9.)

6. Circuit size. In section 5 we formulated an approach to a well-behaved in-
stance of the orbit-closure (and the stabilizer) problem for a pair of forms (f, g) with
nontrivial characteristic stabilizers, wherein f is partially stable. In section 4 we re-
duced the lower bound problem for the formula size of the permanent to such an
instance. Next we shall do the same for certain lower bound questions concerning
circuit size, which will include (section 7) the usual P vs. NP question (the stronger
nonuniform4 version) and its arithmetic analogue over an algebraically closed field.

Let f(X) be again any fixed form in the variable vector X of dimension n over
an algebraically closed field F . Now we wish to know if it has an arithmetic circuit
over F of size l. An arithmetic circuit is a directed acyclic graph. Input variables
and constants represent nodes with indegree zero. The remaining nodes are labeled
as addition or multiplication nodes. All nodes function as per their labels and the
result is output at the unique node with outdegree zero. The size of the circuit is the
size of the graph.

The role of the determinant function in section 4 would now be played by a certain
function H(Y ), which would be complete for the class of polynomials having small
circuit size. To define it, consider a generic arithmetic circuit of depth k and width
m. It consists of k + 1 levels of nodes, numbered 0 to k, each level containing m
nodes, except the root level zero, which contains a single output node. Each node in
the level i < k is connected to every node in level i + 1. Each node u in the input
level k is labeled with the variable yu; the function computed by this node is defined
to be yu. The function h(u) computed by a node u in level i < k is defined to be∑
v,w yuv,wh(v)h(w), where v and w range over nodes in level i + 1 and each yuv,w is

an indeterminate. Let Y be the vector of the variables yus at the input level k and
the variables yuv,ws. Let H(Y ) be the function computed at the root level zero. It is
a homogeneous form in Y with total degree exponential in k.

Any arithmetic circuit of size r can be obtained from the generic circuit of depth
k ≤ r and width m ≤ r by specializing the indeterminates yuv,w to some constants and
the indeterminates yus at the input level to the input parameters or constants. Hence
H(Y ) is complete for the class of polynomials with small circuits. This can be used to
prove the following analogue (Proposition 6.1) of Proposition 4.1. Let V be the space
of homogeneous forms in Y with degree equal to that of H(Y ). Let l = O(r2) be
the size of Y that corresponds to the generic circuit with depth and width r. We can
define, as in section 4, the function φ for embedding in V the forms of lower degree

4In the nonuniform version, the computational circuits for various input sizes n need not be
correlated, whereas in the uniform version, correlation is enforced by requiring a log(n)-space machine
that can recognize the circuits for all n.
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in the smaller variable vector X of dimension n < m: specifically, identify X with
some of the input variables in Y and use some remaining variable as a homogenizing
parameter. Let G = SLl(F ). Then the following proposition results.

Proposition 6.1. If f(X) has an arithmetic circuit of size r, then fφ(Y ) lies
in the (projective) Zariski closure ∆[H(Y )] of the G-orbit of H(Y ) in P (V ), where
l = O(r2).

Proof. The proof is similar to that of Proposition 4.1. The role of determinant in
that proof is now played by H(Y ), which is complete for the class of functions with
small circuits.

The form H(Y ) turns out to be good like the determinant function because it has
a large nontrivial stabilizer that in a sense characterizes it. Indeed, any automorphism
of the generic circuit that fixes the nodes in the input level k gives rise to an element
of SLl(F ) that stabilizes H(Y ). Quite likely, the stabilizer of H(Y ) is precisely
the discrete group Q of such automorphisms. It contains k copies of the symmetric
group Sm, where k is the depth of the generic circuit and m is its width. The total
degree of H(Y ) in the variables yuv,w that occur at level i is di = 2i, and its total

degree in the input variables yus is dk+1 = 2k+1. Therefore H(Y ) has multidegree
(d1, . . . , dk+1) in these groups of variables. Let M(Y ) be the set of monomials over
Y with total degree equal to that of H(Y ), i.e., with degree d1 + · · · + dk+1. It has
a natural Q-action induced by that on the generic circuit. Order the monomials in
M(Y ) lexicographically. We call a monomial maximal if it is the largest monomial
in its Q-orbit. Let Mm(Y ) ⊆ M(Y ) be the subset of maximal monomials. Given
any monomial α, let α̂ denote it symmetrization

∑
σ∈Q σ(α). Let V be the space of

homogeneous forms in Y of total degree equal to that of H(Y ). The following is easy
to prove.

Proposition 6.2. The set of forms α̂, α ∈ Mm(Y ), is a basis of the space V Q

of Q-invariants in V .
Unlike the determinant (cf. Proposition 4.2), H(Y ) is not a unique form stabilized

by Q. However, all forms stabilized by Q are strongly linked to the generic circuit as
in Proposition 6.2. In that sense, Q captures the structure of H(Y ).

Via Proposition 6.1 we can reduce our lower bound problem for the circuit size
of f(X) to an instance of the orbit-closure problem (section 2) with H(Y ) and fφ(Y )
playing the role of g(Y ) and f(Y ) there. Since H(Y ) has a nice stabilizer that captures
its structure (Proposition 6.2), this problem in turn can be reduced to an instance
of the stabilizer problem (section 2), where we let D be equal to the stabilizer of
H(Y ). For these problems to be well behaved both H(Y ) and f(X) should be nice
functions like the determinant and permanent. We have already seen that H(Y ) has
a nontrivial characteristic stabilizer. The form f(X) should also be nice. This will
indeed be the case for the form that arises in the context of the P vs. NP question,
as we shall see next.

7. P vs. NP . Before turning to the P �= NP conjecture, we shall treat its
arithmetic implication first. Let X be a variable vector (or matrix) of dimension n.
Let f(X) be a polynomial, which is defined in some uniform way for each n, such
that, when reduced modulo 2, it gives an NP -complete function in the usual sense.
If P �= NP (the nonuniform version), then f(X), modulo 2, cannot be computed by
a boolean circuit of poly(n) size. This implies that f(X) cannot be computed by
an integral (arithmetic) circuit of poly(n) size either; otherwise this circuit can be
reduced modulo 2 to obtain a boolean circuit of poly(n) size. By arithmetic (integral)
implication of the P �= NP conjecture (nonuniform version), we mean the problem
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of showing that such f(X) does not have an integral circuit of poly(n) size. Since
it is an implication of the usual nonuniform P �= NP conjecture, and at the same
time does not involve problems of positive characteristic, it is natural to address this
arithmetic implication first. In turn, it suffices to consider the complex version of the
P �= NP conjecture, where the problem is to show that f(X) does not have a circuit
of poly(n) size defined over C. The complex version trivially implies the arithmetic
one, since every integral circuit is also a complex circuit. Hence, the version of the
P �= NP conjecture over C, or more generally, over an arbitrary algebraically closed
field F , should be addressed first.

More generally, we can let f(X) be any integral polynomial, which when reduced
modulo 2 becomes a hard function NP—this means it belongs to NP but is not
expected to be in P (but it need not be NP -complete). The problem then is to show
that f(X) does not have a complex, and hence, an integral circuit of poly(n) size.

We begin by instantiating the form f(X) in the preceding section to a certain
form E(X) that corresponds to a hard function in NP . Take m-dimensional vector
variables {Xj

i |1 ≤ j ≤ k, 1 ≤ i ≤ m}, for some fixed constant k ≥ 3, say, k = 3,
for simplicity. Let X be the matrix whose columns consist of these km vectors. For
any function σ : {1, . . . ,m} → {1, . . . , k}, let detσ(X) denote the determinant of the

matrix whose ith column is X
σ(i)
i . Define E(X) =

∏
σ detσ(X), where σ ranges over

all such functions. This is well defined over any field. If the field of definition is F2,
then (the negation of) this function is almost NP -complete if k ≥ 3; see the note at
the end of this paper. When the field of definition is Fp, p a fixed prime, we let F
be its algebraic closure. The problem then is to show that E(X) does not have an
arithmetic circuit of poly(n) size over F . Let n = km2 be the total number entries in
X. The stabilizer K = stab(E(X)) of E(X) in SLn(F ) is nice.

Proposition 7.1. The connected component K0 of the identity in K is of the
form ST , where S � SLm(F ), and T � (F ∗)km−1 is the (km − 1)-dimensional
algebraic torus. Each A ∈ S � SLm(F ) corresponds to a linear transformation of the
form

X = [. . . , Xj
i , . . . ]→ [. . . , AXj

i , . . . ].(11)

Each element of the torus T corresponds to a linear transformation of the form

X = [. . . , Xj
i , . . . ]→ [. . . , λjiX

j
i , . . . ].(12)

The discrete group K/K0 contains the wreath product of the alternating group Am
and Sk. (It acts on X by permuting its columns in the obvious way.)

Proof. That K0 contains linear transformation of the form (11) or (12) is easy.
Since E(X) =

∏
σ detσ(X), where each detσ(X) is a distinct and irreducible polyno-

mial, each element of K must permute factors, modulo multiplications of factors by
constants as in (12). Since the stabilizer of each determinantal factor is known (cf.
(4)), the elements in K that fix all factors detσ(X) are seen to be precisely those of
the form in (11).

The elements of K/K0 that permute the factors detσ(X) are those that permute
the columns of X appropriately. They form a group isomorphic to the wreath product
of Am and Sk.

Moreover, the stabilizer K characterizes E(X) in the following sense. Let d denote
the total degree of E(X). Let [E(X)] be the set of forms of deg d in the entries of X
that are stabilized by K.
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Proposition 7.2. Any form h(X) ∈ [E(X)] can be expressed as a homogeneous
polynomial in the maximal minors of X (which correspond to Plücker coordinates).
Among such forms E(X) is the simplest one, in the sense that its expansion in terms
of Plücker coordinates contains only one monomial.

Proof. Since h(X) is stabilized by SLn, which acts on X by left multiplication,
the first assertion follows from classical invariant theory. In arbitrary characteristic,
it follows from the result of De Concini and Procesi [8]. The second assertion then
follows immediately.

Let W be the space of forms in X with degree equal to that of E(X).

Theorem 7.1. The point E(X) ∈ P (W ) is stable with respect to the action of
G = SLn(F ) on P (W ). We assume that the characteristic does not divide k, k − 1,
or m.

This will be proved in section 8. Stability of E(X) is a key fact that connects the
P vs. NP question to geometric invariant theory.

Let V be the space of forms in Y as in section 6, where the size of Y is l > n. Take
a suitable embedding φ from W (P (W )) to V (P (V )) as usual. Then Theorem 7.1
immediately implies the following analogue of Theorem 4.3.

Theorem 7.2. Eφ(Y ) ∈ P (V ) is partially stable with respect to the action of
SLl = SL(Y ) with defect δ = 1. (We assume that the characteristic does not divide
k, k − 1, or m.)

Now we make the following analogue of the first assertion in Conjecture 4.3.

Conjecture 7.3. If l = na, where a is any fixed constant, then Eφ(Y ) cannot
lie in the (projective) Zariski closure ∆[H(Y )] of the SLl(F )-orbit of H(Y ) in P (V ).

More generally, let [H(Y )] be the set of forms in the entries of Y , with the same
degree as H(Y ), that are stabilized by the stabilizer of H(Y ). Let ∆̃[H(Y )] be the
projective closure of SLl(F ) · [H(Y )]. A stronger conjecture is the following one.

Conjecture 7.4. If l = na, where a is any fixed constant, then Eφ(Y ) cannot
lie in ∆̃[H(Y )].

By Proposition 6.1, Conjecture 7.3 would imply that E(X) does not have an
arithmetic circuit over F of size polynomial in n. The conjecture is not expected to
be equivalent to the original lower bound question over F . However, it is “almost”
equivalent to it, when F is the field of complex numbers, in the following sense.

Proposition 7.5. If Conjecture 7.3 were false, then E(X) can be approximated
infinitesimally closely by an arithmetic circuit of poly(n) size.

Proof. The proof is similar to that of Proposition 4.4.

However, such an approximation is not expected in view of the computational
hardness of E(X) over F2.

SinceH(Y ) has a nontrivial reductive stabilizer that captures its structure (Propo-
sitions 6.2), the orbit-closure problem in Conjecture 7.3 can be reduced to the stabi-
lizer problem. Specifically, we make the following stronger conjecture, which implies
Conjecture 7.3 or 7.4.

Conjecture 7.6. The stabilizer of H(Y ) cannot occur in the infinitesimal neigh-
borhood of the SLl(F )-orbit of Eφ(Y ) in the affine space V .

Since E(X) is stable, and both H(Y ) and E(X) have nontrivial stabilizers that
capture their structure, the approach based on explicit obstructions (section 5) seems
appropriate for Conjecture 7.6. In the context of constructing explicit obstructions,
the following problems then arise (cf. section 5.5):

1. Explicitly compute finite-dimensionalG-submodules ofHi(Z,OZV ), with Eφ(Y )
playing the role of f in section 5.5, and Z = Gf . As we mentioned there, the
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fact that the orbit Gf is a fiber bundle over G/P , in conjunction with the
the Leray spectral sequence, is important in this context.

2. The instances of the subgroup restriction problem that arise in the present
context are the following. How does a Weyl module representation Sλ(Y )
of SL(Y ) decompose as a Q-module, where Q is the stabilizer of H(Y )?
How does a Weyl module representation Sµ(X) of SL(X) decompose as a
K-module, where K is the stabilizer of E(X)?

Now, we turn to the actual P vs. NP question (the stronger nonuniform version).
Here the field under consideration is no longer algebraically closed. The base field
that is actually used for computation in real computers is finite, in fact, F2, though,
without of loss of generality, we can take it to be Fp for any fixed prime. We will reduce
the P vs. NP question to a certain parametrized family of the general orbit-closure
or stabilizer problems over F , where F is the algebraic closure of Fp.

The starting point is the following analogue of Proposition 6.1. We say that a
form is an Fp-form if its coefficients are in Fp. The two forms h1(Y ), h2(Y ) ∈ V are
said to be Fp-equivalent if they are equal for all Fp-vectors Y , i.e., when we let each
entry of Y range over Fp.

Proposition 7.7. If E(X), considered as a function of the Fp-vector X, has an
arithmetic circuit over Fp of size of r, then some Fp-form h that is Fp-equivalent to
Eφ(Y ) lies in the projective orbit closure ∆[H(Y )] ⊆ P (V ), where the size l of Y is
O(r2).

Proof. The proof is analogous to that of Proposition 4.1.
This leads us to the following stronger version of Conjecture 7.6, which would

imply that P �= NP .
Conjecture 7.8. If l = na, where a is any fixed constant, then no Fp-form

h(Y ) Fp-equivalent to Eφ(Y ) can lie in the (projective) Zariski closure ∆[H(Y )] of
the SLl(F )-orbit of H(Y ) in P (V ). More strongly, the stabilizer of H(Y ) cannot
occur in the infinitesimal neighborhood of the SLl(F )-orbit of any such h(Y ) in the
affine space V .

For an approach based on explicit obstructions (section 5.5) to be applicable to
this conjecture, we would want h(Y ) to be a good form like Eφ(Y ). The latter is
partially stable (Theorem 7.2), and we conjecture that, in fact, a stronger statement
holds.

Conjecture 7.9. Any Fp-form h(Y ) Fp-equivalent to Eφ(Y ) is partially stable
with respect to the action of SLl(F ) on P (V ) with defect δ = 1.

One can approach other fundamental questions of complexity theory, such as NC1

vs. NC2, P#P vs. NP in a similar fashion by reducing them to various instances of
the orbit closure and the stabilizer problem.

8. Stability of E(X). We prove Theorem 7.1 in this section. Let us assume
that the characteristic is zero; however, essentially the same proof also works when
the characteristic does not divide m, k, or k − 1. For simplicity, we also assume that
k = 3.

Let V be a vector space of dimension m. Let I denote the set {(i, j)|1 ≤ i ≤ 3, 1 ≤
j ≤ m}. Let X = {X[i, j]|(i, j) ∈ I} be a collection of (indeterminate) vectors of V .
Let 3m denote the collection of all functions σ : {1, . . . ,m} → {1, 2, 3}. For a σ ∈ 3m,
let detσ(X) denote the determinant of the matrix [X[σ(1), 1], . . . , X[σ(m),m]]. With
this notation,

E(X) =
∏
σ∈3m

detσ(X).
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Clearly, the action of SL(V ) on V stabilizes E(X). In other words, if A ∈ SL(V )
and AX denotes the collection {AX[i, j]|(i, j) ∈ I}, then E(AX) = E(X). Let D
denote the wreath-product of Sm with S3. An element of D is given by a tuple
β = (µ;α1, . . . , αm), where µ ∈ Sm and each αi ∈ S3. D acts on I naturally, viz.,
β = (µ, (αr))(i, j) = (αj(i), µ(j)). This action on I extends to X naturally, viz.,
β(X[i, j]) = X[β(i, j)], and this action stabilizes E(X) up to sign.

Let Y be the vector space consisting of formal linear combinations of the symbols
{yij |(i, j) ∈ I}. D acts on Y naturally, viz., β(yij) = yβ(i,j). We shall examine this
representation of D.

Let e′ =
∑

(i,j)∈I yij and f ′j = y1j+y2j+y3j . Let E be the span of e′ and F be the

span of all vectors of the form {f ′r−f ′s|1 ≤ r, s ≤ m}. It is clear that E ,F are invariant
under the action of D. We claim that E and F are, in fact, irreducible representations
of D. Irreducibility of E is clear. For F note that F = {∑m

r=1 crf
′
r|
∑m
r=1 cr = 0}.

Note that the action of D on F reduces to an action of Sm on F which is isomorphic
to the irreducible representation of Sm corresponding to the partition (m− 1, 1). Let
H be the following subspace of Y:

H =
{∑

cijyij |c1j + c2j + c3j = 0 for all j
}
.

It is easy to show that H is also D-irreducible. Thus we see that the D-module Y
splits into irreducible components Y = E ⊕ F ⊕ H as D-modules and thus Y is a
multiplicity-free representation of D.

Let D′ be the wreath-product of Am (the alternating group) with S3. We note
that (i) D′ ⊂ D actually stabilizes E(X) and (ii) for m > 4 the irreducible D-modules
E ,F , and H are irreducible as D′-modules as well.

Let h′1j = 2y1j − y2j − y3j . Define h′2j and h′3j similarly and note that h′ij ∈ H.
We may check that

3m.yij = e′ +
∑
r:r �=i

(f ′i − f ′r) +m.h′ij .(13)

Next, we analyze the stability of the form E(X). If E(X) were unstable, then by
Kempf’s criteria, there is a one-parameter subgroup λ : k∗ → SL(X) “witnessing”
its instability and which commutes with the stabilizer of the form E(X). In other
words, there would be an SL(X)-invariant closed subset of S of forms on X, and a
one-parameter subgroup λ commuting with D′ above, driving E(X) into S. Since
SL(V ) acts on X as a diagonal action on 3m copies of V , by Schur’s lemma, we see
that the image of λ must lie in the commutator of this representation of SL(V ). This
reduces λ to be of the form λ = γ ⊗ I(V ), where I(V ) is the identity map on V and
γ : k∗ → SL(Y). Within SL(Y) it must further commute with the D′-representation
Y. Since Y = E ⊕ F ⊕ H splits as a D′-module, we conclude that D′ is actually
contained in a suitable parabolic subgroup of SL(X), whence Kempf’s first criteria,
based on noncontainment of the stabilizer in a proper parabolic group, fails to apply.
However, since λ commutes with D′, we see that λ can be expressed as

γ(t)(3m.yij) = tae′ + tb
∑
r:r �=i

(f ′i − f ′r) + tc.m.h′ij .(14)

Since dim(E) = 1,dim(F) = m− 1 and dim(H) = 2m, and λ(t) ∈ SL(X) for all t, we
have the important relation

a+ (m− 1)b+ 2mc = 0.(15)



GEOMETRIC COMPLEXITY THEORY 523

We define the “unprimed” vectors e(X), fj(X), hij (X) as the analogues of e′, f ′j ,
and h′ij by replacing the symbol yrs by the vector variable X[r, s]. Thus e(X) =∑

(i,j)∈I X[i, j] and fj(X) = X[1, j]+X[2, j]+X[3, j]. The vector hij(X) is similarly

defined. For notational convenience, we drop the argument (X) from e(X), fi(X),
and hij(X). In this new notation, we have the analogue of (13):

3m.X[i, j] = e+
∑
r:r �=i

(fi − fr) +m.hij .(16)

Let χi = χi(X) denote the vector
∑
r:r �=i(fi − fr). In the form E(X), we may

substitute the above expression for each X[i, j] and using the multilinearity of the de-
terminant expandE(X) into its “constituents.” These constituents may be aggregated
by their weights with respect to the one-parameter subgroup λ as follows. Each con-
stituent is a product of determinants with columns from the collection {e, (χi), (hij)}.
If a particular determinant takes for its arguments k1 copies of e, k2 elements of (χi),
and k3 elements from the set (hij), (with k1 + k2 + k3 = m), then the degree of that
determinant may be taken as k1a+k2b+k3c. The degree of a product of determinant
factors is clearly the sum of the individual degrees. Then we have

λ(t)(E(X)) =
∑
w

twEw(X),(17)

where for an integer w the term Ew(X) is the form of degree w. We say that the
integer w is a weight in the above expression, if Ew(X) is nonzero. If E(X) were
unstable, then there are integers a, b, c satisfying (15) above such that

Ew(X) = 0 for all w < 0.(18)

This is precisely the condition for limt→0 λ(t)(E(X)) to exist. We shall show that
this condition is not possible for any choice of a, b and c as above.

In the expression E(X) =
∑
w Ew(X), there are many terms which vanish. First

note that the vector e cannot occur twice inside any nontrivial determinant. Sim-
ilarly, we have the relation

∑m
i=1 χi = 0; thus not all the arguments of a nontriv-

ial determinant can be from the set (χi). We also note that for any collections
{v, (wi)mi=1, (yij)(i,j)∈I} of vectors in V such that

∑
i wi = 0 and y1j + y2j + y3j = 0

for all j, there are vectors x = {x[r, s] ∈ V |(r, s) ∈ I} such that e(x) = v, χi(x) = wi,
and hij(x) = yij .

Therefore suppose that E(X) were unstable and a, b, c were as above.

Case 1. a, b ≥ c. In this case, (15) tells us that c ≤ 0. Thus the minimum possi-
ble weight is wmin = 3m.m.c coming from terms such as

∏
σ∈3m det(hσ(1),1, . . . , hσ(m),m),

with a few more terms if b = c or a = c.

It is easy to show that Ewmin �= 0. Select x = (x[r, s]) such that e(x) = χi(x) = 0
(for all i) and h1j(x) = h2j(x) = ej and h3j(x) = −2ej , where ej is the jth “unit”
basis vector. For this choice of x, we see that

Ewmin
(x) =

∏
σ∈3m

det(hσ(1),1, . . . , hσ(m),m) �= 0.

Thus, unless c = 0, which in turn implies a, b, c = 0, there is a negative weight term,
contradicting (18).
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Case 2. c ≥ a, b. We choose x such that hij(x) = 0 for all (i, j) ∈ I. Then the
minimum-weight term occurs in the expansion of

[det(e(x) + χ1(x), . . . , e(x) + χm(x))]
3m

(with the relation χ1(x) + · · ·+ χm(x) = 0).

Since e may occur only once and the χi’s only m − 1 times, the only weight
possible is wmin = (m − 1)b + a. We may check that Ewmin is actually nonzero by
choosing x such that in addition to the requirements above, we have χi(x) = ei for
i = 1, . . . ,m − 1 and χm(x) = −(e1 + · · · + em−1) and e(x) = em. For this choice
of x, we see that Ewmin(x) �= 0. Since a + (m − 1)b + 2mc = 0 (see (15)), we have
that a+(m− 1)b < 0. Thus, again, unless a, b, c = 0, there is a negative weight term,
again contradicting (18).

Case 3. a > c > b. In this case consider the assignment x such that (i) e = 0,
(ii) h1j = h2j = ej , h3j = −2ej for all j, and (iii) χi = ei for i = 1, . . . ,m − 1 with
χm = −(e1 + · · ·+ em−1). We see that for any σ ∈ 3m, in the expression

det(χ1 +m.hσ(1),1, . . . , χm +m.hσ(m),m)

the minimum-weight term is

m∑
i=1

m.det(χ1, . . . , χi−1, s.ei, χi+1, . . . , χm).

Here the constant s = 1 if σ(i) = 1 or 2 and −2 otherwise. This expands exactly
to either of the numbers m or −2m and is thus nonzero. The weight of this term
is minimum possible, which is (m − 1)b + c. If indeed λ witnesses the instability
of E(X) (and therefore satisfies (18)), then (m − 1)b + c ≥ 0. If c ≥ 0, then this
implies that (m − 1)b + 2mc ≥ 0. Since a > 0, we have a + (m − 1)b + 2m.c > 0
which is a contradiction to (15). On the other hand, c ≤ 0 and c > b together imply
(m− 1)b+ c < 0. Thus there is a negative weight nonzero term, contradicting (18).

Case 4. b > c > a. In this case consider the assignment x such that (i) e = em,
(ii) h1j = h2j = ej , h3j = −2ej for all j, and (iii) χi = 0 for all i. With b > c > a,
the minimum weight possible is (m − 1)c + a. We show that this weight is indeed
achieved. We analyze the expression

det(e+m.hσ(1),1, . . . , e+m.hσ(m),m).

Since e = em, the only term which survives is

det(m.hσ(1),1, . . . ,m.hσ(m−1),m−1, em).

This is clearly nonzero. Thus there is a nonzero term of weight (m − 1)c + a. Since
(a, b, c) is a witness to the instability of E(X), we must have (m−1)c+a ≥ 0. The only
way this can hold is with c ≥ 0. This implies that 2mc+a = (m−1)c+a+(m+1)c ≥ 0.
However, b > 0, and consequently a+(m−1)b+2mc > 0, which is untenable, because
of (15).

Thus we must have (a, b, c) = (0, 0, 0) which proves the stability of E(X).



GEOMETRIC COMPLEXITY THEORY 525

Note added in proof. The function E(X) in section 7 is expected to be hard
in the following sense. Consider a system of n integral polynomial equations of some
constant degree k ≥ 3 in n variables:

gi(y1, . . . , yn) = 0, 1 ≤ i ≤ n,(19)

where we assume that each gi is a product of k linear forms. The problem of finding
if this system has a nonzero solution over Fp, where p ≤ 2poly(n), is in NP . If gis
are allowed to be nonhomogeneous, it is also NP -complete, even for p = 2 and k = 3
(reduction from 3-CNF).

Consider the special case of this problem when all gis are homogeneous. It is
expected to be hard, i.e., not expected to be in P for large enough p’s; but it is not
known if it is NP -complete. Take m-dimensional vector variables {Xj

i |1 ≤ j ≤ k, 1 ≤
i ≤ m}, where, for any i,Xj

i , 1 ≤ j ≤ k, are the coefficient vectors of the k forms
whose product is gi. Let X be the matrix whose columns consist of these km vectors.
Then E(X), modulo Fp, is precisely the resultant of this system (19) with m = n.
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[32] Y. Matsushima, Espaces homogènes de Stein des groupes de Lie complexes, Nagoya Math. J.,

16 (1960), pp. 205–218.
[33] K. Mulmuley, Lower bounds in a parallel model without bit operations, SIAM J. Comput., 28

(1999), pp. 1460–1509.
[34] K. Mulmuley and M. Sohoni, Geometric Complexity Theory II: Explicit Obstructions,

manuscript.
[35] K. Mulmuley, U. Vazirani, and V. Vazirani, Matching is as easy as matrix inversion,

Combinatorica, 7 (1987), pp. 105–113.
[36] D. Mumford, Geometric Invariant Theory, Ergeb. Math. Grenzgeb. (3) 34, Springer-Verlag,

Berlin, 1965.
[37] D. Mumford, J. Fogarty, and F. Kirwan, Geometric Invariant Theory, Springer-Verlag,

Berlin, 1994.
[38] V. Popov and E. Vinberg, Invariant Theory, in Algebraic Geometry IV, Encyclopaedia Math.

Sci. 55, Springer-Verlag, Berlin, 1991.
[39] A. Razborov and S. Rudich, Natural proofs, J. Comput. System Sci., 55 (1997), pp. 24–35.
[40] C. Seshadri, Theory of moduli, in Algebraic Geometry, AMS, Providence, RI, 1975, pp. 263–

304.
[41] S. Smale, Mathematical problems for the next century, in Mathematics: Frontiers and Per-

spectives, AMS, Providence, RI, 2000, pp. 271–294.
[42] T. Springer, Linear algebraic groups, in Algebraic Geometry IV, Encyclopaedia Math. Sci.

55, Springer-Verlag, Berlin, 1991.
[43] H. Grauert and R. Remmert, Theory of Stein Spaces, Springer-Verlag, Berlin, 1979.
[44] L. Valiant, The complexity of computing the permanent, Theoret. Comput. Sci., 8 (1979), pp.

189–201.
[45] L. Valiant, Completeness classes in algebra, in Proceedings of the Eleventh ACM Symposium

on Theory of Computing, 1979.
[46] H. Weyl, The Classical Groups. Their Invariants and Representations, Princeton University

Press, Princeton, NJ, 1939.



ON-LINE LOAD BALANCING IN A HIERARCHICAL SERVER
TOPOLOGY∗

AMOTZ BAR-NOY† , ARI FREUND‡ , AND JOSEPH (SEFFI) NAOR‡

SIAM J. COMPUT. c© 2001 Society for Industrial and Applied Mathematics
Vol. 31, No. 2, pp. 527–549

Abstract. In a hierarchical server environment jobs are to be assigned in an on-line fashion to a
collection of servers which form a hierarchy of capability: each job requests a specific server meeting
its needs, but the system is free to assign it either to that server or to any other server higher in the
hierarchy. Each job carries a certain load, which it imparts to the server it is assigned to. The goal
is to find a competitive assignment in which the maximum total load on a server is minimized.

We consider the linear hierarchy in which the servers are totally ordered in terms of their capa-
bilities. We investigate several variants of the problem. In the unweighted (as opposed to weighted)
problem all jobs have unit weight. In the fractional (as opposed to integral) model a job may be
assigned to several servers, each receiving some fraction of its weight. Finally, temporary (as opposed
to permanent) jobs may depart after being active for some finite duration of time. We show an op-
timal e-competitive algorithm for the unweighted integral permanent model. The same algorithm is
(e+1)-competitive in the weighted case. Its fractional version is e-competitive even if temporary jobs
are allowed. For the integral model with temporary jobs we show an algorithm which is 4-competitive
in the unweighted case and 5-competitive in the weighted case. We show a lower bound of e for the
unweighted case (both integral and fractional). This bound is valid even with respect to randomized
algorithms. We also show a lower bound of 3 for the unweighted integral model when temporary
jobs are allowed.

We generalize the problem and consider hierarchies in which the servers form a tree. In the
tree hierarchy, any job assignable to a node is also assignable to the node’s ancestors. We show
a deterministic algorithm which is 4-competitive in the unweighted case and 5-competitive in the
weighted case, where only permanent jobs are allowed. Randomizing this algorithm improves its
competitiveness to e and e+ 1, respectively. We also show an Ω(

√
n) lower bound when temporary

jobs are allowed.

Key words. on-line algorithms, load balancing, hierarchical servers, temporary jobs, resource
procurement
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1. Introduction. One of the most basic on-line load-balancing problems is the
following. Jobs arrive one at a time and each must be scheduled on one of n servers.
Each job has a certain load associated with it and a subset of the servers on which it
may be scheduled. The goal is to assign jobs to servers so as to minimize the cost of
the assignment, defined as the maximum load on a server.

The nature of the load-balancing problem considered here is on-line: decisions
must be made without any knowledge of future jobs, and previous decisions may not
be revoked. We compare the performance of an on-line algorithm to the performance
of an optimal off-line scheduler—one that knows the entire sequence of jobs in advance.
The efficacy parameter of an on-line scheduler is its competitive ratio, roughly defined
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as the maximum ratio, taken over all possible sequences of jobs, between the cost
incurred by the algorithm and the cost of an optimal assignment.

1.1. The hierarchical servers problem. In the hierarchical servers problem
the servers form a hierarchy of capability; a job which may run on a given server may
also run on any server higher in the hierarchy. We consider the linear hierarchy in
which the servers are numbered 1 through n, and we imagine them to be physically
ordered along a straight line running from left to right, with server 1 leftmost and
server n rightmost. Leftward servers are more capable than rightward ones. We say
that servers 1, . . . , s are to the left of s, and that servers s+ 1, . . . , n are to the right
of s.

The input is a sequence of jobs, each carrying a positive weight and requesting
one of the servers. A job requesting server s can be assigned to any of the servers
to the left of s. These servers are the job’s eligible servers. The assignment of a job
with weight w to server s increases the load on s by w (initially, all loads are 0). We
use the terms “job” and “request” interchangeably. The cost of a given assignment is
COST = maxs {ls}, where ls is the load on server s. We use OPT for the cost of an
optimal off-line assignment. An algorithm is c-competitive if there exists some b > 0,
independent of the input, such that COST ≤ c ·OPT + b for all input sequences. For
scalable problems (such as ours) the additive factor b may be ignored in lower bound
constructions.

We consider variants, or models, of the problem according to three orthogonal
dichotomies. In the integral model each job must be assigned in its entirety to a
single server; in the fractional model a job’s weight may be split among several eligible
servers. In the weighted model jobs may have arbitrary positive weights; in the
unweighted model all jobs have unit weight. Our results for the fractional model hold
for both the unweighted and weighted cases, so we do not distinguish between the
unweighted fractional model and the weighted fractional model. Finally, permanent
jobs continue to load the servers to which they are assigned indefinitely; temporary
jobs are active for a finite duration of time, after which they depart. The duration
for which a temporary job is active is not known upon its arrival. We may allow
temporary jobs or we may restrict the input to permanent jobs only. When temporary
jobs are allowed, the cost of an assignment is defined as COST = maxtmaxs {ls(t)},
where ls(t) is the load on server s at time t. The version of the problem which we
view as basic is the weighted integral model with permanent jobs only.

A natural generalization of the problem is for the servers to form a (rooted) tree
hierarchy ; a job requesting a certain server may be assigned to any of its ancestors in
the tree. The various models pertain to this problem as well.

The hierarchical servers problem is an important practical paradigm. It captures
many interesting applications from diverse areas such as assigning classes of service
to calls in communication networks, routing queries to hierarchical databases, sign-
ing documents by ranking executives, and upgrading classes of cars by car rental
companies.

From a theoretical point of view, the hierarchical servers problem is also interest-
ing by virtue of its relation to the problem of related machines [3]. In this problem
all servers are eligible for every job, but they may have different speeds; assigning a
job of weight w to a server with speed v increases its load by w/v. Without loss of
generality, assume v1 ≥ v2 ≥ · · · ≥ vn, where vi is the speed of server i. Consider a
set of jobs to be assigned at a cost bounded by C, and let us focus on a particular
job whose weight is w. To achieve COST ≤ C we must refrain from assigning this
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job to any server i for which w/vi > C. In other words, there exists a rightmost
server to which we may assign the job. Thus, restricting the cost induces eligibility
constraints similar to those in the hierarchical servers problem. Some of the ideas
developed in the context of the hierarchical servers problems are applicable to the
problem of related machines, leading to better bounds for that problem [10].

1.2. Background. Graham [16] explored the assignment problem where each
job may be assigned to any of the servers. He showed that the greedy algorithm has
competitive ratio 2 − 1

n . Later work [8, 9, 17, 2] investigated the exact competitive
ratio achievable for this problem for general n and for various special cases. The
best results to date for general n are a lower bound of 1.852 and an upper bound of
1.923 [2].

Over the years many other load-balancing problems were studied; see [4, 20]
for surveys. The assignment problem in which arbitrary sets of eligible servers are
allowed was considered by Azar, Naor, and Rom [7]. They showed upper and lower
bounds of Θ(logn) for several variants of this problem. Permanent jobs were assumed.
Subsequent papers generalized the problem to allow temporary jobs; in [5] a lower
bound of Ω(

√
n) and an upper bound of O(n2/3) were shown. The upper bound was

later tightened to O(
√
n) [6].

The related machines problem was investigated by Aspnes et al. [3]. They showed
an 8-competitive algorithm based on the doubling technique. This result was improved
by Berman, Charikar, and Karpinski [12], who showed a more refined doubling algo-
rithm that is 3 +

√
8 = 5.828-competitive. By randomizing this algorithm, they were

able to improve the bound to 4.311. They also showed lower bounds of 2.438 (de-
terministic) and 1.837 (randomized). The randomized bound was recently improved
to 2 [14]. Azar et al. [6] generalized the problem to allow temporary jobs. They
showed a deterministic upper bound of 20 (which implies a randomized upper bound
of 5e ≈ 13.59) and a lower bound of 3. The upper bounds were later improved to
6 + 2

√
5 ≈ 10.47 (deterministic) and 9.572 (randomized) [10].

The resource procurement problem was defined and studied by Kleywegt et al. [18]
independently of our work. In this problem jobs arrive over (discrete) time, each
specifying a deadline by which it must complete, and all jobs must be executed on a
single server. We can view this as a problem of assigning permanent jobs to parallel
servers if we think of the time slots as servers. In fact, the problem is equivalent
to the following variant of the hierarchical servers problem. The model considered
is the fractional model with permanent jobs only. The input consists of precisely n
jobs. The jth job to arrive specifies a server sj ≤ n − j + 1; the servers eligible for
the job are sj , sj + 1, . . . , n− j + 1. In addition, the on-line nature of the problem
is less demanding. The scheduler need not commit to the full assignment of a job
immediately on its arrival. Rather, when the jth job arrives, it must decide what
fraction of each of the first j jobs to assign to server n − j + 1. Kleywegt et al.
[18] developed a lower bound technique similar to ours and were able to establish a
lower bound of 2.51 by analytic and numerical means. They also described a 3.45-
competitive algorithm.

1.3. Our results. A significant portion of our work is devoted to developing a
continuous framework in which we recast the problem. The continuous framework
is not a mere relaxation of the problem’s discrete features. Rather, it is a fully
fledged model in which a new variant of the problem is defined. The advantage of
the continuous model lies in the ability to employ the tools of infinitesimal calculus,
making analysis much easier.
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In section 2 we use the continuous model to design an optimal e-competitive
algorithm. Surprisingly, this algorithm operates counterintuitively; the weight dis-
tribution of an assigned job is biased to the left, i.e., more weight ends up on the
leftward servers. We show a general procedure for transforming an algorithm for the
continuous model into an algorithm for the fractional model. We also show a general
procedure for transforming an algorithm for the fractional model into an algorithm for
the integral model. Thus we get an e-competitive algorithm for the fractional model
and an algorithm which is, respectively, e and (e+1)-competitive for the unweighted
integral and weighted integral models. The former algorithm admits temporary jobs;
the latter does not. Our upper bound of e also applies to the resource procurement
problem of Kleywegt et al. [18] by virtue of Theorem 2 in their paper. Thus we
improve their best upper bound of 3.45.

In section 3 we develop a procedure for deriving lower bounds in the context of the
continuous model. The construction of the continuous model is rather unconventional
in its not being a generalization of the discrete model. In fact, on the surface of things,
the two models seem incomparable, albeit analogous. At a deeper level, though, it
turns out that the continuous model is actually a special case of the discrete model,
making lower bounds obtained in the continuous model valid in the discrete setting
as well. This makes the upper bound all the more intriguing, as it is developed in the
continuous framework and transported back to the discrete model. The lower bounds
obtained with our procedure are also valid in the discrete models (fractional as well
as integral), even in the unweighted case with permanent jobs only and even with
respect to randomized algorithms. Using our procedure we find that e is a tight lower
bound. Since our lower bound technique is the same as the one used (independently)
by Kleywegt et al. [18] in the context of the resource procurement problem, our lower
bound of e applies to that problem as well, and it improves their best lower bound of
2.51. Thus our work solves this problem completely by demonstrating a tight bound
of e.

In section 4 we consider temporary jobs in the integral model. We show a dou-
bling algorithm that is 4-competitive in the unweighted case and 5-competitive in the
weighted case. We also show a deterministic lower bound of 3.

Section 5 extends the problem to the tree hierarchy. We show an algorithm which
is, respectively, 4-, 4-, and 5-competitive for the fractional, unweighted integral, and
weighted integral models. Randomizing this algorithm improves its competitiveness
to e, e, and e+ 1, respectively. We show lower bounds of Ω(

√
n) for all models, both

deterministic and randomized, when temporary jobs are allowed.
The effect of restricting the sets of eligible servers in several other ways is discussed

in section 6. In the three cases we consider, we show a lower bound of Ω(log n). For
example, this lower bound holds in the case where the servers form a circuit (or a line)
and eligible servers must be contiguous. Note that since these problems are all special
cases of the problem considered in [7], an upper bound of O(log n) is immediate.

2. Upper bounds. In this section we show an algorithm whose respective ver-
sions for the fractional, unweighted integral, and weighted integral models are e, e,
and (e + 1)-competitive. The fractional version admits temporary jobs; the inte-
gral versions do not. We build up to the algorithm by introducing and studying the
semicontinuous model and the class of memoryless algorithms. We begin with the
optimum lemma, which characterizes OPT in terms of the input sequence.

2.1. The optimum lemma. For the fractional and unweighted integral models
the lemma provides an exact formula for OPT . For the weighted integral case it gives
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a 2-approximation.1 The optimum lemma is a recurrent theme in our exposition.
For a given input sequence and a given server s, denote by Ws the total weight

of jobs requesting servers to the left of s, and let µs = Ws/s. Define H = maxs {µs}.
Clearly, H is a lower bound on OPT , and in the unweighted integral model we can
tighten this to 	H
. In addition, the maximum weight of a job in the input sequence,
denoted wmax, is also a lower bound on OPT in the integral model.

Turning to upper bounds on OPT , let us say that a given server is saturated
at a given moment if its load is at least H. For the integral model, consider an
algorithm that assigns each job to its rightmost unsaturated eligible server. This
algorithm treats the jobs in an on-line fashion but requires advance knowledge of H
so it is off-line. Clearly, if an unsaturated eligible server can always be found, then
COST < H +wmax. We claim that this is indeed the case. To see this, suppose that
when some job of weight w arrives, all of its eligible servers are saturated. Let s be
maximal such that the servers to the left of s are all saturated. By the maximality
of s, the jobs assigned to the left of s must have all requested servers to the left of
s. Since their total weight is at least s · H, we have Ws ≥ s · H + w > s · H, a
contradiction.

For the fractional model we modify the above algorithm as follows. When a job
of weight w arrives, we assign it as follows: let s be the rightmost unsaturated eligible
server and let δ = H − ls, where ls is the current load on s. If δ ≥ w, we assign the
job in its entirety to s. Otherwise, we split the job and assign δ units of weight to
s and treat the remainder recursively as a new job to be assigned. This algorithm
achieves COST ≤ H.

The optimum lemma summarizes these results.
Lemma 1 (optimum lemma).
• In the fractional model, OPT = H.
• In the unweighted integral model, OPT = 	H
.
• In the weighted integral model, max {H,wmax} ≤ OPT < H + wmax.

2.2. Memoryless algorithms. A memoryless algorithm is an algorithm that
assigns each job independently of previous jobs. Of course, memoryless algorithms
are only of interest in the fractional model, which is the model we are going to con-
sider here. We focus on a restricted type of memoryless algorithms, namely, uniform
algorithms. Uniform memoryless algorithms are instances of the generic algorithm
shown below; each instance is characterized by a function u : N → (0, 1] satisfying
u(1) = 1.

Algorithm GenericUniform

When a job of weight w requesting server s arrives, do:
1. r ← w; i← s.
2. While r > 0:

3. Assign a = min {w · u(i), r} units of weight to server i.
4. r ← r − a.
5. i← i− 1.

1It is unreasonable to expect an easily computable formula for OPT in the weighted integral
model, for that would imply a polynomial-time solution for the NP-hard problem PARTITION
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The algorithm starts with the server requested by the job and proceeds leftward
as long as the job is not fully assigned. The fraction of the job’s weight assigned
to server i is u(i), unless w · u(i) is more than the remainder of the job when i is
reached. The condition u(1) = 1 ensures that the job will always be fully assigned by
the algorithm.

Note that the assignment generated by a uniform memoryless algorithm is inde-
pendent of both the number of servers and the order of jobs in the input. Moreover,
any collection of jobs with total weight w, requesting some server s, may be replaced
by a single request of weight w for s. We therefore assume that exactly one job re-
quests each server (we allow jobs of zero weight) and that the number of servers is
infinite. We denote the weight of the job requesting server s by ws.

Consider a job of weight w requesting a server to the right of a given server s. If
the requested server is close to s the job will leave w·u(s) units of weight on s regardless
of the exact server requested. At some point, however, the job’s contribution to the
load on s will begin to diminish as the distance of the request from s grows. Finally, if
the request is made far enough away, it will have no effect on s. We denote by ps the
point beyond which the effect on s begins to diminish and by p′s the point at which
it dies out completely:

ps = max



s′

∣∣∣∣∣∣

s′∑
i=s

u(i) ≤ 1



 , p′s = max



s′

∣∣∣∣∣∣

s′∑
i=s+1

u(i) < 1



 .

Note that ps and p′s may be undefined, in which case we take them to be infinity. We
are interested only in functions u satisfying ps <∞ for all s.

The importance of ps lies in the fact that the load on s due to jobs requesting
servers in the range s, . . . , ps is simply u(s) times the total weight of these jobs. The
following lemma and corollary are not difficult to prove.

Lemma 2 (worst case lemma). Let A be a uniform memoryless algorithm. The
following problem,

Given K > 0 and some server s, find an input sequence I that max-
imizes the load on s in A’s assignment subject to OPT = K,

is solved by I = 〈w1, w2, . . .〉, where

wi =





0, 1 ≤ i < ps,
psK, i = ps,
K, ps < i ≤ p′s,
0, i > p′s (if p

′
s <∞),

and ls—the resultant load on s—satisfies ps ·Ku(s) ≤ ls ≤ p′sKu(s).
Corollary 3. Let A be a uniform memoryless algorithm, and let CA be the

competitive ratio of A. Then supi {piu(i)} ≤ CA ≤ supi {p′iu(i)}.
2.3. The semicontinuous model. In both the fractional and the integral ver-

sions of the problem, the servers and the jobs are discrete objects. We therefore refer
to these models as the discrete models. In this section we introduce the semicontin-
uous model, in which the servers are made continuous. In section 3 we define the
continuous model by making the jobs continuous as well.

The semicontinuous model is best understood through a physical metaphor. Con-
sider the bottom of a vessel filled with some nonuniform fluid applying varying degrees
of pressure at different points. The force acting at any single point is zero, but any
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region of nonzero area suffers a net force equal to the integral of the pressure over
the region. Similarly, in the semicontinuous model we do not talk about individual
servers; rather, we have a continuum of servers, analogous to the bottom of the vessel.
An arriving job is analogous to a quantity of fluid which must be added to the vessel.
The notions of load and weight become divorced; load is analogous to pressure and
weight is analogous to force.

Formally, the server interval is [0,∞), to which jobs must be assigned. Job j has
weight wj , and it requests the point sj > 0 in the server interval. The assignment of
job j is specified by an integrable function gj : [0,∞)→ [0,∞) satisfying

1.
∫ sj
0

gj(x) dx = wj ;
2. x > sj ⇒ gj(x) = 0;
3. gj is continuous from the right at every point.

The full assignment is g =
∑
j gj . For a given full assignment g, the load lI on an

interval I = (x, x + ∆), where ∆ > 0, is defined as lI = 1
∆

∫ x+∆

x
g(z) dz—the mean

weight density over I. The load at a point x is defined as lx = lim∆→0

{
l(x,x+∆)

}
=

g(x) . (We introduce the notation lx for consistency with previous notation.) The
cost of the assignment is COST = supx {lx}.

Lemma 4 (optimum lemma: semicontinuous model). LetW (x) be the total weight
of requests made to the left of x (including x itself) and H = supx>0 {W (x)/x}. Then
OPT = H.

Proof. The lower bound is trivial. For the upper bound, let x1 ≤ x2 ≤ · · · be the
points requested by the jobs and rearrange the jobs such that the jth job requests xj .
The idea is to pack the jobs (in order) in a rectangle extending from the left end of the

server interval. Let αj =
∑j−1
i=1 wi/H for all j and consider the following assignment:

gj(x) =

{
H, x ∈ [αj , αj + wj/H),
0 otherwise.

This assignment clearly attains COST = H. It follows from the definition of H that
αj + wj/H ≤ xj for all j, which is sufficient for the assignment’s validity.

We adapt the definition of uniform memoryless algorithms to the semicontinuous
model. In this model a uniform algorithm is characterized by a function u : (0,∞)→
(0,∞) as follows. For a given point x > 0, let q(x) be the point satisfying the equation∫ x
q(x)

u(z) dz = 1. Then the assignment of job j is

gj(x) =

{
wju(x), q(sj) ≤ x < sj ,
0 otherwise.

For q(x) and gj to be defined properly we must require that
∫ ε
0
u(x) dx = ∞ for all

ε > 0 . (Otherwise, the algorithm may fail to fully assign jobs requesting points close
to 0.) Note that the load at 0 is always zero.

For a given point x > 0, we define p(x) as the point such that
∫ p(x)
x

u(z) dz = 1.
If p(x) does not exist, then the algorithm’s competitive ratio is unbounded, as demon-
strated by the request sequence consisting of m→∞ jobs, each of unit weight, where
the jth job requests the point sj = j. For this sequence, lx = m · u(x), whereas
OPT = 1. We shall therefore allow only algorithms satisfying

∫∞
M

u(x) dx = ∞ for
all M ≥ 0.

The semicontinuous model has the nice property that ps and p′s, which were
disparate in the discrete model, fuse into a single entity, p(s). The worst case lemma
and its corollary become the following lemma.
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Lemma 5 (worst case lemma: semicontinuous model). Let A be a uniform mem-
oryless algorithm defined by u(x). The following problem,

Given K > 0 and some point s > 0 in the server interval, find an
input sequence that maximizes the load at s in A’s assignment, subject
to OPT = K,

is solved by a single job of weight p(s)K requesting the point p(s), and the resultant
load at s is p(s)Ku(s).

Corollary 6. The competitive ratio of A is supx {p(x)u(x)}.
2.4. An e-competitive algorithm for the semicontinuous model. Con-

sider Algorithm Harmonic, the uniform memoryless algorithm defined by u(x) = 1/x.
Let us calculate p(x):

1 =

∫ p(x)

x

dz

z
= ln

p(x)

x
,

p(x) = ex.

Thus, the competitive ratio of Algorithm Harmonic is supx
{
ex 1

x

}
= e.

2.5. Application to the discrete models. Having devised a competitive al-
gorithm for the semicontinuous model, we wish to import it to the discrete model.
We start by showing how to transform any algorithm for the semicontinuous model
into an algorithm for the (discrete) fractional model. Following that, we show how
any algorithm for the fractional model may be transformed into an algorithm for the
integral models.

Semicontinuous to fractional. Let I be an input sequence for the fractional
model. If we treat each server as a point on (0,∞), that is, we view a request for
server s as a request for the point s, then we can view I as a request sequence for the
semicontinuous model as well. By the respective optimum lemmas (Lemmas 1 and 4),
the value of OPT is the same for both models.

Let A be a c-competitive online algorithm for the semicontinuous model. De-
fine algorithm B for the fractional model as follows. When job j arrives, B assigns∫ i
i−1

gj(x) dx units of weight to server i, for all i, where gj is the assignment function
generated by A for the job. Clearly, the cost incurred by B is bounded by the cost
incurred by A. Thus, B is c-competitive.

An important observation is that if A is memoryless, then so is B. Thus, even if
temporary jobs are allowed, the assignment generated by B will be c-competitive at
all times, compared to an optimal (off-line) assignment of the active jobs.

We give the algorithm thus derived from Algorithm Harmonic the name Fraction-
alHarmonic.

Proposition 7. Algorithm FractionalHarmonic is e-competitive even when tem-
porary jobs are allowed.

Fractional to integral. Let A be an algorithm for the fractional model. Define
algorithm B for the integral model (both weighted and unweighted) as follows. As
jobs arrive, B keeps track of the assignments A would make. A server is said to be
overloaded if its load in B’s assignment exceeds its load in A’s assignment. When a
job arrives, B assigns it to the rightmost eligible server which is not overloaded (after
A is allowed to assign the job).

Proposition 8. Whenever a job arrives at least one of its eligible servers is not
overloaded.
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Proof. Denote by lAi (j) and lBi (j) the load on server i after job j is assigned by
A and B, respectively. When job j is considered for assignment by B, server i is
overloaded iff lBi (j− 1) > lAi (j). Define Ai(j) =

∑i
k=1 l

A
k (j) and Bi(j) =

∑i
k=1 l

B
k (j).

We claim that for all j,
1. when job j arrives, server 1 (which is eligible) is not overloaded;
2. Ai(j) ≥ Bi(j) for all i.

The proof is by induction on j. The claim is clearly true for j = 1. Consider
some job j > 1 whose weight is w. We have lA1 (j) = A1(j) ≥ A1(j − 1) ≥ B1(j −
1) = lB1 (j − 1), where the second inequality is justified by the induction hypothesis.
Thus, server 1 is not overloaded. It remains to show that for all i, Ai(j) ≥ Bi(j).
Let a be the rightmost server to which algorithm A assigns part of job j, i.e., a =
max{s |As(j) > As(j − 1)}. Let b be the server to which B assigns the job. By the
induction hypothesis, Ai(j − 1) ≥ Bi(j − 1) for all i. Clearly, Bi(j) ≤ Bi(j − 1) + w
for all i, and Bi(j) = Bi(j − 1) for i < b. Also, Ai(j) ≥ Ai(j − 1) for all i, and
Ai(j) = Ai(j − 1) + w for i ≥ a. Thus, Ai(j) ≥ Bi(j) for i ≥ a and for i < b.

Assuming b < a, we still have to prove the claim for i ∈ {b, . . . , a− 1}. Algorithm
B assigns job j to server b and not to one of the servers b+ 1, . . . , a, all of which are
eligible and to the right of b. It must therefore be the case that lAk (j) < lBk (j − 1) for
b < k ≤ a. Thus, for i ∈ {b, . . . , a− 1},

Ai(j) = Aa(j)−
a∑

k=i+1

lAk (j) = Aa(j − 1) + w −
a∑

k=i+1

lAk (j)

> Aa(j − 1) + w −
a∑

k=i+1

lBk (j − 1) ≥ Ba(j − 1) + w −
a∑

k=i+1

lBk (j − 1)

= Bi(j − 1) + w = Bi(j).

The second inequality is justified by the induction hypothesis.
Let wmax(j) be the maximum weight of a job among the first j jobs. Algorithm

B maintains lBi (j) ≤ lAi (j) + wmax(j) for all i and j. In the unweighted case we have
wmax = 1 and in the weighted case wmax ≤ OPT . By the optimum lemma (Lemma 1)
the value of OPT in the integral model is at least as high as its value in the fractional
model. Thus if A is c-competitive, then B is c-competitive in the unweighted case
and (c+ 1)-competitive in the weighted case.

We give the algorithm thus derived from Algorithm FractionalHarmonic the name
IntegralHarmonic.

Proposition 9. Algorithm IntegralHarmonic is e-competitive in the unweighted
case and (e+ 1)-competitive in the weighted case.

3. Lower bounds. In this section we devise a technique for proving lower
bounds in the limit n → ∞. The bounds obtained are valid in both the fractional
and integral models, even in the unweighted case. In fact, they remain valid even
in the presence of randomization with respect to oblivious adversaries. Using this
technique, we obtain a tight constant lower bound of e. The success of our approach
is facilitated by transporting the problem from the discrete setting into a continuous
model, in which both jobs and servers are continuous.

3.1. A simple lower bound. We consider the fractional model, restricting our
attention to right-to-left input sequences, defined to be sequences in which for all
i < j, all requests for server j are made before any request for server i. We further
restrict our attention to sequences in which each server is requested exactly once. (We
allow jobs of zero weight.)
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Fig. 1. (a) Histogram of job weights; w = 12. (b) Histogram of khi; k=3.

Let A be a k-competitive algorithm. For a given right-to-left input sequence,
denote by ws the weight of the job requesting server s and by ls the load on server s
at a given moment. Suppose the first n− i+1 jobs (culminating with the request for
server i) have been assigned by A. Recall the definition of H in the optimum lemma
(Lemma 1); denote by hi the value of H with respect to these jobs. Since A is k-

competitive, the loads must obey ls ≤ khi for all s. For j ≥ i, define hi,j =
1
j

∑j
s=i ws.

Then hi = maxi≤j≤n {hi,j}.
Now consider the specific input sequence defined by w1 = · · · = wn = w for some

w > 0. For this sequence, hi = (n − i + 1)w/n for all i. Thus, after the first job is
assigned we have ln ≤ kw/n. After the second job is handled we have ln−1 ≤ 2kw/n,
but ln ≤ kw/n still holds because the new job could not be assigned to server n. In
general, after the request for server s is processed, we have li ≤ (n − i + 1)kw/n for
all i ≥ s. Noting that the total weight of the jobs in the input equals the total load
on the servers once the assignment is complete, we get

nw =

n∑
i=1

wi =

n∑
i=1

li ≤
n∑
i=1

(n− i+ 1)
kw

n
=

n∑
j=1

j
kw

n
=

kwn(n+ 1)

2n
.

Hence, k ≥ limn→∞ 2 · n
n+1 = 2.

3.2. Discussion. Figure 1 depicts the request sequence and the resultant khi’s
in histogram-like fashion with heights of bars indicating the respective values. The
bars are of equal width, so we can equivalently consider their area rather than height.
To be precise, let us redraw the histograms with bars of width 1 and height equal to
the numerical values they represent. Then, the total weight to be assigned is the total
area of the job bars, and the total weight actually assigned is bounded from above
by the total area of the khi bars. Now, instead of drawing a histogram of khi, let us
draw a histogram of hi. The lower bound is found by solving

total area of job bars ≤ k · total area of hi bars,

k ≥ total area of job bars

total area of hi bars
.

Note that if we multiply the weights of all jobs by some constant c > 0, the
heights of both the job bars and the hi bars will increase by a factor of c, leaving the
area ratio intact. Similarly, we can express the scaling of job weights by scaling the
width of the bars in both histograms. This, too, has no effect on the resultant ratio.
Thus we can express the entire procedure in geometric terms as follows. Select an
“input” histogram in which the width of each bar is 1

n . Let hi,j be the area of bars
i through j divided by j/n (the width of j bars), and let hi = maxi≤j≤n {hi,j}. (We
divide the area by j/n rather than j because hi is the height of the bar whose area
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equals the value of OPT for the first n − i + 1 jobs.) Divide the area of the input
histogram by the area of the hi histogram (drawn to the same scale) to obtain a lower
bound. The scaling of the histograms allows us to keep considering finite areas as n
goes to infinity. This forms the link between the discrete model and the continuous
model, which we introduce next.

3.3. The continuous model. The continuous model is motivated by the ob-
servation that the analysis suggested in the previous section tends to be exceedingly
difficult for all but the simplest of input histograms. We turn to the continuous model
in order to avail ourselves of the machinery of infinitesimal calculus. The continuous
model differs from the semicontinuous model introduced in section 2 in two ways.
Instead of the infinite server interval, we use a finite interval [0, S], and, more impor-
tantly, jobs in the continuous model are not discrete; rather, we have a continuous
job flow arriving over time.

It is possible to define a general continuous model in which the arrival of jobs over
time is described by a function of place (in the server interval) and time. Although this
model is an interesting mathematical construction in its own right, we focus here on a
more restricted model—one that allows only the equivalent of right-to-left sequences.
Formally, the input is a request function, which is an integrable nonnegative real
function f(x) defined on the server interval [0, S]. The interpretation of f is by means
of integration, i.e.,

∫ x1

x0
f(x) dx is the total amount of weight requesting points in the

interval [x0, x1]. The underlying intuition is that the request flow is right-to-left in
the sense that the infinitesimal request for point x is assumed to occur at “time”
S − x. Assignment are continuous too; an assignment is described by an assignment
function, which is an integrable nonnegative real function g(x) on [0, S) that (1) is

continuous from the right at every point and (2) satisfies
∫ S
x0

g(x) dx ≤ ∫ S
x0

f(x) dx

for all x0 ∈ [0, S) with equality for x0 = 0. An on-line algorithm in this model is an
algorithm which, given f(x), outputs g(x) such that for all x ∈ [0, S), g(x) on the
interval [x, S) is independent of f(x) outside that interval. The definition of load and
cost are the same as in the semicontinuous model.

Lemma 10 (optimum lemma: continuous model).

OPT = sup
z∈(0,S]

{
1

z

∫ z

0

f(x) dx

}
.

Proof. Let H = supz∈(0,S]

{
1
z

∫ z
0
f(x) dx

}
and W =

∫ S
0

f(x) dx. Clearly, OPT ≥
H. In addition, the assignment function

g(x) =

{
H, x ≤W/H,
0, x > W/H

achieves cost H.
Let us adapt the lower bound procedure from section 3.2 to the continuous model.

Consider a request function f(x) and the corresponding assignment g(x) generated
by some k-competitive on-line algorithm. We wish to bound the value of g(x) at some
fixed point a. Define a new request function

fa(x) =

{
f(x), a ≤ x ≤ S,
0 otherwise.

Define, for b > a, ha(b) =
1
b

∫ b
a
f(x) dx. Define h(a) = supb∈(a,S] {ha(b)}. Then OPT

with respect to fa equals h(a). (Note the analogy with hi,j and hi in the discrete
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model.) Define W =
∫ S
0

f(x) dx and W ′ =
∫ S
0

h(a) da. The value of g in [a, S) must
be the same for f and fa, as g is produced by an on-line algorithm; thus g(a) ≤ kh(a).
This is true for all a, hence,

W =

∫ S

0

f(x) dx =

∫ S

0

g(x) dx ≤ k

∫ S

0

h(a) da = kW ′,

from which the lower bound W/W ′ is readily obtained.
For certain request functions we can simplify the procedure. If f(x) is a continuous

monotonically decreasing function tending to 0 at some point x0 ≥ S (where x0 =∞
is allowed), and we use f ’s restriction to [0, S] as a request function, then we have the
following shortcut to h(a). Solve

0 =
d

db
ha(b) =

bf(b)− ∫ b
a
f(x) dx

b2
⇐⇒ f(b) =

1

b

∫ b

a

f(x) dx

for b, and let b(a) be the solution. The following is easy to justify:

h(a) =
1

b(a)

∫ b(a)

a

f(x) dx = f(b(a)).

Note that if x0 > S, this simplified procedure may return values for b(a) outside
the server interval [0, S]. In this case the true value of h(a) is less than the value
computed, leading to a less tight, but still valid, lower bound. We can therefore use
the simplified method without being concerned by this issue. Also, it is sometimes
more convenient to assume that the server interval, rather than being finite, is [0,∞).
This too can be easily seen to make no difference, at least as far as using the simplified
procedure is concerned.

Example. Let f(x) = e−kx with server interval [0,∞) for some k > 0. Then

W =
∫∞
0

e−kx dx = 1
k . We find it easier to solve e−kb = 1

b

∫ b
a
e−kx dx for a rather

than b:

a = b− 1

k
ln(kb+ 1),

da =

(
1− 1

kb+ 1

)
db.

Thus, setting z = kb+ 1,

W ′ =
∫ ∞

0

h(a) da =

∫ ∞
0

f(b) da =

∫ ∞
0

e−kb
(
1− 1

kb+ 1

)
db

=
1

k

∫ ∞
1

e1−z
(
1− 1

z

)
dz =

1

k

(
1− e

∫ ∞
1

e−z

z
dz

)
=

1

k
(1− eE1(1)),

where En(x) =
∫∞
1

t−ne−xt dt is the familiar exponential integral function [1]. The
lower bound obtained is therefore

W

W ′
=

1

1− eE1(1)
≈ 2.4773.
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Claim 11. A lower bound of e can be obtained with our method by considering

the request function e−kx
1/k

in the limit k →∞ with server interval [0,∞).
Proof. For convenience we consider only integral values of k. We start by re-

viewing some elementary facts concerning gamma functions [1]. The gamma func-
tion is defined by Γ(a) =

∫∞
0

ta−1e−t dt, and it can be shown that for positive in-
teger a, Γ(a) = (a − 1)!. The incomplete gamma function is defined by Γ(a, z) =∫∞
z

ta−1e−t dt. Integrating by parts we obtain the recurrence Γ(a+1, z) = aΓ(a, z) +

zae−z. We also need Stirling’s approximation: k! =
√
2πk (k/e)

k
eo(1), which implies

limk→∞(k/e)k/k! = 0. Finally, consider the integral
∫ β
α
e−kx

1/k

dx. Substituting

z = kx1/k gives
∫ β
α
e−kx

1/k

dx = 1
kk−1

∫ kβ1/k

kα1/k zk−1e−z dz. Thus, for finite α and β,∫ β
α
e−kx

1/k

dx =
(
Γ(k, kα1/k)− Γ(k, kβ1/k)

)
/kk−1.

Returning to our problem,

W =

∫ ∞
0

e−kx
1/k

dx =
1

kk−1

∫ ∞
0

zk−1e−z dz =
Γ(k)

kk−1
=

(k − 1)!

kk−1
.

The relation between a and b is given by

be−kb
1/k

=

∫ b

a

e−kx
1/k

dx =
Γ(k, ka1/k)− Γ(k, kb1/k)

kk−1
.

Let r = ka1/k, t = kb1/k. Then da = rk−1

kk−1 dr. Substituting r and t in the previous
equation and simplifying gives

kΓ(k, t) + tke−t = kΓ(k, r).

Applying the recurrence to both sides of this equation and rearranging terms yields

Γ(k + 1, r)− Γ(k + 1, t) = rke−r.

We also get (directly)

Γ(k, r)− Γ(k, t) =

(
t

k

)
tk−1e−t.

Let us explore the relationship between r and t. Clearly, r ≤ t. It is easy to see
that the function xke−x increases in [0, k) and decreases in (k,∞). Thus, referring to

Figure 2(a), we see that for r ≥ k, Γ(k+1, r)−Γ(k+1, t) =
∫ t
r
xke−x dx is the area of

the region marked “X” between r and t, and rke−r is the area of the dotted rectangle
between r and r + 1. Since both areas are equal and xke−x decreases in this region,
t ≥ r + 1.

Next consider r ≤ k−2. Referring to Figure 2(b) and applying the same reasoning
we see that t ≤ r+1 ≤ k−1. Let us now consider the function xk−1e−x. Its maximum
occurs at x = k− 1. Thus, since t ≤ k− 1, the function increases in the interval [r, t].
Referring to Figure 2(c) and appealing to Γ(k, r)−Γ(k, t) =

(
t
k

)
tk−1e−t, we see that

r ≤ t− t
k = t(1− 1

k ).
To summarize,

r ≥ k ⇒ t ≥ r + 1⇒ e−t ≤ 1

e
e−r,

r ≤ k − 2⇒t ≥ r

1− 1/k
⇒ e−t ≤ e−

r
1−1/k .
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Fig. 2. The relationship between r and t. The graphs are not drawn to the same scale. (a) Using
xke−x to show r ≥ k ⇒ t ≥ r + 1. (b) Using xke−x to show r ≤ k − 2 ⇒ t ≤ k − 1. (c) Using
xk−1e−x to show t ≤ k − 1⇒ r ≤ t− t/k.

By differentiating we get maxx≥0

{
xk−1e−x

}
=
(
k−1
e

)k−1
, which implies

∫ k

k−2

rk−1e−t dr ≤
∫ k

k−2

rk−1e−r dr ≤ 2

(
k − 1

e

)k−1

.

Putting all the pieces together,

W ′

W
=

1

W

∫ ∞
0

e−kb
1/k

da =
1

W

∫ ∞
0

e−t da =
kk−1

(k − 1)!

∫ ∞
0

e−t
rk−1

kk−1
dr

=
1

(k − 1)!

(∫ k−2

0

rk−1e−t dr +
∫ k

k−2

rk−1e−t dr +
∫ ∞
k

rk−1e−t dr

)

≤ 1

(k − 1)!

(∫ k−2

0

rk−1e−
r

1−1/k dr + 2

(
k − 1

e

)k−1

+
1

e

∫ ∞
k

rk−1e−r dr

)
.

Substituting z = r
1−(1/k) in the first integral gives

∫ k−2

0

rk−1e−
r

1−(1/k) dr =

(
1− 1

k

)k ∫ k− 1
1−(1/k)

0

zk−1e−z dz ≤ 1

e

∫ k

0

zk−1e−z dz.

Thus,

W ′

W
≤ 1

(k − 1)!

(
1

e

∫ ∞
0

zk−1e−z dz + 2

(
k − 1

e

)k−1
)

=
1

e
+ 2

(
k−1
e

)k−1

(k − 1)!
.

Hence, limk→∞W ′
W ≤ 1

e , and we obtain the lower bound limk→∞ W
W ′ ≥ e.

3.4. Application to the discrete models. Returning to the discrete setting,
we claim that lower bounds obtained using our method in the continuous model apply
in the discrete models as well. This is intuitively correct, since the continuous model
may be viewed as the limiting case of the integral models with n→∞ and arbitrarily
long input sequences. We omit the proofs for lack of space.

We also claim that these lower bounds are valid even against randomized algo-
rithms. Whereas typical deterministic lower bound constructions are adversarial, that
is, a different input sequence is tailored for each algorithm, our lower bound technique
provides a single sequence fit for all algorithms. Consequently, the bounds we derive
are also valid for randomized algorithms. This can be seen easily, either directly or
via Yao’s principle (see, e.g., [13]).
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4. Temporary jobs. In this section we allow temporary jobs in the input. We
restrict our attention to the integral model, as we have already seen (in section 2.5)
an optimal e-competitive algorithm for the fractional model that admits temporary
jobs. We present an algorithm that is 4-competitive in the unweighted case and 5-
competitive in the weighted case. We also show a lower bound of 3 for the unweighted
integral model.

Recall the definition of H in the optimum lemma (Lemma 1). Consider the jobs
which are active upon job j’s arrival (including job j) and denote by H(j) the value
of H defined with respect to these jobs. A server is saturated on the arrival of job j
if its load is at least kH(j), where k is a constant to be determined later.

Algorithm PushRight

Assign each job it to its rightmost unsaturated eligible server.

Proposition 12. If k ≥ 4, then whenever a job arrives, at least one of its eligible
servers is unsaturated. Thus, by taking k = 4 Algorithm PushRight becomes 4 (resp.,
5)-competitive in the unweighted (resp. weighted) models.

Proof. We begin by considering the properties of certain sequences of numbers
whose role will become evident later. Consider the infinite sequence defined by the
recurrence ai+2 = k(ai+1 − ai) with initial conditions a0 = 0 and a1 = 1. We are
interested in the values of k for which this sequence increases monotonically. Solving
the recurrence reveals the following.

• If k = 4, then ai = i2i−1.

• If k > 4, then ai =
λi

1−λi
2√

k2−4k
, where λ1 > λ2 are the two roots of the quadratic

polynomial λ2 − kλ+ k.

• If k < 4, then ai =
Im(λi)
Im(λ) , where λ = 1

2 (k +
√
k2 − 4k).

It is easy to see that the sequence increases monotonically in the first two cases but
not in the third.

Now consider some infinite sequence {si} obeying s0 = 0, s1 > 0, and si+2 ≥
k(si+1 − si) for all i. It is not difficult to show that if k is chosen such that {ai}
increases monotonically, i.e., k ≥ 4, then si+2 ≥ k(si+1 − si) > si+1 > si for all i.

Returning to our proposition, let k ≥ 4 and suppose that some job arrives, only
to find all of its eligible servers saturated. Let j0, be the first such job, and let s1

be the server requested by it. We show how to construct two sequences, {si}∞i=0 and
{ji}∞i=0, with the following properties.

1. s0 = 0, s1 > 0, and si+2 ≥ k(si+1 − si) for all i.
2. For all i, although the servers si + 1, . . . , si+1 are all eligible for job ji, the

algorithm does not assign this job to the right of si.
3. The jobs {ji}∞i=1 are all distinct and they arrive before j0.

Property 3 states that job j0 is preceded by an infinite number of jobs, yielding
a contradiction.

We have already defined j0, s0, and s1. Having defined s0, . . . , si+1 and j0, . . . , ji
we define si+2 and ji+1 as follows. Property 1 implies that si < si+1 < k(si+1−si). By
property 2 we know that when job ji arrives, the total weight of active jobs assigned
to servers si + 1 through si+1 is at least k(si+1 − si)H(ji). By the optimum lemma
(Lemma 1), at least one of these jobs must have requested a server whose number
is at least k(si+1 − si). Define ji+1 as any one such job and si+2 as the server it
requests.
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4.1. A lower bound. We show a lower bound of 3 on the competitive ratio
of deterministic algorithms. We use essentially the same construction as was used
in [6] in the context of related machines. Some of the details are different, though,
owing to the different nature of the two problems. For completeness, we present the
construction in full detail.

We consider the unweighted model. To motivate the construction, suppose the
value of OPT is known in advance and consider the algorithm that assigns each job
to its rightmost eligible server whose current load is less than k ·OPT , where k ≥ 1 is
an appropriately chosen constant. We design an input sequence targeted specifically
at this algorithm. As we shall see, the lower bound of 3 obtained using this input
sequence is valid for any on-line algorithm; we use only this algorithm to motivate
our construction.

Recall that a right-to-left input sequence is a sequence such that for all i < j,
all requests for server j are made before any of the requests for server i. Our input
sequence will be right-to-left. For now, we focus on the principles at the cost of rigor.
We shall refer to either of the servers s, s + 1, or s − 1 simply as server s. We will
also refer to server “x” without worrying about the fact that x may be noninteger.
To simplify matters, we design the sequence with OPT = 1. (This will be changed
later.) Figure 3 depicts the first few steps in the ensuing construction.

nn(1− 1
k )

(1)

nkn
k+1

(2)

nkn
k+1

n(1− 1
k − 1

k+1 )

(3)

nkn
k+1nk−1

k+1

(4)

Fig. 3. The first two rounds in the input sequence.

We start by making requests to server n. Since OPT is already known to the
algorithm, we lose nothing by making n requests, which is the maximum permitted
by OPT = 1. The algorithm assigns these jobs to servers n(1− 1

k ), . . . , n. We now
remove αn jobs. (α will be determined shortly.) Naturally, the jobs we remove
will be the ones assigned rightmost by the algorithm. The remaining n(1 − α) jobs

will be the ones assigned to servers n(1− 1
k ), . . . , n(1− 1

k ) +
n(1−α)

k . The adversary
assigns these jobs to servers αn, . . . , n. The value of α is determined by our desire
that the remaining jobs be assigned by the algorithm strictly to the left of their
assignment by the adversary. To that end, we select α = k

k+1 , which solves the

equation n(1− 1
k ) +

n(1−α)
k = αn.

We proceed with a second round of jobs. The logical choice is to request server
αn = k

k+1n. We make αn requests, again, the maximum permitted by OPT = 1. The

algorithm assigns these jobs in the range n(1− 1
k − 1

k+1 ), . . . , n(1− 1
k ). We terminate

βn of these jobs, the ones assigned rightmost by the algorithm. The remaining n(α−β)
jobs are assigned by the adversary in the range βn, . . . , αn and by the algorithm in the
range n(1− 1

k − 1
k+1 ), . . . , n(1− 1

k )− βn
k . To determine β we solve n(1− 1

k )− βn
k =
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fi−2rifi−1ri+1fi

· · ·
k

(a)

fi−2rifi−1ri+1fi

· · ·1
(b)

Fig. 4. The ith round. Solid rectangles represent the assignment of the active jobs at
the beginning of the round; the dotted rectangle represents the assignment of the jobs that
arrive in the ith round and do not subsequently depart. (a) The algorithm’s assignment.
(b) The adversary’s assignment.

βn, arriving at β = nk−1
k+1 .

To generalize the procedure, note that the number of jobs that arrive in a given
round is chosen equal to the number of jobs that depart in the round preceding it.
Let us introduce some notation. Denote by ri the server to which requests are made
in the ith round and by fi the leftmost server to which any of these jobs gets assigned
by the algorithm. We have already chosen r1 = n and r2 = k

k+1n, and we have seen

that f1 = n(1− 1
k ) and f2 = n(1− 1

k − 1
k+1 ). Define f0 = n. For the ith round of jobs,

suppose the following two conditions hold at the end of round i− 1 (see Figure 4).
1. In the adversary’s assignment the active jobs are all assigned in the range

ri, . . . , n.
2. In the algorithm’s assignment the active jobs that arrived in round i − 1

occupy servers fi−1, . . . , ri, and no jobs are assigned to the left of fi−1.
In the ith round, ri requests are made to server ri. They are assigned by the algorithm
in the range fi, . . . , fi−1. Thus,

fi = fi−1 − 1

k
ri.

Next, ri+1 of these jobs depart, where ri+1 is chosen such that the ri−ri+1 remaining
jobs occupy servers fi, . . . , ri+1. Thus, k(ri+1 − fi) = ri − ri+1, or, equivalently,

ri+1 =
k

k + 1
fi−1.

The actual lower bound construction follows. Let A be an on-line algorithm
purporting to be k-competitive for some k < 3. Without loss of generality, k is a
rational number arbitrarily close to 3. Consider the two sequences {ρi} and {ϕi}
defined simultaneously below.

ϕ0 = 1,

ρ1 = 1,

ρi+1 =
k

k + 1
ϕi−1 (i = 1, 2, . . .),

ϕi+1 = ϕi − 1

k
ρi+1 (i = 0, 1, . . .).

By substituting k
k+1ϕi−1 for ρi+1 in the second recurrence, we get

ϕi+1 = ϕi − 1

k + 1
ϕi−1.
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It can be shown (see [6]) that there exists a minimal integer p such that ϕp < 0
and that ρi and ϕi are rational for all i. The number of servers we use is n such that
nρi and nϕi are integers for 1 ≤ i ≤ p. Define ri = nρi and fi = nϕi. The recurrences
defining {ϕi} and {ρi} hold for {fi} and {ri} as well. Let c be any positive integer;
we construct an input sequence of unit weight jobs such that OPT = c.

1. cr1 jobs request server r1.
2. For i = 2, . . . , p:

3. Of the cri−1 jobs which have requested server ri−1, the cri jobs that
were assigned rightmost by A depart. (Ties are broken arbitrarily.)

4. cri new jobs request server ri.
The lower bound proof proceeds as follows. (We omit the proofs for lack of space.)

For the input sequence to be well defined we must have ri+1 < ri for all 1 ≤ i < p.
Claim 13. For 1 ≤ i < p, fp < 0 ≤ fi < ri+1 < fi−1 ≤ r1 (see Figure 4).
Denote by Ji the set of jobs requesting server ri and by J ′i the set of the cri+1

jobs in Ji that eventually depart. Let W (s, t) be the number of active jobs assigned
to the left of server s at time t and denote by ti the moment in time immediately
prior to the arrival of the jobs Ji.

Claim 14. OPT ≤ c.
Observe that the recurrence fi+1 = fi − 1

k ri+1 is equivalent to ri = k(fi−1 − fi).
Claim 15. Suppose algorithm A is k-competitive. Then W (ri, ti) ≥ ck(ri−fi−1)

for all 1 ≤ i ≤ p.
Corollary 16. Algorithm A is not k-competitive.

5. The tree hierarchy. In this section we study a generalization of the problem
in which the servers form a rooted tree. A job requesting some server tmay be assigned
to any of t’s ancestors in the tree.

Let us introduce some terminology. A server is said to be lower than its proper
ancestors. The trunk defined by a set of servers U is the set U ∪ { s | s is an ancestor
of some server in U}. The servers eligible for a given job form a path which is also a
trunk. We refer to it interchangeably as the job’s eligible path or eligible trunk.

For a given input sequence, denote by WT the total weight of jobs requesting
servers in trunk T , and let µT = WT /|T |. Define H = max {µT | T is a trunk}.
Denote by wmax the maximum weight of a job in the sequence. Note the analogy with
the linear hierarchy. The following lemma can be proved in a manner similar to the
proof of the optimum lemma for the linear hierarchy (Lemma 1).

Lemma 17 (optimum lemma: tree hierarchy).
• In the fractional model, OPT = H.
• In the unweighted integral model, OPT = 	H
.
• In the weighted integral model, max {H,wmax} ≤ OPT < H + wmax.

5.1. A doubling algorithm. The off-line algorithm used in the proof of the
optimum lemma (Lemma 17) is nearly a valid on-line algorithm; its only off-line fea-
ture is the requirement that the value of H be known at the outset. Thus, employing
the standard doubling technique (see, e.g., [4]) we can easily construct an on-line al-
gorithm which is respectively 4-, 4-, and 7-competitive for the fractional, unweighted
integral, and weighted integral models. The algorithm we present here is based on the
more sophisticated doubling approach pioneered in [12]. It is 4-, 4-, and 5-competitive
in the respective cases. The randomized version of this algorithm is, respectively, e-,
e-, and (e+ 1)-competitive.

We start by describing the algorithm for the weighted integral model. The algo-
rithm uses two variables: GUESS holds the current estimate of H, and LIMIT deter-
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mines the saturation threshold; a server is saturated if its load is at least LIMIT . We
say that a set of servers U is saturated if every server s ∈ U is saturated. The set U is
overloaded if the total weight assigned to servers in U is greater than |U | · LIMIT . A
newly arrived job is dangerous if assigning it to its lowest unsaturated eligible server
will overload some trunk. In particular, if its eligible trunk is saturated, the job
is dangerous. The algorithm avoids overloading any trunk by incrementing LIMIT
whenever a dangerous job arrives. This, in turn, guarantees that whenever a job
arrives, at least one of its eligible servers is unsaturated. Note that assigning the job
may saturate the server to which it is assigned.

Algorithm Doubling

Initialize (upon arrival of the first job):
1. Let w be the first job’s weight and T its eligible trunk.
2. GUESS ← w/|T |; LIMIT ← GUESS .

For each job:

3. While the job is dangerous:
4. GUESS ← 2 ·GUESS .
5. LIMIT ← LIMIT +GUESS .

6. Assign the job to its lowest unsaturated eligible server.

We divide the algorithm’s execution into phases. A new phase begins whenever
lines 4–5 are executed. (The arrival of a heavy job may trigger a succession of several
empty phases.) Let p be the number of phases and denote by GUESS i and LIMIT i

the respective values of GUESS and LIMIT during the ith phase. For consistency
define LIMIT 0 = 0. Note that the initial value of GUESS ensures that GUESS 1 ≤ H.

Proposition 18. If GUESS i ≥ H for some i, then the ith phase is the last one.
Consequently, GUESSp < 2H.

Proof. Suppose GUESS i ≥ H and consider the beginning of the ith phase. We
claim that from this moment onward, the algorithm will not encounter any dangerous
jobs. Suppose this is not true. Let us stop the algorithm when the first such dangerous
job is encountered and assign the job manually to its lowest unsaturated eligible server.
This overloads some trunk R. Let T be the maximal trunk containing R such that
T − R is saturated. Clearly, T is overloaded as well; the total weight assigned to it
is greater than |T | · LIMIT i. On the other hand, T was not overloaded at the end
of the (i − 1)st phase, since the algorithm never overloads a trunk. Thus, the total
weight of jobs assigned to T during the ith phase (including the job we have assigned
manually) is greater than |T |(LIMIT i − LIMIT i−1) = |T |GUESS i ≥ |T |H. By T ’s
maximality, all of these jobs must have requested servers in T . Thus, the total weight
of jobs requesting servers in T is greater than |T |H, yielding a contradiction.

Corollary 19. COST < 4OPT + wmax.
Proof. The claim follows since COST < LIMIT p + wmax and

LIMIT p = GUESSp

p∑
i=1

1

2p−i
< GUESSp

∞∑
i=0

1

2i
< 4H ≤ 4OPT .

Thus, Algorithm Doubling is 4-competitive in the unweighted integral model and
5-competitive in the weighted integral model. In the fractional model we modify the
algorithm as follows. A job is called dangerous iff its eligible path is saturated. When
assigning the job we may have to split it, as in the proof of the optimum lemma for
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the linear hierarchy (Lemma 1). This algorithm achieves COST ≤ LIMIT p < 4H =
4OPT .

5.2. Randomized doubling. We consider randomization against oblivious ad-
versaries. The randomization technique we use is fairly standard by now; a similar
idea has been used several times in different contexts (see, e.g., [11, 19, 15, 12, 10]).
The idea is to randomize the initial value of GUESS and to tweak the doubling pa-
rameter. Specifically, let r be a random variable uniformly distributed over (0, 1] and
select any constant k > 1. We replace lines 2 and 4 with

2′. GUESS ← kr−1w/|T |; LIMIT ← GUESS ;

4′. GUESS ← k ·GUESS .
It can be shown that E (LIMIT p) ≤ H · k/ ln k (see [12] or [10] for details). This

expression is minimized at e ·H by putting k = e. Thus, for k = e, the algorithm is
e-competitive in the fractional and unweighted integral models and (e+1)-competitive
in the weighted integral model.

5.3. Lower bounds for temporary jobs. In contrast to the linear hierarchy,
allowing temporary jobs in the tree hierarchy has a drastic effect on the competitive-
ness of the solutions. For the unweighted integral model, we show deterministic and
randomized lower bounds of

√
n and 1

2 (1 +
√
n+ 1), respectively. These bounds are

tight, up to a multiplicative constant, as demonstrated by the upper bound shown
in [6] for the general problem with unrestricted eligibility constraints. Our randomized
lower bound construction applies in the fractional model as well.

5.3.1. A deterministic lower bound for the integral models. Let A be a
deterministic on-line algorithm, and let n = k2 for some integer k > 1. We show an
input sequence for which A’s assignment satisfies COST ≥ k ·OPT =

√
nOPT .

The server tree we use has a flower-like structure. It is composed of a stem and
petals. The stem consists of k servers s1, s2, . . . , sk; s1 is the root, and si is the parent
of si+1 for 1 ≤ i < k − 1. The petals, p1, p2, . . . , pk2−k, are all children of sk. Server
sk is called the calyx.

Suppose that the competitiveness of A is better than k for the given n. Consider
the following request sequence. Let c be an arbitrarily large integer.

1. For i = 1, 2, . . . , k2 − k:
2. c(k + 1) jobs, each of unit weight, request the petal pi.
3. Of these jobs, ck now depart. (The rest are permanent.) The choice of

which jobs depart is made so as to maximize the number of jobs assigned
by A to pi which depart.

4. ck jobs request the calyx.
During the first stage (lines 1–3), the adversary always assigns the permanent

jobs to the petal and the temporary ones to the servers in the stem, c jobs to each
server. Thus, at the beginning of the second stage, no jobs are assigned to the stem
servers, and the adversary assigns c new jobs to each of them. Thus, OPT = c.

Consider the jobs requesting pi. Since A is better than k-competitive, it assigns
fewer than ck jobs to pi. Thus, in each iteration more than c permanent jobs are
assigned by A to servers in the stem. Hence, at the beginning of the second stage
there are more than c(k2−k) jobs assigned to servers in the stem. Since the additional
ck jobs must be assigned to servers in the stem, at least one server must end up
with a load greater than ck, contradicting the assumption that A is better than k-
competitive.
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5.3.2. A randomized lower bound. Let us generalize the previous construc-
tion. We use a flower-like server tree with p petals and a stem of s servers (n = s+p).
As before, the input sequence has two stages. The first consists of p iterations, where
in the ith iteration, c · (s+ 1) jobs request the petal pi and then c · s of them depart.
In the second stage cs jobs request the calyx. The goal in the first stage is to “push”
enough jobs into the stem so that the algorithm will fail in the second stage.

Consider the ith iteration. Let Xj be the random variable denoting the con-
tribution of the jth job to the load on servers in the stem. (In the integral model
this is a 0–1 variable; in the fractional model Xj may assume any value between 0
and 1.) Since the algorithm is better than k-competitive, the expected total weight
assigned to pi is less than ck, so E(

∑
j Xj) > c(s + 1 − k). Thus, there exist c jobs

j1, j2, . . . , jc such that
∑c
i=1 E(Xji) > c(s+1−k)/(s+1). The adversary makes these

jobs permanent and terminates the rest.
Consequently, at the beginning of the second stage the expected total load on

the servers in the stem is greater than cp(s + 1 − k)/(s + 1), and at the end of the
second stage the expectation grows to more than cs + cp(s + 1 − k)/(s + 1). Since
the algorithm is better than k-competitive, the expected maximum load on a server
in the stem must be less than ck, and thus the expected total load on servers in the
stem must be less than cks. To reach a contradiction we choose s and p to satisfy

cks = cs+
cp(s+ 1− k)

s+ 1
.

Solving the equation yields

p =
s(s+ 1)(k − 1)

s+ 1− k
, n = s+ p =

ks2

s+ 1− k
.

Minimizing n (for fixed k) subject to the last equation yields s = 2(k − 1), p =
2(2k − 1)(k − 1), and n = 4k(k − 1). Thus, k = 1

2 (1 +
√
n+ 1).

6. Other eligibility restrictions. In the hierarchical servers problem the sets
of eligible servers for a job have a restricted form. For example, in the linear hierarchy
they have the following form: all servers to the left of some server s. This is a special
case of the problem considered in [7], where eligible sets may be arbitrary. In this
section we study various other restrictions on the eligible sets. We focus on the
following three.

1. The servers form a path and the set of servers eligible for a given job must
be contiguous on the path.

2. The servers form a rooted tree and each job specifies a node v, all of whose
descendents (including v itself) are eligible.

3. The number of servers eligible for any given job is at most k for some fixed
2 ≤ k ≤ n.

We show how to extend the Ω(log n) lower bound of [7] to these three variants
of the problem. This shows that the greedy algorithm, which is O(log n)-competitive
for the general problem, remains optimal (up to a multiplicative constant) in many
restrictive scenarios.

For the first variant, consider the following input sequence. For convenience
assume n is a power of 2 (otherwise consider only the first 2�logn servers on the
path). All jobs have unit weight, and they arrive in logn rounds. The ith round
consists of mi = n/2i jobs, all of which specify the same set of eligible servers Si. The
sets Si are chosen such that |Si| = 2n/2i. In the first round all servers are eligible.
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Having defined Si, we construct Si+1 as follows. Suppose the total weight assigned
to servers in Si at the end of the ith round is at least ni/2i (as is certainly the case
for i = 1). The set Si is contiguous, i.e., its servers form a path. At least half of the
total weight assigned to Si is assigned to either the first half of this path or to its
second half. We define Si+1 as the half to which the majority of the weight is assigned
(breaking ties arbitrarily). Thus, the total weight assigned to Si+1 at the end of the
(i+ 1)st round is at least n/2i+1 + 1

2ni/2
i = n(i+ 1)/2i+1. We define Slogn+1 in the

same manner and call the single server which it comprises the leader. The load on the
leader at the end of the last round is at least 1

2 log n. The adversary assigns the jobs
in the ith round to the servers Si − Si+1, one job to each server. Thus, OPT ≤ 1,
and the lower bound follows.

For the second variant we use a very similar construction. The servers are ar-
ranged in a complete binary tree. The number of jobs in the ith round is defined by
the recurrence mi =

1
2 (mi−1 − 1) with m1 = 1

2 (n − 1). The sets of eligible servers
are defined as follows. In the first round all servers are eligible. Let vi be the root of
the subtree Si; we define Si+1 as the subtree rooted at the child of vi to which more
weight is assigned at the end of the ith round.

For the third variant we use a recursive construction. Partition the servers into
n/k subsets of k servers each and apply the construction of the first variant to each
subset. The load on the leader of each subset is now Ω(log k). Continue recursively
on the set of leaders. Each level of the recursion increases the load on the leaders
in that level by Ω(log k), and there are Θ(logk n) = Θ(logn/ log k) levels. Thus,
COST = Ω(log n). At each level of the recursion, the adversary assigns no weight to
the leaders and at most one job to the other servers. Hence, OPT ≤ 1, and the lower
bound follows.
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FUNDA ERGÜN† , S. RAVI KUMAR‡ , AND RONITT RUBINFELD§

SIAM J. COMPUT. c© 2001 Society for Industrial and Applied Mathematics
Vol. 31, No. 2, pp. 550–576

Abstract. A majority of the results on self-testing and correcting deal with programs which
purport to compute the correct results precisely. We relax this notion of correctness and show how
to check programs that compute only a numerical approximation to the correct answer. The types of
programs that we deal with are those computing polynomials and functions defined by certain types of
functional equations. We present results showing how to perform approximate checking, self-testing,
and self-correcting of polynomials, settling in the affirmative a question raised by [P. Gemmell et al.,
Proceedings of the 23rd ACM Symposium on Theory of Computing, 1991, pp. 32–42; R. Rubinfeld
and M. Sudan, Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms,
Orlando, FL, 1992, pp. 23–43; R. Rubinfeld and M. Sudan, SIAM J. Comput., 25 (1996), pp. 252–
271]. We obtain this by first building approximate self-testers for linear and multilinear functions. We
then show how to perform approximate checking, self-testing, and self-correcting for those functions
that satisfy addition theorems, settling a question raised by [R. Rubinfeld, SIAM J. Comput., 28
(1999), pp. 1972–1997]. In both cases, we show that the properties used to test programs for these
functions are both robust (in the approximate sense) and stable. Finally, we explore the use of
reductions between functional equations in the context of approximate self-testing. Our results have
implications for the stability theory of functional equations.

Key words. program testing, approximate testing, property testing, polynomials, functional
equations
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1. Introduction. Program checking was introduced by Blum and Kannan [7]
in order to allow one to use a program safely without having to know a priori that
the program is correct on all inputs. Related notions of self-testing and self-correcting
were further explored in [8, 24]. These notions are seen to be powerful from a prac-
tical point of view (cf. [9]) and from a theoretical angle (cf. [5, 4]) as well. The
techniques used usually consist of tests performed at run-time which compare the
output of the program either to a predetermined value or to a function of outputs
of the same program at different inputs. In order to apply these powerful techniques
to programs computing real-valued functions, several issues dealing with precision
need to be dealt with. The standard model, which considers an output to be wrong
even if it is off by a very small margin, is too strong to make practical sense due to
reasons such as the following: (i) In many cases, the algorithm is only intended to
compute an approximation, e.g., Newton’s method. (ii) Representational limitations
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and round-off/truncation errors are inevitable in real-valued computations. (iii) The
representation of some fundamental constants (e.g., π = 3.14159 . . .) is inherently
imprecise.

The framework presented by [20, 3] accommodates these inherently inevitable
or acceptably small losses of information by overlooking small precision errors while
detecting actual “bugs,” which manifest themselves with greater magnitude. Given
a function f , a program P that purports to compute f , and an error bound ∆, if
|P (x)− f(x)| ≤ ∆ (denoted P (x) ≈∆ f(x)) under some appropriate notion of norm,
we say P (x) is approximately correct on input x. Approximate result checkers test if
P is approximately correct for a given input x. Approximate self-testers are programs
that test if P is approximately correct for most inputs. Approximate self-correctors
take programs that are approximately correct on most inputs and turn them into
programs that are approximately correct on every input.

Domains. We work with finite subsets of fixed point arithmetic that we refer to

as finite rational domains. For n, s ∈ Z+, Dn,s
def
= { is : |i| ≤ n, i ∈ Z}. Usually, s = 2l

where l is the precision. We allow s and n to vary for generality. For a domain D, let
D+ and D− denote the positive and negative elements in D.

Testing using properties. There are many approaches to building self-testers. We
illustrate one paradigm that has been particularly useful. In this approach, in order
to test if a program P computes a function f on most inputs, we test if P satisfies
certain properties of f .

As an example, consider the function f(x) = 2x and the property “f(x + 1) =
f(x)+2” that f satisfies. One might pick random inputs x and verify that P (x+1) =
P (x)+2. Clearly, if for some x, P (x+1) 	= P (x)+2, then P is incorrect. The program,
however, might be quite incorrect and still satisfy P (x+1) = P (x)+2 for most choices
of random inputs. In particular, there exists a P (for instance, P (x) = 2xmodK)1

such that (i) with high probability, P satisfies the property at random x and hence
will pass the test, and (ii) there is no function that satisfies the property for all x such
that P agrees with this function on most inputs. Thus we see that this method, when
used naively, does not yield a self-tester that works according to our specifications.
Nevertheless, this approach has been used as a good heuristic to check the correctness
of programs [13, 14, 35].

As an example of a property that does yield a good tester, consider the linearity
property “f(x+ y) = f(x) + f(y),” satisfied only by functions mapping Dn,s to R of
the form f(x) = cx, c ∈ R. If, by random sampling, we conclude that the program
P satisfies this property for most x, y, it can be shown that P agrees with a linear
function g on most inputs [8, 28]. We call the linearity property, and any property
that exhibits such behavior, a robust property.

We now describe more formally how to build a self-tester for a class F of functions
that can be characterized by a robust property. The two-step approach, which was
introduced in [8], is as follows: (i) test that P satisfies the robust property (property
testing) and (ii) check if P agrees with a specific member of F (equality testing). The
success of this approach depends on finding robust properties which are both easy to
test and lead to efficient equality tests.

A property is a pair 〈I, Eτ(n,s)〉, consisting of an equation If (x1, . . . , xk) = 0
that relates the values of function f at various tuples of locations 〈x1, . . . , xk〉, and

1We naturally extend the mod function to Dn,s by letting xmodK stand for jmod k
s

, for x,K ∈
Dn,s, and x = j

s
, K = k

s
.
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a distribution Eτ(n,s) over Dk
τ(n,s) from which the locations are picked. The property

〈I, Eτ(n,s)〉 is said to characterize a function family F in the following way. A function

f is a member of F if and only if If (x1, . . . , xk) = 0 for every 〈x1, . . . , xk〉 that has
nonzero support under Eτ(n,s). For instance, the linearity property can be written as

If (x1, x2, x3) ≡ f(x1)+f(x2)−f(x3) = 0, and ELin
τ(n,s) is a distribution on 〈x1, x2, x1+

x2〉, where x1 and x2 are chosen randomly from some distribution2 over the domain
Dτ(n,s). In this case 〈I, ELin

τ(n,s)〉 characterizes F = {f(x) = cx | c ∈ R}, the set
of all linear functions over Dτ(n,s). We will adhere to this definition of a property
throughout the paper; however, for simplicity of notation, when appropriate, we will
talk about the distribution and the equality together. For instance, we express the
linearity property as f(x+ y) = f(x) + f(y), giving the distributions of x, y.

We first consider robust properties in more detail. Suppose we want to infer the
correctness of the program on inputs from the domain Dn,s. Then we allow calls
to the program on a larger domain Dτ(n,s), where τ : Z2 → Z2 is a fixed function
that depends on the structure of I. Ideally, we would like τ(n, s) = (n, s), i.e.,
Dτ(n,s) = Dn,s. However, for technical reasons, we allow Dτ(n,s) to be a proper, but
not too much larger, superset of Dn,s (in particular, the description size of an element
in Dτ(n,s) should be polynomial in the description size of an element in Dn,s).

3

To use a property in a self-tester, one must prove that the property is robust.
Informally, the (δ, ε,Dτ(n,s),Dn,s)-robustness of the property 〈I, Eτ(n,s)〉 implies that
if, for a program P , IP (x1, . . . , xk) = 0 is satisfied with probability at least 1−ε when
〈x1, . . . , xk〉 is chosen from the distribution Eτ(n,s), then there is a function g ∈ F that
agrees with P on 1−δ fraction of the inputs in Dn,s. In the case of linearity, it can be
shown that there is a distribution ELin

11n,s on 〈x1, x2, x1+x2〉 where x1, x2 ∈ D11n,s such
that the property is (2ε, ε,D11n,s,Dn,s)-robust for all ε < 1/48 [8, 28]. Therefore, once
it is tested that P satisfies P (x1)+P (x2) = P (x1+x2) with large enough probability
when the inputs are picked randomly from ELin

11n,s, it is possible to conclude that P
agrees with some linear function on most inputs from Dn,s. A somewhat involved
definition of robust is given in [28]. Given a function τ such that for all n, s, Dn,s is a
large enough subset of Dτ(n,s), in this paper we say that a property is robust if for all
0 < δ < 1, there is an ε such that for all n, s the property is (δ, ε,Dτ(n,s),Dn,s)-robust.

We now consider equality testing. Recall that once it is determined that P satisfies
the robust property, then equality testing determines that P agrees on most inputs
with a specific member of F . For instance, in the case of linearity, to ensure that P
computes the specific linear function f(x) = x on most inputs, we perform the equality
test which ensures that P (x + 1

s ) = P (x) + 1
s for most x. Neither the property test

nor the equality test on its own is sufficient for testing the program. However, since
f(x) = x is the only function that satisfies both the linearity property and the above
equality property, the combination of the property test and the equality test can be
shown to be sufficient for constructing self-testers.

This combined approach yields very efficient testers (that make onlyO(ε−1 log 1/δ)
calls to the program for fixed δ and ε) for programs computing homomorphisms (e.g.,
multiplication of integers and matrices, exponentiation, logarithm). This idea is fur-
ther generalized in [28], where the class of functional equations called addition theo-
rems is shown to be useful for self-testing. An addition theorem is a mathematical

2For example, choosing x1 and x2 uniformly from Dτ(n,s) suffices for characterizing linearity. To
prove robustness, however, [28] uses a more complicated distribution that we do not describe here.

3Alternatively, one could test the program over the domain Dn,s and attempt to infer the cor-
rectness of the program on most inputs from Dn′,s′ , where Dn′,s′ is a large subdomain of Dn,s.
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Table 1
Some addition theorems of the form f(x+ y) = G[f(x), f(y)].

G[f(x), f(y)] f(x) G[f(x), f(y)] f(x)

f(x) + f(y) Ax f(x)f(y)−
√

1− f(x)2
√

1− f(y)2 cosAx

f(x)+f(y)
1−f(x)f(y)

tanAx
f(x)+f(y)−2f(x)f(y)

1−2f(x)f(y)
1

1+cotAx

f(x)f(y)−1
f(x)+f(y)

cotAx
f(x)+f(y)−2f(x)f(y) cos a

1−f(x)f(y)
sinAx

sinAx+a

f(x)+f(y)−1
2f(x)+2f(y)−2f(x)f(y)−1

1
1+tanAx

f(x)+f(y)−2f(x)f(y) cosh a
1−f(x)f(y)

sinhAx
sinhAx+a

f(x)+f(y)−2f(x)f(y)
1−f(x)f(y)

−Ax
1−Ax

f(x)+f(y)+2f(x)f(y) cosh a
1−f(x)f(y)

− sinhAx
sinhAx+a

f(x)+f(y)

1+[f(x)f(y)]/A2 A tanhBx
f(x)+f(y)+2f(x)f(y)

1−f(x)f(y)
Ax

1−Ax

f(x)f(y)
f(x)+f(y)

A
x

f(x)f(y) +
√
f(x)2 − 1

√
f(y)2 − 1 coshAx

identity of the form for all x, y, f(x+y) = G[f(x), f(y)]. Addition theorems character-
ize many useful and interesting mathematical functions [1, 11]. When G is algebraic,
they can be used to characterize families of functions that are rational functions of x,
ecx, and doubly periodic functions (see Table 1 for examples of functional equations
and the families of functions that they characterize over the reals). Polynomials of
degree d can be characterized via several different robust functional equations (e.g.,
[6, 26, 4, 30]).

Approximate robustness and stability. When the program works with finite pre-
cision, the properties upon which the testers are built will rarely be satisfied, even by
a program whose answers are correct up to the required (or hardware-wise maximal)
number of digits, since they involve strict equalities. Thus, when testing, one might
be willing to pass programs for which the properties are only approximately satisfied.
This relaxation in the tests, however, leads to some difficulties, for in the approximate
setting (i) it is harder to analyze which function families are solutions to the robust
properties, and (ii) equality testing is more difficult. For instance, it is not obvious
which family of functions would satisfy both P (x1) + P (x2) ≈ P (x1 + x2), for all
x, y ∈ Dτ(n,s) (approximate linearity property), and P (x + 1

s ) ≈ P (x) + 1
s for all

x ∈ Dτ(n,s) (approximate equality property).

To construct approximate self-testers, our approach is to first investigate a notion
of approximate robustness of the property to be used. We first require a notion of
distance between two functions.

Definition 1 (Chebyshev norm). For a function f on a domain D, ‖f‖D = ‖f‖
= supx∈D{|f(x)|}.

When the domain is obvious from the context, we drop it. Given functions f, g,
the distance between them is ‖f−g‖. Next, we define the approximation of a function
by another function.

Definition 2. The function P (∆, ε)-approximates f on domain D if ‖P −f‖ ≤
∆ on at least 1− ε fraction of D.

Approximate robustness is a natural extension of the robustness of a property.
We say that a program satisfies a property approximately if the property is true of
the program when exact equalities are replaced by approximate equalities. Once
again consider the linearity property and a program P that satisfies the property
approximately (i.e., P (x1 + x2) ≈∆ P (x1) + P (x2)) for all but an ε fraction of the
choices of 〈x1, x2, x1 + x2〉 ∈ ELin

τ(n,s). The approximate robustness of linearity implies

that there exists a function g and a choice of ∆′,∆′′ such that g(x + y) ≈∆′ g(x) +
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g(y) for all inputs x, y ∈ Dn,s, and g (∆′′, 2ε)-approximates P on Dn,s [20, 28]. In
general, we would like to define approximate robustness of a property 〈I, Eτ(n,s)〉
as the following: If a program P satisfies the equation I approximately on most
choices of inputs according to the distribution Eτ(n,s), then there exists a function
g that (i) satisfies I approximately on all inputs chosen according to En,s and (ii)
approximates P on most inputs in Dn,s, the support of Eτ(n,s). The function τ relates
the distributions used for describing the behaviors of P and G and depends on I.

We now give a formal definition of approximate robustness.

Definition 3 (approximate robustness). Let 〈I, Eτ(n,s)〉 characterize the family
of functions F over the domain Dτ(n,s). Let F ′ be the family of functions satisfying I
approximately on all inputs chosen according to En,s. Let ε, δ be constants independent
of n. A property 〈I, Eτ(n,s)〉 for a function family F ′ is (δ, ε,Dτ(n,s),Dn,s,∆,∆′,∆′′)-
approximately robust if for all P,Pr〈x1,...,xk〉∼Eτ(n,s)

[IP (x1, . . . , xk) ≈∆ 0] ≥ 1 −
ε implies there is a g ∈ F ′ that (∆′′, δ)-approximates P on Dn,s and Ig(x1, . . . ,
xk) ≈∆′ 0 for all tuples 〈x1, . . . , xk〉 with nonzero support in En,s.

Once we know that the property is approximately robust, the second step is to
analyze the stability of the property, i.e., to characterize the set of functions F ′ that
satisfy the property approximately and compare it to F , the set of functions that
satisfy the property exactly (Hyers–Ulam stability [21]). In our linearity example, the
problem is the following: given g satisfying g(x+ y) ≈∆ g(x) + g(y) for all x, y in the
domain, is there a homomorphism h that (∆′, 0)-approximates g with ∆′ depending
only on ∆ and not on the size of the domain? If the answer is affirmative, we say
that the property is stable. In the following definition, Dn′,s′ ⊆ Dn,s.

Definition 4 (stability). A property 〈I, En,s〉 for a function family F is (Dn,s,
Dn′,s′ ,∆,∆′)-stable if for all g that satisfies Ig ≈∆ 0 for all tuples with nonzero
support according to En,s, there is a function h that satisfies Ih = 0 for all tuples with
nonzero support according to En′,s′ with ‖h− g‖Dn′,s′ ≤ ∆′.

If a property is both approximately robust and stable, then it can be used to
determine whether P approximates some function in the desired family. Furthermore,
if we have a method of doing approximate equality testing, then we can construct
an approximate self-tester. Here, we assume that the distributions associated with
approximate robustness and stability are samplable.

Previous work. Previously, not many of the known checkers have been extended
to the approximate case. Often it is rather straightforward to extend the robustness
results to show approximate robustness. However, the difficulty with extending the
checkers appears to lie in showing the stability of the properties. The issue is first
mentioned in [20], where approximate checkers for mod, exponentiation, and logarithm
are constructed. The domain is assumed to be closed in all of these results. A domain
is said to be closed under an operation if the range of the operation is a subset of the
domain. For instance, a finite precision rational domain is not closed under addition.
In [3] approximate checkers for sine, cosine, matrix multiplication, matrix inversion,
linear system solving, and determinant are given. The domain is assumed to be closed
in the results on sine and cosine. In [10] an approximate checker for floating-point
division is given. In [32], a technique which uses approximation theory is presented to
test univariate polynomials of degree at most 9. It is left open in [20, 3, 30, 28] whether
the properties used to test polynomial, hyperbolic, and other trigonometric functions
can be used in the approximate setting. For instance, showing the stability of such
functional equations is not obvious; if the functional equation involves division with a
large numerator and a small denominator, a small additive error in the denominator
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leads to a large additive error in the output.

There has been significant work on the stability of specific functional equations.
The stability of linearity and other homomorphisms is addressed in [21, 16, 18, 12].
The techniques used to prove the above results, however, cease to apply when the
domain is not closed. The stronger property of stability in a nonclosed space, called
local stability, is addressed by Skof [31], who proves that Cauchy functional equations
are locally stable on a finite interval in R. The problem of stability of univariate
polynomials over continuous domains is first addressed in [2] and the problem of local
stability on R is solved in [19]. See [17] for a survey. These results do not extend in
an obvious way to finite subsets of R and thus cannot be used to show the correctness
of self-testers. For those that can be extended, the error bounds obtained by naive
extensions are not optimal. Our different approach allows us to operate on Dn,s and
obtain tight bounds.

Results. In this paper, we answer the questions of [20, 3, 30, 28] in the affirmative
by giving the first approximate versions of most of their testers. We first present an ap-
proximate tester for linear and multilinear functions with tight bounds. These results
apply to several functions, including multiplication, exponentiation, and logarithm,
over nonclosed domains. We next present the first approximate testers for multivariate
polynomials. Finally, we show how to approximately test functions satisfying addi-
tion theorems. Our results apply to many algebraic functions of trigonometric and
hyperbolic functions (e.g., sinh, cosh). All of our results apply to nonclosed discrete
domains.

Since a functional equation over R has more constraints than the same functional
equation over Dn,s, it may happen that the functional equation over R characterizes a
family of functions that is a proper subset of the functions characterized by the same
functional equation over Dn,s. This does not limit the ability to construct self-testers
for programs for these functions, due to the equality testing performed by self-testers.

To show our results, we prove new local stability results for discrete domains. Our
techniques for showing the stability of multilinearity differ from those used previously
in that (i) we do not require the domain to be discrete and (ii) we do not require the
range to be a complete metric space. This allows us to apply our results to multivariate
polynomial characterizations. In addition to new combinatorial arguments, we employ
tools from approximation theory and stability theory. Our techniques appear to be
more generally applicable and cleaner to work with than those previously used.

Self-correctors are built by taking advantage of the random self-reducibility of
polynomials and functional equations [8, 24] in the exact case. As in [20], we employ
a similar idea for the approximate case by making several guesses at the answer and
returning their median as the output. We show that if each guess is within ∆ of the
correct answer with high probability, then the median yields a good answer with high
probability. To build an approximate checker for all of these functions, we combine
the approximate self-tester and approximate self-corrector as in [8].

Subsequent to our work, our results have been extended to the case of relative
error in a recent paper of [22].

Organization. Section 2 addresses the stability of the properties used to test linear
and multilinear functions. Using these results, section 3 considers approximate self-
testing of polynomials. Section 4 addresses the stability and robustness of functional
equations. Section 5 illustrates the actual construction of approximate self-testers and
self-correctors.
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2. Linearity and multilinearity. In this section, we consider the stability of
the robust properties used to test linearity and multilinearity over the finite rational
domain Dn,s. The results in this section, in addition to being useful for the testing of
linear and multilinear functions, are crucial to our results in section 3.

As in [20], approximate robustness is easy to show by appropriately modifying the
proof of robustness [28]. This involves replacing each exact equality by an approximate
equality and keeping track of the error accrued at each step of the proof. To show
stability, we use two types of bootstrapping arguments: the first shows that an error
bound on a small subset of the domain implies the same error bound on a larger subset
of the domain; the second shows that an error bound on the whole domain implies a
tighter error bound over the same domain. These results can be applied to give the
first approximate self-testers for several functions over Dn,s including multiplication,
exponentiation, and logarithm (section 2.2).

2.1. Approximate linearity. The following defines formally what it means for
a function to be approximately linear.

Definition 5 (approximate linearity). A function g is ∆-approximately linear
on Dn,s if for all x, y ∈ Dn,s, g(x+ y) ≈∆ g(x) + g(y).

Hyers [21] and Skof [31] obtain a linear approximation to an approximately linear
function when the domain is R. (See Appendix A for their approach.) Their methods
are not extendible to discrete domains.

Suppose we define h such that h( 1
s )

def
= g( 1

s ) and h is linear. In the 0-approximately

linear case (exact linearity), since g( is ) = g( i−1
s ) + h( 1

s ) and h( is ) = h( i−1
s ) + h( 1

s ),
by induction on the elements in Dn,s, we can show that h(x) = g(x) for all x. This
approach is typically used to prove the sufficiency of the equality test. However, in the
∆-approximately linear case for ∆ 	= 0, using the same inductive argument will only
yield a linear function h such that h( is ) ≈i·∆ g( is ). This is quite unattractive since the
error bound depends on the domain size. The problem of obtaining a linear function
h whose discrepancy from g is independent of the size of the domain is nontrivial.

In [20], a solution is given for when the domain is a finite group. Their technique
requires that the domain be closed under addition and therefore does not work for
Dn,s. We give a brief overview of the scheme in [20] and point out where it breaks
down for nonclosed domains. The existence of a linear h that is close to g is done
in [20] by arguing that if D is sufficiently large, then an error of at least ∆ at the
maximum error point x∗ would imply an even bigger error at 2x∗, contradicting the
maximality assumption about error at x∗. Here, the crucial assumption is that x ∈ D
implies 2x ∈ D. This step fails for domains which are not closed under addition.

Instead, we employ a different constructive technique to obtain a linear h on Dn,s

given a ∆-approximately linear g. Our technique yields a tight bound of 2∆ on the
error e ≡ h− g (instead of 4∆ in [31]) and does not require that the domain be closed
under addition. It is important to achieve the best (lowest) constants possible on the
error because these results are used in section 3.2 where the constants affect the error
in an exponential way.

The following lemma shows how to construct a linear function h that is within
2∆ + ρ of a ∆-approximately linear function g in D+

n,s.
Lemma 6. Let g be a ∆-approximately linear function on D+

n,s, and let h be linear
on Dn,s. Define e(x) = h(x) − g(x). If |e(ns )| = ρ, then for all x ∈ D+

n,s, |e(x)| ≤
2∆ + ρ.

Proof. We prove by contradiction that for all x ∈ D+
n,s, e(x) ≤ 2∆ + ρ. A

symmetric argument can be made to show that e(x) ≥ −(2∆ + ρ).
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Recall that n
s is the greatest positive element of the domain, and note that e is a

∆-approximately linear function. Assume that there exists a point in D+
n,s with error

greater than 2∆ + ρ. Let p be the maximal such element. p has to lie between n
2s

and n
s , otherwise 2p ∈ D+

n,s would have error greater than 2∆ + ρ, contradicting the
maximality of p. Let q = n

s − p. Then, e(q) + e(p) ≈∆ e(ns ); therefore e(q) < −∆.
Also, for any x ∈ (p, ns ] ⊆ D+

n,s, by definition of p, e(x) ≤ 2∆+ ρ. Note that any such
x can be written as x = x′+ p, where x′ ∈ (0, q]. To satisfy the approximate linearity
property that e(x′) + e(p) ≈∆ e(x), x′ must have error strictly less than ∆ + ρ.

We now know that the points in the interval (0, q] have error strictly less than
2∆ + ρ (in fact, less than ∆ + ρ) and that the point q itself has error strictly less
than −∆. Putting these two facts and approximate linearity together, and since any
x ∈ (q, 2q] can be written as q+ y where y ∈ (0, q], we can conclude that at any point
in (q, 2q], the error is at most 2∆ + ρ. Now we can repeat the same argument by
taking y from (0, 2q] rather than (0, q] to bound the error in the interval (0, 3q] by
2∆ + ρ. By continuing this argument, eventually the interval contains the point p,
which means that p has error at most 2∆+ρ. This contradicts our initial assumption
that e(p) was greater than 2∆ + ρ.

In addition, since e(0) ≈∆ e(0) + e(0), |e(0)| ≤ ∆. We now generalize the error
bound on D+

n,s to Dn,s.

Lemma 7. If a function g is ∆-approximately linear on Dn,s, with h and e defined
as in Lemma 6, and if |e(ns )| = ρ, then for all x ∈ Dn,s, |e(x)| ≤ 2∆ + ρ.

Proof. Observe that if the error e(x) is upper bounded by σ when x ∈ [0, ns ], then|e(x)| ≤ (σ + ∆)/2 whenever 0 ≤ x ≤ n
2s , since e(2x) ≤ σ. Also, if |e(x)| ≤ µ, then

|e(−x)| ≤ µ+ 2∆ since e(0) ≤ ∆. By Lemma 6, e(x) ≤ 2∆ + ρ for all x ∈ D+
n,s. We

will bound the error in D−n,s first by 3∆ + ρ and then by 2∆ + ρ. From the above
observations, we have e(x) ≤ 4∆ + ρ for x ∈ D−n,s, e(x) ≤ (3∆ + ρ)/2 for x ∈ [0, n2s ]
and e(x) ≤ (5∆ + ρ)/2 for x ∈ [− n

2s , 0].

Assume that ∃x ∈ D−n,s such that e(x) = 3∆ + ρ + ε > 3∆ + ρ. Let p be such a
point with minimal absolute value. Then p < − n

2s , otherwise the error at 2p would
exceed 3∆+ρ. Let t be the point with the highest error in D+

n,s (the maximal such one
if there is a tie). We consider the possible locations for t to bound e(t): (i) if t ≤ n

2s ,
then to ensure that e(2t) ≤ e(t), e(t) ≤ ∆; (ii) if n

2s < t ≤ |p|, then t + p ∈ [− n
2s , 0];

therefore, to satisfy the bound above on e(t+ p), e(t) ≤ ∆/2− ε ≤ ∆; (iii) if t > |p|,
then t+ p ∈ (0, n2s ]; therefore to satisfy the bound above, e(t) ≤ −∆/2− ε ≤ ∆.

Regardless of where t lies, e(t) ≤ ∆ ≤ ∆+ ρ; hence the error in D+
n,s is bounded

by ∆ + ρ. However, e(ns + p) ≥ 3∆ + 2ρ+ ε−∆ > 2∆ + ρ. Since n
s + p ∈ D+

n,s, this
contradicts the bound we established before. Therefore, there cannot be a point in
D−n,s with error greater than 3∆ + ρ. A symmetric argument can be used to bound
negative error.

Now we reduce the error bound to 2∆ + ρ. Assume that p is the minimal point
in D−n,s with error at least 2∆ + ρ. The proof is similar to the previous stage, using
the tighter bound e(x) ≤ 2∆+ ρ/2 for x ∈ [− n

2s , 0]. Cases (i) and (iii) stay the same;
for case (ii) we have e(t+ p) ≤ −ε ≤ ∆. Therefore, the error cannot exceed ∆ + ρ in
D+
n,s. However, e(

n
s + p) ≥ 2∆ + ε+ ρ−∆, which is a contradiction.

The following special case proves the stability result for linearity.

Corollary 8. The linearity property is (Dn,s,Dn,s,∆, 2∆)-stable.

Proof. Suppose function g is ∆-approximately linear on Dn,s. Set h(ns ) = g(ns )
in Lemma 7. This uniquely defines a linear h with ρ = 0.

The intuition that drives us to set h(ns ) = g(ns ) in the proof of Corollary 8 is as
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follows. Consider the following function of n, s: g(ns ) = (ns +
[(n−1)/3]

s )∆ ([x] denotes
integer part of x). It is easy to see that g(x + y) ≈∆ g(x) + g(y). Note that setting
h( 1

s ) = g( 1
s ) instead of h(ns ) = g(ns ) does not work in general. If we set h( 1

s ) = g( 1
s ),

then we obtain h(ns ) =
n
s∆. However, ‖g−h‖ is a growing function of n and so there

is no way to bound the error at all points.
The following example shows that the error bound obtained in Corollary 8 using

our technique is tight: we have shown how to construct a linear function h so that
‖h − g‖ ≤ 2∆. We now show that there is a function g that, given our method of
constructing h, asymptotically approaches this bound from below. Define g as follows:
g(n) = 0; g(x) = (3x/n− 1)∆ for 0 ≤ x ≤ n− 1; g(−x) = −g(x) for 0 < x ≤ n. It is
easy to see that g is ∆-approximately linear: If x+y < n, g(x+y)− g(x)− g(y) = ∆.
If x + y = n, then g(x + y) = 0 and so g(x) + g(y) = ∆. Our construction sets
h(n) = 0; thus, h ≡ 0, the zero function. However, ‖g − h‖ = |g(n− 1)− h(n− 1)| =
(2− 3/n)∆ −→ 2∆ for large enough n.

2.2. Approximate multilinearity. In this section we focus our attention on
multilinear functions. A multivariate function is multilinear if it is linear in any one
input when all the other inputs are fixed. A multilinear function of k variables is called
a k-linear function. An example of a bilinear function is multiplication, and bilinearity
property can be stated concisely as f(x1 + x′1, x2 + x′2) = f(x1, x2) + f(x′1, x2) +
f(x1, x

′
2) + f(x′1, x

′
2). Note that distributivity of multiplication over addition is a

special case of multilinearity.
A natural extension of this class of functions is the class of approximately multi-

linear functions, which are formally defined below.
Definition 9 (approximate multilinearity). A k-variate function g is ∆-

approximately k-linear on Dk
n,s if it is ∆-approximately linear on Dn,s in each vari-

able.
For instance, for k = 2, a function g is ∆-approximately bilinear if for all

x1, x
′
1, x2, x

′
2 ∈ D, g(x1 + x′1, x2) ≈∆ g(x1, x2) + g(x′1, x2) and g(x1, x2 + x′2) ≈∆

g(x1, x2) + g(x1, x
′
2).

Now we generalize Lemma 7 to ∆-approximately k-linear functions. Let g be
a ∆-approximately k-linear function and h be the symmetric multilinear function
uniquely defined by the condition h(ns , . . . ,

n
s ) = g(ns , . . . ,

n
s ). Let e ≡ h − g. e is a

∆-approximately k-linear function.
Since g takes k inputs from Dn,s, if we consider each input to g as a coordinate,

the set of all possible k-tuples of inputs of g form a (2n+ 1)× · · · × (2n+ 1) cube of
dimension k. We show that for any point (x1, . . . , xk) in this cube, |e(x1, . . . , xk)| is
bounded.

Theorem 10. The approximate k-linearity property is (Dk
n,s,Dk

n,s,∆, 2k∆)-

stable. In other words, if a function g is ∆-approximately k-linear on Dk
n,s, then

there exists a k-linear h on Dk
n,s such that ‖h− g‖ ≤ 2k∆.

Proof. With h defined as above, e(ns , . . . ,
n
s ) = 0. First, we argue about points

that have one coordinate that is different from n
s . Fix k − 1 of the inputs to be

n
s (hard-wire into g) and vary one (say, xi). This operation transforms g from a
∆-approximately k-linear function of x1, . . . , xk to a ∆-approximately linear func-
tion of xi. By Lemma 7, this function cannot have an error of more than 2∆ in
Dn,s. Therefore, |e(ns , . . . , ns , xi, ns , . . . , ns )| ≤ 2∆, if |xi| < n

s . Next we consider
points which have two coordinates that are different from n

s . Consider without loss
of generality an input a, b, ns , . . . ,

n
s . By the result we just argued, we know that

e(ns , b,
n
s , . . . ,

n
s ) ≤ 2∆. By fixing inputs 2 through k to be b, ns , . . . ,

n
s , and varying
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the first input, by Lemma 7, we have |e(a, b, ns , . . . , ns )| ≤ 4∆ for any a ∈ Dn,s. Via
symmetric arguments, we can bound the error by 4∆ if any two inputs are different
from n

s . Continuing this way, it can be shown that for all inputs, the error is at most
2k∆.

The following theorem shows that the error can be reduced to (1 + µ)∆ for any
constant µ > 0 by imposing the multilinearity condition on a larger domain D′ and
fitting the multilinear function h on D, where |D′|/|D| = �2k/µ�. Note that doubling
the domain size only involves adding one more bit to the representation of a domain
element.

Theorem 11. For any µ > 0, the approximate multilinearity property is (Dk
2kn/µ,s,

Dk
n,s,∆, (1 + µ)∆)-stable.

Proof. By Theorem 10, g is 2k∆-close to a k-linear h on D2kn/µ,s. For any
x = x1, . . . , xk, we fix all coordinates except xi and argue in the ith coordinate as
below.

For any Dm,s, first we show that if |e(x)|Dm,s
≤ ρ, then |e(x)|Dm/2,s

≤ (ρ+∆)/2.
To observe this, note that if x ∈ Dm/2,s, then 2x ∈ Dm,s. Therefore the function
should satisfy e(x) + e(x) ≈∆ e(2x), which implies that |e(x)| ≤ (ρ + ∆)/2. Thus,
in general, the maximum error in Dm/2i,s is ≤ ρ/2i + ∆(1 − 1/2i). Since the error
in D2kn/µ,s is at most 2k∆, the error in Dn,s is at most (1 + µ)∆ by our choice of
parameters. In the multilinear case, we can make a similar argument by using points
which have at least one coordinate xi within the smaller half of the axis.

3. Polynomials. To test programs purportedly computing polynomials, it is
tempting to (i) interpolate the polynomial from randomly chosen points and then (ii)
verify that the program is approximately equal to the interpolated polynomial for a
large fraction of the inputs. Since a degree d k-variate polynomial can have (d+ 1)k

terms, this leads to exponential running times. Furthermore, it is not obvious how
error bounds that are independent of the domain size can be obtained.

Our test uses the same “evenly spaced” interpolation identity as that in [30]: f

is a degree d polynomial if and only if for all x, t ∈ D,
∑d+1

i=0 (−1)d+1−i(d+1
i

)
f(x +

it) = 0. This identity is computed by the method of successive differences which
never explicitly interpolates the polynomial computed by the program, thus giving a
particularly simple and efficient (O(d2) operations) test.

We can show that the interpolation identity is approximately robust by modifying
the robustness theorem in [29] (section 3.3). Our proof of stability of the interpolation
identity (section 3.2), however, uses a characterization of polynomials in terms of
multilinear functions that previously has not been applied to program checking. This
in turn allows us to use our results on the stability of multilinearity (section 2.2) and
other ideas from stability theory. Section 3.4 extends these techniques to multivariate
polynomials.

3.1. Preliminaries. In this section, we present the basic definitions and theo-
rems that we will use. Define

∇tf(x)
def
= f(x+ t)− f(x)

to be the standard forward difference operator. Let

∇d
t f(x)

def
=

d︷ ︸︸ ︷
∇t · · · ∇t f(x) =

d∑
k=0

(−1)d−k
(
d

k

)
f(x+ kt)
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and ∇t1,t2f(x)
def
= ∇t1∇t2f(x). The following are simple facts concerning this opera-

tor.

Fact 12. The following are true for the difference operator ∇:

1. ∇ is linear: ∇(f + g) = ∇f +∇g;
2. ∇ is commutative: ∇t1,t2 = ∇t2,t1 ; and
3. ∇t1+t2 −∇t1 −∇t2 = ∇t1,t2 = ∇t2,t1 .

Let x[k] denote

k︷ ︸︸ ︷
x, . . . , x. For any k-ary symmetric f , let f∗(x) = f(x[k]) denote its

diagonal restriction. We use three different characterizations of polynomials [27, 15].

Fact 13. Let D be a ring. The following are equivalent:

1. there exist a0, . . . , ad ∈ D such that for all x ∈ D, f(x) =
∑d

k=0 akx
k;

2. for all x, t ∈ D,∇d+1
t f(x) = 0;

3. there exist symmetric k-linear functions Fk, 0 ≤ k ≤ d, such that for all
x ∈ D, f(x) =

∑d
k=0 F

∗
k (x).

The above fact remains true for nonclosed domains so long as we insist that the
arguments to f are from the domain.

The following definitions are motivated by the notions of using evenly and un-
evenly spaced points in interpolation.

Definition 14 (strong approximate polynomial). A function g is called strongly
∆-approximately degree d polynomial on D if for all x, t1, . . . , td+1 ∈ D such that
x+ t1 + · · ·+ td+1 ∈ D, |∇t1,...,td+1

g(x)| ≤ ∆.

Definition 15 (weak approximate polynomial). A function g is called weakly
∆-approximately degree d polynomial onD if for all x, t ∈ D such that x+t(d+1) ∈ D,
|∇d+1

t g(x)| ≤ ∆.

3.2. Stability for polynomials. First, we prove that if a function is strongly ∆-
approximately polynomial, then there is a polynomial that (2d lg d∆, 0)-approximates
it. Next, we show that if a function is weakly approximately polynomial on a domain,
then there is a coarser subdomain on which the function is strongly approximately
polynomial. Combining these two, we can show that if a function is weakly approx-
imately polynomial on a domain, then there is a subdomain on which the function
approximates a polynomial. By using Theorem 11, we can bring the above error ar-
bitrarily close to ∆ by assuming the hypothesis on a large enough domain. In order
to pass programs that err by at most ∆′, we need to set ∆ ≥ (d+ 1) · 2d∆′.

Strongly approximate case. One must be careful in defining polynomial h that is
close to g. For instance, defining h based on the values of g at some d+ 1 points will
not work. We proceed by modifying techniques in [2, 19] using the following fact.

Fact 16. If a function f is symmetric and k-linear, then ∇t1,...,tdf
∗(x) =

k!f(t1, . . . , tk) if k = d and 0 if k < d.

The following theorem shows the stability of the strong approximate polynomial
property.

Theorem 17. The strong approximate polynomial property is (Dn(d+2),s,Dn,s,∆,

O(2d lg d)∆)-stable. In other words, if g is a strongly ∆-approximately degree d poly-
nomial on Dn(d+2),s, then there is a degree d polynomial hd such that ‖g − hd‖Dn,s ≤
O(2d lg d)∆.

Proof. Note that if x, t1, . . . , td+1 ∈ Dn,s, then x + t1 + · · · + td+1 ∈ D(d+2)n,s.
Now, the hypothesis that g is a strongly ∆-approximately degree d polynomial on
Dn(d+2),s guarantees that for all x, t1, . . . , td+1 ∈ Dn,s, |∇t1,...,td+1

g(x)| ≤ ∆. The rest
of the proof uses this “modified hypothesis” and works with Dn,s.
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We induct on the degree. Let ed
def
= |g − hd|. When d = 0, by the modified

hypothesis, we have for all x, t ∈ Dn,s, |∇tg(x)| ≤ ∆, i.e., |∇tg(0)| = |g(t)− g(0)| ≤ ∆
for all t ∈ Dn,s. Setting h0 = g(0), a constant, we are done.

Suppose the lemma holds when the degree is strictly less than d + 1. Now,
by the modified hypothesis, we have for all t1, . . . , td+1 ∈ Dn,s, |∇t1,...,td+1

g(x)| ≤
∆. Using Fact 12 and then our modified hypothesis, we have |∇t1+t′1,t2,...,tdg(x) −∇t1,t2,...,tdg(x)−∇t′1,t2,...,tdg(x)| = |∇t1,t′1,...,tdg(x)| ≤ ∆. By symmetry of the differ-
ence operator, we have a ∆-approximate symmetric d-linear function on Dn,s, say,

G(t1, . . . , td)
def
= ∇t1,...,tdg(0). Theorem 10 on multilinearity guarantees a symmet-

ric d-linear H with ‖G − H‖ ≤ 2d∆. Let Hd(x1, . . . , xd) = H(x1, . . . , xd)/d!. Let
g′(x) = g(x)−H∗d (x) for x ∈ Dn,s.

Now, we have for all x, t1, . . . , td ∈ Dn,s,

|∇t1,...,tdg
′(x)| = |∇t1,...,td(g(x)−H∗d (x))| (definition of g′)

≤ |∇t1,...,tdg(x)−∇t1,...,tdg(0)|
+ |∇t1,...,tdg(0)−∇t1,...,tdH

∗
d (x)| (triangle inequality)

= |∇t1,...,td,xg(0)|+ |∇t1,...,tdg(0)−∇t1,...,tdH
∗
d (x)| (definition of ∇)

= |∇t1,...,td,xg(0)|+ |G(t1, . . . , td)−∇t1,...,tdH
∗
d (x)| (definition of G)

= |∇t1,...,td,xg(0)|+ |G(t1, . . . , td)− d!Hd(t1, . . . , td)| (Fact 16)

= |∇t1,...,td,xg(0)|+ |G(t1, . . . , td)−H(t1, . . . , td)| (definition of Hd)

≤ ∆+ |G(t1, . . . , td)−H(t1, . . . , td)| (modified hypothesis on g)

≤ (2d+ 1)∆ (since ‖G−H‖ ≤ 2d∆).

Now we apply the induction hypothesis. g′ satisfies the hypothesis above for d and
larger error ∆′ = (2d+1)∆ and so by induction, we are guaranteed the existence of a
degree d− 1 polynomial hd−1 such that ‖g′ − hd−1‖ ≤ ed−1∆

′. Set hd = hd−1 +H∗d .
By Fact 13(3) about the characterization of polynomials, hd is a degree d polynomial.
Now, ed = ‖g − hd‖ = ‖g − hd−1 −H∗d‖ = ‖g′ − hd−1‖ ≤ ed−1∆

′ = ed−1(2d+ 1)∆.

Unwinding the recurrence, the final error ‖g − hd‖ = ∆
∏d
i=1(2i+ 1).

Weakly approximate case. We first need the following useful fact [15] which helps
us to go from equally spaced points to unequally spaced points.

Fact 18. For any λ1, . . . , λd ∈ {0, 1}, if t′λ1,...,λd
= −∑d

i=1 λiti/i and t′′λ1,...,λd
=∑d

i=1 λiti, then

∇t1,...,tdf(x) =
∑

λ1,...,λd∈{0,1}
(−1)λ1+···+λd∇d

t′
λ1,...,λd

f(x+ t′′λ1,...,λd
).

Using this fact, we obtain the following theorem. Let µ(d) = lcm{1, 2, . . . , d}.
Theorem 19. If g is weakly (∆/2d+1)-approximately degree d polynomial on

Dn(d+1),sµ(d+1), then g is strongly ∆-approximately degree d polynomial on Dn,s.
Proof. For t1, . . . , td+1 ∈ Dn,s, and for any λ1, . . . , λd+1 ∈ {0, 1}, we have by

our choice of parameters that t′λ1,...,λd+1
, t′′λ1,...,λd+1

∈ Dn(d+1),sµ(d+1). Therefore, for
x ∈ Dn,s,

|∇t1,...,td+1
g(x)| ≤

∑

λ1,...,λd+1∈{0,1}
|∇d+1

t′
λ1,...,λd+1

g(x+ t′′λ1,...,λd+1
)|

≤ 2d+1(∆/2d+1) ≤ ∆.
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3.3. Approximate robustness for polynomials. This section shows that the
interpolation equation for degree d polynomials is in some sense approximately ro-
bust. All the results in this subsection are modifications of the exact robustness of
polynomials given in [29]. Let αk = (−1)d+1−k(d+1

k

)
. To self-test P on Dn,s, we use

the following domains. These domains are used for technical reasons that will become
apparent in the proofs of the theorems in this section.

1. D(d+2)n,s.
2. T = DKn,Ls where Kn = n(d+ 2)(n(d+ 1)!)3 and Ls = s((d+ 1)!)3.
3. Tj = {jx : x ∈ T } for 0 ≤ j ≤ d+ 1.
4. Ti,j = {ix : x ∈ Tj} for 0 ≤ i, j ≤ d+ 1.

All Tj , Ti,j contain D(d+2)n,s. Now, assume that P satisfies the following prop-
erties, which are similar to the low-degree test in an approximate setting and over
different domains. Note that these properties can be tested by sampling. We use
Prx∈D[·] to denote the probability of an event when x is chosen uniformly from do-
main D.

1. Pr
0≤k≤d+1,x∈Dn,s,t∈Tk

[
d+1∑
i=0

αiP (x+ it) ≈∆ 0

]
≥ 1− ε;

2. for each 0 ≤ j ≤ d + 1, Pr
0≤k,l≤d+1,x∈Tk,j ,t∈Tl

[
d+1∑
i=0

αiP (x+ it) ≈∆ 0

]
≥ 1− ε;

and

3. for each 0 ≤ i, j ≤ d+ 1, Pr
0≤k≤d+1,x∈Ti,j ,t∈Tk

[
d+1∑
l=0

αlP (x+ lt) ≈∆ 0

]
≥ 1− ε.

Define g(x) = median0≤k≤d+1,t∈Tk{
∑d+1

i=1 αiP (x + it)}. We obtain the following
theorem that shows the approximate robustness of polynomials. Let Eτ(n,s) be the
distribution that flips a fair three-sided die and on outcome i ∈ {1, 2, 3} chooses inputs
according to distribution given in the ith property above. Let Dτ(n,s) be the union of
the domains used in the above properties.

Theorem 20. The interpolation equation, where inputs are picked according to
the distribution Eτ(n,s), is (2ε, ε,Dτ(n,s),Dn,s,∆, 2d+3∆,∆)-approximately robust.

The rest of this section is devoted to proving the above theorem.

By Markov’s inequality, g’s definition, and properties (1) and (3) of P , it is easy
to show that P (∆, 2ε)-approximates g.

Theorem 21. If program P satisfies the above three properties, then, for all i, j ∈
{0, . . . , d+1}, Prx∈Ti,j [P (x) ≈∆ g(x)] ≥ 1−2ε and Prx∈Dn,s [P (x) ≈∆ g(x)] ≥ 1−2ε.

Now, we set out to prove that g is a weakly approximate polynomial. Let
δ(p1, p2) = p1 if p1 = p2 and 0 otherwise. For two domains A,B, subsets of a universe
X , let δ(A,B) =∑s∈X δ(Prx∈A[x = s],Pry∈B[y = s]) and call the domains ε-close if
δ(A,B) is at least 1− ε. Using the definitions of T , Tj , Ti,j , the following fact can be
shown.

Fact 22. For any x ∈ D(d+2)n,s, the domains Tj and {x + t : t ∈ Tj} are
ε1 = O(1/n3)-close. For any x, the domains Ti,j and {x + t : t ∈ Ti,j} are ε2 =
O(1/n3)-close.

The following lemma shows that, in some sense, g is well-defined and links it to
an interpolation obtained from P .

Lemma 23. For all x ∈ D(d+2)n,s, Pr0≤k≤d+1,t∈Tk [g(x) ≈2d+2∆

∑d+1
j=1 αjP (x +

jt)] ≥ 1 − ε3 and for all i,Prt∈Ti [g(x) ≈2d+2∆

∑d+1
j=1 αjP (x + jt)] ≥ 1 − ε4, where

ε3 = 2(d+ 1)(ε+ ε2) and ε4 = (d+ 1)ε3.
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Proof. Consider 0 ≤ k, l ≤ d+ 1, and t1 ∈ Tk, t2 ∈ Tl. For a fixed 0 ≤ j ≤ d+ 1,
using properties of P , and since Tj,k and {x + jt1 : t1 ∈ Tk} are ε2-close (Fact 22),

we get Pr[P (x+ jt1) ≈∆

∑d+1
i=1 αiP (x+ jt1 + it2)] ≥ 1− ε− ε2 and Pr[P (x+ it2) ≈∆∑d+1

j=1 αjP (x + jt1 + it2)] ≥ 1 − ε − ε2. Summing over all 0 ≤ i, j ≤ d + 1 and

noting that
∑d+1

i=1 αj∆ ≤ 2d+1∆, Pr[
∑d+1

j=1 αjP (x+jt1) ≈2d+1∆

∑d+1
i=1 αiP (x+ it2)] ≥

1 − 2(d + 1)(ε + ε2) = 1 − ε3. Using Lemma 43 (see section 4.3), we can show that
with a relaxation of twice the error, this probability lower bounds the probability in
the first part of the lemma. The second part of the lemma follows from the first via
a simple averaging argument.

Now, the following theorem completes the proof that g is a weakly approximate
degree d polynomial.

Theorem 24. For all x ∈ D(d+2)n,s, for all i ∈ {0, . . . , d+1},Prt∈Ti [g(x) ≈2d+3∆∑d+1
j=1 αjg(x + jt)] ≥ 1 − ε5, where ε5 = ε4 + (d + 1)(2ε + ε2), and for all x, t ∈

Dn,s,Prt1∈T [|∇d+1
t g(x)| ≤ 2d+3∆] ≥ 1− (d+ 1)(2ε5 + ε1).

Proof. It is implied by Theorem 21, Lemma 23, and the closeness of the domains
Ti,j and {x + t : t ∈ Ti,j} that for all x ∈ D(d+2)n,s, for all i,Prt∈Ti [g(x) ≈2d+2∆∑d+1

j=1 αjP (x + jt)] ≥ 1 − ε4 and Prt∈Ti [g(x + jt) ≈∆ P (x + jt)] ≥ 1 − 2ε − ε2.
Summing the latter expression and putting them together, we have the first part of
the lemma. The second part follows from the first part and the fact that Tj and
{t+ jt1 : t1 ∈ T } are ε1-close (Fact 22).

For an appropriate choice of ε, ε1, ε2, we have a g that is a weakly (2d+3∆)-
approximately degree d polynomial on Dn,s with g (∆, 2ε)-approximating P on Dn,s.

3.4. Multivariate polynomials. The following approach is illustrated for bi-
variate polynomials. We can easily generalize this to multivariate polynomials. It is
easy to show that the approximate robustness holds when the interpolation equation
[30] is used as in section 3.3, i.e., for any k-variate polynomial P of total degree d,
the following interpolation equation is satisfied for all x̄, t̄ ∈ Dk

n,s:

d+1∑
i=0

αiP (x̄+ it̄) = 0.

A horizontal axis parallel line for a fixed y is the set of points lx,h = {(x +
kh, y) : k ∈ Z}. A vertical axis parallel line is defined analogously. As a consequence
of approximate robustness, we have a bivariate function g(x, y) that is a strongly
approximately degree d polynomial along every horizontal and vertical line. We use
this consequence to prove stability.

The characterization we will use is as follows: f(x, y) is a bivariate polynomial
(assume degree in both x and y is d) if and only if there are d+1 symmetric k-linear
functions Fk(y1, . . . , yk) : Dk → PD[x], where the range is the space of all degree d
univariate polynomials in x.

For each value of y, gy(x) is a strongly approximately degree d polynomial. Using
the univariate case (Theorem 17), there is an exact degree d polynomial Py(x) such
that for all x, g(x, y) ≈2d lg d∆ Py(x). Construct the function g′(x, y) = Py(x). Let
∆′ = 2d lg d∆. Now, for a fixed x (i.e., on vertical line) for any y, using∇t1,...,td+1

g(x, y)
≈∆ 0, we have ∇t1,...,td+1

g′(x, y) ≈∆′ 0. Thus, g′(x, y) is a bivariate function where
along every horizontal line, it is an exact degree d polynomial and along every vertical
line, it is a strongly ∆′-approximate degree d polynomial. Interpreting g′(x, y) as g′x(y)
and using the same idea as in univariate case, we can conclude that ∇(t1, . . . , td) :
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Dd → PD[x] is a symmetric approximate d-linear function (here, we used the fact that
g′x(y) ∈ PD[x]). The rest of the argument in Theorem 17 goes through because our
proofs of approximate linearity (Lemma 7) and multilinearity (Theorem 10) assume
that the range is a metric space (which is true for PD[x] with, say, the Chebyshev
norm). The result follows from the above characterization of bivariate polynomials.

4. Functional equations. Extending the technique in Lemma 7 to addition
theorems f(x+ y) = G[f(x), f(y)] is not straightforward, since G can be an arbitrary
function. In order to prove approximate robustness (section 4.3) and stability (sec-
tion 4.2), several related properties of G are required. Proving that G satisfies each
individual one is tedious; however, the notion of modulus of continuity from approx-
imation theory gives a general approach to this problem. We show that bounds on
the modulus of continuity imply bounds on all of the quantities of G that we require.
The stability of G is shown by a careful inductive technique based on a canonical gen-
eration of the elements in Dn,s (section 4.2). The scope of our techniques is not only
limited to addition theorems; we also show that Jensen’s equation is approximately
robust and stable (section 4.2.4).

4.1. Preliminaries. For addition theorems, we can assume that G is algebraic
and a symmetric function (the latter is true, in general, under some technical assump-
tions as in [28]). We need a notion of “smoothness” of G. The following notions are
well known in approximation theory [25, 33].

Definition 25 (moduli of continuity). The modulus of continuity of the function
f : D → R is the following function of δ ∈ [0,∞) :

ω(f ; δ) = sup
|x1−x2|≤δ

x1,x2∈D

{|f(x1)− f(x2)|}.

The modulus of continuity of the function f : D2 → R is the following function of
δx, δy ∈ [0,∞)2 :

ω(f ; δx, δy) = sup
|x1−x2|≤δx,|y1−y2|≤δy

x1,y1,x2,y2∈D

{|f(x1, y1)− f(x2, y2)|}.

The partial moduli of continuity of the function f : D2 → R are the following functions
of δ ∈ [0,∞) :

ω(f ; δ, 0) = sup
y∈D

sup
|x1−x2|≤δ

x1,x2∈D

{|f(x1, y)− f(x2, y)|} and

ω(f ; 0, δ) = sup
x∈D

sup
|y1−y2|≤δ

y1,y2∈D

{|f(x, y1)− f(x, y2)|}.

We now present some facts which are easily proved.
Fact 26. The following are true of the modulus of continuity:
1. 0 ≤ ω(f ; δ) ≤ ω(f ; δ′) if δ ≤ δ′;
2. if f ′, the derivative of f , exists and is bounded in D, then ω(f ; δ) ≤ δ‖f ′‖D;
3. ω(f ; δ, δ) ≤ ω(f ; 0, δ)+ω(f ; δ, 0), and if f(·, ·) is symmetric, then ω(f ; δ, δ) ≤

2ω(f ; δ, 0); and
4. if f ′x is the partial derivative of f with respect to x, then ω(f ; δ, 0) ≤ δ‖f ′x‖D.

We need a notion of an “inverse” of G. If G[x, y] = z, denote G−1
1 [z, y] =

x,G−1
2 [x, z] = y. Since G is symmetric, G−1

1 ≡ G−1
2 and we denote G−1[z, y] = x.
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An example. Wherever necessary, we will illustrate our scheme using the func-

tional equation f(x+ y) = f(x)f(y)
f(x)+f(y) , i.e., G[x, y] = xy/(x + y). The solution to this

functional equation is f(x) = C/x for some constant C. The following fact [34] is
useful in locating the maxima of analytic functions.

Fact 27 (maximum modulus principle). If f is analytic in a compact set D,
then f attains extremum only on the boundary of D.

Over a bounded rectangle D = [L,U ]2, where 0 < L ≤ U , G is analytic, and
hence by Fact 27 attains its maximum on the boundary. G ∈ C1[L,U ] in D (i.e., is
continuously differentiable). We have G′x[x, y] = y2/(x + y)2 which is a decreasing

function of x. By Fact 27, ‖G′x‖ attains a maximum when x = L, giving Ĝ =

‖G′x(·, y)‖ = y2/(L+y)2. Therefore, using Fact 26(4), ω(G; δ, 0) ≤ supy∈[L,U ]
δy2

(L+y)2 =
δU2

(L+U)2 .

4.2. Stability for functional equations. In this section, we prove (under some
assumptions) that if a function g satisfies a functional equation approximately every-
where, then it is close to a function h that satisfies the functional equation exactly
everywhere. Our functional equations are of the form g(x+ y) = G[g(x), g(y)], where
G is a symmetric algebraic function.

Example. If g satisfies g(x+ y) ≈∆
g(x)g(y)
g(x)+g(y) for some ∆ > 0 and for all valid

x, y, then there is a function h such that h(x + y) = h(x)h(y)
h(x)+h(y) for all valid x, y, and

h(x) ≈∆′ g(x) for some ∆′ > 0 and all valid x. The domains for the valid values of x,
y, as well as the relationship between ∆ and ∆′, will be discussed later.

In the following sections we show how to construct the function h that is close
to g, satisfying a particular functional equation. Given such an h, let e(x) denote

|h(x) − g(x)|, i.e., h(x) ≈e(x) g(x). For simplicity, let H1(x)
def
= G[x, x]. Note that

H1(h(x)) = h(2x). We assume that ω(H1; δ) ≤ cδ; our results thus hold for functions
where the modulus of continuity is linear in δ. We will be making this assumption for
our moduli of continuity when appropriate.

We consider the cases when c < 1, c = 1, and c > 1. We first show how to obtain
h and then obtain bounds on e(x). Then, we can conclude that h, which satisfies the
functional equation everywhere, also approximates g; i.e., the functional equation is
stable.

Call x
s even (resp., odd) if x is even (resp., odd).

4.2.1. When c < 1. We begin by assuming that n is a power of 2, i.e., let
n = 2k in Dn,s. We first construct h by setting h( 1

s ) = g( 1
s ). This determines h for

all values in D by the fact that h satisfies the functional equation.

We obtain a relationship between the error at x and 2x using the functional
equation.

Lemma 28. e(2x) ≤ ce(x) + ∆.

Proof. e(2x) = |g(2x) − h(2x)| ≤ ∆ + |G[g(x), g(x)] − G[h(x), h(x)]|. How-
ever, rewriting, and using the definition of the modulus of continuity, |H1(g(x)) −
H1(h(x))| ≤ ω(H1; e(x)) ≤ ce(x).

We explore the relationship between e(x + 1
s ) and e(x). For simplicity, let

H2(x)
def
= G[x, g( 1

s )]. Note that H2(h(x)) = h(x + 1). We again consider func-
tions where the modulus of continuity is bounded by a linear function in δ, i.e.,
ω(H2; δ) = |H ′2(·, g( 1

s ))| ≤ dδ for some constant d. Now, we introduce the following
lemma.



566 FUNDA ERGÜN, S. RAVI KUMAR, AND RONITT RUBINFELD

Lemma 29. e(x+ 1
s ) ≤ de(x) + ∆.

Proof. e(x + 1
s ) = |g(x + 1

s ) − h(x + 1
s )| ≤ ∆ + |G[g(x), g( 1

s )] − G[h(x), h( 1
s )]|.

However, |G[g(x), g( 1
s )] − G[h(x), h( 1

s )] = |H2[g(x)] − H2[h(x)]| ≤ ω(H2; e(x)) ≤
de(x).

We will show a scheme to bound e(x) for all x when d < 1. This scheme can
be thought of as an enumeration scheme, where at each step of the process, certain
constraint equations have to be satisfied. We construct a binary tree Tk with nodes
labeled with elements from D+

n,s where 2
k = n. The root is labeled 1

s . If x is the label
of a node, then 2x is the label of its left child (if 2x is not already in the tree), and
x + 1

s is the label of its right child (if x + 1
s is not already in the tree). It is easy to

see that if x is even (except root), then x is a left child; if x is odd, then x is a right
child.

Lemma 30. Let ω(H1; δ) ≤ cδ, ω(H2; δ) ≤ dδ with c, d < 1. For all x ∈ D+
n,s, if x

is even, then e(x) ≤ 1+c
1−c∆; and if x is odd, then e(x) ≤ 2

1−c∆.

Proof. We will prove this by induction on the preorder enumeration of Tk. Let
x be the next element to be enumerated. By preorder listing, its parent has already
been enumerated, and hence its error is known. If x = 2y is even, it is a left child and
hence generated by a 2y operation. e(y) ≤ 2

1−c∆ by the induction hypothesis. This

together with Lemma 28 yields e(x) ≤ ce(y)+∆ ≤ c 2
1−c∆+∆ ≤ 1+c

1−c∆, preserving the

induction hypothesis. If x = y + 1
s is odd, it is a right child, and hence generated by

a y + 1 operation. However, y is even, so e(y) ≤ 1+c
1−c∆ by the induction hypothesis.

This together with Lemma 29 and d ≤ 1 yields e(x) ≤ de(y) + ∆ ≤ e(y) + ∆ ≤
1+c
1−c∆+∆ ≤ 2

1−c∆, preserving the induction hypothesis.

This yields the following theorem.

Theorem 31. Let ω(H1; δ) ≤ cδ, ω(H2; δ) ≤ dδ with c, d < 1 and let n be a power
of 2. Then, the addition theorem is (D+

n,s,D+
n,s,∆, 2

1−c∆)-stable.

With our example, we have H1(x) = G[x, x] = x/2 and so c = 1/2. Also,
H2(x) = G[x, g( 1

s )] from which H ′2(x) ≤ 1 as 0 < L ≤ x, g( 1
s ). Thus, d ≤ 1. By

Theorem 31, we have e(x) ≤ 4∆ for all x ∈ D+
n,s.

When n is not a power of 2, we can argue in the following manner. From our
proof, we see that we use very specific values of x, y in the approximate functional
equation. Let i be such that 2i−1 ≤ n ≤ 2i and let D′ = D2i,s. We extend D+

n,s to
D′ and define values of g at D′\D: at even x (= 2y) let g(x) = H1(g(y)) and at
odd x (= y + 1) let g(x) = H2(g(y)). These can be thought of as new assumptions
on g which are satisfied “exactly” (i.e., without error ∆). We can use Lemma 30 to
conclude that there is a linear h on D′ that is 2

1−c∆ close to g. Hence, h is close

to g even on D+
n,s. To argue about D−n,s, we pick a “pivot” point in Dn,s (0 for

simplicity). Now, we have h(−x) = G−1[h(x), h(0)]. Therefore, as in Theorem 31, we
have e(−x) ≤ ω(G−1; 2c

1−c ).

When d ≥ 1, the error can no longer be bounded. In this case, we have c ≤ 1 < d.
Let r = cd. We can see from the structure of Tk that the maximum error can
occur at 2k−1

s . By simple induction on the depth of the tree, the error is given by

e( 2k−1
s ) ≤ ∑k−2

i=0 (d
i+1 + di)ci∆ = (d + 1)

∑k−2
i=0 ri∆ = (d + 1) r

k−1−1
r−1 ∆. If r < 1,

we obtain a constant error bound of e(x) ≤ (d + 1) 1
1−r∆ by geometric summation.

Otherwise, we obtain e(x) = O(rlgn).



CHECKING APPROXIMATE COMPUTATIONS OF POLYNOMIALS 567

4.2.2. When c > 1. In this case, we require additional assumptions. We define
the quantity

ω−1(f ; δ) = sup
|f(x1)−f(x2)|≤δ

x1,x2∈D

{|x1 − x2|}.

Note that ω(f ; δ) ≤ cδ implies ω−1(f ; δ) ≥ δ/c. Now, we assume that ω−1(f ; δ) ≤ δ/c′

for some c′ > 1.
Set h( 2k

s ) = g( 2k

s ). Since h satisfies the addition theorem, this can be used to fix

all of h if H−1
1 is well-defined. Let e(x) = |g(x)− h(x)| as before.

As before, we first obtain a relationship between the error at x and at 2x using
the addition theorem.

Lemma 32. e(x) ≤ (e(2x) + ∆)/c′.
Proof. We have as in Lemma 28, |H1(g(x))−H1(h(x))| ≤ e(2x)+∆. By definition

of ω−1 and our assumption, we get e(x) ≤ ω−1(H1; e(2x)+∆) ≤ (e(2x)+∆)/c′.

For simplicity, let H3(x)
def
= G−1[g( 2k

s ),
2k

s − x]. We assume that ω(H3; δ) ≤ dδ
for some constant d. The following lemma can be proved easily.

Lemma 33. e(x) ≤ de( 2k

s − x) + ∆.

e( 2k

s ) = 0 by our construction. We adopt a scheme similar to the one in the
previous section. Construct a binary tree Tk with nodes labeled with elements from

D+
n,s. The root is labeled 2k

s . If x is the label of a node and x is even, then x/2 is

the label of its left child (if x/2 is not already in the tree), and 2k

s − x is the label of

its right child (if 2k

s − x is not already in the tree). It is easy to see that if x ≤ 2k−1

s

(except the root), then x is a left child, and if x > 2k−1

s , then x is a right child. We
use the preorder enumeration of D+

n,s using Tk to prove the following lemma in the
spirit of the proof of Lemma 30.

Lemma 34. For all x ∈ D+
n,s, if x ≤ 2k−1

s and d ≤ 1, then e(x) ≤ 2c′
1−c′∆; and if

x > 2k−1

s , then e(x) ≤ 1+c′
1−c′∆.

This yields (under the assumptions on ω−1(H1; δ) and ω(H3; δ)) the following
theorem.

Theorem 35. Let ω−1(H1; δ) ≤ δ/c′, ω(H3, δ) ≤ dδ with d ≤ 1 and let n be a

power of 2. Then, the addition theorem is (D+
n,s,D+

n,s,∆, 1+c′
1−c′∆)-stable.

This case arises for linearity where H1(x) = G[x, x] = 2x and so c′ = 2. Using
the above theorem, we get a weaker bound of e(x) ≤ 3∆ (as opposed to ≤ 2∆ by
Corollary 8). Similar techniques as in the previous section can be used to argue about
D−n,s and when n is not a power of 2.

The case when d > 1 can be handled by schemes as in the previous section.

4.2.3. When c = 1. In this case, it means that ω(H1; δ) = δ or in other words,
by Fact 26(2), ‖H ′1‖ = 1. By Fact 27, the maximum occurs only at the boundary of
the domain. Hence, we can test by looking at a subdomain in which the maximum is
less than 1.

4.2.4. Jensen’s equation. Jensen’s equation is the following: for all x, y ∈
Dn,s, f(

x+y
2 ) = f(x)+f(y)

2 . The solution to this functional equation is the set of affine
linear functions, i.e., f(x) = ax+ b for some constants a, b. Jensen’s equation can be
proved approximately robust by modifying the proof of its robustness in [28]. We will
show a modified version of our technique for proving its stability. As before, we have
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for all x, y ∈ Dn,s, g(
x+y

2 ) ≈∆
g(x)+g(y)

2 . To prove the stability of this equation, we
construct an affine linear h. Note that two points are necessary and sufficient to fully
determine h. We set h(ns ) = g(ns ) and h(0) = g(0).

Lemma 36. e(x+y2 ) ≤ e(x)/2 + e(y)/2 + ∆.

Proof. e(x+y2 ) = |g(x+y2 ) − h(x+y2 )| ≤ ∆ + | g(x)+g(y)2 − h(x)+h(y)
2 |. However,

| g(x)−h(x)
2 + g(y)−h(y)

2 | = e(x)/2 + e(y)/2.

The following corollary is immediate.

Corollary 37. e(x2 ) ≤ ∆+ e(x)/2 and e(
x+n

s

2 ) ≤ ∆+ e(x)/2.

Proof. Since for y = 0 and y = n
s , e(y) = 0 in Lemma 36.

We construct a slightly different tree Tk in this case. The root of Tk is labeled
by n

s and if x is the label of a node, then x/2 (if integral and not already present) is
label of its left child and (ns + x)/2 (if integral and not already present) is the label
of its right child.

Theorem 38. The Jensen equation is (D+
n,s,D+

n,s,∆, 2∆)-stable.

Proof. The proof is by induction on an enumeration order of Tk given by, say, a
breadth-first traversal. Clearly, at the root, e(ns ) = 0 ≤ 2∆. Now, if e(x) ≤ 2∆, then
consider its children. Its left (resp., right) child (if exists) is x/2 (resp., (x + n

s )/2).

Thus, by Corollary 37, we have e(x2 ) ≤ ∆+e(x)/2 ≤ 2∆ (resp. e(
x+n

s

2 ) ≤ ∆+e(x)/2 ≤
2∆).

4.3. Approximate robustness for functional equations. As in [20, 29], we
test the program on D2p,s and make conclusions about its correctness on Dn,s. The
relationship between p and n will be determined later. The domain has to be such
that G is analytic in it. Therefore, we consider the case when f is bounded on D2p,s,
i.e., 0 < L ≤ f(x) ≤ U . Let G be the family of functions f that satisfy the following
conditions:

(1) Prx∈D2p,s [f(x) ≥ L] ≥ 1− ε,
(2) Prx∈D2p,s

[f(x) ≤ U ] ≥ 1− ε,
(3) Prx,y∈D2p,s [G[f(x), f(y)] ≥ L] ≥ 1− ε, and
(4) Prx,y∈D2p,s [G[f(x), f(y)] ≤ U ] ≥ 1− ε.

Note that the membership in G is easy to determine by sampling. We can define
a distribution Eτ(n,s) such that if P satisfies the functional equation on Eτ(n,s) with
probability at least 1− ε, then P also satisfies the following four properties:

(1) Prx,y∈Dp,s [P (x+ y) ≈∆ G[P (x), P (y)]] ≥ 1− ε,
(2) Prx,y∈Dp,s [P (x) ≈∆ G[P (x− y), P (y)]] ≥ 1− ε,
(3) Prx,y∈Dp,s [P (x) ≈∆ G[P (y), P (x− y)]] ≥ 1− ε, and
(4) Prx∈Dn,s,y∈Dp,s [P (x) ≈∆ G[P (x− y), P (y)]] ≥ 1− ε.

Eτ(n,s) is defined by flipping a fair four-sided die and on outcome i ∈ {1, 2, 3, 4}
choosing inputs according to the distribution given in the ith property above. Let
Ĝ = ‖G′x‖D. We can then show the following.

Theorem 39. The addition theorem with the distribution Eτ(n,s) is (2ε, ε,D2p,s,

Dn,s,∆, (9Ĝ2 + 5Ĝ)∆,∆)-approximately robust.

Define for x ∈ Dp,s, g(x) = mediany∈Dp,s
{G[P (x − y), P (y)]}. By Markov’s in-

equality, definition of g, and the properties of P , it is easy to show the following.

Lemma 40. Prx∈Dn,s [g(x) ≈∆ P (x)] > 1− 2ε.

Proof. Consider the set of elements x ∈ Dn,s such that Pry∈Dp,s
[P (x) ≈∆ G[P (x−

y), P (y)]] < 1
2 . If the fraction of such elements is more than 2ε, then it contradicts

hypothesis (4) on P that Prx∈Dn,s,y∈Dp,s [P (x) ≈∆ G[P (x−y), P (y)]] ≥ 1− ε. For the
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rest, for at least half of the y’s, P (x) ≈∆ G[P (x− y), P (y)]. By defining g to be the
median (over y’s in Dp,s), we have for these elements g(x) ≈∆ P (x).

For simplicity of notation, let Px denote P (x) for any x ∈ Dp,s and Gx,y denote
G[P (x), P (y)] for any x, y ∈ Dp,s. Since G is fixed, we will drop G from the modulus
of continuity.

A distribution U ′ on D is said to be ε-uniform on D if
∑

x∈D |U ′(x)− 1/|D|| ≤ ε.
Let γ = n/2p.

Fact 41. (1) For all x ∈ D2n,s, the distribution of x+ y is γ-uniform on Dp,s.

(2) For any event E(x) and for an ε-uniform distribution U ′ on D, |Prx∼U ′ [E(x)]−
Prx∈D[E(x)]| ≤ ε.

Lemma 42. For x ∈ D2n,s,Pry,z∈Dp,s [Gx−y,y ≈2ω(∆,0) Gx−z,z] ≥ 1− 12ε− 4γ.

Proof. Pry,z∈Dp,s [Gx−y,y ≈ω(∆,0) G[Gx−z,z−y, Py] = G[Px−z, Gz−y,y] ≈ω(0,∆)

Gx−z,z] > 1 − 12ε − 4γ. The error in the first step (due to computation of Px−y)
is ω(∆, 0) and the equation holds with probability at least 1− ε− γ by property (3)
and Fact 41. The bounds on Gx−z,z−y also hold with probability at least 1− 2ε− 2γ
by properties (3), (4), and Fact 41 and so the error is just ω(∆, 0). The next line
is just rewriting. In a similar manner, the final equation holds with probability at
least 1 − ε − γ by property (2) and Fact 41 and the error bound is ω(0,∆). The
bounds on random points Py, Pz, Px−z, Pz−y hold with probability at least 1 − 8ε
by properties (1), (2) on P to make the error ω(0,∆). Hence, the total error is
ω(∆, 0) + ω(0,∆) = 2ω(∆, 0) by Fact 26(3) and the equality holds with probability
at least 1− 12ε− 4γ.

The following lemma, which helps us to bound the error, is from [23]. The proof
uses the observation that the clique number of G2 is at least as big as the maximum
degree in G. Hence, for a random node x, probability that x is present in the largest
clique in G2 is more than the probability that x is connected to the maximum degree
vertex (say, y) in G.

Lemma 43 (see [23]). If G = 〈V,E〉 is a random graph with edges inserted with
probability 1 − ε, then G2 = 〈V, {(x, y) : ∃z ∈ V, (x, z) ∈ E ∧ (z, y) ∈ E}〉 is a graph
where the largest clique is of size at least (1− ε)|V |.

The following shows, in some sense, that g is well-defined.

Lemma 44. For all x ∈ D2n,s, Pry∈Dp,s [g(x) ≈2∆′ Gx−y,y] ≥ 1− 12ε− 4γ, where
∆′ = 2ω(∆, 0).

Proof. We have the following: for all x ∈ D2n,s, Pry,z∈Dp,s [Gx−y,y ≈∆′ Gx−z,z] ≥
1 − 12ε − 4γ. Now, we use Lemma 43. If G denotes a graph in which (y, z) is an
edge if and only if Gx−y,y ≈∆′ Gx−z,z, then G2 denotes the graph in which (y, z) is
an edge if and only if Gx−y,y ≈2∆′ Gx−z,z. Now, using Lemma 43, we have that the
number of elements that are 2∆′ away from the largest clique is at most 2ε. Thus, at
least 1− 2ε of elements are within 2∆′ of each other. If ε < 1/2 and since g(x) is the
median, the lemma follows.

Now, the following theorem completes the proof that g satisfies the addition
theorem approximately.

Theorem 45. For all x, y ∈ Dn,s, g(x+ y) ≈∆′′ G[g(x), g(y)] with probability at

least 1− 56ε− 14γ, where ∆′′ = (9Ĝ2 + 5Ĝ)∆.
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Proof.

Pr
u,v∈Dp,s

[G[g(x), g(y)] ≈ω(2∆′,2∆′) G[Gu,x−u, Gv,y−v]

= G[Pu, G[Px−u, Gv,y−v]]
= G[Pu, G[Gx−u,v, Py−v]]
≈ω(0,ω(∆,0)) G[Pu, Gx−u+v,y−v]
≈ω(0,∆) Gu,x+y−u
≈2∆′ g(x+ y)] ≥ 1− 56ε− 14γ.

By Lemma 44, the first equality holds with probability 1 − 24ε − 8γ and error
ω(2∆′, 2∆′). By property (4), the bounds on Gu,x−u, Gv,y−v hold with probability at
least 1− 4ε to make the error ω(2∆′, 2∆′) ≤ 2ω(2∆′, 0) = 4ω(∆′, 0) = 8ω(ω(∆, 0), 0)
by Fact 26(3). The second and third equalities are always true. The fourth equality
holds with probability at least 1 − ε − γ by property (1) and Fact 41 on P and the
error accrued is ω(0, ω(∆, 0)). The bounds on Pu, Px−u, Pv, Py−v, Gx−u,v hold with
probability at least 1 − 10ε by properties (1)–(4) to make the error ω(0, ω(∆, 0)) =
ω(ω(∆, 0), 0). The fifth equality also holds with probability at least 1 − ε − γ by
property (1) on P and the error accrued is ω(0,∆) = ω(∆, 0), after bounds on
Pu, Px+y−u (with probability at least 1 − 4ε). The final equality holds with prob-
ability at least 1−12ε−4γ by Lemma 44 and error is 2∆′ = 4ω(∆, 0). Thus, the total

error is 9ω(ω(∆, 0), 0) + 5ω(∆, 0). However, ω(∆, 0) ≤ ∆Ĝ by Fact 26(4). Hence,

ω(ω(∆, 0), 0) ≤ ∆Ĝ2.
If ε < 1/112, p > 14n, we have 1 − 56ε − 14γ > 0 and so the above lemma is

true with probability 1. In the case of our example function, we already calculated

Ĝ = U2/(L+ U)2. Hence, ∆′′ = ∆( 9U4

(L+U)4 + 5U2

(L+U)2 ).

5. Approximate self-testing and self-correcting. In this section we briefly
show how to apply our techniques that we developed in this paper to construct ap-
proximate self-tester and self-correctors. The approaches in this section follow [8, 20].

5.1. Definitions. The following modifications of definitions from [20] capture
the idea of approximate checking, self-testing, and self-correcting in a formal manner.
Let P be a program for f , x ∈ Dn,s an input to P , and β the confidence parameter.

Definition 46. A (∆1,∆2,Dτ(n,s),Dn,s)-approximate result checker for f is a
probabilistic oracle program T that, given P , x ∈ Dn,s, and β, satisfies the following:

(1) P (∆1, 0)-approximates f on Dτ(n,s) ⇒ Pr[TP outputs “PASS”] ≥ 1− β.
(2) P (x) 	≈∆2 f(x) ⇒ Pr[TP outputs “FAIL”] ≥ 1− β.
Definition 47. A (∆1,∆2, ε,Dτ(n,s),Dn,s)-approximate self-tester for f is a

probabilistic oracle program T that, given P and β, satisfies the following:
(1) P (∆1, 0)-approximates f on Dτ(n,s) ⇒ Pr[TP outputs “PASS”] ≥ 1− β.
(2) P does not (∆2, ε)-approximate f on Dn,s ⇒ Pr[TP outputs “FAIL”] ≥ 1−β.
Observe that if a property is (δ, ε,Dτ(n,s),Dn,s,∆1,∆2,∆3)-approximately ro-

bust, (Dn,s,Dn′,s′ ,∆2,∆4)-stable, and it is possible to do equality testing for the
function family satisfying the property, then it is possible to construct a (∆1,∆3 +
∆4, ε,Dn,s,Dn′,s′)-approximate self-tester.

Definition 48. A (∆, ε,∆′,Dτ(n,s),Dn,s)-approximate self-corrector for f is a

probabilistic oracle program SCPf that, given P that (∆, ε)-approximates f on Dτ(n,s),

x ∈ Dn,s, and β, outputs SCPf (x) such that Pr[SCPf (x) ≈∆′ f(x)] ≥ 1− β.
Note that a (∆1,∆2, ε,Dτ(n,s),Dn,s)-approximate self-tester and (∆2, ε,∆3,Dτ(n,s),

Dn,s)-approximate self-corrector yield a (∆1,∆3,Dτ(n,s),Dn,s)-approximate result
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checker [8].

5.2. Constructing approximate self-correctors. We illustrate how to build
approximate self-correctors for functional equations. Suppose P (∆, ε)-approximates
f for ε < 1/8 and f(x+ y) = G[f(x), f(y)]. Then the self-corrector SCPf at input x is
constructed as follows. To obtain a confidence of β,

1. choose random points y1, y2, . . . , yN (N = O(ln 1/β));
2. let SCPf (x) be the median of G[P (x− y1), P (y1)], . . . , G[P (x− yN ), P (yN )].

By the assumption on ε, both the calls to P on x − yi and yi are within ∆ of
f with probability greater than 3/4. In this case, the value of G[P (x − yi), P (yi)] is

∆′ = 2∆Ĝ away from f(x) (see section 4.1 for Ĝ). Using Chernoff bounds, we can
see that at least half of the values G[P (x− yi), P (yi)] are at most ∆′ away from f(x).
Thus, their median SCPf (x) is also at most ∆′ away from f(x).

For degree d polynomials, a similar self-corrector works with ∆′ = O((d+1)2d∆).
In order to pass good programs, this is almost the best ∆′ possible using the evenly
spaced interpolation equation since the coefficients of the interpolation equation are
Ω(2d). Using interpolation equations that do not use evenly spaced points seems to
require ∆′ that is dependent on the size of the domain.

5.3. Constructing approximate self-testers. The following is a self-tester
for any function satisfying an addition theorem f(x + y) = G[f(x), f(y)] computing
the function family F over Dn,s. We use the notation from section 4.1. To obtain a
confidence of β, we choose random points x1, y1, . . . , xN , yN (N = O(1/ε ln 1/β)) and
verify the assumptions on program P in the beginning of section 4.3. If P passes
the test, then using Chernoff bounds, approximate robustness, and stability of the
property, we are guaranteed that P approximates some function in F . We next
perform the equality test to ensure that P approximates the given f ∈ F . Assume
that f( 1

s ) when c < 1 (resp., f(ns ) when c > 1) is given. Using the proofs in section

4.2, one can show that if there is a constant ∆ such that SCPf (
1
s ) ≈∆ f( 1

s ) when c < 1

(SCPf (
n
s ) ≈∆ f(ns ) when c > 1), the error between SCPf and f can be bounded by

a constant on the rest of Dn,s. Since SCPf approximates P , the correctness of the
self-tester follows.

For polynomials, we use random sampling to verify the conditions on program P
required for approximate robustness that are given in the beginning of section 3.3. If
P satisfies the conditions, then using the approximate robustness and stability of the
evenly spaced interpolation equation, P is guaranteed to approximate some degree
d polynomial h. To perform the equality test that determines if P approximates
the correct polynomial f , we assume that the tester is given the correct value of the
polynomial f at 4 = (d+1)/ε evenly spaced points x1 = −n

s , . . . , x# =
n
s ∈ Dn,s. Using

the self-corrector SCPf from section 5.2, we have ‖SCPf − h‖ ≤ ∆′ = (d+ 1)2d2d lg d∆.

The equality tester now tests that for all xi, |f(xi)− SCPf (xi)| ≤ (d+1)2d∆. Call an

input x bad if |f(x)−h(x)| > ∆′′ = ∆′+(d+1)2d∆. If x is bad, then |f(x)−SCPf (x)| >
(d + 1)2d∆. If x is a sample point, and x is bad, then the test would have failed.
Define a bad interval to be a sequence of consecutive bad points. If the test passes,
then any bad interval in the domain can be of length at most (2n + 1)/4, because
any longer interval would contain at least one sample point. The two sample points
immediately preceding and following the bad interval satisfy |f(x)−h(x)| ≤ ∆′′. This
implies that there must be a local maximum of f − h (a degree d polynomial) inside
the bad interval. Since there are only d extrema of f − h, there can be at most d bad
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intervals, and so the total number of bad points is at most d(2n+1)/4. Thus, on 1− ε
fraction of Dn,s, SC

P
f ’s error is at most ∆′+∆′′. These arguments can be generalized

to the k-variate case by partitioning the k-dimensional space into ((d+ 1)/ε)k cubes.

We have thus shown how to construct approximate self-testers and self-correctors.
It is straightforward to construct approximate result-checkers using these.

5.4. Reductions between functional equations. This section explores the
idea of using reductions among functions (as in [7, 3]) to obtain approximate self-
testers for new functions. Consider any pair of functions f1, f2 that are interreducible
via functional equations. Suppose we have an approximate self-tester for f1 and
let there exist continuous computable functions F, F−1 such that f2(x) = F [f1(x)]
and f1(x) = F−1(f2(x)). Given a program P2 computing f2, construct program P1

computing f1 via F−1. We can then self-test P1. Suppose P1 is ∆-close to f1 on a
large portion of the domain. Then for every x for which P1(x) is ∆-close to f1(x),
we bound the deviation of P2(x) from f2(x) by ∆′ = F [f1(x) + ∆] − f2(x). Then
∆′ = F [f1(x) + ∆] − F [f1(x)] ≤ ω(F ; ∆). If we can bound the right-hand side by a
constant (at least for a portion of the domain), we can bound the maximum deviation
∆′ of P2 from f2. This idea can be used to give simple and alternative approximate
self-testers for functions like sinx, cosx, sinhx, coshx which can be reduced to ex.

For example, suppose we are given a (δ1, ε1, δ2, ε2,D,D′)-approximate self-tester
for f1(x) = ex and we want an approximate self-tester for the function f2 given by
f2(x) = cosx. By the Euler identity, f1(ix) = f2(x)+ if2(x+3π/2). Given a program
P2 that supposedly computes f2, we can build a program P1 (for eix) out of the given
P2 (for cosx) and self-test P1. P1(ix) = P2(x) + iP2(x+ 3π/2).

Let the range of f1 be equipped with the following metric: |P1(x) − f1(x)| =
|$(P1(x)− f1(x))|+ |%(P1(x)− f1(x))|. In other words, in our case, we have |P1(x)−
eix| = |P2(x) − cosx| + |P2(x + 3π/2) − cos(x + 3π/2)|. This metric ensures that
P1 is erroneous on x if and only if P2 is erroneous on at least one of x, x + 3π/2.
Alternatively, there is no “cancellation” of errors.

Suppose P1 is (δ1, ε1)-good. Then, what can we say about P2? For δ1 fraction of
the “bad” domain for P1, the errors can occur in both the places where P2 is invoked.
Hence, at most 2δ1 fraction of the domain for P2 is bad. The rest of the domain for
P1 is ε1-close to f1, which by our metric implies P2 is also ε1-close to f2. Thus, P2 is
(2δ1, ε1)-good.

Similarly, suppose P1 is not (δ2, ε2)-good. P1 is not good on at least δ2 fraction
of the domain, where P1 is not ε2-close to f1. Thus, at these points in the domain, at
least one of the points where P2 is called is definitely not ε2/2-close to f2. Thus, P2

is not (δ1, ε2/2)-good.

Therefore, we have a (2δ1, ε1, δ2, ε2/2,D,D′)-approximate self-tester for f2 from
a (δ1, ε1, δ2, ε2,D,D′)-approximate self-tester for f1, given by [20].

Appendix A. Proofs of some theorems for linearity.

Theorem 49 (Hyers’ theorem). Let S be an Abelian semigroup and B be a
Banach space and let g : S → B be such that for some ∆ > 0, g is ∆-approximately
linear on S; then, for every x ∈ S, h(x) = limn→∞ g(2nx)/2n exists, h is linear, and
‖g − h‖ ≤ ∆.

Proof (see [17]). By induction on n, |g(x)/2n − g(x/2n)| < ∆(1 − 1/2n). Let
qn(x) = g(2nx)/2n. Then, qn(x) − qm(x) = (g(2m−n2nx) − 2m−ng(2nx))/2m. If
m < n, we can obtain |qn(x) − qm(x)| < ∆(1 − 2m−n)/2m. Thus, for x ∈ S,
{qn(x)} is a Cauchy sequence and by completeness of B, it has a limit function
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h(x) = limn→∞ g(2nx)/2n. The properties of h are easily proved.
Theorem 50 (Skof’s theorem). Let n > 0 and let g : [0, n) → R be such that for

some ∆ ≥ 0, |g(x+ y)− g(x)− g(y)| ≤ ∆ for all 0 ≤ x, y < n (such that x+ y < n);
then, there exists a linear h : R → R such that ‖g − h‖[0,n) ≤ 3∆.

Proof. For any x ∈ R+, write x = p(n/2) + q where 0 ≤ q < n/2. Define
g′ : R+ → R such that g′(x) = pg(n/2) + g(q). Clearly, ‖g′ − g‖[0,n) ≤ ∆. Now, the
claim is g′(x + y) ≈2∆ g′(x) + g′(y). As before, x = p(n/2) + q, y = r(n/2) + s with
0 ≤ q, s < n/2.

If 0 ≤ q + s < n/2], then we have g′(x + y) = g(q + s) + (p + r)g(n/2) ≈∆

g(q) + g(s) + pg(n/2) + rg(n/2) = g′(x) + g′(y).
If n/2 ≤ q + s < n], then let q + s = t + n/2. We have g′(x + y) = g(t) + (p +

r)g(n/2) + g(n/2) ≈2∆ g(q) + g(s) + pg(n/2) + rg(n/2) = g′(x) + g′(y).
To extend g′ to R, define for x < 0, g′(x) = −g′(−x). Thus, for all x, y ∈ R, g′(x+

y) ≈2∆ g′(x) + g′(y). By Theorem 49, there is a linear h such that ‖g′ − h‖ ≤ 2∆.
Therefore, ‖g − h‖[0,n) ≤ ‖g − g′‖[0,n) + ‖g′ − h‖[0,n) ≤ 3∆.

Appendix B. Proofs of some theorems for polynomials.
B.1. Stability for polynomials.
Fact 12. (∇t1+t2 −∇t1 −∇t2)f(x) = ∇t1,t2 = ∇t2,t1 .
Proof. (∇t1+t2 −∇t1 −∇t2)f(x) = f(x+ t1+ t2)−f(x)−f(x+ t1)+f(x)−f(x+

t2) + f(x) = f(x+ t1 + t2)− f(x+ t1)− f(x+ t2) + f(x) = ∇t1f(x+ t2)−∇t1f(x) =
∇t1(f(x+ t2)− f(x)) = ∇t1,t2f(x) = ∇t2,t1f(x).

Difference operators act on multilinear functions in a nice manner, which is cap-
tured in the following fact.

Fact 51. If f is a k-linear function, then ∇t1,...,tdf
∗(x) = k!f(t1, . . . , tk) if k = d

and 0 if k < d.
Proof. Recall that, due to multilinearity, f is also symmetric. By induction on

k and chasing definitions, we have ∇t1,...,tdf
∗(x) = ∇t1,...,td−1

(f∗(x + td) − f∗(x)) =
∇t1,...,td−1

(f((x+ td)
[d−1]

, x) + f((x+ td)
[d−1]

, td)− f(x[d])), which by linearity of ∇
yields ∇t1,...,td−1

f((x+ td)
[d−1]

, td)+∇t1,...,td−1
(f((x+ td)

[d−1]
, x)−f(x[d])). Observe

that for any constant t, the restriction of k-linear f to any of its arguments being t
(denoted ft) results in a (k − 1)-linear function. By induction, the first term in the
above expression evaluates to (d−1)!ftd(t1, . . . , td−1) = (d−1)!f(t1, . . . , td). Now, us-
ing the symmetry and linearity (in each variable) of f , we can write the second term as

∇t1,...,td−1
(
∑d−1

i=0

(
d−1
i

)
f(x[i+1], td

[d−i−1])−f(x[d])) which is (d−1)∇t1,...,td−1
f(x[d−1],

td) +
∑d−3

i=0 ∇t1,...,td−1

(
d−1
i

)
f(x[i+1], td

[d−i−1]). By induction, the first term evaluates
to (d− 1)(d− 1)!ftd(t1, . . . , td−1) = (d− 1)(d− 1)!f(t1, . . . , td), which combined with
the earlier result yields d!f(t1, . . . , td). The second term evaluates to 0 since each of
the terms inside the sum are restrictions of f to more than 1 variable, which evaluates
to 0 after applying ∇t1,...,td−1

.
Fact 13. Let D be a ring. The following characterizations of polynomials, are

equivalent:
(1) for all x ∈ D, f(x) =

∑d
k=0 akx

k;

(2) for all x, t ∈ D,∇d+1
t f(x) = 0;

(3) there exists symmetric k-linear functions Fk, 0 ≤ k ≤ d such that for all

x ∈ D, f(x) =
∑d

k=0 F
∗
k (x).

Proof. (1) ⇔ (2) follows from Lagrangian interpolation. We first prove (1) ⇒
(3). Given (1), just set Fk(x1, . . . , xk) = ak

∏k
i=0 xi. It is easy to see that Fk’s

are symmetric, k-linear. We now prove (3) ⇒ (2). Given (3), ∇t1,...,td+1
f(x) =
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Table 2
An illustration of Fact 18.

λ t′λ t′′λ Term
00 0 0 0
01 −t2/2 t2 −[f(x)− 2f(x+ t2/2) + f(x+ t2)]
10 −t1 t1 −[f(x− t1)− 2f(x) + f(x+ t1)]
11 −t1 − t2/2 t1 + t2 +[f(x− t1)− 2f(x+ t2/2) + f(x+ t1 + t2)]

∇t1,...,td+1

∑d
k=0 F

∗
k (x) =

∑d
k=0 ∇t1,...,td+1

F ∗k (x) = 0 by Fact 16 about difference op-
erators.

Fact 18. For any λ1, . . . , λd ∈ {0, 1}, if

t′λ1,...,λd
= −

d∑
i=1

λiti/i, t′′λ1,...,λd
=

d∑
i=1

λiti,

then

∇t1,...,tdf(x) =
∑

λ1,...,λd∈{0,1}
(−1)λ1+···+λd∇d

t′
λ1,...,λd

f(x+ t′′λ1,...,λd
).

Proof. The proof follows by a pairing argument. First, it is easy to prove that the
left-hand side can be expressed as ∇h1,...,hd

=
∑

λ1,...,λd∈{0,1}(−1)d+λ1+···+λdf(x +

t′′λ1,...,λd
). Now, we can expand the right-hand side as

∑

λ1,...,λd∈{0,1}
(−1)λ1+···+λd

d∑
k=0

(−1)d−k
(
d

k

)
f(x+ t′′λ1,...,λd

+ kt′λ1,...,λd
).

When k = 0, the left-hand side is obtained. Therefore, we have to prove that for
k > 0, the right-hand side vanishes. The terms inside f(·) are linear combinations
of ti’s by our construction. Note that for each k > 0, each term inside f(·) on the
right-hand side has exactly one ti absent because of its cancellation between t′ and
t′′. Therefore, for each λ1, . . . , λd ∈ {0, 1}, construct its conjugate λ′1, . . . , λ′d ∈
{0, 1} with λ′i = 1 − λi and λ′j = λj otherwise. It is easy to see that the terms

(−1)λ1+···+λdf(x+t′′λ1,...,λd
+kt′λ1,...,λd

) and (−1)λ′
1+···+λ′

df(x+t′′λ′
1,...,λ′

d
+kt′λ′

1,...,λ′
d
)

cancel. An illustration of this fact is given below.

To illustrate with an example, consider the case when d = 2. Then, the left-hand
side is given by ∇t1,t2f(x) = f(x + t1 + t2) − f(x + t1) − f(x + t2) + f(x). The
right-hand side is given by the sum of the entries in the last column of Table 2.

It is easy to see that appropriate cancellations take place so that the left-hand
side equals the right-hand side.
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THE POLYGON EXPLORATION PROBLEM∗
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Abstract. We present an on-line strategy that enables a mobile robot with vision to explore
an unknown simple polygon. We prove that the resulting tour is less than 26.5 times as long as the
shortest watchman tour that could be computed off-line.

Our analysis is doubly founded on a novel geometric structure called the angle hull. Let D be a
connected region inside a simple polygon, P . We define the angle hull of D, AH(D), to be the set of
all points in P that can see two points of D at a right angle. We show that the perimeter of AH(D)
cannot exceed in length the perimeter of D by more than a factor of 2. This upper bound is tight.

Key words. angle hull, competitive strategy, computational geometry, curve length, motion
planning, navigation, on-line algorithm, optimum watchman tour, polygon, robot

AMS subject classifications. 68U05, 68U30
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1. Introduction. In the last decade, the path planning problem of autonomous
mobile systems has received a lot of attention in the communities of robotics, compu-
tational geometry, and on-line algorithms; see, e.g., Rao et al. [23], Blum, Raghavan,
and Schieber [5], and the surveys by Mitchell [21] in Sack and Urrutia [25] and by
Berman [4] in Fiat and Woeginger [13]. We are interested in strategies that are cor-
rect, in that the robot will accomplish its mission whenever this is possible, and in
performance guarantees that allow us to relate the robot’s cost to the cost of an
optimal off-line solution or to other complexity measures of the scene.

In this work we are addressing a basic problem in this area. Suppose a mobile
robot has to explore an unknown environment modeled by a simple polygon. The
robot starts from a given point, s, on the polygon’s boundary. It is equipped with a
vision system that continuously provides the visibility of the robot’s current position.
When each point of the polygon has at least once been visible, the robot returns to s.1

In the on-line polygon exploration problem we ask for a competitive exploration
strategy that guarantees that the robot’s path will never exceed in length a constant
competitive factor times the length of the optimum watchman tour through s, i. e.,
of the shortest tour inside the polygon that contains s and has the property that
each point of the polygon is visible from some point of the tour. This approach to
evaluating the performance of an on-line strategy goes back to Sleator and Tarjan [27].
A priori it is not clear whether a competitive exploration strategy exists.
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6, 2000; published electronically October 11, 2001. This work was supported by the Deutsche
Forschungsgemeinschaft, grant Kl 655/8-3. This is the final version of conference papers that have
appeared in the proceedings of SODA ’97 and WAFR ’98 (section 2; see [15, 16]) and SWAT ’98
(section 3; see [17]).
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1In the absence of holes, the robot has seen each point inside the polygon as soon as it has seen

each point on its boundary.
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Even the off-line version of the polygon exploration problem is not easy. Here
we are given a simple polygon and have to compute the optimum watchman tour
through a specified boundary point, s. Initially this problem has been suspected to
be NP-hard. Chin and Ntafos [9] were the first to provide a polynomial time solution.
They have shown how to compute the optimum watchman tour in time O(n4), where
n denotes the number of vertices of the polygon. Later, their result has been improved
by Tan and Hirata [28]; see also the updates in [14, 29].

Carlsson, Jonsson, and Nilsson [7] have proven that the optimum watchman tour
without a specified point s can be computed in time O(n3). Furthermore, Carlsson
and Jonsson [6] proposed an O(n6) algorithm for computing the shortest path inside
a simple polygon from which each point of the boundary is visible when start and end
points are not specified. In these papers it is always assumed that the range of the
robot’s visibility is unbounded. Some authors have also studied the case of limited
visibility, e.g., Arkin, Fekete, and Mitchell [3] and Ntafos [22].

As to the on-line version of the polygon exploration problem, Deng, Kameda,
and Papadimitriou [11] were the first to claim that a competitive strategy does exist.
In their seminal paper they discussed a factor of 2016 for a greedy off-line approach
which has to be implemented as an on-line strategy. For the rectilinear case, they
gave a complete and elegant proof in [12]; here the greedy strategy can be applied
that performs surprisingly well.

The first proof for the more difficult case of nonrectilinear simple polygons has
been given in our conference paper [15]. There we have provided an on-line exploration
strategy and sketched a proof that the tour it generates in any polygon is not longer
than 133 times the length of the optimum watchman tour. One of the main difficulties
with this analysis was in establishing reasonably sharp length estimates for robot paths
of complex structure and in relating them to the optimum watchman tour.

The present paper contains the first complete presentation and analysis of an
exploration strategy for simple polygons. As compared to the conference version [15],
this full paper has been greatly simplified and describes a new analysis that is built on
an interesting geometric relation between the robot’s path and the optimum watchman
tour. This relation is expressed in terms of the angle hull, a novel geometric structure.
With these improvements we are able to show that an unknown polygon can be
explored, from a given boundary point, s, by a tour at most 26.5 times as long as the
shortest watchman tour containing s.

Of course, there is still a considerable gap between this upper bound and the
lower bound of (1 +

√
2)/2 given in [11]; however, experiments with our new strategy

suggest that its actual performance is much better than the bound proven here; we
conjecture a number far below 10.

The organization of this paper is as follows. Section 2 contains a hierarchical
description of the strategy and of its analysis. In section 2.1 we first discuss how to
explore a single corner, that is, a single reflex vertex one of whose adjacent edges
has not yet been visible. By reflex vertex we denote a vertex of the polygon whose
internal angle exceeds 180◦; all other vertices are called convex. The robot explores
these corners in a sophisticated order: Of all reflex vertices that touch the visible area
from the right, the robot attempts to explore the one that is clockwise first on the
polygon’s boundary as seen from the starting point, s. However, the vertex hereby
specified may change as the robot moves. From our angle hull result we obtain a
bound on the length of the resulting path in terms of the length of the shortest path
that leads to the final position.
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Then, in section 2.2, we use this technique for efficiently exploring groups of right
reflex vertices in clockwise order. The length of the resulting local tour is shown to
be bounded by the perimeter of the relative convex hull of certain base points times
a constant. In analogy to the standard definition of convex hulls, the relative convex
hull, RCH(D), of a subsetD of a polygon P is the smallest subset of P that containsD
and, for any two points of D, the shortest path in P connecting them.

In section 2.3 we show how the robot recursively detects and explores an exhaus-
tive system of groups of right and left reflex vertices. Groups of vertices that are on
sufficiently different recursive levels give rise to base point sets whose RCHs are mutu-
ally invisible. Therefore, the sum of their hulls’ perimeters is less than the perimeter
of the RCH of their union. In Lemma 2.6 we will show that each base point can see
two points of the optimum watchman tour, Wopt, at an angle of 90◦; therefore, all
base points must be contained in the angle hull of Wopt. Consequently, the perimeter
of the RCH of the base points must be less than the perimeter of the RCH of the
angle hull of Wopt. The latter, in turn, can only be less than or equal to the perimeter
of the RCH of Wopt itself, because the perimeter of the RCH of a connected object
is no longer than the perimeter of the object itself. Now we can apply our angle hull
result a second time in estimating the perimeter of the angle hull of Wopt against the
length of Wopt itself. This way we have bounded the length of the whole exploration
path walked by the robot by a multiple of the length of the optimum watchman path,
Wopt.

Our analysis greatly benefits from this new geometric structure we propose to call
the angle hull. Let D be a simple polygon contained in another simple polygon, P .
Then the angle hull, AH(D), of D consists of all points in P that can see two points
of D at an angle of 90◦. The boundary of AH(D) can be described as the path of a
diligent photographer who uses a 90◦ angle lens and wants to take a picture of D that
shows as large a portion of D as possible but no walls of P . Before taking the picture,
the photographer walks around D, in order to inspect all possible viewpoints.

In section 3 we prove that the photographer’s path is at most twice as long as the
perimeter of her model, D.

2. The strategy and its analysis. Let P be a simple polygon and let s be a
point on its boundary. The shortest path tree of s consists of all shortest paths from s
to the vertices of P . Its internal nodes are reflex vertices of P . Those vertices touching
a shortest path from the right are called right reflex vertices; left reflex vertices are
defined accordingly. If we follow the shortest path from s to reflex vertex v, one of its
adjacent polygon edges remains invisible until v is actually reached. The extension
into the polygon of this invisible edge is called a cut of P with respect to s.

Exploring a polygon P is equivalent to visiting all of its cuts with respect to the
start point s.

Figure 2.1 shows an example of the optimum watchman tour, Wopt, containing
a boundary point, s. Tan and Hirata [28] have provided an off-line algorithm for
computing Wopt within time O(n2) for a polygon of n edges.

We say a vertex has been discovered after it has been visible at least once from
the robot’s current position. A reflex vertex is unexplored as long as its cut has not
been reached, and fully explored thereafter.

In an unknown polygon, even exploring a single reflex vertex requires a little care.
For example, one cannot afford to go straight to the vertex in order to get to its cut:
The cut could be passing by the start point very closely, so that a much shorter path
would be optimal.



580 F. HOFFMANN, C. ICKING, R. KLEIN, AND K. KRIEGEL

s

Wopt

Fig. 2.1. The optimum watchman tour visits all cuts of the polygon.

We avoid this difficulty as follows. Whenever the robot wants to explore a right
reflex vertex, r, visible from some local start point, p, it approaches r along the
clockwise oriented circle spanned by p and by r, denoted by circ (p, r), i.e., the smallest
circle that contains p and r.

Consequently, when the robot reaches the cut of r at some point c, the ratio of
the length of the circular arc from p to c over their euclidean distance is bounded by
π
2 ≈ 1.57.

One might wonder if the subproblem of exploring a single vertex can be solved
more efficiently by using curves other than circular arcs. This is, in fact, the case;
Icking, Klein, and Ma [20] have shown that an optimum ratio of ≈ 1.212 is achieved by
curves that result from solving certain differential equations. However, these curves
are lacking a useful property possessed by circular arcs: The intersection point, c, of
the circular arc with the cut is just the point on the cut closest to p, due to Thales’s
theorem.2 This property turns out to be very helpful in our analysis.

In rectilinear polygons, the cut of each visible reflex vertex is known, and two
cuts can cross only perpendicularly. This makes it possible to apply a simple greedy
exploration strategy: The robot always walks to the cut of the next reflex vertex, in
clockwise order, one of whose edges is invisible; see Deng, Kameda, and Papadim-
itriou [12].

For general polygons, this greedy approach is bound to fail, as Figure 2.2 illus-
trates. The example polygon shown there suggests exploring left and right reflex
vertices separately. However, it is not really obvious how to do this in general, since,
e.g., the existence of a left reflex vertex at the end of a long chain of right vertices is
initially not known to the robot. Therefore, it seems necessary to partition left and
right reflex vertices into compact groups that can be explored one by one.

2.1. Exploring a single vertex. The essential subtask of the robot’s strategy
is in exploring a single vertex. This is handled by the following procedure, Explore-
RightVertex. We first list the complete pseudocode of the procedure, then we explain
its steps and notation in detail.

2Thales’s theorem: an angle inscribed in a semicircle is always a right angle.
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s

Fig. 2.2. Visiting cuts in the order in which their vertices appear on the boundary does not
lead to a competitive strategy.

Procedure ExploreRightVertex ( inout TargetList, inout ToDoList );

BasePoint := CP;

Target := First (TargetList);

if Target not visible then
walk on shortest path from BasePoint to Target
until Target becomes visible;

Back := last vertex before CP on shortest path from BasePoint to CP;

walk clockwise along circ (Back, Target)
while maintaining TargetList and ToDoList

whenever First (TargetList) changes let Target := First (TargetList);
whenever Back becomes invisible update Back;

exceptions for walking along the circle:
if the boundary of P blocks the walk on the current circle then
walk clockwise along the boundary
until the circular walk is again possible;

if Target is becoming invisible then
walk towards Target
until the blocking vertex is reached;

until Target is fully explored;

end ExploreRightVertex;
We are using the abbreviation CP to denote the robot’s current position. Proce-

dure ExploreRightVertex works on two lists of vertices, TargetList and ToDoList. On
entry, TargetList contains a list of right vertices, sorted in clockwise order along the
boundary, that have already been discovered but not yet explored. When Explore-
RightVertex is called for the very first time, TargetList contains exactly those right
vertices that are visible from the start point, s, and have an invisible edge. ToDo-



582 F. HOFFMANN, C. ICKING, R. KLEIN, AND K. KRIEGEL

List can be thought of as a long-term agenda that is passed to ExploreRightVertex;
however, this procedure will only add to this list but not carry out one of the tasks.

In our pseudocode, CP (current position) is a global variable whose value can be
changed only by walk statements. The robot’s current position on calling Explore-
RightVertex is called a base point.

The robot wants to explore the first vertex, Target, of TargetList. This vertex
may have been discovered at an earlier stage, so that it may no longer be visible from
the current position. In this case, the robot walks along the shortest path towards
Target until it becomes visible again. Note that this shortest path is known to the
robot; in fact a shortest path is always known between two points that have been seen
(which would not be the case for polygons with holes).

Now the robot starts approaching Target along the circular arc spanned by the
base point and by Target. On the way, a new right vertex, r, may be discovered. If
one of its edges is invisible, r gets inserted into TargetList, provided that a certain
criterion is met. Namely, the shortest path from the current stage point—a vertex
defined one level up in the strategy—to r must not contain left turns. A right vertex
that violates this criterion is ignored for now. A precise definition of a stage point is
given in section 2.2.

It may happen that the vertex r newly discovered and inserted into TargetList
comes before Target in clockwise order. In this case the robot ceases approaching
its old target and starts exploring, from its current position, vertex r. This way, the
vertex Target currently under exploration may repeatedly change.

It may also happen that the robot loses sight of the base point from which the
current execution of procedure ExploreRightVertex has started. Namely, the robot’s
view of the base point may become obstructed by some left or right reflex vertex, b1;
examples will be shown in Figure 2.3. In this case, the exploration of the current
Target no longer proceeds along the circle spanned by the base point and by Target;
instead, it switches to the circle spanned by Target and by b1. As the robot continues,
its view of b1 may become obstructed by some reflex vertex b2, and so on. These reflex
vertices, b1, b2,. . . , bi define the shortest path from the base point to the robot’s
current position, and the robot explores Target along the circle spanned by Target
and bi. This last reflex vertex of the chain is named Back in the code. If the robot
reaches the cut of Target at some point c, it arrives there at a right angle by the
Thales property. Consequently, the shortest path in P from the base point to the cut
goes through b1, b2,. . . , bi and ends in c.

If the robot crosses the cut of a right vertex different from Target the former
vertex is removed from TargetList because it has been explored on the way, this
is done in the “while maintaining TargetList” step. Eventually, the target itself is
deleted from the list when its cut has been reached.

When a right reflex vertex is explored, all of its children in the shortest path tree
have already been discovered. Those right vertices having a left child are inserted
into ToDoList, as candidates for future stages, together with references to their left
children.

Finally, there are some exceptional events procedure ExploreRightVertex needs to
take care of. If the robot’s circular exploration path hits the boundary of the polygon,
the robot follows the boundary until a circular path again becomes possible. If the
robot’s view of the target vertex is about to be blocked, the robot walks straight to
the blocking vertex and continues from there on a circular path.
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For ease of reference we summarize the rules by which ExploreRightVertex pro-
ceeds.

1. The current target vertex, i. e., the vertex whose cut we are intending to reach
at the moment, is always the clockwise first among those right reflex vertices
that have been discovered but not yet fully explored, i. e., the first element
of TargetList. Only such right vertices can be in TargetList whose shortest
paths from the stage point make only right turns.

2. To explore a right reflex vertex, r, we follow the clockwise oriented circle
spanned by r and by the last vertex before CP on the shortest path from the
base point to CP.

3. When the view to the current target vertex gets blocked (or when the bound-
ary is hit) we walk straight towards the blocking vertex (or follow the bound-
ary) until motion according to rule 2 becomes possible again.

Figure Figure 2.3 demonstrates how this strategy works. Initially, r3 is the only
right vertex visible; consequently, TargetList contains only r3, and the robot’s path
begins with a circular arc spanned by s and by r3. At point a, right vertex r2 becomes
visible. It is situated before r3 on the boundary; therefore, the robot switches to
exploring r2, according to rule 1. Note that the circle spanned by s and by r2 is
passing through a, too, so that it is in fact possible to apply rule 2 at this point.

b

r1

a

e

c

d
t

E

R

r2r3

l

f

s

h

Fig. 2.3. While executing ExploreRightVertex, the target vertex is initially r3, then changes
to r2 and finally to r1.

At point b, vertex r2 would become invisible if the robot were to follow the
circular arc. But now rule 3 applies, causing the robot to walk straight to the left
reflex vertex l. From there, a circular motion is again possible; but the shortest path
from s to CP now contains vertex l. By rule 2, the robot continues its approach to
r2 along the arc spanned by l and by r2.

Notice that at vertex l, also the right vertex h becomes visible, but it is ignored
because its shortest path from s makes a left turn at l.

From c on, the shortest path to s is the line segment. Since the circle spanned by s
and by r2 is passing through c, the robot proceeds along that circle, applying rule 2.
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At d, the shortest path to s changes again; now it contains vertex r3. The robot
walks along the circle spanned by r3 and r2, and gets to point e from which vertex r1
becomes visible. From here, the robot explores r1, following the circle spanned by r3
and by r1, the former changing to r2 at f . Eventually, the robot arrives at r1, thereby
fully exploring r1. Here procedure ExploreRightVertex terminates.

In order to provide an upper bound on the length of the resulting path we need
to give the definition of the angle hull. A detailed discussion of this topic will follow
in section 3.

Let D be a bounded, connected region in the plane. For convenience, we shall
assume that D is a simple polygon, but our results can easily be generalized to curved
objects by approximation. Now suppose that a photographer wants to take a picture
of D that shows as large a portion of D as possible, but no white space. The photo-
grapher is using a fixed angle lens. For now, we assume that the angle equals 90◦;
later, at the end of section 3.2, we will see how to generalize to arbitrary angles.

Before taking the picture, the diligent photographer walks around D and inspects
all possible viewpoints. We are interested in comparing the length of the photo-
grapher’s path to the perimeter of the object, D.

AH(D)

D

Fig. 2.4. Drawing the angle hull AH(D) of a region D.

In the simple outdoor setting there are no obstacles that can obstruct the photo-
grapher’s view of D; this situation is depicted in Figure 2.4. At each point of the
path, the two sides of the lens’ angle touch the boundary of D from the outside, in
general at a single vertex each.

While the right angle is touching two vertices, v and w, of D, its apex describes a
circular arc spanned by v and w, as follows from Thales’ theorem. All points enclosed
by the photographer’s path, and no other, can see two points of D at a 90◦ angle; we
call this point set the angle hull of D and denote it by AH(D).

Only such vertices can be touched by the right angle that are situated on the
convex hull of D. Consequently, the photographer’s path depends on the convex hull,
CH(D), of D, rather than on D itself, therefore we have AH(D) = AH(CH(D)).
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It is not hard to see that, without further obstacles, the perimeter of the angle
hull is at most π/2 times the perimeter of D; the worst case occurs when D is a line
segment or a rectangle; see [16].

However, for our application we need to analyze the indoor setting where D is
contained in a simple polygon P whose edges give rise to visibility constraints. The
photographer does not want any wall segments to appear in the picture; thus, the
viewing angle can now be constrained in different ways: Either side may touch a
convex vertex of D that is included in the angle, as before, or it may touch a reflex
vertex of P that is excluded; see Figure 2.5.

AH(D)

P

D

Fig. 2.5. The angle hull AH(D) inside a polygon P .

Any combination of these cases is possible.

As a consequence, the photographer’s path contains circular arcs spanned by
vertices of D and of P ; in addition, it may contain segments of edges of P that
prevent the photographer from stepping back far enough; see Figure 2.5.

Formally, we define the angle hull, AH(D), of D with respect to P to be the set
of all points of P that can see two points of D at a right angle. Its boundary equals
the photographer’s path. In the indoor setting, the angle hull AH(D) depends only
on the relative convex hull, RCH(D), of D; in other words AH(D) = AH(RCH(D)).

In section 3 we show that the angle hull can have at most twice the perimeter
of D.

Coming back to our exploration strategy, the crucial observation is that its path
is essentially an angle hull (AH).

Lemma 2.1. Assume the robot starts at the base point and invokes procedure
ExploreRightVertex. Suppose this procedure terminates with the robot reaching the
cut of target vertex r1 at point c. Then the shortest path, R, inside P from the base
point to the cut also reaches the cut at c. Moreover the robot’s path is part of the
boundary of the angle hull AH(R) of R except for straight line segments leading to
blocking vertices.

Proof. In the discussion of procedure ExploreRightVertex above in this section,
we have already shown that the robot’s path and the shortest path to the cut arrive
at the same point c.

Now let t be a point on the robot’s path that is not contained on a straight line
segment of the path. Assume that, at t, the robot is exploring right reflex vertex r2,
as in the example shown in Figure 2.3. Since r2 and r1 are in convex position relative
to the base point, vertex r2 lies on the shortest path, R, from the base point to r1.
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Now consider the shortest path, T , from the base point to t. As a consequence
of rule 2 and by Thales’ theorem, the last line segment, E, of T is perpendicular to
the line through t and r2. Since the backward prolongation of E is bound to hit R,
we know that point t can see two points of R at a right angle. Thus, t belongs to the
angle hull AH(R); it lies on the boundary because the angle’s sides are both touching
reflex vertices of P or endpoints of the path R.

To estimate the length of the path from the base point to the cut we make use of
the analysis of the angle hull from section 3.

Lemma 2.2. The robot’s path from the base point to the cut of the target vertex
explored by procedure ExploreRightVertex is not longer than twice the length of the
shortest path.

Proof. If the robot’s path contains straight line segments leading to blocking
vertices, like the segment from b to l in Figure 2.3, these segments are replaced by
circular arcs in the angle hull AH(R). Thus, the robot’s path to the cut of r1 cannot
be longer than the angle hull’s perimeter. If it ends at the point r1 itself, as in
Figure 2.3, we can apply Theorem 3.5—which states that the arc length of the angle
hull of a polygon D in P is less than twice as long as D’s boundary—to the shortest
path as D and obtain the desired upper bound.

If the robot reaches the cut of r1 at some point different from r1, we can arrive
at the same conclusion using Corollary 3.6.

It is important to note that procedure ExploreRightVertex ignores such vertices
as h in Figure 2.3, whose shortest paths from the current stage point include left
turns. Otherwise, it would not be clear how to apply Lemma 2.1.

There is a symmetric procedure ExploreLeftVertex which is identical to Explore-
RightVertex, except that left/right and clockwise/counterclockwise are exchanged.

2.2. Exploring a group of vertices. Each exploration of a group of vertices
starts from a stage point. The importance of stage points lies in the fact that they are
visited by the optimum watchman tour, Wopt, too. The first stage point encountered
is the robot’s start point, s. All stage points are vertices of the shortest path tree of
s; the shortest path from s to any vertex of a group leads through the group’s stage
point.

The exploration of a group of right vertices is performed by procedure Explore-
RightGroup.

Procedure ExploreRightGroup ( in TargetList, out ToDoList );

StagePoint := CP;

ToDoList := empty list;

while TargetList is not empty do
ExploreRightVertex (TargetList, ToDoList );
(* CP is now on the cut, C, of the last target. *)

walk to the point on C that is closest to StagePoint
while maintaining TargetList and ToDoList;

walk on the shortest path back to StagePoint;

end ExploreRightGroup;
The stage point of a right group is always a left vertex. Initially, ToDoList is

empty, whereas TargetList contains a sorted list of unexplored right vertices whose
shortest path from the base point makes only right turns. Among them are all unex-
plored right vertices visible from StagePoint.
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Roughly, the group exploration proceeds by repeatedly calling procedure Explore-
RightVertex introduced in section 2.1 until TargetList becomes empty. Afterwards,
all right vertices initially present in TargetList have been explored, together with their
purely right descendants in the shortest path tree of s. Here, vertex w is called a purely
right descendant of vertex v in the shortest path tree of s if w is a right vertex and if
the path from v to w makes only right turns. This set of vertices constitutes a group,
by definition.

On returning from a call to ExploreRightVertex the robot has just explored the
clockwise first vertex of TargetList and is now situated on this vertex’s cut. Before it
continues, the robot walks along this cut to the point closest to the stage point; this
will be the base point in the next execution of ExploreRightVertex. The reason for
this step will become clear in the proof of Lemma 2.5; essentially, it keeps the robot
closer to the optimum watchman tour.

Once the last vertex of TargetList has been explored, the robot walks back to the
stage point, thus completing the exploration of the group. Now ToDoList contains,
of all right vertices explored, those who have left children, together with references to
the latter.

a

b

s

r4

r5r6

r3
r2

c

r1

Fig. 2.6. Exploring a group of right vertices.

For an example, see Figure 2.6. Point s is the stage point and also the first
base point, and ExploreRightVertex is called with First (TargetList) = r6. While
exploring r6, point r1 is discovered at point a and becomes First (TargetList). At
CP = b procedure ExploreRightVertex returns. Meanwhile, r2 and r5 have been
added to TargetList while r1 and r6 have been removed. Point b is also the closest
point to s on the current cut.

As we continue with exploring First (TargetList) = r2, point r5 gets explored on
the way. Once the cut of r2 is reached, we walk to c, the closest point to s on the cut.
Similar for r3; while walking along the cut to the point closest to s, which is r3 itself,
r4 gets explored and no unexplored right vertices remain.

As before with ExploreRightVertex, for ExploreRightGroup we also have a sym-
metric counterpart, ExploreLeftGroup.

First we prove a useful structural result which says that the shortest paths to the
base points fan out in the same order as the base points are generated.

Lemma 2.3. Suppose that procedure ExploreRightGroup generates the base
points b1, . . . , bm in m consecutive calls of subroutine ExploreRightVertex. Then the
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shortest paths from the stage point to b1, . . . , bm are in clockwise order.
Proof. Let base point bi be situated on the cut of right reflex vertex vi. Since

each call to ExploreRightVertex explores the clockwise first right vertex that is still
unexplored, v1, . . . , vm appear in clockwise order on the boundary. The stage point
must be situated below the cuts of vi and vi+1 as these are unexplored right vertices.
The same holds for the last point, p, the shortest paths from the stage point to bi
and bi+1 have in common. Moreover, bi must be below the cut of vi+1 because the
latter is still unexplored when the robot reaches bi; see Figure 2.7. Since neither of
the shortest paths nor the cut between vi and bi can be penetrated by the polygon’s
boundary, the claim follows.

vi

vi+1bi+1

bi

p

Fig. 2.7. As seen from p, the shortest path to bi runs to the left of the shortest path to bi+1.

Now we turn to analyzing the length of the path the robot spends on exploring a
group of vertices.

Lemma 2.4. The robot’s path between two consecutive base points is at most
3 times as long as the shortest path.

Proof. Let us call the base points b1 and b2, and let c be the point where cut(v2)
is reached. Then c is also the cut’s closest point to b1, by Lemma 2.1. By Lemma 2.2,
the robot’s path to c is not longer than twice the length of the shortest path from b1
to c and therefore is also not longer than twice the length of the shortest path from b1
to b2; see Figure 2.8.

It remains to account for the walk along the cut from c to b2. This line segment
can be orthogonally projected onto the shortest path from b1 to b2 and, therefore, it
must be shorter.

Observe that Figure 2.8 is in fact generic: As seen from s, the shortest path to
b1 runs to the left to the shortest path to b2, by Lemma 2.3; base point b1 must be
located below the cut of v2; the shortest paths from b1 to c and from s to b2 cannot
cross because they are both shortest paths to this cut.

The next steps consist of comparing the length of an ExploreRightGroup tour
with the relative convex hull of the base points visited.

Lemma 2.5. The length of a path caused by a call to ExploreRightGroup does not
exceed 3

√
2 times the perimeter of the relative convex hull of the base points visited.

Proof. Let sp be the stage point and sp = b0, . . . , bm−1, bm = sp be the sequence
of base points visited by ExploreRightGroup. Due to Lemma 2.3, b1, . . . , bm−1 appear
in clockwise order as leaves of the shortest path tree from sp to b1, . . . , bm−1. So, even
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s

b1

cut(v2) c b2 v2

Fig. 2.8. Line segment c b2 must be shorter than the shortest path from b1 to b2.

factor 3 of Lemma 2.4 would apply if all base points bi were vertices of their relative
convex hull, RCH, in P . In the following we show how to reduce to this case.

Suppose that for i ≤ k−2 the base points bi and bk are situated on the boundary
of RCH and the points bi+1, . . . , bk−1 in between are not. The shortest path from sp
to the cut of each of them must have a right angle to the cut because of Lemma 2.1;
see Figure 2.9.

bk

sp

bj−1

bj

rj

rj+1

bj+1

bi

rj−1

b′j

b′j+1

Fig. 2.9. The cut of vertex rj containing the base point bj must not intersect the shortest path
from sp to bj−1.

For i < j < k, the cut of bj must pass above bj−1 because otherwise its cut
would intersect every possible path from s to bj−1, in particular the robot’s path,
contradicting the fact that vertex rj is explored after rj−1.

While maintaining these properties, we move the base points one after the other
such that the path bi, . . . , bk becomes even longer. For all vertices v of this path,
starting with bk−1 and going back to bi+1, we do the following. If the path from bi
to bk makes a left turn at v, like at bj+1 in Figure 2.9, then we move v to the point
on the shortest path from sp to v’s successor such that the left turn is a right angle;
see b′j+1. Note that every left turn must be an obtuse angle which again is due to the
fact that the cut of bj must pass above bj−1. In case of a right turn we do nothing.
Eventually, we end up with a path whose left turns are all right angles.



590 F. HOFFMANN, C. ICKING, R. KLEIN, AND K. KRIEGEL

Now a maximal sequence of right turns, in the example the chain from bi to b
′
j+1,

can be replaced by one left turn of 90◦ which is clearly longer than the chain, see b′j
and the rectangle with vertices bi, b

′
j , and b

′
j+1. Finally, no right turn remains and

the new path makes only one left turn of 90◦ for which the claim is obvious.

In relating the robot’s path to the optimum watchman tour, the following lemma
is crucial.

Lemma 2.6. All base points are contained in the angle hull AH(Wopt).

Proof. A base point b is, by definition, the closest point to s of a cut. The
optimum watchman tour Wopt connects the start point s to the cut. Let E be the
last edge of the shortest path from s to the cut, i.e., to b.

In most cases, edge E is orthogonal to the cut. Then we have a right angle at b
whose one side goes along the cut and touches Wopt, while the other side K extends
edge E. Either the other endpoint of E equals s, so that K touches Wopt in s, or K
separates s and the cut because P is simple, and Wopt must also be touched by K.

In the remaining case, when there is no right angle between edge E and the cut,
point b must be one endpoint of the cut, i.e., it is the target vertex itself or the other
endpoint. In both cases the inner angle between E and the cut is necessarily greater
than 90◦, otherwise there would be a shorter path to the cut. As before either E or
its extension meets Wopt.

2.3. Subdividing the polygon. Now we want to combine the exploration of
several groups of vertices to finally explore the whole polygon P . This is done by
making the ExploreGroup-procedures recursive.

Procedure ExploreRightGroupRec ( in TargetList );

ExploreRightGroup (TargetList, ToDoList ); (* ToDoList gets filled in. *)

Clean up ToDoList:
retain only those right vertices in ToDoList
which are highest up in the shortest path tree;

for all vertices v of ToDoList in clockwise order do
walk on the shortest path to v; (* connect stage points *)
ExploreLeftGroupRec( {all known left descendants of v in counterclw. order} );

end ExploreRightGroupRec;

The task of ExploreRightGroupRec is to explore, from the current position CP,
all vertices in the input parameter TargetList and everything behind.

ExploreRightGroupRec performs in three steps. The TargetList is handed over
to ExploreRightGroup, so CP is the new stage point, and after the exploration we
are back at this point. We are given a ToDoList of candidates for stage points in
recursive explorations.

The next step is a necessary cleanup for the ToDoList, which contains all purely
right descendants of the current stage point which have left children. Some of these
right vertices are descendants of others in this list; they must be removed from the list.
Only maximal (highest up) right vertices are retained; these will become stage points
in further steps. To each of these future stage points we associate a list of all known
left descendants that were referenced in ExploreRightVertex and ExploreRightGroup.

Finally, the remaining vertices in ToDoList are visited in clockwise order, at
each vertex procedure ExploreLeftGroupRec is called to explore the list of all known
left descendants (as TargetList) from there. ExploreLeftGroupRec is the symmetric
counterpart of ExploreRightGroupRec with one particularity. In the for loop, the



THE POLYGON EXPLORATION PROBLEM 591

vertices in ToDoList are also visited in clockwise order. The reason for this will
become clear in the proof of Theorem 2.10.

To conclude the bottom-up presentation of our strategy, we show the main pro-
gram. Its task is, of course, to explore a given polygon, P , starting at a boundary
point, s. First, in a call to the nonrecursive ExploreRightGroup, the right vertices
visible from s are explored. The next target list contains all left children of the right
vertices just explored and the left vertices visible from s. All these, and everything
behind, gets explored by a call to the recursive ExploreLeftGroupRec with this target
list.

Procedure ExplorePolygon ( in P , in s );

ExploreRightGroup ( {clockwise list of all right vertices visible from s}, ToDoList );
TargetList := {all left children of the vertices of ToDoList};
Add all left vertices visible from s into TargetList and sort counterclockwise;

ExploreLeftGroupRec ( TargetList );

end ExplorePolygon;
Each call of ExploreRightGroup or ExploreLeftGroup generates a set of base

points; the first base point of the set is the stage point. For estimating the length of
the complete tour, we distribute all these sets into three categories.

The set of base points generated by the call of ExploreRightGroup in Explore-
Polygon belongs to category 0. For the remaining sets, we use their level of recursion
to determine their category: the set of base points generated by a call of ExploreRight-
Group or ExploreLeftGroup at total recursion depth i belongs to category (i mod 3).

For example, the very first call of ExploreLeftGroup belongs to category 1, and
the calls of ExploreRightGroup one level deeper belong to category 2. All calls of
ExploreLeftGroup have an odd level, and all calls of ExploreRightGroup an even
level.

A key observation is that two sets of base points of the same category will be
mutually invisible; see Lemma 2.7 below. Thus the three categories will contribute a
factor of 3 to the final analysis in Theorem 2.10 below.

One might wonder why the first nonrecursive call of ExploreRightGroup in pro-
cedure ExplorePolygon is necessary. Without this call the right vertices visible from s,
and everything behind, would not be explored because procedure ExploreLeftGroupRec
deals exclusively with left vertices visible from s and recursively with their offspring.

Lemma 2.7. The relative convex hulls of two sets of base points of the same
category are mutually invisible, with a possible exception for their stage points.

Proof. The recursion depths of two sets of base points, B1 and B2, of the same
category differ by a multiple of 3, possibly 0, as explained above. Let s1 �= s2 be the
stage points of B1, resp., B2. We distinguish two cases depending on the shortest
paths from s to s1 and s2.

If stage point s1 is not on the shortest path from s to s2 and vice versa then let s0
be the vertex where the shortest paths from s to s1 and s2 separate. Without loss
of generality we assume that s2 is a left vertex and that the clockwise order on the
boundary is s0, s1, s2. The left picture in Figure 2.10 shows such a situation.

The base points of B2 are on cuts of right vertices whose shortest paths from s0 all
pass through s2. Therefore, the shortest path from s0 to s2 is invisible from any point
of B2, except s2. But this shortest path separates B2 from B1, they are therefore
mutually invisible, except for s1 and s2. This argument easily extends to the convex
hulls as well.
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s2

s0

s1

B2

s

B1

s

B2

s1

B1

s2

Fig. 2.10. Base points in B2 cannot see B1, two cases.

Otherwise assume that s1 lies on the shortest path from s to s2, see the right
picture in Figure 2.10. Then the recursion depths of B1 and B2 differ by at least
three. Similar to the previous case, no point of B2 can see the shortest path from s2
to its parent stage point, but this path definitely separates B1 and B2.

Note that a difference of three levels is really necessary. If B2 is only two levels
deeper than B1 then the stage points s1 and s2 are of the same type and the parent
stage point of s2 can be a direct descendant of s1, and therefore it can very well be
contained in RCH(B1).

As a consequence, we conclude that the union of all base points of one category
has no shorter perimeter than the perimeters of all of its sets of base points together.
Let per(RCH(A)) denote the perimeter of the relative convex hull of set A.

Lemma 2.8. Let B1 and B2 be two sets of base points of the same category.
Then we have per(RCH(B1)) + per(RCH(B2)) ≤ per(RCH(B1 ∪B2)).

As a consequence, we can estimate the path length caused by all calls of Explore-
RightGroup or ExploreLeftGroup in the same category.

Lemma 2.9. The path length caused by all calls of ExploreRightGroup and
ExploreLeftGroup in one category is less than 6

√
2 ≤ 8.5 times the length of Wopt.

Proof. Let the category consist of sets Bi, i = 1, . . . , of base points. By Lem-
ma 2.5, the length of the path created by one call of ExploreRightGroup or Explore-
LeftGroup with set Bi is not greater than 3

√
2 per(RCH(Bi)).

The relative convex hulls RCH(Bi) are mutually invisible (Lemma 2.7); hence we
conclude from Lemma 2.8 for the path length, L, caused by all calls of ExploreRight-
Group or ExploreLeftGroup of this category,

L ≤ 3
√
2
∑
i

per(RCH(Bi)) ≤ 3
√
2 per

(
RCH

(⋃
i

Bi

))
.

All base points considered are contained in the angle hull of Wopt, as Lemma 2.6
has shown, hence the perimeter of their relative convex hull is shorter than the perime-
ter of RCH(AH(Wopt)).

The perimeter of RCH(AH(Wopt)) is not longer than the perimeter of the angle
hull of Wopt itself. By Theorem 3.5 this is not greater than twice the length of Wopt

and the claim follows.
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As the main result for our complete strategy, we obtain a factor of 26.5.
Theorem 2.10. For a polygon, P , and a start point s on the boundary of P ,

a procedure call ExplorePolygon (P, s) explores the polygon and returns to s. The
total path length used is less than (18

√
2 + 1) ≤ 26.5 times the length of the optimum

watchman tour from s.
Proof. Since we have three categories of base point sets, all ExploreRightGroup

and ExploreLeftGroup calls together cause a path length of less than 3 · 6√2|Wopt|.
It remains to bound the path length caused by the walks during the for loops of

ExploreRightGroupRec and ExploreLeftGroupRec. They connect only stage points
by shortest paths, and all those stage points are visited in clockwise order along the
boundary of P , independently of whether this is done in ExploreRightGroupRec or
ExploreLeftGroupRec.

The optimum watchman path visits all stage points, and some of them even twice.
In any case the sequence of stage points as they appear on the boundary of P is a
subsequence of the boundary points of P that are visited by Wopt because Wopt can
not properly cross itself. Therefore, we can be sure that all those walks together make
up for an additional path length of at most |Wopt|.

3. The angle hull. In on-line navigation algorithms for autonomous robots,
analyzing the length of the robot’s path is often a complicated issue. Sometimes, only
the discovery of certain structural properties has led to a reasonably sharp analysis;
see [1, 18, 19, 20] and Rote [24].

Here we provide a new result of this type. It is crucial in analyzing our on-line
strategy of section 2, and it seems also to be interesting in its own right.

For convenience, we repeat the definition of the angle hull. Let D be a simply
connected region contained in a simple polygon P , then the angle hull, AH(D), of D
with respect to P consists of all points of P that can see two points of D at a right
angle. Note that D itself is included in AH(D). The boundary of the angle hull was
denoted the photographer’s path of D in section 2.1; for an example see Figure 2.5.

We are now going to analyze the length of the photographer’s path, i. e., the
perimeter of the angle hull. In section 3.1 we show that, in the indoor setting, the
angle hull may have twice the perimeter of D, in the limit. Then, in section 3.2, we
prove that this is the worst that can happen.

3.1. The lower bound. We start with the proof that the angle hull of a set D
contained in a polygon P can be twice as long as the perimeter of D. Our construction
is rather simple, D is a line segment and P is a jagged halfcircle. Region D is called
relatively convex iff D = RCH(D).

Lemma 3.1. Let ε > 0. There is a polygon, P , and a relatively convex region,
D, inside P , for which the boundary of the angle hull AH(D) with respect to P is
longer than 2− ε times the boundary of D.

Proof. As our region D, we take a horizontal line segment of length 1. Let p0,
. . . , pn be equidistant points on the halfcircle spanned by D, where p0 and pn are the
endpoints of D; see Figure 3.1. From each point pi we draw the right angle to the
endpoints of D. Let P be the concatenation of the upper envelope of these angles and
its reflection at D. Then we have P = AH(D) by construction. Let us analyze the
upper envelope.

We will show that the length of the jagged line from p0 to pn is less than 2, but
comes arbitrarily close to 2, as n increases. Let qi be the intersection of the segments
p0 pi+1 and pi pn. If we rotate, for all i, the ascending segments qi pi+1 about p0
onto D (see the dotted arcs in Figure 3.1), these segments cover disjoint pieces of D,
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pi pi+1

p0

p1

pn

p′i

qi

D

Fig. 3.1. The boundary of the upper envelope of the right angles is less than 2|D|.

so the total length of all ascending segments is always less than 1. By symmetry, the
same bound holds for the descending segments. It remains to show that the ascending
length can come arbitrarily close to 1.

Consider the triangle pi qi p
′
i, where p

′
i is the orthogonal projection of pi onto p0 qi.

Point p0 is closer to p
′
i than to pi, so for the distances from p0 to pi and to qi we have

|p0 qi| − |p0 pi| ≤ |p0 qi| − |p0 p′i| = |p′i qi| = |pi qi| sin
π

2n
.

The total length of all ascending segments is therefore 1 minus the following rest:

∑
i

(|p0 qi| − |p0 pi|) ≤ sin
π

2n

∑
i

|pi qi| ≤ sin
π

2n
.

For n → ∞, this tends to 0. The last inequality holds because
∑
i |pi qi| ≤ 1 is the

length of all descending segments.
The proof also works for nonequidistant points as long as the maximum distance

between subsequent points tends to 0. We are obliged to Seidel [26] for this elegant
proof of Lemma 3.1.

3.2. The upper bound. Interestingly, the same jagged lines as used in the proof
of Lemma 3.1 are also very useful in the proof of the upper bound. For any circular
arc C we can construct a jagged line by distributing auxiliary points along C and by
taking the upper envelope of the right angles at these points whose sides pass through
the two spanning vertices of C; see Figure 3.2. We denote with jagged length, J(C),
of C the limit of the lengths of these jagged lines as the maximum distance between
subsequent points tends to 0. This limit is well defined, i.e., it does not depend on
how the points are chosen. In the proof of Lemma 3.1 we have already seen how
to determine this length by separately estimating the lengths of the ascending and
descending segments. For the jagged length of a circular arc with diameter 1 from
angle α to angle β (see Figure 3.2), we obtain analogously to the proof of Lemma 3.1

J(C) = sinβ − sinα− cosβ + cosα,

which can also be written as

J(C) =

∫ β

α

(cos γ + sin γ) dγ .
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γ α

cos γ

sin γ

β

Fig. 3.2. Analyzing the jagged length, J(C), of a circular arc C.

Lemma 3.2. The jagged length of an arc is always greater than the arc length
itself.

Proof. Consider a circle with diameter d and a circular arc a on its boundary.
Two lines from an arbitrary point on the boundary through the endpoints of the arc
always intersect in the same angle φ, by the generalized Thales’s theorem. For the
length of a, we have |a| = φd; see Figure 3.3.

a

d
φ

φ
2φ

Fig. 3.3. |a| = φd.

So the arc length of the arc C in Figure 3.2 equals β − α, and we have

J(C) =

∫ β

α

(cos γ + sin γ) dγ ≥
∫ β

α

1 dγ = β − α ;

the inequality follows from cos γ + sin γ ≥ 1 for γ ∈ [0, π2 ].
The integral form for the jagged length also has a geometric interpretation. Let us

consider a right angle with slope γ contained in the halfcircle, as shown in Figure 3.2.
The length of the two sides of the right angle equals cos γ + sin γ. If we define

Cγ :=

{
length of the right angle if its apex is contained in C,

0 otherwise,

we obtain the nice form

J(C) =

∫ π
2

0

Cγ dγ .

This form is used in the proof of the next lemma.
Lemma 3.3. Let D be a line segment, and let P be a surrounding polygon such

that P and the angle hull AH(D) with respect to P touch only at vertices of P ; see
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P

fl

B

D

Fig. 3.4. For a line segment D we have J(AH(D)) = J(B) = 2|D|.

Figure 3.4. Then the arc length of AH(D) with respect to P from one endpoint of D
to the other is less than 2|D|.

Proof. By Lemma 3.2, the arc length of AH(D) is certainly shorter than the
jagged length of AH(D), i.e., the sum of the jagged lengths of all circular arcs of
AH(D), and we obtain

length(AH(D)) ≤ J(AH(D)) =
∑

C∈AH(D)

J(C)

=
∑

C∈AH(D)

∫ π
2

0

Cγ dγ =

∫ π
2

0


 ∑

C∈AH(D)

Cγ


 dγ .

But for any angle γ the sum over the lengths of the right angles of slope γ which
are contained in the halfcircles of the different circular arcs of AH(D) is equal to the
length, Bγ , of the big right angle in the halfcircle B spanned by the two endpoints
of D, which means that

∫ π
2

0


 ∑

C∈AH(D)

Cγ


 dγ =

∫ π
2

0

Bγ dγ = J(B) = 2|D| .

Note that in the proof of Lemma 3.3 the halfcircle B does not depend on P , and
J(AH(D)) = J(B) therefore means that the jagged lengths of the angle hulls of D
for different surrounding polygons P are all identical! We may also say that we have
bounded the length of the angle hull with respect to a surrounding polygon P by the
jagged length of the angle hull without obstacles.

Lemma 3.4. The statement of Lemma 3.3 remains true if D is a convex chain
instead of a line segment.

Proof. We consider a convex chain, D, and a surrounding polygon, P , such that P
and the angle hull AH(D) with respect to P touch only at vertices of P .

We make a construction similar to the proof of Lemma 3.3. For an angle γ we
find the tangent to D with that slope. Starting with the touching vertex we go into
direction γ until we hit an arc of the angle hull, then we turn by a right angle and
go to the vertex of P (or D) that co-spans the current arc. Here we turn back to
the original direction and continue accordingly to obtain a connected chain of right
angles; see Figure 3.5.
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D

AH(D)

P

γ

Fig. 3.5. Three chains of right angles which are all of the same length.

This chain has the same length as the two sides of the “unfolded” big right angle
of slope γ which generates the angle hull without obstacles. As before, this shows
that the jagged length of the angle hull does not depend on P .

Now it is not difficult to see how long it really is. Consider the set of halfcir-
cles spanned by the segments of D. Analogously to the previous construction, we
can construct the chain of right angles of slope γ below these halfcircles which again
has the same length. But these right angles represent the jagged lengths of the
isolated segments, and each of them equals twice the length of the segment, by
Lemma 3.3. Therefore the total length of the angle hull of D is less than twice
the length of D.

To obtain our main result we need to consider an arbitrary surrounding polygon P
that influences the angle hull not only with acute reflex vertices but also with its edges.

Theorem 3.5. Let P be a simple polygon containing a relatively convex poly-
gon D. The arc length of the boundary of the angle hull, AH(D), with respect to P
is less than 2 times the length of D’s boundary. This bound is tight.

The bound also holds if there are several obstacles instead of P that influence the
angle hull and also if their boundaries consist of arbitrary curves.

Proof. Each convex chain of D can be treated separately because the angle hull
must pass through the reflex vertices of D.

First, we consider the angle hull AH1(D) with respect to only the vertices of P
as obstacle points. Its arc length is less than 2|D|, by Lemma 3.4.

Now also the edges come into play. The angle hull AH2(D) with respect to the
whole of P contains circular arcs and some pieces of P ’s edges, for an example see
Figure 2.5. The circular arcs of AH2(D) are also part of AH1(D).

For every piece of an edge which contributes to AH2(D), the piece’s two endpoints
are also on the boundary AH1(D). Therefore, AH2(D) can only be shorter than
AH1(D).

The bound is tight by Lemma 3.1.
The proof easily generalizes to the case of several obstacles around D that influ-

ence the angle hull instead of P . Indeed, we have never used the fact that the parts
of P that are touching the angle hull are connected by edges of P . And if we have
several obstacles, we can always connect them to a single one by edges which do not
influence the angle hull.
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The proof carries over to arbitrary curves by approximation of these curves with
polygons.

The following variation of Theorem 3.5 for an “incomplete angle hull” is used for
analyzing the exploration strategy in section 2.

Corollary 3.6. Consider a convex chain, D, from s to t and its angle hull
from s to some point g. The jagged length of this part of the angle hull is bounded by
twice the length of the shortest path around D from s to g.

Proof. Let m be the last segment of D and let α be the angle between m and the
last segment of the shortest path from s to g; see Figure 3.6.

g

tα
m

D

m cosα
L

s

Fig. 3.6. The cut of r1 is reached at point g.

The jagged length of the angle hull from g to t equals m(1 + sinα− cosα). The
path, L, from the base point to g can therefore be estimated in the following way,
using Theorem 3.5:

L ≤ 2|D| −m(1 + sinα− cosα)

= 2(|D| −m+m cosα) +m(1− cosα− sinα)

≤ 2(|D| −m+m cosα).

The last inequality holds because of 0 ≤ α ≤ π
2 . But |D| −m+m cosα is exactly the

length of the shortest path from the base point to g.
Remark. The result of Theorem 3.5 can be generalized to angles φ �= 90◦. Namely,

for the jagged length of a circular arc C spanned with fixed angle φ by a chord of
length 1 from angle α to angle β we have

Jφ(C) = (sinβ − sinα− cosβ + cosα)
cosφ+ 1

sin2 φ

from which a tight factor of 2(cosφ + 1)/ sin2 φ follows; see [16] for this and other
interesting extensions. Interestingly, the angle hull with respect to an arbitrary angle
has independently been described, in a different context and without estimations
about its length, by de Berg et al. [10]—this corresponds to our “outdoor setting”—
and in the successor article by Cheong and van Oostrum [8] for the “indoor setting,”
i.e., with obstacles.

4. Conclusions. We have seen that a combination of suitable analysis tech-
niques is necessary for proving an upper bound for the competitive factor of a rather
simple strategy. Still, we believe that its actual performance, even in the worst case,
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is considerably better than the proven bound. Establishing a lower bound for polygon
exploration, higher than the trivial (1 +

√
2)/2 ≈ 1.207, and closing the gap to the

upper bound seem to be challenging problems.
There are many interesting variations and generalizations of the polygon explo-

ration problem. For example, one could study different cost models for the robot’s
motion. Also, the case of polygons with holes deserves investigation. Here the off-
line problem becomes NP-hard, by reduction from the traveling salesperson problem.
Recently, Albers, Kursawe, and Schuierer [2] have shown that in a rectilinear envi-
ronment no better competitive factor than O(

√
k) can be achieved for the on-line

problem in the presence of k rectilinear holes, what was known before only for general
polygons.

We have also introduced a new type of hull operator that suits us well in analyzing
the on-line exploration strategy and that is interesting in its own right. Here we have
analyzed the perimeter of the angle hull, AH(D), in terms of the perimeter of the
region D. A number of interesting questions remain open: If we consider a subset
of D, is the perimeter of its angle hull always shorter than the perimeter of AH(D)?
Does the iterated construction of the angle hull approximate a circle? How can angle
hulls be generalized, and analyzed, in three dimensions?
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Abstract. A directed graph is upward planar if it can be drawn in the plane such that every edge
is a monotonically increasing curve in the vertical direction and no two edges cross. An undirected
graph is rectilinear planar if it can be drawn in the plane such that every edge is a horizontal or vertical
segment and no two edges cross. Testing upward planarity and rectilinear planarity are fundamental
problems in the effective visualization of various graph and network structures. For example, upward
planarity is useful for the display of order diagrams and subroutine-call graphs, while rectilinear
planarity is useful for the display of circuit schematics and entity-relationship diagrams.

We show that upward planarity testing and rectilinear planarity testing are NP-complete prob-
lems. We also show that it is NP-hard to approximate the minimum number of bends in a planar
orthogonal drawing of an n-vertex graph with an O(n1−ε) error for any ε > 0.

Key words. graph drawing, planar drawing, upward drawing, rectilinear drawing, orthogo-
nal drawing, layout, ordered set, planar graph, algorithm, computational complexity, NP-complete
problem, approximation algorithm

AMS subject classifications. 05C62, 06A06, 65D18, 68Q17

PII. S0097539794277123

1. Introduction. Graph drawing addresses the problem of constructing geo-
metric representations of abstract graphs and networks [6, 7]. It is an emerging area
of research that combines flavors of topological graph theory and computational ge-
ometry. The automatic generation of drawings of graphs has important applications
in key computer technologies such as software engineering, database design, visual
interfaces, and computer-aided design.

Various graphic standards have been proposed for the representation of graphs
in the plane. Usually, each vertex is represented by a point and each edge (u, v) is
represented by a simple open Jordan curve joining the points associated with vertices
u and v. A straight-line drawing maps each edge into a straight-line segment. A
drawing is planar if no two edges cross. A graph (or digraph) is planar if it admits
a planar drawing. A drawing of a digraph is upward if every edge is monotonically
nondecreasing in the y-direction. A drawing of a digraph is planar upward if it is
planar and upward. A digraph is upward planar if it admits a planar upward drawing.
Figure 1.1(a) shows a planar straight-line upward drawing. An orthogonal drawing
maps each edge into a chain of horizontal and vertical segments. A rectilinear drawing
is an orthogonal straight-line drawing, i.e., a drawing where every edge is either a
horizontal or a vertical segment. A graph is rectilinear planar if it admits a planar
rectilinear drawing. Figure 1.1(b) shows a planar rectilinear drawing.
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(b)(a)
Fig. 1.1. Examples of (a) a planar straight-line upward drawing of a digraph and (b) a planar

rectilinear drawing of a graph.

Testing upward planarity and rectilinear planarity are fundamental problems in
the effective visualization of various graph and network structures. For example,
upward planarity is useful for the display of order diagrams and subroutine-call graphs,
while rectilinear planarity is useful for the display of circuit schematics and entity-
relationship diagrams. In this paper, we show that the following two problems are
NP-complete:

Upward planarity testing. Testing whether a digraph is upward planar.

Rectilinear planarity testing. Testing whether a graph is rectilinear planar.

These problems have challenged researchers in order theory, topological graph the-
ory, computational geometry, and graph drawing for many years. Our intractability
results motivate the following observations:

• Testing whether a graph admits a planar drawing or an upward drawing can
be done in linear time. Combining the two properties makes the problem
NP-hard.
• Every planar graph admits a planar straight-line drawing. Hence, we can
say that planarity is equivalent to straight-line planarity, and both properties
can be verified in linear time. We can view upward and rectilinear planarity
as derived from straight-line planarity by adding further constraints, which
apparently make the problem become much more difficult.

We also show that it is NP-hard to approximate the minimum number of bends
in a planar orthogonal drawing of an n-vertex graph with an O(n1−ε) error for any
ε > 0.

Previous results on upward and rectilinear planarity testing are summarized be-
low. In the rest of this section, we denote with n the number of vertices of the graph
being considered.

Combinatorial results on upward planarity of covering digraphs of lattices were
first given in [17, 24]. Further results on the interplay between upward planarity and
ordered sets are surveyed by Rival [25, 26, 27]. Lempel, Even, and Cederbaum [18]
relate the planarity of biconnected undirected graphs to the upward planarity of st-
digraphs. A combinatorial characterization of upward planar digraphs is provided
in [10, 16]; namely, a digraph is upward planar if and only if it is a spanning subgraph
of a planar st-digraph. This characterization implies that upward planarity testing is
in NP.

Di Battista, Liu, and Rival [9] show that every planar bipartite digraph is up-
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ward planar. Papakostas [23] gives a polynomial-time algorithm for upward planarity
testing of outerplanar digraphs. Bertolazzi and Di Battista [2] and Bertolazzi et
al. [3] give a polynomial-time algorithm for testing upward planarity of triconnected
digraphs and of digraphs with a fixed embedding. Concerning single-source digraphs,
Thomassen [33] characterizes upward planarity in terms of forbidden circuits. Hutton
and Lubiw [14] combine Thomassen’s characterization with a decomposition scheme
to test upward planarity of a single-source digraph in O(n2) time. Bertolazzi et al. [4]
show that upward planarity testing of a single-source digraph can be done optimally
in O(n) time. They also give a parallel algorithm that runs in O(log n) time on a
CRCW PRAM with n log log n/ log n processors.

Di Battista and Tamassia [10] and Di Battista, Tamassia, and Tollis [11] give
algorithms for constructing upward planar drawings of planar st-digraphs and inves-
tigate area bounds and symmetry display. Tamassia and Vitter [32] show that the
above drawing algorithms can be efficiently parallelized. Upward planar drawings of
series-parallel digraphs are studied in [1].

Regarding rectilinear planarity testing, Shiloach [28] and Valiant [34] show that
any planar graph of degree at most 4 admits a planar orthogonal drawing. Vijayan
and Wigderson [35] study structural properties of rectilinear planar drawings. From
their results, the membership of rectilinear planarity testing in NP is easy to establish.
Storer [29], Tamassia and Tollis [31], Liu et al. [20], Liu, Morgana, and Simeone [21,
22], Liu, Marchioro, and Petreschi [19], Even and Granot [12], Kant [15], and Biedl
and Kant [5] give various techniques for constructing planar orthogonal drawings
with O(n) bends. Tamassia [30] gives an O(n2 log n)-time algorithm that constructs
a planar orthogonal drawing with the minimum number of bends for an embedded
planar graph. Di Battista, Liotta, and Vargiu [8] give polynomial-time algorithms for
minimizing bends in planar orthogonal drawings of series-parallel and cubic graphs.
The latter two results show that rectilinear planarity testing can be done in polynomial
time for a fixed embedding or for special classes of graphs.

Our proof techniques are based on a two-phase reduction from the known NP-
complete problem not-all-equal-3-sat. In the first phase, we reduce not-all-
equal-3-sat to an auxiliary undirected flow problem. In the second phase, we reduce
this undirected flow problem to the upward (or rectilinear) planarity testing of a
special class of digraphs. The latter reduction is interesting on its own and provides
new insights on the characterization by flow networks of the angles formed by the
edges of upward planar drawings [2, 3] and orthogonal drawings [8, 30].

The rest of this paper is organized as follows. Preliminary definitions and results
are provided in section 2. The reduction from not-all-equal-3-sat to the auxiliary
flow problem is given in section 3. Sections 4 and 5 describe the reductions from
the auxiliary flow problem to upward and rectilinear planarity testing, respectively.
Conclusive remarks are given in section 6.

2. Preliminaries. We assume that the reader is familiar with the standard
concepts and definitions on NP-completeness [13]. Our results use reductions from
the following well-known NP-complete problem:

not-all-equal-3-sat. Given a set of clauses with three literals each, is there
a truth assignment such that each clause has at least one true literal and one false
literal?

An embedding of a planar graph is the collection of circular permutations of the
edges incident upon each vertex in a planar drawing of the graph. An embedded graph
is a planar graph equipped with an embedding. We do not distinguish between a
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graph and its embedding if the embedding is unique and the meaning is clear from
the context. A vertex has degree d if it has d edges incident upon it. A degree-d graph
is one each of whose vertices has degree at most d.

We denote by G − {v} the subgraph of graph G obtained by removing vertex v
and its incident edges from G.

The angles of an embedded undirected graph are the pairs of consecutive edges
incident on the same vertex. The angles of an embedded directed graph are the pairs
of consecutive incoming and outgoing edges incident upon the same vertex. Such
angles are mapped to geometric angles in a straight-line drawing of the graph.

A labeled embedding of an undirected graph G is an embedding of G in which each
angle is assigned a label from the set {1, 2, 3, 4}. A labeled embedding of a directed
graph G is an embedding of G in which each angle is assigned a label from the set
{small, large}.

A rectilinear embedding of a graph G is a labeled embedding of G such that
there exists a rectilinear drawing of G in which each angle labeled � in the embedding
measures �π/2 in the drawing. Each rectilinear embedding has a unique external face.

The following definitions are from [2, 3]. An upward embedding of a directed graph

(digraph) �G is a labeled embedding of �G such that there exists a planar straight-line

upward drawing of �G where each angle labeled small has measure < π and each angle
labeled large has measure > π. Each upward embedding has a unique external face.

A source of a digraph �G is a vertex with all outgoing edges, and a sink of �G is a
vertex with all incoming edges. A switch of �G is a source or sink of �G. A source or
sink of a face f of �G is called a local source or sink of f . Note that a local switch of
f may or may not be a switch of �G.

2.1. Upward and rectilinear embeddings. In this section, we give some
lemmas on upward and rectilinear embeddings that will be used extensively in the
proofs.

We first give some definitions. In an embedding of a digraph �G, a vertex is bimodal
if its incident edges can be partitioned into two (possibly empty) sets of consecutive
edges consisting of its incoming and outgoing edges, respectively. An embedding of
�G is bimodal if each vertex is bimodal.

Consider an assignment of labels from the set {small, large} to the angles of an

embedding of �G. For a face f of the embedding, let L(f) and S(f) be the number of
angles of f with label large and small, respectively. Face f is said to be consistently
assigned if

L(f)− S(f) =
{ −2 if f is an internal face,

+2 if f is the external face.

An assignment of labels to the angles of an embedding of digraph �G is a consistent
assignment if

• all the angles at a nonsource or nonsink vertex of �G are assigned label small,
• exactly one angle at a source or sink vertex of �G is assigned label large, and
• each face is consistently assigned.

We paraphrase a result of [2, 3] in the following lemma.

Lemma 2.1. An embedding of a digraph �G can be extended to an upward embed-
ding if and only if it is bimodal and admits a consistent assignment of labels to its
angles.
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Let G be an undirected graph of degree at most 4. Consider an assignment of
labels from the set {1, 2, 3, 4} to the angles of an embedding of G. For a face f of the
embedding, let Ni(f) be the number of angles of f with label i. Face f is said to be
consistently rectilinearly assigned if

2 ·N4(f) +N3(f)−N1(f) =

{ −4 if f is an internal face,
+4 if f is the external face.

An assignment of labels to the angles of an embedding of a graph G is a consistent
rectilinear assignment if

• the sum of the labels of the angles around each vertex is 4, and
• each face is consistently rectilinearly assigned.

The following lemma is an immediate consequence of the results in [30, 35].
Lemma 2.2. An embedding of a graph G can be extended to a rectilinear em-

bedding if and only if it admits a consistent rectilinear assignment of labels to its
angles.

2.2. Tendrils and wiggles. We now define several graphs that will be used as
gadgets in our reductions.

Tendril Tk, for k ≥ 0, is an acyclic digraph with two designated poles, a source
pole denoted by s and a sink pole denoted by t, and is defined recursively as follows:

• Tendril T0 consists of a single directed edge (s, t).
• Tendril T1 is the 10-vertex graph shown in Figure 2.1(a).
• Tendril Tk is constructed from Tk−1 by adding the graph Hk shown in Fig-
ure 2.1(b) to it by identifying edges (and their endpoints) ek−1 of Tk−1 and
fk of graph Hk (Figure 2.1(c)).

It is easy to see that Tk has exactly k + 1 sources and k + 1 sinks. Figure 2.2(a) and
Figure 2.2(b) show tendrils T2 and T3, respectively.

Lemma 2.3. Tendril Tk is upward planar and admits a unique upward embed-
ding.

Proof. We use induction on k. It is straightforward to verify that T1 has a unique
upward embedding by applying Lemma 2.1 to their O(1) planar embeddings. Now
suppose that Tk−1 has a unique upward embedding. Again, it can be easily verified
that Hk has a unique upward embedding by applying Lemma 2.1 to its O(1) planar
embeddings. Hence, for finding upward embeddings of Tk, we need only to consider
the four planar embeddings of Tk obtained by flipping the upward embeddings of
Tk−1 and Hk around their common edge fk. Applying Lemma 2.1 to the four faces
containing both endpoints of fk shows that only one of these four planar embeddings
can be extended to an upward embedding of Tk.

In the upward planar embedding of Tk, the external face consists of two paths,
namely, the outer and inner paths, between s and t. The outer path has 2k large angles
and no small angles, and the inner path has 2k small angles and no large angles. The
outer and inner paths of T2 are drawn with shaded and solid thick lines, respectively,
in Figure 2.2(a). When Tk replaces an edge of an embedded planar digraph, the outer
(inner) path becomes a subpath of a face f , and we say that the contribution of the
outer (inner) path to f is +2k (−2k).

Figure 2.2(b) shows a wiggle Wk, which consists of a chain of 2k+ 1 edges whose
orientations alternate along the chain. The two extreme vertices of Wk are called its
source and sink poles, respectively, and are denoted by s and t, respectively. Later, in
section 4, we will consider transformations where a directed edge (u, v) of an embedded
digraph is replaced with Wk such that s is identified with u and t with v, and Wk
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Fig. 2.1. (a) Tendril T1; (b) graph Hk; (c) constructing Tk from Tk−1.
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Fig. 2.2. Examples of tendrils and wiggles: (a) tendril T2; (b) tendril T3; (c) wiggle W3. The
outer and inner paths of T2 are drawn using shaded and solid thick lines, respectively.

becomes a subpath of two faces f1 and zz2 in the new digraph. Given an upward
embedding of Wk, we say that the contribution of Wk to face fi, where i = 1 or 2,
is equal to the number of large angles minus the number of small angles of Wk in fi.
Because each angle of Wk in fi is either large or small, the contribution of Wk to fi
is an even number c, where −2k ≤ c ≤ 2k. Note that if Wk gives contribution c to
face f1 (f2), it gives contribution −c to face f2 (f1).

A rectilinear tendril Tk, for k ≥ 0, is an undirected graph with two designated
poles s and t, and is defined recursively as follows:

• T0 consists of a single edge (s, t).
• T1 is the 10-vertex graph with poles s = s1 and t = t1 shown in Figure 2.3(a).
• Tk is constructed from Tk−1 by removing sk−1 and its incident edge and
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Fig. 2.3. (a) Rectilinear tendril T1; (b) graph Hk; (c) constructing Tk from Tk−1.
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Fig. 2.5. The four rectilinear embeddings of rectilinear tendril T1.
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Fig. 2.6. Rectilinear wiggle W3.
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adding the graph Hk shown in Figure 2.3(b) to it by identifying its edge ek−1

with the edge fk of Hk (Figure 2.3(c)). The poles of Tk are s = sk and t = t1.
Figure 2.4 shows rectilinear tendril T3.

Lemma 2.4. Rectilinear tendril Tk is rectilinear planar and admits exactly four
rectilinear embeddings.

Proof. The proof has the same flavor as that of the proof of Lemma 2.3. We use
induction on k and apply Lemma 2.2.

Figure 2.5 shows the four rectilinear embeddings of T1. An external path of Tk
is a subpath from s to t of its external face in a rectilinear planar embedding of Tk.
Notice that Tk has exactly two external paths.

A rectilinear wiggleWk consists of a chain of 4k+1 edges, and its two end vertices
are called the poles. Figure 2.6 shows rectilinear wiggle W3.

Later, in section 5, we will consider transformations where an edge (u, v) of an
embedded graph is replaced with a rectilinear tendril Tk or wiggle Wk such that u
and v are identified with the poles of Tk or Wk. Let f1 and f2 be the two faces of
the new graph such that Wk or the external paths of Tk are subpaths of f1 and f2.
The contribution of Wk or Tk to f1 (f2) is equal to the number of its angles labeled 3
minus the number of its angles labeled 1 that are in f1 (f2). Hence, the contribution
of Tk to f1 (f2) is an integer c, where c is equal to one of −(4k+ 2), −(4k+ 1), −4k,
4k, 4k + 1, and 4k + 2, and the contribution to f2 (f1) is −c. The contribution of
Wk to f1 (f2) is an integer c, where −4k ≤ c ≤ 4k, and the contribution to f2 (f1) is
−c.

3. An auxiliary flow problem. In this section, we define two auxiliary flow
problems and show that they are equivalent to not-all-equal-3-sat under polynomial-
time reductions.

A switch-flow network is an undirected flow network N , where each edge is labeled
with a range [c′ · · · c′′] of nonnegative integer values, called the capacity range of the
edge. For simplicity, we denote the capacity range [c · · · c] with [c]. A flow for a
switch-flow network is an orientation of and an assignment of integer “flow” values
to the edges of the network. A feasible flow is a flow that satisfies the following two
properties:

Range property. The flow assigned to an edge is an integer within the capacity
range of the edge.

Conservation property. The total flow entering a vertex from the incoming edges
is equal to the total flow exiting the vertex from the outgoing edges.

Starting from an instance S of not-all-equal-3-sat, we construct a switch-
flow network N as follows (see Figures 3.1–3.2). Let the literals of S be denoted with
x1, y1, . . . , xn, yn, where yi = xi, and let the clauses of S be denoted with c1, . . . , cm.
Let θ be a positive integer parameter. We denote with αi and βi (where i = 1, . . . , n)
the number of occurrences of literals xi and yi, respectively, in the clauses of S. Note
that

∑n
i=1(αi + βi) = 3m. Also, we define γi = (2i− 1)θ and δi = 2iθ (i = 1, . . . , n).

Network N has a literal vertex for each literal of S and a clause vertex for each
clause of S, plus a special dummy vertex z. There are three types of edges in N (see
Figure 3.2):

Literal edges. Joining pairs of literals associated with the same boolean variable;
the capacity range of literal edge (xi, yi) is [αiγi + βiδi].

Clause edges. Joining each literal to each clause; the capacity range of clause edge
(xi, cj) is [γi] if xi ∈ cj and [0] otherwise. The capacity range of clause edge (yi, cj)
is [δi] if yi ∈ cj and [0] otherwise.
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Fig. 3.1. (a) Switch-flow network N with parameter θ = 4 associated with the not-all-equal-
3-sat instance S with clauses c1 = y1x2y3, c2 = y1y2x3, and c3 = x1x2x3. The clause edges
with nonzero capacity range are shown with thick lines. (b) Feasible flow for N corresponding to
the satisfying truth assignment (y1, x2, x3) for S. Only the edges with nonzero flow are shown.
(c) Planar switch-flow network P associated with S. (d) Feasible flow for P corresponding to the
satisfying truth assignment (y1, x2, x3) for S. Only the edges with nonzero flow are shown.

Dummy edges. Joining each literal and each clause to the dummy vertex; the
capacity ranges of dummy edges (z, xi) and (z, yi) are [βiδi] and [αiγi], respectively.
The capacity range of dummy edge (z, cj) is [0 · · · ηj − 2θ], where ηj is the sum of the
capacities of the clause edges incident on cj .

The construction of network N from S is straightforward, and we have the fol-
lowing lemma.

Lemma 3.1. Given an instance S of not-all-equal-3-sat with n variables and
m clauses, the associated switch-flow network N has O(n +m) vertices and O(nm)
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Fig. 3.2. Schematic illustration of the edges incident on the literal and clause vertices of
network N : (a) literal vertices xi and yi; (b) clause vertex cj .

edges and can be constructed in O(nm) time.
A feasible flow in network N corresponds to a satisfying truth assignment for S.

Namely, we have that a literal is true whenever its incident literal edge is incoming in
the feasible flow (see Figure 3.1(b)) and its incident clause edges with nonzero capacity
range are outgoing. We formalize this correspondence in the following lemma.

Lemma 3.2. An instance S of not-all-equal-3-sat is satisfiable if and only
if the associated switch-flow network N admits a feasible flow. Also, given a feasible
flow for N , a satisfying truth assignment for S can be computed in time O(nm), where
n and m are the number of variables and clauses of S, respectively.

Proof. If. Given a feasible flow in N , we construct a truth assignment A by
setting a literal true if its incident literal edge is incoming in the flow. We now show
that this is a satisfying assignment. Clearly, the two literals xi and yi associated with
the same boolean variable consistently receive opposite truth assignments.

Because of the conservation property, all the incident clause edges with nonzero
capacity range of a true literal are outgoing, and the amount of flow in each of them is
equal to the capacity. Conversely, if a literal is false, then because of the conservation
property, all its incident clause edges with nonzero capacity range are incoming, and
the amount of flow in each of them is equal to the capacity. The three clause edges
with nonzero capacity range incident on a clause vertex cj cannot be all incoming or
all outgoing because of the conservation property at vertex cj and the choice of the
capacity range for the dummy edge incident on cj . Therefore, three literals in cj can
not be all true or all false. Hence, A is a satisfying truth assignment for S. Also, A
can be constructed in time linear in the number of edges of N , which is O(nm).

Only if. Let A be a satisfying truth assignment of S. We construct a feasible flow
f in N from A. In this flow, we have the following:

• The amount of flow through the literal, clause, and the dummy edges incident
on literal vertices is equal to their capacities. The flow, therefore, satisfies
the range property in these edges.
• If a literal is true, then its incident literal edge is incoming and its incident
clause edges with nonzero capacity range and its dummy edge are outgoing.
If a literal is false then its incident literal edge is outgoing and its incident
clause edges with nonzero capacity and its dummy edge are incoming. In
either case, the amount of flow coming into a literal li is αiγi + βiδi, and
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the amount of flow leaving it is αiγi + βiδi. Therefore, the flow satisfies the
conservation property at these vertices.
• If the net flow entering a clause vertex through the clause edges is νj , then
the flow leaving it through its dummy edge is νj . Conversely, if the net
flow leaving a clause through the clause edges is νj , then the flow entering it
through its dummy edge is νj . Since A is a satisfying assignment, the three
clause edges with nonzero capacity range incident on a clause vertex cannot
be all incoming or all outgoing. The magnitude of flow in a clause edge is
at least θ. Therefore, the net flow coming into or leaving a clause vertex cj
through its clause edges is at most ηj − 2θ. Hence, the conservation property
at cj and the range property in its dummy edge are both satisfied by the flow.

• We show now that the conservation property holds at the dummy vertex
by using the following argument. By successive mergers of two nondummy
vertices of N and elimination of the resultant self loops and the flow through
them, we can reduce N into a graph with multiple edges between two vertices:
the dummy vertex and another vertex u for which the conservation property
holds. The net flow between these two vertices is same as in f . Since the
conservation property holds for u and the dummy vertex is neither a source
nor a sink, the conservation property holds for the dummy vertex also.

Now, starting from S, we construct a planar switch-flow network P (see Fig-
ure 3.1). We first construct a layered drawing ψN of N as follows (see Figure 3.1(a)):

• Each literal and clause edge is drawn as a straight line. The dummy edges
are drawn as continuous curves.
• The clause vertices are horizontally aligned and ordered c1, c2, . . . , cm from
left to right.
• The literal vertices are horizontally aligned above the clause vertices and
ordered x1, x2, y1, y2, . . . , xm, ym from left to right.

• There are crossings only between the clause edges. However, no more than
two clause edges cross at the same point.

We next replace the crossings of ψN with vertices called the crossing vertices, thus
splitting the clause edges at the crossing vertices. We call fragment edges, or simply
fragments, the edges originated by the splitting of the clause edges. Each fragment
edge inherits the capacity range of the originating clause edge. We define the facial
degree of a vertex as the total number of edges in its incident faces.

Lemma 3.3. Given network N representing an instance S of not-all-equal-
3-sat with n ≥ 3 variables and m ≥ 3 clauses, the associated planar switch-flow
network P is triconnected, has O(n2m2) vertices and edges, and can be constructed in
O(n2m2) time. Also, in the unique embedding of P, the facial degree of each vertex
is at most 7nm.

Proof. Let ψN be the layered drawing of N that is used to construct P (see
Figure 3.1(a)). There are O(n2m2) crossings in ψN . Therefore, P has O(n2m2)
crossing vertices and fragment edges. Consequently, P has O(n2m2) vertices and
edges.

Now we show that P is triconnected. We denote by uk the crossing vertex that
corresponds to the crossing between the line joining ck and yn and the line joining
ck+1 and x1. We denote by vk the crossing vertex that corresponds to the crossing
between the line joining yk and cm and the line joining xk+1 and c1. We call the
vertices of type uk and vk the bounding crossing vertices of P. No two bounding
vertices are identical because they correspond to crossings between different pairs of
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lines. Hence there are two vertex disjoint paths, p = x1y1v1 . . . xkykvkxk+1 . . . yn and
q = c1u1c2 . . . ckukck+1 . . . cm, in P. Let a and b be two nondummy vertices of P.
From a and b, there are four vertex-disjoint paths pa, qa, pb, and qb such that pa and
qa consist of the fragment edges of a clause edge incident upon a and connect a with
a vertex of the paths p and q, respectively, and pb and qb consist of the fragment
edges of a clause edge incident upon b and connect b with a vertex of the paths p
and q, respectively. Notice that if a (b) is a literal vertex, then pa (pb) is empty; and
if a (b) is a clause vertex, then qa (qb) is empty. Hence, between a and b there are
two vertex-disjoint paths: one consisting of pa, a subpath of p, and pb, and the other
consisting of qa, a subpath of q, and qb. Hence, graph P − {z} is biconnected. Now
suppose, for contradiction, that P is not triconnected. Since the graph P − {z} is
biconnected, z is not a member of a separating pair of P. Let C1 and C2 be two
connected components of P obtained after removing a separating pair. Suppose z is
in C1. Hence there are at most two vertex disjoint paths between z and the vertices
in C2. However, between z and a vertex w of P − {z}, there are at least four vertex
disjoint paths as follows:

• if w is a crossing vertex, then the four paths go through the endpoints of the
two clause edges of N whose crossing is associated with v;

• if w is a clause vertex, then one path consists of the dummy edge incident
upon w, and the other three paths go through three literal vertices; and
• if w is a literal vertex, then one path consists of the dummy edge incident
upon w, and the other three paths go through three clause vertices.

Thus, we get a contradiction. Therefore P is triconnected.

Now we show that the facial degree of any vertex is at most 7nm. All the faces
incident on the dummy vertex z have at most four vertices: one is z, two of them
are clause and/or literal vertices, and the fourth (if present) is a bounding crossing
vertex. There are n− 1 +m− 1 bounding crossing vertices in P. A simple counting
argument, therefore, shows that the facial degree of z is equal to 3n+m+ 2(n− 1 +
m− 1) + 2 = 5n+ 3m− 2. Let f be a face that does not contain z. Face f contains
at most two fragments of clause edges incident on the same clause or literal vertex.
Hence, the number of edges in face f is at most min{2 · 2n, 2m} = min{4n, 2m}.
The degree of a nondummy vertex u is at most max{2n + 1,m + 2, 4}, which is
at most max{2n + 1,m + 2} for n,m ≥ 3. Hence, the facial degree of u is at most
max{2n+1,m+2}·min{4n, 2m} ≤ (max{2n,m}+2) ·min{4n, 2m} = (max{2n,m}+
2) · 2min{2n,m} = 2(max{2n,m} + 2)min{2n,m} = 2max{2n,m}min{2n,m} +
4min{2n,m} = 2(2nm)+4min{2n,m} = 4nm+min{8n, 4m}. Since min{8n, 4m} is
at most 3nm for n,m ≥ 3, we have that the facial degree of u is at most 4nm+3nm =
7nm. Since the facial degree of the dummy vertex is equal to 5n + 3m − 2, we have
that the facial degree of a vertex of P is at most max{7nm, 5n + 3m − 2}, which is
equal to 7nm for n,m ≥ 3.

Finally, we show how to construct P from N in O(n2m2) time. Suppose the
literals are numbered from 1 to 2n so that literal l2k−1 = xk and l2k = yk. We
inductively construct a layered drawing ψ(k,m) of the subgraph of N induced by
literals l1, . . . , lk and clauses c1, . . . , cm (see Figure 3.3). Drawing ψ(2,m) is shown
in Figure 3.3(a). Suppose we have already constructed drawing ψ(k − 1,m) (see
Figure 3.3(b)). We place literal lk at the same height as lk−1 and sufficiently far to its
right so that edge (lk, c1) intersects each clause edge of ψ(k − 1,m) below its lowest
crossing. Replacing the crossings of ψ(2n,m) by crossing vertices gives us the planar
network P.
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Fig. 3.3. Proof of Lemma 3.3: (a) drawing ψ(2,m); (b) drawing ψ(k,m). The small circles
show the lowest crossings of the clause edges in the drawing of ψ(k − 1,m).

The construction of the network P does not require computing the exact coordi-
nates of the vertices and crossings of ψ(2n,m). In an actual implementation, P can
be constructed directly by maintaining and updating at each inductive step a list of
the lowest crossing vertices of the clause edges. The manipulation of this list takes
constant time per crossing vertex and hence can be done in total O(n2m2) time. The
rest of the construction can also be carried out in O(n2m2) time.

Lemma 3.4. Network N admits a feasible flow if and only if network P admits
a feasible flow, and a feasible flow for N can be computed from a feasible flow for P
in O(n2m2) time.

Proof. Only if. Given a feasible flow in N , we can get a feasible flow in P in which
the flow through each fragment edge is the same as in the corresponding clause edge in
N , and the flow through the dummy and literal edges is same as in the corresponding
edges in N .

If. Suppose that P admits a feasible flow f . In f , at any crossing vertex, of the
two fragment edges of a clause edge incident upon it, one is incoming and the other is
outgoing. This is so because the fragment edges of different clause edges have different
capacities and the conservation property is satisfied at the vertex. Consequently, all
the fragment edges of a clause edge have the same flow. We can get a feasible flow
in N in which the flow through a clause edge is same the as the flow in its fragment
edges in f , and the flow through the dummy edges and the literal edges is the same
as the flow in the corresponding edges in P.

By combining Lemmas 3.2, 3.3, and 3.4, we obtain the main result of this section.
Theorem 3.5. Given an instance S of not-all-equal-3-sat with n ≥ 3 vari-

ables and m ≥ 3 clauses, the associated planar switch-flow network P is triconnected,
has O(n2m2) vertices and edges, has facial degree at most 7nm, and can be constructed
in O(n2m2) time. Instance S is satisfiable if and only if network P admits a feasible
flow. Also, given a feasible flow for P, a satisfying truth assignment for S can be
computed in time O(n2m2).

4. Upward planarity testing. In this section, we show how to reduce the
problem of computing a feasible flow in the planar switch-flow network associated
with a not-all-equal-3-sat instance to the problem of testing the upward planarity
of a suitable digraph.

Let P be the planar switch-flow network with parameter θ = 4 associated with
a not-all-equal-3-sat instance S. Now we construct an orientation �P of P as
follows (see Figure 4.1):

• Every literal edge (xi, yi) is oriented from xi to yi.
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Fig. 4.1. Orientation �P of the network P shown in Figure 3.1(c).

• Every fragment edge is oriented “away from” the clause vertex and “towards”
the literal vertex.
• Every dummy edge incident upon a literal vertex is oriented towards the
dummy vertex, and every dummy edge incident upon a clause vertex is ori-
ented towards the clause vertex.

Lemma 4.1. In digraph �P, every vertex has at least one incoming and one out-
going edge, every directed cycle contains the dummy vertex, and there are exactly two
faces that are directed cycles. Also, �P is bimodal and each face of �P consists of at
most two directed paths.

Proof. Let m be the number of clauses and n be the number of variables in S.
Let z be the dummy vertex of �P.

Each crossing vertex has two incoming and two outgoing fragment edges. Each
literal vertex yi has m+ 1 incoming edges and one outgoing edge (to z). Each literal
vertex xi has m incoming edges and two outgoing edges (to z and yi). Each clause
vertex has 2n outgoing edges and one incoming edge (from z). The dummy vertex
has 2n incoming edges and m outgoing edges. Therefore, each vertex has at least one
incoming and one outgoing edge. It can easily be verified that each vertex of �P is
bimodal, and hence �P is bimodal.

The digraph �P−{z} is upward planar with m sources, each being a clause vertex,

and n sinks, each being a literal vertex yi. Therefore, every directed cycle in �P contains
z. There are exactly two faces in �P that that are directed cycles: one consisting of
vertices x1, z, and c1, and the other consisting of vertices yn, z, and cm. It can
be easily verified that the other faces of �P each consist of exactly two directed
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Fig. 4.2. Dual digraph �D of the network �P shown in Figure 4.1.

paths.

Since P is triconnected (see Theorem 3.5), the planar embedding of P and the

dual graph of P are unique. We construct the dual digraph �D of �P by taking the dual
graph D of P and orienting every dual edge from the face on the left to the face on
the right of the primal edge (see Figure 4.2).

Lemma 4.2. The dual digraph �D of �P is upward planar, triconnected, acyclic,
and has exactly one source and one sink, denoted with s and t, both of which are on
the same face. Also, each face of �D has exactly one source and one sink.

Proof. Because �P is planar and triconnected (Theorem 3.5), so is its dual �D. By
Lemma 4.1, exactly two faces of �P are directed cycles. Hence, �D has exactly two
switches, denoted by s and t (see Figure 4.2), respectively, corresponding to these two

cycles. Switch s is a source vertex and corresponds to the face of �P that consists of
the literal vertex x1, dummy vertex z, and the clause vertex c1. Switch t is a sink
vertex and corresponds to the face of �P that consists of the vertices yn, z, and cm.
Also notice that both s and t are on the face that is the dual of z. From Lemma 4.1,
each face of �P consists of at most two directed paths, and hence each vertex of �D is
bimodal. Therefore, �D is also bimodal. Again from Lemma 4.1, each vertex of �P is
bimodal and none of them is a source or a sink. Hence, each face of �D has exactly
one source and one sink. Since s and t are the only switches of �D and both of them
are on the same face, it follows that there is a consistent assignment of labels to the
angles of �D in which exactly two angles are labeled large, namely, the angles at s and
t in their common face. Therefore, by Lemma 2.1, �D has an upward embedding and
hence is upward planar.
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Fig. 4.3. (a) Schematic illustration of digraph �G obtained from �D by replacing edges with

tendrils and wiggles. (b) The two faces of �G associated with literal vertices xi and yi of P. (c) The
face of �G associated with a clause vertex of P. (d) The face of �G associated with a crossing vertex
of P.

Starting from digraph �D, we construct a new digraph �G by replacing the edges of
�D with subgraphs (tendrils or wiggles) as follows (see Figure 4.3):

• Every edge of �D that is the dual of a literal edge, fragment edge, or dummy
edge incident on a literal vertex is replaced with tendril Tc, where [c] is the
capacity range of the dual edge. Notice that c is a multiple of parameter θ.
• Every edge of �D that is the dual of a dummy edge incident on a clause vertex
is replaced with wiggle Wc, where [0 · · · c] is the capacity range of the dual
edge.
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A vertex of �G is a primary vertex if it is also a vertex of �D, and is a secondary
vertex otherwise. A face of an embedding of �G is a secondary face if it is bounded by
the edges of the same tendril, and is a primary face otherwise. Figure 4.3(a) shows

the primary faces of an embedding ψ of �G and the primary vertices of �G; in this
figure, the secondary faces of ψ and the secondary vertices of �G are hidden inside
the shaded regions denoting the tendrils and the wiggles. We establish the following
correspondence between the primary faces of an embedding ψ of �G, the faces of �D,
and the vertices of �P. Let f be a primary face of ψ; f corresponds to a face f ′ of �D,
namely, the one whose boundary edges were replaced by tendrils and wiggles to give
f . Recall that �D is the dual digraph of �P, and its faces correspond to the vertices of
�P. Therefore, f also corresponds to a vertex v of �P, namely, the one that corresponds
to f ′. f is the dummy face of �G if v is the dummy vertex of �P, and is a nondummy face
otherwise. A primary angle a of f is its angle at a primary vertex u; a corresponds
to an angle of f ′, namely, the one at u. A primary vertex of f is a primary source of
f if it is also a source of f , and is a primary sink of f if it is also a sink of f .

There is no directed path from the sink pole to the source pole of a tendril or a
wiggle. Therefore, �G is also acyclic. From Lemma 4.2 and the construction of digraph
�G, the following lemma is immediate.

Lemma 4.3. Digraph �G is planar and acyclic. All its embeddings can be obtained
by choosing one of the two possible flips for each tendril and have the same set of
secondary faces. Also, for every face f in an embedding of �G, the following holds:

• if f is a secondary face, then it has exactly one source and exactly one sink;
• or else (f is a primary face), it has exactly one primary source and exactly
one primary sink.

We need the following technical lemma to prove Lemma 4.5.
Lemma 4.4. Let f be a primary face of an upward embedding ψ of �G. Let τ(f)

and ω(f) be the total contribution to f of its tendrils and wiggles, respectively. Then,

|τ(f) + ω(f)| ≤ θ.

Proof. From Lemma 4.3, f has exactly one primary source s and exactly one
primary sink t. In other words, f has exactly two primary angles. Let ν(f) be equal
to the number of large primary angles minus the number of small primary angles of
f . Clearly, |ν(f)| ≤ 2. Let us denote with L(f) and S(f), respectively, the number
of large and small angles of f . Because ψ is an upward embedding, from Lemma 2.1
it follows that |L(f) − S(f)| = 2. An angle of f is either a primary angle of f or an
angle of one of its tendrils and wiggles. Therefore, L(f)−S(f) = ν(f)+ τ(f)+ω(f).
Therefore, τ(f) + ω(f) = L(f)− S(f)− ν(f). Hence, |τ(f) + ω(f)| = |L(f)− S(f)−
ν(f)| ≤ |L(f) − S(f)| + |ν(f)|. Since |ν(f)| ≤ 2 and |L(f) − S(f)| = 2, we have
that |τ(f) + ω(f)| ≤ 4. Recall from the beginning of this section that θ = 4. Hence,
|τ(f) + ω(f)| ≤ θ.

We are now ready to present Lemma 4.5.
Lemma 4.5. Digraph �G is upward planar if and only if its tendrils can be flipped

and labels can be assigned to the angles of its wiggles such that for every primary face
the total contribution to it of its tendrils and wiggles is zero.

Proof. If. From Lemma 4.2, �D has an upward embedding ψ 
D. Let g′ be the

external face of ψ 
D. Let ψ be a labeled embedding of �G such that, for every face f
of ψ,

• if f is a secondary face, then the angles of f are labeled small;
• or else (f is a primary face)



618 ASHIM GARG AND ROBERTO TAMASSIA

– the total contribution to it of its tendrils and wiggles is zero, and
– its primary angles have the same label as the corresponding angles of
ψ 
D.

Notice that such a ψ exists because the tendrils of �G can be flipped and labels can be
assigned to the angles of the wiggles of �G such that for every primary face the total
contribution to it of its tendrils and wiggles is zero.

Let g be the primary face of ψ that corresponds to g′. We now show that ψ is an
upward embedding with g as its external face. From Lemma 2.1, this is equivalent to
showing that each face of ψ is consistently assigned with g as the external face (see
the definition of consistently assigned faces in section 2.1).

Let f be a face of ψ. If f is a secondary face, then, from Lemma 4.3, f has exactly
one source and exactly one sink. Because both of them are labeled small and f is an
internal face, f is consistently assigned.

If f is a primary face, then it corresponds to a face f ′ of ψ 
D. Let d be an integer
equal to the number of large angles minus the number of small angles of f . Define d′

likewise for f ′. Because the total contribution to f of its tendril and wiggles is zero,
and the angles at its primary vertices have the same label as the corresponding angles
of f ′, it follows that d = d′. Thus, since f ′ is consistently assigned, f is consistently
assigned too.

Only if. Suppose �G has an upward embedding ψ. Let f be a face of ψ. Since ψ
is an upward embedding, f is consistently assigned, and therefore, from Lemma 2.1,
the difference of its large and small angles is 2. However, because f , in general, also
has primary vertices, each one of which contributes a large or small angle to it, it may
be possible that the total contribution to it of its tendrils and wiggles is not zero.
However, using Lemma 4.5, we show now that �G admits a labeled embedding ψ′ such
that1

• ψ′ has the same faces as ψ,
• the primary angles of ψ′ are the same as those of ψ,
• the contribution of a tendril to a primary face f of ψ′ is the same as its
contribution to f in ψ,
• the contribution of a wiggle to a primary face f of ψ′ may be different from
its contribution to f in ψ, and
• for every primary face f of ψ′, the total contribution to f of its tendrils and
wiggles is zero.

(Thus, ψ′ and ψ are the same except for a possible difference in the assignment
of labels to the angles of their wiggles.)

Let f be a primary face of ψ (and therefore also of ψ′). Let τ(f) and ω(f) be the
total contributions to f of its tendrils and wiggles, respectively, in ψ. Let τ ′(f) and
ω′(f) be the total contributions to f of its tendrils and wiggles, respectively, in ψ′.
Our goal is to show that τ ′(f) + ω′(f) = 0.

First of all, we notice that because ψ and ψ′ have the same faces, τ(f) = τ ′(f).
We now describe the assignment of labels to the angles of the wiggles of ψ′ and

show that τ ′(f) +ω′(f) = 0 with this assignment. We have the following three cases:
Case 1. f is a nondummy face and it corresponds to a literal vertex or a crossing

vertex of �P. Clearly, f has no wiggles. Therefore, ω′(f) = ω(f) = 0. Since ω(f) = 0,

1By appropriately reassigning labels to the angles of those primary vertices that are endpoints
of the wiggles, from ψ we can obtain an upward embedding in which for every primary face f the
total contribution to f of its tendrils and wiggles is zero. However, for our purposes, it is sufficient
to show the existence of a labeled embedding ψ′, as described here.
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from Lemma 4.4 it follows that |τ(f)| ≤ θ. From the construction of graph �G and the
fact that a tendril Tk gives a contribution equal to either 2k or −2k to a face (see
section 2.2), it follows that |τ(f)| is a multiple of 2θ. Therefore, |τ(f)| ≤ θ implies
that τ(f) is equal to 0. Since τ ′(f) = τ(f), we have that τ ′(f) is also equal to 0.
Because ω′(f) = 0, it follows that τ ′(f) + ω′(f) = 0.

Case 2. f is a nondummy face and it corresponds to a clause vertex cj of �P.
Clearly, f has exactly one wiggle w. In ψ′, we assign labels to the angles of w such that
ω′(f) = −τ(f). As noted earlier, τ ′(f) = τ(f). Hence, τ ′(f)+ω′(f) = τ(f)−τ(f) = 0
with this assignment of labels to w. Therefore, if we can show that it is possible to
assign labels to the angles of w such that ω′(f) = −τ(f), we are done.

Recall from the construction of network N from section 3 that the capacity range
of the dummy edge incident on cj is [0 · · · ηj−2θ], where ηj is the sum of the capacities

of the clause edges incident on cj . Also it follows from the construction of �G that w is
a copy of the wiggle wηj−2θ. Because the magnitude of the contribution of a wiggle wk
to a face is at most 2k (see section 2.2), we have that |ω(f)| ≤ 2(ηj − 2θ). Therefore,
if we are able to show that |τ(f)| is at most 2(ηj − 2θ), then because τ(f) is an even
number, and w can give any even valued contribution in the range −2(ηj − 2θ) to
2(ηj − 2θ), we will be able to show that it is possible to assign labels to the angles of
w such that the contribution of w to f is equal to −τ(f).

We now prove that |τ(f)| is at most 2(ηj − 2θ). From the construction of �G
and the fact that a tendril Tk gives a contribution equal to either 2k or −2k to
a face (see section 2.2), it follows that the maximum value of |τ(f)| is 2ηj , and
|τ(f)| is a multiple of 2θ. Therefore, either |τ(f)| = 2ηj , or |τ(f)| = 2ηj − 2θ, or
|τ(f)| ≤ 2ηj − 4θ. However, because |ω(f)| ≤ 2(ηj − 2θ), from Lemma 4.4 it follows
that |τ(f)| ≤ 2(ηj − 2θ) + θ = 2ηj − 3θ. Hence, |τ(f)| cannot be equal to 2ηj or
2ηj − 2θ. Consequently, |τ(f)| ≤ 2ηj − 4θ = 2(ηj − 2θ).

Case 3. f is the dummy face of ψ′. Let T be a tendril of �G. If T contributes k to
a primary face of ψ′, it also contributes −k to another primary face of ψ′. Therefore,
the total contribution of the tendrils of ψ′, when summed over all its primary faces,
is 0. Similarly, the total contribution of the wiggles of ψ′, when summed over all
its primary faces, is 0. We have already shown by considering Cases 1 and 2 that if
h is a nondummy face, then τ ′(h) + ω′(h) = 0. Therefore, it follows that τ ′(f) +
ω′(f) = 0.

Theorem 4.6. Given an instance S of not-all-equal-3-sat with n variables
and m clauses and the associated planar switch-flow network P, digraph �G associated
with S and P has O(n3m2) vertices and edges and can be constructed in O(n3m2)
time. Instance S is satisfiable and network P admits a feasible flow if and only if
digraph �G is upward planar. Also, given an upward planar embedding for �G, a feasible
flow for P and a satisfying truth assignment for S can be computed in time O(n3m2).

Proof. Since θ = 4 = O(1), from the construction of �G we have that the number of
vertices and edges in a tendril or a wiggle is O(n). Since P has O(n2m2) vertices and

edges (see Theorem 3.5), �G has O(n3m2) vertices and edges. P can be constructed

from S in O(n2m2) time (see Theorem 3.5), and �G can be constructed from P in

O(n3m2) time. Thus, we can construct �G from S in O(n3m2) time.

We now show that instance S is satisfiable and network P admits a feasible flow
if and only if digraph �G is upward planar.

We establish the following correspondences between digraph �G and network P
(see Figure 4.3):
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• The faces of �G correspond to the vertices of P.
• The tendrils and wiggles of �G correspond to the the edges of P.
• Flipping a tendril Tk of �G corresponds to orienting an edge e of P, where
e is the dual of the edge replaced by Tk in constructing �G from �D. Edge e
is oriented towards an endpoint v (which is a vertex of P) if and only if v
corresponds to f and Tk contributes 2k to f .

• The contribution of a tendril or wiggle U of �G corresponds to the flow in
an edge e of P. Here e is the dual of the edge which is replaced by U
in constructing �G from �D. The contribution of U to a face f is equal to the
amount of the flow coming through e into the endpoint (of e) that corresponds
to f .

• The balance of the contributions of the tendrils and wiggles to the faces of
�G corresponds to the conservation of flow at the corresponding vertices of P;
i.e., the total contribution of the tendrils and wiggles to a face is zero if and
only if there is a conservation of flow at its corresponding vertex in P.

From Theorem 3.5, Lemma 4.5, and the correspondence established above be-
tween a feasible flow in P and the upward planarity of �G, it follows that S is satisfiable
and P admits a feasible flow if and only if �G is upward planar. It also follows that
given an upward planar embedding for �G, a feasible flow for P and a satisfying truth
assignment for S can be computed in O(n3m2) time.

From Theorem 4.6, we conclude the following corollary.
Corollary 4.7. Upward planarity testing is NP-complete.

5. Rectilinear planarity testing. In this section, we show that rectilinear
planarity testing is NP-complete by reducing the problem of computing a feasible flow
in the planar switch-flow network associated with an instance of not-all-equal-3-
sat to the problem of testing the rectilinear planarity of a suitable graph G. The
construction of G is similar to the construction of �G in section 4 and is carried out in
several stages, where at each stage an intermediate graph is produced.

Let S be an instance of not-all-equal-3-sat with n variables and m clauses;
let P be the associated planar switch-flow network of S with parameter θ = 4+37nm
(see section 3).

Let D be the dual graph of P. Starting from D, we construct a degree-3 planar
graph F using the following two-step process:

1. First, replace each vertex of D by a binary tree with d leaves. Let E be the
resultant graph.

2. Next, replace each edge e of E with a chain ce consisting of five edges. The
middle edge of ce is called the representative of e in F .

Since P has O(n2m2) vertices and edges, it follows that D and F also have O(n2m2)
vertices and edges each.

Lemma 5.1. Graph F has a unique planar embedding and admits a rectilinear
embedding, which can be constructed in linear time.

Proof. Since D has a unique planar embedding, it follows that F also has a unique
planar embedding.

It is known that every degree-4 planar graph admits an orthogonal drawing with
at most four bends per edge, which can be constructed in linear time (see, e.g., [31]).
Hence, E also admits a planar orthogonal drawing R with at most four bends per edge.
Because each edge e of E is replaced by a chain ce in F , from R we can construct a
rectilinear embedding of F by replacing each bend of e by an intermediate vertex of
ce.
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Fig. 5.1. Schematic illustration of graph G obtained from F by replacing edges with rectilinear
tendrils and wiggles: (a) the two faces of G associated with literal vertices xi and yi of P; (b) the
face of G associated with a clause vertex of P; (c) the face of G associated with a crossing vertex of
P.

We construct G from F by replacing the edges of F with subgraphs (rectilinear
tendrils or wiggles) as follows (see Figure 5.1). Let e be an edge of D and rep(e) be
the representative of e in G.

• If e is the dual of a literal edge, fragment edge, or dummy edge incident on
a literal vertex, then rep(e) is replaced with a rectilinear tendril Tc, where
[c] is the capacity range of the dual edge of e. Note that c is a multiple of
parameter θ.
• If e is the dual of a dummy edge e′ incident on a clause vertex, then rep(e) is
replaced with a rectilinear wiggle Wc, where [0 · · · c] is the capacity range of
the dual edge of e.

The vertices of G that are also vertices of F are called its primary vertices. We
define the primary, secondary, dummy, and nondummy faces of G similar to their
definition for �G in section 4 and also establish similar correspondences between the
primary faces of an embedding ψ of G, the faces of F , and the vertices of P.

By Lemma 5.1 and the construction of graph G, all the embeddings of G are
obtained by choosing one of the two possible flips for each rectilinear tendril.

Let ψ be a rectilinear embedding of G. Recall that a rectilinear tendril Tk con-
tributes one of 4k, 4k+1, 4k+2, −4k, −(4k+1), and −(4k+2) to a face of G. In ψ,
the significant contribution of a rectilinear tendril Tk to a face is 4k if its contribution
is one of 4k, 4k+1, and 4k+2, and is −4k otherwise. In ψ, the significant contribution
of a rectilinear wiggle to a face is equal to its contribution to the face. Hence, the
difference in the contribution and significant contribution of a tendril (wiggle) to a
face of ψ is at most 2 (0). Also, the total significant contribution of the tendrils to a
face of ψ is a multiple of 4θ. The contribution of a primary vertex to a face f of ψ is
1 if its angle in f is labeled 3, is -1 if its angle in f is labeled 1, and is 0 otherwise.

Lemma 5.2. If n ≥ 3 and m ≥ 3, then in a rectilinear embedding of G the
magnitude of the total contribution of primary vertices to a nondummy face is at
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most 35nm.
Proof. We show that, in a rectilinear embedding of G, a nondummy face has at

most 35nm primary vertices, and hence the magnitude of the total contribution of
primary vertices to it is at most 35nm.

Let f be a face of D with k vertices. Let f be the dual of vertex u of P. Expanding
a vertex of f with degree d by a binary tree adds at most d− 1 vertices to f . Hence,
expanding each vertex of f by a binary tree adds at most r− k vertices to f , where r
is the facial degree of u. Therefore, after step 1, f has at most k+ r− k = r vertices.
Hence, after replacing each edge of f by a chain of five edges in step 2, f has at most
5r vertices. From Theorem 3.5, r is at most 7nm for n,m ≥ 3. Hence, f has at most
35nm vertices in G.

Lemma 5.3. Let f be a primary face of a rectilinear embedding ψ of G. Let
τ(f) and ω(f) be the total significant contributions to f of its tendrils and wiggles,
respectively. Then

|τ(f) + ω(f)| ≤ θ.

Proof. Let ν(f) be equal to the number of primary angles labeled 3 minus the
number of primary angles labeled 1 of f . Let τ ′(f) and ω′(f) be the total contribution
to f of its tendrils and wiggles, respectively. Let us denote with N3(f) and N1(f) the
number of angles of f labeled 3 and 1, respectively. An angle of f is either a primary
angle of f or an angle of one of its tendrils and wiggles. Therefore, N3(f)−N1(f) =
ν(f)+τ ′(f)+ω′(f). Hence, τ ′(f)+ω′(f) = N3(f)−N1(f)−ν(f). Therefore, |τ ′(f)+
ω′(f)| = |N3(f)−N1(f)−ν(f)| ≤ |N3(f)−N1(f)|+ |ν(f)|. Because ψ is a rectilinear
embedding, the sum of the labels of the angles around each vertex of ψ is equal to 4.
Hence, because each angle of G has label at least 1, and each vertex of G has degree
at least 2, no angle of G has label 4. Therefore, N4(f) = 0. Hence, from Lemma 2.2,
it follows that |N3(f)−N1(f)| = 4. Therefore, |τ ′(f) +ω′(f)| ≤ 4+ |ν(f)|. Since the
difference in the contribution and significant contribution of a tendril to a face of ψ is
at most 2, and f has at most nm tendrils, we have that |τ(f)| ≤ |τ ′(f)|+2nm. Since
ω(f) = ω′(f), it follows that |τ(f)+ω(f)| ≤ |τ ′(f)+ω′(f)|+2nm ≤ 4+ |ν(f)|+2nm.
Since, from Lemma 5.2, |ν(f)| ≤ 35nm, we have that |τ(f)+ω(f)| ≤ 4+37nm. Recall
from the beginning of this section that θ = 4+37nm. Hence, |τ(f)+ω(f)| ≤ θ.

We are now ready to present Lemma 5.4.
Lemma 5.4. Graph G is rectilinear planar if and only if its tendrils can be flipped

and labels can be assigned to the angles of its wiggles such that for every primary face
the total significant contribution to it of its tendrils and wiggles is zero.

Proof. If. From Lemma 5.1, F has a rectilinear embedding ψF . Let g′ be the
external face of ψF . Let ψ be a labeled embedding of F such that, for every face f of
ψ,

• if f is a secondary face, then the angles of f are labeled 1,
• or else (f is a primary face)

– the contribution of a tendril or a wiggle to f is equal to its significant
contribution, and the total contribution to f of its tendrils and wiggles
is zero, and

– its primary angles have the same label as the corresponding angles of
ψF .

The rest of the proof uses the same arguments as those in the if part of the proof
for Lemma 4.5 with the contribution of a tendril or wiggle replaced by the significant
contribution of a rectilinear tendril or wiggle.
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Only if. The proof uses Lemma 5.3 and the same arguments as those by the only
if part of the proof for Lemma 4.5 with the contribution of a tendril or wiggle replaced
by the significant contribution of a rectilinear tendril or wiggle.

Theorem 5.5. Given an instance S of not-all-equal-3-sat with n variables
and m clauses, graph G associated with S has O(n4m3) vertices and edges and can
be constructed in O(n4m3) time. Instance S is satisfiable if and only if graph G is
rectilinear planar. Also, given a rectilinear planar embedding for G, a satisfying truth
assignment for S can be computed in time O(n4m3).

Proof. Since θ = 4+37nm = O(nm), from the construction of G we have that the
number of vertices and edges in a tendril or a wiggle is O(n2m). Since P has O(n2m2)
vertices and edges (see Theorem 3.5), G has O(n4m3) vertices and edges. P can be
constructed from S in O(n2m2) time (see Theorem 3.5), and G can be constructed
from P in O(n4m3) time. Hence, we can construct G from S in O(n4m3) time.

We now show that instance S is satisfiable and network P admits a feasible flow
if and only if graph G is rectilinear planar.

We establish the following correspondences between graph G and network P (see
Figure 5.1):

• The faces of G correspond to the vertices of P.
• The rectilinear tendrils and wiggles of G correspond to the the edges of P.
• Flipping a rectilinear tendril Tk of G corresponds to orienting an edge e of P.
Edge e is oriented towards an endpoint v (which is a vertex of P) if and only
if v corresponds to f and the significant contribution of Tk to f is 4k.
• The significant contribution of a tendril or wiggle U of G corresponds to the
flow in an edge e of P. Edge e is the dual of the edge whose representative
is replaced by U in constructing G from F . The significant contribution of U
to a face f is equal to the amount of the flow coming through e into the end
point (of e) that corresponds to f .

• The balance of the significant contributions of the tendrils and wiggles to the
faces of G corresponds to the conservation of flow at the corresponding vertices
of P, i.e., the total significant contribution of the tendrils and wiggles to a
face f is zero if and only if there is a conservation of flow at its corresponding
vertex in P.

From Theorem 3.5, Lemma 5.4, and the correspondence established above be-
tween a feasible flow in P and the rectilinear planarity of G, it follows that instance
S is satisfiable and P admits a feasible flow if and only if graph G is rectilinear pla-
nar. It also follows that given a rectilinear planar embedding for G, a satisfying truth
assignment for S can be computed in time O(n4m3).

From Theorem 5.5 we conclude the following corollaries.

Corollary 5.6. Rectilinear planarity testing is NP-complete.

Corollary 5.7. Computing a planar orthogonal drawing with the minimum
number of bends is NP-hard.

We can strengthen Corollary 5.7 as follows.

Corollary 5.8. Let G be an n-vertex planar graph whose minimum number of
bends in any planar orthogonal drawing is b∗. Computing a planar orthogonal drawing
of G with O(b∗ + n1−ε) bends is NP-hard for ε > 0.

Proof. Suppose there is a polynomial-time algorithm A that computes a planar
orthogonal drawing of G with at most c(b∗ + n1−ε) bends, where c is some constant.
We can then use algorithm A to test in polynomial time whether graph G is rectilinear
planar as follows. Construct a graph G′ consisting of K =

⌈
(cn1−ε)1/ε

⌉
+ 1 copies of
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G and give G′ as an input to algorithm A. Clearly, G is rectilinear planar if and only
if G′ has a planar orthogonal drawing with fewer than K bends. Since G′ has Kn
vertices and K > c(Kn)1−ε, algorithm A computes a drawing of G′ with fewer than
K bends if and only if G is rectilinear planar.

6. Conclusions. Finding efficient algorithms for upward and rectilinear pla-
narity testing had been an open problem for many years. In this paper we have
shown that a polynomial-time algorithm for either of these problems is unlikely to
exist by proving that both problems are NP-complete. NP-completeness of recti-
linear planarity testing also implies that the bend-minimization problem for planar
orthogonal drawings is NP-hard.
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Abstract. The Lovász local lemma (LLL) is a powerful tool that is increasingly playing a
valuable role in computer science. The original lemma was nonconstructive; a breakthrough of
Beck and its generalizations (due to Alon and Molloy and Reed) have led to constructive versions.
However, these methods do not capture some classes of applications of the LLL. We make progress
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1. Introduction. The Lovász local lemma (LLL) is a powerful tool that can be
used to show the existence of various types of (discrete) structures [7]. Let e denote
the base of natural logarithms and E1, E2, . . . , Em be events with maxi Pr[Ei] ≤ p.
If each Ei is mutually independent of all but at most D of the other events Ej

and if ep(D + 1) ≤ 1, then the key claim of the LLL (symmetric case) is that
Pr[
∧m

i=1Ei] ≥ (1 − ep)m > 0. See, e.g., [3, 19] for many applications of this. The
term (1− ep)m, though positive, is often “tiny,” so the result does not directly imply
an efficient algorithm to produce a structure that avoids all the Ei. Breakthroughs
in this direction have been made by Beck [4] and generalized by Alon [1] and Mol-
loy and Reed [18]. However, as mentioned in [4, 1, 18], certain classes of applica-
tions of the LLL are not covered by these results. One such class arises because
the approaches of [4, 1, 18] require pD3 = O(1); they require something close to
“pD9 = O(1)” for some situations. More importantly, as sketched in section 4.1,
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they do not guarantee polynomial-time algorithms in some settings where the under-
lying random variables have “large” ranges, even if pDc = O(1) for an arbitrarily
large constant c. Another such class involves some extensions of the LLL where
D � p−1. Here, we provide constructive approaches for certain instances of both of
these classes; we now start with a framework that motivates many of the problems
considered.

Let [t]
.
= {1, 2, . . . , t}. The NP-hard low-congestion routing problem has attracted

much attention, e.g., from the VLSI layout and network routing viewpoints [21, 11].
Given a graph G = (V,E) and a collection T = {(si, ti) : i ∈ [k]} of pairs of vertices
in G, how do we construct an (si, ti) path for each i so that the congestion (maximum
number of paths using any given edge) C is minimized? The multicommodity flow
relaxation of this problem is to send one unit of flow from si to ti for each i; the
resultant minimum fractional congestion (maximum amount of flow using any edge)
y∗ is a lower bound on C. Since this relaxation is, e.g., a linear program (LP), the
corresponding optimal multicommodity flow can be found efficiently. Next suppose
we do a flow decomposition: for each (si, ti), we find a set of �i paths Pi,j for j ∈ [�i],
with positive flow values that sum to 1. We can assume without loss of generality
(w.l.o.g.) that

∑
i∈[k] �i ≤ m, as each time we can select a path and assign it a flow

that saturates at least one edge on it (see, e.g., [21]). Finally, we want to choose
exactly one path for each pair to minimize the congestion C. The first two steps can
be done efficiently, so the final step is our focus.

How large can C be as a function of y∗ and of some other parameters of G?
(Even the special case y∗ = O(1) is of much interest; C ≤ O(log |V |/ log log |V |) here
[21]. This special case is related to several conjectures and results [23, 15, 17, 14].)
Our first family of results, described in section 1.1, yields new constructive results for
generalizations of this question. Our second family of results, discussed in section 1.2,
is related to the question, How large can y∗ < 1 be if we require that C = 1, i.e., if
we need an edge-disjoint routing?

1.1. Routing, partitioning, and minmax integer programs. Our first fam-
ily of results concerns minmax integer programs (MIPs) as defined in the following;
these were named minimax integer programs in [25].

Definition 1.1. An MIP has variables Y and {xi,j : i ∈ [k], j ∈ [�i]}, for some
integers {�i}. Let N =

∑
i∈[k] �i and let x denote the N -dimensional vector of the

variables xi,j (arranged in any fixed order). An MIP seeks to minimize a real Y

subject to: (i) ∀i ∈ [k]
∑

j∈[�i]
xi,j = 1; (ii) a system of linear inequalities Ax ≤ �Y ,

where A ∈ [0, 1]m×N and �Y is the m-dimensional vector with the variable Y in each
component, and (iii) ∀i, j, xi,j ∈ {0, 1}.

For convenience, we will call (i) the equality constraints, (ii) the congestion con-
straints, and (iii) the integrality constraints.

Note that the final step of the low-congestion routing problem can be captured by
this form of MIP: the binary variable xi,j , for i ∈ [k] and j ∈ [�i], indicates whether
or not the path Pi,j is chosen, and Ar,(i,j), for r ∈ [m], i ∈ [k], and j ∈ [�i], indicates
whether the edge r is in the path Pi,j . The MIP problem also arises from a canonical
NP-hard hypergraph-partitioning problem [9], which can be applied to support some
divide and conquer approaches [2, 12, 16]. We are given a set-system H = (V, F ),
where V = [k] and F = {S1, . . . , SM} ⊆ 2V . Given a positive integer �, the problem
is to partition V into � parts, so that each Sj is “split well”: we want a χ : V → [�]
that minimizes Y = maxj∈[M ],q∈[�] |{i ∈ Sj : χ(i) = q}|. This is easily written as an
MIP with m =M�.
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In MIPs, two parameters, d and κ, are of particular importance to us. Let d
denote the maximum number of nonzero entries in any column of the matrix A. In
the context of the low-congestion routing problem, d is the length of the longest path
among the paths Pi,j . Let κ ≥ 1 be such that the minimum nonzero entry of A is
κ−1. As was for the low-congestion routing problem, an LP relaxation for an MIP is
to remove the integrality constraints (iii). The resulting LP optimum y∗ is a lower
bound on Y . As MIPs are NP-hard, we seek approximation algorithms for them: we
will present an efficient way of rounding an optimal solution to the LP. The current-
best upper-bounds on Y (as a function of y∗ and other parameters) are due to [25],
improving on earlier work of [21]. In particular, Y has been shown to be “not much
above” y∗ if d is “small,” i.e., if an MIP instance is column-sparse. However, these
techniques are nonconstructive and are based on an extension of the LLL. Here, we
make progress on the algorithmic aspect, i.e., we develop approximation algorithms
for MIPs, by focusing on MIP instances where κ is not “too large”: indeed, note that
we have κ = 1 for MIPs with {0, 1} matrices A (e.g., for low-congestion routing and
hypergraph-partitioning).

The previous-best result for general MIPs was nonconstructive and showed that
Y ≤ y∗(1 + O(L′(y∗, 1/(2d)))) + O(1) [25], where L′ is a function to be defined
in section 2. Here, we present a deterministic polynomial-time algorithm that will
produce an integral solution of value at most y∗(1+O(L′(y∗, 1/(dκ))))+O(1). L′(µ, p)
depends logarithmically on p−1; thus, for families of MIPs where, e.g., κ grows at
most as fast as poly(d), we match the previous-best results constructively, to within
a constant factor. Also, for any family of MIPs where y∗ = ω(log(d+κ)) as dκ→∞,
our algorithm will produce an integral solution of value y∗(1 + o(1)) (e.g., in the
hypergraph-partitioning problem, we can asymptotically constructively match the
LP optimum if � = o((maxi |Si|)/ log d), where d is the degree of H). For general
MIPs, our improvement over the previous-best constructive result [21] is in, essentially,
replacing m by dκ in the integral solution produced: we get good improvements for
MIP instances where dκ� m.

See [6] for recent related results on constructive results for families of MIPs.

1.2. Constructive sufficient conditions for disjoint paths. Suppose we re-
quire congestion C = 1 in the routing problem described before. Let G = (V,E) with
|V | = n and |E| = m. Randomized rounding approaches show that if y∗ ≤ a0/

√
m,

then C = 1 is achievable constructively; on the other hand, there are instances where
y∗ = Θ(1/

√
n) and C ≥ 2 [11]. Thus, the gap is large in general. An interesting

alternative parametrization is based on d, the length of a longest path in a frac-
tional optimal solution; the existentially optimal result that C = 1 if y∗ ≤ a1/d
has been shown via the LLL [14]. (a0, a1, a2, etc. denote positive constants.) It
would be of much interest to make this constructive. As mentioned above, the ap-
proaches of [4, 1, 18] do not seem to extend here. We get around this by an approach
that generates a large number of paths according to a carefully chosen distribution.
Though many of these paths could intersect, we show that if y∗ ≤ a2/(d ln k), then
we can locate an edge-disjoint collection within these paths with high probability
(whp).

Thus, we present new algorithmic approaches to some classes of packing prob-
lems, where the previous-best results were nonconstructive, based on versions of
the LLL.

2. Preliminaries. Let X1, X2, . . . , Xn be a sequence of independent random
variables taking values from [0, 1] with E[Xi] = pi. Let X

.
=
∑

i∈[n]Xi and µ
.
=
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E[X] =
∑

i∈[k] pi. Let Sb be the bth elementary symmetric polynomial, i.e.,

Sb(p1, . . . , pn)
.
=

∑

I⊆[k],|I|=b

∏
i∈I

pi.

We summarize the large deviation bounds of Chernoff [5], Hoeffding [10], and Schmidt,
Siegel, and Srinivasan [22] in the following lemmas.

Lemma 2.1. For 0 ≤ δ ≤ 1, Pr[|X − µ| ≥ µδ] ≤ 2e−µδ
2/3.

Lemma 2.2. For δ ≥ 0, Pr[X ≥ µ(1+δ)] ≤ S	µδ
(p1, . . . , pn)/
(
µ(1+δ)
	µδ


) ≤ H(µ, δ),

where H(µ, δ)
.
= (eδ/(1 + δ)(1+δ))µ.

For p ∈ (0, 1), let L(µ, p) be the smallest δ ≥ 0 such that H(µ, δ) ≤ p. It is not
hard to see that

L(µ, p) =





Θ
(√

log p−1

µ

)
if µ ≥ 1

2 log p
−1;

Θ
(

log p−1

µ log((log p−1)/µ)

)
otherwise.

In [25], a related bound L′(µ, p) was used, which was defined to be the smallest δ ≥ 0
such that �µδ�H(µ, δ) ≤ p. So, for this δ, we have

Pr[X ≥ µ(1 + L′(µ, p))] ≤ p/�µδ�.
It can also be seen that

L′(µ, p) =





Θ

(√
log(µ+p−1)

µ

)
if µ ≥ 1

2 log p
−1;

Θ
(

log p−1

µ log((log p−1)/µ)

)
otherwise.

3. Constructive approximations for minmax integer programs. We now
present results for MIPs. Consider a generic MIP and its relaxation, as described
in section 1. Let {x∗i,j : i ∈ [k], j ∈ [�i]} denote the given optimal solution to the
LP relaxation. Starting with this, the algorithm will construct a sequence of feasible
solutions to the LP relaxation; variables xi,j that get rounded to 0 or 1 will never
have their values realtered. There are two relevant parameters:

• �: the maximum, over all i ∈ [k], of the number of variables xi,j to be
rounded1;

• t: the maximum number of variables to be rounded in a row of congestion
constraints.

We will show two ways to do the rounding. The first one has a slightly inferior
performance and gives the following theorem.

Theorem 3.1. There exists a deterministic polynomial-time algorithm for finding
a solution of value at most y∗(1 +O(L(y∗, 1/(dt�)))) for any given MIP.

The dependency on t� in Theorem 3.1 is undesirable, as t� sometimes could be
large. Next, we show how to do the rounding in several iterations, so that t and �
decrease in each iteration and finally reach poly(κ, d, y∗), with only a slight increase
in y∗. Then we can apply Theorem 3.1 to get the following theorem. Note that
L(y∗, 1/poly(κ, d, y∗)) = O(L′(y∗, 1/(dκ))).

Theorem 3.2. There exists a deterministic polynomial-time algorithm for finding
a solution of value y∗(1 +O(L′(y∗, 1/(dκ)))) +O(1) for any given MIP.

Next, we prove the above two theorems.

1We can assume w.l.o.g. that the LP optimal solution is a basic feasible solution, so � ≤ m and
t ≤ m.
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3.1. Proof of Theorem 3.1. Independently for each i ∈ [k], randomly round
exactly one x∗i,j to 1, with x∗i,j chosen with probability x∗i,j , and let zi,j be the random
variable with the rounded value. Let z be the N -dimensional vector of the zi,j ’s. We
say that a row r ∈ [m] of the congestion constraints is affected by another row r′ ∈ [m]
if the random variables (Az)r and (Az)r′ are dependent, which occurs exactly when

∃i ∈ [k], ∃j, j′ ∈ [�i] s.t. Ar,(i,j), Ar′,(i,j′) �= 0, and x∗i,j , x
∗
i,j′ /∈ {0, 1}.

So each row can be affected by at most D
.
= dt� other rows. For r ∈ [m] and i ∈ [k],

define

Zr,i
.
=
∑

j∈[�i]

Ar,(i,j)zi,j .

Clearly, for each r ∈ [m], Zr,1, . . . , Zr,k is a sequence of independent random variables
taking values from [0, 1], with E[

∑
i∈[k] Zr,i] = E[(Az)r] ≤ y∗, so

Pr


∑

i∈[k]

Zr,i > y∗
(
1 + L

(
y∗,

1

4D

))
 ≤ 1

4D
.

By the LLL, there exists a rounding such that for every r ∈ [m], (Az)r ≤ y∗(1 +
L(y∗, 1

4D )). We will follow the broad approach of [4, 1] to find a rounding such that
for every r ∈ [m],

(Az)r ≤ y∗
(
1 +O

(
L

(
y∗,

1

D

)))
.

A direct application of the ideas of [4, 1] leads to (Az)r ≤ cy∗(1+L(y∗, 1
D )) for some

constant c > 1, which is not sufficient for use in Theorem 3.2. A twist is needed to
achieve our bound.

We first show a randomized algorithm and then derandomize it.

3.1.1. A randomized algorithm. For a row r ∈ [m] and for i ∈ [k], j ∈ [�i]
with x∗i,j /∈ {0, 1}, we say that zi,j is a variable of r if Ar,(i,j) > 0. Consider the graph
G(V,E), where V = [m] represents the m rows, and two nodes are adjacent iff one
can be affected by the other. Note that each node has at most D neighbors. Let
G(a,b)(V,E′) be the graph with two nodes adjacent iff their distance is exactly a or b
in G. Call a set of nodes in G an (a, b)-tree if they form a connected component in
G(a,b). Call a node r ∈ [m] bad if

(Az)r =
∑

i∈[k]

Zr,i > y∗
(
1 + L

(
y∗,

1

6D4

))
,

which happens with probability at most 1
6D4 . For a (1, 2)-tree T and a node r ∈ [m],

let Ir,T denote the set of indices i ∈ [k] such that Zr,i can be affected by rerounding
variables in the rows represented by T \ {r}; i.e., Ir,T is the set

{i ∈ [k] : ∃r′ ∈ T \ {r}, ∃j, j′ ∈ [�i] s.t. Ar,(i,j), Ar′,(i,j′) �= 0, and x∗i,j , x
∗
i,j′ /∈ {0, 1}}.

Let Ir,T
.
= [k] \ Ir,T . Call a node r bad for T if

∑

i∈Ir,T
Zr,i > E


 ∑

i∈Ir,T
Zr,i


+ y∗L

(
y∗,

1

6D4

)
;(3.1)
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for any fixed r, r is bad for T with probability at most 1
6D4 , by the definition of L.

Call a (1, 2)-tree T bad, if every node r ∈ T is either bad or bad for T .
The intuition is that our randomized rounding is unlikely to lead to large bad (1,

2)-trees and that variables in different bad (1, 2)-trees can be re-rounded separately.
Our algorithm consists of at most three phases. In the first phase, we find a rounding
such that all bad (1, 2)-trees have size at most 2D logm/ logD. Then we try to re-
round variables in each bad (1, 2)-tree separately. If m is small, the rerounding can
be done in the second phase. Otherwise we need another phase.

Phase 1. First we need a lemma.
Lemma 3.3. The probability that our randomized rounding leads to a bad (1, 2)-

tree of size at least 2D logm/ logD is at most 1/m.
Proof. Let u = 2 logm/ logD. As a (1, 2)-tree of size Du must contain a (2,

3)-tree of size u and two nodes of a (2, 3)-tree do not affect each other, a (1, 2)-tree
of size Du is bad with probability at most ( 1

6D4 + 1
6D4 )

u = ( 1
3D4 )

u. The number of

(1, 2)-trees of size Du is at most m
(D2−1)Du+1

(
D3u
u

)
< m( 3D3u

u )u = m(3D3)u; see the

appendix. Thus the probability that we get a bad (1, 2)-tree of size Du is at most

m(3D3)u
(

1

3D4

)u

≤ m

(
1

D

)u

≤ 1

m
.

This gives us a randomized algorithm for finding a rounding with no large bad (1,
2)-trees. In section 3.1.2, we will show how to find such a rounding deterministically,
by using the method of conditional probabilities [20].

Phase 2. Suppose we have found a rounding with no bad (1, 2)-tree of size Du.
Consider a maximal bad (1, 2)-tree T . We will reround all variables in T using the
same randomized approach as in Phase 1. Now the neighbors of T become dangerous
as they are affected by T and could turn bad after the rerounding. Let N(T ) denote
the set of T ’s neighbors. Note that nodes in T cannot be affected by other bad (1,
2)-trees and nodes in N(T ) are not dangerous for other bad (1, 2)-trees. So we can
deal with each bad (1, 2)-tree separately.

For r ∈ N(T ), since T is maximal and r �∈ T , we see from (3.1) that

∑

i∈Ir,T
Zr,i ≤ E


 ∑

i∈Ir,T
Zr,i


+ y∗L

(
y∗,

1

6D4

)
.(3.2)

After the rerounding, we call a node r ∈ T ∪N(T ) bad if

(Az)r > y∗
(
1 + 2L

(
y∗,

1

6D4

))
.

For r ∈ T , this obviously happens with probability at most 1
6D4 . For r ∈ N(T ), as∑

i∈Ir,T Zr,i is not affected, we get from (3.2) that r is bad only if

∑
i∈Ir,T

Zr,i > E


 ∑
i∈Ir,T

Zr,i


+ y∗L

(
y∗,

1

6D4

)
,

which happens with probability at most 1
6D4 .

T∪N(T ) has at mostDu+D2u = D(D+1)u nodes. Suppose
√

logm/ log logm ≤
D. Then u = 2 logm/ logD ≤ 5 logm/ log logm ≤ 5D2. So the probability of having
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a bad node is at most

D(D + 1)u
1

6D4
< 5(D + 1)D3 1

6D4
< 1.

We can find a good rerounding in deterministic polynomial time via the method of
conditional probabilities. The proof is omitted here, as the idea is similar to that in
section 3.1.2.

Otherwise, we have D <
√

logm/ log logm. Using a procedure similar to that in
Phase 1, we can find a rerounding such that all bad (1, 2)-trees have size at most

O(D log(D2 logm)/ logD) = O(
√

logm log logm/ logD).

Then we enter Phase 3.
Phase 3. The LLL shows that a good rerounding exists. Since (i) each bad

(1, 2)-tree has at most β = O(
√
logm log logm/ logD) nodes, and (ii) t ≤ D ≤√

logm/ log logm, each bad (1, 2)-tree has at most tβ = O(logm/ logD) variables.
So, we can use an exhaustive search in deterministic poly(m) time to find a good
rerounding such that for every r ∈ [m],

(Az)r ≤ y∗
(
1 + 3L

(
y∗,

1

6D4

))
.

3.1.2. Derandomization of Phase 1. Let R denote the set of all (1, 2)-trees
of size Du = 2D logm/ logD. From Lemma 3.3, a randomized rounding is unlikely to
result in some tree in R being bad. How do we find a good rounding deterministically?
The idea is to use the standard method of conditional probabilities with a pessimistic
estimator [20]. For i ∈ [k], let x∗i denote the vector (x∗i,1, . . . , x

∗
i,�i

), and let zi denote
(zi,1, . . . , zi,�i). We want to round x∗i to zi one at a time, subject to the equality
constraints of the MIP. The value of zi is chosen to minimize the probability of some
tree in R being bad if we randomly round the remaining x∗i+1, . . . , x

∗
k, conditional on

the previously chosen z1, . . . , zi−1. The hope is that the final rounding is a good one
because the final conditional probability, which is either 0 or 1, is at most the original
unconditional one, which is less than 1. However, it is not easy to compute the exact
conditional probability at each step. So we use a pessimistic estimator instead.

For T ∈ R, let T23 be an arbitrary maximal (2, 3)-tree in T . Suppose that we
have already fixed z1, . . . , zi. Then

Pi(z1, . . . , zi)
.
= Pr

zi+1,...,zk
[∃T ∈ R, T is bad | z1, . . . , zi]

≤
∑
T∈R

∏
r∈T23

Pr
zi+1,...,zk

[r is bad or bad for T | z1, . . . , zi].

Let b
.
= �y∗L(y∗, 1

6D4 )� and c
.
= y∗(1 + L(y∗, 1

6D4 )). Let wr,T
.
= E[

∑
j∈Ir,T Zr,j ] +

y∗L(y∗, 1
6D4 ), and let Sr

b (I) denote Sb on input (E[Zr,v] : v ∈ I), for I ⊆ [k]. Note
that

E[Zr,v] =





∑

j∈[�v ]

Ar,(v,j)zv,j if zv has been fixed,

∑

j∈[�v ]

Ar,(v,j)x
∗
v,j otherwise.
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Consider the following pessimistic estimator:

Ai(z1, . . . , zi)
.
=
∑
T∈R

∏
r∈T23

(
Sr
b ([k])(
c
b

) +
Sr
b (Ir,T )(
wr,T

b

)
)
.

From Lemma 2.2, we have Pi(z1, . . . , zi) ≤ Ai(z1, . . . , zi). Now,

Ai(z1, . . . , zi) =
∑
T∈R

∏
r∈T23

Ezi+1

[
Sr
b ([k])(
c
b

) +
Sr
b (Ir,T )(
wr,T

b

)
]

=
∑
T∈R

Ezi+1

[ ∏
r∈T23

(
Sr
b ([k])(
c
b

) +
Sr
b (Ir,T )(
wr,T

b

)
)]

= Ezi+1 [Ai+1(z1, . . . , zi+1)],

where the second equality is because two distinct nodes of T23 share no variable. We
choose zi+1 to minimize Ai+1(z1, . . . , zi+1). Then we have

1

m
≥ A0 ≥ A1(z1) ≥ · · · ≥ Ak(z1, . . . , zk) ≥ Pk(z1, . . . , zk).

Pk(z1, . . . , zk) is either 1 or 0 depending on whether or not the rounding results in a
bad (2, 3)-tree of size u. As Pk(z1, . . . , zk) < 1, we have found a rounding such that
there is no bad (1, 2)-tree of size Du.

It remains to show that for any i and z1, . . . , zi, Ai(z1, . . . , zi) can be computed
efficiently. There are poly(m) number of (1, 2)-trees of size Du in R, and they can be
enumerated in polynomial time (see appendix). Next, we show how to compute Sb
efficiently. For any y1, . . . , yk, note that

Sb(y1, . . . , yk) = yk · Sb−1(y1, . . . , yk−1) + Sb(y1, . . . , yk−1).

Thus, using a dynamic programming approach that is similar to the standard method
of computing Pascal’s triangle, we can compute Sb in deterministic polynomial time.

So Ai can be computed in deterministic polynomial time.

3.2. Proof of Theorem 3.2. Let x = x∗, y = y∗, and D = dt�. Note that we
can just apply Theorem 3.1 if the following holds:

D ≤ κ8d8 or D ≤ y8 or D ≤ c0 or D ≤ y−8/5.(3.3)

Here, c0 is some absolute constant to be chosen after equation (3.6). So suppose (3.3)
is not true; we will try to reduce D in several iterations to finally reach this condition.
The idea is similar to that in [25], and we make the key observation that the approach
of [25] can reduce not only � but also t. So we can use the standard version of the
LLL, instead of the generalization of the LLL developed in [25]. We consider two
cases depending on the range of y.

Case 1. y ≥ 1. We will scale up each xi,j , do a rounding, and then normalize
each xi,j back to satisfy the equality constraint. This is done as follows.

Recall the notion of randomized rounding of a real [21]: given a real α ≥ 0,
we round it to �α� with probability α − �α� and round it to �α� with probability
1−(α−�α�). Let x′i,j = xi,jy

2 log3D. We will randomly round each x′i,j independently.
(Notice the difference from the rounding in Theorem 3.1.) Let zi,j be the random
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variable taking the value �x′i,j� with probability x′i,j − �x′i,j� and taking the value
�x′i,j� with probability �x′i,j� − x′i,j . Note that E[zi,j ] = x′i,j ; hence, for each r ∈ [m],

we have E[(Az)r] ≤ y3 log3D. Let Rr denote the bad event that

(Az)r > y3 log3D

(
1 + L

(
y3 log3D,

1

6D4

))
,

with Pr[Rr] ≤ 1
6D4 . We will call events such as Rr as “type R” events. For each

i ∈ [k], we have E[
∑

j∈[�i]
zi,j ] = y2 log3D; let Si denote the bad event that

∣∣∣∣∣∣
∑

j∈[�i]

zi,j − y2 log3D

∣∣∣∣∣∣
> 4y log2D,

with Pr[Si] ≤ 1
6D4 from Lemma 2.1. Call these “type S” events.

Each type R event depends on at most dt type R events and at most t type S
events. Each type S event depends on at most d� type R events and on no other
type S events. There are m′ = m+ k bad events, each happening with probability at
most 1

6D4 , and each depending on at most D other bad events. From the LLL, there
exists a rounding such that no bad event happens. An algorithm similar to that in
the previous section can be used to find a good rounding in deterministic polynomial
time, as sketched below. In Phase 1, we find a rounding such that all bad (1, 2)-trees
have size at most 2D logm′/ logD. In Phase 2, either we can find a good rerounding
and we are done, or we can find a rerounding such that all bad (1, 2)-trees are very
small. Then we can use an exhaustive search to find a good rerounding in Phase 3.
After this, we have that ∀r ∈ [m],

(Az)r ≤ y3 log3D(1 +O(1/(y1.5 logD)))

and ∀i ∈ [k],
∣∣∣∣∣∣
∑

j∈[�i]

zi,j − y2 log3D

∣∣∣∣∣∣
≤ O(y log2D).

Then we do the normalization

xi,j =
zi,j∑

v∈[�i]
zi,v

to satisfy the equality constraints. Now for every r ∈ [m],

(Ax)r ≤ y3 log3D(1 +O(1/(y1.5 logD)))

y2 log3D(1−O(1/(y logD)))
= y

(
1 +O

(
1

y logD

))
,(3.4)

so the values (Ax)r increase just a little. Notice that each zi,j is a nonnegative integer.
Thus, for each i ∈ [k], the number of nonzero zi,j (or xi,j), for j ∈ [�i], is at most

∑

j∈[�i]

zi,j = O(y2 log3D) = O(D1/4 log3D),(3.5)

since (3.3) is not true. (The constants hidden in the “big-Oh” notation in (3.4) and
in (3.5), as well as in the remaining big-Oh upper bounds in this subsection, are all
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absolute constants that are independent of c0.) Next, recall that every nonzero entry
of A is at least κ−1. So, for each r ∈ [m], the number of nonzero Ar,(i,j)xi,j is at most

κ(Az)r = O(κy3 log3D) = O(κD3/8 log3D).

The parameters � and t drop to O(D1/4 log3D) and O(κD3/8 log3D), respectively.
Thus there is an absolute constant c′0, independent of c0, such that the parameter D
comes down to

c′0dκD
5/8 log6D ≤ c′0κ

−1D1/8κD5/8 log6D

= c′0D
3/4 log6D,(3.6)

which is at most D7/8 if we choose c0 large enough such that ∀D > c0, the bound
c′0 log

6D < D1/8 holds. Then repeating the above process O(log logD) times will
ensure that D becomes small enough to satisfy condition (3.3).

Finally, how large can y become? Suppose y0, y1, . . . , ys are the successive values
assumed by y, andD0, D1, . . . , Ds are the successive values assumed byD in the above
process. We see from (3.6) that if c0 is large enough, then logDi+1 ≤ (7/8) logDi;
hence, logDi ≥ (8/7)i−s logDs. Thus we see from (3.4) that

yi+1 ≤ yi +O(1/ logDi) ≤ yi +O((7/8)s−i(logDs)
−1);

a telescoping sum shows that ys ≤ y0+O(1). Now that (3.3) holds and y has increased
by at most a constant, we can apply Theorem 3.1.

Case 2. y < 1. The idea is the same here. The scaling up is now x′i,j =

xi,jy
−1 log3D, for each i ∈ [k] and j ∈ [�i], and the rounding and normalization are

similar.

4. Constructive sufficient conditions for disjoint paths. We now move on
to the problem of lower bounds on y∗ in our low-congestion routing problem that can
guarantee algorithmically that the integral congestion C is 1. Our main result here
is Theorem 4.1. In typical applications of it, the parameter p is likely to be o(1) or
bounded away from 1. So, the term “

⌈
ln p−1

⌉
” can be taken to be “ln p−1” for a first

reading.
As will be seen below, we will employ certain randomized rounding and “scaling

up–randomized rounding–scaling down” ideas similar to those of section 3.2. Also,
one of our original applications of Theorem 4.1 was for edge-disjoint paths in expander
graphs; however, this problem has been completely recently resolved by Frieze [8]. In
section 4.1, we discuss why approaches such as those of [4, 1, 18] do not appear to
yield Theorem 4.1.

Theorem 4.1. There is a constant c1 > 0 such that the following holds. Suppose
we are given any (directed or undirected) graph G, any k (multi-)sets of paths in it,
P1,P2, . . . ,Pk, and any parameter p ∈ (0, 1). Let the paths in Pi be denoted Pi,j;
let d be the maximum, over all i, j, of the length of Pi,j. Let each Pi,j carry some
nonnegative amount of flow such that (i) the total flow in each Pi is 1, and (ii) for
each edge in G, the total flow using it is at most c1/(d

⌈
ln p−1

⌉
). Then, there is a

randomized polynomial algorithm to pick one path each from at least k(1 − p) of the
Pi, such that all paths chosen are edge-disjoint whp. (If we want one path from each
of the Pi, we can set, e.g., p = 1/(2k).)

Specializing to the case where all paths in any given Pi connect the same pair of
vertices, we get the following.
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Corollary 4.2. There is a constant c1 > 0 such that the following holds. Sup-
pose we are given any (directed or undirected) graph G, any collection T = {(si, ti) :
i ∈ [k]} of vertex-pairs in G, and any parameter p ∈ (0, 1). Suppose there is a unit flow
from si to ti for each i, such that the fractional congestion is at most c1/(d

⌈
ln p−1

⌉
);

d denotes the length of a longest flow-path. Then, there is a randomized polynomial
algorithm to pick an (si, ti)-path for at least k(1 − p) indices i, such that all paths
chosen are edge-disjoint whp. (If we want one (si, ti)-path for each i, we can set
p = 1/(2k).)

Remark. Our algorithm will be easily seen to run in polynomial time and will
involve several random processes. For each process for which success or failure can be
checked efficiently, we will just show that the process succeeds with constant proba-
bility. This suffices since, letting N denote the “input size” for the problem, we can
repeat each such process, say O(N) times, to drive the failure probability down to
2−Θ(N). Thus, our algorithm will succeed whp.

We now present the algorithm and proof for Theorem 4.1.
Proof. We will choose the constant c1 ∈ (0, 1) sufficiently small. Let z

.
=

d
⌈
ln p−1

⌉
/c1; thus, the fractional congestion (maximum flow using any given edge) is

at most 1/z. There are three simple steps in the algorithm:
Step 1. This is a “scaling up–randomized rounding–scaling down” step, similar to

the one employed in Cases 1 and 3 of section 3.2. Let n be the number of vertices in G.
Recall the notion of randomized rounding of a real α [21] from Case 1 of section 3.2.
For a suitably large absolute constant c2 > 2 (say 20), we scale all the flow values
by c2z lnn, and then conduct randomized rounding independently on each flow value
(i.e., for each path Pi,j). By a standard analysis via Lemmas 2.1 and 2.2, we have
whp that

(P1) the total flow fi in each Pi is such that c2z(lnn)/2 ≤ fi ≤ 2c2z lnn, and
(P2) the total flow on any edge is at most 2c2 lnn.

(This can also be derandomized easily by the method of conditional probabilities.)
Dividing the flow value on each Pi,j by fi, we restore the property that the total flow
value in each Pi is 1. Furthermore, the fractional congestion now is at most

2c2 lnn(min
i

fi)
−1 ≤ 2c2 lnn(c2z(lnn)/2)

−1

= 4/z.(4.1)

Let x
.
= maxi fi; (P1) shows that

c2z(lnn)/2 ≤ x ≤ 2c2z lnn.(4.2)

Since the randomized rounding leads to integral flow values, we see, for any i, that
the number of flow-paths Pi,j carrying nonzero flow now is at most fi; hence, the
maximum number of flow-paths Pi,j carrying nonzero flow now, for any i, is at most x.

Step 2. Suppose, after the scaling-rounding-rescaling process of Step 1, that flow
path Pi,j carries a flow of value gi,j ≥ 0. For each (i, j), we proceed as follows. Let
g′i,j be the largest multiple of 1/(2x) that is no larger than gi,j ; replace Pi,j by 2xg′i,j
copies of itself, each of the copies carrying a flow of precisely 1/(2x). We refer to the
new paths as P ′i,�. Fix i. How many flow paths do we have in any Pi now? Since
each flow value is now exactly 1/(2x) and the total flow in Pi is now at most 1, this
number can be at most 2x. On the other hand, recall that

∑
j gi,j = 1, and, as seen

above, that there are at most x (nonzero-flow) paths Pi,j . Since g′i,j ≥ gi,j − 1/(2x),
we see by summing that

∑
j g
′
i,j ≥ 1 − x/(2x) = 1/2. Thus, since each of the new
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flow-paths carries a flow of exactly 1/(2x), there must be at least x many P ′i,j . So,
for each i, the set Ai of flow-paths P

′
i,j is such that

x ≤ |Ai| ≤ 2x.(4.3)

In the rest of the algorithm description, “flow paths” shall refer to these newly con-
structed flow paths P ′i,j .

Let y denote the maximum number of flow-paths P ′i,j that use any given edge.
Now, all paths P ′r,s carry a flow of exactly 1/(2x). Thus, by (4.1),

y ≤ (4/z)/(1/(2x)) = 8x/z ≤ 8(2c2z lnn)/z = 16c2 lnn,(4.4)

the second inequality following from (4.2).
Step 3. Let t

.
=
⌈
ln p−1

⌉
. Independently for each i ∈ [k], we do the following.

For each i, we randomly select t flow-paths (without replacement) from among the
collection of flow-paths P ′i,j . (The bounds c2 > 2, (4.3), and (4.2) show that |Ai| ≥
z lnn. Now, t = c1z/d ≤ z lnn since c1 < 1. So our random-selection process is well
defined.) Call all the paths selected here tentatively chosen. We will say that two
paths P ′a,b and P ′r,s are neighbors iff a �= r and P ′a,b and P ′r,s share a common edge.

Call P ′i,j bad iff it and some neighbor of it are both tentatively chosen; call i
dangerous iff all its t tentatively chosen paths P ′i,j are bad. We will next prove
Theorem 4.3; let us see why this will help us complete the proof of Theorem 4.1. As
usual, the probability of 2/3 in Theorem 4.3 can be boosted by repeating the random
process sufficiently many times. Thus, we will be able to efficiently (i) select some
T ⊆ [k] of cardinality at least k(1 − p), and (ii) pick one tentatively chosen P ′i,j for
each i ∈ T , such that all the paths picked are edge-disjoint.

Theorem 4.3. If c1 > 0 is sufficiently small, then with probability at least 2/3,
the number of dangerous i is at most kp.

Proof. Since each path passes through at most d edges and since each edge has at
most y flow-paths using it (by definition of y), we see that each flow-path has at most
dy neighbors. Fix i. We now bound the probability that i is dangerous. Suppose
i is dangerous, and that it has a collection S of t bad paths P ′i,j . For each path in
S, choose one among its bad neighbors arbitrarily. Suppose there are q such distinct
bad neighbors p1, p2, . . . , pq of the elements of S, where 1 ≤ q ≤ t. We can represent
this by an unordered q-tuple 〈[S1, p1], [S2, p2], . . . , [Sq, pq]〉, where (i) the sets Sj form
a partition of S, and (ii) pj is a bad neighbor of all elements of Sj . Consider any
such fixed tuple T = 〈[S1, p1], [S2, p2], . . . , [Sq, pq]〉. Suppose, for some distinct indices
u1, u2, . . . , ur, that the t+ q paths in T are �1 paths from Au1 , �2 paths from Au2 , . . .,
�r paths from Aur . (The positive integers r and �1, �2, . . . , �r are such that �j ≤ t and∑

j �j = t+ q.) The probability of all of T ’s (t+ q) paths getting tentatively chosen is




r∏
j=1

[(|Auj | − �j
t− �j

)
/

(|Auj |
t

)]
 ≤

r∏
j=1

(t/|Auj |)�j ≤
r∏

j=1

(t/x)�j = (t/x)t+q;(4.5)

the second inequality is a consequence of (4.3).
Fix q. We next upper-bound the number of possible unordered q-tuples 〈 [S1, p1],

[S2, p2], . . ., [Sq, pq] 〉. To do so, we will bound the number of such ordered q-tuples,
and divide the result by q!. Let us now bound the number of ordered q-tuples. Clearly,
we may assume that each Sj is nonempty. We first fix the cardinalities of the Sj : this
can be done in

(
t−1
q−1

)
ways, since

∑
j |Sj | = t and as each Sj is nonempty. Suppose
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|Sj | = tj . Recall from (4.3) that a member P ′i,� of S1 can be picked in at most 2x
ways. Given this choice, since p1 is a neighbor of P ′i,�, p1 can be picked in at most dy
ways. Next, since the remaining t1 − 1 elements of S1 are all neighbors of p1, they
can be picked in at most

(
dy

t1−1

)
ways. Thus, the number of ways of choosing [S1, p1]

is at most

(2x) · (dy) ·
(

dy

t1 − 1

)
≤ (2x) · (dy)t1 .(4.6)

Arguing similarly for [S2, p2], . . . , [Sq, pq], we see, for each fixed choice of t1, t2, . . . , tq,
that the number of ordered q-tuples is at most

∏q
j=1((2x) · (dy)tj ) = (2x)q · (dy)t ≤

2txq · (dy)t. Next, as seen above, (i) there are
(
t− 1

q − 1

)
≤
(
t

q

)
≤ eqtq/qq ≤ ettq/qq

ways of choosing the ti; (ii) the number of unordered q-tuples is the number of ordered
q-tuples divided by q!. Combining with (4.5), the probability of existence of some q-
tuple is at most

ct3x
q(dy)t(t/q)q(t/x)t+q/q! ≤ ct4(t/q)

2q(tdy/x)t,(4.7)

where c3, c4 > 0 are absolute constants; in going from the left-hand side (l.h.s.) to the
right-hand side (r.h.s.), we have used the fact that q! ≥ (q/e)q ≥ qq/et. By calculus,
it is evident that (t/q)2q ≤ e2t/e. Next, by recalling that z = dt/c1 and by using the
lower bound on x and upper bound on y from (4.2) and (4.4), we see from (4.7) that
the probability of existence of some q-tuple is at most (c5c1)

t, where c5 is an absolute
constant which, in particular, is independent of c1. Finally, since q can only take t
values—from 1 to t—the probability that i is dangerous is at most t(c5c1)

t, which can
be made, say, at most p/3 by taking c1 appropriately small (recall that t =

⌈
ln p−1

⌉
).

Thus, by Markov’s inequality, the probability that there are more than kp dangerous
i is at most 1/3.

We now sketch two ways in which the constant factor c1 in Theorem 4.1 can
be increased; however, these methods do not replace c1 by any super-constant term.
First, in (4.6), we can upper-bound

(
dy

t1−1

)
by (dy)t1−1/(t1−1)!. More interestingly, we

can include an additional element of randomness in Step 3 of our algorithm as follows,
motivated by a “random permutation” idea of [24]. Choose a random permutation σ
of all the paths Pi,j′ , and call Pi,j′ bad iff it and some neighbor of it that precedes Pi,j′

in σ, are both tentatively chosen. Call i dangerous iff all its t tentatively chosen paths
P ′i,j are bad, and note that we can efficiently select one tentatively chosen path for
each nondangerous index i, in such a way that these selected paths are edge-disjoint.
This idea helps improve the constant c1.

4.1. Comparison of Theorem 4.1 with previous methods. We now give a
brief sketch of an approach of [18], which generalizes the basic algorithm of [4, 1] to
cover many new applications. The reader is referred to these three beautiful papers
for more details. Suppose we have a set F = {f1, f2, . . . , ft} of independent random
variables, each fj taking values in some domain of cardinality at most γ. Suppose
we also have (“bad”) events E1, E2, . . . , Em, such that each Ei is determined by the
values of the variables in some Fi ⊆ F . Define u

.
= maxi |Fi|. Let us say that Ei

intersects Ej iff Fi ∩ Fj �= ∅; we let D denote the maximum number of other Ej that
any given Ei intersects. Let q = maxi Pr[Ei]. One of the main results of [18] is that if

qD9 < 1/8,(4.8)
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then we can find an assignment for all the fi in randomized poly(m, t, γuD log logm)
time such that

∧
i∈[m]Ei holds.

We now sketch this algorithm. A setting A of some of the random variables fj is
done in a way such that Pr[Ei|A] ≤ q2/3∀i. More importantly, as seen in section 3.1.1,
the problem of setting the remaining fj gets split into different “components,” where
each component has at most D logm events Ei whp; we can handle each component
separately. If need be, we repeat the above process, and end up whp with components
of size O(D log(D logm)); the probability of each Ei conditional on the fj fixed so far
will be at most q1/3. The LLL and (4.8) show that there is a setting of the variables
in each component such that all the Ei are avoided. Since each component is quite
small now, we can now conduct an exhaustive search separately in each component.
In particular, if γ and u are “small,” say bounded by a constant which is true for
many applications of the LLL, the condition (4.8) that is somewhat stronger than the
“eq(D + 1) ≤ 1” of the LLL, ensures a constructive version of the LLL. However, as
pointed out in [18], if γ is “large,” say (t +m)Θ(1), this method does not guarantee
polynomial-time algorithms.

Suppose we were to follow the methodology of [4, 1, 18] to try and prove Theorem
4.1. Motivated by the notation above, let us define γ to be the maximum number
of paths in any (multi-)set Pi. In Theorem 4.1, consider the case where we wish to
choose one path from each Pi; i.e., p = Θ(1/k). Combined with the work of [14], the
approach sketched above would require that the fractional congestion in Theorem 4.1
be O(1/dγc), for a certain constant c > 0; some basic features of the approaches of
[4, 1, 18] make it potentially impossible to eliminate this constant. Thus, situations
where γ is “large” pose problems if we use the approach of [4, 1, 18]. Via the approach
of Step 1 of our algorithm for Theorem 4.1, we can reduce γ to O(d log n), but reducing
γ to o(d), say, is a challenging open problem. Also, as pointed out in [18] and above,
situations where γ is “large,” say nΘ(1), do not necessarily admit of polynomial-time
solutions via the approach of [4, 1, 18]. Thus, for instances where min{γ, d} is, say,
nΘ(1), it is not clear how to use the methods of [4, 1, 18] to derive polynomial-time
algorithms.

5. Open questions. The following problems suggest themselves. Can we get a
full algorithmic version of the result of [25]? That is, can we get rid of the “κ” term in
Theorem 3.2? Another question is whether L′ can be replaced by L in Theorem 3.2.
Finally, in the notation of section 1.2, Corollary 4.2 shows that “y∗ ≤ a2/(d ln k)” is
a sufficient condition for efficiently generating edge-disjoint paths. As pointed out in
section 1.2, it would be of much interest to see if this can be improved to “y∗ ≤ a′1/d”
for some constant a′1.

Appendix. The number of rooted u-node ordered d-ary trees. A rooted
tree is called ordered if the relative order of each node’s children is important; different
relative orders give different trees. “d-ary” means that each tree node has at most d
children.

The following lemma is well known; for an algebraic proof, see, for example, [13].
For d = 2, it gives a derivation of the Catalan number, which has a combinatorial proof
using a reflection principle. With the help of David Mix Barrington, we generalize
this idea to any d.

LEMMA A.1. The number of rooted u-node ordered d-ary trees is 1
(d−1)u+1

(
du
u

)
.

Proof. Let A denote the set of such trees. Let B be the class of strings from
{1, 2, . . . , d}du generated by the following grammar:
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T → λ | 1T 2T 3T · · · d T,
where λ denotes the empty string. For a tree in A, let us add imaginary edges to
nodes, including leaves, so that each node has exactly d outgoing edges, labeled from
1 through d. Note that there are du edges now. Then one can show that |B| = |A|
as each string in B corresponds to the sequence of edge labels seen from a depth-first
traversal of some tree in A. There is also a one-to-one correspondence between B and
the class C of strings from {1, ∗}du generated by the following grammar:

S → λ | 1S ∗ S ∗ S · · · ∗ S,
with d − 1 ∗’s above. Another way to see directly why |A| = |B| = |C| is that they
all have the same recurrence relation and the same initial condition.

Let D denote the set of strings from {1, ∗}du with exactly u 1’s. As C ⊆ D and
|D| = (duu

)
, it remains to calculate |D \ C|. Let D′ denote the set of strings from

{1, ∗}du with exactly u− 1 1’s. Clearly |D′| = ( du
u−1

)
= u

(d−1)u+1

(
du
u

)
. Next, we show

that |D \ C| = (d− 1)|D′|.
It is not hard to verify that C contains exactly those strings in D satisfying the

following prefix condition:
• In any prefix, the number of ∗’s is at most d− 1 times the number of 1’s.

Any string in D \C or D′ must contain a prefix that first violates this condition. Let
w∗ be any such a prefix consisting of k 1’s and (d− 1)k+ 1 ∗’s, for some k < u, with

w satisfying the prefix condition. There are exactly
(
du−(dk+1)

u−k
)
= (d− 1)

(
du−(dk+1)
u−k−1

)

strings in D \ C having w∗ as prefix, and there are exactly
(
du−(dk+1)
u−k−1

)
strings in D′

having w∗ as prefix. Ranging through all such strings w∗, every string in D \ C is
enumerated exactly once, and so is every string in D′. So, |D \C| = (d− 1)|D′|, and
|C| = |D| − |D \ C| = 1

(d−1)u+1

(
du
u

)
.

The following corollary follows immediately.
COROLLARY A.2. In a graph of m nodes and degree d, there are at most s =
m

(d−1)u+1

(
du
u

)
connected components of size u, and they can be enumerated in deter-

ministic poly(s) time.
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ADAPTIVE AND EFFICIENT ALGORITHMS FOR LATTICE
AGREEMENT AND RENAMING∗
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Abstract. In a shared-memory system, n independent asynchronous processes, with distinct
names in the range {0, . . . , N − 1}, communicate by reading and writing to shared registers. An
algorithm is wait-free if a process completes its execution regardless of the behavior of other processes.
This paper considers wait-free algorithms whose complexity adjusts to the level of contention in the
system: An algorithm is adaptive (to total contention) if its step complexity depends only on the
actual number of active processes, k; this number is unknown in advance and may change in different
executions of the algorithm.

Adaptive algorithms are presented for two important decision problems, lattice agreement and
(6k − 1)-renaming; the step complexity of both algorithms is O(k log k). An interesting component
of the (6k − 1)-renaming algorithm is an O(N) algorithm for (2k − 1)-renaming; this improves on
the best previously known (2k − 1)-renaming algorithm, which has O(Nnk) step complexity.

The efficient renaming algorithm can be modified into an O(N) implementation of atomic snap-
shots using dynamic single-writer multi-reader registers. The best known implementations of atomic
snapshots have step complexity O(N logN) using static single-writer multi-reader registers, and
O(N) using multi-writer multi-reader registers.

Key words. shared-memory systems, wait-free computation, atomic read/write registers, re-
naming, lattice agreement, atomic snapshots

AMS subject classifications. 68P05, 68Q10, 68Q20, 68Q22

PII. S0097539700366000

1. Introduction. An asynchronous shared-memory system contains n processes
running at arbitrary speeds and communicating by reading from and writing to shared
registers; processes have distinct names in the range {0, . . . , N−1}, n ≤ N . In a wait-
free algorithm, a process terminates in a finite number of steps, even if other processes
are very slow, or even stop taking steps completely.

The step complexity of many wait-algorithms depends on N ; for example, collect-
ing up-to-date information from all processes typically requires reading array indexed
with processes’ names. Real distributed systems need to accommodate a large num-
ber of processes, i.e., N is large, while often only a small number of processes take
part in the computation. For such systems, step complexity depending on n or N is
undesirable; it is preferable to have step complexity which adjusts to the number of
processes participating in the algorithm.

An algorithm is adaptive (to total contention) if its step complexity depends
only on the total number of processes participating in the algorithm, denoted k; k is
unknown in advance and it may change in different executions of the algorithm. The
step complexity of an adaptive algorithm adjusts to the number of active processes:
It is constant if a single process participates in the algorithm, and it gradually grows
as the number of active processes increases.
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(Algorithm 6)

O(k)

union [23]

O(k log k)

lattice agreement

(Algorithm 5)

O(k)

O(k2)-renaming [27]

(Algorithm 1)

O(k log k)

(Algorithm 4)

(6k − 1)-renaming

(Algorithm 2)

(2k − 1)-renaming

O(n logn)

(Algorithm 3)

(2k − 1)-renaming

O(N)

Fig. 1.1. The algorithms presented in this paper; double boxes indicate the main results.

A weaker guarantee is provided by range-independent algorithms whose step com-
plexity depends only on n, the maximal number of processes; clearly, n is fixed for all
executions.1 The advantage of range-independent algorithms is quite restricted: They
require a priori knowledge of n, which is often difficult to determine; moreover, their
step complexity is not optimal when the actual number of participating processes is
much lower than the upper bound. Yet, as we show, they can be useful tools in the
construction of adaptive algorithms.

This paper presents adaptive wait-free algorithms for lattice agreement and re-
naming, using only read and write operations. Along the way, we improve the step
complexity of nonadaptive algorithms for renaming. Figure 1.1 depicts the algorithms
presented in this paper.

In the one-shot M -renaming problem [10], processes are required to choose dis-
tinct names in a range of size M(k), for some bounded function M . This paper does
not consider the more general long-lived renaming problem [9], in which processes re-
peatedly acquire and release names. Adaptive renaming can serve as an intermediate
step in adaptive algorithms for other problems [9, 26, 27, 28]: The new names replace
processes’ original names, making the step complexity depend only on the number of
active processes. Our algorithms employ this technique, as well as [6, 7].

An efficient adaptive algorithm for renaming could not be derived from known
algorithms: The best previously known algorithm for renaming with linear name
space [18] has O(Nnk) step complexity, yielding O(k3) step complexity (at best) if it
can be made adaptive. Thus, we first present a (2k−1)-renaming algorithm with O(N)
step complexity, which is neither adaptive nor range-independent. This algorithm is
based on a new “shrinking network” construction, which we consider to be the novel
algorithmic contribution of our paper.

The new linear renaming algorithm is employed in a range-independent algo-
rithm for (2k− 1)-renaming with O(n log n) step complexity. Processes start with an
adaptive O(k2)-renaming algorithm whose step complexity is O(k); this is a simple
modification of the range-independent renaming algorithm of Moir and Anderson [27].
Then, processes reduce the range of names in O(log n) iterations; each iteration uses
our new linear renaming algorithm.

1Moir and Anderson [27] use the term “fast,” which conflicts with other papers [3, 25].
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The range-independent renaming algorithm is used to construct an adaptive (6k−
1)-renaming algorithm with O(k log k) step complexity. In this algorithm, processes
are partitioned intoO(log k) disjoint sets according to views obtained from an adaptive
lattice agreement algorithm (described below). This partition bounds the number
of processes in each set and allows them to employ a range-independent (2k − 1)-
renaming algorithm designed for this bound. Different sets use disjoint name spaces;
no coordination between the sets is required.

In the lattice agreement problem [15], processes obtain comparable (by contain-
ment) subsets of the set of active processes. A wait-free lattice agreement algorithm
can be turned into a wait-free implementation of an atomic snapshot object, with
O(n) additional read/write operations [15]. Atomic snapshot objects allow processes
to get instantaneous global views (“snapshots”) of the shared memory, and thus they
simplify the design of wait-free algorithms.

The step complexity of our adaptive algorithm for lattice agreement is O(k log k).
In this algorithm, processes first obtain names in a range of size O(k2) using the
simple algorithm with O(k) step complexity. Based on its reduced name, a process
enters an adaptive variant of the tree used in the lattice agreement algorithm of Inoue
et al. [23].

Appendix C describes how the shrinking network is modified to get a lattice
agreement algorithm with O(N) step complexity, using dynamic single-writer single-
reader registers; this gives an implementation of atomic snapshots with the same
complexity. Previous implementations of atomic snapshots had either O(N logN)
step complexity using static single-writer multi-reader registers [16] or O(N) step
complexity using multi-writer multi-reader registers [23].

The renaming problem was introduced and solved by Attiya et al. [10] for the
message-passing model; Bar-Noy and Dolev [17] solved the problem in the shared-
memory model. Burns and Peterson [19] considered the l-assignment problem—
dynamic allocation of l distinct resources to processes. They present a wait-free
l-assignment algorithm which assumes l ≥ 2k− 1, where k is the number of processes
trying to acquire a resource. All these algorithms have exponential step complex-
ity [21]. Borowsky and Gafni [18] present an algorithm for one-shot (2k−1)-renaming
using O(Nnk) read/write operations.

Anderson and Moir [9] define long-lived renaming and present range-independent
algorithms for one-shot and long-lived renaming; their algorithms use test&set op-
erations. Moir and Anderson [27] introduce a building block, later called a split-
ter, and employ it in range-independent algorithms for long-lived renaming, using
read/write operations. Moir and Garay [28, 26] give a range-independent long-lived
O(kn)-renaming algorithm, using only read/write operations. By combining with a
long-lived (2k−1)-renaming algorithm [19] they obtain a range-independent long-lived
(2k−1)-renaming algorithm; its step complexity is dominated by the exponential step
complexity of Burns and Peterson’s algorithm.

Herlihy and Shavit [22] show that one-shot renaming requires 2k−1 names. This
implies that our range-independent renaming algorithm provides an optimal name
space. The name space provided by our adaptive renaming algorithm is not optimal
(M = 6k − 1); still, it is linear in the number of active processes.

Following the original publication of our paper [12], Afek and Merritt [4] used our
algorithms to obtain an adaptive wait-free (2k − 1)-renaming algorithm, with O(k2)
step complexity.

In another paper [13], we present an adaptive collect algorithm with O(k) step
complexity and derive adaptive algorithms for atomic snapshots, immediate snap-
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shots, and (2k − 1)-renaming. That paper emphasizes the modular use of a collect
operation to make known algorithms adaptive; the algorithms have higher step com-
plexity than those presented here.

Our algorithms adapt to the total number of participating processes, that is, if a
process ever performs a step then it influences the step complexity of the algorithm
throughout the execution. More useful are algorithms which adapt to the current con-
tention and whose step complexity decreases when processes stop participating. Afek,
Dauber, and Touitou [3] present implementations of long-lived objects which adapt to
the current contention; they use load-linked and store-conditional operations. Recent
papers present algorithms for long-lived renaming [2, 14], collect [6], and snapshots [7]
which adapt to the current contention using only read/write operations.

Lamport [25] suggests a mutual exclusion algorithm which requires a constant
number of steps when a single process wishes to enter the critical section, using
read/write operations; when several processes compete for the critical section, the
step complexity depends on the range of names. Alur and Taubenfeld [8] show that
this behavior is inherent for mutual exclusion algorithms. Choy and Singh [20] present
mutual exclusion algorithms whose time complexity—the time between consecutive
entries to the critical section—is O(k), using only read/write operations. Afek, Stupp,
and Touitou [6] use an adaptive collect algorithm to derive an adaptive version of
the bakery algorithm [24]; they present another mutual exclusion algorithm in [5].
Recently, Attiya and Bortnikov [11] presented a mutual exclusion algorithm whose
time complexity is O(log k); this algorithm employs an unbalanced tournament tree
with the same structure as our adaptive lattice agreement tree.

2. Preliminaries.

2.1. The model. In the shared-memory model, processes p0, . . . , pn−1 commu-
nicate by applying operations on shared objects. A process pi is modeled as a (possibly
infinite) state machine; process pi has a distinct name idi ∈ {0, . . . , N − 1}, n ≤ N .

The shared objects considered in this paper are atomic read/write registers, ac-
cessed by read and write operations. A read(R) operation does not change the state of
R, and returns the current value stored in R; a write(v,R) operation changes the state
of R to v. A multi-writer multi-reader register allows any process to perform read and
write operations. A single-writer multi-reader register allows only a single process to
perform write operations, and any process to perform read operation. A single-writer
multi-reader register is dynamic if the identity of the single process writing to the
register varies in different executions; otherwise, it is static.

An event is a computation step by a single process; the process determines the
operation to perform according to its state, and its next state according to its state
and the value returned by the operation. Computations in the system are captured
as sequences of events. An execution α is a (finite or infinite) sequence of events
φ0, φ1, φ2, . . .. For every r = 0, 1, . . ., if pi is the process performing the event φr, then
it applies a read or a write operation to a single register and changes its state according
to its transition function. There are no constraints on the interleaving of events by
different processes, reflecting the assumption that processes are asynchronous and
there is no bound on their relative speeds.

Consider an execution α of some algorithm A. For process pi, step(A,α, pi) is the
number of read/write operations pi performs in α. The step complexity of A in α,
denoted step(A,α), is the maximum of step(A,α, pi) over all processes pi. A process is
active in α if it takes a step in α, that is, step(A,α, pi) �= 0; k(α) denotes the number
of active processes in α.
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Fig. 2.1. The grid used for O(k2)-renaming (depicted for n = 4).

Algorithm A is range-independent if there is a function f : N 	→ N such that in
every execution α of A, step(A,α) ≤ f(n). Namely, the step complexity of A in every
execution is bounded by a function of the total number of processes (which is known
in advance); it does not depend on the range of the initial names.

Algorithm A is adaptive (to total contention) if there is a function f : N 	→ N such
that in every execution α of A, step(A,α) ≤ f(k(α)). Namely, the step complexity of
A in α is bounded by a function of the number of active processes in α. Clearly, the
number of active processes is not known a priori.

A wait-free algorithm guarantees that every process completes its computation in
a finite number of steps, regardless of the behavior of other processes. Since k(α) is
bounded (by n) it follows that adaptive algorithms are wait-free.

2.2. Problems. The M -renaming problem [10] requires processes to choose dis-
tinct names in a range that depends only on the number of active processes. Namely,
there is a function M : N 	→ N such that in every execution α, processes output
distinct names in the range {0, . . . ,M(k(α))− 1}.

In the lattice agreement problem [15], every process pi outputs Vi a subset of the
active processes (e.g., a view) such that the following conditions hold:

Self-inclusion: pi ∈ Vi for every i.

Comparability: Vi and Vj are comparable (either Vi ⊆ Vj or Vj ⊆ Vi) for every i
and j.

2.3. Simple O(k2)-renaming in O(k) operations. The first step in our al-
gorithms is a simple adaptive O(k2)-renaming algorithm. This algorithm reduces the
range of names to depend only on the number of active processes; later stages use
these distinct names, without sacrificing the adaptiveness. We describe this algorithm
first since it is employed in both adaptive algorithms presented in this paper.

The basic building block of this algorithm is the splitter of Moir and Anderson [27].
A process executing a splitter obtains down, right, or stop. At most one process
obtains stop and when a single process executes the splitter it obtains stop; when
two or more processes execute the splitter, not all of them obtain the same value. In
this way, the set of processes accessing the splitter is “split” into smaller subsets.

As in [27], splitters are arranged in a grid of size n × n (Figure 2.1). A process
starts at the upper left corner of the grid; the splitters direct the process either to
continue (moving right or down in the grid), or to obtain the number associated with
the current splitter. The grid spreads the processes so that each process eventually
stops in a distinct splitter.
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Algorithm 1. Adaptive k(k + 1)/2-renaming.

Procedure Adaptive k(k + 1)/2-renaming()
private i, j: integer, initially 0 // row and column indices
private move: {down, right, stop}, initially down // direction
1. while ( move �= stop ) do
2. move := Splitter[i, j]() // execute splitter in grid position (i, j)
3. if ( move = down ) then i++ // increase row
4. if ( move = right ) then j++ // increase column
5. return((i+ j)(i+ j + 1)/2 + j) // get a name based on the current splitter

Procedure Splitter[i, j] // from Moir and Anderson [27]
shared X[i, j]: {⊥} ∪ {0, . . . , N − 1}, initially ⊥
shared Y[i, j]: Boolean, initially false

1. X[i, j] := id
2. if ( Y[i, j] ) then return(right)
3. else Y[i, j] := true
4. if ( X[i, j] = id ) then return(stop)
5. else return(down)

The difference between the algorithm of Moir and Anderson [27] and our algorithm
is that they number splitters by rows, while we number splitters by diagonals. Splitter
(i, j), in row i and column j, 0 ≤ i < n and 0 ≤ j < n, is numbered (i + j)(i + j +
1)/2 + j. Figure 2.1 shows our numbering; the numbering of Moir and Anderson
appears in square brackets.

Algorithm 1 presents pseudocode for the grid and for a splitter.2

We say that splitter (i, j) is i + j steps away from splitter (0, 0), the top left
corner of the grid. As shown in [27, section 3.1], if k processes access the grid then
each process stops after O(k) operations in a distinct splitter which is at most k − 1
steps away from (0, 0). A simple counting argument shows that these splitters have
numbers in the range {0, . . . , k(k + 1)/2− 1}.

Theorem 2.1. Algorithm 1 solves k(k+ 1)/2-renaming with O(k) step complex-
ity.

3. (2k−1)-renaming in O(N) operations. As explained in the introduction,
the step complexity of adaptive renaming depends on a new linear renaming algorithm,
which is neither range-independent nor adaptive.

The algorithm is organized as a network of reflectors. A reflector has two distin-
guished entrances; a process accessing the reflector changes the direction of its move-
ment if another process accessed the reflector, depending on the entrance through
which it entered the reflector.

The network consists of N columns, numbered 0, . . . , N − 1, from left to right
(see Figure 3.1). Column c = 0, . . . , N − 1 contains 2c − 1 reflectors, numbered
c, c− 1, . . . , 0,−(c− 1),−c, from top to bottom. Process q with name c starts at the
topmost reflector of column c and descends through column c, until it sees another
process accessing the same reflector. Then, q moves left to right towards column
N − 1; q outputs the row on which it exits column N − 1.

2Algorithms declare private variables only if their usage in not obvious or their initial value is
important.
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p2

S[2,2]

S[2,1]

S[2,0]

S[2,-1]

S[2,-2]

p1

S[1,1]

S[1,0]

S[1,-1]

S[0,0]

p0

A reflector.

up1in0

in1 up0

down0
down1

Fig. 3.1. The network of reflectors for (2k − 1)-renaming (depicted for n = 3).

For column c, Sc−1 is the set of processes starting in columns 0, . . . , c − 1. The
main property of the network is that processes in Sc−1 enter column c on distinct
rows among the lowest 2|Sc−1| − 1 ones. Therefore, processes in Sc−1 do not access
the same reflectors in column c (or larger); they may interfere only with the single
process descending through column c.

Process q descends through column c until it accesses a reflector in row r through
which a process in Sc−1 has passed; then, q moves to column c+ 1, remaining in row
r. If process p ∈ Sc−1 accesses a reflector which q has passed, then p moves one row
up to column c+1; if p accesses a reflector which q did not pass, then p moves one row
down to column c+1. Therefore, processes in Sc−1 which enter column c on rows > r
move one row up; processes in Sc−1 which enter column c on rows < r move one row
down. Process q leaves on one of the free rows between the rows occupied by these
two subsets of Sc−1 (Figure 3.2(c)). Thus, processes in Sc = Sc−1

⋃{q} leave column
c on distinct rows. Since the new names of the processes are the rows on which they
leave the network, they output distinct names.
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Fig. 3.2. Illustration for the proof of Lemma 3.3—column c+ 1.

The interaction of processes in column c guarantees that processes in Sc−1 move
to upper rows in column c + 1 only if q is active; at most two additional rows are
occupied (Figure 3.3(b)). If q is not active, then processes leave column c exactly on
the same number of rows as they enter (Figure 3.3(a)). Thus, an active process causes
at most two rows to be occupied; if there are k active processes, then they leave the
network on the lowest 2k − 1 rows.

More formally, a reflector has two entrances, in0 and in1, two lower exits, down0

and down1, and two upper exits, up0 and up1. A process entering the reflector on
entrance ini leaves the reflector only on exits upi or downi (see the top left corner
of Figure 3.1). If a single process enters the reflector then it must leave on a lower
exit, and at most one process leaves on a lower exit; it is possible that two processes
entering the reflector will leave on upper exits. A reflector is easily implemented with
two Boolean registers (see Algorithm 2).

The reflectors of column c, denoted S[c,−c], . . . , S[c, 0], . . . , S[c, c], are connected
as follows:

– The upper exit up0 of S[c, r] is connected to entrance in0 of S[c+ 1, r + 1].
– The upper exit up1 of S[c, r] is connected to entrance in0 of S[c+ 1, r].
– The lower exit down0 of S[c, r] is connected to entrance in0 of S[c+1, r− 1].
– The lower exit down1 of a reflector S[c, r] is connected to entrance in1 of
reflector S[c, r − 1], if r > −c; if r = −c (the lowest reflector of column c),
then it is connected to entrance in0 of reflector S[c+ 1, r − 1].

In Algorithm 2, a process with name c starts on entrance in1 of the upper reflector of
column c; it descends through column c (leaving on exit down1) until it sees another
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pi4

pi5

pi6

pi5

pi4

pi6

pi5

q

pi5

pi6

pi4

q

(a) (b)

Fig. 3.3. Illustration for the proof of Lemma 3.4—column c+ 1.
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Algorithm 2. (2k − 1)-renaming.
Procedure shrink(name : 0, . . . , N − 1) // renaming algorithm
private col, row: integer, initially name // start on top reflector of column name
1. while ( col = name ) do // descend through column name
2. exit := reflector[row,col](1) // enter on in1

3. if ( exit = up1 ) then col++
4. else row−− // exit = down1

5. if ( row < −col ) then col++ // reached the lowest reflector in column
6. while ( col < N ) do // move towards column N − 1
7. exit := reflector[row, col](0) // enter on in0

8. if ( exit = up0 ) then col++; row++;
9. else col++; row−−; // exit = down0

10. return(row+N);

Procedure reflector(entrance r : 0,1)
1. Rr := true ;
2. if ( R1−r = false ) then return(downr)
3. else return(upr)

process or it reaches the bottom of the column. At this point, the process leaves on
exit up1 to the next column, and moves towards column N − 1; in each column y,
it enters exactly one reflector on entrance in0; it leaves on exit up0 if it sees another
process, or on exit down0, otherwise.

Suppose that pj enters the reflector on entrance ini, i ∈ {0, 1}, and no process
enters the reflector on entrance in1−i. Since no process writes to R1−i, pj reads false
from R1−i and leaves the reflector on the lower exit, downi. This implies the following
lemma.

Lemma 3.1. If a single process enters a reflector, then it leaves on a lower exit.

Similar arguments are used in the proof of the next lemma.

Lemma 3.2. If a single process enters a reflector on in0 and a single process
enters the reflector on in1, then at most one process leaves the reflector on a lower
exit.

Proof. Assume that pi enters the reflector on in0 and pj enters the reflector on in1.
If both processes read true from R1 and R0, then by the algorithm, exit(pi) = up0,
exit(pj) = up1, and the lemma holds. Otherwise, without loss of generality, pi reads
false from R1. Since pi reads false from R1, pj writes to R1 in line 1 after pi
reads R1 at line 2. Therefore, pj reads R0 in line 2 after pi writes to R0 in line 1.
Consequently, pj obtains true from R0 and by the algorithm, exit(pj) = up1, which
proves the lemma.

Recall that Sc contains the active processes starting on columns 0, . . . , c. For
every process pi ∈ Sc, let row(pi, c) be the value of the local variable row before pi
accesses the first reflector in column c+1. The next lemma shows that processes exit
a column on distinct rows.

Lemma 3.3. For every pair of processes pi, pj ∈ Sc, 0 ≤ c < N , row(pi, c) �=
row(pj , c).

Proof. The proof is by induction on the column c. In the base case, c = 0, the
lemma trivially holds since only one process may access a reflector in column 0.

For the induction step, suppose that the lemma holds for column c ≥ 0; there are
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two cases.
Case 1. If no process starts on column c+ 1, then by the algorithm, no reflector

in column c+1 is accessed on in1. By Lemma 3.1, every process pi ∈ Sc leaves column
c+ 1 on exit down0. By the algorithm, we have

row(pi, c+ 1) = row(pi, c)− 1
(Figure 3.2(a)) and the lemma holds by the induction hypothesis.

Case 2. Suppose that process q starts on column c + 1. Let S[c + 1, r′] be
the last reflector accessed by q in column c + 1. That is, q leaves reflectors S[c +
1, c + 1], . . . , S[c + 1, r′ + 1] on exits down1; q does not access any of the reflectors
S[c+ 1, r′ − 1], . . . , S[c+ 1,−(c+ 1)].

By Lemma 3.2, every process pi ∈ Sc which enters column c+ 1 on row r′ + 1 or
higher, exits column c+ 1 on up0, and we have

row(pi, c+ 1) = row(pi, c) + 1 > r′ + 1.

By Lemma 3.1, every process pi ∈ Sc which enters column c+1 on row r′−1 or lower,
exits column c+ 1 on down0, and we have

row(pi, c+ 1) = row(pi, c)− 1 < r′ − 1.
Now consider process q. By the algorithm, q leaves column c + 1 either on exit

down1 of the lowest reflector in the column, S[c + 1,−(c + 1)], or on exit up1 of a
reflector S[c+ 1, r′], where −(c+ 1) ≤ r′ ≤ c+ 1.

If q leaves reflector S[c + 1,−(c + 1)] on down1 (Figure 3.2(b)), then by the
algorithm,

row(q, c+ 1) = −(c+ 1)− 1 = r′ − 1.
If there is a process pj ∈ Sc which also accesses S[c+1,−(c+1)], then by Lemma 3.2,
pj leaves S[c+ 1,−(c+ 1)] on exit up0 and therefore,

row(pj , c+ 1) = −(c+ 1) + 1 = r′ + 1.

If q leaves reflector S[c + 1, r′] on up1 (Figure 3.2(c)), then by the algorithm,
row(q, c+1) = r′. By Lemma 3.2, there is a process pj ∈ Sc which accesses S[c+1, r

′];
that is, row(pj , c) = r′. By the algorithm

row(pj , c+ 1) =

{
r′ − 1 if pj leaves on down0,
r′ + 1 otherwise.

The induction hypothesis and the above equations imply that in all cases, row(pi, c+
1) �= row(pj , c+ 1), for every pair of processes pi, pj ∈ Sc.

Therefore, processes exit the network on different rows and hence obtain distinct
names. The next lemma shows that processes in Sc leave column c on the lowest
2|Sc| − 1 rows.

Lemma 3.4. For every process pi ∈ Sc, 0 ≤ c < N , −(c + 1) ≤ row(pi, c) <
−(c+ 1) + 2|Sc| − 1.

Proof. The proof is by induction on c. In the base case, c = 0. If there is a process
pi such that idi = 0, then by Lemma 3.1, exit(pi, 0) = down1, since no process accesses
reflector S[0, 0] on in0. Therefore, by the algorithm, we have row(pi, 0) = −1, and
the lemma holds.
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For the induction step, suppose that the lemma holds for column c ≥ 0; there are
two cases.

Case 1. If no process starts on column c+1, then no process accesses reflectors in
column c+1 on entrance in1 (Figure 3.3(a)). Therefore, by Lemma 3.1, each process
pi ∈ Sc exits column c + 1 on down0, and therefore, row(pi, c + 1) = row(pi, c) − 1.
By the induction hypothesis

row(pi, c+ 1) = row(pi, c)− 1 ≥ −(c+ 1)− 1 = −((c+ 1) + 1) .

Also, since |Sc+1| = |Sc|,
row(pi, c+1) = row(pi, c)−1 < −(c+1)+2|Sc|−1−1 = −((c+1)+1)+2|Sc+1|−1 .

The lemma follows from these inequalities.
Case 2. Suppose that process q starts on column c+1. By the induction hypoth-

esis, processes from Sc access only the lowest 2|Sc|−1 reflectors in column c+1. Since
no process accesses the upper reflectors S[c+1, c+1], . . . , S[c+1,−(c+1)+2|Sc|−1]
on in0, by Lemma 3.1, q accesses these reflectors until it reaches a reflector S[c+1, r

′]
accessed by another process, or until it reaches the lowest reflector S[c+ 1,−(c+ 1)]
in the column (Figure 3.3(b)). Therefore, q leaves column c + 1 either on exit
down1 of reflector S[c + 1,−(c + 1)] or on exit up1 of a reflector S[c + 1, r′], where
−(c+ 1) ≤ r′ < −(c+ 1) + 2|Sc| − 1. By the algorithm, this implies

−((c+ 1) + 1) ≤ row(q, c+ 1) < −(c+ 1) + 2|Sc| − 1
since Sc+1 = Sc ∪ {q}, |Sc+1| = |Sc|+ 1. Therefore,

−((c+ 1) + 1) ≤ row(q, c+ 1) < −((c+ 1) + 1) + 2|Sc+1| − 2.(3.1)

According to the algorithm, for each process pi ∈ Sc,

row(pi, c+ 1) =

{
row(pi, c) + 1 if exit(pi, c+ 1) = up0,
row(pi, c)− 1 otherwise.

Together with the induction hypothesis, this implies

row(pi, c+ 1) ≥ row(pi, c)− 1 ≥ −(c+ 1)− 1 = −((c+ 1) + 1).(3.2)

Also,

row(pi, c+ 1) ≤ row(pi, c) + 1

< −(c+ 1) + 2|Sc| − 1 + 1
= −((c+ 1) + 1) + 1 + 2(|Sc+1| − 1)− 1 + 1
= −((c+ 1) + 1) + 2|Sc+1| − 1.(3.3)

The lemma follows from inequalities (3.1), (3.2), and (3.3).
Lemma 3.4 implies that processes leave the network on rows −N, . . . ,−N +

2|SN−1| − 2. Since |SN−1| ≤ k, the names chosen in line 10 are in the range
{0, . . . , 2k − 2}.

Process pj accesses at most 2idj + 1 reflectors in column idj , and exactly one
reflector in each column idj +1, . . . , N −1. Each reflector requires a constant number
of operations, implying the next theorem.
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Theorem 3.5. Algorithm 2 solves (2k − 1)-renaming with step complexity
O(N).

The network consists of O(N2) reflectors; each reflector is implemented with two
registers. Register Ri of a reflector is written only by a process entering the reflector
on entrance ini. Entrance in1 of a reflector is accessed only by the single process
starting on this column, and entrance in0 is accessed by at most one process (by
Lemma 3.3). Therefore, we use O(N2) dynamic single-writer single-reader registers.

4. (2k−1)-renaming in O(n logn) operations. A range-independent (2k−
1)-renaming can be obtained by combining adaptive O(k2)-renaming and nonadap-
tive (2k − 1)-renaming. First, the names are reduced into a range of size O(n2)
(Algorithm 1); these names are used to enter the shrinking network of Algorithm 2,
which reduces them into a range of size (2k − 1). The shrinking network is started
with names of size O(n2), and hence, the step complexity of this simple algorithm is
O(n2). The algorithm presented in this section obtains O(n log n) step complexity by
reducing the name space gradually in O(log n) iterations. To do so, distinct copies
of shrink (Algorithm 2) are associated with the vertices of a complete binary tree of
height �log n(n+ 1)/2� − 1 ≈ 2 log n (Figure 4.1). Each copy of shrink is designed for
names in a range of size 4n− 2; that is, it employs a network with 4n− 2 columns.

A process starts Algorithm 3 by acquiring a name using O(k2)-renaming; this
name determines from which leaf to start. The process performs the shrinking network
associated with each vertex v on the path from the leaf to the root, starting at a column
which is determined by the name obtained at the previous vertex: If it ascends from
the left subtree of v, then it starts at one of the first 2n− 1 columns of the network;
otherwise, it starts at one of the last 2n− 1 columns. The process outputs the name
obtained at the root.

The vertices of the tree are numbered in BFS order (Figure 4.1): The root is
numbered 1; if vertex v is numbered  , then its left child is numbered 2 , and its right
child is numbered 2 +1. The copy of Algorithm 2 associated with a vertex numbered
 is denoted shrink[ ].

Lemma 4.1. For every vertex v, processes executing shrink[v] obtain distinct
temporary names in the range {0, . . . , 2k − 2}.

Proof. The proof is by induction on d, the height of v. In the base case, d = 0.
After executing Algorithm 1, processes get distinct names in the range {0, . . . , k(k +
1)/2− 1}. Therefore, at most one process accesses v from the left executing shrink[v]
with temporary name 0, and at most one process accesses v from the right, executing
shrink[v] with temporary name 2n − 1 + 0 = 2n − 1. Thus, they execute shrink[v]
with different temporary names in the range {0, . . . , 4n − 3}. Theorem 3.5 implies

shrink[1]

shrink[2] shrink[3]

shrink[7]shrink[6]shrink[5]shrink[4]

k(k + 1)/2-renaming (Algorithm 1)

Fig. 4.1. The range-independent algorithm for (2k − 1)-renaming (depicted for n = 3).
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Algorithm 3. Range-independent (2k − 1)-renaming for n processes.

Procedure indRenamingn()
1. temp-name := Adaptive k(k + 1)/2-renaming() // Algorithm 1
2.  := 2h + �temp-name/2� // h = �log n(n+ 1)/2� − 1 is the height of the tree
3. side := temp-name mod 2
4. temp-name := 0
5. while (  ≥ 1 ) do
6. temp-name := shrink[ ](temp-name+ side · (2n− 1))
7. side :=  mod 2
8.  := � /2�
9. return(temp-name)

they obtain distinct names in the range {0, 1, 2} and therefore, the lemma holds when
d = 0.

For the induction step, assume the lemma holds for vertices at height d, and let
v be a vertex at height d + 1. By the induction hypothesis and by the algorithm,
processes accessing v from the left child have distinct temporary names in the range
{0, . . . , 2k− 2}, and processes accessing v from the right child have distinct names in
the range {2n − 1, . . . , 2n + 2k − 3}. Thus, processes execute shrink[v] with distinct
names in the range {0, . . . , 4n−3}, and obtain distinct names in the range {0, . . . , 2k−
2}, by Theorem 3.5.

Therefore, processes obtain distinct names in the range {0, . . . , 2k−2} after com-
pleting shrink at the root. A process performs shrink in h = O(log n) vertices of
the tree, and each vertex requires O(n) operations (Theorem 3.5). This implies the
following theorem.

Theorem 4.2. Algorithm 3 solves (2k − 1)-renaming with O(n log n) step com-
plexity.

5. (6k − 1)-renaming in O(k log k) operations. In our adaptive (6k − 1)-
renaming algorithm, a process estimates the number of active processes and performs
a copy of the range-independent (2k− 1)-renaming algorithm (Algorithm 3) designed
for this number. Processes may have different estimates of k, the number of active
processes, and perform different copies of Algorithm 3. Instead of consolidating the
names obtained in the different copies, disjoint name spaces are allocated to the copies.

The number of active processes is estimated by the size of a view obtained from
lattice agreement; since views are comparable, the estimate is within a constant factor
(see Lemma 5.1).

In Algorithm 4, process pi belongs to a set Sj if the size of its view is in (2
j−1, 2j ].

For views obtained in lattice agreement, this partition guarantees that |Sj | ≤ 2j ,
for j ≤ �log n�; moreover, if the number of active processes is k, then |Sj | = 0, for
j > �log k�. There are �log n�+ 1 copies of Algorithm 3, denoted indRenaming20 , . . .,
indRenaming2�log n� . Processes in Sj perform indRenaming2j , designed for 2j processes,
and obtain names in a range of size 2|Sj | − 1. The name spaces for S0, . . . , S�logn� do
not overlap, and their size is linear k (Figure 5.1).

Lemma 5.1. If the views of processes in a set S satisfy the comparability and
self-inclusion properties of lattice agreement, and the size of a view is at most k, then
|S| ≤ k.

Proof. Assume V is the view with maximal size in S. Let Vi be the view of some
process pi ∈ S. The self-inclusion property implies that pi ∈ Vi, and the comparability
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Si

2|Si| − 1

. . .

. . .

adaptive lattice agreement

renaming
range-independent

Fig. 5.1. Adaptive (6k − 1)-renaming.

Algorithm 4. Adaptive (6k − 1)-renaming.
1. V := AdaptiveLA() // Algorithm 5, presented below
2. r := �log |V|�
3. temp-name := indRenaming2r () // Algorithm 3
4. if ( r = 0 ) then return(temp-name)
5. else return(temp-name+ 2r+1)

property implies that Vi ⊆ V . Therefore, S ⊆ V , implying that |S| ≤ |V | ≤ k.
By the algorithm, if process pi is in Sj , then |Vi| ≤ 2j . Lemma 5.1 implies the

next lemma.
Lemma 5.2. If there are k active processes, then |Sj | ≤ 2j, for 0 ≤ j ≤ �log k�.
For every process pi, |Vi| ≤ k, since the views contain only active processes.

Therefore, pi ∈ Sj only if 0 ≤ j ≤ �log k�, which implies the next lemma.
Lemma 5.3. If there are k active processes, then |Sj | = 0 for j > �log k�.
By Lemma 5.2, at most 2j processes invoke indRenaming2j . Therefore, process pi

invoking indRenaming2j obtains temp-namei ∈ {0, . . . , 2 · 2j − 2}, by Theorem 4.2. By
the algorithm, pi returns temp-namei + 2

j+1 ∈ {2j+1, . . . , 2j+2 − 2}.
The set of names returned by processes performing indRenaming2j is denoted

NameSpacej ; the next lemma follows from the algorithm.
Lemma 5.4. (1) NameSpacei

⋂
NameSpacej = ∅, for every i and j, 0 ≤ i < j ≤

�log n�.
(2)

⋃m
i=0 NameSpacei ⊆ {0, . . . , 4 · 2m − 2} for every m ≤ �log n�.

Lemma 5.5. If there are k active processes, then they return distinct names in
the range {0 . . . 2�log k�+1 + 2k − 2}.3

3There are �log k�+1 names of the form 2j+2−1, 0 ≤ j ≤ �log k�, which are not used. Therefore,
the names obtained in the algorithm can be mapped into a name space of size 6k − �log k� − 2.
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Proof. If two active processes, pi and pj , execute the same copy of indRenaming,
then they obtain distinct names by Theorem 4.2; otherwise, they obtain distinct
names, by Lemma 5.4(1).

By Lemma 5.3, processes invoke indRenaming2j only if 0 ≤ j ≤ �log k�.
By Lemma 5.4(2), processes invoking indRenaming2j , for 0 ≤ j < �log k�, return names
in the range {0, . . . , 2�log k�+1 − 2}. By Theorem 4.2, a process pi invoking the last
nonempty copy indRenaming2�log k� obtains a temporary name in the range
{0, . . . , 2k − 2}. By the algorithm, pi returns a name in the range
{2�log k�+1, . . . , 2�log k�+1 + 2k − 2}. Thus, the output names are in a range whose
size is not greater than 2�log k�+1 + 2k − 1.

Since 6k − 1 ≤ 2�log k�+1 + 2k − 1, the correctness of the algorithm follows from
Lemma 5.5.

If there are k active processes, then each process performs AdaptiveLA (pre-
sented in the next section) in O(k log k) operations. By Lemma 5.3, only copies
of indRenaming for less than 2k processes are invoked. Therefore, a process completes
indRenaming in O(k log k) operations.

Theorem 5.6. Algorithm 4 solves (6k − 1)-renaming with O(k log k) step com-
plexity.

The upper bound on the size of the name space, 6k − 1, is tight for Algorithm 4.
Assume that all processes executing lattice agreement obtain the maximal view (with
size k) and access indRenaming2�log k� . The processes leave the range {0, . . . , 2�log k�+1−
2} unused (since it is unknown whether the previous copies of indRenaming are empty
or not) and return names in the range {2�log k�+1, . . . , 2�log k�+1+2k−2}. If k is not an
integral power of 2, then the output names are in a range of size ≤ 2log k+2+2k−1 =
6k − 1. If k is an integral power of 2, then the output names are in a range of size
2log k+1 + 2k − 1 = 4k − 1.

Merritt (private communication) noted that the names can be reduced by par-
titioning the active processes into sets of size a0, . . . , aj , . . . for an integer a > 2.
Active processes are partitioned into sets S0, . . . , Sj , . . .; processes in Sj execute
adaptiveRenamingaj designed for aj participants and obtain new names in a range of
size 2|Sj | − 1. As in our algorithm, when k processes are active, adaptiveRenamingaj
is accessed only for 0 ≤ j ≤ �loga k�. Processes accessing copies adaptiveRenamingaj ,

0 ≤ j < �loga k�, obtain names in a space of size
∑�loga k�−1
j=0 (2aj−1) ≤ 2a�loga k�−1

a−1 ≤
2a

loga k+1−1
a−1 = 2ka−1

a−1 , which tends to 2k when a → ∞. Processes accessing the last
nonempty copy, adaptiveRenaminga�loga k� , obtain new names in a range of size 2k− 1.
Thus, the size of the total name space is ≤ 4k − 1 when a→∞.

6. Lattice agreement in O(k log k) operations. Our lattice agreement algo-
rithm is based on the algorithm of Inoue et al. [23]. In their algorithm, each process
starts at a distinct leaf (based on its name) of a complete binary tree with height
�logN� − 1, and climbs up the tree to the root. At each vertex on the path, it per-
forms a procedure which merges together two sets of views, each set containing only
comparable views; this procedure is called union. At the leaf, the process uses its own
name as input to union; at the inner vertices, it uses the view obtained in the previous
vertex as input to union. The process outputs the view it obtains at the root.

Specifically, union takes two parameters, an input view V and an integer side ∈
{0, 1}, and returns an output view; its properties are specified by the next lemma [23,
Lemma 6].

Lemma 6.1. If the input views of processes invoking union with side = 0 are



ADAPTIVE LATTICE AGREEMENT AND RENAMING 657

1
2

1
2 36

7

12 13

14

28

56 57 58 59

29 vr

Cr

vr+1

Cr+1

(a) T0

(b) Tr+1

Fig. 6.1. The unbalanced binary tree used in the adaptive lattice agreement algorithm.

comparable and satisfy the self-inclusion property, and similarly for the input views
of processes invoking union with side = 1, then

(1) the output views of processes exiting union are comparable, and

(2) the output view of a process exiting union contains its input view.

Appendix A describes union in detail, and explains the next lemma.

Lemma 6.2. The step complexity of union is O(k).

Our adaptive algorithm uses an unbalanced binary tree Tr defined inductively as
follows. T0 has a root v0 with a single left child (Figure 6.1(a)). For r ≥ 0, suppose Tr
is defined with an identified vertex vr, which is the last vertex in an in-order traversal
of Tr; notice that vr does not have a right child in Tr. Tr+1 is obtained by inserting
a new vertex vr+1 as the right child of vr, and inserting a complete binary tree Cr+1

of height r + 1 as the left subtree of vr+1 (Figure 6.1(b)). By the construction, vr+1

is the last vertex in an in-order traversal of Tr+1.

The vertices of the tree are numbered as follows: The root is numbered 1; if a
vertex is numbered  , then its left child is numbered 2 , and its right child is numbered
2 + 1 (Figure 6.1).

By the construction, the leaves of Tr are the leaves of the complete binary subtrees
C0, C1, . . . , Cr. Therefore, the total number of leaves in Tr is

∑r
j=0 2

j = 2r+1 − 1.
The following simple lemma, proved in Appendix B, states some properties of Tr.

Lemma 6.3. Let w be the ith leaf of Tr, 1 ≤ i ≤ 2r+1 − 1, counting from left to
right. Then

(1) the depth of w is 2�log i�+ 1;
(2) w is numbered 2d(2d+2 − 3) + i, where d = �log i�.
Algorithm 5 uses T2 log n−1, which has n2 − 1 leaves.4 A process starts the algo-

rithm by obtaining a new name in a range of size k(k + 1)/2 (using Algorithm 1).
This name determines the leaf at which the process starts to climb up the tree: A
process with a new name xi starts the algorithm at the xith leaf of the tree, counting
from left to right. Since k(k + 1)/2 ≤ n2 − 1 for all n ≥ 2, T2 log n−1 have enough
leaves for temporary names in a range of size k(k + 1)/2. By Lemma 6.3, the xith
leaf is numbered 2d(2d+2 − 3) + xi, where d = �log xi�.

4For simplicity, we assume n is a power of 2.
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Algorithm 5. Adaptive lattice agreement.

Procedure AdaptiveLA()
1. temp-name := Adaptive k(k + 1)/2-renaming()+1 // Algorithm 1
2. d := �log temp-name�
3.  := 2d(2d+2 − 3) + temp-name // the leaf corresponding to temp-name
4. V := {pi} // the input is the process’s name
5. while (  ≥ 1 ) do
6. side :=  mod 2 // calculate side
7.  := � /2� // calculate father
8. V := union[ ](V, side)
9. return(V)

As in [23], a distinct copy of union is associated with each inner vertex of the tree.
A process performs copies of union associated with the vertices along its path to the
root, and returns the view obtained at the root.

Simple induction on the distance of a vertex v from the leaves shows that the
views obtained by processes executing union at v satisfy the comparability and self-
inclusion properties. In the base case, v is a leaf and the claim is trivial since a single
process starts at each leaf; the induction step follows immediately from Lemma 6.1.
Hence, the views obtained at the root have the lattice agreement properties.

If there are k active processes, process pi gets a unique name xi ∈ {1, . . . , k(k +
1)/2} (line 1) and by Lemma 6.3(2), starts in a leaf  of depth 2�log xi�+ 1 (line 3).
Therefore, pi accesses at most 2�log xi� + 1 ≤ 2�log k(k + 1)/2� + 1 ≤ 4 log k + 1
vertices. At each vertex, the execution of union requires O(k) operations (Lemma 6.2).
Thus, the total step complexity of the algorithm is O(k log k), implying the following
theorem.

Theorem 6.4. Algorithm 5 solves lattice agreement with O(k log k) step com-
plexity.

7. Discussion. This work presents adaptive wait-free algorithms, whose step
complexity depends only on the number of active processes, for lattice agreement and
(6k − 1)-renaming in the read/write asynchronous shared-memory model; the step
complexity of both algorithms is O(k log k).

Clearly, the complexities of our algorithms—the number of steps, the number
and the size of registers used—can be improved. For example, an algorithm for O(k)-
renaming with O(k) step complexity would immediately yield a lattice agreement
algorithm with the same step complexity. Also it would be interesting to see if ideas
from our efficient algorithms can improve the complexities of algorithms which adapt
to the current contention [2, 6].

Appendix A. Procedure union.
Procedure union (from [23]) takes two parameters, a view V and an integer side ∈

{0, 1}, and returns a view. Let Sb be the set of processes which call union with side
b. If the input views of the processes in S0 are comparable and the input views of
the processes in S1 are comparable (within each set separately), then all the views
returned by union are comparable. In addition, the output view of each process
contains its input view.

The procedure uses two shared arrays, Views0[1, . . . , n + 1] and Views1[1, . . . ,
n + 1], whose entries contain views (initially empty). Processes use two procedures:
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WriteSet which writes a view into an array, and ReadSet which reads the view of
maximal size written in an array.

A process invoking union with side b, first writes its input view V into Viewsb
using WriteSet. Then the process repeatedly reads from the arrays Views0 and Views1
using ReadSet. If the last two reads from Views0 return the same view, and the last
two reads from Views1 return the same view, then the process returns the union of
these views. As in Afek et al. [1], if two nonoverlapping ReadSet operations return
the same maximal view, then the maximal view does not change in between the
operations. Since reads from Views0 alternate with reads from Views1, there is an
execution interval during which Views0 and Views1 do not change. Therefore, the
union of the last views read from the arrays is a snapshot of the maximal size views
written in them. If the views written in each array are comparable, then the snapshots
of the maximal views, returned by union, are also comparable.

The crux of the algorithm is how ReadSet and WriteSet guarantee linear step
complexity. For b = 0, 1, the  th entry of Viewsb corresponds to the unique view of
size  in Sb. A process accesses each entry of Viewsb at most once. Towards this end,
if a process reads a view V in ReadSet from an entry i < |V |, then it writes V into
entries i+1, . . . , |V |; this guarantees that V will not be overwritten by a smaller view
and will be available for other processes. Furthermore, if the maximal size of views in
Sb is k, then a process accesses only the first k+1 entries of Viewsb. Thus, a process
performs at most O(|S0

⋃
S1|) reads and writes.

The pseudocode appears in Algorithm 6.

In WriteSet(A, V ), a process writes V to A[1], A[2], . . . , A[|V |] (in this order).
When there are k active processes, |V | ≤ k, and hence no process writes to A[k + 1].

In ReadSet(A, V ), process pi reads the entries of array A in increasing order of
indices, until it reads ∅; by the property of WriteSet, pi obtains ∅ after at most k + 1
reads. If pi reads a view W from A[j], j ≤ |W |, then pi writes W to the array in the
order A[j + 1], A[j + 2], . . . , A[|W |] (lines 4–6) and resumes reading from A[|W | + 1]
(lines 7–11). This requires ReadSet to take an additional parameter V , the maximal
view pi has written or read so far.

Let Vi be the view returned by process pi. Clearly, the step complexity of union
is linear in |Vi| (see [23, Lemma 9]). Since Vi ⊆ S0 ∪ S1, the step complexity of union
is O(|S0 ∪ S1|) = O(k), which implies Lemma 6.2.

Appendix B. Proof of Lemma 6.3.

(1) Suppose that w belongs to a Cd, d ≤ r. The total number of leaves in

C0, . . . , Cd−1 is
∑d−1
j=0 2

j = 2d − 1. Therefore, 2d − 1 < i. Since w belongs to Cd,

i ≤∑d
j=0 2

j = 2d+1 − 1. Thus, 2d ≤ i < 2d+1, implying that d = �log i�.
Consider the path from the root of Tr to w. The path has length 2d+1: d edges

on the path from the root of Tr to vd, one edge connecting vd and the root of Cd, and
d edges on the path from the root of Cd to w. Since d = �logwi�, the length of the
path is 2�log i�+ 1.

(2) Define a binary string b[1 . . . 2d+ 1], which represents the path from the root
of Tr to w, as follows: b[1] = 1; for any 1 ≤ j < 2d + 1, b[j + 1] = 0, if the (j + 1)st
vertex on the path is the left child of its parent; and b[j + 1] = 1, otherwise.

The numbering of the vertices in Tr implies that the number of w is represented
by the binary string b[1 . . . 2d+1]. The d leftmost bits of b, corresponding to the path
from the root of the tree to vertex vd are 11 . . . 1, since all the vertices on the path
are right children (see Figure 6.1(b)). The (d+ 1)st bit of b is 0, since the root of Cd
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Algorithm 6. Procedure union (from [23]).

Procedure union(V: view, b: 0,1) // side parameter is b
1. WriteSet(Viewsb,V)
2. currentb := V ; current1−b := ∅
3. repeat
4. prev0 := current0 ; prev1 := current1
5. current0 := ReadSet(Views0,prev0)
6. current1 := ReadSet(Views1,prev1)
7. until ( prev0 = current0 and prev1 = current1 )
8. return(current0 ∪ current1)

Procedure WriteSet(A: array of registers, V: view)
1. for j = 1 to |V| do A[j] := V

Procedure ReadSet(A: array of registers, prev: view)
1. max := prev
2. p := |max|
3. while ( p ≤ |max| ) do
4. for j = p+ 1 to |max| do A[j] := max
5. p := |max|
6. repeat
7. p := p+ 1
8. temp := A[p]
9. if ( |temp| > p ) then max := temp
10. until ( |max| > p or temp = ∅ )
11. return(max)

is the left child of vd. It remains to calculate the d rightmost bits of b, corresponding
to the path from the root of Cd to w.

The total number of leaves in C0, . . . , Cd−1 is
∑d−1
j=0 2

j = 2d − 1. Since w is the

ith leaf in Tr, it is the (i − (2d − 1))st leaf in Cd, counting from 1. Therefore, the d
bits corresponding to the path from the root of Cd to w are the binary representation
of the number (i− (2d − 1))− 1, that is, (i− 2d)2. Hence,

b[1 . . . 2d+ 1] =

d︷ ︸︸ ︷
11 . . . 1 0 · (i− 2d)2.

Therefore, the number of w is (2d+1 − 1)2d+1 + i− 2d = 2d(2d+2 − 3) + i.

Appendix C. Linear atomic snapshots.
This section presents a linear-time algorithm for lattice agreement using only dy-

namic single-writer single-reader registers; this algorithm is neither range-independent
nor adaptive. It appears here because it is a simple modification of Algorithm 2, and
it shows yet another interesting connection between renaming and lattice agreement.

The algorithm uses the network of reflectors of Figure 3.1. In the modified al-
gorithm, reflectors help the processes to collect views, in addition to directing their
movements. The modified reflector is implemented with two N -bit registers, R0 and
R1, that can contain views. Initially, each register contains the empty view, ∅. A
process entering the reflector on entrance ini writes its local view into register Ri,
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Algorithm 7. Linear lattice agreement.

Procedure LatticeAgreement(namei : 0, . . . , N − 1)
private col, row: integer, initially namei // start on top reflector of column namei
private V, initially {pi} // the initial view
1. while ( row = namei ) do // descend through column namei
2. 〈V, exit〉 := reflector[row,col](V,1) // enter on in1

3. if ( exit = up1 ) then col++;
4. else // exit = down1

5. row−−;
6. if ( row < −col ) then
7. col++; // reached the lowest reflector in column
8. while ( col < N ) do // move towards column N − 1
9. 〈V, exit〉 := reflector[row,col](V,0) // enter on in1

10. if ( exit = up0 ) then col++; row++;
11. else col++; row−−; // exit = down0

12. return(V);

Procedure reflector(view V, entrance r: 0,1)
1. Rr := V ;
2. if ( R1−r = ∅ ) then return(〈V, downr〉)
3. else return(〈V ∪ R1−r, upr〉)

and then reads the other register, R1−i. If it is ∅, then the local view of the process
does not change, and the process exits on downi; otherwise, the process joins the view
written in R1−i with its local view and exits on upi.

The algorithm which controls the processes’ movements in the network remains
exactly the same as in Algorithm 2. Processes leaving the network return their lo-
cal views (instead of the row numbers, as in the renaming algorithm). Pseudocode
appears in Algorithm 7; the numbers of the modified lines appear in bold.

For a process pi and a reflector S, Vin(pi, S) and Vout(pi, S) are the views of pi
before and after accessing S, respectively. The following lemma is a modification
of Lemma 3.1. The only difference is related to the process’ view after accessing a
reflector. By the algorithm, the local view of the process which reads ∅ from R1−i
does not change.

Lemma C.1. If a single process pj enters a reflector S then pj leaves S on a
lower exit and Vout(pi, S) = Vin(pi, S).

The proof of the following lemma is similar to Lemma 3.2.

Lemma C.2. If a single process pi enters a reflector S on in0, and a single process
pj enters S on in1, then

(1) at most one of the processes leaves S on a lower exit;

(2) if p ∈ {pi, pj} goes down, then Vout(p, S) = Vin(p, S);

(3) if p ∈ {pi, pj} goes up, then Vout(p, S) = Vin(pi, S) ∪ Vin(pj , S).

Recall that Sc is the set of processes which start execution on columns 0, . . . , c;
let V (pi, c) be the view with which a process pi exists column c. The next lemma
shows that the views of processes exiting column c are comparable.

Lemma C.3. For every pair of processes pi, pj ∈ Sc, 0 ≤ c < N , if row(pi, c) <
row(pj , c) then V (pi, c) ⊆ V (pj , c).

Proof. The proof is by induction on the column c. The lemma holds in the base
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case, c = 0, since at most one process exits column 0. Suppose that the lemma holds
for c ≥ 0.

If there is no active process with name equal to c+1, then the reflectors in column
c + 1 are accessed only on entrances in0. Therefore, by Lemma C.1, the local views
of the processes Sc do not change in column c + 1, and for every process pj ∈ Sc,
row(pj , c + 1) = row(pj , c) − 1. In this case, the lemma holds by the induction
hypothesis.

Otherwise, let q be an active process which starts on column c+1. Suppose that
the last reflector accessed by q on column c+ 1 is S[c+ 1, r′], −(c+ 1) ≤ r′ ≤ c+ 1.
That is, q leaves reflectors S[c+1, c+1], . . . , S[c+1, r′+1] on down1, and q does not
access reflectors S[c+ 1, r′ − 1], . . . , S[c+ 1,−(c+ 1)]. By Lemmas C.1 and C.2,

– for all pj ∈ Sc such that row(pi, c) < r′

exit(pi, c+ 1) = down0,

row(pi, c+ 1) = row(pi, c)− 1,
V (pi, c+ 1) = V (pi, c);(C.1)

– for all pj ∈ Sc such that row(pi, c) > r′

exit(pi, c+ 1) = up0,

row(pi, c+ 1) = row(pi, c) + 1,

V (pi, c+ 1) = V (pi, c) ∪ {q}.(C.2)

By the algorithm, q leaves column c+1 either on exit down1 of the lowest reflector
S[c+1,−(c+1)] in the column, or on exit up1 of S[c+1, r

′], where −(c+1) ≤ r′ ≤ c+1.
If q leaves reflector S[c+1,−(c+1)] on down1, then by Lemma C.1, row(q, c+1) =

−(c+1)− 1 and V (q, c+1) = V (q, c). The lemma holds by the induction hypothesis
and (C.2).

If q leaves reflector S[c + 1, r′] on up1, then there is a process pj ∈ Sc such that
row(pj , c) = r′, by Lemma C.1. By Lemma C.2, V (q, c + 1) = V (pj , c) ∪ {q}. If pj
leaves column c + 1 on up0, then V (pj , c + 1) = V (pj , c) ∪ {q} and row(pj , c + 1) =
row(pj , c) + 1 = r′ + 1, by Lemma C.2. If pj leaves column c + 1 on down0, then
V (pj , c+1) = V (pj , c) and row(pj , c+1) = r′− 1, by Lemma C.2. In both cases, the
lemma holds by the induction hypothesis, (C.1), and (C.2).

Lemma C.3 with c = N − 1 implies that the local views of the processes leaving
the network are comparable. Since pi initial view contains its identifier and the local
view never decreases, we have the self-inclusion property. The step complexity of the
algorithm is calculated as in Theorem 3.5. The network contains O(N2) reflectors;
each reflector uses two bounded dynamic single-writer single-reader registers. This
proves the following theorem.

Theorem C.4. Algorithm 7 solves the lattice agreement problem with step com-
plexity O(N) using O(N2) dynamic single-writer single-reader registers of length N
bits.

Applying the transformation of [15], which requires O(N) additional operations
on single-writer multi-reader registers, we get the following result.

Theorem C.5. There is an implementation of an atomic snapshot object such
that every operation on the object requires O(N) read/write operations on dynamic
single-writer multi-reader registers. The implementation uses O(N2) registers of
length N bits.
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Lemma C.6. If the processes executing RestrictedLA2j have distinct names in the
range {0, . . . , 2j − 1}, then the following conditions hold for every vertex v:

(1) the output views of processes exiting union at v are comparable, and

(2) the output view of a process exiting union at v contains its input view.

Proof. Assume the vertex v is numbered  . Let InView(v, p) and OutView(v, p)
be the local views of a process p before and after the execution of union[ ]. Let
InViewsi(v) be the set of views of processes that invoke union[ ] with side i, i = 0, 1,
and let OutViews(v) be the set of views returned by union[ ].

The proof of the lemma is by induction on the height, h, of v. In the base
case, h = 0, v is a leaf. At most one process accesses union[ ] on each of its en-
trances, since processes have distinct names in the range {0, . . . , 2j − 1}. Therefore,
the views in InViewsi(v) are comparable for i = 0, 1. Conditions (1) and (2) follow
from Lemma 6.1.

For the induction step, suppose that the lemma holds for every vertex at height
h; we prove that it also holds for a vertex v at height h + 1. Let u be the left child
of v and let w be the right child of v. By the algorithm, InViews0(v) = OutViews(u)
and InViews1(v) = OutViews(w).

Since u is at height h, the views in OutViews(u) are comparable by the induction
hypothesis; similarly, the views in OutViews(w) are comparable. Therefore, the views
in OutViews(v) are comparable by Lemma 6.1. This proves condition (1).

If process pi invokes union[ ] with side 0 then InView(v, pi) = OutView(u, pi).
By the induction hypothesis, pi ∈ OutView(u, pi) = InView(v, pi). By Lemma 6.1,
InView(v, pi) ⊆ OutView(v, pi), and hence pi ∈ OutView(v, pi), which proves condi-
tion (2). A similar argument holds if pi invokes union with side 1.
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1. Introduction. Vehicle routing and delivery problems have been widely stud-
ied in computer science and operations research. Many of these problems are NP-hard,
and a lot of research has been done on analyzing heuristics to find “good” solutions
to these problems. These transportation problems occur in real life in areas such as
robotics and transportation of packages. Methods for obtaining “good” solutions to
the problems are of great practical significance. For example, Casco, Golden, and
Wasil [9] report that combining deliveries and pickups for supermarkets led to an
industry wide savings of $160 million a year. The problem that we consider in this
paper is that of transporting a single commodity from a set of suppliers to a set of
demand points using a vehicle of limited capacity.

One way to analyze the performance of a heuristic is to compute the worst-case
ratio between the cost of a solution produced by the algorithm to the cost of an optimal
solution. If this ratio is bounded by ρ, we refer to this algorithm as an approximation
algorithm with performance ratio ρ or simply as a ρ-approximation algorithm.

k-delivery TSP. Given n identical pegs placed at arbitrary locations, a vehicle
with a maximum capacity of k pegs, and n slots (demand points), each requiring
a peg, the problem is to find a shortest tour for the vehicle in which all the pegs
can be transported to their slots without exceeding the capacity of the vehicle. This
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problem is referred to as k-delivery TSP. The traveling salesman problem (TSP) is a
special case of k-delivery TSP, since replacing each vertex of the TSP by a peg and
a slot yields an instance of the 1-delivery TSP. In this instance, the vehicle has to
simply find a shortest tour that visits all the pegs (i.e., a TSP solution), since any
peg that is picked up by the vehicle can immediately be delivered to the slot in the
same location. Therefore, the k-delivery TSP is NP-hard [16], even when k = 1. The
distances between the given points satisfy the triangle inequality since the vehicle
can always take a shortest path between any two points. Replacing the distances
between each pair of points by the shortest-path distance between them ensures that
the triangle inequality is satisfied.

Haimovich and Rinnooy Kan [17] studied a special case of this problem when all
the pegs are located at one central depot and are delivered with a vehicle of capacity
k. They provided an approximation algorithm that obtains a performance ratio of
3. For geometric graphs—graphs induced by points in the plane with Euclidean dis-
tances as edge-weights—they provided a polynomial-time approximation scheme for
constant k. Christofides [11] surveyed various issues, including problem formulation
and algorithms, related to the vehicle routing problem, where the vehicles originate
at a central depot. Asano, et al. [6] gave a polynomial-time approximation scheme
for the same special case in the geometric setting, when k is O(log n/ log log n). Anily
and Hassin [2] demonstrated an algorithm that obtains a ratio of 2.5 for the 1-delivery
TSP. The first constant factor approximation algorithm for the general problem was
given by Chalasani, Motwani, and Rao [10]. We will refer to their algorithm as the
“CMR algorithm.” They obtained an approximation ratio of 9.5. They also gave
better algorithms for the cases k = 1 and k = ∞ that yield ratios of 2 in both
cases. Independent of our work, Anily and Bramel [1] showed that a modification of
the CMR algorithm improves the approximation ratio to 7 − 3

k . (In fact, we show
that one can obtain a better bound of 6.5 by modifying the CMR approach.) They
also gave another algorithm with an approximation ratio of c(k) + 1

2 log2 k, where
2 ≤ c(k) ≤ 3.

Our results. We summarize the results presented in this paper below:

• For the k-delivery TSP, we provide a natural approximation algorithm that
runs in polynomial time and show that its performance ratio is at most 5.
Since the proof is complex, we first prove a simpler bound of 6.5; this proof
contains some of the basic ideas.
• For geometrical instances, such as points in the plane, the algorithms of
Arora [4, 5] and Mitchell [20] can be used to obtain an (1+ ε) approximation
of the TSP, and this leads to an approximation factor of 4(1 + ε) for these
instances.
• We also describe a simple algorithm that finds a preemptive tour whose length
is at most five times the length of an optimal preemptive tour. (We will
shortly explain what we mean by a preemptive tour.)

Significance of our work. We explain below how our algorithm fundamentally
differs from previous algorithms and why it is likely to return far better solutions in
practice than they do. The previous methods for solving the general k-delivery TSP
suffer from the following drawback. They start with two tours, one containing all
the pegs (source nodes) and the other containing all the slots (delivery nodes). The
basic idea is to traverse the cycle of pegs, collecting k pegs, then switch over to the
other cycle and deliver the k pegs, repeating the process until all pegs are delivered.
The delivery route thus alternates between the two cycles; it turns out that it is easy
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A
Pegs

Slots

Fig. 1.1. Example to show that intermediate drops help even for k = 2.

to analyze the cost of shuttling between the cycles in this scheme. Such a scheme
suffers from the drawback that the individual tours for the pegs and slots do not
take advantage of the proximity of pegs and slots. In most instances, one can do
better by alternating pickups and deliveries without waiting for the vehicle to become
either completely full or completely empty. We derive a natural algorithm that uses
a single tour containing all points, combining pickups and deliveries arbitrarily, and
taking “corrective” action only when the vehicle becomes either full or empty. The
main hurdle is in proving a good analysis of this more natural scheme. Our analysis
shows significantly better approximation ratios for our algorithm than the previous
algorithms. In addition, preliminary experimental studies show that our algorithm
returns much better solutions.

Note. We will assume that we can start the vehicle’s tour at any location. This is
slightly different from previous work on this problem, which assumes that the starting
point is fixed. With a fixed starting point, our method still applies with an additive
factor of 1 in the approximation factors in the worst case.

Preemptive tours A fundamental issue is that of preemptive versus nonpre-
emptive traversals. In a preemptive traversal, pegs may be dropped at intermediate
locations; in other words, we may pick up a peg and leave it at some location, and
return later to collect it and deliver it. In a nonpreemptive solution, we carry a peg
from its source to its destination without ever unloading it from the vehicle at inter-
mediate nodes. The nature of the problem and algorithms can change if drops are
permitted.

Figure 1.1 shows an example in which the best preemptive tour is shorter than the
best nonpreemptive tour. The edges shown cost 1 unit each. A tour with a capacity-2
vehicle that leaves a peg at point A and delivers it later costs 8 units. If we are not
allowed to drop a peg at intermediate locations, we incur a higher cost (regardless of
where the tour starts), and an optimal nonpreemptive tour costs 10 units. This raises
a very fundamental question—what is the worst-case ratio of the cost of an optimal
nonpreemptive tour to that of an optimal preemptive tour? Our example shows that
the ratio is at least 5

4 .

We show that the ratio between the optimal nonpreemptive and preemptive tours
is at most 4 by showing that, given a preemptive tour of length L, we can find a
nonpreemptive tour of length at most 4L. This theorem is proven by using a variety
of different ideas. One interesting method is a general technique for simulating a
preemptive tour of a unit-capacity vehicle by a nonpreemptive tour that travels the
same distance (Lemma 2.7).

Related work. A closely related problem is the stacker-crane problem. This
problem also involves making deliveries with a vehicle of capacity k. In the stacker-
crane problem, the objects are not identical and each object has a specific target
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destination. The goal is to find a shortest tour that performs the transportation. For
the unit-capacity case, Frederickson, Hecht, and Kim [15] gave an algorithm with an
approximation factor of 1.8. For the case when the underlying metric is a tree, Freder-
ickson and Guan [13, 14] have given fast algorithms to compute optimal solutions for
the preemptive case and fast approximation algorithms for the nonpreemptive case.
(The problems are NP-hard even for trees.) Knuth [19, section 5.4.8] discusses Karp’s
work [18] on the problem for paths and trees. Fast algorithms were given by Atallah
and Kosaraju [7] for the cases in which the graph is either a simple cycle or path.
The algorithms are slightly faster for the cases when drops are permitted. Frederick-
son [12] showed improved running times for a cycle when no drops are allowed. The
issue of tours under various types of restrictions has also been investigated by Arkin,
Hassin, and Klein [3].

Outline of the paper. In section 2 we describe an approximation algorithm for
the k-delivery TSP that obtains an approximation ratio of 5. We first prove a simpler
bound of 6.5 in section 2, and then, in section 3, we provide a better analysis of our
algorithm. We also show how to “convert” a preemptive tour to a nonpreemptive tour.
We prove that the total length of the nonpreemptive tour obtained by our algorithm
is at most four times the length of the preemptive tour. In section 4, we describe a
simple algorithm that finds a preemptive tour whose length is at most five times the
length of an optimal preemptive tour.

Notation. An optimal nonpreemptive tour for the k-delivery TSP is denoted by
Ck, and an optimal preemptive tour is denoted by C ′k. We will use Ck or C ′k to denote
the length of the tour as well, and one can distinguish between the two meanings from
the context.

2. An approximation algorithm for k-delivery TSP. In this section, we
provide an approximation algorithm and an analysis for its performance. We also
show how to simulate a preemptive tour by a nonpreemptive tour. In particular,
we show that C1 ≤ kC ′k (Lemma 2.7). (This also shows the interesting result that
C1 = C ′1, C2 ≤ 2C ′2, C3 ≤ 3C ′3.)

We prove the following theorems.
Theorem 2.1. Consider an arbitrary instance of k-delivery TSP. There is a

polynomial-time approximation algorithm that finds a nonpreemptive tour whose length
is at most five times the length of an optimal tour (possibly preemptive). In the special
case when the points are specified on the plane, and edge-costs are specified by Eu-
clidean distances, the approximation ratio can be improved to 4(1+ε) for any constant
ε > 0.

Theorem 2.2. The length of an optimal nonpreemptive tour of a k-delivery
TSP instance is at most four times the length of an optimal preemptive tour, i.e.,
Ck ≤ 4C ′k.

2.1. Overview of the algorithm. The main idea is the following: First con-
struct a tour of all the given points. Starting from some initial vertex, we traverse
the tour, picking up pegs, and delivering them to slots, on-line. In other words, when
the vehicle passes through a node with a peg, it picks up the peg, and when it passes
through a slot, it drops a peg there. We show that if the vehicle has unbounded
capacity, then there is always a starting point such that the vehicle can complete all
deliveries without ever running out of pegs. If the vehicle has bounded capacity k,
the simple scheme outlined above does not work directly. We need to address the
following two situations: (a) the vehicle is full when a peg is visited, and (b) the
vehicle is empty when a slot is visited.
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In the following discussion, we assume that k is even. We will later describe
how to handle the case when k is odd. The performance ratio is at most 51

6 for
odd k. We treat the vehicle as full when it has k/2 pegs on it, and the remaining
capacity is used as a “buffer.” The tour is broken up into segments of 3 kinds: (i)
neutral segments with equal number of pegs and slots, (ii) positive segments that have
k/2 more pegs than slots, and (iii) negative segments that have k/2 more slots than
pegs. Neutral segments are processed as mentioned in the above scheme. In most
practical situations, most parts of the tour constructed may be neutral segments, and
in this case our algorithm would do very well since neutral segments are processed
by traversing them only once. By definition, there are as many positive segments
as negative segments. We compute a minimum-weight perfect matching between the
positive and the negative segments. When the vehicle is passing through a positive
segment on its tour, it delivers the excess pegs to the negative segment to which the
positive segment is matched.

The main difficulty in analyzing such a scheme is that the cost of a matching
between the positive and the negative segments has to be bounded with respect to
an optimal tour. Note that the matching does not include all nodes in the original
problem, and therefore it could possibly be arbitrarily expensive. Another compli-
cation is that the segments do not have the same number of points on them. The
techniques used in the previous results [1, 10] do not yield a bound on the cost of
such a matching. We show how to bound the cost of the matching with respect to
an optimal tour and use it to derive a better approximation bound. We now describe
the algorithm in detail.

2.2. The algorithm.
1. Construct a tour T that visits all the points.
2. Fix a reference point P on the tour T .
3. Traverse the tour T in some direction starting from P .
4. Compute the excess function excess(e) for each edge e of T . excess(e) =

pegs(e)− slots(e), where pegs(e) is the number of pegs encountered before
e is traversed, and slots(e) is defined analogously as the number of slots
encountered before e.

5. For each value of i ∈ [0, k/2) do
(a) Break the tour into pieces by removing all edges with excess(e) ≡

i mod k/2. Call these edges cut edges. Figure 2.1 shows a sample tour
and a plot of the excess function for a counterclockwise traversal of the
tour (with k = 6 and i = 0).

(b) We get p-pieces (positive pieces), n-pieces (negative pieces), and 0-pieces
(zero or neutral pieces) as follows.
• A p-piece is one where the excess function is x on the cut edge
preceding the piece and x+k/2 on the cut edge following the piece;
for all edges e in the piece, excess(e) ∈ (x, x+ k/2).

• An n-piece is one where the excess function is x on the cut edge
preceding the piece and x−k/2 on the cut edge following the piece;
for all edges e in the piece, excess(e) ∈ (x− k/2, x).
• A 0-piece is one where the excess function is x on the cut edge

preceding the piece and x on the cut edge following the piece; for all
edges e in the piece, either excess(e) ∈ (x− k/2, x) (such a piece is
called decreasing) or excess(e) ∈ (x, x+k/2) (such a piece is called
increasing).
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Fig. 2.1. A tour and the excess function plotted for k = 6 and i = 0.

(c) Compute a matching on the p- and n-pieces as follows:
• Construct a weighted bipartite graph B = (V +, V −, E) on p- and
n-pieces as follows: There is one vertex in V + for each p-piece and
one vertex in V − for each n-piece. For each p-piece u+ and each
n-piece w−, the edge (u+, w−) has weight equal to the minimum-
weight edge connecting a vertex in u+ and a vertex in w−.
• Compute a minimum-weight perfect matching M in the bipartite
graph B. A p-piece and an n-piece that are matched to each other
are said to form a p/n-pair.

(d) Now traverse the tour starting from any point in both clockwise and
counterclockwise directions as follows (assume for now that we start each
traversal at the beginning of a piece with exactly k/2 pegs; Lemma 2.3
shows how this assumption is unnecessary):
• On encountering a 0-piece, we move along the piece picking up pegs
and delivering them. Since we start with k/2 pegs, we can do this
in a single traversal and reach the end of the piece with k/2 pegs.
Note that we leave the piece with k/2 pegs.
• When we encounter the first piece of a p/n-pair, we service the pair
as follows: Suppose we encounter a p-piece P+ which is matched
with n-piece P− by edge e ∈ M . Note that there must be an
edge e′ corresponding to e, such that e′ connects some vertex in
P+ to some vertex in P−, and the weight of e′ is the same as that
of e. Traverse P+, performing pickups and deliveries, until e′ is
encountered. Now, move to the beginning of P− and traverse P−

performing pickups and deliveries. Then move back to the point in
P+ where we left off and continue performing pickups and deliveries.
Note that after servicing a p/n-pair in this way, we finish with k/2
pegs. The case when the n-piece is encountered before the p-piece
is handled similarly.
• When we encounter the second piece of a p/n-pair, we simply tra-
verse the piece without performing any pickups and deliveries (since
it has already been serviced).

(e) For both of the tours (clockwise and counterclockwise) described above,
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find a valid starting point (i.e., a starting point such that we never run
out of pegs and the number of pegs carried is at most k). Lemma 2.3
guarantees the existence of such a starting point.

6. Return a shortest tour from amongst the k tours constructed (two for each
i ∈ [0, k/2)).

2.3. Analysis: A weaker bound. We can prove an upper bound of 5 on the
approximation ratio achieved by the above algorithm. Since the proof is complex, we
prove a simpler bound of 6.5 that contains the basic ideas. In fact, for the simpler
proof we can fix i = 0 in the above algorithm. To prove the better bound, we need to
try all values of i. Section 3 contains the proof for the bound of 5. We also prove the
relationship between the tour generated by the algorithm and C ′k (Theorem 2.2).

Lemma 2.3. A valid starting point is guaranteed to exist in step 5(e) of the
algorithm.

Proof. Suppose we started the tour constructed by the algorithm at the beginning
of any piece with a vehicle preloaded with k/2 pegs. Then the following invariant is
maintained throughout the tour: The vehicle has exactly k/2 pegs when it traverses
a cut edge from one piece to another. We can verify that the number of pegs carried
by the vehicle always lies in the interval [0, k]. This would be a valid tour except
for the fact that we assumed that we initially started with k/2 pegs. Let n(e) be
the number of pegs carried by the vehicle as it traverses edge e (beginning with k/2
pegs). Consider the edge emin, where n(e) reaches its minimum value, say, x (break
ties arbitrarily). Suppose we start a new vehicle with no pegs from edge emin. Let
n′(e) be the number of pegs carried by the new vehicle as it traverses edge e. It can be
verified that n′(e) = n(e)− x. By the choice of emin, this ensures that the number of
pegs carried by the vehicle always lies in the interval [0, k]. This proves the existence
of a valid starting point for the tour and, in fact, also gives a simple method to find
such a starting point.

Based on the above lemma, we can also show the following lemma.

Lemma 2.4. There is a polynomial-time approximation algorithm for the ∞-
delivery TSP (i.e., the vehicle has infinite capacity) with a performance ratio of 1.5.
For geometric instances on the plane, the approximation ratio is 1+ ε for any ε > 0.

Proof. Let TOPT be a minimum length tour of all the points. Since C ′k is a
tour of the points, TOPT ≤ C ′k. The algorithm constructs a tour T of all the points.
For the algorithm, we will assume that an α-approximation of the TSP tour is used,
and therefore the weight of the tour is at most αTOPT ≤ αC ′k. If Christofides’s
algorithm is used, then α ≤ 1.5. For geometric instances, such as points in the
plane, the algorithms of Arora [4, 5] and Mitchell [20] can be used to obtain a (1+ ε)
approximation of the TSP tour. In this case, α = 1 + ε for any constant ε > 0.
Using the same ideas as in the above lemma, we can show that there is always a valid
starting point on this tour such that we never run out of pegs.

In step 5(c) we find a matching M on the p- and n-pieces. We need to bound
the weight of the matching M . We cannot bound the weight of the matching by
the method used in [10] since the matching is not being computed in a graph that
includes all the pegs and slots. We use a different approach to bound the weight of
the matching.

Let A be a minimum-weight perfect matching between pegs and slots, where a
peg must be matched to a slot. We use A to denote the matching and its weight. One
can distinguish between the two meanings from the context.
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2.3.1. Bounding the matching A. The following lemmas derive an upper
bound on the ratio of the weight of matching A to the weight of an optimal preemptive
solution. Even though there are other ways of proving this directly, these proof
methods also show how to “simulate” a preemptive solution with a nonpreemptive
solution.

Our main goal is to prove the following theorem.
Theorem 2.5. A ≤ k

2C
′
k.

This theorem follows once we establish the following lemmas.
Lemma 2.6 (see [10]). A ≤ 1

2C1.
We now prove that a nonpreemptive unit-capacity vehicle can simulate a preemp-

tive capacity-k vehicle with an increase of the length of the tour by a factor of k. One
could attempt to prove this by walking around the cycle k times, but the problem is
that we may attempt to pick up a peg that is not yet “available.”

Lemma 2.7. C1 ≤ k · C ′k.
Proof. Consider a tour C ′k which delivers pegs to slots and is allowed intermediate

dropping points. We will show that we can convert this tour into one of length k ·C ′k,
where the pegs are carried to slots with no intermediate drops by a unit-capacity
vehicle. Assume the vehicle of capacity k starts at s and returns to s.

We construct an auxiliary multigraph G = (V,E) from the tour as follows. The
vertex set of the graph is defined to be

V = {s} ∪ {x|x is an intermediate drop point}.

Imagine that we store the pegs on numbered compartments in the vehicle. The
numbers are 1 . . . k. The tour starts from s and visits pegs/slots and intermediate drop
points. We can view the tour as “segments,” where it goes back and forth between
the vertices of the graph we constructed (see Figure 2.2). We create k edges in G for
each movement done by the vehicle between two vertices of G. Each edge corresponds
to a numbered compartment. We associate with each such edge the pegs which were
placed into this compartment and the slots which were serviced by removing a peg
from this compartment. Thus each edge is associated with an alternating sequence of
pegs and slots. As the vehicle moves from vertex x to vertex y of G, each numbered
compartment undergoes the following various changes:

(1) Lose a peg. (Leave x with a peg; arrive at y with no peg.) The corresponding
edge is associated with a peg/slot sequence of the form sps . . . ps. (Here p
represents a peg and s a slot.)

(2) Gain a peg. (Leave x with no peg; arrive at y with a peg.) The corresponding
edge is associated with a sequence of the form psp . . . sp.

(3) Move without carrying anything from x to y. (We may load and unload
pegs in this compartment during the motion.) The corresponding edge is
associated with a sequence of the form psp . . . ps (possibly empty).

(4) Move carrying a peg from a vertex to another vertex. (We may unload and
load pegs in this compartment during the motion.) The corresponding edge
is associated with a sequence of the form sps . . . sp (possibly empty).

Each edge corresponding to a compartment is a labeled edge in the multigraph. Type
(1) edges are labeled as − edges. Type (2) edges are labeled as + edges. We subdivide
edges of type (3) by a vertex xy. The edge from x to xy gets the label +, and the
edge from xy to y is labeled as a − edge. We subdivide edges of type (4) by a vertex
xy. The edge from x to xy gets the label −, and the edge from xy to y is labeled as a
+ edge. We can think of a + edge as being associated with an odd length alternating
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peg/slot sequence that begins and ends with a peg. Similarly, a − edge can be thought
of as being associated with an odd length alternating peg/slot sequence that begins
and ends with a slot.

Lemma 2.8. For each vertex of the auxiliary multigraph G, the number of +
labels incident to it is equal to the number of − labels incident to it.

Proof. For each compartment, the contribution to the + and − label is the same.
Consider a vertex v that is a dropping point. The number of pegs that are carried to
it are carried away. (Formally, each vertex v occurs a number of times on the tour.
There are 4 cases: (a) come with a peg, leave it here, and go (+v+); (b) come with a
peg, leave with a peg (+v−); (c) come with no peg, go with no peg (−v+); (d) come
with no peg, go with a peg (−v−). The number of cases (a) and (d) are the same
since (a) increases peg count and (d) decreases peg count.)

In order to construct a solution that does not drop pegs at intermediate loca-
tions, we need to construct an alternating sequence of pegs and slots which visits
every peg and every slot. Find an Euler tour that alternates using + and − edges
in this multigraph. (When we enter a vertex on a + edge we can leave on a − edge
and vice versa.) The Euler tour can be interpreted as a nondrop tour solution for
a vehicle with unit capacity. The unit-capacity vehicle simply traverses the edges
in the order of the Euler tour. When we traverse a particular edge, we service the
sequence of pegs and slots associated with that edge. The definition of + and −
edges ensures that we encounter pegs and slots in an alternating fashion. This there-
fore gives a nondrop tour solution with unit capacity. This completes the proof of
Lemma 2.7.

We illustrate this construction by an example in Figure 2.2. Suppose we are given
the preemptive tour that starts at s, pick up a peg on path A, and drop it off at the
first drop off point. We then take the loop marked B performing one delivery, come
back to pick up the dropped off peg, and take the loop marked C. We return with a
peg, drop it off at the same place, and then take the path D, drop off a second peg,
come back to pick up the first peg on path E, deliver it on path F, pick up the second
peg, and take path G, returning to s.

Corresponding to this traversal, we construct the auxiliary multigraph G. We
have three vertices to begin with. Path A gains a peg and is marked +. Path B is a
loop on which we leave without a peg and return without a peg; we subdivide this edge
and it is a +− edge. Path C is a loop on which we leave with a peg and return with
a peg, and so we subdivide it and mark it a −+ edge. In a similar manner we finish
the construction of the multigraph. An Euler tour in this multigraph that alternates
between + and – edges is easy to find. This corresponds to a nonpreemptive traversal.

2.3.2. Bounding the matching M . Let W be a matching (which we call a
wiggly matching) that matches pegs to slots such that all points are matched except
for some k/2 pegs in each p-piece and k/2 slots in each n-piece. We use the wiggly
matching to bound the cost of the matching M as follows.

Lemma 2.9.

M ≤ 2

k
(A+W ).(2.1)

Proof. Consider the symmetric difference of A and W . A is a perfect matching
and W is a matching where all the pegs and slots in the 0-pieces are matched, and in
each p- (n-) piece, there are k

2 unmatched pegs (slots). The symmetric difference has
even length cycles and paths. Since A is a perfect matching, the symmetric difference
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Fig. 2.2. Illustrating construction of auxiliary multigraph G = (V,E) for a unit-capacity vehicle.

is a collection of disjoint augmenting paths (with respect to W ) that start and end
with edges from A at vertices of degree 1 in the graph A ∪ W . The only vertices
having degree 1 are pegs in the p-pieces and slots in the n-pieces. Each augmenting
path with respect to W has a peg at one end and a slot at the other end. This gives
us paths from pegs to slots such that each p-piece has k/2 paths emerging from it and
each n-piece has k/2 paths ending on it. This collection of paths can be decomposed
into k/2 perfect matchings between p- and n-pieces (because the edges of a d-regular
bipartite graph can be decomposed into d perfect matchings [8]). It follows that the
weight of the minimum-weight perfect matching on the p- and n-pieces is at most the
average weight of the k

2 matchings we found. By triangle inequality, the weight of the
symmetric difference is at most the sum of the weights of the matchings. This proves
the lemma.

Recall that T is the tour of all the points constructed by the algorithm. Let T (±)

be the total length of the p/n-pieces and let T (0) be the total length of the 0-pieces.
Let T (C) be the total length of the cut edges. Then T = T (±) + T (0) + T (C).

2.3.3. Bounding the matching W .
Lemma 2.10. There exists a wiggly matching (a matching that matches pegs to

slots such that all points are matched except for some k/2 pegs in each p-piece and
k/2 slots in each n-piece) W such that

W ≤ k

2

(
1

2
T (±) + T (0)

)
.(2.2)

Proof. We will construct the wiggly matching separately for 0- and p/n-pieces. A
0-piece can be traversed in one of the two directions by a vehicle with no pegs initially
such that pegs are picked up and delivered without having to back up. Suppose this
vehicle operates like a stack, pushing and popping pegs. For each j ∈ [0, k/2), consider
the pegs which were placed in location j of this stack and the slots which were serviced
by popping a peg from location j of this stack. This defines a path of the form psp . . . s,
where p stands for a peg and s stands for a slot. We match each peg on this path
with the slot immediately following it. The total length of the matching edges is at
most the length of the path. However, the length of the path is at most the length
of the 0-piece. Since we construct k/2 paths, the total length of the matching within
this 0-piece is at most k/2 times the length of the 0-piece.
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A p-piece can be traversed (in either direction) by a vehicle with no pegs initially
such that pegs are picked up and delivered without having to back up. The vehicle
ends up with k/2 pegs at the end. Analogous to the construction for a 0-piece, we
define a path corresponding to each location j of the stack. Each path is of the form
psp . . . sp. Now we can match pegs with slots either starting from the left or the right.
In either case, one peg is left unmatched. We choose the lower cost matching between
the two. The total cost of the two matchings is exactly the cost of the path. Thus
the smaller of the two matchings costs at most half the length of the path. Again the
length of each path is at most the length of the p-piece. Since we construct k/2 paths,
the total length of the matching within this p-piece is at most k/4 times the length
of the p-piece. A similar construction can be done for n-pieces. Hence the lemma
follows.

Theorem 2.5 bounds the weight of the matching A to be at most k
2C
′
k. Substi-

tuting into (2.1) for A from the theorem and for W from (2.2), we get

M ≤ C ′k +
1

2
T (±) + T (0).(2.3)

Proof of Theorems 2.1 and 2.2. Note that in the two tours constructed by the
algorithm, each 0-piece is traversed once and each cut edge is traversed once. Also the
first of each p/n-pair is traversed once while the second is traversed thrice. Averaging
over the two traversals, we charge each p/n-piece twice. Each edge in M is traversed
twice.

Hence the average length of the two tours constructed is at most

2M + T (0) + 2T (±) + T (C) ≤ 2C ′k + 3T (0) + 3T (±) + T (C)

≤ 2C ′k + 3T

≤ 2C ′k + 3αC ′k = (2 + 3α)C ′k.

Since α ≤ 1.5, we obtain a worst-case approximation ratio of 6.5. We can also view
this as a constructive proof bounding the ratio of Ck to C ′k. In that case α = 1
and we obtain an upper bound of 5 on the ratio. In section 3 we show a bound of
(2+(2− 4

k2 )α)C
′
k. Using this improved bound, we get an approximation ratio of 5, and

we can bound the ratio of Ck to C ′k by 4. Also, for geometric instances (consisting of
points in the plane with Euclidean distances), using an (1 + ε)-optimal tour [4, 5, 20]
in the first step of the algorithm, we obtain a ratio of 4(1 + ε).

If we are given a fixed starting point q, we obtain a tour that starts and ends at
q as follows. We apply the algorithm as usual. Suppose this constructs a tour that
starts and ends at q′, which is a peg without loss of generality. We first move from q
to q′, traverse the tour constructed by the algorithm, and, on reaching q′ again, move
back to q. We pay an additional cost of twice the distance between q and q′, which
is at most the cost of the optimal tour, since the optimal tour includes two paths
between q to q′. This adds 1 to our approximation ratios.

3. A better analysis. Notice that the previous analysis did not use the fact
that we try different break points and average over them. We now present a better
analysis that builds on the basic ideas from section 2.3 to show that the average tour
length for the k tours constructed is actually at most (2 + (2− 4

k2 )α)C
′
k.

Examining the proof of Lemma 2.10, we observe that the proof constructs k/2
paths within each piece of the tour. The contribution to the total length of the final
tour is the average path length in the p/n-pieces plus twice the average path length in
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Fig. 3.1. Illustrating the definition of paths in terms of the excess function.

the 0-pieces. Here, “average” refers to the average length of the k/2 paths. The earlier
proof bounded each path length by the length of the entire piece. We will improve the
analysis by getting better estimates for the average path lengths by averaging over all
values of i used to define the cut edges of the tour.

For a node v (peg or slot) in the tour T , define before(v) to be the edge preceding
v in T and after(v) to be the edge following v in T .

It will be useful to identify the paths constructed by the proof of Lemma 2.10 with
the values of the excess function on edges within a piece. In the following discussion,
we fix a value of i used to define the cut edges. For a given i, for every integer
j ∈ [0, k/2), we construct a path in each piece based on the values of the excess
function as follows. An edge e is said to be a j-edge if excess(e) ≡ j (mod k/2).

For a p/n-piece, the path consists of the pegs p such that before(p) is a j-
edge and the slots s such that after(s) is a j-edge. For a 0-piece, we define the
paths differently depending on whether the piece is increasing or decreasing. For an
increasing 0-piece, the path consists of the pegs p such that after(p) is a j-edge and
the slots s such that before(s) is a j-edge. For a decreasing 0-piece, the path consists
of the slots s such that after(s) is a j-edge and the pegs p such that before(p) is a
j-edge. See Figure 3.1 for an illustration of this definition of paths. Observe that by
this definition, for all cases, the path for j = i always has zero length. For a p-piece,
it consists of a single peg. For an n-piece, it consists of a single slot. For a 0-piece,
the path for j = i is empty. The reader can verify that the paths constructed by this
definition are identical to the paths constructed in the proof of Lemma 2.10.

Let l
(±)
ij be the total length of the paths corresponding to j (by the above corre-

spondence) within the p/n-pieces when i is used to define the cut edges. We define
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l
(0)
ij similarly for the paths within the 0-pieces.

Call an edge e in a piece j-sandwiched if e is not a j-edge and there is some j-edge
before e and some j-edge after e in the piece. (The j-edges need not be immediately
before and after e.) Note that the property of being a j-edge is independent of the
value of i; however, the property of being a j-sandwiched edge depends on the value
of i used to define the cut edges. In any piece, the path corresponding to j (described
above) consists of j-sandwiched edges and j-edges Thus the length of this path is
bounded by the sum of the total length of the j-sandwiched edges and the total
length of the j-edges in the piece.

Let p
(±)
ij be the total length of the j-sandwiched edges within the p/n-pieces when

i is used to define the cut edges. We define p
(0)
ij similarly for the 0-pieces. Let q

(±)
ij be

the total length of the j-edges within the p/n-pieces when i is used to define the cut

edges. We define q
(0)
ij similarly for the 0-pieces. By the above definitions, we have

l
(±)
ij ≤ p

(±)
ij + q

(±)
ij ,

l
(0)
ij ≤ p

(0)
ij + q

(0)
ij .

Also, when i is used to define the cut edges, let T
(±)
i be the total length of the

p/n-pieces, let T
(0)
i be the total length of the 0-pieces, and let T

(C)
i be the total length

of the cut edges.
Note that

∑
j �=i

q
(±)
ij = T

(±)
i ,

∑
j �=i

q
(0)
ij = T

(0)
i .

Now, the analysis of the previous section bounded the average length of the two
tours produced when a particular value of i is used to define the cut edges. In terms
of the notation introduced, this bound can be written as

4

k
A+

2

k

∑
j �=i

l
(±)
ij +

4

k

∑
j �=i

l
(0)
ij + 2T

(±)
i + T

(0)
i + T

(C)
i

≤ 2C ′k +
2

k

∑
j �=i

(
p
(±)
ij + q

(±)
ij

)
+

4

k

∑
j �=i

(
p
(0)
ij + q

(0)
ij

)
+ 2T

(±)
i + T

(0)
i + T

(C)
i

= 2C ′k +
2

k

∑
j �=i

p
(±)
ij +

4

k

∑
j �=i

p
(0)
ij +

(
2 +

2

k

)
T

(±)
i +

(
1 +

4

k

)
T

(0)
i + T

(C)
i .

Let L be the length of the constructed tour averaged over all the k/2 values of i.
Summing up the above bound over all values of i, we get

k

2
L ≤ kC ′k +

2

k

∑
i

∑
j �=i

p
(±)
ij

︸ ︷︷ ︸
S1

+
4

k

∑
i

∑
j �=i

p
(0)
ij

︸ ︷︷ ︸
S2

+

(
2 +

2

k

)∑
i

T
(±)
i

︸ ︷︷ ︸
S3

(3.1)

+

(
1 +

4

k

)∑
i

T
(0)
i

︸ ︷︷ ︸
S4

+
∑
i

T
(C)
i

︸ ︷︷ ︸
S5

.
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We will compute a bound for sum of the last five terms of the right-hand side of
(3.1) in terms of T .

Consider a particular edge e of the tour. Let us calculate its contribution to the
various terms in (3.1). Suppose e is an r-edge. For each value of i ∈ [0, k/2), i �= r, we
scan to the left and right of e for the closest i-edges before and after e. Let Ai be the
portion of the path between (and not including) these two i-edges. When i is chosen
to define the cut edges of the tour, Ai is a (p/n- or 0-) piece. Accordingly, we label
the segment Ai as p/n or 0. Note that we use the term segment as opposed to piece,
as a segment Ai may or may not be a piece depending on the value used to define the
cut edges.

Edge e contributes to l
(±)
ij iff Ai is a p/n segment and e is j-sandwiched within

Ai, i.e., iff Aj is completely contained within Ai. The edge e contributes to l
(0)
ij iff

Ai is a 0-segment and e is j-sandwiched within Ai, i.e., iff Aj is completely contained

within Ai. The edge e contributes to T
(±)
i iff Ai is a p/n segment and contributes to

T
(0)
i iff Ai is a 0-segment. It contributes to T

(C)
i iff i = r.

Claim. If Ai is a p/n segment, it cannot be contained in any other segment Aj
(j �= i).

Proof. Since Ai is a p/n segment, the excess function changes by k/2 from one
end to the other. Hence there must be some point within it where the excess function
is j mod k/2. Hence one of the end points of Aj must be within Ai, proving the
claim.

Suppose x of the segments Ai are 0-segments and (k2 − x − 1) of them are p/n
segments. Let us calculate the number of times edge e is counted in the various terms
in (3.1).

The contribution to S1 is the number of pairs (Aj , Ai) such that Aj is contained
in Ai and Ai is a p/n-segment By the above claim, Aj must be a 0-segment. Thus the
number of such pairs is at most x(k2 − x− 1). The contribution to S2 is the number
of pairs (Aj , Ai) such that Aj is contained in Ai and Ai is a 0-segment. By the above
claim, Aj must be a 0-segment. Note that if Aj is contained in Ai, then Ai is not

contained in Aj . Thus the number of such pairs is at most x(x−1)
2 . The contribution

to S3 is k
2 − x− 1. The contribution to S4 is x. The contribution to S5 is 1.

Thus the contribution of edge e to the sum of the last five terms in (3.1) is at
most

2

k
x

(
k

2
− x− 1

)
+

4

k

x(x− 1)

2
+

(
2 +

2

k

)(
k

2
− x− 1

)
+

(
1 +

4

k

)
x+ 1

= k − 2

k
− 2x

k
≤ k − 2

k
.

Hence the sum of the last five terms in (3.1) is at most (k − 2
k )T . Using this bound

in (3.1), we get

k

2
L ≤ kC ′k +

(
k − 2

k

)
T,

and hence

L ≤ 2C ′k +
(
2− 4

k2

)
T

≤ 2C ′k +
(
2− 4

k2

)
αC ′k.
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Since α = 1.5, we obtain a 5 − 6
k2 -approximation algorithm. As before, we can also

view this as a constructive proof bounding the ratio of Ck to C ′k. In that case α = 1
and we obtain an upper bound of 4− 4

k2 on the ratio.

3.1. Odd values of k. When k > 1 is odd, we can use our algorithm using
k − 1 as the capacity of the vehicle. Theorem 2.5 and Lemmas 2.6 and 2.7 are true
for all values of k, independent of its parity. In Lemmas 2.9 and 2.10, k should be
replaced by k − 1. If the proof is repeated with these modifications, the performance
ratio increases by an additive term of 2

k−1 . The performance ratio in this case is at

most 5− 6
(k−1)2 + 2

k−1 ≤ 5.1667.

4. A preemptive algorithm. In this section we describe a simple strategy that
also achieves an approximation factor of 5 for the preemptive k-delivery TSP. Our
algorithm outputs a preemptive solution (i.e., may drop pegs at intermediate locations
during the course of the algorithm), and the length traveled by the vehicle is compared
to the length of an optimal preemptive solution.

This algorithm is a modification of the strategy given by Chalasani, Motwani,
and Rao [10].

4.1. The CMR Algorithm. We first review the algorithm given by Chalasani,
Motwani, and Rao [10] for this problem. We then show that a modification of the
algorithm improves the approximation ratio to 6.5 without preemption and 5 with
preemption. We will assume for simplicity that n is a multiple of k and that k is
even. The former assumption can be made to hold by adding at most k − 1 dummy
peg/slot pairs.

1. Find tours (of almost minimum weight) Tp and Ts of the pegs and slots points,
respectively. (This step could be implemented using Christofides’s heuristic
for the TSP.)

2. Break Tp and Ts into paths containing k vertices each, by deleting every kth
edge from each cycle.

3. View each k-path as a “supernode” and construct an auxiliary complete bi-
partite graph which has one vertex for each of the supernodes in Tp and Ts.
The weight of an edge in this bipartite graph is the shortest distance between
a pair of points belonging to the respective supernodes.

4. Find a minimum-weight perfect matching M in this bipartite graph.
5. Traverse the tour Tp and at the end of each segment use the matching M to

transport the k pegs to the corresponding delivery point (supernode) in Ts.

The total length of such a tour is shown to be at most 3Tp+2Ts+2M ≤ 4.5Ck+
3Ck +

2
kA. As shown in [10], A ≤ kCk. Using Christofides’s approximation for the

TSP, Tp and Ts are at most 1.5Ck. The approximation ratio obtained is therefore at
most 9.5. For geometrical instances, such as points in the plane, the algorithms of
Arora [4, 5] and Mitchell [20] can be used to obtain an (1 + ε) approximation of the
TSP, and this leads to better approximation factors for these instances.

Theorem 2.5 shows that A ≤ k
2C
′
k. Since C ′k ≤ Ck, we also have A ≤ k

2Ck.
Using this improved upper bound on the weight of A, the approximation ratio of the
algorithm improves from 9.5 to 8.5. A small change to the algorithm improves it
further to an approximation factor of 7 as follows. We can traverse Tp in two ways.
A clockwise traversal and a counterclockwise traversal give us two tours whose total
length is at most 4Tp + 4Ts + 4M ≤ 12Ck + 4(Ck

2 ). The smaller of these two tours
has length at most the average of these two tour lengths, which is 7Ck.
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Fig. 4.1. Two tours in Tp.

Figure 4.1 illustrates why each segment of the tour Tp is charged at most four
times by the two tours. Observe that each segment of Tp is traversed once in one of
the tours and thrice in the other tour.

4.2. An improved nonpreemptive algorithm. We now present an improved
algorithm that obtains an approximation ratio of 6.5.

1. Find tours Tp and Ts as before.
2. Break Tp and Ts into paths containing k/2 vertices each.
3. View each segment of Tp and Ts as a supernode and construct the auxiliary

bipartite graph as before.
4. Find a minimum-weight perfect matching M in this auxiliary graph. Mark

the segments of Tp sequentially as B1, B2, . . . around the cycle. Each edge in
M matches a segment in Tp to a segment in Ts. Let the segment matched to
Bi, i = 1, 2, . . ., be called Ri, and let Mi be the edge of M connecting Bi and
Mi.

5. The delivery schedule is as follows. Assume that the vehicle starts at the
beginning of segment B1 with k/2 pegs, and proceeds along Tp, picking the
pegs in its path. For i = 1, 2, . . ., when it reaches the vertex in Bi incident
to the matched edge (Mi) in M , it travels across this edge and delivers to Ri
the pegs that were collected from Bi−1. (When i = 1 we deliver the pegs we
started with.) After delivering the pegs, it retraces back on Mi and continues
along Tp.

6. Finally, when the vehicle returns to the starting location, it is carrying k/2
pegs. Lemma 2.3 guarantees that there exists a valid starting point on this
traversal such that the vehicle never runs out of pegs or exceeds its carrying
capacity.

The algorithm above generates a valid vehicle routing without violating the ca-
pacity constraints of the vehicle for the following reason. When it is on a segment
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of Bi that precedes Mi on Tp, it is carrying k/2 pegs from Bi−1 and the other pegs
that have been collected from Bi. Since Bi has at most k/2 pegs, the total number
of pegs that it is carrying does not exceed k. On reaching Mi, the vehicle goes to Ri
and delivers the k/2 pegs that were collected from Bi−1. Therefore, when it returns
to Bi and resumes its journey, it reaches the end of Bi with k/2 pegs that were on Bi.

The reason that the algorithm gives a better approximation ratio is as follows.
Observe that the algorithm goes around Tp only once (except for segment B1) instead
of twice. This decreases the length traveled. However, the cost of M is now more
since there are twice as many segments as before in each of Ts and Tp (because the
segments have only k/2 vertices each).

Extending the analysis from the previous algorithm, we get M ≤ C ′k. The vehicle
traverses Tp once, Ts twice, and M twice. We get the following result: The distance
traveled by the vehicle in the scheme devised by the above algorithm is at most
Tp + 2Ts + 2M+ ≤ 6.5Ck. Therefore, the approximation ratio is at most 6.5.

4.3. An improved preemptive algorithm. In this section, we consider the
vehicle routing problem when the vehicle is allowed to drop some pegs at intermediate
points in the route and pick them up later for delivery. We show that the previous
algorithm can be modified into a preemptive algorithm with an approximation ratio
of a little over 5.

In the previous algorithm, instead of delivering the pegs directly to the slots in
Ri, when we cross Mi, we do the following: The vehicle crosses Mi and leaves k/2
pegs there to be delivered to the slots later. Once the tour along the peg cycle is
completed, the vehicle switches to the slot tour, and delivers the pegs, but this time
picking them up at intermediate points on the Ts as it reaches them. In all, the
vehicle travels around each of the cycles Tp and Ts once each, twice around M , and
once extra on the segments B1 and R1. By selecting B1 and R1 appropriately, over
all possible segments, our algorithm obtains a tour with a ratio of 5 + k/n ≈ 5.
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Abstract. It is well known that the performance of quicksort can be improved by selecting
the median of a sample of elements as the pivot of each partitioning stage. For large samples the
partitions are better, but the amount of additional comparisons and exchanges to find the median of
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n ). We

give a closed expression for a, which depends on the selection algorithm and the costs of elementary
comparisons and exchanges. Moreover, we show that selecting the medians of the samples as pivots
is not the best strategy when exchanges are much more expensive than comparisons. We also apply
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1. Introduction. Quicksort [8] and quickselect [7] are among the most thor-
oughly studied algorithms. Quicksort sorts an array A of n elements by rearranging
A around one of its elements—the pivot—so that the elements smaller than the pivot
are to its left and larger elements are to its right. After the array has been partitioned,
quicksort is recursively applied to the subarrays on either side of the pivot. Quickse-
lect1 selects the mth element (equivalently, the element of rank m in ascending order,
the mth order statistic) out of n using the same divide-and-conquer principle. Once
the array is partitioned and the pivot brought into its correct position, say j, either
the sought element is the pivot (m = j) or the algorithm recursively continues in the
appropriate subarray: the left subarray if m < j, the right subarray if m > j. Excel-
lent sources for background information, implementation, variants, and their analysis
include [3, 12, 13, 22, 23, 24].

In median-of-three quicksort [25] the pivot of each recursive stage is the median
of a sample of three elements. This variant is easily generalized to select the (k + 1)th
element of a sample of size s = 2k + 1 as the pivot. Van Emden [26] showed that
the average number of comparisons to sort an array of size n is q(k) · n lnn + O(n),
where q(k) steadily decreases from q(0) = 2 to q(∞) = 1/ ln 2. The median-of-three
strategy also improves the performance of quickselect [10].

The basic problem with large samples is that the savings achieved because of
more balanced partitions can be swamped in practice by the time spent in finding
the median of the samples. This cost shows up in the lower order terms of the

∗Received by the editors December 8, 2000; accepted for publication (in revised form) June 12,
2001; published electronically October 23, 2001. This research was supported by ESPRIT LTR 20244
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1Also known as Hoare’s Find algorithm.
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average performance of quicksort and quickselect and cannot be disregarded unless n
is impractically large.

McGeoch and Tygar [17] analyzed the expected number of comparisons of quick-
sort for various sampling strategies. They considered fixed-size sampling and hybrid
strategies, which first use a sample whose size is a function of the size of the array
to be sorted, and fixed-size samples in subsequent recursive calls. They proved that
these strategies are worse than using samples of size Θ(

√
n ), where n denotes the size

of the (sub-)array to be sorted in each recursive invocation.
We show in this paper that the optimal sample size as a function of the size n

of the current subarray is a · √n + o(
√
n ) and determine the value of the constant

a in terms of the cost of the median-finding algorithm, taking into account the cost
of comparisons and exchanges. Furthermore, we consider the more general setting
where we pick the (p + 1)th element in the sample with 0 ≤ p < �s/2�. (The case for
�s/2� ≤ p < s reduces to the former by symmetry.)

This paper is organized as follows. In section 2 we set up the basic recurrences
for quicksort and quickselect. In section 3 we analyze the variants with fixed-size
sampling. We rederive known results such as those of van Emden [26] and those of
quickselect with median-of-three [10]. As far as we know, our results regarding the
total cost of quicksort and of quickselect with fixed s > 3 are original.

In section 4 we study the surprising behavior of quicksort when the cost of an
exchange exceeds by far that of a comparison: on the one hand, the optimal value of
p is not p = �(s − 1)/2� but a function of the ratio between the cost of an exchange
and the cost of a comparison; on the other hand, if we always select the medians of
the samples as pivots, then fixed-size sampling is better than using samples whose
sizes grow with n.

In sections 5 and 6 we tackle the study of the variants with sample sizes depending
on n. We analyze quickselect first, since its analysis is easier. We prove in section 5
that if the size of the sample grows with n and is o(n), then the average number
of comparisons and exchanges to select an item of random rank are 2n + o(n) and
n/2+o(n), respectively. By analyzing the lower order terms, we prove that the optimal
sample size is Θ(

√
n ) and give an explicit formula for the constant factor of the main

term, which depends on the cost of the algorithm to select pivots and on the cost of
elementary comparisons and exchanges.

We consider quicksort in section 6. We prove that when s = ω(1) and s = o(n)
the average number of comparisons is n log2 n+ o(n log n) and the average number of
exchanges is 1

4n log2 n + o(n log n). Using similar techniques to those in section 5 we
prove that the optimal sample size for quicksort is Θ(

√
n ) as well and also find the

constant factor of the main term. Moreover, we prove that the best pivots are the
medians of the samples only when exchanges are not too expensive.

In section 7 we show that using fixed-size samples reduces the constant factor in
the main term Θ(n2) of the variance of quickselect. Another result with practical im-
plications is that the variance of quickselect is O(max{n·s, n2/s}) when s = ω(1). For
quicksort, we conjecture that similar results hold. We also discuss tuned implemen-
tations of partitioning for quicksort and quickselect, which avoid making redundant
comparisons and exchanges.

A preliminary version of this work appears in [15] (see also [16, 20]). Some of the
material there is also presented here, in order to make this paper more self-contained.

2. Preliminaries. A basic assumption of this paper is that s, the size of the
samples, is a function of the size n of the (sub-)array to be sorted. We will not write
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down the dependence of s on n most of the time, though. We also assume s(n) = o(n)
and, of course, s(n) ≥ 1. Finally, we assume that the given array contains a random
permutation of distinct elements.

We will denote p (respectively, q) the number of elements in the sample smaller
than (respectively, larger than) the pivot. Therefore the pivot is the (p + 1)th element
(0 ≤ p < s) in the sample, and q = s− 1− p. For the particular case where the pivot
is the median of a sample of odd size, we write s = 2k + 1, where k + 1 is the rank of
the pivot, with p = q = k.

Most analyses of quicksort and quickselect consider only the number of compar-
isons. In this paper, we investigate the average total cost, that is, the sum of the cost
of comparisons and exchanges. We take the cost of a single comparison as the unit
and denote ξ the cost of an exchange relative to that of a comparison.

Both quicksort and quickselect operate by selecting a pivot and then partitioning
the current subarray w.r.t. the pivot. This requires n + 1 comparisons irrespective
of s and p.2 Let X(n, s, p) denote the average number of exchanges during a single
partition stage. We consider here a very common partitioning algorithm, which scans
the subarray from left to right until an element larger than the pivot is found, then
from right to left until an element smaller than the pivot is found, then exchanges the
two designated elements, and then iterates the process again. The partitioning ends
when the two scanning pointers meet [22, 23, 24].3 The following lemma provides the
value of X(n, s, p) for any n, s, and p such that 0 ≤ p < s ≤ n. Its proof is given in
Appendix B.

Lemma 1. The average number of exchanges to partition a random array of size
n when the pivot is the (p + 1)th element of a sample of s elements is

X(n, s, p) =
(p + 1)(q + 1)

(s + 1)(s + 2)

(n + 1)(n + 2)

n− 1
− n

n− 1
.

Let S(s, p) denote the average total cost of the algorithm to select the (p + 1)th
out of s elements. (This algorithm may or may not be quickselect or one of its
variants.) Efficient selection algorithms work in linear time on the average, so we can
safely assume S(s, p) = β · s+ o(s) for some constant β that depends on the selection
algorithm, the costs of comparisons and exchanges, and typically on the ratio ψ = p/s.
For instance, if we count only comparisons (ξ = 0), then β = 3

2 −
∣∣ 1
2 − ψ

∣∣ for Floyd–
Rivest’s SELECT [4], β = 2−2(ψ lnψ+(1−ψ) ln(1−ψ)) for Hoare’s quickselect [11],
and β = 2 + 3ψ(1 − ψ) for quickselect with median-of-three [10]. An important
assumption that we make is that the selection process preserves the randomness of
the input array, copying the sample to a separate area if necessary. Otherwise, the
recurrences below would not be accurate (see section 7.2).

Let π
(s,p)
n,j be the probability that the (p + 1)th element of a sample of s elements

is the (j + 1)th element of a random permutation of size n. It is clear that

π
(s,p)
n,j =

(
j
p

)(
n−1−j

q

)
(
n
s

) , 0 ≤ p < s ≤ n, 0 ≤ j < n.(2.1)

2If partitioning uses sentinels, then the number of comparisons can be reduced to n− 1, but the
main conclusions of this work do not significantly change.

3For other randomness-preserving partitioning schemes (e.g., Lomuto’s partition, as cited by
Bentley [2]) the main conclusions of this paper apply with minor quantitative differences.
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The denominator is the number of ways to pick a sample of size s out of n
elements; the numerator is the number of ways to choose p elements smaller than the
pivot times the number of ways to choose q elements larger than the pivot.

Now we are ready to set the recurrences for Qn, the average total cost of quicksort,
and, for Fn, the average total cost of quickselect averaged w.r.t. the n possible values
of the rank of the sought element. Fn has been investigated in [14, 18, 19] as a
particular case of multiple quickselect with p = 1 in the two last references. (There, p
is the number of sought elements, not the number of elements smaller than the pivot
within the sample.) The term grand average has been used to describe Fn and its

generalizations for multiple quickselect (see, for instance, [13, 19]). Let F
(m)
n denote

the cost of selecting the mth element out of n with quickselect and let Fn denote the
cost of selecting an element of random rank. Then

Fn = E[Fn] =
1

n

∑
1≤m≤n

E

[
F(m)
n

]
,

but the analogous equation does not hold for the random variables.
For quicksort using samples of size s, the nonrecursive cost of selecting the pivot

(the pth element of the sample) and partitioning is

S(s, p) + n + 1 + X(n, s, p) · ξ,
and hence

Qn = S(s, p) + n + 1 + X(n, s, p) · ξ
+
∑

0≤j<n
Pr{the pivot is the (j + 1)th} · (Qj + Qn−1−j)

= S(s, p) + n + 1 + X(n, s, p) · ξ +
∑

0≤j<n

(
π

(s,p)
n,j + π

(s,p)
n,n−1−j

)
·Qj ,(2.2)

where we have used obvious symmetries in the last step.
The recurrence for Fn is a bit more involved. The nonrecursive cost is the same

as in quicksort. However, the probability that a recursive call with an instance of size

j is made is now π
(s,p)
n,j · jn , as we are looking for an element of random rank. Hence,

applying the same symmetries as in the recurrence for quicksort,

Fn = S(s, p) + n + 1 + X(n, s, p) · ξ +
∑

0≤j<n

j

n

(
π

(s,p)
n,j + π

(s,p)
n,n−1−j

)
· Fj .(2.3)

3. Fixed-size samples. We consider here the solution of (2.2) and (2.3) when
s = Θ(1). This analysis is almost straightforward using the continuous master theo-
rem (CMT) [20, 21]. We briefly review this theorem (Theorem 18) and the necessary
definitions in Appendix A for the reader’s convenience.

First of all, the toll function (the nonrecursive cost) tn in the recurrences for Qn
and Fn is

tn =

(
1 +

(p + 1)(q + 1)

(s + 1)(s + 2)
· ξ
)
· n +O(1).

Notice that S(s, p) and several other terms are accounted for in the O(1)-term
above. Now we tackle the analysis of quicksort. The first step to apply the CMT
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requires that we compute the shape function w(s,p)(z) of the recurrence, which es-
sentially is a continuous approximation of the discrete weights. In our instance we
have

w(s,p)(z) = lim
n→∞n ·

(
π

(s,p)
n,z·n + π

(s,p)
n,n−1−z·n

)
=

s!

p! q!
(zp(1− z)q + zq(1− z)p) .

Since tn is linear, the limiting const-entropy is evaluated as H(s, p) = 1−∫ 1

0
z1 w(s,p)(z) dz = 0 for all s and p. Hence, Case 2 of the CMT states that Qn =

tn · lnn/VE(s, p), where VE(s, p) denotes the limiting log-entropy. We use VE(s, p)
for this value after van Emden, who first used this function for the particular case
where p = q = k and ξ = 0 [26]. Proposition 19(b) in Appendix B is useful in the
following computation:

VE(s, p)
�
=−

∫ 1

0

z1 ln z · w(s,p)(z) dz = Hs+1 − (p + 1)Hp+1 + (q + 1)Hq+1

s + 1
,

where Hn =
∑

1≤j≤n 1/j = lnn+ γ +O(1/n) denotes the nth harmonic number, and
γ = 0.577 . . . is Euler’s constant. Therefore, Qn = qξ(s, p) · n lnn + o(n log n), where

qξ(s, p)
�
=

(
1 +

(p + 1)(q + 1)

(s + 1)(s + 2)
· ξ
)
/VE(s, p).(3.1)

It is possible to get more information about Qn by subtracting the main order
term from Qn and setting up a recurrence for the remaining part, i.e., for Rn =
Qn − qξ(s, p)nHn. Applying the CMT again we get Rn = O(n). As a conclusion we
have the following theorem.

Theorem 2. The average total cost of quicksort with fixed-size samples is Qn =
qξ(s, p) · n lnn +O(n).

The analysis of quickselect follows similar steps. Computing the shape func-
tion yields4 w(s,p)(z) = s!/(p! q!)

(
zp+1(1− z)q + zq+1(1− z)p

)
. The limiting const-

entropy is now

H(s, p) = 1− (p + 1)(p + 2) + (q + 1)(q + 2)

(s + 1)(s + 2)
=

2(p + 1)(q + 1)

(s + 1)(s + 2)
,

which is strictly positive for every s and p. Therefore Fn = fξ(s, p) · n + o(n), where

fξ(s, p)
�
=

(
1 +

(p + 1)(q + 1)

(s + 1)(s + 2)
· ξ
)
/H(s, p) =

(s + 1)(s + 2)

2(p + 1)(q + 1)
+
ξ

2
.

As before, we can estimate the lower order terms of Fn by iteratively using the CMT.
Applying it twice, we get a precise asymptotic estimate for the second order term and
the order of magnitude of the third order term (see [16] or [20] for additional details).

Theorem 3. The average total cost of quickselect with fixed-size samples is

Fn = fξ(s, p) · n +

(
S(s, p)− 2− ξ − 3(q + 1)− p(q + 5)

(s + 1)(s + 2)
· ξ
)
· lnn

VE(s, p)
+O(1).

4We use the same symbol to denote quickselect’s shape function and quicksort’s shape function,
even though they are different.
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Fig. 1. Values of f5(s, p).

In section 4 we examine in depth the behavior of qξ(s, p), the constant factor of
the main term of Qn. The behavior of fξ(s, p) in the main term of Fn is much simpler.
For any fixed s, the value of p that minimizes fξ(s, p) is p = (s − 1)/2 if s is odd,
and p = (s− 2)/2 (also p = s/2 by symmetry) if s is even, regardless of the value of
ξ. Figure 1 depicts a typical situation with ξ = 5. Moreover, for any k ≥ 0 we have
that fξ(2k + 1, k) = fξ(2k + 2, k) = 2 + 1/(k + 1) + ξ/2 is a decreasing function of k.
Hence, our best choice for p is always the median of the sample and to let s be “as
large as possible.” In section 5 we precisely characterize the best way to do this.

4. Exchanges in quicksort with fixed-size sampling. In this section we
study which values of s and p minimize the constant factor qξ(s, p) of the n lnn-term
in the average cost of quicksort with fixed-size sampling. Given s and ξ, let p∗(s, ξ)
be the rank of the optimal pivot. For moderately large values of ξ (this includes
the case ξ = 0, where we take into account only comparisons) the optimal pivot is
p∗ = �(s− 1)/2�, and qξ(2k + 1, k) is a strictly decreasing function of k. By contrast,
for large values of ξ the best fixed-size strategy is indeed to have large samples, but
the pivot should be an element of rank p∗ = �(s− 1)/2�.

For convenience we will work with the quotients ψ = p/s rather than with the
actual ranks p for the rest of this section. Figure 2 shows the function q30(s, p) with
two valleys symmetrically disposed at both sides of the line ψ = 1/2. For each s, we
take the smallest p with minimum q30(s, p) to define ψ∗, which is clearly smaller than
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1/2.
In Figure 3 we plot the (scaled) values of the function

qξ(ψ)
�
= lim
s→∞ qξ(s, ψ · s + o(s)) = − 1 + ψ(1− ψ)ξ

ψ lnψ + (1− ψ) ln(1− ψ)

for ξ = 0, 5, 15, 20, and 30. Note that the denominator is, besides the limiting value
lims→∞VE(s, ψ · s), the entropy for the probabilities ψ and 1 − ψ (with the minus
sign). It appears often enough to deserve a special name: for 0 < x < 1, let

h(x)
�
=−x lnx− (1− x) ln(1− x).(4.1)

The function is symmetric around ψ = 1/2 with only one minimum located at
ψ∗ = 1/2 when ξ is not larger than a threshold value τ ; otherwise, we have a local
maximum at ψ = 1/2 and two absolute minima at ψ∗ < 1/2 and at 1 − ψ∗ > 1/2.
In this last case ψ∗ is the unique solution in the interval (0, 1/2) of the equation
∂qξ(ψ)/∂ψ = 0, or, equivalently, of

lnψ + ξ ψ2 lnψ = ln(1− ψ) + ξ(1− ψ)2 ln(1− ψ).(4.2)

The threshold value τ is given by the solution of the equation

∂2qξ(ψ)

∂ψ2

∣∣∣∣
ψ=1/2

= 0,
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Fig. 3. Values of qξ(ψ) for ξ = 0, 5, 15, 20, and 30.

which is τ = 4/(2 ln 2 − 1) ≈ 10.35480. In Figure 4 we see that ψ∗(ξ) = 1/2 for
ξ ∈ [0, τ ], whereas ψ∗(ξ) strictly decreases for ξ > τ , tending to 0 as ξ grows.

For large s we know that p∗ is roughly ψ∗ · s. However, now the question is
whether taking large samples is the best choice (on the asymptotic regime) among
fixed-size sampling strategies. The next theorem states just that.

Theorem 4. For any s and p, qξ(s, p) > qξ(ψ
∗).

Proof. Let u(z) = s!/p! q! · zp(1− z)q. From (3.1) and Proposition 19, we have

qξ(s, p) =

∫ 1

0
u(z) (1 + z(1− z)ξ) dz∫ 1

0
u(z)h(z) dz

.

We will use the following fact: Let f(z), g(z) be positive functions over the interval
[0, 1]. Let z∗ be the location of a minimum of f(z)/g(z), and assume 0 < z∗ < 1 and
g(z) = 0 for 0 < z < 1. Then, as f(z) ≥ g(z)f(z∗)/g(z∗) and u(z) is also positive in
the interval [0, 1], it follows that

∫ 1

0
u(z)f(z) dz∫ 1

0
u(z)g(z) dz

≥
∫ 1

0
u(z) [g(z)f(z∗)/g(z∗)] dz∫ 1

0
u(z)g(z) dz

=
f(z∗)
g(z∗)

.
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Now taking f(z) = 1+z(1−z)ξ, g(z) = h(z) = −z ln z−(1−z) ln(1−z), and since ψ∗

is the minimum of qξ(ψ) = f(ψ)/g(ψ), we have qξ(s, p) ≥ qξ(ψ
∗), and the statement

of the theorem is almost proved. Finally, notice that for any ξ there is always an
interval [ψ1, ψ2] with 0 ≤ ψ1 < ψ2 ≤ 1 such that qξ(ψ) > qξ(ψ

∗(ξ)) and u(z) > 0 for
every ψ in (ψ1, ψ2). Thus qξ(s, p) > qξ(ψ

∗).
An intuitive explanation for the theorem above goes as follows. Assume that

we had a black-box routine such that, given an array of size n and a value 0 <
ψ < 1, it returned the �ψ · n�th element in the array at no cost. Using such a
routine (with some fixed ψ) in the pivot-finding stage of quicksort provides a variant
of quicksort with toll function (1 + ψ(1 − ψ)ξ), log-entropy h(ψ), and average total
cost qξ(ψ)n lnn + o(n log n). Thus the optimal choice for ψ is ψ∗. Now, as we are
deprived from such a routine, we try to get the best possible estimate of the �ψ∗ · n�th
element in the array, which can be done by taking large samples and selecting the
�ψ∗ · s�th element.

Several remarks are in order. On the one hand, the fact that ψ∗ tends to 0 as
ξ tends to ∞ can be informally described as a smooth transition from quicksort to
selection sort. Selection sort is a good sorting method when exchanges are extremely
expensive because it minimizes their number, and quicksort behaves exactly as selec-
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Fig. 5. Values of qξ(k) for ξ = 5, 8, τ , 15, 20, and 30.

tion sort when the smallest element in the array is always selected as the pivot. On
the other hand, we should be aware that the analysis of the case ξ > τ is mainly of
theoretical interest, since we should sort an array of pointers to the actual records
rather than sorting the records themselves if data movements were too expensive.

Now we restrict our attention to the variants of quicksort that always take the
medians of samples of fixed size as the pivots (and therefore are not the best theoretical
alternatives when ξ > τ); that is, we take s = 2k + 1 and p = q = k for some k ≥ 0.
This time we have

qξ(k)
�
= qξ(2k + 1, k) =

1 + (k + 1)/(4k + 6) · ξ
H2k+2 −Hk+1

.

The (scaled) shape of this function is shown in Figure 5 for several values of
ξ. The plot actually depicts the extension of qξ(k) to the real numbers using the
continuous function Ψ(z) = d ln Γ(z)/dz; recall that Ψ(n + 1) = Hn − γ for positive
integers [1]. For ξ = 5, ξ = 8, and ξ = τ (dashed in the figure) the function qξ(k)
steadily decreases with k in accordance with what we know. This behavior changes as
soon as ξ > τ , as qξ(k) has one minimum at finite distance k∗(ξ). Observe in Figure 5
that the location of the minima (which is shown for ξ = 15, 20, and 30) tends to 0



OPTIMAL SAMPLING IN QUICKSORT AND QUICKSELECT 693

0

1

2

3

4

5

6

7

8

9

10

5 10 15 20 25 30 35 40 45

k∗(ξ)

ξ

Fig. 6. Values of k∗(ξ).

when ξ grows.
Figure 6 shows the function k∗(ξ). There is a vertical asymptote as ξ → τ+. For

values of ξ larger than 30 we have k∗ = 0 (plain quicksort). Note that k∗ is not well
defined for some values of ξ. For instance, 1 and 2 compete as optimal choices for k
when ξ = 20.

The function

ξ∗(k)
�
=

4

4(H2k −Hk) k+1
2k+3 − 1 + 1

2k+1

is the pseudoinverse of k∗(ξ) in the sense that k is the optimal choice if ξ belongs to
the open interval (ξ∗(k+ 1), ξ∗(k)). Therefore, qξ∗(k)(k) = qξ∗(k)(k−1) for any k > 0.
For instance, we have k∗ = 1 when 20 < ξ < 30 because ξ∗(2) = 20 and ξ∗(1) = 30.
By convention we take ξ∗(0) =∞.

As a conclusion, we could say that a good estimation of the median of the (sub-)
array is always profitable as far as comparisons are concerned. However, regarding
exchanges we have a trade-off between the short-term profit of selecting a pivot far
away from the median (since only a few exchanges would be needed in that stage)
and the long-term gains of selecting a pivot closer to the median (since an even
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partition means fewer recursive stages and fewer exchanges to be done in the long run).
Roughly speaking, this is why small samples—and consequently, poor estimations of
the medians—are preferable when the important quantity to minimize is the number
of exchanges, i.e., when ξ is large.

5. Optimal samples for quickselect. We already know from section 3 that
selecting the medians of the samples is the best choice to minimize the average cost
of quickselect. Therefore, we will assume s = 2k+ 1 and p = q = k for the rest of this
section, and we will simplify the notation for functions like X(n, 2k + 1, k), writing
X(n, k) instead. Here we will consider the case where k = k(n) is a function of the
current subarray size n.

In principle it pays to have samples as large as possible. However, if s = Θ(n) the
average total cost is not optimal, since the cost of the selection of the pivot is of the
same order of magnitude as the cost of the partition. Hence, we shift our attention
towards samples whose size increases with n but are sublinear, that is, s = ω(1) and
s = o(n).

Under the hypotheses above, s → ∞ when n → ∞, so the coefficient of n in
Fn should be the limit of fξ(s, s/2) for s → ∞. The following theorem rigorously
establishes our intuition. The CMT itself cannot be applied here because the shape
function for this case is not well defined; we require more basic results that we also
review in Appendix A.

Theorem 5. Let s = 2k + 1 and p = q = k, where k = ω(1) and k = o(n).
Then the average total cost of quickselect to find an element of random rank out of n
is Fn = (2 + ξ/2)n + o(n).

Proof. Let Fn(t) be the average total cost of quickselect when we use samples of

fixed size 2t + 1, and let π
(t)
n,j = π

(2t+1,t)
n,j . The const-entropy associated to Fn(t) (see

Appendix A) is

Hn(t) = 1− 2

n2

∑
0≤j<n

j2 π
(t)
n,j + o(1),

which by Proposition 21 in Appendix B has limit H(t) = limn→∞Hn(t) = 1/2 −
1/(4t + 6). Fix any t′ ≥ t. Since x2 is a convex function, the probabilities π

(.)
n,j are

symmetric in j and n − 1 − j, and the weights for t′ are more concentrated around

(n−1)/2 than the weights for t, it follows that
∑

0≤j<n j
2π

(t′)
n,j ≤

∑
0≤j<n j

2π
(t)
n,j , and

hence Hn(t′) ≥ Hn(t) if n is large enough.
On the other hand, the const-entropy associated to Fn is

Hn = 1− 2

n2

∑
0≤j<n

j2π
(k(n))
n,j + o(1).

Since k = ω(1), for any fixed t we have k(n) > t and Hn ≥ Hn(t) as long as n is
large enough. Hence H = limn→∞Hn ≥ limn→∞Hn(t) = H(t). Moreover, H ≥
1/2− 1/(4t+ 6) for any t, so H ≥ 1/2. Furthermore, the upper bound Hn ≤ 1/2 can
be easily derived using the probabilities

πn,j =

{
1 if j = �(n− 1)/2�,
0 otherwise.

Therefore, H = 1/2. Since under the hypotheses the toll function is tn = (1 + ξ/4) ·
n+ o(n), we can conclude from (A.2) that Fn = (1 + ξ/4)n/H+o(n) = (2 + ξ/2)n+
o(n).
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If we consider only comparisons (ξ = 0) Theorem 5 states that the average cost of
quickselect is 2n+o(n), well above the 1.25n+o(n) comparisons needed on average to
locate an element of random rank using Floyd and Rivest’s Select algorithm [4] but
well below the 3n + o(n) comparisons of standard quickselect. Using rather different

techniques than ours, Grübel [6] has shown that Wn = sup1≤m≤n{F(m)
n } converges in

probability to 2n if k = ω(1) and k = o( n
logn ).

Theorem 5 leaves open which is the optimal sample size. To find it we introduce
the function

F(n, k) = −1

2
+
∑

0≤j<n

j2

n2

(
π

(k)
n,j + π

(k)
n,n−1−j

)
= −1

2
+

2

n2

∑
0≤j<n

j2π
(k)
n,j ,

which is only a slight variation of the const-entropy associated to Fn (see the proof
of Theorem 5). As k = ω(1) and k = o(n), we have Fn = (2 + ξ/2) · n + Gn for some
function Gn = o(n). Substituting in the recurrence for Fn we get

Fn = n+ 1 +S(k) +X(n, k) · ξ+ 2
∑

0≤j<n

j

n
π

(k)
n,jGj + (1 + ξ/4) ·n+ (2 + ξ/2) ·F(n, k) ·n.

The asymptotic behavior of X(n, k) and F(n, k) when k grows with n is stated in
the following lemmas.

Lemma 6. If k = ω(1) and k = o(n), then

X(n, k) =
n

4
− n

8k
+ Θ

( n
k2

)
.

Proof. Setting s = 2k + 1 and p = k in Lemma 1 yields

X(n, k) =
(k + 1)n2 − (k + 3)n + (2k + 2)

2(2k + 3)(n− 1)
.

Now it is a simple matter to rewrite the equality above to get the statement of the
lemma.

Lemma 7. If k = ω(1) and k = o(n), then

F(n, k) =
1

4k
+ Θ(max{1/k2, 1/n}).

Proof. Setting s = 2k + 1 and p = k in Proposition 21 of Appendix B we get

F(n, k) =
1

4k
− 3

4k(2k + 3)
− 3

2n
+

3

2(2k + 3)n
+

1

(2k + 3)n2
.

Since Gn = o(Fn), it is rather intuitive that the contribution of the sum of Gj ’s
to the asymptotic location of k∗ is irrelevant. The argument can be formalized as
follows. Fix any δ > 0. By hypothesis, there exists some N such that |Gj | ≤ δ · j for
every j ≥ N . On the other hand, we are assuming k = ω(1), so for large n we have

k ≥ N and π
(k)
n,j = 0 for every j < N . Therefore,

2
∑

0≤j<n

j

n
· π(k)

n,j · |Gj | ≤ 2δ ·
∑

0≤j<n

j2

n
· π(k)

n,j =

(
δ · F(n, k) +

δ

2

)
· n
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when n is large enough. Thus

Fn = n + 1 + S(k) + X(n, k) · ξ + E1(n) · n + E2(n) · F(n, k) · n,(5.1)

where we have the bounds (1+ξ/4)−δ/2 ≤ E1(n) ≤ (1+ξ/4)+δ/2 and (2+ξ/2)−δ ≤
E2(n) ≤ (2 + ξ/2) + δ. Notice that the bounds for E1(n) and E2(n) do not depend
on k. Moreover, S(k) ∼ 2β k for some constant β, where β depends on the chosen
selection algorithm. Then it is easy to see that, for large n, k∗ belongs to the interval
[k1, k2], where k1 minimizes the function of k

2(1 + δ)β k − (1 + δ) · ξ
8k

· n +

[(
2 +

ξ

2

)
− δ

]
(1− δ)

4k
· n,

that we obtain by plugging the asymptotic estimates of S(k), X(n, k), and F(n, k) and
the lower bounds on E1(n) and E2(n) in (5.1), disregarding those terms not depending
on k. Similarly, k2 minimizes the function of k

2(1− δ)β k − (1− δ) · ξ
8k

· n +

[(
2 +

ξ

2

)
+ δ

]
(1 + δ)

4k
· n.

This yields

k1 =

√
((4 + ξ)− 2δ)(1− δ)− (1 + δ) · ξ

16(1 + δ)β
· √n,

k2 =

√
((4 + ξ) + 2δ)(1 + δ)− (1− δ) · ξ

16(1− δ)β
· √n.

The reasoning above holds for every δ > 0, no matter how small we choose it.
Therefore, we can conclude the following theorem.

Theorem 8. Let s∗ = 2k∗ + 1 be the optimal sample size w.r.t. the average total
cost of quickselect to select a random element when the median of the sample is used
as the pivot. Then k∗ =

√
n/4β + o (

√
n ).

The procedure that we have just outlined here will be used again in section 6.
Observe that it has been enough to consider the main terms of S(k), X(n, k), and

F(n, k) to find the main term of k∗. In section 6 we will avoid dealing with the
tedious details by disregarding terms of small order and by obtaining minima as if
these terms did not exist. We have already shown here that it can be done safely and
yields asymptotically valid conclusions.

Finally, notice that Θ(
√
n )-sampling improves the worst-case complexity of quick-

select from Θ(n2) to Θ(n3/2); the same happens with quicksort [17]. This is valid no
matter what the rank of the sought element is and even if the selection of pivots is
made using an algorithm with quadratic worst case.

6. Optimal samples for quicksort. As shown in section 4, picking the median
of the sample as the pivot is not always the best choice. Therefore, we set p = ψ·s+o(s)
for some fixed 0 < ψ ≤ 1/2. We do not necessarily assume ψ = ψ∗(ξ).

The following theorem provides the main term of the total cost of quicksort when
we make the size of the sample grow with the size of the input. The proof (which
we do not give here) uses an argument quite similar to that of Theorem 5, finding
matching lower and upper bounds for the limiting log-entropy of Qn. (For further
details see [16, 20].)
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Theorem 9. Let p = ψ · s + o(s), where 0 < ψ < 1 and s = ω(1) and s = o(n).
Then the average total cost of quicksort is Qn = qξ(ψ) · n lnn + o(n log n).

If we measure only the number of comparisons (ξ = 0), the theorem above states
that any sample size s = ω(1) and s = o(n) with ψ = 1/2 is asymptotically optimal
w.r.t. the main term of quicksort, as the expected number of comparisons for all of
them is Qn ∼ n log2 n.

To investigate the optimal sample size we will assume p = �ψ · (s + 1)� − 1, but
any other discretization satisfying lims→∞(p/s) = ψ would yield similar results.

Let us introduce

Q(n, s, ψ) = − (Hn − h(ψ))
n− 1

n
+
∑

0≤j<n

(
π

(s,p)
n,j + π

(s,p)
n,n−1−j

) jHj

n
,

where h(x) = −x lnx − (1 − x) ln(1 − x) (see (4.1)). The function Q(n, s, ψ) plays a
role analogous to that of F(n, k) in the analysis of quickselect. By Theorem 9 we can
decompose Qn as Qn = qξ(ψ)nHn + Rn, where Rn = o(n log n). The recurrence for
quicksort (2.2) can be then rewritten as

Qn = S(s, ψ) + n + 1 + X(n, s, ψ) · ξ +
∑

0≤j<n

(
π

(s,p)
n,j + π

(s,p)
n,n−1−j

)
·Rj

+
(
Hn − h(ψ)

)
· qξ(ψ) · (n− 1) +Q(n, s, ψ) · qξ(ψ) · n.

Let χψ(s) be the oscillating factor induced by taking ceilings: χψ(s) = �ψ · (s +
1)�−ψ ·(s+1). We have the following lemma for the asymptotic behavior ofQ(n, s, ψ).

Lemma 10. If s = ω(1), s = o(n), and p = �ψ·(s+1)�−1 for some ψ such that 0 <
ψ ≤ 1/2, then Q(n, s, ψ) = 1/2s− (ln(1−ψ)− lnψ) ·χψ(s)/s+O

(
max

{
1/n, 1/s2

})
.

Proof. Using Proposition 20(b) in Appendix B yields

∑
0≤j<n

(
π

(s,p)
n,j + π

(s,p)
n,n−1−j

)
jHj = (Hn −VE(s, p)) · (n− 1)

+
p + 1

s + 1
(Hp+1 −Hq+1) +

q + 1

s + 1
(Hq+1 −Hp+1) +

1

p + 1
+

1

q + 1
− 2

s + 1
− 1.

The last four terms above are O(1). On the other hand, from the equalities p + 1 =
ψ · (s+ 1) +χψ(s), Hn = lnn+γ+ 1/(2n) + Θ(n−2), and ln(1 + 1/x) = 1/x+ Θ(x−2),
it is not difficult to deduce that

−Hs+1 +
p + 1

s + 1
·Hp+1 +

q + 1

s + 1
·Hq+1

= −h(ψ) +
1

2s
−
(

ln(1− ψ)− lnψ
)χψ(s)

s
+ Θ

(
1

s2

)
,

and the lemma follows after a few simple manipulations.
The factor ln(1 − ψ) − lnψ in the statement of Lemma 10 is zero only when

ψ = 1/2. Therefore, the perturbation χψ(s)/s has to be taken into account whenever
we are not selecting the median of the sample as the pivot.

As pointed out in section 2, S(s, p) is linear with the constant of proportionality
typically dependent on the quotient ψ = p/s. Thus we assume S(s, p) = S(s, ψ) =
β · s + o(s) for some constant β = β(ψ). We also need the asymptotic properties of
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X(n, s, ψ) given in the next lemma. It extends Lemma 6 for ψ < 1/2. The proof, very
similar to others in this work, is omitted.

Lemma 11. If s = ω(1), s = o(n), and p = �ψ · (s+ 1)�− 1 for some ψ such that
0 < ψ ≤ 1/2, then

X(n, s, ψ) = ψ(1− ψ)n

(
1− 1

s

)
+ (1− 2ψ) · χψ(s) · n

s
+O

(
max

{
n/s2, 1

})
.

Therefore, by a reasoning identical to that of section 5, we can obtain the leading
term of the optimal sample size s∗ by minimizing

β · s +
n

s
·
(
qξ(ψ)

2
− ψ · (1− ψ) · ξ

)
(6.1)

+
n

s
·
(

(1− 2ψ) · ξ − (ln(1− ψ)− lnψ) · qξ(ψ)
)
· χψ(s).

We will consider two variants of quicksort with sample sizes depending on n. The
first one is setting ψ = ψ∗(ξ), i.e., choosing the optimal ratio p/s, and the second
one is setting ψ = 1/2, that is, always picking the median of the sample (if ξ ≤ τ ,
both variants are identical, as ψ∗ = 1/2 in this case). Fortunately, in any of these
two variants the last term of (6.1) vanishes because of (4.2). Therefore, we can follow
similar steps to those in the analysis of quickselect to obtain the two theorems below.

Theorem 12. Let s∗ denote the optimal sample size w.r.t. Qn when we use the
�ψ∗(s + 1)�th element of the sample as the pivot. Then

s∗ =

√(
qξ(ψ∗)

2
− ψ∗ · (1− ψ∗) · ξ

)
1

β(ψ∗)
· √n + o

(√
n
)
.

Theorem 13. Let s∗ denote the optimal sample size w.r.t. Qn when the median
of the sample is used as the pivot. Then

s∗ =

√(
4− (2 ln 2− 1) · ξ

8 ln 2

)
1

β(1/2)
· √n + o

(√
n
)
.

Notice that Theorem 13 makes no sense when ξ > τ , as the factor multiplying√
n would be the square root of a negative number. This provides a further check for

the conclusions of section 4 and is consistent with the observation that the optimal
samples in that situation have constant size.

In [17] a dynamic-programming algorithm was used to compute several exact
values of the optimal sample size for quicksort to minimize the average number of
comparisons, assuming that standard quickselect was the median-finding algorithm.
The authors reported that their data suggests a best power-law fit proportional to
n0.588. Also, for a tuned variant of quicksort (see section 7.2) they found that the
best fit is proportional to at least n0.475.

Figure 7 shows those exact values as a staircase plot. The continuous curve is the
leading term of the optimal sample size s∗ as stated by Theorem 13, setting ξ = 0
(minimize comparisons) and β(1/2) = 2(1 + ln 2) (use standard Hoare’s quickselect
algorithm). It is in very good accordance with the exact values, even for small values
of n. We conjecture that the o(

√
n ) term in s∗ is actually Θ(1).
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Fig. 7. Exact values of the optimal samples to minimize the average number of comparisons
compared with the main term of s∗ (Theorem 13).

7. Related issues.

7.1. Variance of quickselect. The variance of the number of comparisons of
standard quickselect is Θ(n2) [14] (see also [9, 18]). Thus, there is a low but nonneg-
ligible probability that the number of comparisons actually made is much larger than
the expected number. In this subsection we will study the variance of the number of
comparisons of quickselect with sampling, specifically, for the case where the selected
pivot is the median of the sample. This analysis is somewhat more complicated than
the analysis of its expected performance.

It is worth noting again that we are investigating here the variance of the cost of
quickselect when the rank of the sought element is given by a uniformly distributed
random variable, not the average of the variances of the costs of selecting each element
(see the remark on page 2).

We assume that the median-finding algorithm to select the pivots has quadratic
variance. (If the variance were subquadratic, the basic conclusions of this section
would not change.) A key observation that makes the analysis relatively simple is
that the number of comparisons needed to select the pivot, the number of compar-
isons made to partition the array, and the number of comparisons made in further
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invocations of quickselect in smaller subarrays are mutually independent. If the ran-
dom variable Zn is the sum of two independent random variables, Xn and Yn, and
{Aj}0≤j<n is a family of independent events, then

E
[
Z2
n

]
= E

[
(Xn + Yn)2

]
= E

[
X2
n

]
+ 2 E[Xn] E[Yn] + E

[
Y 2
n

]

= E
[
X2
n

]
+ 2 E[Xn] (E[Zn]− E[Xn]) + E

[
Y 2
n

]

= 2 E[Xn] E[Zn] + E
[
X2
n

]− 2 E[Xn]
2

+
∑

0≤j<n
Pr{Aj}E

[
Y 2
n |Aj

]
.

Applying the equation above with

Xn = number of comparisons made to select the pivot and partition the array,

Yn = number of comparisons made in further recursive invocations,

and Aj = “the pivot is the (j + 1)th”, we can easily obtain recurrences for F
(2)
n , the

second moment of the number of comparisons made by quickselect to find an element
of random rank out of n. We first consider the situation where s = 2k + 1 = Θ(1).

Then the recurrence for F
(2)
n is

F (2)
n = 2(n + Θ(1))Fn − (n + Θ(1))2 +

∑
0≤j<n

w
(k)
n,jF

(2)
j

=
3k + 5

k + 1
n2 +O(n) +

∑
0≤j<n

w
(k)
n,jF

(2)
j .

The weights and shape function are the same as for the analysis of the expected
cost of quickselect with fixed-size samples, but the toll function is now quadratic.
Therefore, the limiting const-entropy is

H(k) = 1− k + 3

2(2k + 3)
=

3(k + 1)

2(2k + 3)
,

and F
(2)
n = (3k+ 5)(4k+ 6)n2/(3(k+ 1)2) + o(n2). Finally, subtracting F 2

n from F
(2)
n

we get the variance of quickselect.
Theorem 14. The variance of the number of comparisons made by quickselect

when using samples of fixed size s = 2k + 1 is

Vn =
2k + 3

3(k + 1)2
n2 + o(n2) =

(
2

3k
+O

(
1

k2

))
n2 + o(n2).

As expected, sampling not only reduces the expected number of comparisons, it
also reduces its variance: if v(k) denotes the coefficient of n2 in Vn, we have v(0) =
1, v(1) = 5/12, v(2) = 7/27 . . . , and limk→∞ v(k) = 0. This suggests that for samples
of increasing size (k = ω(1), k = o(n)) the variance is o(n2). Indeed, this is what
actually happens.

The analysis of this case goes along the same lines as the analysis of the expected
value Fn in section 5. Similar techniques to those used in the proof of Theorem 5 yield

here that the limiting entropy associated to F
(2)
n is H = 3/4. Since the toll function

is 3n2 + o(n2), we have F
(2)
n = 4n2 + o(n2), and the variance is Vn = F

(2)
n − F 2

n =
4n2 + o(n2)− (2n + o(n))2 = o(n2).
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A refinement of this calculation is possible since we know that, because of (5.1),
Fn = 2n + n/(2k) + Θ(k) + Θ

(
n/k2

)
. Substituting this estimate into the recurrence

for F
(2)
n and using F

(2)
j ∼ 4j2 to compute

∑
0≤j<n w

(k)
n,jF

(2)
j , we get F

(2)
n = 4n2 +

Θ
(
max

{
nk, n2/k

})
. We thus have the following theorem.

Theorem 15. The variance Vn of the number of comparisons made by quick-
select when the samples are of size 2k + 1, where k = ω(1) and k = o(n), is
Vn = O

(
max

{
n2/k, nk

})
.

Notice that the upper bound given above is o(n2) for any k such that k = ω(1)
and k = o(n). When k = Θ(

√
n ) the variance is O(n3/2) and the standard deviation

is O(n3/4). This is the right choice, since it simultaneously minimizes the average
number of comparisons (Theorem 8) and the order of magnitude of the variance.

Concerning quicksort, we have not been able to analyze the effect of sampling
in the variance of the number of comparisons. We conjecture that for s = ω(1) and
s = o(n) the variance of the number of comparisons satisfies Vn = O

(
max

{
n2/s, ns

})
,

as in Theorem 15.

7.2. Tuning performance. We might avoid redundant comparisons and ex-
changes as follows [17]: if the input subarray is A[l .. u], we would take the segments
A[l .. l + p] and A[u− q + 1 .. u] as our sample of s = s(u− l + 1) elements and apply
a slightly modified version of quickselect, which would bring the (p + 1)th element
of the sample to A[l], and put all smaller elements in A[l + 1 .. l + p] and all larger
elements in A[u − q + 1 .. u]. Then the partition of A[l .. u] around the pivot at A[l]
would initially set the left scanning pointer to l+p+ 1 and the right scanning pointer
to u− q. The number of comparisons would then be reduced to n + 2− s.

This selection-plus-partition combination is more efficient than the standard mech-
anism assumed in previous sections, but it does not preserve randomness, because
the selection of the pivot reorganizes the elements of the sample. There seems not to
exist—for general s—an efficient way to perform selection in-place and partition with-
out redundant comparisons and exchanges while preserving randomness. However, we
disregard the small amount of sortedness that the selection process introduces and
assume that (2.2) and (2.3) are still valid, yielding at least good approximate results.

The steps and computations are absolutely analogous to those of previous sections.
The results are, qualitatively speaking, identical. For instance, a straightforward
computation—very similar but even simpler than that in the proof of Lemma 1 (see
Appendix B)—yields

X(n, s, p) =
(p + 1)(q + 1)

(s + 1)(s + 2)
(n− 1− s) if s < n.

We present here a couple of results for these tuned variants of quickselect and
quicksort.

Theorem 16. Let s∗ = 2k∗+1 be the optimal sample size w.r.t. the average total
cost of the tuned variant of quickselect to select a random element when the median
of the sample is used as pivot. Then k∗ =

√
n/(4β − 4− ξ) + o (

√
n ).

Theorem 17. Let s∗ be the optimal sample size w.r.t. the average total cost of
the tuned variant of quicksort when the �ψ∗(s + 1)�th element of the sample is used
as the pivot. Then

s∗ =

√
qξ(ψ∗)/2− ψ∗(1− ψ∗) · ξ
β(ψ∗)− 1− ψ∗(1− ψ∗) · ξ ·

√
n + o

(√
n
)
.
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Appendix A. The CMT. We briefly review in this appendix the CMT; since
no proofs are given here, we refer the reader to [20, 21] for a detailed treatment.

Consider a recurrence like

Fn = tn +
∑

0≤j<n
wn,jFj , n ≥ n0,(A.1)

where tn is the so-called toll function and the quantities wn,j ≥ 0 are called weights.
This recurrence is a divide-and-conquer recurrence if and only if the following condi-
tions hold:

1. There exists the limiting value W = limn→∞
∑

0≤j<n wn,j .
2. The sequence Wn =

∑
0≤j<n wn,j converges to W fast enough, namely,

|Wn −W | = O(n−c)

for some constant c > 0.
3. The sequence

Zn =
1

Wn
·
∑

0≤j<n
wn,j ·

j

n

is strictly bounded above by 1 for sufficiently large n.

While the weights wn,j represent the (average) number of recursive calls made to
subproblems of size j when the given instance is of size n, Wn is the (average) number
of recursive calls made for instances of size n and Zn is the average size (as a fraction
of n) of the subproblems.

Theorem 18 (CMT). Let Fn be the solution of (A.1), where tn ∼ Kna logb n
for some constants K, a ≥ 0, and b > −1, and let w(z) be a real function over [0, 1]
such that

∑
0≤j<n

∣∣∣∣∣wn,j −
∫ (j+1)/n

j/n

w(z) dz

∣∣∣∣∣ = O(n−d)

for some constant d > 0. Let φ(x) =
∫ 1

0
zx w(z) dz and define H = 1− φ(a). Then

1. if H > 0, then Fn ∼ tn / H;
2. if H = 0, then Fn ∼ tn lnn / H′, where H′ = −(b + 1)

∫ 1

0
za ln z w(z) dz;

3. if H < 0, then Fn = Θ(nα), where α is the unique real solution of φ(x) = 1.

The proof of this theorem is based upon more basic and technical results which
are also useful to solve or show particular properties of divide-and-conquer recurrences
which do not satisfy the hypothesis of the CMT, e.g., for recurrences for which a shape
function w(z) cannot be found.

We next consider an example of the results mentioned above. These results have
already been used in sections 5 and 6.

Given a function γn > 0 such that γn = o(nσ) and γn = ω(n−σ) for any σ > 0
and a toll function tn, γn is a bounding function of tn if and only if there exist a
constant nγ ≥ 1 and a strictly positive nonincreasing function β(z) in [0, 1] such that
tnγn − tjγj ≥ β(j/n) · tn for all n > nγ and for all nγ ≤ j < n.
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Given a divide-and-conquer recurrence (A.1) for Fn and a bounding function γn
of the toll function tn, the entropy H(γ)

n of Fn with respect to γn (or γ-entropy of Fn,
for short) is

H(γ)
n = γn −

∑
nγ≤j<n

wn,j ·
tj
tn
· γj .

Also, we define the limiting γ-entropy as H(γ) = limn→∞H(γ)
n if it exists. Then it is

possible to prove that

Fn ∼ tnγn / H(γ) .(A.2)

The CMT provides an easy way to determine a bounding function and to compute
the limiting value of the corresponding entropy under appropriate circumstances.
Notice that H ≡ H(1) is the limiting const-entropy and H′ ≡ H(ln) is the limiting
log-entropy.

Appendix B. Combinatorial identities and proofs. In this appendix we
collect several standard results for Beta integrals (see, for instance, [1]) and their
discrete analogues, which easily follow from basic results in discrete calculus (see, for
instance, [5]). We therefore leave the first two propositions without proof.

We also prove Lemma 1 in this appendix.
Proposition 19.

∫ 1

0

zα (1− z)β dz =
α!β!

(α + β + 1)!
,(a)

−
∫ 1

0

zα (1− z)β ln z dz =
α!β!

(α + β + 1)!
(Hα+β+1 −Hα).(b)

For any real x and integer 7 ≥ 0, x� = x · (x− 1) · · · (x− 7+ 1) will denote the 7th
falling factorial of x [5]. Many of the computations in this work involve evaluating
sums of the type

∑
0≤j<n

g(j, n)

(
j

p

)(
n− 1− j

q

)
=

1

p! q!

∑
0≤j<n

g(j, n) jp (n− 1− j)q

for some appropriate function g(j, n). For instance, to evaluate X(n, s, p) we use
g = j(n− 1− j), for F(n, k) we use g = j2, and for Q(n, ψ) we use g = jHj .

Proposition 20 is helpful in coping with these sums. Notice the parallelism with
Proposition 19.

Proposition 20.

A�,m(n) =
∑

0≤j<n
j�(n− 1− j)m = 7! m!

(
n

7 + m + 1

)
,(a)

B�,m(n) =
∑

0≤j<n
j�(n− 1− j)mHj = 7! m!

(
n

7 + m + 1

)
(Hn −H�+m+1 + H�) .(b)

The following intermediate result, which is used in section 5, is just an example
of the usefulness of the proposition above. Similar intermediate results in the analysis
of quicksort (section 6) follow also from Proposition 20(b).
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Proposition 21. For all s and p such that 0 ≤ p < s,

(s + 1)(s + 2)
∑

0≤j<n
j2
(
π

(s,p)
n,j + π

(s,p)
n,n−1−j

)
=
(
(p + 1)(p + 2) + (q + 1)(q + 2)

)
n2

− 6(p + 1)(q + 1)n + (p− q)2 + (s + 1).

Proof. Apply Proposition 20(a) twice, using j2 = (j−x)(j−1−x) + (2x+ 1)(j−
x) + x2, with x = p the first time and with x = q the second time.

We end this appendix with a proof of Lemma 1, which gives a closed expression
for X(n, s, p).

Proof of Lemma 1. Here we assume that the subarray to be partitioned contains
the pivot in its first position. If the pivot ends at A[j + 1] after partitioning and
there were t elements in A[2 .. j + 1] greater than the pivot, then exactly t swaps were
needed to arrange the array. (We do not count the one or two additional swaps just
before and after the partitioning.) The probability of this to happen is

(
j
j−t
)(
n−1−j

t

)
(
n−1
j

) ,

by an argument largely analogous to the one used to obtain the value of π
(s,p)
n,j in (2.1).

Thus

X(n, s, p) =
∑

0≤j<n
π

(s,p)
n,j

∑
t

t ·
(
j
j−t
)(
n−1−j

t

)
(
n−1
j

) .

We can now use the “derivative” of Vandermonde’s convolution [5],

∑
t

t

(
b

c− t

)(
a

t

)
= a

(
a + b− 1

c− 1

)
,

to get

X(n, s, p) =
∑

0≤j<n
π

(s,p)
n,j ·

j(n− 1− j)

(n− 1)
.

Finally, using the equality j(n−1−j) = (j−p)(n−1−j−q)+(j−p)(q−p)+(pn−p2−p)
yields

X(n, s, p) =
Ap+1,q+1(n) + (q − p) ·Ap+1,q(n) + (pn− p2 − p) ·Ap,q(n)

p! q! (n− 1)
(
n
s

) ,

where Pp,q(n) is as in Proposition 20(a). The rest of the proof is a simple matter of
computation.
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guatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, Barcelona, Spain,
1997.

[21] S. Roura, Improved master theorems for divide-and-conquer recurrences, J. ACM, 48 (2001),
pp. 170–205.

[22] R. Sedgewick, The analysis of quicksort programs, Acta Inform., 7 (1976), pp. 327–355.
[23] R. Sedgewick, Implementing quicksort programs, Comm. ACM, 21 (1978), pp. 847–856.
[24] R. Sedgewick, Quicksort, Garland, New York, 1978.
[25] R. Singleton, Algorithm 347: An efficient algorithm for sorting with minimal storage, Comm.

ACM, 12 (1969), pp. 185–187.
[26] M. van Emden, Increasing the efficiency of quicksort, Comm. ACM, 13 (1970), pp. 563–567.



THE COMPACTNESS OF INTERVAL ROUTING FOR
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Abstract. Interval routing is a compact way of representing routing tables on a graph. It is
based on grouping together, in each node, destination addresses that use the same outgoing edge in
the routing table. Such groups of addresses are represented by some intervals of consecutive integers.
We show that almost all the graphs, i.e., a fraction of at least 1 − 1/n2 of all the n-node graphs,
support a shortest path interval routing with three intervals per outgoing edge, even if the addresses
of the nodes are arbitrarily fixed in advance and cannot be chosen by the designer of the routing
scheme. In case the addresses are initialized randomly, we show that two intervals per outgoing
edge suffice, and, conversely, that two intervals are required for almost all graphs. Finally, if the
node addresses can be chosen as desired, we show how to design in polynomial time a shortest path
interval routing with a single interval per outgoing edge for all but at most O(log3 n) outgoing edges
in each node. It follows that almost all graphs support a shortest path routing scheme which requires
at most n+O(log4 n) bits of routing information per node, improving on the previous upper bound.

Key words. interval routing, compact routing, random graphs

AMS subject classifications. 05C85, 69Q10, 68R10, 68Q25
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1. Introduction.

1.1. Background. A universal routing strategy is an algorithm which generates
a routing scheme for every given network. One type of trivial universal routing strat-
egy is based on schemes that keep in each node a full routing table which specifies an
output port for every destination. Though this strategy can guarantee routing along
shortest paths, each router has to locally store Θ(n log d) bits of information, where
d is the degree of the router (i.e., the number of output ports) and n is the number
of nodes in the network.

The interval routing scheme [9, 10] is a compact routing scheme, i.e., a routing
scheme that needs to keep only a small amount of information in each node to route
messages correctly through the network. The idea of this scheme is to label the n
nodes of the network with unique integers from {1, . . . , n} and to label the outgoing
arcs in every node with a set of intervals forming a partition of the name range. The
routing process sends a message on the unique outgoing arc labeled by an interval that
contains the destination label. While the preprocessing stage of such a routing scheme
(which is performed once in the initialization of the network) might be complex, the
delivery protocol consists of simple decision functions which can be implemented with
O(kd log n) bits in each node of degree d, where k is the maximum number of inter-
vals assigned to an arc. Such a routing scheme supports a compact implementation
whenever k is small in comparison with n or d.
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In [8], it is shown that there is no universal routing strategy that can guarantee
a shortest path routing scheme with less than Ω(n log d) bits per node for all the n-
node networks of maximum degree d. This result means that there is some worst-case
network where for any shortest path routing function, the number of bits required to be
stored in a router is not significantly smaller than the size of a routing table, whatever
the node labeling (from the range {1, . . . , n}) and the shortest paths are. Fortunately,
such a problematic situation where the routing tables cannot be compressed occurs
for a limited number of worst-case networks only.

In particular, in [3], it is shown that for almost all the n-node networks the size of
the routing tables can be reduced to O(n) bits per node. More precisely, it is shown
that all labeled graphs but a 1/n3 fraction can be routed with a scheme that uses
3n+ o(n) bits of information, under the assumption that nodes are randomly labeled
in the range {1, . . . , n}, and that every node knows its neighbors for “free,” or that
the port assignment may be changed. Moreover, if, during the initialization process
of the network, nodes can be relabeled with binary string of length c log2 n+o(log2 n)
bits1 (for constant c > 3), then c log2 n bits per node suffice to route along the shortest
paths for almost all networks.

1.2. Definitions and results. In this paper, we consider shortest path routing
schemes only. An undirected graph G = (V,E) represents the classic model of the
underlying topology of the network. An n-node graph G with the nodes labeled by
labels from the set {1, . . . , n} is said to support a k-interval routing scheme (k-IRS
for short) if there exists an interval routing scheme R for G with the property that
for every (directed) edge e, the set of node labels to which R routes messages via e
is composed of at most k intervals. (An interval means a set of consecutive integers
taken from {1, . . . , n}, where n and 1 are considered to be consecutive.)

Our goal is to find a labeling of the nodes and a shortest path system in order to
minimize the maximum number of intervals assigned to the edges of the graph. We
distinguish three models depending on the freedom we have in labeling the nodes.

1. Adversary. Labels are fixed in advance (by an adversary) and cannot be
permuted.

2. Random. Labels are randomly permuted.
3. Designer. Labels can be chosen (by the routing designer) in order to achieve

the smallest possible number of intervals.
In all three models, the routing designer has the freedom of selecting the shortest

paths to be used.
Corresponding to these three models, we introduce the following three parameters.

We denote by IRSA(G) the smallest integer k such that G supports a k-IRS in the
adversary model (namely, for every arbitrary labeling of the nodes). We denote by
IRSR(G) the smallest k such that G supports a k-IRS in the random model (namely,
given a random labeling of the nodes of G) with high probability. Finally, we denote
by IRS(G) the smallest k such that G supports a k-IRS in the designer model (namely,
under some specifically chosen node labeling of G). Clearly, IRS(G) � IRSR(G) �
IRSA(G) for every graph G.

The parameter IRS(G), sometimes called the compactness of the scheme, has
been computed for many classes of graphs (see [6] for a recent overview). Notably,
in [7] it is shown that for every G, IRSR(G) < n/4 + o(n), whereas there exists some
worst-case G0 such that IRS(G0) > n/4− o(n). However, as shown in this paper, the

1Where hereafter log denotes the logarithm in base 2.
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situation is considerably better for the “average” case. Specifically, we will see that
IRS(G) � 2 for a fraction of at least 1− 1/n2 of all the n-node labeled graphs.

Technically, we use random graphs instead of the Kolmogorov random graphs
used in [3]. A discussion about the relationships between random and Kolmogorov
random graphs can be found in [4]. The class Gn,p denotes the classic model of n-node
labeled random graphs, where 0 � p � 1 represents the probability of having an edge
between any two nodes. Clearly, a random graph G ∈ Gn,1/2 has a given property P
with probability α if and only if P holds for a fraction of α of all the n-node labeled
graphs. Interval routing on random graphs has been first investigated in [5], where
some lower bounds are given for IRS(G) for G ∈ Gn,p. More precisely, it is shown
therein that for p = n−1+1/s for integer s > 0, such that there exists some ε > 0
satisfying (ln1+ε n)/n < p < n−1/2−ε, a graph G ∈ Gn,p satisfies

IRS(G) � 1

10
n1−6/ ln (np)−ln (np)/ lnn(1.1)

with high probability. It is also shown that for some p = n−1+1/Θ(
√

logn), a graph

G ∈ Gn,p satisfies IRS(G) = Ω(n1−1/Θ(
√

logn)) with high probability. In this paper,
we investigate the case where p is a fixed constant, e.g., p = 1/2, in order to establish
some average results on the total space of n-node graphs. (Note that for constant p,
(1.1) cannot be used since in this case p lies outside the validity range.)

The following table presents our results for each model. The results of the table
are proved for a fraction of at least 1− 1/n2 of all the n-node labeled graphs.

Label select Designer Random Adversary

Upper bound IRS � 2 IRSR � 2 IRSA � 3
Lower bound IRS � 1 IRSR � 2 IRSA � 3

At this time, we are still unable to decide whether IRS(G) = 1 or 2 for almost
every graph G in the model where both the node labels and the shortest path system
can be chosen in advance by the designer. However, we present a polynomial time
algorithm to design a 2-IRS for all graphs but a 1/n fraction such that for every node,
all its outgoing edges are labeled with a single interval, except for up to O(log3 n)
edges where two intervals are required. It follows that almost every graph supports
a shortest path routing scheme that can be implemented with n + O(log4 n) bits,
improving on the best known result (cf. [3]). Note that our result is stated with the
assumption that nodes can be permuted but without the assumption that nodes know
their neighbors.

2. Randomly assigned node labels. In this section, we show that in the ran-
dom model, almost every graph G satisfies IRSR(G) = 2. This implies, in particular,
that almost every graph G satisfies IRS(G) � 2. This is done by showing that, with
probability at least 1 − 1/n2, a random graph G from Gn,1/2 satisfies IRSR(G) = 2.
Actually, we show that the result holds for the class Gn,p of random graphs for each
fixed probability 0.45 < p < 1.

2.1. Upper bound. In this subsection, we shall prove that IRSR(G) � 2. As-
sume the node labels {1, . . . , n} are assigned randomly for the graph G. In that case,
given that G is a random graph in Gn,p, we may assume that the nodes are first
marked by the labels 1 through n, and only then we draw the edges randomly and
uniformly with probability p.
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For random graphs selected from Gn,p, we have the following simple bounds.2 We
denote by Γ(v) the set composed of v and of its neighbors.

Lemma 2.1. With probability at least 1− 1/n3, and for every fixed 0 < p < 1, a
random graph G ∈ Gn,p is of diameter 2, and for every node v ∈ V,

np− 3
√
n lnn � |Γ(v)| � np + 3

√
n lnn.

Let EA denote the event that the random graph at hand does not satisfy the
properties asserted in Lemma 2.1. Henceforth, we ignore that possibility and restrict
our attention to EA.

For notational convenience, we identify nodes with their labels, i.e., denote V =
{1, . . . , n}.

Consider a node v0 ∈ V . We need to argue that with high probability, the edges
of v0 can be labeled with at most two intervals per edge so that for every possible
destination vd ∈ V , the selected edge is along a shortest path from v0 to vd.

Let A = Γ(v0) \ {v0} and B = V \ Γ(v0). Since G satisfies the event EA,

np− 3
√
n lnn− 1 � |A| � np + 3

√
n lnn,(2.1)

n(1− p)− 3
√
n lnn � |B| � n(1− p) + 3

√
n lnn.(2.2)

Let

C = {v ∈ B | v + 1 ∈ A and (v, v + 1) ∈ E} .
Lemma 2.2. With probability at least 1 − 1/n3, the size of the set C is bounded

by

n(1− p)p2 − 5
√
n lnn � |C| � n(1− p)p2 − 5

√
n lnn.

Proof. Consider a vertex v ∈ B, and let Iv denote the event that v ∈ C. This
event happens precisely if v + 1 ∈ A and (v, v + 1) ∈ E. These two subevents are
independent and both occur with probability p, and hence P(Iv) = p2. Also note
that the events Iv for v ∈ B are mutually independent. Let Z be a random variable
denoting the size of |C|. Then Z =

∑
v∈B zv, where zv is the characteristic random

variable of the event Iv. Hence, Z is the sum of |B| mutually independent Bernoulli
variables, and its expected value is E(Z) = |B|p2, and hence applying Chernoff’s
bound (cf. [1]) we get

P

(
Z � n(1− p)p2 + 5

√
n lnn

)
� P

(
Z � E(Z) + 2

√
n lnn

)

� exp


−

(
2
√
n lnn

)2

n


 � 1

n4

and

P

(
Z � n(1− p)p2 − 5

√
n lnn

)
� 1

n4
,

and the lemma follows.

2We state a variant of the bounds suitable to our needs and make no attempt to optimize them;
see [2] for sharper statements.
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Let EB denote the event that the random graph at hand does not satisfy the
property asserted in Lemma 2.2 for some node v0. Note that the probability for this
event is bounded above by 1/n3. Henceforth, we ignore that possibility and restrict
our attention to EB .

Let us now define one interval per emanating edge of v0 to take care of routing
to the nodes in A ∪ C. For every node w ∈ A, mark the edge (v0, w) by the interval
[w − 1, w] if w − 1 ∈ C and by the interval [w] if w − 1 ∈ C.

It is thus left to show how the remaining interval per edge of v0 can be used
to route optimally towards the nodes in X = B \ C. This is done as follows. Let
X = {x1, . . . , xm}. Note that since G satisfies the events EA and EB ,

n(1− p)(1− p2)− 8
√
n lnn � m � n(1− p)(1− p2) + 8

√
n lnn.

We now describe a process for selecting a subset of A, denoted Y = {y1, . . . , ym} ⊆
A, such that there is an edge (xi, yi) ∈ E for every 1 � i � m. Once this is done, we
mark each edge (v0, yi) by the interval [xi], thus completing our task.

The selection process is a straightforward greedy one. Let Q = A. Having already
selected y1, . . . , yi−1, the ith step consists of selecting yi to be some arbitrary neighbor
of xi in Q and discarding yi from Q. If, at any stage, the node xi considered by the
process has no neighbors in the remaining set Q, then the process fails and we abort
our attempt to provide a 2-IRS for G.

We need to argue that with very high probability, the process does not fail. Let
Fi be the event that the process fails in the ith step. Note that at the beginning of
step i the current set Q is of size

|Q| = |A| − (i− 1) � |A|+ 1−m

� np− n(1− p)(1− p2)− 11
√
n lnn

� n

2

(
p− (1− p)(1− p2)

)

for sufficiently large n.
Let

f(p) = p− (1− p)(1− p2) = − p3 + p2 + 2p− 1.

Then f ′(p) = −3p2 +2p+2, which is positive for 0 < p < 1. Therefore, f increases on
this range. Note that3 f(0.45) > 0.01. Therefore, for 0.45 < p < 1, and for sufficiently
large n, |Q| > n/200.

Event Fi occurs only if xi is not connected to any node of Q. This is the inter-
section of |Q| independent events of probability 1− p each, and hence

P(Fi) � (1− p)n/200 < c−n

for constant c > 1. Let EF (v0) denote the event that the process fails for v0. This
event occurs if for some xi ∈ X, no remaining common neighbors of v0 and xi could
be found, i.e., EF (v0) =

⋃
i Fi. We have P(EF (v0)) < mc−n. It follows that for a

sufficiently large n, the event EF =
⋃
v0
EF (v0) has probability P(EF ) � 1/n3.

Combining all possible failure events (namely, EA ∪ EB ∪ EF ), we get that for
sufficiently large n, the probability that our process fails to generate an interval routing

3Actually, the root of f(p) = 0, for 0 < p < 1, is p0 ≈ 0.445041.
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scheme for the graph with two intervals per edge is bounded from above by 1/n2. We
remark that all the intervals considered here are linear, i.e., of the type [a, b] with
a � b, and are strict, i.e., do not include the label of the node itself.

Theorem 2.3. For sufficiently large n, and for every fixed 0.45 < p < 1,
a random graph G ∈ Gn,p satisfies IRSR(G) � 2 with probability at least
1− 1/n2.

2.2. Lower bound. In this subsection, we prove that IRSR(G) � 2 for almost
every graph G for a random assignment of node labels.

Again, we assume the node labels {1, . . . , n} are assigned randomly for the graph
G, so given that G is a random graph in Gn,p, for p fixed, we may assume that the
nodes are first labeled 1 through n and the edges are randomly drawn only later. As
in the previous subsection, we assume the event EA.

We need to show that with high probability, a single interval per edge will not be
sufficient for producing shortest paths.

Consider a node x ∈ {1, . . . , n}. Suppose that x is connected to x + 1 and x + 3
and that x+2 is not connected to any node from {x, x + 1, x + 3}. Let I(x, u) be the
interval assigned to the edge (x, u) that contains x+ 2. Since the diameter of G is 2,
it follows that u ∈ {x + 1, x + 2, x + 3}. I(x, u) must contain u and x+2, but neither
x + 1 nor x + 3, which are connected to x. This contradicts the fact that I(x, u) is
composed of a single interval.

Let xi = 4i − 3, for every i ∈ {1, . . . ,m}, with m = �n/4�. Let Ki denote the
event xi as in the previous configuration, and let EK denote the event that there
exists an event Ki0 that occurs. Note that by the above discussion, the probability
of IRSR(G) > 1 (under the event EA) is lower bounded by P(EK).

Let Zi be the characteristic random variable of the event Ki, and Z =
∑m
i=1 Zi.

The events Ki are independent, and each one occurs with probability p2(1 − p)3.
Therefore, P(Z = 0) = (1− p2(1− p)3)m < 1/n3 for a sufficiently large n. It follows
that P(EK) � 1− 1/n3.

Theorem 2.4. For sufficiently large n, and for every fixed 0 < p < 1, a random
graph G ∈ Gn,p satisfies IRSR(G) � 2 with probability at least 1− 1/n2.

3. Adversely assigned labels. Next we assume the adversary model, in which
the assignment of the node labels {1, . . . , n} to nodes is done by an adversary, aiming
to cause the routing scheme to use the maximum number of intervals. We show that
almost every graph G satisfies IRSA(G) = 3.

3.1. Upper bound. We start by showing that with probability at least 1−1/n2,
a random graph G from Gn,p satisfies IRSA(G) � 3, for every fixed probability p,
1/3 < p < 1. More generally, we show that for each integer k � 2, IRSA(G) � k with
probability at least 1− 1/n2 for G ∈ Gn,p, for each fixed p, 1/k < p < 1.

Once again, by Lemma 2.1, we are allowed to restrict our attention to the event
EA, and assume the graph G = (V,E) at hand is of diameter 2, and such that for
every node v ∈ V , np− 3

√
n lnn � |Γ(v)| � np + 3

√
n lnn.

Consider a node v0 ∈ V and an integer k � 2. We need to argue that with high
probability, the edges of v0 can be labeled with at most k intervals per edge so that
for every possible destination vd ∈ V , the selected edge is along a shortest path from
v0 to vd.

Let A = Γ(v0) \ {v0} and B = V \ Γ(v0). Let us first define one interval per
emanating edge of v0 to take care of routing to the nodes of A. Namely, for every
node w ∈ A, mark the edge (v0, w) by the interval [w]. It is left to show how the
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remaining k − 1 intervals per edge of v0 can be used to route optimally towards the
nodes of B.

This is done as follows. Let B = {b1, . . . , bm}. Recall that A and B satisfy
inequalities (2.1) and (2.2). We now describe a process for selecting an intermediate
node ai ∈ A for every 1 � i � m such that the routing from v0 to bi will go through
ai. For this, we need to ensure that there is an edge (ai, bi) ∈ E for every 1 � i � m.
Once this is done, we mark each edge (v0, ai) by the interval [bi], thus completing our
task.

The selection process is similar to the greedy process of section 2.1. Let Q = A,
and define a counter C(a) for each node a ∈ A, initially setting all counters to zero.
Having already selected a1, . . . , ai−1, the ith step consists of selecting ai to be some
arbitrary neighbor of bi in Q, increasing the counter C(ai) by one, and discarding ai
from Q if the counter has reached k − 1. If, at any stage, the node bi considered by
the process has no neighbors in the remaining set Q, then the process fails and we
abort our attempt to provide a k-IRS for G.

We need to argue that with high probability, the process does not fail. Let Fi be
the event that the process fails in the ith step. Note that at the beginning of step i the
counters sum up to i − 1, and hence at most �(i− 1)/(k − 1)� nodes were discarded
from Q, so the current set Q is of size

|Q| � |A| −
⌊
i− 1

k − 1

⌋
> |A| − |B|

k − 1

> np− n(1− p)

k − 1
− 6
√
n lnn− 1

>
n

2

(
p− 1− p

k − 1

)

for sufficiently large n. Since p > 1/k, and k > 1, it implies that

p− 1− p

k − 1
> 0.

Therefore, there is a constant α > 0 such that for sufficiently large n, |Q| > αn.
Event Fi occurs only if bi is not connected to any node of Q. This is the intersec-

tion of |Q| independent events of probability 1−p each, and hence P(Fi) � (1−p)αn <
c−n, for constant c > 1. Letting EF (v0) denote the event that the process fails for
v0, i.e., EF (v0) =

⋃
i Fi, we have P(EF (v0)) � mc−n. It follows that for a sufficiently

large n, the event EF =
⋃
v0
EF (v0) has probability P(EF ) � 1/n3.

Combining all possible failure events (namely, EA∪EF ), we get that the probability
that our process fails to generate an interval routing scheme for the graph with three
intervals per edge is bounded from above by 1/n2. We remark that all the intervals
used in the scheme are linear and strict.

Theorem 3.1. For sufficiently large n, for every integer k � 2, and for every
fixed p in the range 1/k < p < 1, a random graph G ∈ Gn,p satisfies IRSA(G) � k
with probability at least 1− 1/n2.

In particular, a graph G ∈ Gn,1/2 satisfies IRSA(G) � 3 with probability at least
1− 1/n2.

3.2. Lower bound. We restrict our attention to random graph G ∈ Gn,1/2 and
show that IRSA(G) � 3 with probability at least 1−1/n2. As in the previous sections,
we assume the event EA; i.e., G has diameter 2.
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The main idea is the following. Consider a node v such that |Γ(v)| = d + 1, for
some suitable integer d < n/2, and let A = Γ(v) \ {v}, and B = V \ Γ(v). Now
suppose that A = {a1, . . . , ad}, and C = {b1, . . . , bd+1} ⊂ B such that the following
two assumptions hold:
(A1) For every i ∈ {1, . . . , d}, ai is connected to neither bi nor bi+1.
(A2) The adversary has labeled the nodes by ai = 2i and bi = 2i − 1 for all i ∈

{1, . . . , d}. (The other nodes have arbitrary labels.)
Since |A| < |C|, for every shortest path routing there exist two nodes b, b′ ∈ C, b < b′,
that are reached from v through the same a ∈ A. Thus the set Iv,a that labels the
edge (v, a) contains a, b, b′. However, a − 1, a + 1 ∈ Iv,a, and by assumption (A1)
b + 1, b′ − 1 ∈ Iv,a. It forces at least three linear intervals for Iv,a.

However, if the labeling is allowed to be nonstrict and nonlinear, b = 1, b′ = n−1,
and v = n ∈ Iv,a, it is possible to have b and b′ in a single wraparound interval which
does not contain b+1 and b′−1. For example, Iv,a = [a]∪[b′, b]. In order to strengthen
our lower bound we will show that, actually, with high probability this node labeling
implies three intervals, even if the intervals used are nonstrict and nonlinear. Indeed,
it suffices to show that there is a node b′′ ∈ B \ C that is not connected to a. From
the definition of the node labeling b < b′ < b′′. Therefore, even if b = 1 and v ∈ Iv,a,
the set Iv,a cannot contain the subinterval [b′, b] since it would contain b′′.

First, we prove4 that with high probability there must be some node v such that
|Γ(v)| � n/2− 16 log2 n.

Lemma 3.2. With probability at least 1 − 1/n3, there exists a node v such that
|Γ(v)| � n/2− 16 log2 n.

Proof. For every node v, let deg(v) = |Γ(v)| − 1. Consider an arbitrary v ∈ V .
Note that deg(v) is the sum of n− 1 independent Bernoulli random variables each of
probability 1/2. Therefore,

P(deg(v) = i) =

(
n−1
i

)

2n−1
.

For notational convenience, let m = n− 1. For every integer h, 0 < h < m/2,

P(deg(v) < m/2− h) =
1

2m

m/2−h−1∑
i=0

(
m

i

)

=
1

2m



m/2∑
i=0

(
m

i

)
−

m/2∑

i=m/2−h

(
m

i

)


� 1

2m


2m−1 −

m/2∑

i=m/2−h

(
m

i

)
 .

By the Stirling formula,
(
m
m/2

)
� c · 2m/

√
m for some constant c > 0. Also,

(
m
i

)
�(

m
m/2

)
for every 0 � i � m. Hence,

P(deg(v) < m/2− h) � 1

2m
(
2m−1 − (h + 1)c · 2m/

√
m
)

� 1

2
− (h + 1)c√

m
.

4Again, making no attempt to optimize the constants involved in the calculations.
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Hence, for h = 16 log2 n + 1, we have P(deg(v) < m/2 − h) � 1/4 for sufficiently
large n. The probability that all the nodes have degree at least m/2 − h is thus
bounded by (3/4)n � 1/n3 for sufficiently large n. Hence, with probability at least
1− 1/n3 there exists a node v such that deg(v) � n/2− 16 log2 n− 1, and the lemma
follows.

Hence, we have |B| − |A| � 32 log2 n. Define a “walk” in G such that any two
consecutive nodes of the walk are nonadjacent, as follows. Start the walk at an
arbitrary node b1 of B, continuing to an arbitrary nonneighbor a1 in A, from there
back to an arbitrary nonneighbor b2 in B, and so on. Continue in that fashion for the
first |A| − �8 log n� “double steps” (each consisting of two substeps, from B to A and
back to B) and ending at some node at ∈ A.

Lemma 3.3. With probability at least 1−1/n3, the walk does not get stuck during
its first |A| − �8 log n� steps.

Proof. First, consider a random v. Let QB = B and QA = A. Having already
selected b1, a1, . . . , bi−1, ai−1, the ith step of the walk consists of choosing an arbitrary
bi ∈ QB \ Γ(ai−1) and discarding bi from QB . It fails if |QB \ Γ(ai−1)| = 0, i.e., if
ai−1 is connected to all nodes of QB . Let F iB be this failure event. This event is the
intersection of |QB | independent events of probability 1/2 each. Note that at any step
|QB | � |B| − |A| � 32 log2 n; thus

P(F iB) �
(

1

2

)32 log2 n

<
1

n32
.

Then we choose ai ∈ QA \ Γ(bi), discarding ai from QA. Let F iA denote the event
“|QA \ Γ(bi)| = 0.” It occurs if bi is connected to all nodes of QA. This is the
intersection of |QA| independent events of probability 1/2 each. Since |QA| � 8 log n,

P(F iA) �
(

1

2

)8 log n

=
1

n8
.

Thus letting Fi = F iA ∪ F iB be the event that the walk fails at the ith step, we have

P(Fi) <
2

n8
.

Therefore, the walk fails within the first |A| − �8 log n� < n/2 steps with probability

P

(⋃
i

Fi

)
<

1

n7
.

Finally, the probability that the walks from any of the nodes v fails is bounded by

P

(⋃
v

⋃
i

Fi

)
<

1

n3
.

Let EW denote the event that G does not satisfy the property asserted in Lemma 3.3.
Henceforth, we ignore that possibility and restrict our attention to EW .

Let the first segment of the walk consist of the following sequence of nodes:

b1, a1, b2, a2, . . . , bt, at.



INTERVAL ROUTING FOR ALMOST ALL GRAPHS 715

At the end of the first stage, there are only k = d− t = �8 log n� nodes remaining
in A, at+1, . . . , ad, and more than 32 log2 n nodes in B. Partition the remaining nodes
of B arbitrarily into k + 1 groups of 4 logn nodes each, denoted by Bt+1, . . . , Bd+1.
(The last group may be larger.)

The only thing that remains to do is to pick in each set Bi a distinct node bi that
neighbors both ai−1 and ai, for i ∈ {t + 1, . . . , d}. The resulting second segment of
the walk would be

bt+1, at+1, . . . , bd, ad.

This can be done with high probability again. (For the last step, of choosing bd+1, we
need only to verify that it neighbors ad.)

Lemma 3.4. With probability at least 1 − 1/n3, the second segment of the walk
can be completed successfully.

Proof. The formal proof requires some care, since it is necessary to show that
the events are independent. In particular, for the second stage, we are left with some
nodes in A which were not chosen completely randomly, since these are nodes that
perhaps were not connected to various nodes along the first segment of the walk.
However, the events we look at in the second stage are independent of the events
considered earlier. In particular, for each ai and each b ∈ Bi, the events considered
are “ai is connected to b” and “ai−1 is connected to b,” and these events are indeed
independent of any event considered in the first stage, and of each other. Moreover,
the probability of each such event is exactly 1/2. Therefore,

P(Bi ∩ Γ(ai) = ∅) � 1

24 log n
=

1

n4
,

and similarly

P(Bi ∩ Γ(ai−1) = ∅) � 1

n4
.

Hence, letting EW ′ denote the event that the property asserted in the lemma does not
hold, we have

P(EW ′) � 2(d− t)

n4
� 1

n3
.

The combined path now consists of all nodes of A and |A| + 1 nodes of B, and
the proof follows for linear intervals. To show that the lower bound holds also for
nonstrict and nonlinear intervals, it remains to show the following lemma.

Lemma 3.5. With probability at least 1− 1/n3, there is no node a ∈ A connected
to all nodes of B \ {b1, . . . , bd+1}.

Proof. Let C = {b1, . . . , bd+1}. The probability that all the nodes of B \ C are
connected to a random node a ∈ A is

(
1

2

)|B\C|
<

1

n4

since |B \ C| > 4 log n. Therefore, the probability that at least one node of A is
connected to all of them of B \ C is upper bounded by |A|/n4 < 1/n3.

Combining all possible failure events (namely, EA, Lemma 3.2, EW , Lemma 3.4,
and Lemma 3.5), we obtain the following theorem.

Theorem 3.6. For sufficiently large n, with probability at least 1 − 1/n2, a
random graph G ∈ Gn,1/2 satisfies IRSA(G) � 3.
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4. Designer chosen labels. We next assume the designer model, in which the
assignment of the node labels {1, . . . , n} to nodes is done by the designer of the routing
scheme, aiming to minimize the number of intervals used by the routing scheme.

In this case, the only lower bound we have at the moment is the trivial IRS(G) � 1
for every graph G. In the opposite direction, we are also unable so far to prove an
upper bound of 1 on the maximum number of intervals per edge.

However, we will show that it is possible to assign the node labels in such a way
that, while some edges might still require two intervals, the number of such violations
will be very small, and more specifically, bounded by O(log3 n) with high probability.
In this section, we restrict our attention to the case p = 1/2, so G ∈ Gn,1/2.

The idea behind the selection process is the following. Suppose that the node set
of the given random graph is partitioned into cliques V = C1 ∪ · · · ∪ Cm. Label the
nodes of V according to this partition, so that the nodes of each clique Ci are numbered
consecutively. Now use this partition to define the routing scheme as follows. Consider
a sender v0. Suppose that v0 ∈ CJ , and consider some other clique CI . The central
property we rely upon is that if v0 is adjacent to some of the nodes of CI , then all the
nodes of CI can be provided for using a single interval on each edge going from v0 to
the nodes of CI , as follows. Let CI = {p, p + 1, . . . , q}. If v0 has a unique neighbor ,
in CI , then mark the edge from v0 to , by the interval [p, q]. Otherwise, suppose v0

has neighbors ,1 < ,2 < · · · < ,k in CI . Then the edges ej = (v0, ,j) leading from v0

to these nodes can be labeled by intervals I(ej), as follows:

I(ej) =





[p, ,2 − 1], j = 1,
[,j , ,j+1 − 1], 1 < j < k,
[,k, q], j = k.

Note that this choice of intervals also takes care of the special case of CI = CJ
itself, where every node other than v0 itself is a neighbor of v0.

Thus we are left only with the need of handling the cliques Ci, none of whose nodes
are adjacent to v0. Call these cliques the “remote” cliques. The nodes of these remote
cliques must be reached through nodes of other cliques, potentially using additional
intervals, and at worst using a unique new interval for each node. It is thus required
to bound from above the maximum number of nodes in the remote cliques. Towards
this goal, we rely intuitively on the fact that large cliques are unlikely to be remote.
More precisely, the probability that a clique of size k is remote is roughly 1/2k. It
thus becomes necessary to explore the distribution of clique sizes in a clique partition
of random graphs or at least generate partitions with favorable size distributions.

We make use of the following two properties of random graphs. (In the following,
the function log denotes the logarithm in base 2.) First, regarding the size of the
maximum clique, we have (cf. Chapt. XI.1 of [2]) the following lemma.

Lemma 4.1. With probability at least 1 − 1/nlog log n, the maximum clique in a
random graph G ∈ Gn,1/2 is of size at most 2 log n.

Let EC denote the event that the random graph at hand does not satisfy the
property asserted in Lemma 4.1. Henceforth, we ignore that possibility and restrict
our attention to EC . As before, we also restrict ourselves to EA.

Second, we make use of a natural technique for generating a clique partition
of a given graph. This technique is the “mirror image” of the greedy algorithm
often used to generate a legal coloring for a graph. This simple algorithm operates
as follows. Start by ordering the nodes arbitrarily, numbering them as 1, 2, . . . , n.
Assign the nodes to cliques C1, C2, . . . , Cn one by one, assigning each node to the
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smallest-indexed admissible clique. Node 1 is thus assigned to C1, node 2 is assigned
to C1 if it is a neighbor of node 1, otherwise it is assigned to C2, and so on. It
is known (cf. Chapt. XI.3 of [2]) that with high probability this process will pack
the nodes of the given random graph G in fewer than n/ log n cliques. Moreover,
analyzing the process in more detail, we will derive bounds on the number of small
cliques generated. Specifically, there will be no more than 2k log n cliques of size k
with high probability. Coupled with Lemma 4.1, this can be used to show that the
total number of nodes in remote cliques is bounded (with high probability) by about

2 log n∑
k=1

k · 1

2k
· 2k log n = O(log3 n).

The problem that makes formalizing this argument somewhat more difficult is that
once the partition is calculated, the graph can no longer be treated as random, as the
fact, say, that v0 is not in the clique Ci bears some implications on the probability
that v0 is connected to some node of Ci and prevents us from assuming that all the
events considered in the analysis are independent. Nevertheless, the dependencies can
be bounded and turn out to have little effect on the resulting probabilities.

Let us fix our attention on a node v0, belonging to the clique CJ , and on another
clique CI . We would like to bound the probability that v0 is not connected to any
node of CI .

For every clique Ci and node v ∈ V , partition Ci into Ci = Bi(v) ∪ Ai(v), where
Bi(v) consists of all the nodes that entered Ci before v was considered by the algorithm,
namely, Bi(v) = {w ∈ Ci | w < v}, and Ai(v) = Ci\Bi(v), the nodes added to Ci after
v was added to some clique. Let βi(v) = |Bi(v)| and αi(v) = |Ai(v)|. In particular,
let B = BI(v0), A = AI(v0), β = βI(v0), and α = αI(v0).

Lemma 4.2. If I < J , then the probability that CI is remote from v0 is at most
1/2|CI |−1.

Proof. We will actually prove the somewhat stronger claim that if I < J , then
the probability that v0 is not connected to any node in CI is 1

2α(2β−1)
that is at most

1/2|CI |−1 because β � 1.
Since I < J , when the greedy algorithm considered v0, it had to examine (and

reject) the possibility of adding it to CI before actually adding it to CJ . The fact
that v0 was not added to CI implies that there is some node in B that does not
neighbor v0. However, of all 2β possible connection configurations between v0 and the
nodes of B, the event EN = “v0 has a nonneighbor in B” excludes only the possibility
that v0 neighbors all nodes of B and leaves us with 2β − 1 other possibilities. Hence,
conditioned on EN , we have

P(v0 has no neighbors in B) =
1

2β − 1
.

As for the nodes of A, each such node v was added to CI after v0 was considered,
and since I < J , the decision to add v into CI was reached before considering clique
CJ , and hence it was independent of the existence (or nonexistence) of the edge (v, v0).
Hence,

P(v0 has no neighbors in A) =
1

2α
.

The lemma follows.
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Lemma 4.3. If I > J , then the probability that CI is remote from v0 is at most

1

2β
·
∏
v∈A

2βJ (v)−1

2βJ (v) − 1
.

Proof. Since I > J , when the greedy algorithm considered each node v of CI , it
had to first examine (and reject) the possibility of adding it to CJ . For v ∈ B, the
decision not to add v to CI was clearly independent of the edge (v, v0). (Note that in
fact v0 ∈ AJ(v).) Hence,

P(v0 has no neighbors in B) =
1

2β
.

It remains to consider nodes v ∈ A.
The fact that a node v ∈ A was not added to CJ implies that there exists

a node in BJ(v) that does not neighbor v. However, again, of all 2βJ (v) possible
connection configurations between v and the nodes of BJ(v), the event EN (v) = “v
has a nonneighbor in BJ(v)” excludes only the possibility that v neighbors all nodes
of BJ(v) and leaves us with 2βJ (v) − 1 other possibilities. Of those, v neighbors v0

in exactly 2βJ (v)−1 possibilities. Hence, conditioned on EN (v), the probability that v

does not neighbor v0 is 2βJ (v)−1

2βJ (v)−1
. Hence,

P(v0 has no neighbors in A) =
∏
v∈A

2βJ (v)−1

2βJ (v) − 1
.

The lemma follows.
The product appearing in the bound of Lemma 4.3 is small only when the values

βJ(v) involved in it are sufficiently large. Fortunately, there cannot be too many
nodes v with small βJ(v) values, as we prove next.

For integer k � 1, let XJ(k) denote the set of nodes v that were considered by the
algorithm during the period when CJ contained exactly k nodes and were rejected
from CJ . In particular, we are interested in the collection of such nodes for small
values of k, i.e., X̂ =

⋃log log n
k=1 XJ(k).

Corollary 4.4. Suppose that the clique CI , I > J , contains no node from X̂.
Then the probability that v0 is not connected to any node in CI is at most γ/2

|CI | for
some fixed constant γ > 1.

Proof. Under the assumption of the corollary, βJ(v) > log log n for every v ∈ A.
Therefore,

2βJ (v)−1

2βJ (v) − 1
=

1

2

(
1 +

1

2βJ (v) − 1

)
� 1

2

(
1 +

1

2log log n+1 − 1

)
� 1

2

(
1 +

1

log n

)
.

The bound of Lemma 4.3 thus becomes

1

2β
·
(

1

2

(
1 +

1

log n

))α
.

As the size of the maximum clique in a random graph is at most 2 logn (with proba-
bility at least 1− 1/nlog log n), this bound is no greater than

1

2β
· 1

2α

(
1 +

1

log n

)2 log n

� 1

2β+α
· e2,

and the claim follows.
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Lemma 4.5. With probability at least 1−1/n3, the set XJ(k) is of size |XJ(k)| �
2k+2 lnn for every k � 1.

Proof. Suppose that |XJ(k)| > 2k+2 lnn. For every v ∈ XJ(k), the probability
for v not joining CJ (on account of a missing edge from v to some node in CJ) is
1− 1/2k. Thus the probability of all of those nodes being rejected from CJ is

(
1− 1

2k

)|XJ (k)|
<

(
1− 1

2k

)2k+2 lnn

� e−4 lnn =
1

n4
.

Summing these probabilities over all k yields the desired claim.

Let ED denote the event that the random graph at hand does not satisfy the
property asserted in Lemma 4.5. Henceforth, we ignore that possibility and restrict
our attention to ED. Under this restriction, the size of the set X̂ is bounded above by

|X̂| �
log log n∑
k=1

2k+2 lnn = O(log2 n).

It remains to bound the number of remote cliques CI (that have no neighbor of
v0). Let f(k) denote the number of cliques of size k.

Lemma 4.6. With probability at least 1−1/n2, f(k) � 2k+2 lnn for every k � 1.

Proof. Let us bound the probability of the event that there are more than
2k+1 log n cliques of size k, Ci1 , . . . , Cif(k)

. Let m = 2k+2 lnn and consider the time
when clique Cim was formed by the greedy algorithm (for the purpose of hosting the
currently inspected node v′). For any node v considered after v′, the probability that
it could not have joined the clique Cij is

1− 1

2βij
(v)

� 1− 1

2k
.

Hence, the probability that v could not have joined any of those m cliques is at most

(
1− 1

2k

)m
�
(
1− 1

2k

)2k+2 lnn

� e−4 lnn =
1

n4
.

Consequently, the probability that any of the remaining nodes to be considered by the
algorithm after v′ could not join an existing clique, and a new clique must be formed,
is at most 1/n3. Summing these probabilities for every k, the lemma follows.

Let EH denote the event that the random graph at hand does not satisfy the
property asserted in Lemma 4.6. Henceforth, we ignore that possibility and restrict
our attention to EH .

Lemma 4.7. The number of remote cliques is at most O(log2 n) with probability
1− 1/n2.

Proof. Assuming event ED, the total number of remote cliques that contain a
node of X̂ is at most O(log2 n). It remains to count the remote cliques among the
cliques that do not contain any node of X̂. The probability of such a clique CI being
remote is bounded, in Lemma 4.2 and Corollary 4.4, by δ/2|CI | for some constant
δ > 1.

For every clique Ci of size k, let Ri be the event that Ci is remote. Let R be a
random variable representing the number of remote cliques of size k, and let fR(k)
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denote its expectation. Since R is the sum of f(k) Bernoulli random variables Ri,
each with probability δ/2k, fR(k) is at most δf(k)/2k. Assuming event EH , we have

fR(k) � δ2k+2 lnn

2k
= 4δ lnn.

Applying Chernoff’s bound, we get that

P(R � 8δ lnn) < exp(−2δ lnn) = n−2δ <
1

n2
.

Hence, for the cliques not containing any nodes from X̂, with probability at least
1−1/n2, the total number of remote cliques of any size k is bounded (recalling Lemma
4.1) by O(log2 n).

Combining both clique types together, we get the claim of the lemma.
It follows that for every v0, the number of “problematic” nodes (namely, those of

remote cliques) that need to be assigned an individual interval is bounded by O(log3 n)
with probability 1− 1/n.

Combining all possible failure events (namely, EA ∪ EC ∪ ED ∪ EH), we get that
for a random graph in Gn,1/2, with probability at least 1−1/n, it is possible to assign
node labels and design an interval routing scheme in such a way that for every node
v0, there is a single interval on every edge except at most O(log3 n) edges with two
intervals each. (Spreading the problematic nodes so that each adds an interval to a
different edge is done by a greedy process similar to those of sections 2.1 and 3.) We
remark that the intervals used in the scheme are linear and strict.

Theorem 4.8. For sufficiently large n, with probability at least 1−1/n, a random
graph G ∈ Gn,1/2 can be given an assignment of node labels and a shortest path interval
routing scheme (polynomial time constructible) using a single interval per edge, except
for at most O(log3 n) edges per node where two intervals must be used.

Corollary 4.9. For almost every n-node graph G there exists an assignment
of node labels from the set {1, . . . , n} and a shortest path routing scheme using at
most n + O(log4 n) bits of information per node. Moreover, the routing scheme is
constructible in polynomial time.

Proof. Assume G satisfies Theorem 4.8. The interval routing scheme on G can
be implemented in each node by a table of O(log3 n) integers and a binary vector of
n bits. Indeed, every 1-IRS can be implemented in each node in n + O(log n) bits
(cf. [6]). Note that the O(log3 n) problematic nodes contribute for at most O(log3 n)
single intervals, each one composed of exactly one node label. We store in a table of
O(log3 n) entries the label of these nodes and the output port number that makes an
overhead of O(log4 n) bits in total. These nodes are treated as exceptions and checked
first in the routing process. Therefore, the label of these nodes can be merged to the
remaining intervals in order to simulate a 1-IRS.
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Abstract. We prove general lower bounds for set recognition on random access machines
(RAMs) that operate on real numbers with algebraic operations {+,−,×, /}, as well as RAMs that
use the operations {+,−,×, � �}. We do it by extending a technique formerly used with respect to
algebraic computation trees. In the case of algebraic computation trees, the complexity was related
to the number of connected components of the set W to be recognized. For RAMs, four similar
results apply to the number of connected components of W ◦, the topological interior of W . Two
results use (W )◦, the interior of the topological closure of W .

We present theorems that can be applied to a variety of problems and obtain lower bounds, many
of them tight, for the following models:

1. A RAM which operates on real numbers, using integers to address memory and either the
operations {+,−,×, /} or {+,−,×, � �}.

2. A RAM of each of the above instruction sets, extended by allowing arbitrary real numbers to
be used as memory addresses and adding a test-for-integer instruction.

3. A RAM of each of the above instruction sets which can compute with arbitrary real numbers,
as well as use them for memory addressing, while the input is restricted to the integers. (For one
result on this model, we require that all program constants be rational.)

Key words. algebraic computation trees, element distinctness, knapsack, component counting
arguments

AMS subject classifications. 68Q25, 68P10

PII. S0097539797329397

1. Introduction. Consider a set W ⊂ �n and the problem of recognizing W .
Ben-Or proved that an algebraic computation tree recognizingW requires height that
is at least a logarithm of the number of path-connected components1 of W [2]. For
the exact statement see Theorem 3.1 in section 3. Yao proved that under certain
conditions, an ACT recognizing integer elements of W requires a height that is at
least a logarithm of the number of connected components ofW that have a nonempty
interior [19]. For the exact statement see Theorem 3.2 in section 3. The question
we ask and answer in this paper is, Can we prove similar results for random access
machine models with powerful instruction sets?

A well-known example, the element distinctness problem, is defined byW = {x ∈
�n| xi �= xj for 1 ≤ i �= j ≤ n}. Both Ben-Or and Yao used their theorems to obtain
(as an easy corollary) an Ω(n log n) lower bound on the height of a computation tree
that solves this problem. However on a random access machine (RAM), the problem
can be easily solved in time O(n) by storing a flag in address xi for i = 1, . . . , n.
This indicates that perhaps the answer to our question above is negative. On the
other hand, this solution may perhaps be ruled out: If the xi are real numbers, can
we expect to be able to use them as memory addresses? We return to this question,
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1It turns out that in applying this result, as well as all other theorems given in this paper, it never
becomes necessary to distinguish path-connectedness from connectedness. Therefore, we neglect this
distinction througout.
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for the case of real-number input, later on. However, in the case of integer input,
the objection does not arise, so in this setting it is clear that the applicability of
computation-tree lower bounds to the RAM should be questioned. Interestingly, our
results for the integer-constrained model are obtained using the techniques developed
for the unconstrained case.

We start by making a couple of simple observations concerning Ben-Or’s and
Yao’s theorems. We show that Ben-Or’s theorem still holds if, instead of counting
the connected components of W , we count those of W ◦, the interior of W . For some
sets, this yields a stronger result; for others, the original version is stronger. We can
also make the same modification to Yao’s theorem, obtaining a result which is always
at least as strong as in his formulation, and further gives these two theorems a more
similar form. The importance of these observations is that they hint that one may
obtain results on the complexity of recognizing W by counting the components of
a different, related set ; this twist turns out to be crucial for our results on random
access machines.

Our first new results are corresponding theorems for the real-number algebraic
RAM, i.e., a RAM with operations {+,−,×, /}. We consider two main variants of
this model. In the standard variant, only integers may be used to address memory
locations. For this variant, we prove that recognizing W requires time that is at
least a logarithm of the number of connected components of W ◦, as in our version of
Ben-Or’s theorem.

Referring again to the element distinctness problem, the proofs of the lower
bounds in [2] and [19] use a set W such that both W and W ◦ have n! connected
components. Thus the lower bound of Ω(n log n) time applies to this model.

We also consider a “nonstandard” model which allows arbitrary real numbers to
be used as addresses. For this model we prove that the time to recognize W is at
least a logarithm of the number of connected components of (W )◦, the interior of the
closure of W . The result also holds if an instruction is added to the model, which
tests (at unit cost) whether a given value is an integer.

In the case of Element Distinctness, it turns out that (W )◦ consists of a single
component. This explains why the lower bound for Element Distinctness cannot be
obtained under this model, and indeed it supports the fast algorithm suggested above.

We also show that under conditions similar to those required by Yao, recogniz-
ing integer elements of W requires at least a logarithm of the number of connected
components of (W )◦, just as in the case of real input.

We proceed to consider the truncation operation, also known as floor. We show
that results very similar to the above three propositions also hold for corresponding
models with operations {+,−,×, � �}. Note that the integrality-test operation, al-
lowed in one of the previous results, can be simulated in a straightforward way using
floor ; however, incorporating the full power of floor in our theorems forces us to leave
division out. This is justified by the fact that certain problems (subject to our pre-
vious lower bounds) have faster algorithms on the model that combines floor with
division. A well-known example is Gonzalez’s algorithm for the max gap problem
[16] which runs in linear time, contrasting an Ω(n log n) lower bounds given by our
theorems. Another example of this kind is a linear-time algorithm for the decision
problem Min Gap, which is given in the appendix.

The six lower-bound theorems are given in section 3.

In section 4 we consider a dozen of examples of set-recognition problems. In some
cases the lower bounds proved for algebraic computation trees also apply to random
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access machines, while in some other cases they do not. In most of the latter cases, we
are able to show that like in the case of element distinctness, a linear time algorithm
exists on the RAM. The two exceptions are the knapsack problem and the generalized
knapsack problem. We remark that in these two problems the computation-tree lower
bound is larger than O(n log n). The significance of this fact will be seen later on.

Sections 5–7 are concerned with proving the above theorems. An important tool
in the proofs is a technique that was introduced by Paul and Simon [15]. Informally, if
a RAM recognizes a set W in time bounded by t, we are able to build a computation
tree of height t that recognizes a set V , such that V approximates W in a certain
sense. We develop this basic idea into six lemmas that are used in the proofs of the six
theorems. An additional idea which is used in the last result, involving the truncation
operation in conjunction with integer input, draws from work of Lürwer-Brüggemeier
and Meyer auf der Heide [9]. This result requires that the program only use rational
constants.

We now review some related results. Paul and Simon applied their technique to
prove that arithmetic RAMs (later extended to algebraic RAMs [5]) do not perform
better than decision trees for certain problems where decision-tree lower bounds are
known (e.g., sorting). Using the same technique, Klein and Meyer auf der Heide
extended in [8] the Ω(n2) lower bound for knapsack (which was known for computation
trees [6]) to a RAM which can only add and subtract (but not multiply or divide),
and in [12] a generalized knapsack problem was considered. These papers already
used component counting together with the Paul–Simon technique, but in a direct
fashion (i.e., they count the components of W ). This is made possible by the simple
structure of sets recognized by this restricted model.

In another paper [13], Meyer auf der Heide stated a result that allows lower
bounds for computation trees to be converted to RAM lower bounds, where the RAM
may use all the operations that are allowed in the computation tree; hence, in our
case, it may be used to infer lower bounds for algebraic RAMs. The result is given
by the following lemma.

Lemma 1.1. Given a real-number RAM program P , we can construct an alge-
braic computation tree T that computes the same function, and whenever P takes t
time units to process a certain input, the corresponding path in the tree is of length
O(t log(n+ t)).

A detailed proof is given in [1]. From this lemma it follows that a lower bound of
f(n) for a computation tree implies a lower bound of Ω(f(n)/log(n+ f(n))) for the
RAM. Thus this theorem implies a nonlinear lower bound for the RAM only if the
computation-tree lower bound is larger than Ω(n log n), and it can never show that
the complexity on the RAM is the same as in an algebraic computation tree. These
gaps may be closed by our results.

The power of floor in computation trees has been investigated in numerous papers
[3, 4, 5, 7, 9, 10, 11]; Mansour, Schieber, and Tiwari [10] also extend their lower bound
technique to random access machines. It applies to a rational-number RAM with
operations {+,−,×, /, � �} and an initially zero memory. This result, and most of the
others, relate to problems where the time of computation depends on the size of the
input value or values. In contrast, in this paper we consider genuinely time-bounded
computations [13], namely programs whose running time is bounded by a function of
n, the number of input values. Among the above papers, lower bounds for genuinely
time-bounded computations appear only in [9].

All of the above results do not allow the RAM to use preinitialized tables. On the
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contrary, all our lower bounds allow the program to make use of finite tables, whose
size and contents may depend on n. This means, in particular, that they apply to
nonuniform programs in the usual sense (i.e., the program code depends on n).

In our lower bounds for problems with real input, we allow an even stronger
model: All memory cells of integer addresses may be assumed to contain initial values
that depend on n. This very strong extension cannot be allowed when the input is
an integer, for then it allows every problem to be solved in linear time. We sketch
the way this can be done: First encode the input n-tuple in a single number, using
repeated application of a standard pairing function; e.g., π(x, y) = (x+y)2+x. Then
use this number to index an infinite table that contains all the right answers. The
correctness of the procedure follows from the injectivity of the pairing function.

2. Preliminaries. In this section we define our models of computation and list
some mathematical notation used in expressing the results as well as in the proofs.

2.1. Models of computation. An algebraic computation tree models
a computational process in which each step has one of the following types:
(i) an assignment z ← u; (ii) an arithmetic operation z ← u ◦ w, where ◦ ∈
{+,−,×, /}; (iii) a comparison u : 0. The variables u,w stand for either input vari-
ables (denoted x1, . . . , xn) or the results of prior computation, while z stands for a
new variable name (thus every variable is only assigned once).

Computation starts at the root and proceeds down the tree as follows: Each
arithmetic node has one child, which is its successor. Each comparison node has
three children associated with the possibilities >, <, and =. Computation proceeds
along the appropriate branch. Each leaf is labeled with a constant or a variable that
represents the output of the computation. An algebraic computation tree is said to
recognize a set if each output is a 0 or a 1, where the value of 1 represents acceptance.
(Note that we may assume that the output value is a constant rather than a variable;
otherwise, add a test, and have distinct leaves for acceptance and rejection.) The
tree is said to recognize W ⊆ �n when an accepting leaf is reached if and only if
(x1, . . . , xn) ∈W . The tree is said to recognize W for a restricted set of inputs (e.g.,
the integers) if the last condition is fulfilled for inputs of this set; it does not matter
which leaf is reached for other inputs.

We denote by h(T ) the height of the tree T , which represents the worst-case time
complexity of the computation described by T (more precisely, an upper bound on it;
the height is precisely the worst-case time, if every leaf is reachable).

All RAMs share the following structure. The machine consists of a processing
unit and a memory unit. The processing unit runs the program; to this end it contains
a “program counter” that points to the next instruction to be executed. (The different
instructions are described below.) It also makes use of a finite set of operating registers
r1, . . . , rk, whose number is fixed for any given program, as they can only be accessed
by being named in an instruction. These registers are used for all arithmetics and
tests, leaving the memory with the sole role of data storage.

This description is still quite general and is made specific by the choice of three
parameters.

The domain D is the set of values that may be manipulated by the machine as
“units of data.” Every memory cell or operating register holds one element of D. This
set is the integers or natural numbers in classical RAM models and the real numbers
or rational numbers in the models considered in this paper.

The address space A is the set of values that may be used as memory addresses.
Thus the size of memory is |A|, and the standard idealized model uses A = N. In
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case that A is strictly contained in D, a program may fault by attempting to use a
value in D \ A as an address. In this case the program may be considered invalid, or
we may consider its result to be ⊥.

The set of primitives F defines the functions that can be computed by the so-
called arithmetic instructions. We call the RAM algebraic if F consists of the field
operations {+,−,×, /}. In this paper, we will also consider the nonalgebraic opera-
tions � � (truncation to an integer) and χZ. (The characteristic function of Z can be
used to test whether a given value is an integer.)

The instruction set of the RAM contains the following groups. In the notation
for instructions, ri, rj , rk are register names; x is a constant from D. The notation
〈ri〉 refers to the memory cell whose address is given by the contents of ri.

Direct assignments:

ri ← x

ri ← rj

Memory access:

〈ri〉 ← rj

rj ← 〈ri〉

Flow control instructions:

jump label
if ri �� rj jump label

��∈ {=, <,≤, . . .}
halt

Arithmetic instructions:

ri ← rj + rk

ri ← rj − rk

etc., as provided by F .
For every RAM program, the initial contents of memory cells is assumed to be

zero, except for those that hold the input, and possibly another set of cells, whose con-
tents and size may depend on n but not on the input values; thus we allow nonuniform
solutions. Finally, set recognition by a RAM is defined as for a computation tree.

We use the notation (D,A, F )-RAM for a model where D, A, and F have the
values D, A, and F , respectively.

A real-number RAM is a RAM where D = �. Its main justification is as a conve-
nient model for studying problems on real numbers, e.g., in computational geometry;
but it is possible that a problem on integer inputs will be solved faster by a program
which uses the power of the real-number RAM. Thus, we consider the real-number
RAM also in conjunction with integer-constrained problems. (In fact, geometrical
problems are often encountered in practice with integer-constrained input, because of
the use of raster devices and digitized data.)

We consider two variants of the real-number RAM. The “standard” version has
A = N, while a stronger, nonstandard version has A = �. The last choice seems at
first to be a far-fetched idealization; however, it may not be so far-fetched in practice.
One may think of the real-number RAM as an abstraction of an actual computer
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which works with a finite representation of real values, say in floating point. In
this case, these representations may be used to address an ordinary random-access
memory. Another justification for using an idealized model is that it is elucidates
problems; and in fact, it is via our analysis of this model that some of our best results
for integer-constrained input (even on the integer RAM) have been obtained.

Finally, in certain results, we are able to allow the program to initialize all integer-
addressed memory cells at no cost. This is a stronger extension than ordinary use of
finite tables.

2.2. Various notation and terms. For a setW ⊆ �n, let β(W ) be the number
of connected components in W . As customary, we denote by W ◦ the topological
interior of W , and by W its closure. (We use the usual Euclidean topology.) The
boundary of W is ∂W =W \W ◦ and is a boundary set, i.e., a set of empty interior.
(So far, the definitions apply to any metric space.)

A set W ⊆ �n is called scale invariant if x ∈ W implies λx ∈ W for all real
λ > 0. A set W ⊆ �n is said to be rationally dispersed if, for every x ∈ �n and ε > 0,
there is a rational point z such that ‖z− x‖ < ε and (z ∈W ⇐⇒ x ∈W ).

We denote by β̂(W ) is the number of connected components of W which have
nonempty interior (called primary).

For real λ > 0, let B(λ,x) be the open ball of radius λ centered at x. ForW ⊆ �n,
and x ∈ �n, we define

β̃(W,x) = lim sup
λ→0+

β(W ∩B(λ,x))

and

β̃(W ) = β̃(W,0),

where 0 denotes the origin of �n.
The following constants appear in our theorems: c1 =

1
1+2 log2 3 and c2 = 1 +

log2 3
1+2 log2 3 .

3. Lower-bound theorems. In this section we give a list of lower-bound the-
orems: first, we give results on computation trees, following Ben-Or [2] and Yao [19].

Theorem 3.1 (Ben-Or). Let T be an algebraic computation tree that recognizes
W ⊆ �n. Then

h(T ) ≥ log9 β(W )− 1

2
n.

A simple modification of Ben-Or’s proof (which we give below) proves the follow-
ing theorem.

THEOREM 3.1′. Let T be an algebraic computation tree that recognizes W ⊆ �n.
Then h(T ) ≥ log9max(β(W ◦), β(W ))− 1

2n.
Theorem 3.1′ gives a stronger result for some sets, where β(W ◦) > β(W ). (There

are sets where it is smaller; this the reason for the max operator.)
Theorem 3.2 (Yao). Let W ⊆ �n be scale invariant and rationally dispersed.

If T is an algebraic computation tree that recognizes W for integer input, then

h(T ) ≥ c1(log2 β̂(W )− 1)− c2n.

A simple modification of Yao’s proof (which we give below) yields the following
theorem.
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THEOREM 3.2′. Let W ⊆ �n be scale invariant and rationally dispersed. If T is
an algebraic computation tree that recognizes W for integer input, then

h(T ) ≥ c1(log2 β(W
◦)− 1)− c2n.

This modification always gives a result stronger or equal to the former (see
Lemma 5.7 in section 5).

The main results of this paper are theorems for various RAM variants. To clarify
the picture, we give a summary of the results in Table 1. In this table, only the leading
term of the lower bound is given, without constant coefficient and other details. The
table also includes comments on the question, Could it be possible to obtain stronger
results by allowing larger sets of addresses, operations, etc.? The precise statement
of the lower bound results is given by the theorems below.

Theorem 3.3. LetW ⊆ �n. IfW is recognized in time t(n) on (�,N, {+,−,×, /})-
RAM, then

t(n) ≥ log9 β(W ◦)−
1

2
n .

The program may specify arbitrary initial values for all memory cells.
Theorem 3.4. LetW ⊆ �n. IfW is recognized in time t(n) on (�,�, {+,−,×, /, χZ})-

RAM, then

t(n) ≥ log9 β((W )◦)− 1

2
n .

The program may specify arbitrary initial values for all memory cells of integer ad-
dresses.

Theorem 3.5. Let W ⊆ �n be scale invariant and rationally dispersed. If W is
recognized for integer input in time t(n) on (�,�, {+,−,×, /, χZ})-RAM, then

t(n) ≥ c1(log2 β((W )◦)− 1)− c2n .

The program may use a finite initialized table.
Theorem 3.6. LetW ⊆ �n. IfW is recognized in time t(n) on (�,N, {+,−,×, � �})-

RAM, then

t(n) ≥ 1

3
(log9max(β̃(W

◦), β̃(W ))− 1)− 5

6
n.

The program may specify arbitrary initial values for all memory cells.
Theorem 3.7. LetW ⊆ �n. IfW is recognized in time t(n) on (�,�, {+,−,×, � �})-

RAM, then

t(n) ≥ 1

3
(log9 β̃((W )◦)− 1)− 5

6
n .

The program may specify arbitrary initial values for all memory cells of integer ad-
dresses.

Theorem 3.8. Let W ⊆ �n be scale invariant and rationally dispersed. If W is
recognized for integer input in time t(n) on (Q,Q, {+,−,×, � �})-RAM, then

t(n) ≥ 1

2
c1(log2 β((W )◦)− 1)− 1

2
c2n .

The program may use a finite initialized table.
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Table 1
RAM lower bounds.

Problem space D A F Preset cells Lower bound


n 
 N(1) {+,−,×, /} ℵ0 log β(W ◦)


n 
 
 {+,−,×, /, χZ} ℵ0 log β((W )◦)

Zn 
 
 {+,−,×, /, χZ} finite(2) log β((W )◦)


n 
 N(1) {+,−,×, � �} ℵ0 log max(β̃(W ◦), β̃(W ))


n 
 
 {+,−,×, � �} ℵ0 log β̃((W )◦)

Zn Q(3) Q {+,−,×, � �} finite(2) log β((W )◦)
(1)Cannot allow � here, as shown by the element distinctness problem.
(2)Cannot allow ℵ0 here, as illustrated in the introduction.
(3)� could possibly be allowed (open problem).

4. Applications. We give some examples of problems for which lower bounds
can be proved as corollaries of our theorems. Each problem is presented as a set
recognition problem, the set always denoted by W .

In applying Theorems 3.5 and 3.8, we have to make sure that the set in question
is rationally dispersed as well as scale invariant. All the sets we consider will be of
this type. This will also facilitate the application of Theorems 3.6 and 3.7, where β̃
is used instead of β, due to the following simple property.

Fact 4.1. If W is scale invariant, then β(W ) = β̃(W ).
Interestingly, all the sets that appear in our list of examples but one belong to a

special family, where the desired features can be proved to hold in general.
Lemma 4.2. Let W be a subset of �n that is defined by a Boolean combination of

linear homogeneous (in)equalities with integer coefficients. Then W is scale invariant
and rationally dispersed.

Proof. According to the assumptions of the lemma, there are homogenous linear
forms l1, . . . , lr, of integer coefficients, such that W is defined by a Boolean combina-
tion of the formulae: (li > 0), (li = 0), and (li < 0), where 1 ≤ i ≤ r.

Homogenity of the li implies that replacing x with λx, for any real λ > 0, does
not change the truth value of any of the (in)equalities. HenceW is scale invariant. We
now prove rational dispersal. Let x ∈ W and ε > 0. We have to prove the existence
of a rational point z such that ‖z− x‖ < ε and z ∈ W . We do not have to treat the
case x /∈ W separately, because the complement of W is also a Boolean combination
of the same inequalities.

We make the following nonrestrictive assumptions on the formula defining W .
(1) There are no negations. (To achieve this, replace ¬(li = 0) by (li < 0)∨ (li >

0), etc.)
(2) All inequalities are of the form li > 0. (Otherwise use −li instead.)
Now assume that x is in W because it satisfies the following conditions:

l1 > 0, . . . , lr > 0, lr+1 = 0, . . . , lr+s = 0 .

Because of assumption (1), every point that satisfies these conditions will also be in
W . Let S be the set defined by the inequalities alone; it is a nonempty, open set. In
particular, there is a neighborhood of x, say of radius ε1, that lies entirely in S.

Next we concentrate on the equalities. These s equations define a nonempty linear
subspace L of �n, say of dimension k. By elementary linear algebra, we can express
this subspace as the graph of a linear function of k independent variables. Without
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Table 2
Applications.

Problem Computation tree Weak RAM Strong RAM

1. Set disjointness Θ(n logn) Θ(n logn) Θ(n)

2. Sign of resultant Θ(n logn) Θ(n logn) Θ(n logn)

3. Element distinctness Θ(n logn) Θ(n logn) Θ(n)

4. Min gap Θ(n logn) Θ(n logn) Θ(n logn)

5. Max gap Θ(n logn) Θ(n logn) Θ(n logn)

6. Uniform gap Θ(n logn) O(n logn)† Θ(n)

7. Sign of permutation Θ(n logn) Θ(n logn) Θ(n logn)

8. Convex hull Θ(n logn) Θ(n logn) Θ(n logn)

9. Knapsack (KS) Ω(n2) Ω(n2) Ω( n2

logn
)‡

10. Generalized knapsack Ω(n2 log(k + 1)) Ω(n2 log(k + 1)) Ω(
n2 log(k+1)

logn+log log(k+1)
)‡

11. Approximate gen. KS Ω(n2 log(k + 1)) Ω(n2 log(k + 1)) Ω(n2 log(k + 1))
†No lower bound from Theorem 3.3, but Ω(n logn) from Theorem 3.6.

‡From Meyer auf der Heide’s Lemma (section 1).

loss of generality, let these variables be x1, . . . , xk; then L is defined by



xk+1

...
xn


 = A



x1
...
xk


 ,

where A is an (n− k)× k matrix.

Recall that all the li have integer coefficients. This implies that the coefficients
of A are all rational. Therefore, if we choose rational values (z1, . . . , zk) for the
independent variables, multiplying by A to obtain the other coordinates will yield a
rational point z ∈ L. Furthermore, this transformation is obviously continuous, which
goes to say that by choosing (z1, . . . , zk) sufficiently close to (x1, . . . , xk), we can make
the point z arbitrarily close to the point x. Since rational points exist arbitrarily close
to (x1, . . . , xk), we can make z rational and satisfy ‖z−x‖ < min(ε, ε1). This implies
that z ∈ S; hence z ∈ L ∩ S ⊆W and satisfies ‖z− x‖ < ε.

The results described in this section are summarized in Table 2. For every problem
we consider, this table gives three complexity results: the complexity in the algebraic
computation-tree model and in two groups of RAMmodel. The “weak” group contains
the RAMs with integer addresses that are required to handle real input. For this
group the lower bounds are determined by log β(W ◦). The “strong” group contains
the RAMs with real addresses that are required to handle either real or integer input.
For this group, lower bounds are determined by log β((W )◦). We remark that the
upper-bound results do no require the use of noninteger addresses if the input is
integer.

Example 1 (set disjointness). Given two sets A = {x1, . . . , xn} and B =
{y1, . . . , yn}, decide whether A and B are disjoint.

Here

W = { (x,y) ∈ �2n :
∏

1≤i,j≤n
(xi − yj) �= 0 } .
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It is open and has (n!)2 components, so an Ω(n log n) bound on computation trees
follows from Ben-Or’s theorem and similarly from Yao’s for the case of integer inputs.
This is tight, as the problem can be solved by sorting and merging. The same lower
bounds follow from Theorems 3.3 and 3.6. On the contrary, in the other models it
can be solved in linear time with a straightforward use of indirect addressing. Indeed,
W = �2n (there is a point in W arbitrarily close to every point in �2n) so (W )◦ has
a single component.

Example 2 (sign of resultant). Given x1, . . . , xn; y1, . . . , yn, decide whether

RES(x,y) =
∏
i,j

(xi − yj) > 0.

Ben-Or proved an Ω(n log n) lower bound for this problem, which also holds in
Yao’s model. A matching upper bound can be obtained by sorting and merging.

Corollary 4.3. Sign of Resultant requires Ω(n log n) time in all the models
considered in Theorems 3.3–3.8.

Proof. Here

W =



 (x,y) ∈ �

2n :
∏

1≤i,j≤n
(xi − yj) > 0



 .

W is clearly open, and

W =



 (x,y) ∈ �

2n :
∏

1≤i,j≤n
(xi − yj) ≥ 0



 .

We now show that each point where the resultant equals 0 is a boundary point of this
set. Indeed, let (x;y) be such a point; then there are indices k, l such that xk = yl.
Let

0 < δ < 1
4 min{|yj − xi| : yj − xi �= 0}

and replace each xi with xi + δ. This results in a nonzero resultant. If it is negative,
we obtained a point outside W. As δ tends to zero, this point gets arbitrarily close
to (x;y); thus (x,y) is a boundary point. If the resultant is positive, replace xk with
xk + δ, yl with yl + 2δ, and xi, for all i �= k, with xi + 3δ. This inverts the sign of
exactly one of the differences xi−yj , namely the difference xk−yl. We obtain a point
where the resultant is negative, which can be arbitrarily close to (x;y).

Removing the boundary points, we obtain (W )◦ = W . The proof is completed
by showing that this set has at least (n− 1)! connected components.

Let x = (0, 2, . . . , 2n − 2) and y = (1, 3, . . . , 2n − 1). If RES(x,y) > 0, set
xn to 2n; this inverts the sign of just one difference (xn − yn) and hence the sign
of RES(x,y). Now, replacing (y1, . . . , yn−1) by an arbitrary permutation of these
values will preserve the sign of RES(x,y). We thus obtain (n − 1)! distinct points
in W . Let u and v be two such points. Say they differ in the value of yj for some
1 ≤ j ≤ n − 1. Then there is an i such that xi − yj is positive at one of the points
(say u) and negative at the other (v). On any path connecting u and v there must
be a point where xi− yj = 0; this point does not belong to W . Hence u and v belong
to distinct connected components, and β(W ) ≥ (n− 1)!.
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Example 3 (element distinctness). Given x1, x2, . . . , xn, decide whether these n
numbers are all distinct.

Example 4 (min gap). Given n+1 numbers x1, . . . , xn, t, decide if the minimum
difference between a pair of these numbers is bounded above by t.

Frequently this problem is presented in a computational form, where the minimum
gap has to be reported; the above decision problem is obviously not harder, and for
it we give a lower bound that matches an upper bound known for the computational
problem.

Yao’s theorem gives an Ω(n log n) lower bound for Element Distinctness on com-
putation trees, even when restricted to integer inputs. Since Element Distinctness is
a special case of Min Gap (t = 0), the same lower bound applies to Min Gap. As
there is a matching upper bound (by sorting the numbers), the complexity of both
problems for the algebraic computation tree is Θ(n log n). The lower bound for Min
Gap holds for all our RAM models as well as we will shortly demonstrate.

The situation for Element Distinctness is different: We show that the Ω(n log n)
lower bound holds in the “weak” models. The “strong” models can solve the problem
in linear time, with a straightforward use of indirect addressing. Thus the latter
models separate the complexities of the two problems.

Corollary 4.4. Min Gap requires Ω(n log n) time in all the models considered
in Theorems 3.3–3.8. Element Distinctness requires Ω(n log n) time in the models with
integer addresses.

Proof. The corollary follows by showing that for Element Distinctness, W ◦ has
n! components, while for Min Gap, the same is true for (W )◦.

For Element Distinctness we have

W = { (x ∈ �n : (∀ 1 ≤ i < j ≤ n) xi �= xj }.

This set is clearly open, so W ◦ =W . To see that the number of components of W is
at least n!, consider points x such that (x1, . . . , xn) is a permutation of (1, 2, . . . , n);
x ∈ W , and there are n! such points. We show that each of them lies in a distinct
component. Let u, v be distinct points from this set. Let i1, i2, . . . , in be such that
uik = k. Since v is a different permutation, there will be a first k such that vik �= k.
Necessarily vik > k. For another position il, l �= k, we will have vil = k. Consider
the function f(x) = xil − xik . We have f(u) > 0 and f(v) < 0 and f is continuous,
therefore every path connecting u and v must contain a point where xil = xik , a
point not in W .

In contrast, W = �n, so (W )◦ has a single component. No wonder that the lower
bound collapses for the strong models.

Consider now the Min Gap problem. We have

W = { (x, t) ∈ �n+1 : (∃ 1 ≤ i < j ≤ n) |xi − xj | ≤ t } .

Clearly, recognizing W has the same complexity as recognizing its complement W ′,
and adding the requirement t ≥ 0 does not change the complexity of recognizing the
set. Clearly,

W ′ = { (x, t) ∈ �n : (∀ 1 ≤ i < j ≤ n) |xi − xj | > t }

and

W ′ ∩ {t ≥ 0} = { (x, t) ∈ �n : t ≥ 0, (∀ 1 ≤ i < j ≤ n) |xi − xj | ≥ t }.
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Now, if t > 0, the points that satisfy one of these inequalities in the weak sense are
boundary points. The points where t = 0 are all boundary points. Hence

(W ′ ∩ {t ≥ 0})◦ = { (x, t) ∈ �n : t > 0, (∀ 1 ≤ i < j ≤ n) |xi − xj | > t } =W ′.

This set has n! components. (Let x be a permutation of (2t, 4t, . . . , 2nt); each per-
mutation lies in a distinct component.)

Example 5 (max gap). Given n + 1 numbers x1, . . . , xn, ε, decide whether the
xi can be permuted into a nondecreasing sequence such that the gap between each pair
of consecutive elements is bounded above by ε.

Again, frequently we are asked to find out the maximum gap; this decision prob-
lem is not harder, and the lower bound that we give matches the upper bound for the
computational version.

The theorems of Ben-Or and Yao yield lower bounds of Ω(n log n) for Max Gap
on algebraic computation trees (resp., with integer input). Clearly, Max Gap can be
solved in O(n log n) time by sorting the numbers. The same lower bound holds for
RAMs.

Corollary 4.5. Max Gap requires Ω(n log n) time in all the models considered
in Theorems 3.3–3.8.

Proof. We consider a restricted problem in which we have to decide whether
the following conditions hold simultaneously: (1) the maximum gap is less than ε;
(2) the difference between the maximum and minimum of this set is greater than
(n − 1.5)ε. (Checking the last condition obviously takes linear time.) Let Sn be the
set of permutations over {1, 2, . . . , n}. In this problem,

W = { (x, ε) ∈ �n+1 : (∃σ ∈ Sn)xσ(n) − xσ(1) > (n− 1.5)ε
∧ (∀j < n)xσ(j) ≤ xσ(j+1) < xσ(j) + ε } .

Clearly,

W = { (x, ε) ∈ �n+1 : (∃σ ∈ Sn)xσ(n) − xσ(1) ≥ (n− 1.5)ε
∧ (∀j < n)xσ(j) ≤ xσ(j+1) ≤ xσ(j) + ε } .

Each point of this set such that ε = 0 is a boundary point, since ε cannot be negative.
For ε > 0, we show now that the points where at least one of the inequalities holds
weakly are boundary points. Let (x, ε) be such a point. We show that there are
points, arbitrarily close to it, not in W . For simplicity, assume that the appropriate
σ for this point is the identity, i.e., x1 ≤ x2 ≤ · · · ≤ xn. First note that the condition
xj = xj+1 cannot hold for any j since otherwise, xn − x1 ≥ (n − 1.5)ε implies that
at least one gap exceeds ε. If xn − x1 = (n − 1.5)ε, then for all small enough δ > 0,
(x1, . . . , xn − δ) is not in W . Next, if xj+1 = xj + ε, for all small enough δ > 0 the
point (x1, . . . , xj , xj+1 + δ, xj+2, . . . , xn) is not in W .

We conclude that

(W )◦ = { (x, ε) ∈ �n+1 :(∃σ ∈ Sn)xσ(n) − xσ(1) > (n− 1.5)ε
∧(∀j < n)xσ(j) < xσ(j+1) < xσ(j) + ε } .

The proof is completed by observing that this set has n! components. (Each permu-
tation of (ε, 2ε, . . . , nε) belongs to a distinct component.)

Example 6 (uniform gap). Given n+1 numbers x1, x2, . . . , xn, ε decide whether
the xi can be permuted into a nondecreasing sequence where the gap between each pair
of consecutive elements is ε.
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Here

W = { (x, ε) ∈ �n+1 : (∃σ ∈ Sn) (∀j < n)xσ(j+1) = xσ(j) + ε }.
W has n! components (given by permutations of (ε, 2ε, . . . , nε)), while W ◦ is

empty. Thus, Ben-Or’s theorem implies an Ω(n log n) bound for an algebraic compu-
tation tree solving Uniform Gap on real input, while Yao’s theorem fails to provide a
lower bound. The same happens with all our theorems but one.

Corollary 4.6. Uniform Gap requires Ω(n log n) time on a (�,N, {+,−,×, � �})-
RAM.

The result follows from the appearance of log β̃(W ) in Theorem 3.6. We conjecture
that the same is true for the model of Theorem 3.3, but our theorem does not prove
it as it only refers to β(W ◦). In contrast, in the four “strong” models, the problem
can be solved in linear time: Compute the minimum of the {xi}, m. Then by means
of indirect addressing check whether the rest of the set equals {m+ε,m+2ε, . . . ,m+
(n− 1)ε}.

Uniform Gap relates to Max Gap in a way that resembles the relationship of El-
ement Distinctness to Min Gap. On one hand, a nonlinear lower bound for Uniform
Gap implies the same lower bound for Max Gap, because Uniform Gap can be effi-
ciently reduced to the latter. In fact, the answer to Uniform Gap is “yes” if and only
if the answer to Max Gap on x1, . . . , xn is ε, and the difference between the minimum
and the maximum of this set is (n− 1)ε. Thus, when there is an Ω(n log n) bound for
Uniform Gap, the complexity of both problems coincides, and this happens for alge-
braic computation trees, over real input, and for the model of the above corollary. On
the contrary, as with Element Distinctess and Min Gap, the “strong” models separate
the complexities of the two problems.

Example 7 (sign of permutation). Given x1, . . . , xn decide whether there exists
an even permutation σ such that xσ(1) < xσ(2) < · · · < xσ(n).

Here

W =



x ∈ �

n :
∏
i<j

(xj − xi) > 0



 .

Yao showed that this problem requires Ω(n log n) in an algebraic computation
tree, even for integer input, and we show that the same holds for the RAM models.

Corollary 4.7. Sign of permutation requires Ω(n log n) time in all the models
considered in Theorems 3.3–3.8.

Proof. We have

W =



x ∈ �

n :
∏
i<j

(xj − xi) ≥ 0


 .

We next prove that each point where equality holds is a boundary point of this set.
Therefore, (W )◦ =W and has n!

2 components. (Each even permutation of (1, 2, . . . , n)
represents a distinct component.) To complete the proof, let (x1, . . . , xn) be a point
such that

∏
i<j(xj−xi) = 0; thus the coordinates are not all distinct. Without loss of

generality, assume x1 ≤ x2 ≤ · · · ≤ xn and let k satisfy xk = xk+1. For every δ > 0,
consider the point

yδ = (x1+δ, . . . , xk−1+(k−1)δ, xk+(k+1)δ, xk+1+kδ, xk+2+(k+2)δ, . . . , xn+nδ) .
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The difference yj − yi is positive for all j > i except i = k, j = k + 1, where it is
negative. Therefore,

∏
i<j(yj − yi) < 0 and y /∈ W . However, when δ → 0, y → x.

Thus x is a boundary point of W .
Example 8 (convex hull). Given n points in the plane, decide whether they all

lie on the convex hull of the set.
Yao considered a slightly different version of this problem, where we have to

decide whether the convex hull has n vertices (which means that all the points lie on
the hull and are also in general position). Yao gave an Ω(n log n) lower bound for a
computation tree that solves this problem, even for integer inputs. The same lower
bound for our version of the problem follows by Theorem 3.2′. In this case W ⊆ �2n

is the set of all points (x0, y0, . . . , xn−1, yn−1) for which there exists a permutation σ
on (0, 1, . . . , n− 1) such that, for all 0 ≤ i < n,

∣∣∣∣∣∣
1 xσ(i) yσ(i)

1 xσ(i+1) mod n yσ(i+1) mod n

1 xσ(i+2) mod n yσ(i+2) mod n

∣∣∣∣∣∣
≥ 0.

W ◦ has (n − 1)! components and is scale invariant and rationally dispersed [17, 19].
W is closed, so the same holds for (W )◦, and the lower bound applies to the various
RAM models as well.

Example 9 (knapsack). Given numbers x1, . . . , xn and M > 0 decide if there
exists some subset S ⊆ {1, 2, . . . , n} such that

∑
i∈S

xi =M.

Example 10 (generalized knapsack). Given numbers x1, . . . , xn and M > 0
decide if there exists a vector v ∈ {0 . . . k}n such that the inner product x · v = M .
(For k = 1 this is the original problem.)

Example 11 (approximate generalized knapsack). Given numbers x1, . . . , xn
and M > 0 decide if there exists a vector v ∈ {0 . . . k}n such that

|x · v −M | ≤ εM,

where k ∈ N, ε > 0 are fixed constants.
Let P denote the spatial partition induced on �n+1 by the hyperplanes v ·x =M ,

for all v ∈ {0 . . . k}n. Meyer auf der Heide [12] shows that P consists of at least
(k+1)(n(n−1)/2)/(2n−1) connected regions. He uses this fact to give a lower bound on
computation-tree complexity for the generalized knapsack problem. (For the original
knapsack problem, lower bounds are given in [2, 19].) We start with the approximate
problem, for which we obtain a lower bound in all of the RAM models.

Corollary 4.8. On all the models considered in Theorems 3.3–3.8, the com-
plexity of the approximate knapsack problem is Ω(n2 log(k + 1)).

Proof. Let W ′ be the complement of the set to be recognized. A lower bound for
recognizing W ′ is a lower bound for recognizing W .

W ′ = {(x1, . . . , xn,M) : |v · x−M | > εM ∀v ∈ {0 . . . k}n} .

It is easy to show that (W ′)◦ =W ′, and that if ε is small enough, then a component
of W ′ exists within each region of P. Thus, β((W ′)◦) ≥ (k + 1)(n(n−1)/2)/(2n − 1)
and the lower bound follows.
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The exact problems differ from the approximate ones by setting ε = 0. This
change invalidates the results using (W ′)◦, because it becomes �n. However, (W ′)◦ =
W ′, so the above lower bound stays valid for the RAMs with integer addresses. We
remark that for the stronger models, it is possible to obtain (weaker) lower bounds us-
ing a technique Meyer auf der Heide’s lemma (section 1). The results are Ω(n2/ log n)
for Exact Knapsack and Ω(n2 log(k+1)/(log n+log log(k+1))) for Exact Generalized
Knapsack.

5. Background for Proofs. In this section we group a few definitions, facts
and lemmas that are useful for the forthcoming proofs. We start with some point-set
topology.

Fact 5.1. Every connected component of an open set is open.
Fact 5.2. If U ⊆ V , then every connected component of U is contained within

a component of V .
Lemma 5.3. Let W,A be subsets of some metric space such that A is closed and

has empty interior. Then

(W \A)◦ = (W )◦ = (W ∪A)◦.
Proof. The first equality follows from the second by substituting W \ A for W .

We now prove the second one. We obviously have W ⊆ W ∪A. Therefore also
(W )◦ ⊆ (W ∪A)◦. To prove inclusion in the other direction, note that

(W ∪A) =W ∪A =W ∪A .

Let x ∈ (W ∪A)◦ = (W ∪ A)◦. Since x ∈ (W ∪ A)◦, there exists a ball B ⊆ W ∪ A
that includes x. We distinguish two cases.

Case 1: x /∈ A. A is closed, so B \A is an open set, contains x, and is contained
in W . This shows that x ∈ (W )◦.

Case 2: x ∈ A. Since A has empty interior, B ⊆ B \A. Since B is open,
this implies B ⊆ (B \A)◦. Thus x ∈ (B \A)◦. But B \ A ⊆ W , so (B \A)◦ ⊆
(W )◦.

Lemma 5.4. Let X ⊆ �n, B an open ball in �n. Then

(X)◦ ∩B = (X ∩B)◦.
Proof. Because B is open, we have

X ∩B ⊆ X ∩B.
Hence,

(X)◦ ∩B = (X)◦ ∩B◦ = (X ∩B)◦ ⊆ (X ∩B)◦.
On the other hand, because B is a ball, (B)◦ = B; hence

(X ∩B)◦ ⊆ (X ∩B)◦ = (X)◦ ∩ (B)◦ = (X)◦ ∩B.
Combining the two inclusions, we have

(X)◦ ∩B = (X ∩B)◦ .
Lemma 5.5. Let W be an open set. Then

β((W )◦) ≤ β(W ).
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Proof. We show that each component of (W )◦ contains at least one component
of W . In fact, since W ⊆W , we also have W ⊆ (W )◦. Thus a component of W must
be contained within a component of (W )◦. It remains to show that each component
C of (W )◦ contains at least one point of W . To this end, observe that W =W ∪∂W ,
so W ⊇W \ ∂W ; hence

C ∩W ⊇ C ∩ (W \ ∂W ) = (C ∩W ) \ (C ∩ ∂W ) = C \ ∂W
and this is not empty since a boundary set cannot contain C.

Lemma 5.6. Let W be an open set and A a boundary set. Then

β(W \A) ≥ β(W ).

Proof. We show that each component of W contains at least one component of
W \A. In fact, sinceW \A ⊆W , every component ofW \A must be contained within
a component of W . It remains to show that for each component C of W contains at
least one point of W \A. This follows since otherwise, we would have C ⊆ A, but C
is open and A is a boundary set, a contradiction.

LEMMA 5.7. For any set W , β̂(W ) ≤ β(W ◦).
Proof. Recall that β̂(W ) is the number of components ofW that have a nonempty

interior. Let C be such a component; we show that it contains at least one component
ofW ◦. This establishes the desired inequality. In fact, it suffices to prove that C∩W ◦
is not empty, because once C contains one point of W ◦, it will contain the whole
component of this point (Fact 5.2).

Now, W ◦ = W \ ∂W . Therefore C ∩W ◦ = C \ ∂W . Since C has a nonempty
interior, it cannot be contained in ∂W ; hence the last set is not empty.

We now move on to properties of polynomials and rational functions on �n. We
will be particularly interested in the existence of integer points on the graphs of such
functions.

Definition 5.8. An algebraic variety in �n is the set of common zeros of a
finite set of polynomials; in other words, it is the set of points satisfying a finite set
of algebraic equations.

The adjective algebraic is often omitted, since we do not consider other types of
“varieties.” A variety is called nontrivial if it is different from �n. Here are some
important properties.

Fact 5.9. Every finite union or intersection of algebraic varieties is itself a
variety. Every nontrivial algebraic variety is a closed boundary set.

Definition 5.10. A function of the form P/Q, where P and Q are (multivariate)
polynomials, is called rational.

Lemma 5.11. Any function that can be computed from x1, . . . , xn using the op-
erations {+,−,×, /} is rational.

Proof. The coordinate functions Ik(x) = xk are rational. The result follows by
induction on the number of operations, using the following identities:

P
Q ± R

T =
PT±RQ

QT ,

P
Q · RT = PR

QT ,

P
Q

/
R
T =

PT
QR .

Standard notation is �[x] for the ring of polynomials in x with coefficients from
�, and �(x) for the corresponding field of rational functions.
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Lemma 5.12. Let f : �n → � be rational. Assume that there is an open nonempty
subset of �n on which f only assumes integer values. Then f is constant throughout
its domain of definition Df .

Proof. Note first that f is continuous on every path-connected component of Df .
Assume that O ⊆ �n is an open subset as described. Let x0 ∈ O, and y = f(x0).
By the assumption, y ∈ Z. Let O1 ⊆ O be the path-connected component of O that
contains x0. By Fact 5.1, O1 is an open set. If for some x1 ∈ O1, f(x1) �= f(x0), it
follows from continuity of f that there is x2 ∈ O such that f(x2) /∈ Z, contradicting
the assumption. Therefore, f ≡ f(x0) throughout O1.

Express f as P/Q where P ,Q are polynomials. We obtain that for all x ∈ O1,

P (x)/Q(x) = f(x0),(1)

i.e.,

P (x)− f(x0)Q(x) = 0 .(2)

In the last equation, the left-hand side is a polynomial; a polynomial that is zero on
an open set must be the zero polynomial. Therefore, (1) is an identity, and the same
goes for (2) (within Df ).

Definition 5.13. A set H ⊆ �n is a bale if there is a finite set of polynomials
{Pi, Qi, i ∈ I } such that

H =
⋃
i∈I

{
x ∈ �n :

(
Pi(x)

Qi(x)
∈ Z

)
∨ (Qi(x) = 0)

}
.

The above bale is denoted by B(Pi, Qi, i ∈ I). If there is only one pair of poly-
nomials P,Q we write B(P,Q). A bale is called nontrivial if it is different from �n.
The following observations are important for our proofs.

Fact 5.14. Every algebraic variety in �n is a bale. A finite union of bales is a
bale. Every nontrivial bale is a closed boundary set.

Proof. For the first claim, note that an algebraic variety in �n can be described
as the zero set of a single polynomial (the sum of squares of the defining polynomials).
Call this polynomial Q. The zero-set of Q is exactly the bale B(Q/2, Q). The second
claim is immediate from the definition. For the third, let H = B(P,Q). It is enough
to prove the claim for such a bale because a finite union of closed boundary sets is
a closed boundary set. H is, by definition, a countable union of varieties (namely,
{Qi(x) = 0}, and {Pi(x) = kQi(x)} for all k ∈ Z). Each of them is a boundary set
so, by Baire’s category theorem, so is their union. To show that H is closed, we prove
that �n \H is open: let y ∈ �n \H. Then Q(y) �= 0. By continuity of Q, there is a
neighborhood N of y in which Q �= 0. Also P (y)

Q(y) /∈ Z. By continuity of P/Q in N ,
there is a neighborhood of y in which P (y)

Q(y) /∈ Z. Thus there exists a neighborhood of

y contained in �n \H.
Definition 5.15. For two functions f, g we write f ≺ g if f is defined at least

where g is and f|domg = g.
Definition 5.16. A subset of �n is called large if it is not contained in any

nontrivial algebraic variety.
Note that a large set is necessarily infinite, since every finite set of points is a

nontrivial variety. Furthermore, every finite union of nontrivial varieties is a nontrivial
variety; hence no large set can be covered by finitely many nontrivial varieties.
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Theorem 5.17. Let r ∈ �(x) be a rational function. If there is a large set
B ⊆ Zn such that r(B) ⊆ Z, then there are P,Q ∈ Z[x] such that P/Q ≺ r.

Informally, if a rational function (with coefficients from �) has an integer value
in “many” integer points, then the coefficients may be safely assumed to be from Z.

Proof. Every rational function has a reduced form, in which the nominator and
denominator are relatively prime polynomials. Every other form has larger degree
in both polynomials. The reduced denominator is a divisor of any other possible
denominator, and hence the reduced fraction will be defined whenever the nonreduced
form is as follows: symbolically, if R1/R2 is the reduced form of r, then R1/R2 ≺ r.
Let di = degRi. Then R1/R2 is completely specified by d = d1+d2+2 real coefficients,
(a1, . . . , ad). The relation r(x) = y can be rewritten as R1(x) = yR2(x), an equation
linear in (a1, . . . , ad). Every point of B gives rise to such an equation; we obtain
an infinite set E of linear equations which have a common solution, hence a set of
solutions which is a linear subspace of �d. Let e be the dimension of this subspace;
then we may select d − e equations from E that suffice to determine the required
subspace.

The equations in question have integer coefficients; therefore, they can be solved
over the rationals. We obtain a rational vector of coefficients (a1, . . . , ad). Multiplying
by a common denominator we can assume the ai to be integer. (Note that the
equations are homogeneous.) We thus obtain a function P/Q, with P,Q ∈ Z[x], that
coincides with R on B. Thus, R1Q−R2P = 0 on B, but by the assumption on B, the
polynomial R1Q−R2P must be the zero polynomial. Hence P/Q = R1/R2 wherever
both are defined. Moreover, since R1/R2 is reduced, and P,Q are constrained by the
same degrees as R1, R2, we must have (P,Q) = c(R1, R2) for a scalar c. Thus P/Q
coincides precisely with R1/R2.

In what follows, we use the letter t to denote a scalar variable (in contrast with
the boldface letters, such as x, that designate vector variables). By Z+ we denote, as
usual, the set of positive integers.

Lemma 5.18. Let P ∈ Q[t]. Then

(i) there is a rational 0 < q ≤ 1 such that P (Z) ⊆ qZ;

(ii) there is an integer a > 0 such that either P (aZ) ⊆ Z or P (aZ) ∩ Z = ∅.
Proof. Assume P �≡ 0 (otherwise the statements are trivial). The nonzero coef-

ficients of P are all rational so they have a common denominator d > 0. We choose
q = 1/d and a = d. We leave it to the reader to verify the claims.

Definition 5.19. A ray in �n is a set of the form {tc : t > 0} for c =
(c1, c2, . . . , cn) �= 0.

The vector (c1, . . . , cn) is a coordinate vector for the ray. In fact, every point on
the ray can serve as coordinate vector.

Let f : �n → �n, and let K be a ray. We denote by f|K the function of a single
variable obtained by restricting f to K; thus f|K(t) = f(tc), where c is a chosen
coordinate vector for K. When we want to be specific about the choice of c, we write
fc(t) for f(tc). It is easy to see that if f is a polynomial, so is fc for any c ∈ K.

The following is almost too obvious to state.

Fact 5.20. A set in �n is scale invariant if and only if it is a union of rays
(plus possibly the origin).

Lemma 5.21. Let H be an algebraic variety in �n and K ⊆ �n a ray. Then
H ∩K either equals K or is finite.

Proof. Let c be a coordinate vector for K; substitute x = tc in all the polynomials
defining H. We obtain a set of monovariate polynomials that define H ∩K. However,
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a monovariate polynomial either is identically zero or has finitely many zeros. The
lemma follows.

A ray is called rational if it has a rational coordinate vector (which amounts to
saying that it contains a rational point). We denote the set of rational rays in �n by
Q(n−1). (The superscript reminds us that this set is an (n − 1)-dimensional vector
space, but this is not important for our discussion.) Subsets of Q(n−1) are often
denoted by Γ.

Lemma 5.22. Let Γ ⊆ Q(n−1), and for all K ∈ Γ let S(K) ⊆ K ∩ Zn be infinite.
If
⋃

K∈ΓK is large, then
⋃

K∈Γ S(K) is also large.

Proof. We prove the contrapositive: Assume that there is a nontrivial variety H
such that

⋃
K∈Γ S(K) ⊆ H. Thus, every ray K ∈ Γ intersects with H infinitely often.

By Lemma 5.21, K ⊆ H. Hence
⋃

K∈ΓK ⊆ H.

Definition 5.23. The function f : � → � is periodically integral (p.i.) if there
is a ∈ Z+ such that f(aZ+) ⊆ Z. We say that f is periodically nonintegral (p.n.i.) if
there a ∈ Z+, such that f(aZ+) ⊆ � \ Z.

Lemma 5.24. If f is not periodically (non)integral, then there is an infinite set
S ⊆ Z+ such that f(S) lies outside (inside) of Z.

We omit the easy proof. It is also easy to see that, if f(t) is p.i. (p.n.i.), then
f(qt) is p.i. (p.n.i.) for any q ∈ Q+. The following is an immediate consequence.

Lemma 5.25. Let K ∈ Q(n−1) and f : �n → �. Then f|y is p.i. (p.n.i.) for
some y ∈ K ∩Qn if and only if it is p.i. (p.n.i.) for all such y.

In view of this lemma, we can use the expression “f|K is p.i. (p.n.i)” without
specifying the coordinates used for K. Another easy observation is that a function
may be either p.i. or p.n.i. but not both. There are also functions that are neither; as
the next lemma shows, this does not occur for polynomials from Q[t].

Lemma 5.26. A polynomial in Q[t] is p.i. if and only if its constant term is an
integer. It is p.n.i. otherwise.

Proof. Let Q(t) = c0 + c1t+ · · ·+ cdt
d ∈ Q[t]. Assume first that c0 is an integer;

let d be the common denominator of c1, . . . , cd. Then Q(dZ+) ⊆ Z. On the other
hand, if c0 /∈ Z, then Q(dm) /∈ Z for all m ∈ Z.

Definition 5.27. Let S ⊆ � and x ∈ �. The distance d(x, S) is defined as
infs∈S |x− s|.

We are now prepared to prove a useful theorem about rational functions and their
behavior on rational rays.

Theorem 5.28. For r ∈ �(x) let Γ (resp., ∆) be the set of rays K ∈ Q(n−1) such
that r|K is periodically (non)integral. Then either

⋃
K/∈ΓK or

⋃
K/∈∆K is contained

in a nontrivial, scale-invariant bale.

Proof. Fix r, and hence Γ and ∆, as in the theorem. To prove the theorem, we
assume

(∗) ⋃
K/∈∆K is not contained in any nontrivial, scale-invariant bale.

We will prove that
⋃

K/∈ΓK is contained in a nontrivial scale-invariant variety.

For every K /∈ ∆, let S(K) be the following set, implied by Lemma 5.24: S(K) ⊆
K ∩ Zn, it is infinite, and f(x) ∈ Z for all x ∈ S(K).

From our assumption (∗) and Lemma 5.22, ⋃K/∈∆(S(K)) is a large set. Note that
this is a set of integer points where r assumes an integer value. Its existence implies,
by Theorem 5.17, that we may assume r to be of the form P/Q, where P and Q have
integer coefficients.

We now consider the restrictions of r, P , and Q to a single rational ray K /∈ ∆,
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using for coordinates an arbitrary point c ∈ K ∩Qn. We have

rc =
Pc

Qc
,

where Pc, Qc are univariate polynomials. Applying polynomial division to divide
Pc by Qc, we obtain a quotient S

(c)(t) and a remainder R(c). The remainder is a
polynomial of degree less than degQc, and

rc(t) = S(c)(t) +
R(c)(t)

Qc(t)
.(3)

Since degR(c) < degQc, the right-hand term converges to zero as t → ∞. Applying
Lemma 5.18 (part i), we obtain a rational 0 < q ≤ 1 such that for integer t, S(c)(t) ∈
qZ. Combining with (3), we have (for integer t large enough)

d(rc(t), qZ) =

∣∣∣∣
R(c)(t)

Qc(t)

∣∣∣∣ .

Since r|K is not p.n.i., there are infinitely many t ∈ Z+ such that rc(t) ∈ Z, i.e.,
d(rc(t), qZ) = 0. Thus we must have

R(c)(t)

Qc(t)
= 0

for such t, but then R(c) must be the zero polynomial. In other words, the polynomial
Qc is a divisor of Pc.

Denote by σ
(c)
i the coefficient of ti in S(c)(t). We know that the latter polynomial

is not p.n.i.; by Lemma 5.26, σ
(c)
0 is an integer. Recall that

Pc(t) = P (c1t, c2t, . . . , cnt) =
∑
i

pi(c1, . . . , cn)t
i,

where each pi is a polynomial in c1, . . . , cn (in fact a homogenous polynomial of degree
i). Similarly let us write

Qc(t) =
∑
i

qi(c1, . . . , cn)t
i.

Note that the S(c) is defined by the equation

Pc = Qc · S(c) .

By comparing corresponding coefficients, we convert this equation to the linear system

(in the unknowns σ
(c)
j )

p0(c) = q0(c)σ
(c)
0 ,

p1(c) = q1(c)σ
(c)
0 + q0(c)σ

(c)
1 ,

p2(c) = q2(c)σ
(c)
0 + q1(c)σ

(c)
1 + q0(c)σ

(c)
2 ,

·
·
·

(4)
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If q0 �= 0, these equations are easy to solve:

σ
(c)
0 =

p0(c)

q0(c)
,

σ
(c)
1 =

p1(c)

q0(c)
− q1(c)

q0(c)
σ
(c)
0 ,

·
·
·

(5)

If q0(c) = 0, the first equation degenerates, so we proceed to the following equations.
If q1(c) �= 0, we obtain

σ
(c)
0 =

p1(c)

q1(c)

and so on. To sum up, the form of the solution depends on the first polynomial of
q0, q1, . . . which does not vanish at c. The first qi which has nonzero value is used

as the denominator in a solution similar to (5). In particular, the solution for σ
(c)
0 is

pi(c)
qi(c)

.

To add some formal notation to the above discussion, let V(q) be the zero set of
the polynomial q. We define

Hi =


⋂

j<i

V(qj)

 \ V(qi)

(with obvious modifications for the first and last i). Hi is the set of points c for which
qi is the denominator in the solution. It is easy to verify, that there is at most one
index k such that Hk is a large set. In fact, Hk = �n − V(qk).

Note that each of the polynomials qi is homogenous of degree i. It follows, that
V(qk) is scale invariant, and so is its complement Hk.

One must not forget that in the system (4) there are more equations than un-
knowns. It is possible that such a system will not have any solution. This occurs
when the solution obtained from some of the equations does not fulfill the other
equations. Note, however, that once the solutions for σi are substituted in the other
equations, they become algebraic equations in (c1, . . . , cn). Thus, to every Hi we have
an associated variety Gi that restricts the solution.

We argued before that every c ∈ ⋃K/∈∆(S(K)) gives rise to divisibility of Pc by
Qc, i.e., enables a solution of (4). Hence

⋃

K/∈∆
(S(K)) ⊆

⋃
i

(Hi ∩Gi) .

The set on the left-hand side is known to be large, so the set on the right-hand side
must also be large. We conclude that there is a k such that Hk ∩ Gk is large. Then
Hk is the unique large set mentioned above, and Gk is trivial, i.e., Hk ∩Gk = Hk.

We now get rid of the specific rayK we chose before, and consider the relationship
of a general ray K to the set Hk. Since Hk is scale invariant, a ray is either contained
in this set or disjoint from it. Let K ⊆ Hk (= Hk ∩ Gk). Pick a point c ∈ K ∩ Qn.
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By definition of Hk and Gk, (2) can be solved for c and produce a polynomial S
(c)

such that rc = S(c).
The set of points on which σ

(c)
0 obtains integer values is contained in B(pk, qk).

(Note that this bale also includes the case qk = 0.) We argued above that for K /∈ ∆
and c ∈ S(K), σ

(c)
0 is an integer. Thus

⋃

K/∈∆
S(K) ⊆ B(pk, qk).

Since pi and qi are both homogenous, B(pk, qk) is scale invariant and contains all of⋃
K/∈∆K. This is a contradiction to our opening assumption (∗), unless the bale is

trivial. A trivial bale satisfies pk(c)/qk(c) ∈ Z for every c such that qk(c) �= 0, i.e., for
c ∈ Hk. We conclude that r|K is p.i. for every ray contained in Hk. In other words,⋃

K/∈ΓK ⊆ V(qk), a nontrivial scale-invariant variety.
Definition 5.29. Let P (x) ∈ �[x]. We define ψ(P )(x) = limλ→0 λ

sP (x/λ)
where s = degP . That is, ψ(P ) is the sum of monomials in P of leading degree. For

any rational function r = P/Q where P,Q ∈ �[x], ψ(r)(x) def
= ψ(P )(x)/ψ(Q)(x).

ψ is a “homogenizing operator” on polynomials and rational functions.
Lemma 5.30. If a set of rays in �n is contained in some nontrivial algebraic

variety, then it is contained in a nontrivial, scale-invariant one.
Proof. Let Γ be the set of rays and V a variety that contains it. Let p1, . . . , pk be

the polynomials defining V . Let ψ(V ) be defined by ψ(p1) = 0,. . .,ψ(pk) = 0. Clearly,
ψ(V ) is scale invariant. We first claim that it is nontrivial: for ψ(V ) to be trivial, at
least one of its defining polynomials must be identically zero. But ψ(pi) ≡ 0 if and
only if pi ≡ 0. It rests to show that Γ ⊆ ψ(V ). To see this, let K ∈ Γ; then K ⊆ V ,
so pi|K ≡ 0 for every i. In particular,

lim
λ→0

λspi|K(t/λ) = 0

for every t; i.e., ψ(pi)|K ≡ 0. Thus K ⊆ ψ(V ).

6. Translating RAM programs into computation trees. The foundation
for the proof of all our lower-bound theorems for RAMs is a way of translating a
RAM program into a computation tree that computes the same function for almost
all inputs (or almost all inputs within a certain neighborhood). The precise statement
varies from theorem to theorem, and accordingly we present six different lemmas, that
prepare the ground for our six theorems.2 The starting point for these proofs is the
technique of Paul and Simon [15]. The first lemma below is “almost” proved in their
work.

Lemma 6.1. Let P be a (�,�, {+,−,×, /})-RAM program that recognizes a set
W ⊆ �n in time bounded by t. The initial contents of the random access memory are
assumed to be zero except for a finite set of cells. Then P can be transformed into an
algebraic computation tree, recognizing a set V , such that the following hold:

(1) h(T ) ≤ t;
(2) V is an open set;
(3) there exists a nontrivial algebraic variety H such that W ∪H = V ∪H.
Proof. We make the following nonrestrictive assumptions on the program. The

input variables, x1, . . . , xn, reside in addresses 1, 2, . . . , n of the random access mem-
ory. The program has access to a fixed set of registers r1, . . . , rk which are not in

2Note that the order of the lemmas does not correspond to the order of the theorems; it was
chosen to facilitate the presentation of the proofs.
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the random access memory and on which arithmetics and tests are performed, while
main memory is accessed explicitly only by instructions that transfer the contents of
a register into memory, or vice versa. These instructions can use direct addressing
(the address is a program constant) or indirect addressing (the address is given in
a specified register). The registers must be explicitly initialized, while the memory
is preset to the program-determined values. Finally, we assume that the program
ends with an output instruction that specifies the result of the computation (say, by
naming a register).

We begin by representing P in tree form in the standard way, which involves
unrolling loops, so that control only flows from root to leaves. This tree is potentially
infinite; however, since we assume that the time complexity of the program is bounded
by t, we may prune the tree at height t, without interfering with its correctness.
The nodes of this tree are labeled with instructions of the program. To make it a
computation tree, we have to replace all references to registers and memory locations
with named variables. The variable names will be u1, u2, etc.

We start by replacing each left-hand occurrence of a register name by a unique
variable name ui. Next, we replace all right-hand occurrences in accordance with
the closest preceding left-hand replacement. (Since we assume that registers must be
initialized explicitly, there will always be one.)

Our main concern is handling memory references. We will use additional new
variables to represent values stored in memory (except for the initial values). In
order to determine the target of a memory reference, we have to find out whether the
value used for addressing (itself the result of prior computation) coincides with the
address used in a preceding memory reference. Since in our model F = {+,−,×, /},
all functions that can be computed by a straight-line sequence of instructions are
rational functions from �(x). Therefore, in order to analyze the memory references
of the program, we represent each value computed as a rational function.

Recall that register names have already been replaced with variable names; thus
it rests to handle memory access instructions, which can take one of four possible
forms (here a represents a real constant):

(i) 〈a〉 ← ui
(ii) 〈uj〉 ← ui
(iii) ui ← 〈a〉
(iv) ui ← 〈uj〉
In order to analyze the memory references we apply the following analysis proce-

dure to the whole tree. The procedure handles the nodes of the tree in a top-down
order. With each node ν that sets a variable ui we associate a function fi ∈ �(x) that
represents the value assigned. With nodes representing STORE instructions (types (i)
and (ii)), we also associate a function gi that represents the address accessed. Later,
we will change a STORE instruction into an assignment to a unique variable. This
variable will be used in subsequent LOAD instructions only if the functions that de-
scribe the addresses accessed in the STORE and the subsequent LOAD are identical.
This is a “rough” analysis, because if nonidentical functions yield the same address,
our analysis will be incorrect; the inputs where such a failure happens will create the
difference between V (the set recognized by the computation tree) and W (the set
recognized by P ).

The following rules are applied to each node, according to the type of instruction
it represents.

(1) A decision node: no special handling.



TOPOLOGICAL LOWER BOUNDS ON ALGEBRAIC RAMs 745

(2) An assignment

ui ← a, where a ∈ �.
We define fi = a.
(3) An assignment

ui ← uj .

We define fi = fj . Note that fj must have already been defined.
(4) A computational instruction

ui ← uj ◦ uk, where ◦ ∈ {+,−,×, /}.
We define fi = fj ◦ fk. Note that fj and fk must have been already defined.

(5) For a STORE instruction of type (i), we replace the left-hand side with a new
variable uk; we define fk = fi and gk = a.

(6) For a STORE instruction of type (ii), we replace the left-hand side with a
new variable uk; we define fk = fi and gk = fj .

(7) For a LOAD instruction of type (iii), we look for the closest ancestor of the
current node that represents an instruction of type (i) or (ii) and has gk = a. If
we find such a node, we replace the right-hand side of the assignment with uk. If
we do not, and a ∈ {1, . . . , n}, we replace the right-hand side with xa. Otherwise,
we replace it with a constant that is the initial value of memory address a (either
specified explicitly by the program or the default value zero).

(8) For a LOAD instruction of type (iv), we look for the closest ancestor of the
current node that represents an instruction of type (i) or (ii) and has gk = fj . If we
find such a node, we replace the right-hand side of the assignment with uk. If we
do not, and fj ∈ {1, . . . , n}, we replace the right-hand side with xfj . Otherwise, if
fj = a where a is one of the addresses initialized to a nonzero value, we replace the
right-hand side with this value. In all other cases we replace the right-hand side with
a zero.

In cases (1) through (6), it is clear that the function fi represents correctly the
value of ui (assuming ancestors were handled correctly). Only cases (7)–(8) require
finer consideration. The analysis of case (7) is correct, provided that the input vector
x does not mislead us by satisfying an equation gk(x) = a which is not an identity.
Similarly, the analysis of case (8) is correct, provided that the input vector x does
not mislead us by satisfying a nontrivial equation among gk(x) = fj(x), fj(x) =
1, . . . , fj(x) = n, and fj(x) = a, where a is one of the addresses initialized to a
nonzero value. Note that the set of misleading x values is defined by a finite number
of equations in rational functions. Each equation of rational functions, say

P (x)

Q(x)
=

R(x)

S(x)

(P , Q, R, and S are polynomials), can be rewritten as

(6) PS −RQ = 0

(possibly adding solutions where one of the denominators is zero). This way we obtain
a set H1, defined by a finite number of polynomial equations, i.e., an algebraic variety,
that contains all the misleading x values. H1 is a nontrivial variety, for the defining
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equations are never identities. For every x ∈ � \H1, the computation tree obtained
simulates the RAM program faithfully.

For every decision node ui : uj , we can now write the comparison in terms of
rational functions fi : fj . If this comparison happens to be trivial (has only one
possible outcome), we delete the decision node, keeping the only child that is reached.
For every remaining decision node, we remove the branch of equality. Namely, we
use the form of decision nodes with three children (<, =, and >) and replace every
subtree rooted at = with a rejecting leaf. Let H2 be the set of inputs that satisfy one
or more of the equations fi = fj (rewritten as in (6)); H2 is a nontrivial algebraic
variety.

Following the last change, we obtain a tree T that simulates P faithfully if the
input is not in H = H1 ∪H2.

Let V be the set recognized by T . Now, V is an open set because it is defined by
strict polynomial inequalities. If x ∈W ∪H, then either x ∈ H or x ∈W \H. In the
latter case, x is accepted by the program P ; moreover the tree simulates P faithfully
on x and therefore accepts it. Thus x ∈ V . Similarly, if x ∈ V \H, then x ∈W . We
have proved the lemma.

Lemma 6.2. Let P be a (�,�, {+,−,×, /, χZ})-RAM program that recognizes
a set W ⊆ �n in time bounded by t. The initial contents of the memory cells of
integer addresses may be arbitrarily specified by P . Then P can be transformed into
an algebraic computation tree recognizing a set V , such that the following hold:

(1) h(T ) ≤ t;
(2) V is an open set;
(3) there exists a nontrivial bale H such that V ∪H =W ∪H.
Proof. We point out only the differences from the proof of Lemma 6.1. The

extensions allowed by our RAM are integrality testing and free initialization of all
integer-addressed cells. We consider the latter extension first. It affects the proof of
Lemma 6.1 by introducing infinitely many equations for misleading inputs (only for
case 8). These are the equations:

{fj(x) = a : a is an initialized address}.

Since fj is a rational function, the solutions of these equations belong to the bale
B(P,Q) where P/Q = fj . The other prohibited equations define algebraic varieties,
which are a special case of bale. Thus the total set of misleading inputs is contained
in a finite union of bales, i.e., in a bale. We initially define H1 to be this bale.

We proceed to handle tests of the two kinds: ordinary comparisons are handled
as before, giving rise to the set H2. Now we also have integrality tests. Here we
distinguish two cases. For a given integrality-testing node, it is possible that the test
passes for all input that arrives there (i.e., only integers are ever tested). If this is the
case, the node is simply eliminated, and only the “yes” branch kept. Otherwise, we
eliminate the node as well but keep the “no” branch instead; to maintain correctness,
we forbid all input that passes the test. Since the variable tested has already been
associated with a rational function, the set of inputs that pass the test forms a bale
(and not the trivial one, because some inputs do not pass). Call this bale H3. We let
H = H1 ∪H2 ∪H3.

Lemma 6.3. Let P be a (�,N, {+,−,×, /})-RAM program that recognizes a set
W ⊆ �n in time bounded by t. The initial contents of the random access memory may
be arbitrarily specified by P . Then P can be transformed into an algebraic computation
tree recognizing a set V , such that the following hold:
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(1) h(T ) ≤ t;
(2) V is an open set;
(3) there exists a boundary set A such that V ∪A =W ◦.
Proof. T is obtained from P much as in the proof of Lemma 6.1, with a difference

only in the handling of indirect addressing operations. Here, we treat every memory
access as a direct addressing one. For the constant address, we use the value of the
function gk at an arbitrary point of its domain of definition.

We now elaborate the effects of this change. Recall that in the process that
derives T from the program tree, certain parts of the tree have been removed. First,
we remove all branching nodes where there is only one possible outcome (with no
effect on the computation). Next, every node, that is reached on a nontrivial equality,
is replaced by a rejecting leaf. (This change gives rise to the set H2.)

Therefore, it suffices to consider indirect addressing nodes in those parts of the
tree that are not eliminated. Let ν be such a node and Dν be the set of inputs x ∈ �n

that arrive at ν (more precisely, the computation on x arrives at ν). This set is defined
by the branching conditions on the path to ν, which are all strict inequalities among
polynomials; it is therefore an open set. Let f be the function, that yields the address
for the memory access at ν. It is a rational function, and its value must be integer for
all x ∈ Dν ; otherwise the program would not be valid. By Lemma 5.12, f is constant
throughout its domain of definition, justifying the change described above.

After replacing register names with variables, we proceed to replace memory
access operations with assignments. In the proof of Lemma 6.1, we argued that this
substitution is safe for input x unless x satisfies one of a certain set of nontrivial
equations, giving rise to a variety of “misleading input” H1. The equations test
whether the memory address coincides with an address accessed in some prior node
or with a preset location. In the current construction we have changed all address
expressions into constants: thus the equations in question become relations between
constants. They can hold for x if and only if they are identities, but identities were
not included in the definition of H1. The set corrseponding to H1 for the current
construction is thus empty.

We conclude that T simulates P faithfully if the input is not in H2. All inputs in
H2 are rejected; therefore, every input accepted by T is indeed in W , and we obtain

V ⊆W ◦ ⊆W ⊆ V ∪H2

⇒ W ◦ = V ∪ (W ◦ ∩H2) .

We thus let A =W ◦ ∩H2. Since H2 is a boundary set, so is A.
Lemma 6.4. Let P be a (�,�, {+,−,×, /, χZ})-RAM program that recognizes a

set U ⊆ �n in time bounded by t. The initial contents of the random access memory
are assumed to be zero except for a finite set of cells. Then P can be transformed into
an algebraic computation tree recognizing a set V , such that the following hold:

(1) h(T ) ≤ t;
(2) V is an open set;
(3) there exists a nontrivial, scale-invariant bale B such that for all K ∈ Q(n−1),

where K �⊆ B, ∃aK ∈ Z+ such that for all x ∈ (K ∩ aKZn),x ∈ U ⇔ x ∈ V .
Proof. We extend the construction of Lemma 6.1 to handle the integrality pred-

icate. This extension will introduce the bale mentioned in the lemma. We consider
first the case where the integrality predicate is not used by the program; then we can
apply Lemma 6.1 and obtain a variety H such that U∪H = V ∪H. Let Γ be the set of
rays K wholly contained in H. By Lemma 5.30, Γ may be completed to a nontrivial,
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scale-invariant variety which we now call B. Consider a rational ray K �⊆ B. Only a
finite number of points from K may be contained in H (Lemma 5.21). The conclusion
of our lemma is immediate.

We proceed to programs with integrality tests χZ. This operation is represented
in the program tree by a branching node, where the branch labeled yes is taken if
and only if the register tested contains an integer. Note that the construction of
Lemma 6.1 gives no special treatment to decision nodes of any kind, so it can be
carried out in the extended model with no change. We deal with integrality tests
after performing the original construction as described for Lemma 6.1. Consider now
a χZ-node ν, the first such node on its path. The register name it used has been
replaced by a variable ui, and a rational function fi has been found that represents
the value of ui on “safe” input. Because there are no χZ nodes before ν, the safety
requirement applying to fi is the same as in Lemma 6.1, i.e., input /∈ H.

Let

Γi = {K ∈ Q(n−1) : fi|K is p.i.}

and similarly

∆i = {K ∈ Q(n−1) : fi|K is p.n.i.}.

Theorem 5.28 shows that either
⋃

K/∈Γi
K or

⋃
K/∈∆i

K is contained in a nontrivial,
scale-invariant bale. We add this bale to B. (A union of two nontrivial, scale-invariant
bales is once again such a bale.)

First assume that
⋃

K/∈Γi
K ⊆ B. Then we remove the decision done and keep

only the yes branch. The change is safe on input x, provided that fi(x) ∈ Z. Now
if K �⊆ B then K ∈ Γi, so fi is p.i. on K. Thus there is an aKi ∈ Z+, such that the
modified tree handles x correctly if x ∈ K ∩ aKi Zn.

In the other case we have
⋃

K/∈∆i
K ⊆ B. Then we remove the decision done and

keep only the no branch. The safety argument is similar.
We complete the construction by setting aK , for every K �⊆ B, to be a common

multiple of the aKi associated with all the nodes eliminated.
Lemma 6.5. Let P be a (�,�, {+,−,×, � �})-RAM program that recognizes a set

W ⊆ �n in time bounded by t. The initial contents of the random access memory
cells of integer addresses may be arbitrarily specified by P . Then there exists a con-
stant λ0 > 0 such that for all 0 < λ < λ0, P can be transformed into an algebraic
computation T = Tλ such that the following conditions hold:

(1) h(T ) ≤ 3t+ 2n+ 1;
(2) T recognizes an open set V ;
(3) there exists a boundary set A such that V ∪A = (W ∪A) ∩B(λ,0).
Proof. We start by constructing a computation tree, T0, from P , much as in the

proofs of Lemmas 6.1 and 6.2. As in the former constructions, we associate with each
variable ui a function fi that represents the value assigned to that variable. However,
this time, the function will be a polynomial. In fact, the computation tree that we
derive only includes the operations {+,−,×}. Floor operations are eliminated in
course of the construction, and it is their elimination that necessitates restricting the
input to the neighborhood B(λ,0). The constant λ0 is derived in the construction.

The first stage, as in the former lemmas, involves unfolding the program to tree
form and replacing register names by variables, obtaining the program tree TP of
height t. This tree may now include operations ui ← �uj�. These nodes are handled
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specially as described below. With each such node, a constant λi is associated, in ad-
dition to the function fi. The construction proceeds top-down, applying the following
rules to each node according to its type.

(1) A decision node: no special handling.
(2) An assignment

ui ← a, where a ∈ �.
We define fi = a.
(3) An assignment

ui ← uj .

We define fi = fj . Note that fj must have already been defined.
(4) An arithmetic instruction

ui ← uj ◦ uk, where ◦ ∈ {+,−,×}.
We define fi = fj ◦ fk. Note that fj and fk must have been already defined, and

that the resulting function is a polynomial.
(5) A truncation instruction

ui ← �uj�.
Let cj = fj(0). We distinguish two cases.
(5.1) cj /∈ Z, i.e., �cj� < cj < 1cj2. By continuity of fj , we choose λi > 0 such

that for all x ∈ B(λi,0) we have �cj� < fj(x) < 1cj2. Hence, �fj(x)� = �cj� for all
such x. We relabel the current node with the instruction

ui ← �cj�
and set fi = �cj�.

(5.2) cj ∈ Z. By continuity of fj , we choose λi > 0 such that for all x ∈ B(λi,0)
we have cj − 1 < fj(x) < cj + 1. Hence, �fj(x)� ∈ {cj − 1, cj} for all such x. We
replace the current node with a branching structure, which tests the value of fj(x)
to determine which of the two possibilities is appropriate, and proceed accordingly.
This transformation is shown in Figure 1, where T ′1 (resp., T

′′
1 ) represents a copy of T1

with new (primed; resp., double-primed) variable names; uk is an additional variable
not in the original tree. The functions fk, fi and fi′ are now defined as in case (2).

The rest of the nodes, representing LOAD and STORE operations, are replaced
with assignment operations just as in the proof of Lemma 6.2. This results in the
definition of a “forbidden bale”H. This set contains all input values for which memory
references were not resolved correctly. The resulting tree T0 simulates the RAM
program faithfully provided that the input is not in H, and the replacement of floor
operations is correct. The latter condition will be fulfilled if x ∈ B(λ0,0) where λ0

is the minimum over the λi defined. (If none were defined, which means that there
were no floor operations, λ0 can be chosen arbitrarily.)

We conclude the construction by eliminating redundant comparisons and then
replacing every =-branch (in the comparison nodes that remained) with a rejecting
leaf. These equality branches define another variety, H2, which contains input which
we may unjustly reject. The effect of the last change is that the set V1 accepted by the
resulting tree T1 is open. It also satisfies, for H = H1 ∪H2, and for every 0 < λ < λ0,

(V0 ∪H) ∩B(λ,0) = (W ∪H) ∩B(λ,0).
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Fig. 1. Transformation of truncation nodes.

It is easy to see that h(T1) ≤ 3t. We now extend T1 to the desired tree T by
inserting, before the root of T1, a series of nodes that compute

‖x‖ =
(

n∑
i=1

x2
i

)
,

and finally compare this value with λ. The branch for ‖x‖ < λ is connected to the
root of T1; the other branches reject. It is clear that the resulting tree recognizes the
set V = V1 ∩B(λ,0). Let A = H ∩B(λ,0). It is easy to verify that parts (2) and (3)
of the lemma is satisfied. Verifying part (1) is also straightforward.

Lemma 6.6. Let P be a (�,N, {+,−,×, � �})-RAM program that recognizes a set
W ⊆ �n in time bounded by t. The initial contents of the random access memory
may be arbitrarily specified by P . Then there exists a constant λ0 > 0 such that for
all 0 < λ < λ0, P can be transformed into an algebraic computation tree T = Tλ such
that the following hold:

(1) h(T ) ≤ 3t+ 2n+ 1;
(2) T recognizes an open set V ;
(3) there exists a boundary set H such that V ∪H =W ◦ ∩B(λ,0).
We omit details of the proof, which is a straightforward combination of the proofs

of Lemmas 6.5 and 6.3.
Lemma 6.7. Let P be a (Q,Q, {+,−,×, � �})-RAM program that recognizes a set

U ⊆ Qn in time bounded by t. The initial contents of the random access memory are
assumed to be zero except for a finite set of cells. Then P can be transformed into an
algebraic computation tree T recognizing a set V ⊆ �n, such that the following hold:

(1) h(T ) ≤ 2t;
(2) V is an open set;
(3) there exist a nontrivial algebraic variety H and a constant a ∈ Z+ such that

V ∩ (aZn \H) = U ∩ (aZn \H).
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Proof. We construct T from P in a way similar to the construction of Lemma 6.1.
As in the previous constructions, we associate with each variable ui a function fi that
represents the value assigned to that variable. This time, this function will not be
a rational function but a polynomial. Thus only the operations {+,−,×} take part
in these functions; floor operations will be eliminated. We will define the constant a
and show that these functions represent the computation precisely enough for input
in aZn.

As usual we start by representing the program as a tree, renaming registers to
unique variables. In this tree, there still are operations of the form ui ← �uj�. These
operations have to be replaced by algebraic operations. The idea that allows this is
as follows. If only the operations {+,−,×} had been used, all functions computed
by the program would have been polynomials. We study the effect of applying the
truncation operation to a polynomial. Consider for simplicity a univariate polynomial
ckx

k + · · · + c1x + c0. All cj are rational. Let d be the common denominator of
{c1, . . . , ck}. Then, if x is divisible by d, the fractional part of this polynomial is
determined by the constant c0. Thus, computing the “floor” of this expression is
achieved by subtracting a fixed constant. Hence, for input suitably restricted, we can
replace this truncation operation with subtraction. In this way, we eliminate one by
one all the truncation operations in the tree.

More precisely, we now associate with each variable ui an integer ai (in addition
to the function fi which is used as before). The construction proceeds top-down,
applying the following rules to each node according to its type.

(1) A decision node: no special handling.
(2) An assignment

ui ← c, where c ∈ Q.

We define fi = c and ai = 1.
(3) An assignment

ui ← uj .

We define fi = fj and ai = 1. Note that fj must have already been defined.
(4) An instruction

ui ← uj ◦ uk, where ◦ ∈ {+,−}.
We define fi = fj ◦ fk, and ai = 1. Note that fj and fk must have been already

defined and that the resulting function is a polynomial.
(5) A multiplication instruction

ui ← uj · uk.
We define fi = fj · fk. Note that fj and fk must have been already defined and

that the resulting function is a polynomial. We define ai to be the least common
denominator of the constant terms of the polynomials fj , fk.

(6) A truncation instruction

ui ← �uj�.
Let cj be the constant term of fj . We replace this node by two nodes, labeled

with the instructions

uk ← cj − �cj�
ui ← uj − uk
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(uk is a new variable). Note that this is a correct replacement for the truncation
instruction, provided that fj represents correctly the value of uj and that the non-
constant part of fj is integer. We define fi, fk and ai, ak accordingly.

The rest of the nodes, representing LOAD and STORE operations, are handled
exactly as in the Paul–Simon construction. ai is defined as 1 for all of these instruc-
tions. This results in the definition of a “forbidden variety” H1 in the usual way,
which contains all input values for which memory references were not resolved cor-
rectly. We obtain that the tree simulates the RAM program faithfully, provided that
the input is not in H1 and the replacement of floor operations is correct. To this end
we define a to be the product of all the ai. We claim that if the input belongs to aZn,
then these replacements are correct. As above, we denote by cj the constant term of
fj . We assume for simplicity that the variables are numbered so that the variables
defined before ui (that is, in ancestors thereof) have lower indices.

Claim 6.8. Let x ∈ aZn \H1. On input x, the value assigned to ui is fi(x), for
every ui in T . The value of fi(x)−ci is an integer divisible by the di = a/(a1 ·· · ··ai).

Hence the replacement of all floor operations is correct for such x.
The claim is proved by induction, starting at the root of the tree. For variables

defined by case (2) it is immediate. For variables defined by cases (3)–(4) the claim
follows from the inductive assumption regarding uj and uk. Consider case (5). It is
clear that if the values assigned to uj and uk are, respectively, fj(x) and fk(x), then
the value assigned to ui is fi(x). Now

fi(x)− ci = fj(x) · fk(x)− cjck = (fj(x)− cj)fk(x) + cj(fk(x)− ck).

The inductive assumption shows that fj(x)−cj is a multiple of dj = a/(a1 · · · aj), and
hence of di−1 = a/(a1 · · · ai−1). By the definition of ai, it is the common denominator
of the rational numbers fk(x) and fj(x). Thus (fj(x) − cj)fk(x) is a multiple of
di−1/ai = di. The same holds for cj(fk(x)− ck).

In case (6) the inductive assumption shows that the value of uj is fj(x) and that
fj(x) − cj is a whole number; thus the fractional part of uj is indeed cj − �cj�. It
follows that the new instructions compute ui correctly (for this input).

STORE and LOAD instructions were replaced by regular assignments; the claim
thus holds, as it does for regular assignments, as long as the replacement is valid. We
know (see Lemma 6.1) that it is valid for input not in H1. This concludes the proof
of the claim.

Our construction is concluded, as in Lemma 6.1, by deleting trivial comparisons
and replacing equality branches that remain by a rejecting leaf. This gives rise to the
nontrivial variety H2. As usual, we define H = H1 ∪H2. Now, the set V recognized
by the resulting tree is an open set. If x ∈ U ∩ (aZn \ H), Claim 6.8 applies to x,
showing that the tree is faithful to the program. From x ∈ U it follows that x ∈ V .
We have thus shown

U ∩ (aZn \H) ⊆ V ∩ (aZn \H).
The reverse containment is similarly proved.

7. Proofs of lower bound theorems.

7.1. Extending Ben-Or’s theorem. Theorem 3.1 is a direct consequence of
the following lemma [2].

Lemma 7.1. Let T be an algebraic computation tree recognizing W ⊆ �n. Then
β(W ) ≤ 9h(T )3n.
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Ben-Or proves this lemma by applying, in an elegant way, results of Milnor [14]
and Thom [18] on the topology of varieties. Using this lemma we can also prove
Theorem 3.1′. Let T be a computation tree that recognizes W . Let T ′ be obtained
from T by rejecting all nontrivial equalities (as in the proof of Lemma 6.4). Note that
h(T ′) ≤ h(T ). Let V be the set recognized by T ′; obviously V ⊆ W and is open.
Thus V ⊆W ◦. In fact, V =W ◦ \H where H is the union of all (nontrivial) varieties
defined by the equalities affected. Combining Lemma 7.1 with Lemma 5.6 we have

β(W ◦) ≤ β(V ) ≤ 9h(T ′)3n ≤ 9h(T )3n,

whereby

h(T ) ≥ log9 β(W ◦)−
1

2
n.

Theorem 3.1′ follows.

7.2. Proof of Theorem 3.3. Consider a (�,N, {+,−,×, /})-RAM program P
recognizing W in time t. Let T and V be given by Lemma 6.3. By the last lemma,

β(V ) ≤ 9t3n.

Using Lemmas 6.3 and 5.6,

β(V ) ≥ β(W ◦).

Combining the two inequalities we have

9t3n ≥ β(W ◦).

Theorem 3.3 follows.

7.3. Proof of Theorem 3.4. Consider an (�,�, {+,−,×, /, χZ})-RAM pro-
gram P recognizing W in time t. Let T , V , and H be given by Lemma 6.2. By
Lemma 7.1,

β(V ) ≤ 9t3n.

Using Lemmas 6.2 and 5.3,

(W )◦ = (W ∪H)◦ = (V ∪H)◦ = (V )◦,

and by Lemma 5.5,

β((W )◦) = β((V )◦) ≤ β(V ) ≤ 9t3n.

Theorem 3.4 follows.

7.4. Proof of Theorem 3.6. For simplicity we assume β̃(W ◦) and β̃(W ) to
be finite. If one of them is infinite the theorem claims that there is no genuinely
time-bounded program for recognizing W , and the proof is a simple extension of the
finite case.

Consider a (�,N, {+,−,×, � �})-RAM program P recognizingW in time t. Let λ0

be given by Lemma 6.6. Since the limit β̃(W ◦) is finite, there is a number 0 < λ < λ0
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such that β(W ◦ ∩B(λ,0)) = β̃(W ◦). Pick T = Tλ as in Lemma 6.6, and let V be the
set T recognizes. By Lemma 7.1,

β(V ) ≤ 93t+2n+13n = 93t+135n.

Using Lemmas 6.6 and 5.6,

β(V ) ≥ β(W ◦ ∩B(λ,0)) = β̃(W ◦).

Combining the two inequalities we have

93t+135n ≥ β̃(W ◦)

or

t ≥ 1

3
(log9 β̃(W

◦)− 1)− 5

6
n.

A similar reasoning gives the same inequality with W instead of W ◦, and together
they prove Theorem 3.6.

7.5. Proof of Theorem 3.7. As above, we assume β̃((W )◦) to be finite. Con-
sider a (�,�, {+,−,×, � �})-RAM program P recognizing W in time t. Let λ0 be
given by Lemma 6.5. Since the limit β̃(W ◦) is finite, there is a number 0 < λ < λ0

such that β(W ◦ ∩ B(λ,0)) = β̃(W ◦). Pick T , V and A as in Lemma 6.5. By Lem-
mas 5.5 and 7.1,

β((V )◦) ≤ β(V ) ≤ 93t+2n+13n = 93t+135n .

On the other hand,

(W )◦ ∩B(λ,0) = (W ∪A)◦ ∩B(λ,0) (Lemma 5.3)

= ((W ∪A) ∩B(λ,0))◦ (Lemma 5.4)

= (V ∪A)◦ (Lemma 6.5)
= (V )◦.

Combining the last results we have

93t+135n ≥ β̃((W )◦).

Theorem 3.7 follows.

7.6. Extending Yao’s lower bound. We start by reviewing Yao’s proof of
Theorem 3.2, and extend it to prove both Theorem 3.2 and Theorem 3.2′. We denote
by AZn,W the class of algebraic computation trees that recognize the set W ⊆ �n

when restricted to input in Zn.
Let T ∈ AZn,W . With any node ν in T that represents an assignment or a

computation, we associate a rational function rν that represents the value assigned or
computed. Namely, if a constant if assigned, rν is this constant. If a previous variable
is assigned, which was itself defined at node µ, then rν = rµ. A computation node is
handled as follows. Consider a node labeled with u ← z ◦ w, where z, w are defined
at nodes µ, τ , respectively. Then rν = rµ ◦ rτ (◦ ∈ {+,−,×, /}).
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We define pν and qν to be polynomials such that rν = pν/qν . These polynomials
are defined in the natural way, e.g., in case rν = rµ × rτ we have pν = pµpτ and
qν = qµqτ .

For any leaf l ∈ T , we denote by ξT,l the path from the root of T to l. For
α ∈ {0, 1}, let Lα be the set of leaves l such that the output of l is α and such that
ξT,l traverses no arcs labeled “=”. Let ST,l be the set of x ∈ �n that will trace the
path ξT,l in T .

Definition 7.2. T is called normal if, for every leaf l, the sequence of operations
from the root to l has the form

z1 ← u1 op 1 w1,
z1 : 0,
z2 ← u2 op 2 w2,
z2 : 0,
·
·
·

zm ← um opm wm,
zm : 0,

where m ≥ n; for 1 ≤ i ≤ m, op i ∈ {+,−,×, /}, every ui and wi is either a constant
or an element of {z1, z2, . . . , zi−1}∪{x1, . . . , xn}, and for 1 ≤ j ≤ n, uj = xj, wj = 1
and op j = ×.

Definition 7.3. T is irredundant if every node u can be traversed by some input
x ∈ Zn, and every computation node ν ∈ T computes a function rν which is not
constant.

Definition 7.4. A regular computation tree is one that is normal and irredun-
dant.

Lemma 7.5 (Yao). For every T ∈ AZn,W there exists T ′ ∈ AZn,W such that T ′

is regular and h(T ′) ≤ 2h(T ) + 2n.
Proof. Add the sequence of instructions zi ← xi×1, i = 1, . . . , n, at the beginning;

expand each internal node into a computation node zi ← · · · followed immediately
by a branching node zi : 0. Find the function rν computed at every node. For
functions that are constant, remove this node (and the succeeding test), leaving only
the correct branch of the test, and replace future references to the variable computed
by the corresponding constant. Now prune away all the branches in the tree that are
not traversed by any input x ∈ Zn.

We now define an operator φ, that translates every regular computation tree into
a related decision tree. The technique developed by Yao gives a lower bound on the
height of φ(T ) from the topology of the set it recognizes. We further relate this set
to the set recognized by T in order to derive a lower bound for the latter.

The following definition is repeated here for convenience.
Definition 5.29. Let P (x) ∈ �[x]. We define ψ(P )(x) = limλ→0 λ

sP (x/λ)
where s = degP . That is, ψ(P ) is the sum of monomials in P of leading degree. For
any rational function r = P/Q where P,Q ∈ �[x], let ψ(r)(x) = ψ(P )(x)/ψ(Q)(x).

Definition 7.6. For any regular T , φ(T ) is the decision tree obtained from T as
follows. For each branching node ν of T , group the pair (µ = parent[ν], ν) into one
node φ(ν). Associate it with the test ψ(pµ)(x) · ψ(qµ)(x) : 0. The three children of
this node (labeled <,=,>) are obtained from the corresponding children in T .

Lemma 7.7 (Yao). Let T be regular. For any leaf l ∈ L0(T ) ∪ L1(T ), we have
β(Sφ(T ),φ(l)) ≤ 2 · 3n+h(T ).
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Note that L0(T )∪L1(T ) is the set of leaves l such that the path to l traverses no
arc labeled “=”.

Lemma 7.8 (Yao). Let W ⊆ �n be scale invariant and rationally dispersed, and
let T ′ ∈ AZn,W . Then there is a boundary set A such that

⋃

l∈L1(T )

Sφ(T ′),φ(l) =W \A .

For proofs of both lemmas see [19].
We now prove Theorems 3.2 and 3.2′.
Let T ∈ AZn,W . Let T

′ be the regular tree provided by Lemma 7.5. By definition
of L1(T

′), the set
⋃

l∈L1(T ′) Sφ(T ′),φ(l) is open. Thus Lemma 7.8 can be strengthened
to

⋃

l∈L1(T ′)

Sφ(T ′),φ(l) =W ◦ \A.

Therefore Lemma 5.6 shows that

β


 ⋃

l∈L1(T ′)

Sφ(T ′),φ(l)


 ≥ β(W ◦).

By the definition of a normal tree, together with Lemma 7.5, we have

|L1(T
′)| ≤ 2h(T ′)/2 ≤ 2h(T )+n.

We now combine the last two inequalities with Lemma 7.7:

β(W ◦) ≤ |L1(T
′)| · 2 · 3n+h(T ′) ≤ 2h(T )+n+1 · 33n+2h(T ),

hence

h(T ) ≥ c1(log2 β(W
◦)− 1)− c2n.

This proves Theorem 3.2′ directly and Theorem 3.2 as a consequence (since β(W ◦) ≥
β̂(W )).

7.7. Proof of Theorem 3.5. Consider a (�,�, {+,−,×, /, χZ})-RAM program
P that recognizes W in time t for integer inputs. W is assumed to be scale invariant
and rationally dispersed. Let U be the set of real-valued inputs accepted by P .
Correctness of the program means U ∩ Zn = W ∩ Zn. Let T , V and B be given by
Lemma 6.4. Let T ′ be a regular computation tree obtained from T (and recognizing
the same set V ) such that h(T ′) ≤ 2t+ 2n.

Lemma 7.9. There is a closed boundary set A such that


 ⋃

l∈L1(T ′)

Sφ(T ′),φ(l)


 \A =W \A.

Proof. Let H be the set of x ∈ �n that satisfy ψ(pν)(x) · ψ(qν)(x) = 0 for some
branching node ν in T ′. H is an algebraic variety and, by the regularity of T ′, is non-
trivial. Since the operator ψ yields homogenous polynomials, H is scale invariant. Let
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A = B ∪H ∪ {0}. Then A is a scale-invariant, closed boundary set. Let x ∈ �n \A.
Then x ∈ Sφ(T ′),φ(l) for l ∈ L1(T

′) ∪ L0(T
′). We wish to prove that x ∈ W if and

only if l ∈ L1(T
′).

We consider first the case x ∈W . The set Sφ(T ′),φ(l) is open (it is defined by strict
inequalities), so Sφ(T ′),φ(l) \A is open too, and x belongs in it. Hence we can choose
ε > 0 such that the ε-neighborhood of x will be contained within this set. Since W
is rationally dispersed, we can pick y ∈ Qn such that ‖y − x‖ < ε and y ∈ W . Let
N0 > 0 be an integer such that N0y ∈ Zn. Since W is scale invariant, we have, for all
integer k > 0, kN0y ∈ W ; hence also kN0y ∈ U . Since y /∈ A, in particular y /∈ B,
and by Lemma 6.4 there is an integer a > 0 such that, for all k ∈ Z+, kaN0y ∈ V .
We now choose an integer N = kaN0 with k large enough to make, for all ν ∈ ξT,l,

sign(rν(Ny)) = sign

(
1

Nd
rν(Ny)

)
= sign(ψ(rν)(y))

(such k exists by the definition of ψ). The above equation implies that Ny will follow
the same path in T ′ as y does in φ(T ′). Since y reaches leaf φ(l) in φ(T ′), Ny will
reach leaf l in T ′. Since Ny ∈ V ∩ Zn, we have l ∈ L1(T

′).
For x /∈W , similar arguments show that l ∈ L0(T

′), hence x /∈ ⋃l∈L1(T ′) Sφ(T ′),φ(l).
The conclusion of the lemma folows.

Combining the last result with Lemmas 5.3 and 5.5, we have

β


 ⋃

l∈L1(T ′)

Sφ(T ′),φ(l)


 ≥ β




 ⋃

l∈L1(T ′)

Sφ(T ′),φ(l)



◦ 
 = β((W )◦)

and by applying Lemma 7.7, as in the preceding proof, we obtain

β((W )◦) ≤ 2t+n+1 · 33n+2t,

completing the proof of Theorem 3.5.

7.8. Proof of Theorem 3.8. The proof of Theorem 3.8 is very similar to the
last proof. However, since there are some technical differences, we give the proof in
whole.

Lemma 7.10. Let W ⊆ �n be scale invariant and rationally dispersed, H a
nontrivial algebraic variety in �n. For any x ∈ �n \ (H ∪ {0}) and ε > 0, there
exists a rational point y �= 0 and an integer N0 > 0, such that ‖y − x‖ < ε, N0y
has integer coordinates, and for every positive multiple kN0 we have kN0y /∈ H and
kN0y ∈W ⇐⇒ x ∈W .

Proof. Without loss of generality, let us assume that H contains the origin. Let
x ∈ �n \ H. The latter is an open set, so there is a neighborhood N of x that is
disjoint from H. Assume that x ∈ W (the other case is treated analogously). Since
W is rationally dispersed, W contains rational points arbitrarily close to x. Choose
y as such a point that belongs to N , and satisfies ‖y − x‖ < ε. Then y ∈ W \ H.
Let L be the line {λy, λ ∈ �}. Consider the set NH = {N > 0 : Ny ∈ H }. We have
NHy ⊆ L ∩ H. Since y /∈ H, L cannot be contained in H. Hence by Lemma 5.21,
L ∩H is finite; hence also NHy is. Note that since y is rational, there are infinitely
many N > 0 such that Ny ∈ Zn. Choose N0 to be such a number, greater than the
maximum of NH . The statement of the lemma is fulfilled.

Consider a (Q,Q, {+,−,×, � �})-RAM program P that recognizes W in time t
for integer inputs. W is assumed to be scale invariant and rationally dispersed. Let
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U be the set of rational input vectors accepted by P . Correctness of the program
means U ∩ Zn = W ∩ Zn. Let T , V , H, and a be given by Lemma 6.7. Let T ′ be
a regular computation tree obtained from T (and recognizing the same set V ) such
that h(T ′) ≤ 2t+ 2n.

Lemma 7.11. There is a closed boundary set A such that


 ⋃

l∈L1(T ′)

Sφ(T ′),φ(l)


 \A =W \A .

Proof. Let H1 be the set of x ∈ �n that satisfy ψ(pν)(x) · ψ(qν)(x) = 0 for some
branching node ν in T ′. H1 is an algebraic variety and, by the regularity of T

′, is
nontrivial. Let A = H ∪H1. Then A is a closed boundary set. Let x ∈ �n \A. Then
x ∈ Sφ(T ′),φ(l) for l ∈ L1(T

′) ∪ L0(T
′). We wish to prove that x ∈ W if and only if

l ∈ L1(T
′).

First, we assume x ∈ W . The set Sφ(T ′),φ(l) \ A is open and contains x, so we
can choose ε > 0 such that the ε-neighborhood of x will be contained within this set.
Pick y and N0 as provided by Lemma 7.10. Then y ∈ Sφ(T ′),φ(l), and for all k > 0,
kN0y ∈W \H; this implies, by Lemma 6.7, that

(7) ∀k ∈ Z+ kaN0y ∈ U ⇐⇒ kaN0y ∈ V .

We now choose an integer N = kaN0 with k large enough to make, for all ν ∈ ξT,l,

sign(rν(Ny)) = sign

(
1

Nd
rν(Ny)

)
= sign(ψ(rν)(y)).

This implies that Ny will follow the same path in T ′ as y does in φ(T ′). Since y
reaches leaf φ(l) in φ(T ′), Ny will reach leaf l in T ′. Since Ny ∈ W ∩ Zn, we also
have Ny ∈ U ∩ Zn, and (7) shows that Ny ∈ V . Thus l ∈ L1(T

′).

For x /∈W , similar arguments show that l ∈ L0(T
′); hence x /∈ ⋃l∈L1(T ′) Sφ(T ′),φ(l).

The conclusion of the lemma follows.

Combining the last result with Lemmas 5.3 and 5.5, we have

β


 ⋃

l∈L1(T ′)

Sφ(T ′),φ(l)


 ≥ β




 ⋃

l∈L1(T ′)

Sφ(T ′),φ(l)



◦ 
 = β((W )◦),

and by applying Lemma 7.7, as in the preceding proofs, we obtain

β((W )◦) ≤ 2h(t)+n+1 · 33n+2h(T ) ≤ 22t+n+1 · 23n+4t,

completing the proof of Theorem 3.8.
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8. Conclusion. In this paper we showed how topological arguments, previously
used to achieve lower bounds for algebraic computation trees, can be applied to ran-
dom access machines. We considered machines with standard memory access (using
integer addresses) and nonstandard models that may use arbitrary real addresses. We
considered the case of real-number input as well as that of integer input, and instruc-
tion sets {+,−,×, /} and {+,−,×, � �}. Our first lower bounds for these models
(Theorems 3.3 and 3.6, resp.) show that when problems with real input are consid-
ered, it is hard to make effective use of integer addresses within these models. This
is one motivation for studying the nonstandard model.

If the model is extended with the integrality predicate (which is not an algebraic
function), some problems may be solved faster without resorting to noninteger ad-
dresses. For example, Uniform Gap can be solved in linear time. Theorem 3.4 gives a
class of problems that cannot benefit this way. An even stronger extension is adding
the truncation (“floor”) operation. Together with division, it allows a linear-time
solution to Max Gap and to Min Gap. Obtaining a better characterization of the
power of this instruction set is a challenging open problem. Another open problem
is to close the gap that remains between even the algebraic RAM and computation
trees regarding bounds for the knapsack and generalized knapsack problems. (In fact,
even the computation-tree bound is not known to be tight.)

Finally, another extension of this research is to use other topological properties
of the set, besides the number of connected components. Yao [20] obtained new lower
bounds for algebraic computation trees using higher Betti numbers ofW (the number
of path-connected components is the 0th Betti number). In particular he obtained an
Ω(n log(n/k)− cn) lower bound for the following.

EXAMPLE 12 (generalized element distinctness). Given x1, x2, . . . , xn, decide
whether some k of these n numbers are equal.

This result can be easily applied to the models of Theorems 3.3 and 3.6, since
their proofs give a direct reduction of the RAM program to an algebraic computation
tree. However, for the other models, making use of this result for RAM programs is
still an open problem.

9. Appendix. An algorithm using truncated division. The Min Gap de-
cision problem calls for deciding whether, in an array of input numbers, there are
two whose difference is bounded by an input value t. In section 3, we have shown
that the algebraic RAM, as well as the RAM with floor but without division, require
Ω(n log n) time to solve this problem even with A = �. This appendix gives a simple
linear-time algorithm to solve this problem on a (�,N, {+,−,×, /, � �})-RAM with
an initially zero memory.

Algorithm 1. Min Gap Decision.
Input: Real numbers x1, . . . , xn and t > 0.
Output: If there is a pair i �= j such that |xi − xj | ≤ t, the algorithm outputs such a
pair; otherwise it asserts that there is none.
Method: We partition the real line into intervals of length t and use the following fact:
If there is a pair of points from the given set whose difference is bounded by t, then
these points occupy either the same interval or two consecutive ones. Furthermore,
if no pair satisfies the first condition, detecting the second is easy since each interval
contains at most a single point.

A detailed program appears in Figure 2. In this program, we assume that uses
of indirect addressing in the algorithm do not collide with any variables; assumptions
which can be removed with standard programming techniques. Finally, we assume
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the points xi have been translated, if necessary, so that their minimum is zero. The
notation 〈a〉 is used for the memory cell whose address is a.

for i = 1, . . . , n do
ai ← �xi

t �+ 1
if 〈ai〉 �= 0 then
output i, 〈ai〉 and halt

else
if 〈ai − 1〉 �= 0 then

d← |xi − x〈ai−1〉|
if d ≤ t then
output i, 〈ai − 1〉 and halt

end if
end if
if 〈ai + 1〉 �= 0 then

d← |xi − x〈ai+1〉|
if d ≤ t then
output i, 〈ai + 1〉 and halt

end if
end if
〈ai〉 ← i

end if
end for
reject

Fig. 2.
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Abstract. We consider the implementation of abstract data types for the static objects: binary
tree, rooted ordered tree, and a balanced sequence of parentheses. Our representations use an amount
of space within a lower order term of the information theoretic minimum and support, in constant
time, a richer set of navigational operations than has previously been considered in similar work.
In the case of binary trees, for instance, we can move from a node to its left or right child or to
the parent in constant time while retaining knowledge of the size of the subtree at which we are
positioned. The approach is applied to produce a succinct representation of planar graphs in which
one can test adjacency in constant time.

Key words. abstract data type, succinct representation, binary trees, balanced parenthesis,
rooted ordered trees, planar graphs
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1. Introduction. The binary tree is among the most fundamental of data struc-
tures. While it is often the case that substantial amounts of data are associated with
each node, there are also important cases in which there is little enough so that
the representation of the tree with two lgn 1 bit pointers per node is a substantial,
or even dominant, component of the total storage cost of a system. As there are
Cn ≡

(
2n
n

)
/(n + 1) or about 22n/n3/2 binary trees on n nodes, 2n bits are neces-

sary (ignoring logarithmic terms) to encode an arbitrary binary tree. It is also easy
to come up with a 2n bit representation of an n-node binary tree using a balanced
nested parenthesis sequence. (Do a preorder traversal of the tree outputting an open
parenthesis when visiting a node for the first time and a matching closing parenthe-
sis when visiting it again after visiting the nodes of its subtree. Note that in this
representation it is not possible to distinguish a node having a left child but not a
right child from one having a right child but not a left child, but we will deal with
this in section 3.2). A greater challenge is to come up with an optimal representation
where the navigation around the tree, or for that matter the parentheses, can be done
efficiently. Jacobson [13] proposed a method achieving the information theoretically
optimal bound to within a lower order term. His interest, like ours, was in represent-
ing static data structures succinctly while still permitting the natural operations of
navigating around the structure to be performed quickly. His encoding permitted the
operations to move to the parent or either child of a given node, upon inspection of
Θ(lg n) bits. There are two shortcomings with this approach. First, the bits inspected
are by no means localized. At one point a “binary search” of Θ(lg2 n) bits is per-
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formed. Hence, the runtime is certainly not constant, even if a single operation were
to permit the inspection of lgn consecutive bits. While this difficulty can be overcome
(by an approach of the first author appearing only in [6]), the second shortcoming is
really the one which inspired our work. In a number of applications, the retention
of the size of the subtree, rooted at the current node, is essential. For example, in
using a binary trie as an index for full text search, one is given a query phrase and
traces down the index trie following the bit pattern of the query. Where one runs out
of query bits, the entire subtree rooted at the current node corresponds to the set of
matches of the query in the text. When this subtree is large, it is crucial that the
system be able to announce the number of matches without enumerating them all.
For example, the word “the” occurs 2,744,347 times in the Oxford English Dictionary.

Clark and Munro [7] used a 3n bit encoding of a binary tree to demonstrate the
viability of succinct tree representations for indexing large text files. The encoding
they used, however, had three other important features: two good and one bad.
First, it was based on explicitly giving the size of one subtree at each node; hence,
keeping track of the size of a subtree was a by-product of moving down the tree.
Second, the structural information needed at any time was, more or less, together.
This meant that, if one considered a model under which a word is a sequence of
lg n consecutive bits, the basic (arithmetic and bitwise logical) operations could be
performed in constant time. The shortcoming of the technique was that it did not
support efficient determination of the parent of a given node.

In this paper, we give an encoding for arbitrary binary trees on n nodes, using
2n + o(n) bits under this lgn bit word RAM model. As in [3], for convenience we
count the space in terms of bits instead of words, and we assume that all standard
operations on words can be performed in constant time. Our representation for binary
trees supports all four operations: left child, right child, parent, and size. This method,
along with all others mentioned, maps the nodes of the tree onto the integers 1, . . . , n,
and hence all are appropriate for applications in which data is to be associated with
nodes or leaves.

Despite the motivation for our work coming initially from the binary tree ap-
plication, our technique focuses first on the problem of an optimal representation of
balanced sequences of parentheses. As the class of such strings of length 2n is iso-
morphic to the class of binary trees on n nodes, it is convenient to let n denote the
number of open parentheses, or half the string length. Jacobson [13] also considered
this problem and proposed what seems to be a 10n+ o(n) bit solution, a factor of 5
times the optimal. His solution supports the following operations:

• findclose(i). Find the position of the closing parenthesis that matches the
open parenthesis in position i.
• findopen(i). Find the position of the open parenthesis that matches the clos-
ing parenthesis in position i.
• excess(i). Find the difference of the number of open parentheses and the
number of closing parentheses from the beginning to position i.

As with his solution to the tree representation problem, these operations require the
inspection of Θ(lgn) bits. Our solution uses space which is within a lower order term
of the information theoretic 2n bits, and all operations can be performed in constant
time in our model. One other operation is also necessary for our tree representation
and so, again in constant time, we support the following:

• enclose(i). Given a parenthesis pair whose open parenthesis is in position i,
find its closest enclosing matching parenthesis pair, if it exists.
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Throughout the paper, by the term “position” of a parenthesis, we mean the index to
the location (in the given parenthesis sequence) of the parenthesis from the beginning.
Given a bitstring, rank(x), the rank of the bit at position x is the number of 1’s up to
and including the position x, and select(i) is the position of the ith 1 in the bitstring.
These two operations can be supported in constant time for an n bit string using o(n)
bits of extra space (see [13, 15]). When referring to elements stored in an array (or a
sequence), we will speak of the array (sequence) as going from left to right.

The next section discusses our implementation of a sequence of balanced paren-
theses, and section 3 discusses our representations for static trees. Section 4 gives
an efficient representation of bounded page number graphs, including planar graphs.
Section 5 presents some concluding remarks and some recent work based on the pre-
liminary version of this work.

2. Balanced parentheses. Here we are given a balanced sequence of parenthe-
sis of length 2n, so there are n open and n closing parentheses. We want to use an
auxiliary storage of o(n) bits to answer standard operations in constant time. Jacob-
son [13] first breaks the given sequence into blocks of length lgn. Therefore, simply
keeping Θ(lgn) bits of information with each block contributes heavily to the lead
term (Θ(n) term) of the amount of storage required. We get around the problem
by using three levels of blocking. First, we break the sequence into “big blocks” of
size b = lg2 n. This permits a constant number of references to be stored with each
big block. It does, however, preclude scanning the entire block in constant time and
thus forces the notion of a small block. Each big block is divided into “small blocks”
of size lg2 b = 4(lg lgn)

2
. As a local reference to a parenthesis in a big block re-

quires only 2 lg lgn bits, such a reference to a single parenthesis can be stored for each
small block. Finally, small blocks are further subdivided into “tiny blocks” of length
2 lg lg n. These are so small that we can afford a single table with an entry for every
possible distinct tiny block.

To help answer queries, we associate some auxiliary storage with each of these
blocks. A similar but two level storage has been used to succinctly represent sets of a
finite universe to support membership [3] and to represent bitstrings to support the
operations rank and select [13, 15].

We gear our description of our auxiliary storage to answer the operation find-
close(i) which finds the matching closing parenthesis for the open parenthesis in po-
sition i. Some of the other operations, such as excess(i), are required along the way,
while others, such as enclose(i), can be implemented using the findclose(i) operation.
We will specifically address these operations later.

Using the terminology of Jacobson, we call a parenthesis far if its matching paren-
thesis lies outside its block. A far open (closing) parenthesis is a pioneer if its match-
ing parenthesis lies in a different block than that of the immediately previous (next)
far open (closing) parenthesis in the sequence from the beginning. (Note that the
matching parenthesis of a pioneer may or may not be a “pioneer” itself.) These two
definitions are general enough that we can, and we will, use them with respect to any
of the block sizes: big, small, or tiny. However, until otherwise noted the terms will
be used in the context of big blocks. For example, the matching parenthesis of a far
parenthesis lies outside its “big block.” With each pioneer parenthesis, we keep the
position of its matching parenthesis. For any other parenthesis, we will keep sufficient
information to find

• its immediately preceding pioneer parenthesis in the sequence; and
• its matching parenthesis, given the matching parenthesis of its pioneer.
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In our auxiliary storage structure, there are two types of information stored. In
the first type, we keep some information with each block (big, small, or tiny). This
is stored in three arrays, one indexed by the big blocks, one by the small blocks,
and one by the tiny blocks. Each cell of each array contains all information stored
with the corresponding block in an arbitrary but fixed sequence. The second type of
information is stored only for specific parentheses or blocks. Each such information is
stored in an efficient hash table (see [8, 19]), each cell of which consists of a position
of the specific parentheses or the block, along with all the information stored with the
corresponding parenthesis or the block. Given a position (of a parenthesis or a block),
its membership can be found in constant time in such a hash table. For example, the
position of the matching parenthesis for every pioneer parenthesis is stored in such a
hash table, each cell of which consists of a position of a pioneer parenthesis along with
the position of its matching parenthesis. We will call that table the pioneer table p.
Given the position of a parenthesis, it can be checked in constant time, whether or
not it is a pioneer, by checking for its membership in this hash table.

Now we begin the complete description of our auxiliary storage which consists of
the following:

• With every pioneer parenthesis, we keep the position of its matching paren-
thesis in the table p.

• With every big block, we keep
– the position of the immediately preceding pioneer (i.e., the pioneer im-

mediately to the left of the block) and
– the excess, namely, the number of open parentheses minus the number

of closing parentheses up to the position of the first parenthesis, in the
block.

We will call the array containing this information B.
• With every small block within a big block, we keep

– the position of the immediately preceding pioneer inside the big block
(and a string of 0’s if there is no pioneer to its left in the big block) and

– the excess at that position starting from the beginning of its big block.
(This value could be negative.)

We will call the array containing this information b.
• With every small block containing a pioneer, we will keep a bitstring whose
length equals the size of the small block. The ith bit in the bitstring is 1 if the
corresponding parenthesis is a pioneer in the small block, and 0 otherwise.
The hash table containing this information is called bp.

In addition, for every possible bitstring of length 4(lg lgn)
2
, and for every position

in that string, we create a table entry. There are two values in each table entry: one
giving the position of the preceding 1 in that string (a string of 0’s if there is no 1 to
the left of that position) and the other giving the excess (the number of 0’s minus the
number of 1’s) in binary at the given position inside that string. (Again this value
could be negative.) We will call this table st.

Note that we have not yet associated any storage with individual tiny blocks. We
will do this later.

We claim that the storage used so far is o(n) and is sufficient to find, for every
far parenthesis, its target big block and the excess at its position in constant time.

2.1. Finding the target big block of the matching parenthesis. As Jacob-
son [13] noted, if there are b blocks, there are at most 2b− 3 pioneers, and so we have
O(n/ lg2 n) pioneer parentheses. Hence, the hash table p that stores the location of
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the matching parenthesis of every pioneer parenthesis takes O(n/ lg n) bits. It is also
clear that the total space occupied by the table B is O(n/ lg n) bits. As the address of
the previous pioneer inside the big block, and the excess inside the big block at that
position, for every small block, take O(lg lg n) bits, and the number of small blocks

is O(n/(lg lg n)
2
), the total space to store these values in the table b is O(n/ lg lg n)

bits. The number of small blocks with pioneers is at most O(n/ lg2 n), and so the
hash table bp storing the bitstring of pioneers take at most O(n/ lg n) bits. The total

number of entries in the table st is O((lg n)
4 lg lg n

(lg lg n)
2
), and each table entry takes

O(lg lg lgn) bits for a total of O((lg n)
4 lg lg n

(lg lg n)
2
lg lg lg n) bits of storage for the

table st.
Now we can find the preceding pioneer parenthesis for a given far parenthesis in

position i in constant time as follows:
• Given the position i, first check, by consulting the hash table bp containing the
(addresses of the small blocks having pioneers and the) bitstring of pioneers,
whether the small block to which i belongs has a pioneer.
• If there is a pioneer in the small block, then a table lookup in the st table,
at the position given by the bitstring of pioneers in that small block and its
position i, gives the position of the previous pioneer if there is one to its left
in the small block.
• If there is no pioneer in the small block to the left of i, then the appropriate
position in the array b gives the position of the previous pioneer in that big
block. If that is simply a string of 0’s, then there is no pioneer in the big
block to the left of this small block. In that case, the appropriate index in
array B gives the position of the pioneer previous to the position i.

A completely analogous strategy finds the excess at the given position. Here we don’t
need to consult a hash table first, and we have to treat the open parenthesis as a
0 and a closing parenthesis as a 1 to index into the table st for the table look up.
Three words (an entry in table st and appropriate locations in arrays b and B) have
to be inspected and the resulting values summed up to get the answer. Once we find
the preceding pioneer parenthesis of a given far parenthesis, we find the matching
parenthesis of the pioneer from the pioneer hash table p. From that, we know the
target big block of the matching parenthesis of the given far parenthesis. Thus we
have the following lemma.

Lemma 1. Given a sequence of balanced parentheses of length 2n, and a far
parenthesis (i.e., one whose matching parenthesis lies outside its block), the target
block of its matching parenthesis and the excess at its position can be found in constant
time using o(n) bits of auxiliary information.

2.2. Finding the matching parenthesis of a far parenthesis. Let us call
the “excess” value to which we have been referring the left excess and retain, also in
o(n) auxiliary storage, similar information regarding the “excess” of the reversal of
the given sequence. Then the right excess at a position is defined and determined
in the analogous way. More specifically, the right excess at a given position i is the
number of closing parentheses minus the number of open parentheses starting from
the end of the string to the position i. Now, given a far open parenthesis with left
excess e at its position, its matching parenthesis in the target big block is the first
(from the left) closing parenthesis with right excess e. (Note that there may be several
parentheses with the same excess and the first one will necessarily be far.) To compute
this information, we need something similar to the inverse of the excess operation:
given an excess value and a block, we want to find the first far parenthesis with that
excess value in that block.
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We can first subtract from e, the right excess (from the end of the string until the
beginning of the next block) stored with the next block. What we now require is the
first far closing parenthesis with the residual right excess in the target block. Though
arrays B and b have the excess information for each of the big and small blocks, it is
not enough to simply consult them and/or scan a small block to find the answer. To
handle this problem, we create another auxiliary storage. Note that the excess within
a big block is at most lg2 n. With each big block, we keep an array f of answers
(the first far closing parenthesis with that excess) for every

√
lg n excesses inside the

block. This requires lg lgn bits for each answer and thus O(n lg lg n/
√
lg n) bits in

total. Now to find the parenthesis with a specified excess not a multiple of
√
lg n, one

has to scan the portion between the answers corresponding to the closest multiples of√
lg n to the given excess. If this portion between the two consecutive answers is of

size at most (lg n)/2, then we can solve this problem by keeping a table f1 of answers
for every such string for every position. Since there are

√
n strings of size (lg n)/2,

this takes O(
√
n lg n lg lg n) bits in total. If, on the other hand, the portion between

two consecutive answers is larger than (lg n)/2, then we keep the answer for every
intermediate excess (between the two closest

√
lg n multiples) for each such portion.

There are O(
√
lg n) answers for every such portion requiring a total of O(

√
lg n lg lg n)

bits for each such portion. Since there can be at most 2n/ lg n such portions, the total
space requirement for these values is at most O(n lg lg n/

√
lg n) bits. This information

can be stored in an efficient hash table f3, one for each block, where each cell of
the hash table contains the position of the “large” portion (portion of length more
than (lgn)/2) between two consecutive answers, along with O(

√
lg n lg lg n) bits for

each such portion. Since there are at most lg1.5 n portions (between two consecutive
answers) for each block, the position information for each portion takes only 1.5 lg lg n
bits. Note that at most 2 lg n such portions are large in each block.

Thus in constant time, we can find the matching closing parenthesis for a far open
parenthesis using o(n) auxiliary bits of space. A completely analogous strategy finds
the matching open parenthesis for a far closing parenthesis. Along the way, we also
saw that we can find the excess value at any position in constant time. Thus we have
the following lemma.

Lemma 2. Given a sequence of balanced parentheses of length 2n, and a far
parenthesis (i.e., one whose matching parenthesis lies outside its block), the position
of its matching parenthesis can be found in constant time using o(n) bits of auxiliary
information.

Now we need only to explain how to implement the enclose operation and to deal
with parentheses which are not far.

2.3. The enclose operation. Here we outline a method of finding the closest
enclosing parentheses for a given matching parenthesis pair at positions i and j.
Suppose the parenthesis at position i has left excess e at that position. If e is 0, then
there is no enclosing parenthesis. Otherwise, the closing parenthesis of the answer
(the closest enclosing parenthesis) is the first far closing parenthesis in the block of
j (or its next block having a far parenthesis) with right excess e − 1. This can be
found, by the method described earlier, to find the first far closing parenthesis with a
given excess and a target block. Sometimes the excess e− 1 may not be in the block
containing j. For this, with every block, we keep a pointer to the far parenthesis that
has right excess one less than the minimum in that block. This requires an additional
O(n/ lg n) bits. Once we find the closing parenthesis in the answer, its matching
parenthesis can be found in constant time using the findopen operation. Thus we
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have the following lemma.

Lemma 3. Given a sequence of balanced parentheses of length 2n, the “enclose(i)”
operation, that finds the closest enclosing parentheses for the given matching paren-
thesis pair whose open parenthesis is at position i, can be supported in constant time
using o(n) bits of auxiliary information.

2.4. Checking if a parenthesis is far. To check whether a given parenthesis
has its matching pair inside a big block, i.e., to check whether it is far (with respect to
a big block), we run exactly the procedure outlined in sections 2.1 and 2.2 within a big
block with the “small blocks” playing the role of “big blocks” and the “tiny blocks”
playing the role of “small blocks.” There is one difference though, and that is that
the initial entire sequence is a balanced sequence, whereas the sequence inside the big
block may not be. This can be easily taken care of by imagining two blocks, one before
and one after the big block, with the required number of open and closing parentheses,
respectively, to make the augmented sequence balanced. There is no need to keep any
auxiliary storage with these imaginary blocks. Furthermore, whenever a parenthesis
is found to have its matching parenthesis in the imaginary blocks, then we know that
it is far. The rest of the argument goes through as before. For completion, we give a
complete description and the auxiliary storage count for this below, omitting just the
names of individual auxiliary tables and arrays.

We first fix a big block (the big block in which the given parenthesis resides) and
speak of “far” and “pioneer” parentheses with respect to the small blocks within the
big block. Note that the sequence inside the big block will, in general, not be balanced;
and so we imagine augmenting it with a block preceding it, and one succeeding it,
to make it balanced. Therefore, the parentheses whose matching pairs lie in the
imaginary blocks are the far ones in which we are interested. In fact, some of these
will be pioneers with respect to the small blocks. In addition to the storage described
earlier, our auxiliary storage is analogous to that previously described for the full
structure and consists of the following. (Note that in the discussion below ‘far’ and
‘pioneer’ are with respect to the small blocks within the big block.)

• With every pioneer parenthesis, store the position of its matching parenthesis.
For those pioneer parentheses whose matching pairs are not in the big block,
i.e., for those that are far, we simply indicate it by a special bit. If we hit
such a parenthesis, then we immediately know that it is far.
• With every small block, we keep

– the position of the immediately preceding pioneer in the big block (i.e.,
the immediate pioneer to the left of the block) and

– the excess, namely, the number of open parentheses minus the number
of closing parentheses up to the position of the first parenthesis, in the
big block.

• With every tiny block within a small block, we keep
– the excess at that position starting from the beginning of the small block

it belongs to and
– the position of the immediately preceding pioneer inside the small block

(and 0 if there is no pioneer to its left in the small block)
• With every tiny block containing a pioneer, we will keep a bitstring whose
length is the size of the tiny block. The ith bit in the bitstring is 1 if the
corresponding parenthesis is a pioneer in the small block, and 0 otherwise.

Furthermore, for every possible bitstring of length 2(lg lgn), and for every position
in that string, we create a table entry. There are two values in each table entry: one
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giving the position in that string of the preceding 1 in that string (0 if there is no 1 to
the left of that position) and the other giving the excess (the number of 0’s minus the
number of 1’s) at the given position inside that string. (This value could be negative.)

We show that the storage used is o(n), and it suffices to identify in constant time
whether a given parenthesis is far with respect to its big block.

As there are O(lg2 n/(lg lg n)
2
) small blocks inside a big block, there are

O(n/(lg lg n)
2
) pioneer parentheses in total. The space to store the matching paren-

thesis of each pioneer parenthesis isO(lg lgn) bits, thus requiring a total ofO(n/ lg lg n)
bits for the hash table storing the addresses of these pioneers. It is also clear that the
total space for the values associated with every small block is also O(n/ lg lg n). As
the values (address of the previous pioneer inside the small block and the excess inside
the small block) at the tiny blocks take O(lg lg lgn) bits each, and the number of tiny
blocks is O(n/ lg lg n), the total space to store these values is O(n lg lg lg n/ lg lg n)

bits. The number of tiny blocks with pioneers is at most O(n/(lg lg n)
2
), and so the

bitstring of pioneers take at most O(n/ lg lg n) bits in the hash table storing these
bitstrings. The total number of table entries is O(lg2 n lg lg n), and each table entry
takes O(lg lg lgn) bits for a total of O(lg2 n lg lg n lg lg lg n) bits.

A completely analogous procedure as described earlier can find the target small
block, if it exists, for a far (with respect to small blocks) open parenthesis in constant
time. If the target block happens to be one of those imaginary blocks, we are through.
Otherwise, given the excess and the target small block, to find the answer within
the small block, a similar strategy used for the big blocks require another auxiliary
storage of o(n) bits. The size of each big block is b = lg2 n and the size of each
small block is lg2 b. Therefore, if we keep an auxiliary storage for answers analogous
to the one described earlier, by replacing n by b, then the required storage will be
o(b) bits for each big block, thus resulting in o(n) bits overall. (This turns out to be
O(n lg lg lg n/

√
lg lg n).)

To check whether a given parenthesis has its matching pair inside a small block
(of size 4(lg lg n)

2
), we can have a table of all such parenthesis strings and answers for

each position in that string. This requires only O((lg n)
4 lg lg n

(lg lg n)
2
lg lg lg n) bits.

Thus we have the following lemma.
Lemma 4. Given a sequence of balanced parentheses of length 2n, and an open

or closing parenthesis, it can be checked in constant time using o(n) bits of auxiliary
information whether the parenthesis is far, i.e., whether its matching parenthesis is
outside its block.

2.5. Putting things together. To summarize, given an open parenthesis, we
first check whether it has a matching pair in its small block using a table of answers.
If not, we check whether it has a matching pair in its big block using the procedure
described in section 2.4 using the small and tiny block divisions. Otherwise, it is far
and so we use the procedure outlined in the proof of Lemma 2 using the big and small
block divisions to find its matching parenthesis. A completely analogous strategy
works to find the excess value at each position. Thus we have the following theorem.

Theorem 1. Given a sequence of balanced parentheses of length 2n, using o(n)
auxiliary bits, we can perform the operations findclose(i), findopen(i), excess(i), and
enclose(i) in constant time.

3. Static trees.

3.1. Rooted ordered trees. To represent a general rooted ordered tree (where
each node could have an unbounded number of children), we use the isomorphism
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between general ordered trees and balanced parenthesis expressions. Here, in per-
forming a preorder traversal of the general tree starting from the root, we write an
open parenthesis when the node is first encountered, going down the tree, and then
a closing parenthesis while going up after traversing its subtree. For example, the
rooted ordered tree of Figure 3.1(b) is represented by the parenthesis sequence in
Figure 3.1(c). With this representation, we make the following observations. We
represent a node by its corresponding open parenthesis.

• The parent of a given node is given by the closest parenthesis pair enclosing
the parenthesis pair corresponding to the given node.
• The subtree of a given node x consists of all nodes represented by parenthesis
pairs in the sequence starting from the open parenthesis corresponding to x
to its matching closing parenthesis. Hence, the subtree size is simply half the
difference between the indices of x’s closing parenthesis and open parenthesis
(both end points included).
• The ith child of a node x can be obtained as follows. If the parenthesis next
to x’s open parenthesis is a closing parenthesis, then x has no children. Oth-
erwise, that open parenthesis next to x’s and its matching closing parenthesis
form the first child of x, the next parenthesis (if it is open) and its matching
parenthesis form the second child of x, and so on. In this process, using the
findclose operation at most i − 1 times starting from the open parenthesis
next to that of x, we find the open parenthesis of the ith child or find that x
has no ith child.
In a similar fashion, given a node x, we can find its left or right sibling in con-
stant time as follows. First apply findclose(x) operation to find the match-
ing parenthesis of the open parenthesis corresponding to x. If the parenthesis
next to that is an open parenthesis, then it is the parenthesis corresponding
to x’s right sibling. Similarly, if the parenthesis before the open parenthesis
corresponding to x is a closing parenthesis, its matching parenthesis gives the
parenthesis corresponding to x’s left sibling.

Note that we require that a node be given by the position of its open parenthesis
in the sequence. Given an open parenthesis at position p in the sequence we can find,
in constant time, the (preorder) index of the node corresponding to it as follows. The
preorder index of the corresponding node is simply the number of open parentheses up
to but not including position p. (The root has preorder index 0.) This can be found
in one of two ways: we can simply use the rank function (previously defined as the
number of 1’s up to a given position, and detailed in [13, 6]) on the given sequence and
find the rank of the current open parenthesis. The other option is to use the excess
operation and find the excess e at p. If there are i open parentheses and j closing
parentheses up to position p, then i+j = p, and i−j = e. Therefore, we can compute
i if we know p and e. Similarly, the position of the open parenthesis corresponding
to a node whose preorder index is i can be obtained by a select operation on the
string representing the tree. More precisely, it is the (i+1)st open parenthesis in the
parenthesis representation of the tree.

Thus we have the following theorem.
Theorem 2. Given a static rooted ordered tree on n nodes, we can represent it

using 2n + o(n) bits in such a way that given a node x (by its preorder index), we
can find its parent and its subtree size in constant time and find its ith child in O(i)
time.

3.2. Binary trees. A binary tree is not just a special case of an ordered rooted
tree, as there is a distinction between a node having a left child but no right child
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Fig. 3.1. (a) The given binary tree on 10 nodes. (b) Equivalent rooted ordered tree. (c) The
parenthesis representation.

and one with a right child but no left child. We can, however, take advantage of
a well-known isomorphism between these classes. Here the ordered tree has a root
which does not correspond to any node in the binary tree. Beyond this, the left child
of a node in the binary tree corresponds to the leftmost child in the ordered tree of
the corresponding node, and the right child in the binary tree corresponds to the next
sibling to the right in the ordered tree. As a consequence, the root of the binary tree
corresponds to the leftmost child of the root of the ordered tree. (See, for example,
Figures 3.1(a) and 3.1(b).) This isomorphism is often used to map the ordered tree
to a binary tree and thus permit the representation of the ordered tree in nodes of
a fixed size (i.e., two pointers). We use the isomorphism in the opposite direction
as, together with the representation for rooted ordered trees, it enables us to store
subtrees in contiguous segments and thus infer the size of a subtree.

We can therefore represent the given binary tree by this sequence of balanced
parentheses of length 2n+2. In fact, 2n bits are sufficient as the first open parenthesis
along with its matching parenthesis is redundant. For example, the binary tree in
Figure 3.1(a) is represented by the parenthesis sequence given in Figure 3.1(c).

By convention, we will denote a given node by the corresponding open parenthesis
in the sequence. Then the following facts follow immediately for the binary tree
representation by the parenthesis sequence:

• If the symbol following the open parenthesis corresponding to a given node
is an open parenthesis, then it corresponds to the left child of the node.
Otherwise, the left child is absent.
• To find the right child, if it exists, find the matching parenthesis of the open
parenthesis corresponding to the given node. If the following symbol is an
open parenthesis, then that is the parenthesis corresponding to the right child
of the given node. Otherwise, there is no right child.
• To find the parent of a given node, if the symbol before the parenthesis
corresponding to the node is an open parenthesis, then that is its parent. If
there is no symbol before, then it is the root. Otherwise, the symbol before
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is the closing parenthesis of its left sibling in the general ordered tree. Find
its matching open parenthesis, that is, the parenthesis corresponding to its
parent in the binary tree.
• The subtree rooted at a node x in the binary tree consists of all nodes in
the subtrees rooted at x and at its right siblings in the general tree. In the
parenthesis notation, this corresponds to all parentheses pairs from x’s open
parenthesis to (but not including) the closing parenthesis of x’s parent in
the general tree. However, x’s parent parentheses are the closest enclosing
parentheses of x’s parentheses. Therefore, given x’s open parenthesis, we can
find the closest enclosing parentheses using the enclose operation, and thus we
can obtain the parentheses corresponding to the nodes in the entire subtree
rooted at x. The size of the subtree rooted at x is simply half the difference
between the indices of the closing parenthesis of x’s parent (excluding it) and
the open parenthesis of x.

Thus we have the following theorem.
Theorem 3. Given a static binary tree on n nodes, we can represent it using

2n+o(n) bits such that given a node in the tree, we can find the left child, right child,
and parent of the node if they exist and the size of the subtree rooted at that node in
constant time.

As before, here also a node must be given by the position of its open parenthesis
in the sequence, or by its preorder index in the binary tree. It can be verified that we
can obtain one from the other in constant time using rank and select operations.

4. Planar graphs. To represent a planar graph efficiently, it is tempting to use
the fact [18] that any planar graph can be partitioned into at most three edge-disjoint
spanning forests and use our succinct representation to represent the trees of each
forest. However, note that our representation for trees is for unlabeled trees and
it gives an implicit labeling (based on the preorder traversal of the tree). It is not
clear that there is a partition of a planar graph into spanning forests which maintains
consistency of the vertex labeling when the vertices of a forest are labeled by our
representation. Hence, we resort to the approach of Jacobson [13] and use an edge
partition of a planar graph which does maintain the same vertex labeling in each part
of the partition. Such a partition is a partition of the edges into pages (defined below).
Since in linear time planar graphs can be embedded in four pages [22], this leads to a
succinct and quickly found representation for planar graphs.

Jacobson first gives a representation for one-page graphs and generalizes to graphs
with bounded number of pages. His representation for one-page graphs uses his paren-
theses representation and hence is fairly inefficient in terms of space. Our parenthesis
representation gives an immediate reduction in the higher order term for the number
of bits used. Furthermore, as we have expanded the types of operations that can be
handled in our implementation, we represent one page graphs differently, resulting in
further reduction in space. We give details after defining the term “page.” We use
the terminology of Bernhart and Kainen [2], as did Jacobson [13].

A k-page book embedding of a graph G = (V,E) is a printing order of V (a
permutation specifying the ordering of the nodes along the spine of a book), plus a
partition of E into k pages. The edges on a given page must not intersect, and all
pages share the same printing order of the nodes. The page number of a graph G is
the minimum number of pages in any book embedding of G.

4.1. One-page graphs. When the book is drawn so that the spine is horizontal,
then the edges form a nesting structure as in a balanced string of parentheses (see
Figure 4.1).
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Fig. 4.1. A one-page graph and its parenthesis representation. (The graph has seven vertices
and seven edges.)

Our representation by a balanced parentheses sequence is as follows. We represent
every node and every edge by a matching pair of open and closing parentheses. We
associate with every node j its representative matching pair of parentheses followed by
a sequence of (single) parentheses for every edge incident on j. The open parenthesis
corresponding to an edge (i, j), i < j, is in the sequence of parentheses associated with
the node i, and the matching closing parenthesis is with the sequence associated with
the node j. Thus with respect to a vertex i, we have the following: a matching pair
of parentheses to represent node i, a sequence of closing parentheses in decreasing
order of their other end points for edges incident on i whose other end points are
less than i, followed by a sequence of open parentheses in increasing order of their
other end points for edges incident on i whose other end points are greater than i.
We concatenate the sequences with respect to every vertex in the order of vertices in
the spine (see Figure 4.1). In our representation, a pair of adjacent symbols forms a
matching pair of parentheses if and only if the pair represents a node in the one-page
graph.

Clearly, this representation uses 2m + 2n bits, where m is the number of edges
(which is O(n)) and n is the number of vertices in the graph. In fact, 2m + 2n − 2
bits are sufficient as the first matching pair representing the first vertex is redundant.

In this representation, given the label of a node, its matching parenthesis pair in
the sequence can be found using a select operation by denoting the adjacent parenthe-
sis pairs (both open and closing) by a single 1 and the other (either open or closing)
parenthesis by a 0. Conversely, given a parenthesis pair corresponding to a node, we
can find its label by using a rank operation (which counts the number of 1s up to
a position in a bit string) in a similar way. Furthermore, the neighbors of a vertex
are immediately after its corresponding matching parentheses pair. Thus in time pro-
portional to the degree of the vertex, we can find all the neighbors of a vertex using
our parentheses sequence operations (findopen() and findclose()). If we just want
the degree of the vertex, we can use the rank and select operation to first find the
parenthesis pair corresponding to the next vertex in the spine; the difference in the
indices between the pairs corresponding to the two vertices gives the degree of the
vertex.

To find whether nodes i and j (i < j in the spine order) are adjacent in the graph,
we can adapt the method of Jacobson [12] given for his representation. Simply find
the matching parenthesis of the first open parenthesis after the pair corresponding
to vertex i. If its position is before the position of the pair corresponding to vertex
j, then i and j are not adjacent. If it corresponds to an edge incident on j, then i
and j are adjacent. Otherwise, find the matching open parenthesis of the last closing
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parenthesis after the pair corresponding to vertex j. If it corresponds to an edge
incident on i, then i and j are adjacent. Otherwise, they are not. It can be verified
that a constant number of rank and select computations are sufficient to perform
these operations. Thus we have the following theorem.

Theorem 4. A one-page multigraph on n vertices and m edges can be represented
using 2n+ 2m+ o(n+m) bits in such a way that the adjacency of a pair of vertices,
and the degree of any given vertex, can be found in constant time, and the neighbors
of a vertex can be produced in time proportional to the degree of the vertex.

4.2. Graphs with more than one page. The generalization to graphs with
more than one page is direct. We simply represent each page (which is a one-page
graph) separately using the representation of section 4.1 and concatenate them to-
gether. As all pages share the same printing order of the vertices, the matching pair
corresponding to each vertex appears in all pages. Therefore, if the graph has k pages,
a vertex requires 2k bits, whereas an edge requires only 2 bits. Thus the parenthesis
representation requires 2kn + 2m bits. The address of the beginning of each page
can be stored separately in k lg n bits. The adjacency of a pair can be checked in
O(k) time by checking it in each page. Similarly, the degree of a vertex can be found
in O(k) time. The neighbors of a vertex can be listed out by following through the
adjacency list in each page, in O(k + d) time, where d is the degree of the vertex.

In particular for planar graphs (which can be embedded in four pages [22]), our
representation requires 8n + 2m bits (ignoring lower order terms), requiring only a
constant factor increase in the time spent. Thus we have the following theorem.

Theorem 5. A k page graph on n vertices and m edges can be represented using
2kn+2m+o(nk+m) bits in such a way that adjacency between a pair of vertices and
the degree of a vertex can be found in O(k) time, and the neighbors of a vertex x can
be listed out in O(d(x)+k) time where d(x) is the degree of the vertex x. In particular,
a planar graph on n vertices and m edges can be represented using 8n + 2m + o(n)
bits so as to test adjacency of a pair in constant time.

5. Concluding remarks and further work. We have given the first repre-
sentation for static binary trees on n nodes that uses the information theoretically
optimum 2n + o(n) bits and still supports the left child, right child, parent, and the
subtree size operations in constant time. Our representation simply uses the natural
preorder traversal sequence. We also gave the first information theoretically opti-
mum representation for a balanced sequence of parenthesis supporting several natural
operations in constant time.

A related, but restricted, scheme for static binary trees has been implemented
by Chupa [5]. The operations of moving up or down the tree are amazingly fast,
though that scheme does not support finding the size of a subtree. We also note that
a tree must have more than 10 million nodes before the total number of bits used,
including those noteworthy “lower order terms,” is less than three times the size of
the tree. We feel the method discussed here will be comparable in implementation,
while supporting a full range of motion in the tree.

Based on the preliminary report of our work, a number of related advances have
been made. Our representation actually supports more operations than we have de-
scribed here. For example, given a node, suppose we want to find the leftmost leaf
in the subtree rooted at that node. In the parenthesis representation of the ordered
tree corresponding to the binary tree, this is simply the node corresponding to the
matching parenthesis pair in which the matching parentheses are adjacent and is the
first such pair after the open parenthesis corresponding to the node. By considering
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the adjacent matching parenthesis pairs as representing 1’s and the other parentheses
as representing 0’s, this operation is simply a computation of rank and select in the
parenthesis sequence. In a very similar way, we can find the rightmost leaf in the
subtree rooted at any given node. Using these operations and our representation of
static trees, Munro, Raman, and Rao [16] have demonstrated very efficient represen-
tations of suffix trees for text searching. The time and space bound for the suffix tree
operations are further improved by Grossi and Vitter [9].

For rooted ordered trees (also known as ordinal trees), our representation takes
O(i) time to find the ith child of a given node, though every other navigational
operation takes only a constant time. Benoit et al. [1] have reported a representation
for ordinal trees in which this operation, besides the other constant time operations
we support, can be performed in constant time. They have also generalized our binary
tree representation for k-ary (cardinal) trees (where one or more subtrees of a node
can be empty). Their representation uses 2n+n�lg k� bits and supports searching for
the child labeled i in O(lg lg k) time while supporting all other navigational operations
in constant time. Raman and Rao [20] have improved the time for searching the child
labeled i to O(lg lg lg k) time while maintaining every other feature of the structure
of Benoit et al. [1].

We have employed our parenthesis based operations to represent a planar graph
on n vertices and m edges using 8n + 2m bits still supporting adjacency and degree
queries in constant time. The space used is at most 14n (ignoring lower order terms),
as m is at most 3n. This is a drastic reduction from 64n bits required in Jacobson’s
representation of planar graphs [12] and is much closer to the 3.58m bits representation
of planar graphs by Keeler and Westbrook [14], which does not allow efficient search
operations. Using a more efficient representation for multiple parenthesis sequences,
and a canonical ordering of planar graphs, Chuang et al. [4] have improved this space
requirement to 2m+ (5 + 1

k )n+ o(m+ n) bits for any constant k > 0 with the same
query support. The bit count can be further reduced if only adjacency queries are
supported in constant time, or if G is simple, triconnected, or triangulated [4]. For
recent work on efficient representation of special classes of planar graphs (where the
emphasis is on fast encoding and decoding rather than the navigational operations on
the compressed representation), see [10] or [11].

More recently, Munro, Raman, and Storm [17] have found a succinct representa-
tion for dynamic binary trees where updates can be supported in O(lg2 n) amortized
time. The basic approach taken in that work is quite different from that used here.
Furthermore, it is not clear that it can be adapted to deal with the auxiliary functions
we can support with the approach developed here.

Acknowledgments. We thank Meng He for pointing out an error in the double
enclose operation reported in the earlier version and the referees for their comments
that greatly helped improve the presentation of the paper.
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Abstract. We reveal an intimate connection between semidirect products of finite semigroups
and substitution of formulas in linear temporal logic. We use this connection to obtain an algebraic
characterization of the until hierarchy of linear temporal logic. (The kth level of that hierarchy is
comprised of all temporal properties that are expressible by a formula of nesting depth k in the until
operator.) Applying deep results from finite semigroup theory we are able to prove that each level
of the until hierarchy is decidable. By means of Ehrenfeucht–Fräıssé games, we extend the results
from linear temporal logic over finite sequences to linear temporal logic over infinite sequences.
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1. Introduction. Linear temporal logic is a language for expressing relation-
ships between the order of events occurring over time. It is used in various areas of
computer science as different as computer-aided verification (temporal logic as a spec-
ification language for reactive and concurrent systems) and databases (temporal logic
to represent knowledge involving time and to deduct on time-dependent data). Its
basic operators (modalities) are “next,” “eventually,” and “until,” of which “until” is
the most powerful one.1 The latter observation has led to a classification of temporal
properties according to the nesting depth in the until operator required to express
them. In [8], it was shown that the resulting hierarchy, the so-called until hierarchy,
is strict. In fact, “counting up to k” requires nesting depth k in the until operator
(and nesting depth k is enough to express this property).

In this paper we show that the “until depth” of a given property (i.e., the lowest
level of the until hierarchy the property belongs to) is effectively computable, both in
the case where temporal logic is interpreted in finite sequences and in the case where
it is interpreted in infinite sequences. This answers a question left open in [6] and [8].

Our approach to the computational problem of determining the until depth of a
given property of finite sequences follows a well-known and established pattern. In a
first step, we define a hierarchy of finite semigroups and prove that this hierarchy is
tightly connected with the until hierarchy: a temporal property belongs to the kth
level of the until hierarchy if and only if its syntactic semigroup (the transformation
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1If one chooses the right variant of the until operator, the other two operators become superfluous;
i.e., they are no longer needed to achieve the full power of temporal logic.
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semigroup of its minimal automaton) belongs to the kth level of the hierarchy of
semigroups. In a second step, we show that for a finite semigroup one can effectively
compute the lowest level of the hierarchy of semigroups to which it belongs. This
yields the desired result, as the syntactic semigroup of a given temporal property can
be computed effectively.

It is in the first step of the above process where we introduce new methodology.
We develop a completely new approach to understanding semidirect products. We
prove that semidirect products can be characterized in terms of substitution of for-
mulas of linear temporal logic. Under reasonably weak assumptions, the semidirect
product of two classes of semigroups corresponds to the set of formulas that are ob-
tained by substituting formulas corresponding to the second class for atomic formulas
in formulas corresponding to the first class. This is what we call the “semidirect
product/substitution principle.”

In the second step of the above process, we apply results from [18] and an intricate
decidability criterion from [19] involving graph congruences to prove that each level
of the hierarchy of semigroups in question is decidable.

The extension to the case where temporal logic is interpreted in infinite sequences
is achieved by means of the Ehrenfeucht–Fräıssé game developed in [8]. This game
gives us a way to approach the until hierarchy over infinite sequences from an algebraic
point of view. We prove that the situation is exactly as in the case of finite sequences:
a temporal property of infinite sequences belongs to the kth level of the until hierarchy
if and only if its syntactic semigroup (in the sense of [2]) belongs to the kth level of the
same semigroup hierarchy as above. The decidability result is then merely a corollary.

Temporal logic, first-order logic over unary predicates with total ordering, and
star-free expressions are known to have the same expressive power on both finite se-
quences and on infinite sequences [15, 9, 11, 10, 22]. Each of the mutually equivalent
formalisms motivates its own hierarchy: the until hierarchy, the quantifier-alternation
hierarchy, and the dot-depth hierarchy [5]. The two latter are strict [3] and identi-
cal [23], whereas [8] describes a family of properties that separates the levels of the
until hierarchy but is contained in the second level of the quantifier-alternation/dot-
depth hierarchy. It is a long standing problem whether the “dot depth” of a star-free
language is computable.

Star-free languages, and hence the class of all temporal properties, have also been
shown to correspond to aperiodic (group-free) semigroups [15, 13]. The semigroup-
theoretic characterization of the until hierarchy we give in this paper has a natural
interpretation as a hierarchy for aperiodic semigroups, which is closely related to the
Krohn–Rhodes decomposition theorem. This theorem is the most powerful tool for
decomposing finite semigroups (respectively, finite automata).

In [4] it is shown that level 0 of the until hierarchy over finite sequences is de-
cidable. In [6] the hierarchy of semigroups we consider is defined, and partial results
about its relation to the until hierarchy over finite sequences are obtained. (For more
details, see the remark right after Theorem 4.7.)

In section 2, we provide background on temporal logic and recall the definition
of the until hierarchy over finite sequences. In section 3, we establish the connection
between semidirect products and substitution. In section 4, we characterize the until
hierarchy over finite sequences algebraically and show how the desired decidability
result follows. In section 5, our results are extended to infinite sequences. Section 6
contains open problems.

This is a completely revised version of our technical report [20] and our conference



THE UNTIL HIERARCHY 779

paper [21].
For finite semigroup theory, the reader is referred to the excellent monograph

[1], from where our notation also stems. The book [14] provides background on the
algebraic theory of regular languages. The handbook chapters [7] and [24] survey
temporal logic and the theory of regular ω-languages.

2. Future temporal logic on strings and the until hierarchy. A future
temporal logic (FTL) formula over a finite set P of propositional variables is built
from the elements of P and the logical constant True using the boolean connectives
¬ and ∨ and the usual temporal logic operators ❡ (next), ✸ (eventually), and U
(until), the two former of which are unary operators and the latter of which is a
binary operator written in infix notation.

FTL formulas over a set P of propositional variables are interpreted in strings
over an alphabet denoted ΣP , which consists of all subsets of P . Given a string u,
its length is denoted by |u|, and its positions are numbered 0, 1, 2, . . . , |u| − 1. The
symbol at position i is denoted u(i).

Given a string u ∈ Σ+
P and a position i < |u|, one defines what it means for an

FTL formula ϕ over P to be true in u at i, in symbols (u, i) |= ϕ. In this paper, we
adopt the following conventions:

• (u, i) |= True,
• (u, i) |= p if p ∈ u(i),
• (u, i) |= ¬ϕ if not (u, i) |= ϕ,
• (u, i) |= ϕ1 ∨ ϕ2 if (u, i) |= ϕ1 or (u, i) |= ϕ2,
• (u, i) |= ❡ϕ if i+ 1 < |u| and (u, i+ 1) |= ϕ,
• (u, i) |= ✸ϕ if there exists j with i ≤ j < |u| such that (u, j) |= ϕ,
• (u, i) |= ϕ1 U ϕ2 if there exists j with i ≤ j < |u| such that (u, i′) |= ϕ1 for
every i′ with i ≤ i′ < j and (u, j) |= ϕ2.

Given an FTL formula ϕ, we write u |= ϕ and say that u is a model of ϕ if
(u, 0) |= ϕ. We write L(ϕ) for the set of all models of ϕ, i.e., L(ϕ) = {u ∈ Σ+

P | u |= ϕ}.
We say that ϕ expresses L(ϕ).

Similarly, we say that a language L is expressible in FTL if there exists an FTL
formula ϕ such that L = L(ϕ). Given a class Φ of FTL formulas, we write L(Φ) for
{L(ϕ) | ϕ ∈ Φ}.

In some of the commonly accepted definitions of the semantics of the eventually
operator the value of j is restricted to positions strictly larger than i. For the until
operator, a similar restriction of i′ to the values strictly between i and j has been
considered. The until depth of a language, however, does not depend on which of the
four possible combinations is actually chosen. (For a formal definition of until depth,
see below.)

The until depth of an FTL formula is its nesting depth in terms of the until
operator. When ϕ is a formula, ud(ϕ) denotes its until depth. Formally, the until
depth is defined inductively by

ud(True) = 0,

ud(p) = 0 for p ∈ P ,
ud(¬ϕ) = ud(ϕ),

ud(ϕ1 ∨ ϕ2) = max{ud(ϕ1),ud(ϕ2)},
ud( ❡ϕ) = ud(ϕ),

ud(✸ϕ) = ud(ϕ),
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ud(ϕ1 U ϕ2) = max{ud(ϕ1),ud(ϕ2)}+ 1.

The class of all FTL formulas of until depth at most k is denoted by Utk. That is,
a language L belongs to L(Utk) if and only if it is expressed by some FTL formula
of until depth at most k. The until hierarchy is the sequence L(Ut0), L(Ut1), L(Ut2),
. . . . In [8], it is shown that this hierarchy is strict in the following sense: L(Ut0) �

L(Ut1) � L(Ut2) � · · · .
The main result of this paper is Corollary 4.18, which states that given an FTL

formula ϕ or a regular language L expressible in FTL, one can compute the lowest
level of the until hierarchy L(ϕ) (respectively, L) belongs to, i.e., the smallest k such
that L(ϕ) ∈ L(Utk) (respectively, L ∈ L(Utk)). Theorem 5.9 states the same result
for ω-words instead of strings.

3. Substitution and semidirect products. This section builds the core of the
paper. It provides the correspondence between semidirect products of pseudovarieties
of semigroups and substitution in past temporal logic formulas.

3.1. Past temporal logic. Past temporal logic (PTL) formulas are built exactly
as FTL formulas but use a corresponding set of reversed operators: instead of ❡, ✸,
and U, PTL formulas use ❡- (previously), ✸- (sometime in the past, once upon a time),
and S (since). The semantics of PTL formulas is defined analogously to the semantics
of FTL formulas: in the above definition for FTL, every temporal operator is replaced
by its reversed form, and every condition that involves the ordering is replaced by the
symmetric condition

• (u, i) |= ❡- ϕ if i > 0 and (u, i− 1) |= ϕ,
• (u, i) |= ✸- ϕ if there exists j with j ≤ i such that (u, j) |= ϕ,
• (u, i) |= ϕ1 S ϕ2 if there exists j with j ≤ i such that (u, i′) |= ϕ1 for every i′

with j < i′ ≤ i and (u, j) |= ϕ2.

Given a PTL formula ϕ over a set P of propositional variables and u ∈ Σ+
P , we

write u |= ϕ and say that u is a model of ϕ if (u, |u| − 1) |= ϕ. As a consequence, if u
is a string and v its reverse, and if ϕ is an FTL formula and ψ its reversed counterpart
(obtained by replacing every operator by its reversal), then u |= ϕ if and only if v |= ψ.

Abusing notation, we use L(ϕ) to denote the set of models of both FTL and PTL
formulas, although there are formulas that are FTL and PTL formulas at the same
time and their respective sets of models are distinct; consider, e.g., the atomic formula
p. It will, however, always be clear from the context whether we view a given formula
as an FTL or a PTL formula. Similarly, we use L(Φ) to also denote the class of all
languages expressible by some PTL formula from Φ.

The since depth of a PTL formula is its nesting depth in terms of the since
operator; we denote the class of all PTL formulas of since depth at most k by Snk. It
should be clear that a language belongs to L(Utk) if and only if its reverse belongs to
L(Snk).

3.2. Definition of substitution. If ϕ is a PTL formula over a set of proposi-
tions P and (ψp)p∈P a family of PTL formulas over Q, then ϕ[p �→ ψp] stands for the
PTL formula over Q obtained from ϕ by simultaneously replacing every occurrence
of a propositional variable p ∈ P by ψp.

Formally, substitution is defined by
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True[p �→ ψp] = True,(3.1)

p′[p �→ ψp] = ψp′ for p′ ∈ P ,(3.2)

¬ϕ[p �→ ψp] = ¬(ϕ[p �→ ψp]),(3.3)

ϕ1 ∨ ϕ2[p �→ ψp] = (ϕ1[p �→ ψp]) ∨ (ϕ2[p �→ ψp]),(3.4)

❡- ϕ[p �→ ψp] = ❡- (ϕ[p �→ ψp]),(3.5)

✸- ϕ[p �→ ψp] = ✸- (ϕ[p �→ ψp]),(3.6)

ϕ1 S ϕ2[p �→ ψp] = (ϕ1[p �→ ψp]) S (ϕ2[p �→ ψp]).(3.7)

3.3. Basic properties of substitution. Obviously, substitution is associative.
Remark 1 (associativity of substitution). Let ϕ be a PTL formula over P ,

{ψp}p∈P a family of PTL formulas over Q, and {χq}q∈Q a family of PTL formulas
over R.

Then

ϕ[p �→ ψp[q �→ χq]] = ϕ[p �→ ψp][q �→ χq].(3.8)

In first-order logic, the most important property of substitution is described by the
so-called substitution lemma. There is an analogue with temporal logic. For a family
(ψp)p∈P of PTL formulas over Q and a string u ∈ Σ+

Q, define a string over ΣP , denoted
u[p �→ ψp], as follows: u[p �→ ψp] = v0 . . . v|u|−1 where vi = {p ∈ P | (u, i) |= ψp}.
Using this notation, the substitution lemma for temporal logic can be stated as follows.

Lemma 3.1 (substitution lemma for PTL). Let ϕ be a PTL formula over P and
(ψp)p∈P a family of PTL formulas over Q.

For every string u over ΣQ and every position i < |u|, the following then holds:

(u, i) |= ϕ[p �→ ψp] if and only if (u[p �→ ψp], i) |= ϕ.(3.9)

This can be proven by a straightforward induction on the structure of ϕ.
An immediate consequence of the substitution lemma is the following corollary.
Corollary 3.2. Let ϕ and ϕ′ be PTL formulas over P , and {ψp}p∈P and

{ψ′p}p∈P families of PTL formulas over Q, such that L(ϕ) = L(ϕ′) and L(ψp) = L(ψ′p)
for every p ∈ P .

Then L(ϕ[p �→ ψp]) = L(ϕ′[p �→ ψ′p]).

3.4. Substitution and sequential functions. Recall that a function σ:A+ →
B+ is called a sequential function if it is realized by a transducer. A transducer is a
tuple

(Q, A,B, sI , δ, λ),(3.10)

where Q is a finite set of states, qI ∈ Q is the initial state, A and B are alphabets,
δ:Q×A→ Q is a transition function, and λ:Q×A→ B+ is an output function. The
transition function δ is inductively extended to a function Q × A+ → Q by setting
δ(q, wa) = δ(δ(q, w), a). The function σ:A+ → B+ realized by the transducer is
inductively defined by

σ(a) = λ(qI , a) for a ∈ A,
σ(wa) = σ(w)λ(δ(qI , w), a) for a ∈ A, w ∈ A+.

A transducer as in (3.10) is called synchronous if λ(q, a) ∈ B for all q ∈ Q, a ∈
A. Accordingly, a sequential function is called synchronous if it is realized by a
synchronous transducer.
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Under a certain proviso inverse images of synchronous sequential functions can
be described by substitution.

Lemma 3.3. Let σ: Σ+
Q → Σ+

P be a synchronous sequential function and {ψp}p∈P
a family of PTL formulas over Q such that

σ−1(L(p)) = L(ψp)(3.11)

for every p ∈ P .
Then, for every PTL formula ϕ over P ,

σ−1(L(ϕ)) = L(ϕ[p �→ ψp]).(3.12)

Proof. The proof is by induction on the structure of ϕ. The base case is trivial. In
the induction step, we have to consider boolean connectives and temporal operators.
Boolean connectives are dealt with easily, because inverse functions respect boolean
operations. Of the three temporal operators, we consider only “since,” which requires
the most involved argument. Given a string u and a position i < |u|, we will use
u[0, i] to denote the prefix u(0) . . . u(i) of u. Observe that, in general, u[0, i] |= ϕ is
equivalent to (u, i) |= ϕ for every PTL formula ϕ.

Assume ϕ is of the form ϕ1 S ϕ2, and let u be an arbitrary string over ΣQ. Let
v = σ(u). Then, since σ is assumed to be synchronous, |v| = |u|. The string u belongs
to σ−1(L(ϕ1 S ϕ2)) if and only if there exists i < |v| such that

• v[0, i] |= ϕ2 and
• v[0, j] |= ϕ1 for every j with i < j < |v|.

By induction hypothesis, we know that v[0, i] |= ϕ2 if and only if u[0, i] |= ϕ2[p �→ ψp].
(Observe that, since σ is synchronous, σ(u[0, i]) = v[0, i].) Similarly, v[0, j] |= ϕ1 if
and only if u[0, j] |= ϕ1[p �→ ψp] for every j < |u|. Therefore, the above assertion is
equivalent to the existence of i ≤ |u| such that

• u[0, i] |= ϕ2[p �→ ψp] and
• u[0, j] |= ϕ1[p �→ ψp] for every j with i < j.

According to the semantics of PTL formulas, the latter is true if and only if u |=
(ϕ1[p �→ ψp]) S (ϕ2[p �→ ψp]). However, in view of (3.7), (ϕ1[p �→ ψp]) S (ϕ2[p �→ ψp])
is the same as (ϕ1 S ϕ2)[p �→ ψp].

The previous lemma actually holds under seemingly weaker assumptions; besides
(3.11) we need only that σ is length-preserving, i.e., that σ satisfies |σ(u)| = |u| for
every u ∈ Σ+

Q, and that it respects prefixes in the following sense: σ(uv) ∈ σ(u)Σ+
P

for all u, v ∈ Σ+
Q. It is, however, easy to see that if these conditions are met, then σ

is a synchronous sequential function.

3.5. Substitution and homomorphisms. One way to interpret Lemma 3.3 is
to say that substitution can (in many cases) be regarded as applying the inverse of
a sequential function. If the substituents are very simple, substitution can even be
explained using homomorphisms.

Lemma 3.4. Let ϕ be a PTL formula over P and {ψp}p∈P a P -indexed family
of PTL formulas over Q. Furthermore, assume each formula ψp is a disjunction of
propositional variables from Q.

Then L(ϕ[p �→ ψp]) is the preimage of L(ϕ) under a homomorphism Σ+
Q → Σ+

P .
By convention, an empty disjunction is False.
Proof. For every p ∈ P , let Dp denote the set of disjuncts of ψp. Consider the

homomorphism g: Σ+
Q → Σ+

P defined by g(b) =
⋃{p | Dp ∩ b �= ∅}. Let v ∈ Σ∗Q and

b ∈ ΣQ, and assume g(vb) = ua where a ∈ ΣP . Then p ∈ a if and only if there exists
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q ∈ b such that q ∈ Dp. The latter is equivalent to vb |= ψp. Thus, g
−1(L(p)) = L(ψp),

and we can apply Lemma 3.3 to conclude g−1(L(ϕ)) = L(ϕ[p �→ ψp]).
This lemma can be strengthened.
Lemma 3.5. Let ϕ be a PTL formula over P and {ψp}p∈P a P -indexed family of

PTL formulas over Q. Furthermore, assume each formula ψp is a boolean combination
of propositional variables from Q (i.e., a propositional formula).

Then L(ϕ[p �→ ψp]) is the preimage of L(ϕ) under a homomorphism Σ+
Q → Σ+

P .
Proof. For b ∈ ΣQ, let αb be a propositional formula such that L(αb) = Σ∗Qb. For

each p ∈ P , define a formula µp over ΣQ (!) as follows. Let µp be the disjunction of all
b ∈ ΣQ such that αb implies ψp (as a propositional formula). Then, L(ψp) = L(µp[b �→
αb]), and thus L(ϕ[p �→ ψp]) = L(ϕ[p �→ µp][b �→ αb]). Write ϕ′ for ϕ[p �→ µp]. By
the previous lemma, L(ϕ′) = g−1(L(ϕ)) for some homomorphism g: Σ+

ΣQ
→ Σ+

P .

Now consider the homomorphism h: Σ+
Q → Σ+

ΣQ
defined by h(b) = {b}. Trivially,

h−1(L(b)) = L(αb). Lemma 3.3 then implies L(ϕ′[b �→ αb]) = h−1(L(ϕ′)), which
means L(ϕ[p �→ ψp]) = h−1(g−1(L(ϕ))).

3.6. Substitution on classes of formulas. Pseudovarieties of semigroups are
classes of finite semigroups closed under homomorphic images, finite direct products,
and subsemigroups; see [1, p. 53]. With each such class V, we associate the class
L(V) of all languages over alphabets of the form ΣP that are recognized by elements
from V. Recall that a language L ⊆ A+ is said to be recognized by a semigroup S
if there exists a semigroup homomorphism h:A+ → S and a subset F ⊆ S such that
L = h−1(F ), i.e., if L is the preimage of some subset of S under h.

Complex pseudovarieties of semigroups are often decomposed using semidirect
products; that is, they are described as a semidirect product of simpler pseudovari-
eties. As usual, we denote the semidirect product of two pseudovarieties V and W
by V ∗W; see [1, pp. 266, 269].

On classes of formulas, we now define an operation, denoted $, which corresponds
to the semidirect product on classes of semigroups, as we will see below in Theorem 3.6.

Given classes Φ and Ψ of PTL formulas, we define Φ $ Ψ to contain all formulas
that are boolean combinations of formulas from Ψ and formulas that can be written
in the form ϕ[p �→ ψp] where ϕ ∈ Φ and the ψp’s themselves are boolean combinations
of formulas from Ψ and propositional variables.

Before we investigate the close connection between $ and ∗, let us observe that
$ is a convenient tool for defining classes of formulas. Using $, for instance, the kth
level of the since hierarchy can be expressed in terms of its first level:

Snk = Sn1 $ · · · $ Sn1︸ ︷︷ ︸
k factors

for k > 0.(3.13)

Notice that $ is associative. Therefore grouping is not necessary in the above equation.
As is usual with associative binary operations, we allow ourselves to use exponen-

tiation to denote “iterated multiplication”; e.g., we allow ourselves to write Snk1 for
the right-hand side of the above equation.

3.7. The semidirect product/substitution principle. In this section we
relate the two operations $ and ∗ to each other. There are two parts to this relation,
Propositions 3.8 and 3.10. Combined into one statement, they yield the following
concise theorem. The set of all PTL formulas without occurrence of ✸- and S is
denoted by Pv.
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Theorem 3.6 (semidirect product/substitution principle, SSP). Let V, W be
pseudovarieties of semigroups and Φ, Ψ classes of PTL formulas such that L(V) =
L(Φ) and L(W) = L(Ψ).

If L(Φ $ Pv $ Ψ) ⊆ L(Φ $ Ψ), then

L(V ∗W) = L(Φ $ Ψ).(3.14)

The theorem follows from Propositions 3.8 and 3.10 below, each of which proves
one inclusion of (3.14).

In the proof of Proposition 3.8 we will make use of the following fact about
wreath products (see [1, pp. 265, 266]) and regular languages (see, e.g., [14]). (Wreath
products are closely related to semidirect products and come in handy whenever one
works with transformation semigroups.) Recall that the transformation semigroup of
a transducer as in (3.10) is (Q,T ), where T is the subsemigroup of QQ generated by
q �→ δ(q, a) for a ∈ A.

Proposition 3.7. Let σ:A+ → B+ be a sequential function given by a transducer
whose transformation semigroup is (Q, T ), and let L ⊆ B+ be a language recognized
by a semigroup S.

Then σ−1(L) is recognized by the semigroup of (S1, S)◦(Q, T ), which is isomorphic
to a particular semidirect product SQ ∗ T .

The inclusion from right to left in (3.14) now follows from the following proposi-
tion.

Proposition 3.8 (SSP I). Let V, W be pseudovarieties of semigroups and Φ,
Ψ classes of PTL formulas such that L(V) = L(Φ) and L(W) = L(Ψ).

Then

L(Φ $ Ψ) ⊆ L(V ∗W).(3.15)

Proof. Assume ϕ ∈ Φ is a formula over P and {ψp}p∈P is a family of formulas
over Q where each ψp is a boolean combination of propositional variables and formulas
from Ψ. We will show that L(ϕ[p �→ ψp]) is recognized by an element of V ∗W. This
is enough for two reasons. First, W ⊆ V ∗W holds for arbitrary pseudovarieties of
semigroups, unless V is the empty pseudovariety or the pseudovariety consisting of
the empty semigroup only. This means L(W) ⊆ L(V ∗W). Second, L(V ∗W) is
closed under boolean combinations, as L(U) is closed under boolean combinations for
any arbitrary pseudovariety U of semigroups.

Let Q = {q0, . . . , qm−1} and assume ψp = αp(q0, . . . , qm−1, µ0, . . . , µn−1), where
αp is a boolean combination and the µj ’s are from Ψ. Since W is assumed to be a
pseudovariety, we can find a single semigroup T ∈W and a homomorphism h: Σ+

Q → T
such that every language L(µj) is recognized by h; i.e., for every j < n there exists
Fj ⊆ T such that L(µj) = h−1(Fj). For every j < n, let νj be the formula

∨
t∈Fj

t.

And for each t ∈ T , let κt be a formula over Q from Ψ such that L(κt) = h−1(t).
Then

L(ψp) = L(αp(q̄, ν̄)[q/t �→ q/κt]),(3.16)

where [q/t �→ q/κt] means that every element from Q is replaced by itself and every
element from t is replaced by κt; overstriking indicates a sequence of formulas.

Write βp for αp(q̄, ν̄). Then

L(ϕ[p �→ ψp]) = L(ϕ[p �→ βp][q/t �→ q/κt]).(3.17)
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Denote ϕ[p �→ βp] by ϕ
′. From Lemma 3.4, we can conclude that L(ϕ′) is recognized

by an element of V, say S, as L(V) is closed under inverse images.
Consider the sequential function σ defined by the transducer

(T 1,ΣQ,ΣT∪Q, 1, δ, λ)(3.18)

as specified through

δ(t, a) = t h(a),(3.19)

λ(t, a) = {t h(a)} ∪ a for t ∈ T 1, a ∈ ΣQ.(3.20)

The transformation semigroup of this transducer is isomorphic to (T 1, T ). We have
σ(ua) ∈ Σ∗T ({h(ua)} ∪ a) for u ∈ Σ∗Q, a ∈ ΣQ, i.e., σ

−1(L(t)) = h−1(t) for every

t ∈ T , hence σ−1(L(t)) = L(κt) for every t ∈ T . Also, σ−1(L(q)) = L(q) for every
q ∈ Q. Thus, by Lemma 3.3, L(ϕ′[q/t �→ q/κt]) = σ−1(L(ϕ′)). On the other hand,
σ−1(L(ϕ′)) is recognized by the semigroup of (S1, S) ◦ (T 1, T ) according to Proposi-

tion 3.7. Hence, L(ϕ′[q/t �→ q/κt]) is recognized by SS
1 ∗ T , which is an element of

V ∗W.
To prove the other inclusion of (3.14), we need the so-called wreath product

principle, introduced in [17]. For use with temporal logic, it can be formulated as
follows.

Proposition 3.9 (wreath product principle). Let L ⊆ Σ+
P be a language recog-

nized by the semigroup of a wreath product (P, S)◦(Q, T ) of transformation semigroups
via a homomorphism h: Σ+

P → SQ∗T . Denote the projection of h onto the second com-
ponent by h2, and let R = T 1∪P . Define σ: Σ+

P → Σ+
R by σ(a0 . . . an−1) = b0 . . . bn−1,

where bi = {h2(a0 . . . ai−1)} ∪ ai. (By convention, h(ε) = 1.)
This function is a synchronous sequential function which can be realized by a

transducer whose transformation semigroup is T ’s right regular representation.
The language L is a boolean combination of languages of the following two types:
(i) languages of the form h−1

2 (t) for some t ∈ T ;
(ii) languages of the form σ−1(V ) where V ⊆ Σ+

R is recognized by S.
The other inclusion of (3.14) follows from the following proposition.
Proposition 3.10 (SSP II). Let V, W be pseudovarieties of semigroups and Φ,

Ψ classes of PTL formulas such that L(V) = L(Φ) and L(W) = L(Ψ).
Then

L(V ∗W) ⊆ L(Φ $ Pv $ Ψ).(3.21)

Proof. Assume L ⊆ Σ+
P is a language recognized by an element of V ∗W. There

exist transformation semigroups (P, S) and (Q, T ) with S ∈ V and T ∈ W such
that L is recognized by the semigroup of (P, S) ◦ (Q, T ) via some homomorphism
h: Σ+

P → SQ ∗ T .
Let R, h2, and σ be as in Proposition 3.9. It is enough to show that the two types

of languages described in Proposition 3.9 can be defined by formulas from Φ $ Pv $ Ψ.
Clearly, every language of type (i) is definable by a formula from Ψ. To complete

the proof, we show that every language of type (ii) is definable by a formula from
Φ $ Pv $ Ψ.

Let V ⊆ Σ+
R be a language recognized by S. By assumption, there exists a formula

ϕ ∈ Φ such that V = L(ϕ). Also, for every t ∈ T , there exists a formula µt ∈ Ψ such
that h−1

2 (t) = L(µt).



786 DENIS THÉRIEN AND THOMAS WILKE

We want to apply Lemma 3.3. For every r ∈ R, we construct a formula ψr such
that σ−1(L(r)) = L(ψr). By definition of σ, the ψr’s can be chosen as follows:

ψr =





r if r ∈ P,
❡- µr if r ∈ T \ {1},
❡- µ1 ∧ ¬ ❡- True if r = 1 and 1 ∈ T ,
¬ ❡- True if r = 1 and 1 /∈ T .

(Notice that ¬ ❡- True defines the set of all strings of length exactly 1.) We can now
apply Lemma 3.3 and conclude σ−1(L(ϕ)) = L(ϕ[r �→ ψr]), hence σ

−1(V ) = L(ϕ[r �→
ψr]). Obviously, every formula ψr belongs to Pv $ Ψ or else is atomic.

4. Since and until hierarchy. In this section, we first obtain an algebraic
characterization of the levels of the since hierarchy and will then be able to deduce
that each level of this hierarchy is decidable. By the symmetry between FTL and
PTL, this also implies that the until hierarchy is decidable.

There are essentially two ways of obtaining an effective characterization of the
since hierarchy. In the first approach, one first shows that the kth level of the since
hierarchy is characterized by the left-hand side of (4.30), then shows (4.30), and
finally proves that membership in the pseudovariety on the right-hand side of (4.30)
is decidable. This approach was taken in our technical report [20] and relies heavily
on fundamental results from [16]. The second approach is taken here. In it most of the
algebraic arguments from [16] are replaced by syntactic/logical arguments. In that
way, some of the results from [16] can actually be reproved, which is demonstrated in
section 4.4.

4.1. A normal form for PTL. We first prove a strong normal form for tem-
poral logic which replaces the complicated algebraic argument of section 6.1 of our
technical report [20]. The normal form is established by syntactic means.

The observation that in PTL application of the previously operator can be re-
stricted to propositional variables or negated propositional variables is folklore. It
follows from the following (almost obvious) lemma.

Lemma 4.1 (switching rules for ❡- ). For arbitrary PTL formulas ϕ and ψ,

L( ❡- (ϕ1 S ϕ2)) = L( ❡- ϕ1 S ❡- ϕ2),

L( ❡- ✸- ϕ) = L(✸- ❡- ϕ),

L( ❡- (ϕ ∨ ψ)) = L( ❡- ϕ ∨ ❡- ψ),

L( ❡- ¬ϕ) = L(¬ ❡- ϕ ∧ ❡- True).

Writing On (reminding of “once upon a time”) for the class of all PTL formulas
not using S and ❡- , we obtain as an immediate consequence the following identity:

L(Sn0) = L(On $ Pv).(4.1)

We will extend this to any level of the since hierarchy. Let Snk denote all formulas in
Snk that don’t use ❡- or ✸- . Then we have the following theorem.

Theorem 4.2. For every k ≥ 0,

L(Snk) = L(On $ Snk $ Pv).(4.2)

In other words,

L(Snk) = L(On $ Snk1 $ Pv) for k ≥ 0.(4.3)
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Obviously, it is enough to prove (4.2) for k = 1. However, this follows immediately
from Lemmas 4.1 and 4.3. The operator ✷- is defined by ✷- ϕ = ¬✸- ¬ϕ, and using it
makes the formulas in Lemma 4.3 more readable.

Lemma 4.3 (switching rules for ✸- and S). For arbitrary PTL formulas ϕ, ψ,
and ρ,

L((ϕ ∧ ψ) S ρ) = L((ϕ S ρ) ∧ (ψ S ρ)),

L((ϕ S (ψ ∨ ρ)) = L((ϕ S ψ) ∨ (ϕ S ρ)),

L((ϕ ∨✸- q) S ρ) = L((ϕ S ρ) ∨✸- (✸- q ∧ ❡- (ϕ S ρ))),

L((ϕ ∨✷- ψ) S ρ) = L((ϕ S ρ) ∨ (✸- ρ ∧✷- (ϕ ∨✷- ψ))),

L(ϕ S (ψ ∧✸- ρ)) = L((ϕ S ψ) ∧✸- (ψ ∧✸- ρ)),

L(ϕ S (ψ ∧✷- ρ)) = L(ϕ S (ψ ∧ ρ) ∧✷- (✷- ρ ∨ (ϕ ∧ ϕ S (ψ ∧ ρ)))).
Proof. We prove only the inclusion from right to left in the last equation, which

is the only nontrivial assertion. Write ϕL and ϕR for the left- and right-hand sides of
this equation, respectively.

Assume u |= ϕR. Then there exists a position i in u such that

(u, i) |= ψ,(4.4)

(u, i) |= ρ,(4.5)

(u, j) |= ϕ for every j with i < j < |u|.(4.6)

Fix i to be the minimal such position. Clearly, if (u, i) |= ✷- ρ, then u |= ϕL. Therefore,
for the rest, we assume

(u, i) �|= ✷- ρ(4.7)

and show this assumption leads to a contradiction. As the second conjunct of ϕR
holds at i, but ✷- ρ does not, we conclude

(u, i) |= ϕ.(4.8)

Also, i > 0 and

(u, i− 1) �|= ✷- ρ(4.9)

because otherwise ✷- ρ would hold at i (cf. (4.5)). Hence,

(u, i− 1) |= ϕ S (ψ ∧ ρ),(4.10)

again because the second conjunct of ϕR holds at i, but ✷- ρ does not. Thus there
exists a position i′ with i′ < i such that

(u, i′) |= ψ,(4.11)

(u, i′) |= ρ,(4.12)

(u, j) |= ϕ for every j with i′ < j < i.(4.13)

From (4.6) and (4.8) we conclude that instead of (4.13) we even have

(u, j) |= ϕ for every j with i′ < j < |u|.(4.14)

Therefore (4.11), (4.12), and (4.14) show that i was not chosen minimal—a contra-
diction.
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4.2. Characterization of small classes. Before we can give an algebraic char-
acterization of the levels of the since hierarchy, we need to characterize classes of
languages expressible by very simple formulas.

We recall some terminology and notation, following [1]. B(1,2)
1
stands for the

semigroup {1, a, b} whose multiplication is given by xa = a, xb = b, and x1 = x for all

x ∈ {1, a, b}. The subsemigroups {a, b} and {1, a} of B(1,2)1 are denoted by B(1,2)
and Sl2, respectively.

Given a class C of finite semigroups, V (C) denotes the smallest pseudovariety of
semigroups containing C, and V ∗(C) denotes the smallest pseudovariety of semigroups
closed under semidirect products that contains C. Given a pseudovariety V of semi-
groups, Vn stands for the iterated semidirect product V ∗ · · · ∗ V with n factors,
and LV stands for the class of all finite semigroups whose submonoids belong to V.

For n ≥ 1, Dn is the pseudovariety of semigroups defined by the equation

yx1 . . . xn = x1 . . . xn(4.15)

and

D =
⋃
n>0

Dn.(4.16)

R is the pseudovariety of all R-trivial finite semigroups, SL is the pseudovariety of
all finite semilattices, and MD1 is the pseudovariety of semigroups generated by all
semigroups of the form S1 with S ∈ D1.

Equivalent descriptions of D1, SL, R, MD1, and LR are (see, e.g., [1])

D1 = V ({B(1,2)}),(4.17)

SL = V ({Sl2}),(4.18)

D = V ∗(D1),(4.19)

R = V ∗(SL),(4.20)

MD1 = V ({B(1,2)1}),(4.21)

LR = V ∗({B(1,2),Sl2}) = R ∗ D.(4.22)

Equation (4.22) is from [16].
We first characterize the class of temporal logic formulas that corresponds to the

pseudovariety D.
Lemma 4.4. L(Pv) = L(D).
Proof. A language L ⊆ Σ+

P belongs to L(D) if and only if L is a boolean combi-
nation of singleton sets {u} and languages of the form Σ∗Pu for u ∈ Σ+

P . This follows
almost immediately from (4.15) and (4.16); see also [14].

For each a ∈ ΣP let αa be a propositional formula such that L(αP ) = Σ∗Pa.
Assume u is a nonempty word over Σ+

P of length n. Then

L(αu(n−1) ∧ ❡- (αu(n−2) ∧ ❡- (αu(n−3) ∧ . . . (αu(0) ∧ ¬ ❡- True)))) = {u}.(4.23)

Similarly,

L(αu(n−1) ∧ ❡- (αu(n−2) ∧ ❡- (αu(n−3) ∧ . . . αu(0)))) = Σ∗Pu.(4.24)

Thus, L(D) ⊆ L(Pv).



THE UNTIL HIERARCHY 789

For the other direction, recall that by Lemma 4.1, every formula in Pv is equivalent
to a formula which is a boolean combination of formulas of the form ❡- ❡- . . . ❡- p or
❡- ❡- . . . ❡- True. Now observe that

L( ❡- ❡- . . . ❡- p) =
⋃
u

Σ∗u,(4.25)

where u ranges over all words of length n+1 with p ∈ u(n) and where n is the number
of times the previously operator is applied in the formula on the left-hand side. Drop-
ping the restriction “p ∈ u(n)” leads to an expression equivalent to ❡- ❡- . . . ❡- True.
This shows L(Pv) ⊆ L(D).

Next, we characterize MD1.

Lemma 4.5.

1. A language over A is recognized by B(1,2)
1

if and only if it is of the form
A∗BC∗ for some B,C ⊆ A.

2. A language over A is recognized by a semigroup in MD1 if and only if it is
a boolean combination of languages of the form A∗BC∗ for sets B,C ⊆ A.

3. L(Sn1) = L(MD1).

See also Lemma 1.3 in [4].

Proof. For the proof of part 1, let h:A+ → B(1,2)
1
be a homomorphism. Set

Ms = h−1(s)∩A for every s ∈ B(1,2)
1
. Then h−1(a) = A∗MaM

∗
1 , h

−1(b) = A∗MbM
∗
1 ,

and h−1(1) = M+
1 . Therefore, every language recognized by B(1,2)

1
is already of the

form A∗BC∗ for B,C ⊆ A. On the other hand, for every possible choice of B,C ⊆ A,
the set A∗BC∗ is recognized by B(1,2)

1
, as can be seen as follows. The claim is trivial

if B = ∅. If B �= ∅, consider the homomorphism h:A+ → B(1,2)
1
defined by

h(c) =





a if c ∈ B,
1 if c ∈ C \B,
b otherwise.

Then h−1(a) = A∗BC∗.

For the proof of part 2 observe that sinceMD1 is generated by B(1,2)
1
, a language

is recognized by an element of MD1 if and only if it is a boolean combination of
languages recognized by B(1,2)

1
. Therefore the claim follows from part 1.

Part 3 is a trivial consequence of part 2 in view of the following equation, where
B = {b1, . . . , bm} and C = {c1, . . . , cn} are (possibly empty) subsets of A.

L((c1 ∨ c2 ∨ · · · ∨ cn) S (b1 ∨ b2 ∨ · · · ∨ bm)) = A∗BC∗.(4.26)

Recall also that every formula in Sn1 is equivalent to a boolean combination of formulas
as in (4.26) and atomic formulas.

The next pseudovariety we consider isR. Let WOn (“W” suggesting “weak”) denote
the class of formulas that are boolean combinations of formulas ✸- ϕ where ϕ belongs
to On. Similarly, let WOn1 denote the set of all formulas from WOn of nesting depth at
most 1 in ✸- ; i.e., a formula belongs to WOn1 if and only if it is a boolean combination
of formulas ✸- ϕ where ϕ is propositional.
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Lemma 4.6.
1. A language over A+ is recognized by Sl2 if and only if it is of the form A∗BA∗

for some B ⊆ A or the complement of such a language.
2. L(WOn1) = L(SL).
3. L(WOn) ⊆ L(R).
4. L(R) ⊆ L(WOn $ Pv).

Proof. The proof of part 1 follows the pattern of the proof of the first part of the
previous lemma. Part 2 follows from part 1, as a language is a boolean combination of
languages of the form A∗BA∗ if and only if it is a boolean combination of languages
of the form A∗bA∗ for b ∈ A.

For the proof of part 3, we first show L(WOnk1 ) ⊆ L(SLk) for every k > 0. The
induction base follows from part 2. For the inductive step, assume L(WOnk1 ) ⊆ L(SLk)
for some k. Let Φ be the set of all PTL formulas ϕ such that L(ϕ) ∈ L(SLk). Then,
by the inductive assumption, WOnk1 ⊆ Φ. Moreover,

L(WOnk+1
1 ) = L(WOn1 $ WOn

k
1 )

⊆ L(WOn1 $ Φ) Definition of Φ

⊆ L(SL ∗ SLk) SSP I

= L(SLk+1).

The claim now follows from (4.20).
For the proof of part 4, we first show L(SLk) ⊆ L(WOnk1 $ Pv) for k > 0. The

induction base follows from part 2. For the inductive step, assume L(SLk) ⊆ L(WOnk1 $
Pv) for some k. Let Φ be the set of all formulas ϕ ∈ WOnk1 $ Pv such that L(ϕ) ∈
L(SLk). Then, by the inductive assumption, L(SLk) = L(Φ). Moreover,

L(SLk+1) = L(SL ∗ SLk)
⊆ L(WOn1 $ Pv $ Φ) SSP II
⊆ L(WOn1 $ Pv $ WOn

k
1 $ Pv) Definition of Φ

= L(WOn1 $ WOn
k
1 $ Pv) Lemma 4.1

= L(WOnk+1
1 $ Pv).

The claim of part 4 now follows from (4.20).
It is not true that L(WOn) = L(R), and neither is it true that L(R) = L(WOn $ Pv).

Just note that L( ❡- ✸- p) ∈ L(R) \L(WOn) and L(p) ∈ L(WOn $ Pv) \L(R). We mention
without proof that L(R) is the set of all languages that are expressible via a formula
which is a boolean combination of formulas ✸- ϕ, where ϕ is a PTL formula using the
combined operator ❡- ✸- as the only temporal operator.

4.3. Characterization of the hierarchies. We can now give an algebraic char-
acterization of the since hierarchy.

Theorem 4.7 (characterization of since hierarchy). For every k ≥ 0,

L(Snk) = L(R ∗MDk
1 ∗ D).(4.27)

The case k = 0 is Theorem 4.2 in [4]. Theorem 1.1 in Chapter 7 of [6] states
L((R ∗MD1)

k ∗ LR) ⊆ L(Snk), which is the inclusion from right to left in (4.27).
A somewhat weaker version of the inclusion from right to left is Theorem 1.1 in

Chapter 7 of [6].
Proof. By induction on k, we first prove

L(Snk1 $ Pv) = L(MDk
1 ∗ D)(4.28)
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for k ≥ 0.
The induction base is Lemma 4.4. For the inductive step, assume (4.28) holds for

some k ≥ 0. Clearly, L(Snk+1
1 $ Pv) = L(Sn1 $ Sn

k
1 $ Pv). From Lemma 4.5, we know

L(Sn1) = L(MD1). Lemma 4.1 tells us L(Sn1 $ Pv $ Snk1 $ Pv) ⊆ L(Snk+1
1 $ Pv).

Using SSP, we obtain L(Snk+1
1 $ Pv) = L(MDk+1

1 ∗ D).
The rest of the proof consists of the following chain of inclusions, where Φ stands

for the set of all formulas from Sn0 that are recognized by an element of R:

L(Snk) = L(On $ Snk1 $ Pv) Theorem 4.2
= L(WOn $ Snk1 $ Pv) Definition of $
⊆ L(Φ $ Snk1 $ Pv) Lemma 4.6

= L(R ∗MDk
1 ∗ D) SSP and (4.28)

⊆ L(Φ $ Pv $ Snk1 $ Pv) SSP II
⊆ L(WOn $ Pv $ Snk1 $ Pv) Lemma 4.6
= L(WOn $ Snk1 $ Pv) Lemma 4.1
= L(On $ Snk1 $ Pv) Definition of $
= L(Snk) Theorem 4.2.

This completes the proof.
Using Cρ to denote the class of all semigroups for which the reverse belongs to a

given class C, we immediately get the following theorem.
Theorem 4.8 (characterization of until hierarchy). For every k ≥ 0,

L(Utk) = L((R ∗MDk
1 ∗ D)ρ).(4.29)

4.4. Algebraic implications. In this section, we deviate a little from our main
route. The purpose is to explain what can be concluded from the previous theorem
from a semigroup-theoretic point of view. We prove a switching rule and explain the
connection to the Krohn–Rhodes theorem.

The following switching rule is slightly weaker than the switching rule from The-
orem 9 in [20], which we used when we proved the decidability of the until hierarchy
for the first time and which was derived from fundamental results in [16].

Theorem 4.9. MD1 ∗ R ⊆ R ∗MD1 ∗ D.
Proof. Clearly, MD1 ∗ R ⊆MD1 ∗ R ∗ D. Thus, using SSP, Lemmas 4.5, and

Theorem 4.7, L(MD1 ∗ R ∗ D) ⊆ L(Sn1 $ Sn0). The latter is the same as L(Sn1),
which, by Theorem 4.7, is identical with L(R ∗ MD1 ∗ D). The claim now follows
from Eilenberg’s variety theorem, which, among other things, states that if V and W
are pseudovarieties of semigroups such that L(V) = L(W), then V = W.

The next theorem gives an alternative description of R ∗MDk
1 ∗ D.

Theorem 4.10. For k ≥ 0,

LR ∗ (MD1 ∗ LR)k = R ∗MDk
1 ∗ D.(4.30)

Proof. The case k = 0 is (4.22). For k > 0 observe that LR = LR ∗ LR by
definition. Therefore LR ∗ (MD1 ∗ LR)k = (LR ∗MD1 ∗ LR)k for k > 0. By SSP,
we have L(LR ∗MD1 ∗ LR) = L(Sn0 $ Sn1 $ Sn0). However, the latter is the same
as L(Sn1). We thus conclude L(LR ∗ (MD1 ∗ LR)k) = L(Snk). This implies the
claim in view of Theorem 4.7.

The Krohn–Rhodes theorem states that the pseudovarietyA, the class of all finite
semigroups containing no nontrivial group, is identical with V ∗({B(1,2)1}). In view
of this, it is only natural to classify a semigroup S of V according to how often the
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semidirect product operation and the use of direct products of B(1,2)
1
alternate in a

decomposition of S. We get a hierarchy of pseudovarieties, the kth level given by

V ∗({B(1,2),Sl2}) ∗ (V ({B(1,2)1}) ∗ V ∗({B(1,2),Sl2}))k.(4.31)

(Recall that B(1,2) and Sl2 are the only nontrivial factors of B(1,2)
1
.) Using the

notation introduced above, we can as well write LR ∗ (MD1 ∗ LR)k. The previous
theorem now tells us that this hierarchy corresponds to the since hierarchy of temporal
logic.

4.5. Decidability. Before we can prove the decidability of the levels of the since
hierarchy, we need to recall some facts from finite semigroup theory.

The first lemma gives a description of MD1 and is folklore.

Lemma 4.11. A finite semigroup belongs to MD1 if and only if it satisfies

xyx = yx,(4.32)

x2 = x.(4.33)

Recall that a pseudovariety V of semigroups is called locally finite if for every
m > 0 there exists a finite semigroup Fm ∈ V such that every semigroup from V
generated by at most m elements is a homomorphic image of Fm. The semigroup Fm
is then unique up to isomorphism and is denoted by FmV.

We say a pseudovariety V of semigroups is effectively locally finite if it is locally
finite and m �→ FmV is computable.

The following proposition can be found, for instance, in [18], as Proposition 6.2,
and in [1], as Theorem 10.2.1.

Proposition 4.12. If V and W are effectively locally finite pseudovarieties of
semigroups, then V ∗W is effectively locally finite.

The next proposition is Theorem 5.7 from [18].

Proposition 4.13 (Straubing). If V is a pseudovariety of semigroups, then
S ∈ V ∗ D if and only if S ∈ V ∗ D|S|.

The last fact we need is an obvious consequence of results in [19] on graph con-
gruences.

Theorem 4.14 (Thérien,Weiss). If V and W are pseudovarieties such that

• LV = V ∗ D,
• V is decidable, and
• W is effectively locally finite,

then V ∗W is decidable.

The decision procedure we have in mind is the obvious modification of the pro-
cedure described under (ii) in Example 2.5 of [19]. Its correctness follows from Theo-
rem 2.8 in [19].

We can now approach the decidability of the since hierarchy.

Proposition 4.15. Let k ≥ 0, l ≥ 1. The pseudovariety MDk
1 ∗ Dl is effectively

locally finite.

Proof. From (4.15) it is clear that FmDl is finite for m, l ≥ 1. From Lemma 4.11
it is clear that MD1 is effectively locally finite. Therefore, by repeated application of
Proposition 4.12, we obtain that MDk

1 ∗ Dl is effectively locally finite.

Theorem 4.16. Let k ≥ 0. The problem of determining whether a given finite
semigroup S belongs to R ∗MDk

1 ∗ D is decidable.
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Proof. In order to check whether S ∈ R ∗ MDk
1 ∗ D, according to Proposi-

tion 4.13, we have only to check for S ∈ R ∗ MDk
1 ∗ D|S|. This is effective by

Theorem 4.14 and Proposition 4.15 in view of (4.22).
This finally yields the following theorem.
Theorem 4.17 (decidability of until hierarchy).
1. Let k ≥ 0. The problems of determining whether a regular language belongs

to L(Utk) is decidable.
2. The problem of determining the smallest number k such that a given regular

language belongs to L(Utk) can be solved effectively.
Proof. In order to determine whether L ∈ L(Utk) for a given regular language

L, say, represented by a finite automaton, one first computes its minimal automaton
A. The next step is to compute the transformation semigroup S of A. Using Theo-
rem 4.16, it is then checked whether S ∈ (R ∗MDk

1 ∗ D)ρ, which is also the answer
to the question, as can be seen as follows. First, the semigroup S is isomorphic to
the syntactic semigroup of L. Second, since (R ∗ MDk

1 ∗ D)ρ is a pseudovariety of
semigroups, L ∈ L((R ∗ MDk

1 ∗ D)ρ) if and only if S ∈ (R ∗ MDk
1 ∗ D)ρ. Third,

L ∈ L(Utk) if and only if L ∈ L((R ∗MDk
1 ∗ D)ρ) by Theorem 4.8.

The second part follows immediately from part 1, as the decision procedures
described in the proof of Theorem 4.16 are uniform in k, and one can a priori check
whether a given language L is at all expressible in FTL. See [9, 15, 11].

Corollary 4.18. The problem of determining the smallest number k such that
the language defined by a given FTL formula belongs to L(Utk) can be solved effec-
tively.

Proof. It suffices to note that given an FTL formula ϕ it is easy to compute a
finite automaton that recognizes the language defined by ϕ; see, for instance, [25] for
the case of ω-words.

Obviously, analogues of the previous two results hold for the since hierarchy.

5. Extension to ω-words. In this chapter we extend the algebraic characteri-
zation of the until hierarchy and its decidability to the situation where temporal logic
formulas are interpreted in ω-words instead of strings (which is often enough the case,
especially when temporal logic is used to specify the behavior of reactive systems).

It should be clear how the definitions of section 2 carry over to ω-words. To
distinguish between the two settings we will write Lω(ϕ) to denote the set of all ω-
models of an FTL formula and keep writing L(ϕ) for the set of all string models of
an FTL formula.

5.1. Regular ω-languages. We recall some basic facts about the algebraic
treatment of regular ω-languages.

Let L ⊆ Aω. The syntactic congruence of L, as defined in [2] and denoted by ≡L,
is the binary relation on A+ that relates u and v if and only if

(∀x, y ∈ A∗) (x(uy)ω ∈ L↔ x(vy)ω ∈ L)(5.1)

and

(∀x, y ∈ A∗) (∀z ∈ A+) (xuyzω ∈ L↔ xvyzω ∈ L).(5.2)

Given an arbitrary congruence ≡ on A+, we define a similarity relation ∼ on
Aω as follows: α ∼ β if and only if there exist decompositions α = u0u1u2 . . . and
β = v0v1v2 . . . such that ui ≡ vi for i ≥ 0.
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For a given language L ⊆ Aω, we denote by ∼L the similarity relation induced by
≡L. The following crucial property of the syntactic congruence of a regular ω-language
goes back to [2] and [12].

Lemma 5.1 (Arnold, Pécuchet). Let L ⊆ Aω be regular and ∼L the similarity
relation induced by ≡L.

If α ∼L β, then α ∈ L if and only if β ∈ L.

5.2. The Ehrenfeucht–Fräıssé game for FTL. As our main tool we will use
a combinatorial description of the Ehrenfeucht–Fräıssé game of [8]. In fact, we will
use the following definition of game equivalence.

Let x, y ∈ Σ+
P ∪ ΣωP , i < |x|, and j < |y|.

We define (x, i) ≡lk (y, j) to hold if and only if the following conditions and their
symmetric counterparts (where the roles of (x, i) and (y, j) are interchanged) are met.
Initial condition: x(i) = y(j).
Next condition, required if l > 0: If i+1 < |x|, then j+1 < |y| and (x, i+1) ≡l−1

k

(y, j + 1).
Eventually condition, required if l > 0: For every i′ with i ≤ i′ < |x|, there exists

j′ with j ≤ j′ < |y| such that (x, i′) ≡l−1
k (y, j′).

Until condition, required if k > 0: For every i′ with i ≤ i′ < |x|, there exists j′

with j ≤ j′ < |y| such that
(UC1) if i′ = i, then j′ = j;
(UC2) (x, i′) ≡lk−1 (y, j′);
(UC3) for every j′′ with j ≤ j′′ < j′, there exists i′′ with i ≤ i′′ < i such

that (x, i′′) ≡lk−1 (y, j′′).
We write x ≡lk y for (x, 0) ≡lk (y, 0).
For a game-theoretic interpretation of ≡lk, see [8].
To describe the connection of ≡lk with temporal logic, we need the notion of

residual depth.
The residual depth of a FTL formula ϕ, denoted by rd(ϕ), is defined to be the

depth of the formula in terms of the FTL operators other than U:

rd(True) = 0,

rd(p) = 0 for p ∈ P ,
rd(¬ϕ) = rd(ϕ),

rd(ϕ1 ∨ ϕ2) = max{rd(ϕ1), rd(ϕ2)},
rd( ❡ϕ) = rd(ϕ) + 1,

rd(✸ϕ) = rd(ϕ) + 1,

rd(ϕ1 U ϕ2) = max{rd(ϕ1), rd(ϕ2)}.

The set Utk,l is defined to be the set of all FTL formulas of until depth at most k and
residual depth at most l.

The following theorem is an adapted version of Theorem 2.1 from [8].
Theorem 5.2 (Etessami, Wilke; soundness and completeness). Let x, y ∈ Σ+

P ∪
ΣωP and k, l ≥ 0.

Then x ≡lk y if and only if x and y are models of the same Utk,l-formulas over
P .

The following lemma states that game equivalence is a congruence relation; in
fact, it is a Ramsey congruence in the sense of [26]. The proof is straightforward but
lengthy. The interested reader is referred to our technical report [20].
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Lemma 5.3 (congruence property). Let k, l ≥ 0.

1. The binary relation ≡lk restricted to Σ+
P is a congruence relation. That is,

≡lk restricted to Σ+
P is an equivalence relation and whenever u ≡lk v and u′ ≡lk v′ for

u, u′, v, v′ ∈ Σ+
P , then uu′ ≡lk vv′.

2. Let u, v ∈ Σ+
P and α, β ∈ ΣωP . If u ≡lk v and α ≡lk β, then uα ≡lk vβ.

3. If u, v ∈ Σ+
P such that u ≡lk v, then uω ≡lk vω.

To conclude this section about game equivalence, we note the following remark.

Remark 2. Let k, l ≥ 0, x, y ∈ Σ∞P , i < |x|, and j < |y|. Assume u, v ∈ Σ∗P and
(x, i) ≡lk (y, j).

Then (ux, |u|+ i) ≡lk (vy, |v|+ j).

5.3. Reduction to strings. Using game equivalence we can now characterize
the levels of the until hierarchy for ω-words. We start with a lemma.

Lemma 5.4. Let k, l ≥ 0 and u, v ∈ Σ+
P be such that u ≡lk v. For all x, y ∈ Σ∗P

and z ∈ Σ+
P ,

x(uy)ω ≡lk x(vy)ω,(5.3)

xuyzω ≡lk xvyzω.(5.4)

Proof. Relation (5.4) follows immediately from Lemma 5.3 (part 2) and Remark 2.

By part 1 of the same lemma, we obtain uy ≡lk vy. Thus, by part 3 of that lemma,
(uy)ω ≡lk (vy)ω. Another application of part 2 finally yields x(uy)ω ≡lk x(vy)ω.

The next proposition states that if a regular ω-language belongs to the kth level
of the until hierarchy, then so do the classes of its syntactic congruence relation.

Proposition 5.5. Let k ≥ 0 and L ⊆ ΣωP such that L ∈ Lω(Utk). Each class of
≡L belongs to L(Utk).

Proof. There exists l such that L belongs to Lω(Utk,l). We claim that every class
of the syntactic congruence of L belongs to L(Utk,l).

We need only to show that for all u, v ∈ Σ+
P the following holds. If u ≡lk v, then

u ≡L v. Therefore assume u ≡lk v, and let x, y ∈ Σ∗P and z ∈ Σ+
P .

Assume x(uy)ω ∈ L. From Lemma 5.4, we know x(uy)ω ≡lk x(vy)ω. Thus, since
L ∈ Lω(Utk,l), x(vy)ω ∈ L. By symmetry, if x(vy)ω ∈ L, then x(uy)ω ∈ L. Similarly,
using (5.4) instead of (5.3), one shows xuyzω ∈ L if and only if xvyzω ∈ L. Therefore
(5.1) and (5.2) hold, which means u ≡L v.

The converse of the previous proposition is also true and is the crucial observation
of this section. It is more difficult to prove, and we will dedicate almost the entire
rest of this section to it.

Lemma 5.6. Let k, l ≥ 0, p = k + l + 1, and u, v ∈ Σ∗P and w ∈ Σ+
P such that

uwω ≡lk vwω. Then uwp ≡lk vwp.
Proof. We prove by induction on k′ + l′ that the following is true for k′ ≤ k,

l′ ≤ l and i, j ≥ 0: if (uwω, i) ≡l′k′ (vwω, j), i ≤ |u| + (k − k′ + l − l′)|w|, and

j ≤ |v|+ (k − k′ + l − l′)|w|, then (uwp, i) ≡l′k′ (vwp, j).
Write x, y, α, and β for uwp, vwp, uwω, and vwω.

Induction base, k′ + l′ = 0. This is trivial.

Induction step, k′ + l′ > 0. We consider the various conditions.

Initial condition. Clearly, this condition is satisfied.

Next condition. Clearly, (α, i+1) ≡l′−1
k′ (β, j+1), hence (x, i+1) ≡l′−1

k′ (y, j+1)
by induction hypothesis.

Eventually condition. Let i′ be such that i ≤ i′ < |x|. We distinguish two cases.
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First case, i < |u|. Since (α, i) ≡l′k′ (β, j), there exists j′ such that (α, i′) ≡l′k′
(β, j′). By Remark 2, we can assume j′ < |v|+ (k − k′ + l − l′ + 1)|w|. Thus we can

apply the induction hypothesis and find (x, i′) ≡l′−1
k′ (y, j′).

Second case, i′ ≥ |u|. This case is simple, as we can choose j′ = |v|+ i′ − |u|.
Until condition. Let i′ be such that i ≤ i′ < |x|. Since (α, i) ≡l′k′ (β, j), there

exists j′ such that (UC1)–(UC3) hold for α, β, k′, and l′ instead of x, y, k, and l.
By Remark 2, we can find j1 such that j ≤ j1 < |v| + (k − k′ + l − l′ + 1)|w|,

j1 ≤ j, and (β, j′) ≡l′k′−1 (α, j1). We claim that (UC1)–(UC3) then hold for k′, l′, x,
y, and j1 instead of k, l, x, y, and j′.

(UC1) is trivially satisfied, as we know that if i = i′, then j′ = j, and that
j ≤ j1 ≤ j′. By definition of j1, we know (α, i′) ≡l′k′−1 (β, j1), hence, by induction

hypothesis, (x, i′) ≡l′k′−1 (y, j1). Therefore (UC2) is satisfied.
To verify (U3), let j′′ be such that j ≤ j′′ < j1. If j′′ ≥ |v|, we simply take

i′′ = |u|+ j′′ − |v|. In the other case, if j′′ < |v|, there is i′′ such that i ≤ i′′ < i and
(α, i′′) ≡l′k′−1 (β, j′′). We can assume i′′ < |u|+ (k− k′+ l− l′+1)|w|. The induction

hypothesis then yields (x, i′′) ≡l′k′−1 (y, j′′).
We denote by ∼lk the similarity relation induced by ≡lk.
Proposition 5.7. Let k, l ≥ 0, and s, t, u, v ∈ Σ+

P such that stω ≡l+2
k uvω. Then

there exists γ ∈ ΣωP such that stω ∼lk γ ∼lk uvω.
Proof. Write α and β for stω and uvω, respectively.
We first argue that we can assume tω ≡lk vω.
Since we have stω ≡l+2

k uvω, there exists j such that (stω, |s|) ≡l+1
k (uvω, j).

Consequently, there exists i′ such that (stω, |s|+ i′) ≡lk (uvω, j + |u|). By Remark 2,
we can assume i′ < |t| and j < |v|. Write v′, v′′, t′, t′′ for v(0, i′′), v(i′′, |v|), t(0, j′),
and t(j′, |t|). Then uvω = uv′(v′′v′)ω and stω = st′(t′′t′)ω, where (v′′v′)ω ≡lk (t′′t′)ω.
We can thus replace u by uv′, v by v′′v′, s by st′, and t by t′′t′ in order to achieve
tω ≡lk vω.

Let p = k + l + 1. Set γ = s(tpvp)ω. We prove that this choice is correct.
We first show α ∼lk γ. Let u0 = stp, v0 = stp, ui = t2p for i > 0, and vi = vptp

for i > 0. Then α = u0u1u2 . . . and γ = v0v1v2 . . .. Trivially, u0 ≡lk v0. Moreover,

vptω ≡lk vpvω = vω ≡lk tω = tptω,(5.5)

where the first equivalence follows from Lemma 5.3 and the second one holds by
assumption. Therefore Lemma 5.6 yields vptp ≡lk tptp, hence ui ≡lk vi for i > 0, thus
α ∼lk γ.

We finally show γ ∼lk β. Let u0 = stpvp, v0 = uvp, ui = tpvp for i > 0, and
vi = v2p for i > 0. Then γ = u0u1u2 . . . and β = v0v1v2 . . .. As in the previous
paragraph, we obtain ui ≡lk vi for i > 0. In order to prove u0 ≡lk v0, we first observe

tω = stω ≡lk uvω,(5.6)

where the first equivalence follows from Lemma 5.3 and the second one holds by
assumption. From Lemma 5.6, we can thus conclude stpvp ≡lk uvp, which means
u0 ≡lk v0.

We can now prove the following theorem.
Theorem 5.8 (characterization of until hierarchy over infinite sequences). Let

k ≥ 0 and L ⊆ ΣωP regular. The following are equivalent.
• L ∈ Lω(Utk).
• Each equivalence class of ≡L belongs to L(Utk).
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Proof. One direction is Proposition 5.5. For the other direction, assume that each
class of ≡L belongs to L(Utk). Since L is regular, ≡L has only finitely many classes,
and there thus exists l ≥ 0 such that each class of ≡L belongs to L(Utk,l). We will
prove that L belongs to L(Utk,l+2).

For α, β ∈ ΣωP such that α ≡l+2
k β, we have to show that α ∈ L if and only if

β ∈ L.
Since all classes of ≡l+2

k on ΣωP are regular ω-languages, it is enough to consider
only ultimately periodic words; that is, we can assume that α and β are of the form
stω and uvω, respectively. (Recall that every nonempty regular ω-language contains
an ultimately periodic word.)

By Proposition 5.7, there exists γ such that α ∼lk γ ∼lk β. Since we assume that
every class of ≡L belongs to Lω(Utk), ≡L is at least as coarse as ≡lk, which implies
that we also have α ∼L γ ∼L β. We can now apply Lemma 5.1 and obtain α ∈ L if
and only if γ ∈ L if and only if β ∈ L.

We can finally prove the counterpart to Theorem 4.17 and Corollary 4.18.
Theorem 5.9 (decidability of until hierarchy over infinite sequences).
1. Let k ≥ 0. The problem of determining whether a given regular ω-language

belongs to Lω(Utk) is decidable.
2. The problem of determining the smallest number k such that a given regular

ω-language belongs to Lω(Utk) can be solved effectively.
3. The problem of determining the smallest number k such that a given FTL

formula is equivalent over ω-words to an FTL formula of until depth at most k can
be solved effectively.

Proof. In order to check whether a given regular ω-language L belongs to Lω(Utk)
one first computes a representation of its syntactic congruence as a finite automaton
A (on strings). The next step is to compute the transformation semigroup S of A.
Using Theorem 4.16, one then checks whether S ∈ (R ∗ MD1 ∗ D)ρ, which is also
the answer to the question, as can be seen as follows. The semigroup is equivalent to
Σ+
P /≡L, the syntactic semigroup of L. Since (R ∗MD1 ∗ D)ρ is a pseudovariety of

semigroups, each class of ≡L belongs to L((R ∗MD1 ∗ D)ρ) if and only if S ∈ (R ∗
MD1 ∗ D)ρ. Now recall that Theorem 4.8 says that L((R ∗MD1 ∗ D)ρ) = L(Utk)
and that Theorem 5.8 says that L ∈ Lω(Utk) if and only if every equivalence class of
≡L belongs to L(Utk).

6. Problems. We would like to conclude this paper with a list of problems.
Problem 1. Determine the complexity of the decision problems considered in this

paper. It is not even obvious that the procedure described in the proof of Theorem 4.16
has an elementary upper bound.

Problem 2. Extend our results to the combined until/since hierarchy.
Problem 3. Find a description of the kth level of the until hierarchy in terms

of structural properties of the corresponding minimal automata, as for instance given
in [4] for until depth 0.
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1. Introduction. Much of computational complexity theory has focused on the
question of what problems can be solved in polynomial time. Shor’s quantum factoring
algorithm [22] suggests that quantum computers might be more powerful than classical
computers in this regard, i.e., that BQP might be a larger class than P, or rather
BPP, the class of problems solvable in polynomial time by a classical probabilistic
Turing machine with bounded error.

A finer distinction can be made between P and the class NC of efficient parallel
computation, namely the subset of P of problems which can be solved by a parallel
computer with a polynomial number of processors in polylogarithmic time, O(logk n)
time for some k, where n is the number of bits of the input [18]. Equivalently, NC
problems are those solvable by Boolean circuits with a polynomial number of gates
and polylogarithmic depth.

This distinction seems especially relevant for quantum computers, where decoher-
ence makes it difficult to do more than a limited number of computation steps reliably.
Since decoherence due to storage errors is essentially a function of time, we can avoid
it by doing as many of our quantum operations at once as possible. (Then again,
gate errors will typically get worse since parallel algorithms often involve more gates,
and gate errors are typically the dominant source of decoherence in current models of
quantum computation such as bulk-spin NMR [9]. In addition, using a large number
of work qubits may worsen decoherence and storage errors as well.)

In this paper, we initiate the study of QNC, the quantum analog of NC, and
prove a number of elementary results. Our main theorem is that circuits consisting
of controlled-not gates, controlled π-shifts, and Hadamard gates can be parallelized
to logarithmic depth. This includes circuits for encoding and decoding standard
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quantum error-correcting codes. We end with a conjecture that neither an exact
quantum Fourier transform nor a simple “staircase” circuit can be parallelized to less
than linear depth. While this would not show that QNC < QP, it would certainly
suggest that not all quantum algorithms can be parallelized.

In another paper [17], one of us explores quantum analogs of AC0 and ACC0,
the subsets of NC consisting of constant-depth circuits with AND, OR, and MOD
gates of arbitrary fan-in. Some further results on QAC0 and QACC0 can be found
in [11, 12].

2. Definitions. We define quantum operators and quantum circuits as follows.

Definition 1. A quantum operator on n qubits is a unitary rank-2n tensor
U where U b1b2...bna1a2...an is the amplitude of the incoming and outgoing truth values being
a1, a2, . . . , an and b1, b2, . . . , bn, respectively, with ai, bi ∈ {0, 1} for all i. However,
we will usually write U as a 2n × 2n unitary matrix Uab where a and b’s binary
representations are a1a2 · · · an and b1b2 · · · bn, respectively.

A one-layer circuit consists of the tensor product of one- and two-qubit gates, i.e.,
rank 2 and 4 tensors, or 2 × 2 and 4 × 4 unitary matrices. This is an operator that
can be carried out by a set of simultaneous one-qubit and two-qubit gates, where each
gate couples a disjoint set of qubits.

A quantum circuit of depth k is a quantum operator written as the product of k
one-layer circuits.

Here we are allowing arbitrary two-qubit gates. If we like, we can restrict this to
controlled-U gates, of the form




1 0 0 0
0 1 0 0
0 0 u11 u12

0 0 u21 u22


,

or more stringently to the controlled-not gate




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


.

For these, we will call the first and second qubits the input and target qubits, re-
spectively; however, they do not really leave the input qubit unchanged, since they
entangle it with the target.

Since either of these can be combined with one-qubit gates to simulate arbitrary
two-qubit gates [1], these restrictions would just multiply our definition of depth by a
constant. The same is true if we wish to allow gates that couple k > 2 qubits as long
as k is constant, since any k-qubit gate can be simulated by 2O(k) two-qubit gates [1].

In order to design a shallow parallel circuit for a given quantum operator, we want
to be able to use additional qubits or “ancillae” as workspace in the computation,
equivalent to additional processors in a parallel quantum computer. However, to
be able to correctly measure the computer’s output, we have to make sure that the
ancillae qubits are not entangled with the qubits of the final state that we care about.
The easiest way to ensure this is to demand that the ancillae start and end in a pure
state |0〉, so that the desired operator appears as the diagonal block of the operator
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performed by the circuit on the subspace where the ancillae are zero. This also allows
ancillae to be reused, which is important if we are going to compose two separately
parallelized operators.

Note that although we do not explicitly allow measurement as an operator in our
circuit, measurements can be treated as interactions with additional ancillae which
represent the environment.

Then in analogy with NC we propose the following definition.
Definition 2. Let F be a family of quantum operators, where Fn is a 2n × 2n

unitary matrix on n qubits. We say that Fn is embedded in an operator M with m
ancillae if M is a 2m+n × 2m+n unitary matrix which preserves the subspace where
the ancillae are zero, and if M is identical to Fn ⊗ 12m

on this subspace.
Then QNC = ∪kQNCk, where QNCk is the class of operators parallelizable to

O(logk n) depth with a polynomial number of ancillae. That is, F is in QNCk if, for
all n, Fn can be embedded in a circuit of depth at most c1 log

k n with at most c2n
j

ancillae, where c1, c2, and j are constants.
Here we are defining QNC as a class of quantum operators. We can extend this

to functions and decision problems by embedding them in reversible functions first.
Definition 3. If φ is a Boolean function with n inputs and k outputs, define

its reversible version φ′ as the reversible Boolean function on n + k bits defined by
φ′(x, y) = (x, y ⊕ φ(x)), where ⊕ is bitwise exclusive-or. Thus φ′ keeps the input x,
and xors y with the output φ(x). We can write φ′ as a 2n × 2n matrix with Boolean
values, and we say that a Boolean function is in QNC if its reversible version is.

We can consider various definitions of probabilistic acceptance and obtain the
classes EQNC, BQNC, and PrQNC in nomenclature drawn from [21, 25]. EQNC
accepts exactly, i.e., with probability 1, if the input is in the language and 0 otherwise.
BQNC accepts with two-sided bounded probability P ≥ 2/3 if the input is in the
language and P ≤ 1/3 if it is not. PrQNC accepts with probability P > 1/2 if the
input is in the language and P ≤ 1/2 if it is not.

With this definition, it is easy to see that NC ⊂ EQNC, since EQNC includes
reversible Boolean circuits composed, say, of Toffoli gates, and a Boolean circuit of
depth d and width w can be converted to a reversible one of depth 2d − 1 with wd
ancillae. Each gate is given its own ancilla which is xored with the gate’s output.
After obtaining the output of the circuit, we go through the layers of the circuit in
reverse order to return the ancillae to zero.

For an upper bound, it is clear that QNC ⊂ QP for the various definitions of
acceptance, but it would be very nice if a sufficiently uniform quantum circuit could
be evaluated by a quantum Turing machine with space equal to the circuit’s depth,
where by “uniform” we mean that there is, say, a classical DLOGTIME algorithm
for describing the set of gates of the circuit.1 This would be a quantum analog of
Borodin’s result [2] thatNCk ⊂ DSPACE(logk n), and results of Watrous [25] would
then imply that

EQNCk ⊂ PrQNCk ⊂ PrQSPACE(logk n) ⊂ DSPACE(log2k n).
If this is true, QNC can be simulated by classical circuits with polylogarithmic depth

and quasipolynomial width, i.e., O(2logO(1)n). However, even in the classical proba-
bilistic case an analog of Borodin’s result is not known.

1It would be nice to define uniformity in terms of quantum machines rather than classical ones.
This would presumably allow the circuit itself to be in a superposition of multiple topologies, which
a physicist might call a “second quantized” computation.
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U

θ

Fig. 1. Our notation for controlled-not, controlled-U , symmetric phase shift, and arbitrary
diagonal gates.
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Fig. 2. Permuting n qubits in four layers using n ancillae. In this example, the three qubits
are rotated.

We will use the notation in Figure 1 for our various gates: the controlled-not and
controlled-U , the symmetric phase shift




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiθ


,

and arbitrary diagonal gates




eiω00 0 0 0
0 eiω01 0 0
0 0 eiω10 0
0 0 0 eiω11


.

3. Permutations. In classical circuits, one can move wires around as much as
one likes. In a quantum computer, it may be more difficult to move a qubit from
place to place. However, we can easily do arbitrary permutations in constant depth.

Proposition 1. Any permutation of n qubits can be performed in four layers of
controlled-not gates with n ancillae, or in six layers with no ancillae.

Proof. The first part is obvious; simply copy the qubits into the ancillae, cancel the
originals, recopy them from the ancillae in the desired order, and cancel the ancillae.
An example is shown in Figure 2.

Without ancillae, we can use the fact that any permutation can be written as the
composition of two involutions, i.e., two sets of disjoint transpositions. To see this,
first decompose it into a product of disjoint cycles, and then note that a cycle is the
composition of two reflections, as shown in Figure 3. Two qubits can be switched
with three layers of controlled-not gates as shown in Figure 4, so any permutation
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Fig. 3. Any cycle, and therefore any permutation, is the composition of two sets of disjoint
transpositions.

=

Fig. 4. Switching two qubits with three controlled-nots.

can be done in six layers.

4. Fan-out. To make a shallow parallel circuit, it is often important to fan out
one of the inputs into multiple copies. The controlled-not gate can be used to copy a
qubit onto an ancilla in the pure state |0〉 by making a nondestructive measurement

(α|0〉+ β|1〉)⊗ |0〉 → α|00〉+ β|11〉.

Note that the final state is not a tensor product of two independent qubits, since the
two qubits are completely entangled. Making an unentangled copy requires nonuni-
tary, and in fact nonlinear, processes since

(α|0〉+ β|1〉)⊗ (α|0〉+ β|1〉) = α2|00〉+ αβ(|01〉+ |10〉) + β2|11〉

has coefficients quadratic in α and β. This is one form of the “no cloning” theorem
of quantum mechanics [26].

This means that disentangling or uncopying the ancillae by the end of the com-
putation, and returning them to their initial state |0〉, is a nontrivial and important
part of a quantum circuit. There are, however, some special cases where this can be
done easily.

Suppose we have a series of n controlled-U gates all with the same input qubit.
Rather than applying them in series, we can fan out the input into n copies by splitting
it log2 n times, apply them to the target qubits, and uncopy them afterward, thus
reducing the circuit’s depth to O(log n) depth.

Proposition 2. A series of n controlled-U gates with arbitrarily varying U
coupling the same input to n target qubits can be parallelized to O(log n) depth with
O(n) ancillae.

Proof. The circuit in Figure 5 copies the input onto n − 1 ancillae, applies all
the controlled-U gates simultaneously, and uncopies the ancillae back to their original
state. Its total depth is 2 log2 n+ 1.

This kind of symmetric circuit, in which we uncopy the ancillae to return them
to their original state, is similar to circuits designed by the reversible computation
group at MIT [8] for reversible classical computers.
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Fig. 5. Parallelizing n controlled gates on a single input qubit q to O(logn) depth.
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Fig. 6. Using entanglement to parallelize diagonal operators.

5. Fan-in: Diagonal and mutually commuting gates. Fan-in seems more
difficult in general. Classically, we can calculate the composition of n operators
in O(log n) time by composing them in pairs; but since matrix multiplication is
quadratic, it is unclear when we can do this with unitary linear operators. One
special case where it is possible is if all the gates are diagonal.

Proposition 3. A series of n diagonal k-qubit operators on the same k qubit(s)
can be parallelized to O(log n) + 2O(k) depth with O(kn) ancillae.

Proof. Here the entanglement between two copies of a qubit becomes an asset.
Since diagonal matrices do not mix Boolean states with each other, we can act on one
or more qubits and an entangled copy of them with two diagonal matrices D1 and D2

as in Figure 6. When we uncopy the ancilla(e), we have the same effect as if we had
applied both matrices to the original qubit(s). Then the same kind of circuit as in
Proposition 2 works, as shown in Figure 7, in which we make n copies of each of the
k qubits, and apply the operators simultaneously. From [1] and Propositions 7 and 8
below, the depth of an arbitrary k-qubit diagonal operator is 2O(k).

Since matrices commute if and only if they can be simultaneously diagonalized,
we can generalize this to the case where a set of controlled-U gates applied to the
same target qubit(s) have mutually commuting U ’s.

Proposition 4. A series of of n controlled-U gates acting on the same k tar-
get qubit(s), where the U ’s are mutually commuting operators on k qubits, can be
parallelized to O(log n) + 2O(k) depth with O(kn) ancillae.

Proof. Since the U ’s all commute, they can be simultaneously diagonalized by
some 2×2 unitary operator T . Apply T † to the target qubit(s), parallelize the circuit
using Proposition 3, and put the target qubit(s) back in the original basis by applying
T . This is all done with a circuit of depth 2 log2 n+2depth(T )+depth(D). From [1]
and Propositions 7 and 8 below, depth(T ) and depth(D) are both 2O(k).

As an example, in Figure 8 we show a circuit that applies the qth power of an
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Fig. 7. Parallelizing n diagonal gates on a single qubit as in Proposition 2.
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Fig. 8. Applying an operator U q times, where q is given in binary by the input qubits.

operator U to a target qubit, where 0 ≤ q < 2p is given by p input qubits as a binary
integer. We can do this because Uq = T †DqT .

We can extend this to circuits in general whose gates are mutually commuting,
which includes diagonal gates. Note that when we say two gates commute, we mean
as applied to particular qubits; for instance, controlled-not gates commute with each
other if their input qubits or target qubits are the same, or if they are applied to
disjoint pairs of qubits, but not if they overlap in other ways.

Proposition 5. A circuit of any size on n qubits, consisting of diagonal or
mutually commuting gates, each of which couples at most k qubits, can be parallelized
to depth O(nk−1)2O(k) with no ancillae, and to depth O(k log n) + 2O(k) with O(nk)
ancillae. Therefore, any family of such circuits with constant k is in QNC1.

Proof. Since all the gates commute, we can sort them by which qubits they
couple and obtain a compressed circuit with one gate for each k-tuple. This gives (nk )
= O(nk) gates, but by performing groups of n/k disjoint gates simultaneously we can
do all of them in O(nk−1) layers.

By making k
n (

n
k ) = O(nk−1) of each qubit, we can apply each of these O(nk)
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Fig. 9. Parallelizing n controlled-not gates to O(logn) depth by adding them in pairs.

gates to a disjoint set of copies as in Propositions 3 and 4. This takes O(k log n)
layers of controlled-not gates.

As in Propositions 3 and 4, the layers coupling a given set of k qubits in the
first case, and the operators T and D in the second case, both have depth 2O(k) in
general. This is less obvious in the case of a mutual diagonalization operator T for a
pair of overlapping but commuting gates. Suppose that two commuting k-qubit gates
U and V overlap on some qubits we index with j,m, so that we can write them as
tensor products along two different “boundaries,” U lmij δ

n
k and δliV

mn
jk , where δ is the

identity matrix. We state without proof that they can then both be diagonalized by
an operator of the form T lmnijk = X l

iY
m
j Znk . Since this is the tensor product of three

operators, each operating on k or fewer qubits, T has depth 2O(k) as before. This
completes the proof.

It comes as no surprise that gates can be performed simultaneously if they com-
mute with each other. Proposition 5 simply confirms this intuition. Note that we
could allow k = O(log log n) if we are willing to have a quasi-polynomial number of
ancillae, or if the circuit is of polynomial size, in which case there are only a polynomial
number of ancillae. In both cases the depth remains polylogarithmic.

6. Circuits of controlled-not gates. We can also fan in controlled-not gates.
Figure 9 shows how to implement n controlled-not gates on the same target qubit in
depth 2 log2 n+1. We construct the exclusive-or of subsets of the inputs by combining
them in pairs.

We can use a generalization of this circuit to show that any circuit composed
entirely of controlled-not gates can be parallelized to logarithmic depth.

Proposition 6. A circuit of any size on n qubits composed entirely of controlled-
not gates can be parallelized to O(log n) depth with O(n2) ancillae. Therefore, any
family of such circuits is in QNC1.

Proof. First, note that there are a finite number of such circuits for a given n.
In any circuit of controlled-not gates, if the n input qubits have binary values and
are given by an n-dimensional vector q, then the output can be written Mq, where
M ∈ GF (2) is an n × n matrix over the integers mod 2. Each of the output qubits
can be written as a sum of up to n inputs, (Mq)i =

∑
k qjk , where the jk are those j

for which Mij = 1.

We can break these sums down into binary trees. Let Wn be the complete output
sums, Wn/2 be their left and right halves consisting of up to n/2 inputs, and so on
down to single inputs. There are less than n2 such intermediate sums Wk with k > 1.
We assign an ancilla to each one, and build them up from the inputs in log2 n stages,
adding pairs from Wk to make W2k. The first stage takes O(log n) time and an



PARALLEL QUANTUM COMPUTATION AND QUANTUM CODES 807

W2

W4

V2

V4

q

0

0

0

0

0

0

0

0

Mq

0

0

0

Mq

Fig. 10. Parallelizing an arbitrary circuit of controlled-not gates to logarithmic depth.

additional O(n2) ancillae, since we may need to make O(n) copies of each input, but
each stage after that can be done in depth 2.

To cancel the ancillae, we use the same cascade in reverse order, adding pairs
from Wk to cancel W2k. This leaves us with the input q, the output Mq, and the
ancillae set to zero.

Now we use the fact that, since the circuit is unitary,M is invertible. Thus we can
recalculate the input q =M−1(Mq) and cancel it. We use the same ancillae in reverse
order, building the inputs q out of Mq with a series of partial sums V2, V4, . . ., cancel
q, and cancel the ancillae in reverse as before. All this is illustrated in Figure 10.

This leaves us with the output Mq and all other qubits zero. With four more
layers as in Proposition 1, we can shift the output back to the input qubits, and we
are done.

This result is hardly surprising; after all, these circuits are reversible Boolean
circuits, and any classical circuit composed of controlled-not gates is in NC1 (in fact,
in the class ACC0[2] of constant-depth circuits with sum mod 2 gates of unbounded
fan-in). We just did a little extra work to disentangle the ancillae.

7. Controlled-not gates and phase shifts. We have shown that circuits com-
posed of diagonal or controlled-not gates can be parallelized. It is reasonable to ask
whether Propositions 5 and 6 can be combined, that is, whether arbitrary circuits
composed of controlled-not gates and diagonal operators can be parallelized to loga-
rithmic depth. In this section, we will show that this is not the case.

Proposition 7. Any diagonal unitary operator on n qubits can be performed
by a circuit consisting of an exponential number of controlled-not gates and one-qubit
diagonal gates and no ancillae.

Proof. Any diagonal unitary operator on n qubits consists of 2n phase shifts,




eiω000

. . .

eiω111


.
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θ

−θ

Fig. 11. A circuit for the phase shift θµs, i.e., a phase shift of +θ if the number of true qubits
is even and −θ if it is odd.

If we write the phase angles as a 2n-dimensional vector ω, then the effect of composing
two diagonal operators is simply to add these vectors mod 2π.

For each subset s of the set of qubits, let µs be the 2
n-dimensional vector whose

ith component is +1 if the number of true qubits in i∩ s is even, and −1 if it is odd.
If s = {1 · · ·n}, for instance, µs is the aperiodic Morse sequence (+1,−1,−1,+1, . . .)
when written out as a 2n-dimensional vector, but it really just means giving the odd
and even corners of the Boolean n-cube opposite signs.

It is easy to see that the µs for all s ⊂ {1 · · ·n} are linearly independent and form
the Hadamard, or Fourier, basis of R2n

. Moreover, while diagonal gates coupling k
qubits can only perform phase shifts spanned by those µs with |s| ≤ k, a circuit like
that in Figure 11 can perform a phase shift proportional to µs for any given s (inci-
dentally, in depth O(log |s|) with no ancillae). Therefore, a series of 2n such circuits,
one for each subset of {1 · · ·n}, can express any diagonal unitary operator.

This exponential bound is necessary in the worst case.

Proposition 8. There are diagonal operators that cannot be parallelized to less
than exponential depth with a polynomial number of ancillae.

Proof. Consider setting up a mapping between circuits and operators. A diagonal
unitary operator on n qubits is described by 2n eigenvalues which lie on the unit
circle, so the set of such operators is isomorphic to a 2n-dimensional torus. On
the other hand, a circuit of depth d with m ancillae is described by only O(d(m +
n)) complex numbers, and the circuit can take one of 2O(d(m+n) log(m+n)) discrete
topologies. Thus the set of such circuits is isomorphic to a union of 2O(d(m+n) log(m+n))

complex manifolds, each of which has O(d(m+n)) dimensions. Since the map between
circuits and operators is easily seen to be continuous, in order for this map to be
surjective we need 2n = O(d(m+n)) and so at least one ofm or d must be exponential
in n.

However, the next proposition shows that this will not help us distinguish QP
from QNC. In fact, for circuits consisting of controlled-nots and diagonal gates, QP
and QNC are identical.

Proposition 9. Any circuit on n qubits consisting of controlled-not gates and
m diagonal operators coupling k qubits each can be parallelized to O(2k log n) depth
with O(max(kmn, n2)) ancillae, using gates that couple a constant number of qubits.
Therefore, any such circuit of polynomial size O(nc) can be parallelized to O(2k log n)
depth with O(knc+1) ancillae, any family of such circuits with constant k is in QNC1,
and any family with k = O(log log n) is in QNC.

Proof. Any such circuit can be written as the product of a circuit of controlled-
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not gates and a diagonal matrix that takes care of the phase shifts. The first part we
can parallelize as in Proposition 6 to O(log n) depth and O(n2) ancillae. However,
Proposition 8 shows that diagonal matrices cannot be parallelized in general, so we
have to look at the circuit more closely.

We can write the circuit we are trying to parallelize as a product M =
M0P1M1P2M2 · · ·PmMm, where the Mi consist only of controlled-not gates and the
Pi are the diagonal operators. By passing the P ’s through the M ’s to the right end
of the circuit, we can write

M =M0 · · ·Mm ·D1 · · ·Dm,

where Di is the diagonal operator

Di = (Mi · · ·Mm)
†Pi(Mi · · ·Mm).

In other words, Di calculates what state the controlled-not circuit was in when Pi
was applied, applies it, and uncalculates.

Each one of the k qubits coupled by Pi is the exclusive-or of some subset of the
inputs and can be calculated with a binary tree of O(n) ancillae as in Proposition 6.
Finally, by Proposition 3 we can apply all the Di at once, by making m copies of
the system’s entire state. Thus the total number of ancillae needed is O(kmn), or
O(knc+1) if m = O(nc).

Finally, Propositions 7 and 8 show that each diagonal gate takes depth O(2k) to
perform with diagonal gates coupling a constant number of qubits. Thus the depth
is O(log n) if k is constant, and O(logO(1) n) if k = O(log log n).
8. The Hadamard gate and quantum codes. So far, all the circuits we have

looked at are essentially classical; each row and each column has only one nonzero
entry, so they are just reversible Boolean functions with phase shifts. Obviously, any
interesting quantum algorithm will involve mixing between different Boolean states.

The simplest such operator is the Hadamard gate R = 1√
2
( 1 1
1 −1 ).By applying it

to all n qubits of a state |000 · · · 0〉, we can prepare them in a superposition of all
2n possible states. It is used, along with phase shifts, in the standard circuit (shown
below in Figure 19) for the quantum Fourier transform; in fact, it is itself the quantum
Fourier transform on Z2.

We will call a controlled-U gate a controlled-Pauli gate if U is one of the Pauli
matrices σx = ( 0 1

1 0 ), −iσy = ( 0 −1
1 0 ), or σz = (1 0

0 −1 ). Note that a controlled-X is
simply a controlled-not, a controlled-Z is just the symmetric π-shift, and this real
version of the controlled-Y is their product.

The π-shift can be written in terms of a controlled-not by conjugating the target
with R. Conjugating the input qubit instead gives us the π-shift in the Hadamard
basis, which is a symmetric gate

1
2




1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1


.

We call this the w-gate, pronounced “wiggle,” and notate it as in Figure 12.

Then we have the following proposition.
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Fig. 12. Relations between the π-shift, the controlled-not, and the w gate, which we notate with
a wiggle.
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Fig. 13. Step 1: combing R’s to the right through controlled-nots, π-shifts, and w gates.

Proposition 10. Circuits of any size consisting of controlled-Pauli gates and
the Hadamard gate R can be parallelized to O(log n) depth with O(n2) ancillae. Thus
any family of such circuits is in QNC1.

Proof. We will use the algebraic relations between these gates to arrange them
into easily parallelizable groups. The relations shown in Figures 12–15 can be verified
by multiplying the 4× 4 or 8× 8 matrices corresponding to these gates.

In step 1, we move Hadamard gates to the right through the other gates as shown
in Figure 13. Since R2 = 1, this leaves a circuit of controlled-nots, π-shifts, and
w-gates, followed by a single layer of R’s and identities.

In step 2, we arrange π-shifts and w-gates into three groups: a set of π-shifts, a
set of w’s, and another set of π-shifts, with controlled-nots interspersed throughout.
We can do this because these gates commute when applied to different pairs of qubits
(up to the creation of an additional controlled-not) and generate a finite group when
applied to the same pair. Specifically, if we call the 4 × 4 matrix of the π-shift z,
then z and w obey the relations z2 = w2 = 1 and wzw = zwz, and generate the
permutation group on three elements S3 = {1, z, w, zw,wz, zwz}. Thus a group of
z’s, a group of w’s, and a group of z’s are sufficient to generate all possible products
of these. These relations are shown in Figure 14.

In step 3, we pull the controlled-nots to the left through the z’s and w’s as shown
in Figure 15. This makes some additional symmetric gates, but always of the same
type we pull through, so the grouping of z’s, w’s, and z’s is not disturbed. (We
also sometimes create single-qubit gates X and Z, but these can be thought of as
controlled-nots or π-shifts whose control qubit is always true.)

Finally, we note that since w is simply z in the Hadamard basis as shown in
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Fig. 14. Step 2: commuting π-shifts and w’s past each other, and combining them into 1, z,
w, zw, wz, or zwz.

π

π

π

π

π

Z

π

X

π

=

=

=

=

=

=

Fig. 15. Step 3: commuting π-shifts and w’s past controlled-nots.

Figure 12, we can write the group of w’s as a group of z’s conjugated with R on every
qubit. We are left with a circuit of controlled-not gates, followed by three groups of
π-shifts separated by two layers of R’s, and a single layer of possible R’s as shown
schematically in Figure 16.

Propositions 5 and 6 show how to parallelize circuits of π-shifts and of controlled-
nots to O(log n) depth with O(n2) ancillae, and the theorem is proved.

With a little extra work we should also be able to include the one-qubit π/2 shift
P = ( 1 0

0 i ), also known as the “square-root-of-not.” This would give us the Clifford
group, which is the normalizer of the group of tensor products of Pauli matrices. In
fact, some of the relations we have used here are equivalent to those used by Gottesman
to derive the Heisenberg representation of circuits in the Clifford group [10]. Figure 17
shows some relations between the P gate and the controlled-not, π-shift, and w, but
so far we have not found a way to use these in a way analogous to Proposition 10.
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Fig. 16. The kind of circuit we are left with after steps 1, 2, and 3, and after writing the w’s
as π-shifts conjugated by R.
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Fig. 17. Relations between the P and the controlled-not, π-shift, and w. Here Q = RPR, the
P gate conjugated with a Hadamard gate.

The reader can experience our frustration by trying to use these relations to move two
P gates, one on each qubit, rightward through a w. The result is an endless loop. In
fact, computational search shows that this circuit cannot be written as any product
of controlled-nots and π-shifts followed by any pair of one-qubit gates. This indicates
that P gates are more difficult to pull out of a circuit than, say, Hadamard gates are.
However, we are hopeful enough to conjecture that Proposition 10 can be generalized
to include the P gate as well.

There may be other interesting finite subgroups of O(2n) that we can parallelize.
However, even small additions to the Clifford group result in a dense set of operators
and hence universal computation. This is because the controlled-Z gate is the only
two-qubit phase shift whose conjugate by a controlled-not can be expressed with
two- and one-qubit gates, just as P and Z are the only one-qubit phase shifts whose
conjugate by a controlled-not can be expressed with themselves and controlled-Z
gates. Other phase shifts generate three- and more-qubit interactions when they are
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Fig. 18. These “staircase” circuits seem hard to parallelize unless the operators are purely
diagonal or off-diagonal.

commuted through controlled-nots. The controlled-P gate, for instance, generates the
Toffoli gate [1] and hence irrational rotations and a dense set of operators [19].

In any case, Proposition 10 gives us the following corollary.

Corollary 1. Additive (or “stabilizer”) quantum error-correcting codes are in
QNC1, in the sense that encoding and decoding families of such codes with n-qubit
code words can be done in O(log n) depth and O(n2) ancillae.

Proof. Since the Pauli matrices σx and σz generate bit errors and phase errors,
respectively, circuits for quantum codes such as those in [23, 14, 3, 7] are composed
of controlled-Pauli and Hadamard gates. By a result of Rains [20], additive quantum
codes are always equivalent to real ones, so the real version of the controlled-Y gate
is sufficient.

In fact, Cleve and Gottesman [4] and Steane [24] have shown that circuits for addi-
tive quantum codes can be constructed out of controlled-Pauli gates, where Hadamard
gates appear only in one or two layers. Thus Proposition 9 is already enough to par-
allelize these circuits.

9. The quantum Fourier transform and the staircase circuit. A simple,
perhaps minimal, example of a quantum circuit that seems hard to parallelize is the
“staircase” circuit shown in Figure 18. This kind of structure appears in the standard
circuit for the quantum Fourier transform (QFT), which has O(n2) gates [6, 22].
Careful inspection shows that the QFT can in fact be parallelized to O(n) depth as
shown in Figure 19 (an upside-down version of which appears in [13]), but it seems
difficult to do any better.

Cleve and Watrous [5] have shown that fast parallel circuits exist for an approx-
imate QFT, with error small enough to implement Shor’s factoring algorithm; this
shows that factoring is in ZPPBQNC and leaves iterated exponentiation as the main
bottleneck. They also showed that any constant-error circuit must have depth at
least O(log n). However, the question of whether the exact QFT can be parallelized
remains open, and we give the following conjecture.

Conjecture 1. Staircase circuits composed of controlled-U gates other than diag-
onal or off-diagonal gates (i.e., other than the special cases handled in Propositions 5
and 6) cannot be parallelized to less than linear depth, and neither can the exact
quantum Fourier transform.

Since many different quantum operators can be used to solve a problem, proving
this conjecture would not establish that QNC < QP (which, if it were true, would
also implyNC < PSPACE). However, it would certainly shed light on why quantum
algorithms can be difficult to parallelize.
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Fig. 19. The standard circuit for the exact quantum Fourier transform on n qubits can be
carried out in 2n− 1 layers. Can it be parallelized to less than linear depth?

10. Conclusion. We conclude with some questions for further work.

Is QNC, or even EQNC, contained in P? Watrous’s results on space-bounded
quantum complexity classes [25] show that QL ⊂ NC2, but no quantum analog of
Borodin’s equivalence [2] between depth and space is known. BQNC and BPP, or
EQNC and P, might be incomparable.

Does parallelizing the encoding and decoding of error-correcting codes help reduce
the error threshold for reliable quantum computation, at least in regimes where storage
errors are more significant than gate errors?

Quantum context-free languages have been defined in [15], where it is shown that
they are strictly more powerful than classical ones. Parsing classical context-free
languages is in NC. Is quantum parsing, i.e., producing derivation trees with the
appropriate amplitudes, in QNC?

Finally, can the reader show that the staircase circuit or the exact QFT cannot
be parallelized?
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Abstract. Various timing-based mutual exclusion algorithms have been proposed that guarantee
mutual exclusion if certain timing assumptions hold. In this paper, we examine how these algorithms
behave when the time for the basic operations is governed by probability distributions. In particular,
we are concerned with how often such algorithms succeed in allowing a processor to obtain a critical
region and how this success rate depends on the random variables involved. We explore this question
in the case where operation times are governed by exponential and gamma distributions, using both
theoretical analysis and simulations.

Key words. mutual exclusion, timed mutual exclusion, Markov chains, locks
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1. Introduction. A good design methodology for developing distributed algo-
rithms, as advocated by Liskov [10], is to assume the worst and hope for the best. In
assuming the worst, one designs an algorithm which is safe regardless of the amount
of time each operation takes. In hoping for the best, one designs the algorithm to
optimize some utility function under certain timing assumptions.

A nice example of such a design is the mutual exclusion algorithm of Lynch and
Shavit [12]. We describe the algorithm here at a high level; definitions of the relevant
terms appear in section 2.1. The Lynch and Shavit algorithm for mutual exclusion is
designed to cope with variations in timing of read and write operations. It combines
previous mutual exclusion algorithms of Fischer [5] and Lamport [8] in a clever way in
order to guarantee mutual exclusion and weak deadlock-freedom, as well as guarantee
deadlock-freedom if certain timing constraints are met. Specifically, the algorithm is
guaranteed to avoid deadlock if all steps of a process take time in a fixed range [c1, c2].
Given these timing constraints, specific pauses depending on the bounds c1 and c2 are
added into the program for each process; these pauses ensure deadlock-freedom. Note
that deadlock-freedom comes at a price, namely, the introduction of pauses that delay
the completion of operations. In practice, detecting deadlock and breaking it are very
costly in terms of time, and therefore a good design should ensure that deadlock never
or rarely happens.

It is reasonable to assume that hard timing constraints will rarely or never be
violated in the case of interprocess communication through a standard shared memory,
such as when processes are running on machines in the same room. The gap between

∗Received by the editors December 16, 1999; accepted for publication (in revised form) May 15,
2001; published electronically December 18, 2001. A preliminary version of this work appeared in
Proceedings of the 18th Annual Symposium on Principles of Distributed Computing, Atlanta, GA,
1999, pp. 13–21.

http://www.siam.org/journals/sicomp/31-3/36491.html
†UCLA Computer Science Department, 3731 F Boelter Hall, Los Angeles, CA 90024-1596

(eli@cs.ucla.edu). Part of this author’s work was done while visiting Compaq Systems Research
Center. This author was supported by grant 4-592560-19914 from the UCLA Council on Research.

‡Maxwell Dworkin Laboratory 331, 33 Oxford Street, Harvard University, Computer Science
Department, Cambridge, MA 02138 (michaelm@eecs.harvard.edu). Most of this author’s work was
done while employed at Compaq Systems Research Center. This author was supported in part by
an Alfred P. Sloan Research Fellowship and NSF CAREER grant CCR-9983832.

816



TIMING-BASED MUTUAL EXCLUSION WITH RANDOM TIMES 817

the minimum and maximum memory reaction time is likely to be sufficiently small
enough that pauses based on these timing constraints will generally yield only a small
performance penalty. With the rise of fast networks and the Internet, however, there
are alternative situations where processors may communicate through a much slower
and more variable shared memory medium. For example, interprocess communication
can be accomplished via servers reading and writing shared disk pages from a shared
farm of disks accessible over a network. The mechanisms for using shared disks in
this manner exist today and are described in several works on storage area networks
[3, 4, 9, 14]. Indeed, storage area networks offer a shared memory that is cheap,
reliable, and large; moreover, with regard to the design of distributed algorithms, the
physical model of this architecture is close to the abstract model of shared memory.
Operations on a disk-based shared memory might be slow and have large variance;
moreover, its timing may not be well understood. Making hard timing assumptions
that are guaranteed to hold may entail prohibitively long timeouts or self-delays for
practice.

An alternative application that we envision involves multiple processes interacting
via the Internet, such as in an auction on eBay. In such a scenario, the number
of processes interacting may be extremely large. Also, while operations on shared
memory may be instantaneous, users cannot expect response times on the order of
shared memory systems, since Internet progagation delay will dominate.

Therefore, we are motivated to expand the analysis of the performance of mutual
exclusion algorithms based on shared memory to systems that can potentially have
long delays, so that the bounded timing model is not applicable. In many cases,
even when timing bounds may prove problematic, knowledge of the distribution of
operation times may be possible through systematic study. Consequently, we suggest
introducing a probabilistic analysis of mutual exclusion algorithms under random
delays.

Besides the above motivation, once we considered the idea of probabilistic anal-
ysis, it occurred to us that randomized algorithms for mutual exclusion may be more
efficient than previous algorithms even in the context of fast shared memories. In-
stead of having algorithms introduce deterministic pauses designed for the worst case
in order to guarantee mutual exclusion, using shorter pauses with random times may
lead to better practical performance. The hope is that smaller random delays will
avoid deadlock often enough that it will be more efficient to use small random delays
and a mechanism for breaking deadlock than a slower deadlock-free algorithm. This
approach may allow tradeoffs between correctness properties and efficiency.

A further motivation for introducing probabilistic models into this area is simply
to gain more insight into the features of these algorithms. In particular, our analysis
demonstrates that an appropriate pause (even one that lasts a random time) can
dramatically change an algorithm’s behavior.

We further note that the probabilistic framework we introduce is reminiscent
of similar work on contention resolution in multiaccess channels. The contention
resolution framework has proven highly successful. (See the notes in [6] or references
from [7] or [13].) We suspect that this direction may therefore prove worthwhile in the
context of mutual exclusion or other distributed algorithms as well. For example, since
the publication of the original version of this paper, a similar probabilistic framework
was used by Aspnes to study a deterministic consensus algorithm against an adversary
who cannot control random timing noise introduced by the system [2].

In this paper, we focus on the case where operation times have the exponential
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distribution. This distribution has properties which prove handy for analysis. More-
over, although the assumption of exponential distributions is not correct in practice,
algorithms that behave well under the exponential distribution are generally assumed
(whether correctly or not) to behave well under “reasonable” distributions. Thus they
make an appropriate starting point for this analysis. We also examine the case where
operation times have a gamma distribution, both to offer more insight and to avoid
the problem of drawing conclusions specific to the exponential distribution.

We refer to the basic unit of much of our analysis as a lock. Loosely speaking,
for our purposes a lock is a shared variable that can be inspected (or read, to see
if it is clear), written (to attempt to take control), and read (to see if control has
been obtained). A processor successfully passes through a lock if it finds it clear on
inspection, writes its processor ID to it, and reads back its processor ID. Note that a
processor may pause, or self-delay, between any of these steps. A lock is a basic unit
in Fischer’s mutual exclusion algorithm [5], which we describe in section 2.1. Studying
locks provides us with the means and insight to study variations on the algorithm of
Lynch and Shavit [12].

We are interested in answers to questions such as the following:

1. How often do locks succeed, and how does this depend on the underlying
distributions?

2. Are we better off with one lock with a long pause or two consecutive locks
with smaller pauses?

3. How should lock constructions be combined in this setting?

In this paper, we focus on the analysis of the basic lock construction and ex-
plore the behavior of these locks and some of our questions with simulations. As
a by-product of our work, we explore the behavior of several simple but interesting
Markov chains. We believe that further, more detailed analysis of these Markov chains
would be interesting, not only because of their connection to timed mutual exclusion
algorithms, but also in and of themselves.

Because we focus on the simple lock mechanism, the analysis in this version of
the paper is essentially self-contained. However, we encourage the interested reader
to peruse the work by Lynch and Shavit on timing-based mutual exclusion [12] for
more details on Lamport’s algorithm, Fischer’s algorithm, and their combination, in
order to put this work in context.

2. Background.

2.1. Definitions. For completeness, we describe the basic definitions associated
with the mutual exclusion problem. Here we generally follow the definitions and
notation of [12]. (See also [11] for extensive references and related work.)

A mutual exclusion algorithm arbitrates among n sequential threads of control,
or processes. Processes communicate by reading and writing in some form of shared
memory. Read and write operations on this memory are assumed to execute instan-
taneously; that is, they happen atomically on memory locations. The process itself,
however, might not obtain the result of the read or write until some future time,
depending on the architecture of the system. For our purposes, the program associ-
ated with each process has a form as given in Figure 1. In particular, a process has
an associated critical region. A system is said to satisfy mutual exclusion if in any
reachable system state at most one user is in its critical region. Note that the trying
region and the exit region are used to coordinate entry to and exit from the critical
region; the remainder region is where all other work is done.
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Basic process
p: current process index

repeat forever:
remainder region
trying region
critical region
exit region

end repeat;

Fig. 1. Basic process program.

Two other properties are useful to consider. A system is said to be weakly
deadlock-free if when any single process’s trying region is concurrent only with the
remainder regions of other processes, then its trying region terminates, and similarly
if when any single process’s exit region is concurrent only with the remainder region
of other processes, then its exit region terminates. This property corresponds to the
requirement that if a process runs alone, it accesses the critical region. The stronger
property of being deadlock-free, which corresponds to the requirement that the system
progress, requires that

• if some process is in the trying region and no process is in the critical region,
then subsequently some process enters the critical region; and
• if some process is in the exit region, then subsequently some process enters

the remainder region.

The algorithm of Lynch and Shavit relies on Lamport’s fast mutual exclusion
algorithm [8] to guarantee that mutual exclusion is never violated. (See Figure 2.)
It also relies on Fischer’s timed mutual exclusion algorithm [5] to provide Lamport’s
algorithm the environment it requires for deadlock-freedom, namely, a single con-
tender. (See Figure 3.) We discuss the combined algorithms in section 4. Proofs of
these properties appear in [12].

Note the appearance of a pause in Fischer’s timed mutual exclusion algorithm.
The point of the pause is as follows: suppose each step of a process, corresponding
to a line of code, takes time bounded between [c1, c2] for some positive finite values
c1 and c2. Then if the pause time corresponds to at least �c2/c1� steps (using for
example no-op operations), so that the pause takes time at least c2, then Fischer’s
algorithm guarantees both mutual exclusion and deadlock-freedom.

2.2. Properties of the exponential distribution. Recall that a random vari-
able that is exponentially distributed with mean µ is defined by its probability density
function, f(x) = (1/µ)e−x/µ. The exponential distribution proves convenient for the-
oretical study because of its special properties. We briefly note these properties here
and make use of them without further reference throughout this paper.

• Memoryless property. Suppose that the time until an event is determined
by an exponential random variable with mean µ. Given that the event has
not yet happened, the remaining time until the event happens is still an
exponential random variable with mean µ.
• Minimum property. Suppose that the times until each of k events are deter-

mined by independent exponential random variables with mean µ. Then the
time until the first of these events occurs is exponential with mean µ

k .
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Lamport
x, y: shared registers, initially 0
p: current process index

% Entering ME-lock
L:
x := p;
if y �= 0 then goto L;
y := 1;
if x �= p then goto L;
enter critical region;
exit critical region;
y := 0;
% Exiting ME-lock

Fig. 2. Lamport style mutual exclusion.

Fischer
x: shared register, initially 0
p: current process index

% Entering ME-lock
L:
if x �= 0 then goto L;
x := p;
pause
if x �= p then goto L;
enter critical region;
exit critical region;
x := 0;
% Exiting ME-lock

Fig. 3. Fischer’s timed mutual exclusion algorithm.

• Fairness property. Suppose that the times until events A and B are deter-
mined by independent exponential random variables with means µ1 and µ2,
respectively. Then event A occurs first with probability µ2

µ1+µ2
.

2.3. How many pass through? We begin by considering a basic unit for
mutual exclusion algorithms, namely, a lock. A lock access protocol consists of an
inspect phase (which is an initial read of the shared variable that comprises the lock),
a write phase, and a final read phase. A processor inspects the lock to see if it is
clear; it attempts to write its processor ID to the lock; and then it passes through the
lock successfully if it reads its own ID. A processor that successfully passes through
the lock eventually clears the shared variable so that others may pass through; until
this occurs, the processor is said to own the lock. Mutual exclusion is guaranteed as
long as no two processors believe they own the lock at the same time. Recall that a
lock is the mechanism behind Fischer’s algorithm, as seen in Figure 3. Also, Fischer’s
mutual exclusion algorithm also allows for pauses. We begin our analyses without
considering the effect of a pause; however, we return to consider the pause later in
the paper.
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We will often compare the behavior of a lock with a double lock, by which we
mean two successive back-to-back locks, each with its own shared variable. When a
processor passes through the first lock of a double lock, it then begins the inspection
phase for the second lock of the double lock. A processor is said to own a double lock
only after it has passed through the second lock, and mutual exclusion is guaranteed
as long as no two processors believe they own the lock at the same time. A natural
question we consider here is whether using two short locks in a double lock might be
better than using a long single lock.

We denote the three phases by I, W, and R, respectively. In this section, unless
otherwise stated, we assume that the times for each of these actions are exponentially
distributed, with means i, w, and r respectively, where the values of i, w, and r
are fixed constants (independent of the number of processors in the system). For
convenience, we scale so that w = 1 unless otherwise noted.

We emphasize that an operation is meant to take place atomically (that is in-
stantaneously, from the point of view of the processes) at the end of the time interval
corresponding to the operation. That is, the fact that operations take time to com-
plete is not to suggest that they do not take place atomically, but only that there is a
delay between when an operation is initiated by a processor and when it completes.
One way to view this model is that operations initiated by a processor are scheduled
in some way, say, on a shared disk system. The scheduling causes a random delay
between when an operation is initiated and when it is completed. A processor sees
the results of an operation as soon as it is completed.

We begin by presenting some simple arguments regarding how many processors
complete successive stages of a lock in the face of contention. These arguments do not
answer our main question, which is how often just one processor successfully obtains a
lock in the face of contention. They do, however, introduce the flavor of our arguments
and provide some initial insight.

Theorem 1. Consider a situation where n processors begin inspecting a free lock
at the same time. Then, with probability bounded below by some constant, at least
Ω(
√
n/i) processors complete the inspection stage before the first write completes.

Remark. The assumption that the processors begin at the same time is for con-
venience; since all times are exponentially distributed, as long as a write has not
occurred, we may take any instant when n processors are in the I stage as the begin-
ning.

Proof. We derive a recursive function pj describing the probability that at least
j processors successfully inspect the lock before the first write. Suppose that jth
inspection has just completed, and no writes have yet occurred. Then the time until
the next inspection completes is exponentially distributed with mean i/(n − j), as
there are n − j processors remaining. The time until the first write completes is
exponentially distributed with mean 1/j, as there are j processors attempting a write.
Hence, the probability that another inspection completes before the first write is
n−j

ij+n−j . Recursively, then, we have p1 = 1 and pj+1 = pj
n−j

ij+n−j .

Let z =
√
n/i. Then

pz+1 =
∏

1≤j≤z

n− j

ij + n− j

=
∏

1≤j≤z

(
1− ij

ij + n− j

)
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≥
∏

1≤j≤z

(
1− ij

(1− ε)n

)

for an ε that goes to 0 as n gets large. Hence,

pz+1 ≥
∏

1≤j≤z

(
1− ij

(1− ε)n

)
≥
(

1− 1

(1− ε)z

)z
,

which is arbitrarily close to e−1/(1−ε) for sufficiently large n. This demonstrates that
with at least some constant probability, at least Ω(

√
n/i) processors complete the I

stage.
It is easy to extend the proof of Theorem 1 to show that the expected number of

processors that complete their I stage before the first write is actually Θ(
√
n/i).

Theorem 2. Consider the setting of Theorem 1. The expected number of proces-
sors that complete the inspection stage before the first write is Θ(

√
n/i).

Proof. The lower bound follows from Theorem 1. For the upper bound, note
that the expected number of processors to complete the inspection stage before the
first write is

∑
m≥1 pm. Let z =

√
n/i; then for any integer k ≥ 1, for y such that

zk < y ≤ z(k + 1),

py =
∏

1≤j≤y−1

n− j

ij + n− j
≤

∏
z≤j≤y−1

n

ij + n
≤
(

1 +
1

z

)−(k−1)z

< 2−k+1.

It follows that
∑
m≥1 pm < 3

√
n/i.

In fact, asymptotically exact formulae can be found with some work. We demon-
strate this for the case i = 1, which yields an interesting result, although the same
technique applies for other cases. When i = 1, we have pk =

∏
1≤j≤k−1

n−j
n , and

the expected number of processors that complete the I stage before the first write is
EI =

∑n
k=1 pk. Consider plotting the points ((k − 1)/n, npk) in the first quadrant

of the Euclidean plane for k = 1, . . . , n. The area under the successive axes-parallel
rectangles defined by these points equals the desired expectation EI . Moreover, the
area of these rectangles approximates the area under a curve passing through these
points. Defining a curve that passes through these points is difficult, but we can find
a curve that nearly passes through these points quite easily. Consider moving from
(x, y) = ((k − 1)/n, npk) to (k/n, npk+1). Note that as we move ∆x = 1/n on the
x-axis, the corresponding y-value drops by ∆y = −(x+ ∆x)y. Hence, our points are
well approximated by the curve defined by the differential equation dy/dx = −nxy
and the boundary condition y(0) = n. This curve is just y = ne−nx

2/2. The area
under the curve is

∫ 1

0

ne−nx
2/2dx =

√
πn

2
+O(1).

Hence, if n processors begin an I stage, then (up to lower order terms) on average√
πn
2 processors complete their inspection before the first write occurs.
This argument for i = 1 can be formalized by noting that

pk =
∏

1≤j≤k−1

n− j

n
≤

∏
1≤j≤k−1

e−j/n = e−k(k−1)/2n ≤ e−(k−1)2/2n.
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It easily follows that
∑n
k=1 pk is bounded above by

1 +

∫ n

0

e−x
2/2ndx =

∫ 1

0

ne−nx
2/2dx+O(1).

Similarly, using 1− x ≥ e−x−x
2

for 0 ≤ x ≤ 1/2, we have for k ≤ n/2

pk =
∏

1≤j≤k−1

n− j

n
≥

∏
1≤j≤k−1

e−j/n−j
2/n2 ≥ e−k(k−1)/2n−k(k−1)(2k−1)/6n2

≥ e−k
2/2n−k3/3n2

.

It follows that
∑n
k=1 pk is bounded below by

∫ 1/2

0
ne−nx

2/2−nx3/3dx+O(1), and it can

be checked that this is equal to
∫ 1

0
ne−nx

2/2dx+O(1). (For example, split the integral

into two parts, the first covering the range [0, n−5/12] and the second [n−5/12, 1/2].
The cubic term is lower order in the exponent in the first range and can be absorbed
in the O(1). Similarly, the exponential term in the second range is small enough to
be absorbed in the O(1), which also explains why the difference between integrating
to 1/2 and integrating to 1 can be dismissed.)

Theorem 3. Consider a situation where n processors begin to write to a lock
at the same time. Then on average Θ(ln(rn)/r) read their own value, and in fact
Θ(ln(rn)/r) read their own value with probability 1− o(1).

Proof. The time between the jth and (j + 1)st write is exponentially distributed
with mean 1/(n − j). Hence, the probability that the processor that makes the jth
write reads its own value is

1
n−j

r + 1
n−j

=
1

r(n− j) + 1
.

The expected number of processors that read their own value is therefore

n∑
j=1

1

r(n− j) + 1
.

When r = 1, this is simply
∑n
j=1 1/j = H(n) ≈ lnn. Otherwise, bounding the sum

by appropriate integrals we have

∫ n

x=1

1

xr + 1
dx ≤

n∑
j=1

1

r(n− j) + 1
≤ 1 +

∫ n

x=0

1

xr + 1
dx,

and hence

ln (rn+ 1)

r
− ln (r + 1)

r
≤

n∑
j=1

1

r(n− j) + 1
≤ 1 +

ln (rn+ 1)

r
.

The argument can be easily extended to show that the number of processors
that read their own value is Θ(lnn) with high probability. Let Xj be the event that
the processor that makes the jth write reads its own value. Under the assumption
of exponentially distributed read and write times, the Xj are independent. Letting



824 ELI GAFNI AND MICHAEL MITZENMACHER

X =
∑n
j=1 Xj , we may use the standard Chernoff bound (see, for example, Corollary

A.14 of [1])

Pr(|X − E[X]| ≥ εE[X]) ≤ 2e−ε
2E[X]/3.

Hence, for any fixed r the probability of X deviating from the mean by more than
εE[X] falls inverse polynomially in n, proving the theorem.

From Theorems 1 and 3 we immediately obtain as a corollary that two locks
are significantly better than one, in terms of the number of processors that can get
through (in the case of no pauses). Specifically, for a single lock with all times having
the same mean, Θ(

√
n) processors inspect the free lock before a write occurs with

constant probability. Of these processors, with high probability Θ(ln
√
n) = Θ(lnn)

then read their own values and hence pass through the lock. For a double lock, from
Theorem 3, with high probability O(lnn) get through the first lock, and hence with
high probability at most O(ln lnn) pass through the second. Note that changing the
mean times for the I, W, or R operations (while keeping them constant) changes only
these expressions by constant factors, and hence this remains true even if the average
time to pass through the lock is the same in both scenarios. Hence, in the face of
sufficiently large contention, double locks are much better with regard to the number
of processors that pass through (on average, with no pauses).

2.4. How often does one pass through? Showing that on average fewer
processors pass through a double lock than a long single lock does not really answer
our question of which is better. The proper measure of performance is how often a
lock successfully allows only one processor through. We now focus on this variable.
First, we show that for a single lock with exponentially distributed read and write
times (and no pause), a single lock can perform quite poorly under high contention.

Theorem 4. Consider a single lock with n processors beginning a write at
the same time. The probability that just a single processor reads its own value is
O( r
√

1/rn).
Proof. We begin with the case r = 1. Recall from Theorem 3 that the jth

processor to write reads its own value with probability 1/(r(n − j) + 1) and that all
such events can be treated as independent. Clearly, the last processor to write will
read its own value. The probability that it is the only one to do so is

(
1− 1

2

)(
1− 1

3

)
. . .

(
1− 1

n

)
=

1

2

2

3
. . .

n− 1

n
=

1

n
.

Thus, when r = 1, the probability that only one processor believes it obtains the lock
is 1/n. For a general r, this probability is

n−1∏
j=1

(
1− 1

r(n− j) + 1

)
≤
n−1∏
i=1

e−1/(r(n−i)+1)

= e−
∑n−1

i=1
1/(r(n−i)+1)

≤ e−1−(ln(rn)+1)/r,

and the last term is O( r
√

1/rn).
The result of Theorem 4 demonstrates how the probability of success increases

with r and decreases with n. Although increasing r substantially increases the prob-
ability of just one processor successfully obtaining the lock, as n grows large, for any
fixed r this probability falls to 0.
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We now consider the probability of exactly one processor taking control of a
double lock. Under a reasonable assumption, we find that in this case, the probability
that a single processor obtains the lock is bounded below by a constant, regardless of
how n grows. This result is somewhat surprising, given the previous result for a single
lock.

In this setting, we adopt the following assumption: once a processor passes
through the second lock, it will hold that lock for a reasonably long amount of time.
Hence, if one processor writes to the second lock before any others read it, we assume
that this processor does not clear the second lock until well after all others read that
it has possession. This assumption simplifies the problem, as now we need to consider
only the problem of whether one processor writes to the second lock before any others
read it. It is also reasonable, since a lock is held long enough so that the critical region
can be executed.

Theorem 5. Let n processors begin a write for a first lock of a double lock at
the same time. Then with probability bounded below by some constant, one processor
writes to obtain the second lock before any other processors successfully pass through
the first lock.

Proof. The intuition behind the theorem is relatively simple. With some constant
probability, one lucky processor passes through the first lock quickly. It then writes
to obtain the second lock before any other lucky processors can pass through the first
lock. We now formalize this intuition. We first consider the case where i = r = w = 1
for convenience. Also, we assume all relevant quantities are integers and avoid floor
and ceiling notation for convenience as well.

The jth processor to write passes through the first lock with probability 1
n−j+1 .

Hence the probability that none of the first n/2 processors passes through the first
lock is

n/2∏
j=1

(
1− 1

n− j + 1

)
=

n− 1

n

n− 2

n− 1
. . .

n/2

n/2 + 1
=

1

2
.

Similarly, the probability that exactly one of the first n/2 processors passes through
the first lock is

n/2∑
j=1




1
n−j+1

1− 1
n−j+1

n/2∏
k=1

(
1− 1

n− k + 1

)
 =

1

2

n/2∑
j=1

1

n− j
≥ ln 2

2
− o(1).

Now suppose exactly one processor from the first n/2 passes through the first
lock; let it be the jth to write. We now lower bound the probability this processor
writes to obtain the second lock before any other processor passes through the first
lock. To do so, this processor must complete both an I and W operation. Since
all operation times are exponential, with constant probability both these operations
complete before the (7n/8)th processor completes its write to the first lock. This is
clear since with probability 1/2, the I operation occurs before 1/2 of the remaining
n − j writes to the first lock. Assuming this happens, with probability 1/2 again,
the second W operation completes before 1/2 the remaining writes to the first lock.
Hence, with the probability 1/4, the jth processor finishes the I and W operation
for the second lock by the time processor j + (n − j)/2 + (1/2)(n − (j + (n − j)/2))
writes to the first lock. Since j ≤ n/2, we have that with constant probability the jth
processor finishes the I and W operation for the second lock by the time the (7n/8)th
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processor writes to the first lock. Now, however, by the same argument as previously,
the probability that no processors from the (n/2)nd to the (7n/8)th finish their first
write and pass through to the second lock is

7n/8∏

i=n/2+1

(
1− 1

n− i+ 1

)
=

1

4
.

Because of the memorylessness of the exponential distribution, all of these events
can be treated as independent, and hence with probability bounded below by some
constant a single processor successfully writes to the second lock as in the statement
of the theorem.

When r and i are fixed constants other than 1, the same argument suffices; various
constants in the argument must be changed to reflect the change in r and i. We sketch
the required changes. The jth processor passes through the first lock with probability

1
1+r(n−j) . Hence, the probability that none of the first n/2 processors passes through

the first lock is

n/2∏
j=1

(
1− 1

r(n− j) + 1

)
.

We may bound this by noting 1− x ≥ e−x−x
2

for 0 ≤ x ≤ 1/2. Hence,

n/2∏
j=1

(
1− 1

r(n− j) + 1

)
≤

n/2∏
j=1

e−1/(r(n−j)+1)−1/(r(n−j)+1)2

= e

∑n/2

j=1
−1/r(n−j)

(1− o(1))

= e−(H(n−1)−H(n/2))/r(1− o(1))

= 2−1/r(1− o(1)).

Similarly, the probability that exactly one such processor passes through the first lock
is

n/2∑
j=1




1
r(n−j)+1

1− 1
r(n−j)+1

n/2∏
k=1

(
1− 1

r(n− k) + 1

)
 = 2−1/r

n/2∑
j=1

1

r(n− j)
(1− o(1))

=
2−1/r ln 2

r
(1− o(1)).

Now suppose exactly one processor passes through the first lock. For this pro-
cessor to write to obtain the second lock before any other processor passes through
the first lock, it must complete both an I and W operation. Since all operation times
are exponential, with constant probability both these operations complete before the
(αn)th processor completes its write for some constant α depending on i. However,
the probability that no processors from the (n/2)nd to the (αn)th finish their first
write and pass through to the second lock is

αn∏

j=n/2+1

(
1− 1

r(n− j) + 1

)
,
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which can be bounded above and below by some constant independent of n. Hence,
again with probability bounded below by some constant, a single processor successfully
writes to the second lock as in the statement of the theorem.

The rather loose analysis of Theorem 5 greatly underestimates the probability
that a single processor successfully writes to the second lock before all others. The
true probabilities are best determined by simulations, and hence we return to this
question in section 5.

We also note that another way to gain better insight into the exact probability
that a single processor successfully passes through the double lock is to consider the
underlying Markov chain. For instance, this chain can easily be represented as a six-
dimensional Markov chain, where each dimension tracks the number of processors in
each state. Examining this Markov chain could lead to provable bounds on various
probabilities associated with the lock’s behavior. Of course, a complete analysis of
this complex chain appears rather difficult. We therefore feel that our intuitive proof,
combined with simulation results, is a natural approach to the problem.

Given that two locks have a different behavior than one, one might naturally ask
whether three (or more) locks have a different behavior than two. Using induction
and the above results one can show that using 2k consecutive locks, the probability of
more than one processor successively passing through is at most γk for some constant
γ. Could the behavior be even better than exponentially decreasing? We show that
the answer to this question is negative by considering the limiting case where just two
processors start together at the first lock.

Theorem 6. Consider two processors starting at a sequence of k locks. Then
the probability that both processors pass through the final lock is at least βk for some
constant β depending on i, w, and r.

Proof. We first show that the probability that two processors “follow each other”
through the lock is a constant. That is, consider the following sequence of events:

1. Both processors inspect the lock before either writes.
2. The first processor to complete a write to the lock reads back its value before

the other processor completes its write to the lock.
3. The second processor to complete a write to the lock reads back its value

before the other processor inspects the subsequent lock.
If these events occur, because of the memorylessness property of the exponential
distribution, the two processors are then in a similar state as though they had both
just begun competing for the subsequent lock. It is clear that the intersection of
these events hold with constant probability. In fact, by the fairness property and
the memorylessness property, we can calculate that all of these events occur with
probability β, where

β =
w

i+ w

w

r + w

i

i+ w

i

i+ r
.

By induction, the probability of both processors passing together through k consecu-
tive locks is at least βk.

Thus, for any number of successive locks in this setting, the best one can hope
for is a failure probability that decreases exponentially in the number of locks.

3. The gamma distribution. While the previous section, in which we consid-
ered exponential random variables, showed that a double lock is better than a single
lock, the results must of course be taken in context. Since we know that in the case
where all times are deterministic (and, for example, all operations require the same
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time) that a single lock is sufficient, it becomes interesting to consider how strongly
this behavior depends on the underlying distribution. We offer some insight into this
problem by considering the gamma distribution. Recall that a gamma distribution
is the sum of a number of independent exponential random variables (of the same
mean). For example, a gamma(2) distributed random variable with mean 1 is the
sum of two exponential random variables, each with mean 1/2.

We show that for a gamma(2) distribution, the probability that only a single
processor obtains a single lock is bounded below by a constant independent of n,
the number of processors contending for the lock. Hence, in this case, a single lock
behaves more like a double lock under the exponential distribution.

The intuition behind this performance is as follows. Consider the case where n
processors are initiating the write stage for the lock at the same time. We may think
of the write phase for a processor as consisting of two subphases, each corresponding
to an exponentially distributed amount of time. Let us say that a processor is half-
done with the write stage if it has completed its first subphase, done or completed if
its write is fully complete, and unstarted if it is not yet even half-done. Before the
first processor to complete a write finishes the write, several processors will be half-
done. The number of processors half-done with their write are very likely to prevent
this first processor from reading its value, for it is very likely that one of these half-
done processors will complete its write before this processor can finish its read. This
situation, where half-done writes overwrite completed writes before the corresponding
read finishes, is likely to occur until few processors remain to complete their writes.
When there are few processors remaining, it is possible for a read to complete before
the processor value is overwritten, but this happens only with constant probability.

We present the above argument more formally in the theorem below for the case
where reads and writes execute with the same average time. For convenience, we take
this mean to be 2.

Theorem 7. Consider n processors beginning the write for a single lock, where
the times for writes and reads have independent gamma(2) distributions with mean 2.
Then a single processor reads its own value with probability bounded below by some
constant.

Proof. We assume that n is sufficiently large throughout. We wish to show that
only the last processor to write its value reads its own value with constant probability.
The proof is divided into three parts, corresponding to the beginning, the middle, and
the end of the process.

For the beginning, we wish to show that with constant probability, by the time the
first write completes, with constant probability there are at least 6

√
n processors that

are half-done. This will ensure that sufficiently many half-done processors are around
to block the completion of any write for all but the end of the process. Consider the
time until the first write completes. Let pj be the probability that at least j processors
are at least half-done by this point. By the same argument as Theorem 1, p1 = 1
and pj+1 = pj

n−j
n . It is straightforward to use this recurrence in a manner similar

to Theorem 1 to show that at least 6
√
n are half-done when the first write completes

with constant probability. (Note that, if we wished to bound this probability, we
might do better to consider explicitly the behavior of the process until the first few
writes complete; however, for our purposes the above is sufficient.)

For the middle, we show that with constant probability, conditioned on the fact
that at least 6

√
n half-done processors exist at the time the first write completes, there

are always many half-done processors until the very end of the process. Explicitly,
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we claim that with constant probability there are always at least 2
√
n processors

half-done with their writes as long as there are at least 10
√
n unstarted processors.

This is easily seen by making a stochastic comparison with the number of half-done
processors and a simple random walk. When there are u unstarted processors and h
half-done processors, the probability that h increases (and u decreases) is u

h+u , and

the probability that h decreases (and u stays the same) is h
h+u . Moreover, because all

distributions are exponential, each step is independent. In particular, when u ≥ 10
√
n

and h < 10
√
n, the number of half-done processors h is biased upwards.

Now consider an unbiased random walk that starts at 6
√
n with boundaries at

2
√
n and 10

√
n that runs for 2n steps. We claim that it is more likely that h is at

least 2
√
n until there are 10

√
n unstarted processors than that this unbiased random

walk reaches the boundary 2
√
n. This follows from a standard stochastic domination

argument; the value h also begins at 6
√
n, it changes less than 2n times, and it is

always more likely to increase than the unbiased random walk. Standard results in
probability theory now yield that the random walk (and hence h) stays above 2

√
n

with constant probability.
This is most easily seen by noting that for the walk to reach 2

√
n, it must fall

2
√
n in either the first n or the last n steps. Let Xi = 1 if a walk of n steps goes up

on the ith step, and let Xi = −1 if it goes down on the ith step. Then from Theorem
A.1 of [1], which is derived in a manner similar to Chernoff bounds, the probability
that

∑n
i=1 Xi ≤ 2

√
n is at most e−2. By a union bound, the probability that the walk

falls 2
√
n in either the first n or the last n steps is at most 2e−2.

Now, conditioned on all of the above, up to the point where there are 10
√
n

unstarted processors, with constant probability no processor will read its own value.
For to do so, any such processor must complete two read phases before any of the
half-done writes complete. In each case the probability of doing so is ( 1

2
√
n
)2 = 1

4n ,

and hence by the union bound with probability at least 3
4 no processor to this point

reads its own value.
We clarify that this statement follows using conditional probabilities, not a union

bound. That is, we define the following: let A be the event that 6
√
n processes

are half-done when the first write completes. Let B be the event that at least 2
√
n

processes are half-done as long as there are at least 10
√
n unstarted processes. Let

C be the event that, up to the point where there are 10
√
n unstarted processes, no

processor reads its own value. Then

Pr(C) ≥ Pr(C|B) · Pr(B|A) · Pr(A),

and we have shown that all of the above on the right-hand side are constants.
We now need to consider the end of the process. To see what happens toward

the end of the process, consider what would happen if the system began with all
processors half-done with their writes. The jth processor to complete its write would
then successfully read its own value if it completed two read phases before any of
the half-done writes completed, which occurs with probability ( 1

n−j+1 )
2. Hence, the

probability that any processor other than the last to write would read its own value
would be at most

∑n−1
j=1 ( 1

n−j+1 )
2 < 6

π2 . (We elaborate on this in Theorem 8.)
In the actual process, we have already seen that all behaves well up to the point

when there are 10
√
n unstarted processors. After this point, we claim the system

behaves similarly to one where all remaining processors begin half-done with their
writes. Specifically, we show that at the last point in time when there are k processors
left unstarted, there are at least k log n/2 processors left with probability 1− o(1) for
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all k from 1 to 10
√
n. This implies that at the end of the process, we always have

that most processors are half-done, which will suffice.
Let us consider the specific case where k = 1. The probability that the (n− j)th

processor to become half-done has not yet completed at the first time when there is
one processor left unstarted is just 1/(j+1). Hence, the expected number of half-done
processors at the point where there is just one unstarted processor is approximately
H(n) ≈ log n. Moreover, the events (that the jth processor to become half-done has
not yet completed) are independent, so we may apply Chernoff bounds. Hence, we
find the probability that there are not at least logn/2 half-done processors is at most
1/n1/16.

We may attack larger k similarly. The probability that the (n− j)th processor to
become half-done has not yet completed while there are k processors left unstarted is
just k/(j+1). Hence, the expected number of half-done processors at the point where
there are k unstarted processors is approximately k(H(n)−H(k)) ≈ k log (n/k). For
k ≤ log n, a Chernoff bounds yields that the probability that there are not at least
k log (n/k)/2 half-done processors is at most 1/n1/16. For logn ≤ k ≤ 10

√
n, Chernoff

bounds yield that the probability that there are not at least k log (n/k)/2 half-done
processors is at most n− logn/8. Using a union bound, we find that, for all k from 1
to 10

√
n, at the last point in time when there are k process left unstarted, there are

at least k log (n/k)/2 half-done processors left with probability 1− o(1).
Let us temporarily assume that this is the case. Let u(j) be the number of

unstarted processors when the jth processor to write completes its write. Then the
probability that the jth processor to write reads its own value is at most

(
1

n− j − u(j) + 1

)2

.

We are interested only in the situation when u(j) ≤ 10
√
n. Hence, the probability

that some processor reads its own value when u(j) ≤ 10
√
n is bounded above by

n−1∑
j=1

(
1

n− j −min(10
√
n, u(j)) + 1

)2

.

Note that summing to n − 1 is clearly overcounting. Also, with high probability, for
j = n − log n/2 to n − 1 the value of u(j) is 0. It follows that with high probability
the above sum is just

n−1∑
j=1

(
1

n− j + 1

)2

+ o(1) <
6

π2
+ o(1),

where the o(1) term corrects for the min(10
√
n, u(j)) term.

To show that this suffices, let D be the event that, from the point where there are
10
√
n unstarted processes, no processor except the last reads its own value. Let E be

the event that for all k from 1 to 10
√
n, when there are k processors left unstarted,

there are at least k log (n/k)/2 processors left. Finally, let S be the successful event
that no processor except the last reads its own value.

Then

Pr(S) = Pr(D ∧ C) ≥ Pr(D ∧ C ∧ E) = Pr(D|C ∧ E) · Pr(C ∧ E).
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The argument regarding the end of the process shows that Pr(D|C ∧ E) is bounded
below by a constant. Also, Pr(C ∧E) is bounded below by a constant, since Pr(C) is
and Pr(E) is 1− o(1). Hence, Pr(S) is bounded below by a constant and the theorem
is proven.

To summarize, we find that in the very beginning no processors pass through the
lock with high probability, and several processors become half-done with their writes.
Conditioned on this, with constant probability the number of processors half-done
with their writes remains high, and hence no processors pass through the lock in the
middle. Finally, at the end, with high probability we are always in a state where
“almost all” of the processors are half-done. By combining all of the conditioning
appropriately, we find that no processor except the last passes through the lock at
the end with probability bounded below by a constant.

The proof of Theorem 7 is somewhat limiting, in that the read and write times
are taken to be equal, and in practice one may desire a different initial state, such
as when all processors start at the inspect phase. It appears that the theorem above
should hold for more general cases; however, writing an appropriate generalization
appears difficult. Finding a more elementary proof therefore remains an interesting
question.

Theorem 7 has an interesting implication. Because a gamma(2) distribution is
just the sum of two exponential distributions, we could easily turn a setting with
exponentially distributed read and write times into one with gamma(2) distributed
read and write times. Each read and write operation would simply be preceded by a
“dummy” read or write operation. If the operations are uncorrelated, this effectively
changes the distributions from exponential to gamma(2). Although this doubles the
average time to obtain a lock, it changes the probability that a single processor suc-
cessfully accesses the lock from a diminishing function of the number of processors n
to something bounded below by a constant.

In fact, the dummy read or write operations are equivalent to a pause operation,
where a pause takes a random amount of time. In Fischer’s algorithm, only the read
and not the write operation is delayed in this manner. It is therefore natural to now
consider the case of Fischer’s algorithm, where all operation times are exponential
and there is a pause before the final read.

Theorem 8. Consider n processors beginning the write for a single lock, where
writes and reads have independent exponential distributions with mean 1, and there
is a pause before each final read of time that is also independent and exponentially
distributed with mean 1. Then a single processor reads its own value with probability
n+1
2n .

Proof. For the jth processor to complete its write to read its own value, the
corresponding pause and read operation must occur before any other writes occur.
This happens with probability ( 1

n−j+1 )
2. Hence, all but the last processor to write

fail to pass through the lock with probability

n∏
j=2

(
1− 1

j2

)
=

n∏
j=2

j2 − 1

j2

=

∏n
j=2(j − 1)

∏n
j=2(j + 1)∏n

j=2 j
∏n
j=2 j

=
n+ 1

2n
.
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Theorem 8 demonstrates the importance of the pause operation in the context
of Fischer’s algorithm in the case of exponentially distributed operation times. The
pause leads to a completely different type of behavior, avoiding conflict in the critical
region over half of the time.

It is worth noting also that the approach to lower bound the failure probability
for multiple locks from Theorem 6 can be extended to the case where operation times
have the gamma distribution as well. Again, we just imagine two processors following
each other through the proper stages and use the properties of the exponential dis-
tributions. Hence, the best we could hope for is a failure probability that decreases
exponentially with the number of sequential locks.

4. Two protocols. We now apply some of the previous results in considering
the performance of two mutual exclusion algorithms first suggested by Lynch and
Shavit [12]. Both provide mutual exclusion and weak deadlock-freedom.

The first protocol we consider, given in Figure 4, is the combined Fischer–Lamport
algorithm presented as Algorithm 3 in [12]. It uses two registers. We also consider
an algorithm using three registers also discussed in [12] that is obtained by directly
replacing the critical region of Fischer’s algorithm with a Lamport style algorithm for
mutual exclusion, as shown in Figure 5.

The scheme using three registers (FL2) behaves similarly to a double lock. The
first lock is represented by the x register, and the second “lock” consists of both
the y and z registers. Hence, with exponential service times, even without a pause,
we would expect a constant probability for some processor to successfully execute the
critical region on each trial. The logic is the same as that of Theorem 5; one fortunate
early processor passes through the lock represented by register x and then reaches the
critical region before another processor can block it.

The scheme using two registers behaves essentially like a single lock on the register
x with the additional register y to ensure that only a single processor enters the
critical region. It follows immediately from Theorem 8 that if the operation times
are independently and exponentially distributed (including the pause), then a single

FL1
x, y: shared registers, initially 0
p: current process index

% Entering ME-lock
L:
if x �= 0 then goto L;
x := p;
pause
if x �= p then goto L;
if y �= 0 then goto L;
y := 1;
if x �= p then goto L;
enter critical region;
exit critical region;
y := 0;
x := 0;
% Exiting ME-lock

Fig. 4. A clever Fischer–Lamport combination.
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FL2
x, y, z: shared registers, initially 0
p: current process index

% Entering ME-lock
L:
if x �= 0 then goto L;
x := p;
pause
if x �= i then goto L;
y := p;
if z �= 0 then goto L;
z := 1;
if y �= p then goto L;
enter critical region;
exit critical region;
z := 0;
x := 0;
% Exiting ME-lock

Fig. 5. A direct Fischer–Lamport combination.

processor passes through the x lock and hence successfully executes the critical region
with probability bounded below by some constant. Similarly, it is easy to show that
the probability of a processor obtaining the critical region goes to 0 as the number of
processors increases when the pause is removed. We formalize this explicitly.

Theorem 9. Consider n processors beginning at L in the algorithm FL1 of
Figure 4. If writes and reads have independent exponential distributions with mean 1,
and the pause takes time 0 (i.e., no pause), then the probability that any processor
enters the critical region is o(1).

Proof. As usual, we assume that n is sufficiently large throughout. First, we note
that with high probability (1− o(1)), at least Ω( 3

√
n) of the n processors starting at L

reach the write step, as can be seen using the argument of Theorem 1 with z = n1/3.
We may therefore assume that we begin with m = Ω( 3

√
n) processors at the write

stage.
We derive two bounds. The first shows that processors that complete the write to

x early are unlikely to reach the critical region, and the second shows that processors
that complete the write to x late are unlikely to reach the critical region.

The jth processor to write its own value in register xmust read back its value, read
register y, write register y, and read its own value again before any other processor
writes to register x to obtain the critical region. By now familiar reasoning, the
probability of all of these events occurring is 1/(m− j+1)4. By the union bound, the
probability that any of first m −m1/3 processors that write to register x read back
its own value is

m−m1/3∑
j=1

1

(m− j + 1)4
= o(1).

For the second bound, we consider the final m1/3 processors that write their values
into register x. Note that the jth processor to write its own value in register x can
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reach the critical region only if no processor writes the value 1 on register y before
this processor can read the register y. Consider the first m − 5m1/3 processors. We
claim that with probability 1− o(1), one of these processors writes a 1 on register y
before any of the final m1/3 processors to write into register x reads register y.

By the same argument as Theorem 4, the probability that none of the first m−
5m1/3 reads back its value from register x and proceeds to write to register y is

(
1− 1

(5m1/3 + 1)

)
. . .

(
1− 1

m

)
=

1

5m1/3
= o(1).

Hence, with probability 1−o(1) at least one processor attempts a write to y. Consider
any such processor. For it to fail to write before the (m−m1/3)rd write to x, either
y must have already been written over with a 1 (in which case we are done), or one
the following events must occur:

• the read of y must occur after the (m− 3m1/3)rd write to x;
• the read of y occurs before the (m− 3m1/3)rd write to x and the write to y

occurs after the (m−m1/3)rd write to x.
Since all operation times have the same mean, the probability of the first event is

at most 1/2m1/3, and the probability of the second event is at most 1/2m1/3. By a
union bound, the probability y still holds the value 0, for any of the last (m−m1/3)
writes is thus only o(1).

Hence, considering both cases, a processor successfully enters the critical region
with probability only o(1).

We note that we have not attempted to optimize the bounds of Theorem 9. A
tight analysis would be interesting.

5. Simulations. In this section, we present the results of simulations of locks
and double locks with varying service times, as well as examine the performance
of some mutual exclusion algorithms that use locklike structures. The goal of this
section is to demonstrate that our previous theorems accurately describe perceived
performance, as well as gain more insight into the actual performance of mutual
exclusion algorithms under these distributions.

We simulated single and double locks using operation times with an exponential
distribution, a gamma(2) distribution, and a gamma(3) distribution. For the double
lock, all operations have the same mean time, which we scale to be 1. For the single
lock, we have simulated two cases: one where all operations have the same mean time,
and one where the final read operation has mean 4, so that the total average time for
a lock to try a processor is the same as that for a double lock. We call this a long lock.
Each data point represents the fraction of 10,000 trials for which a single processor
successfully passed through the lock.

The results are presented in Figure 6. We point out some features of interest. As
expected, we find that a double lock dramatically outperforms a single lock in the case
of the exponential distribution. Moreover, the poor performance of a single lock as
the contention grows is clear. For the gamma distributions, however, the single lock
performance does not deteriorate with contention, as expected. With a gamma(3)
distribution, a single long lock outperforms a double lock.

Interestingly, the behavior as the number of processors increases is different for
the three distributions. For the exponential distribution, the probability of success ap-
pears to decrease monotonically in the number of processors, while for the gamma(3)
distribution the probability appears to increase monotonically in the number of pro-
cessors. Meanwhile, for the gamma(2) distribution, the probability is nonmonotonic
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Fig. 6. Comparing the behavior of a single lock and a double lock.
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Fischer-Lamport Variations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

Processors

P
ro

b
ab

ili
ty FL1, no pause

FL1, pause

FL2, no pause

FL2, pause

Fig. 7. Comparing combined mutual exclusion algorithms.

in the number of processors. This behavior may be worthy of future study, if only as
a mathematical curiosity.

We also present some results for the mutual exclusion algorithms of section 4 in
Figure 7. For these results, the distribution of the time for all operations is taken to
be exponential with mean 1.

Note the dramatic effect of the pause in the performance of FL1. This is not
surprising, given the analysis of section 4. Also, note that with the pause the FL1
algorithm succeeds a little more than 1/2 of the time. A rough approximation of
this behavior is derivable from Theorem 8. Slightly over 1/2 of the time, a single
processor will pass through the first lock. When multiple processors pass through the
first lock, sometimes one will reach the critical region before any other processor can
block it; this accounts for the additional probability of success. The mutual exclusion
algorithm FL2 performs better, but of course it uses an extra register, and on average
more time, since more reads and writes are performed by each processor. Tighter
analyses or exhaustive simulations of the behavior of these algorithms might lead to a
better comparison. It seems difficult to develop a more general statement as to which
algorithm is preferable, as the decision may simply depend on the underlying timing
distributions.

6. Conclusions and open questions. We have examined the behavior of timed
locks under simple distributions, including exponential and gamma distributions, us-
ing both theoretical analysis and simulations. In particular, we have focused on the
question of whether two locks are better than one and shown how it may depend on
the distribution of the completion time of operations. We have also considered how
this affects the design of mutual exclusion algorithms. Our work represents the first
step toward designing a mutual exclusion algorithm based on random times that offers
better performance in realistic situations than algorithms designed for the worst case.

We believe there are several ways to extend this work. A better understanding
of the Markov chains underlying double or more extensive sequences of locks would
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be interesting. For example, it would be appealing to determine with some accuracy
the probability that only one processor passes through a double lock (even if only
in the limiting case) by analyzing the underlying Markov chain in a more careful
manner. Also, it would be worthwhile to understand the behavior of timed locks
under more general distributions. In particular, truncated distributions where events
occur within some bounded period of time may provide a more realistic description of
actual behavior. Situations where the read and write times are somehow correlated
may also be more realistic.
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Abstract. We investigate eventual Byzantine agreement (EBA) in the crash and omission failure
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required by the processors in order to attain EBA. It is well known that common knowledge among
the nonfaulty processors is a necessary and sufficient condition for attaining simultaneous Byzantine
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1. Introduction. In a distributed system, it is important to be able to design
protocols that attain their goals despite the presence of unreliable components. The
essence of the difficulties in doing this is captured by the well-studied problem of
Byzantine agreement (BA), first introduced in [17]. Roughly speaking, a BA protocol
provides a means for n processors, at most t of which may be faulty, to agree on a
value in such a way that all nonfaulty processors decide on the same value, and when
all processors start with the same initial value, the nonfaulty processors decide on this
value. The version of the problem formulated in [17] did not require all processors
to decide on the value simultaneously, yet the algorithms given in [17] (and many
later papers) had the property that the processors did indeed decide simultaneously.
In [3], it was pointed out that requiring simultaneous agreement could significantly
affect the problem. Since then, both simultaneous Byzantine agreement (SBA), where
processors are required to decide simultaneously, and eventual Byzantine agreement
(EBA), where they are not, have received a great deal of attention.

We will be particularly interested here in the problem of reaching EBA as quickly
as possible. The number of rounds it takes for a protocol to reach a decision depends
in general on the pattern of failures, that is, on how and when failures occur. Thus,
roughly speaking, we say that protocol P1 dominates protocol P2 if every nonfaulty
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processor in a run of P1 decides at least as soon as it does in the corresponding run
of P2 (where two runs are said to correspond if the initial values of all processors
and the pattern of failures are the same in both); we say that P1 strictly dominates
P2 if it dominates P2 and in some run of P1 at least one nonfaulty processor decides
earlier than it does in the corresponding run of P2. A protocol is optimal if it is not
strictly dominated by another protocol; an optimum protocol is one that dominates
every other protocol.

Optimum protocols are given for SBA in the case of crash failures [5], where
a processor that is faulty sends no messages after it has failed, and in the case of
the more general (sending) omission failures [14], where a processor may continue
to send messages after it has failed. The construction of these protocols, as well as
the analysis of their optimality, is done in terms of reasoning about knowledge [8, 6].
The key observation is that simultaneous actions are intimately related to common
knowledge: it can be shown that a necessary and sufficient condition for optimal SBA is
that the nonfaulty processors decide once they have common knowledge of a particular
initial value.

By definition of EBA, different processors have the freedom to decide at different
times. This freedom makes it possible to construct EBA protocols that typically
decide much faster than SBA protocols [3]; it is also the cause of a number of subtle,
but significant, differences between SBA and EBA. In particular (as already pointed
out in [14]), although there are optimal protocols for EBA there are no optimum
protocols for EBA.

Our goal here is to better understand the structure of EBA protocols and, in
particular, optimal EBA protocols. A decision is made in an optimum SBA protocol
as soon as common knowledge of some initial value is attained. This suggests that in
an optimal EBA protocol, a decision should be made when some variant of common
knowledge of an initial value is attained. A number of variants of common knowl-
edge are discussed in [8]. Perhaps the most plausible candidate is eventual common
knowledge. A fact ϕ is common knowledge if everyone knows that everyone knows
that everyone knows . . . ϕ; similarly, ϕ is eventual common knowledge essentially if
eventually everyone will know that eventually everyone will know . . . ϕ. However, a
closer inspection shows that eventual common knowledge is an insufficient basis for
decision in EBA. Specifically, it is not safe for a processor to decide as soon as it
knows that some initial value is eventual common knowledge. For example, consider
a protocol where a processor decides on the value v (v ∈ {0, 1}) once it knows that
there is eventual common knowledge that someone started with initial value v. It is
quite possible that at some point, processor i knows that there is eventual common
knowledge that some initial value was 0 and does not know that there is eventual
common knowledge that some initial value was 1, while processor j knows that there
is eventual common knowledge that some initial value was 1 and does not know that
there is eventual common knowledge that some initial value was 0. Thus, the obvi-
ous decision rule based on eventual common knowledge leads to inconsistency. (Note
that, by way of contrast, with common knowledge it is the case that if one processor
has common knowledge of ϕ, then all the processors do, so it is possible to define a
consistent decision rule using common knowledge, for example, deciding on 0 if it is
common knowledge that some initial value was 0 and deciding on 1 if it is common
knowledge that some initial value was 1 and it is not common knowledge that some
initial value was 0.)

One way to deal with the inconsistency described above is to require a processor
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to decide 0 when it knows that there is eventual common knowledge that some initial
value was 0 but to decide 1 only when it knows that there will never be eventual
common knowledge that some initial value was 0. Although this state of knowledge
is indeed sufficient for consistency, it does not guarantee optimality. That is, this
protocol can be modified so that processors will be able to decide 1 earlier while still
preserving consistency.

What is needed here is some condition that says “decide 1 as long as you are sure
that everybody that ever knows there is eventual common knowledge that some initial
value was 0 also knows (at the same time) that there is eventual common knowledge
that some initial value was 1 and hence can decide 1.” It turns out that in order to
capture this type of condition, we need a new variant of common knowledge that we
call continual common knowledge. Roughly speaking, a fact ϕ is continual common
knowledge if throughout the run everyone knows that throughout the run everyone
knows that . . . ϕ.

We show that continual common knowledge plays a role in EBA that is somewhat
analogous to that played by common knowledge in SBA. In particular, we can char-
acterize the state of knowledge needed to attain EBA in terms of continual common
knowledge, although it turns out that the precise characterization is more complicated
than that of SBA. Using our characterization, we are also able to characterize optimal
EBA protocols. Moreover, we provide a general technique for converting any EBA
protocol P to an optimal EBA protocol P ′ dominating P . All of the analysis and the
conversion is done at the knowledge level by working with high-level protocols with
tests for knowledge.

This paper is organized as follows. In the next section we present our formal
model of protocols and review the basic definitions of BA. In section 3, we review the
knowledge formalism and introduce the notion of continual common knowledge. In
section 4 we show that continual common knowledge is both a necessary and sufficient
state of knowledge for an agreement protocol. We use these results in section 5 to
characterize optimal knowledge-based protocols for EBA and then use our character-
ization to show how we can construct optimal EBA protocols, starting with arbitrary
EBA protocols. Section 6 uses the technique described in section 5 to construct ex-
amples of optimal protocols, including a polynomial time optimal EBA protocol for
the case of crash failures. We conclude with some discussion in section 7.

2. BA and full-information protocols. In this section, we review the BA
problem, define the notion of optimality we are interested in, present our formal
model of protocols, and show that, if optimality is our only concern, we can restrict
attention to special protocols known as full-information protocols.

2.1. The BA problem. Suppose we are given a system with n processors, at
most t of which might be faulty. Each processor i has an initial value vi ∈ V . A BA
protocol is one that satisfies the following properties:

1. Decision. Every nonfaulty processor i eventually decides (irreversibly) on a
value yi ∈ V .

2. Consistency. All nonfaulty processors decide on the same value.
3. Validity. If a nonfaulty processor decides v, then v must be the initial value

of some processor.

The problem as stated above is actually EBA. In order to define SBA, we need
to add one more condition:

4. Simultaneity. All the nonfaulty processors decide at the same round.
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For simplicity, in this paper we focus on the case of binary agreement , where V =
{0, 1}. Extending our methods to the case where |V | > 2 is straightforward.

It is well known that the BA problem is sensitive to the types of failures that
might occur. We consider two basic failure modes in this paper:

1. Crash failures. A faulty processor behaves according to the protocol, except
that it might commit a crash failure at an arbitrary round k > 0. If a
processor commits a crash failure in round k (or simply fails in round k),
then it obeys its protocol in all rounds preceding round k, it does not send
any message in the rounds following k, and in round k it sends an arbitrary
(not necessarily strict) subset of the messages it is required to send by its
protocol.

2. Omission failures. A faulty processor behaves according to the protocol,
except that it may omit sending an arbitrary set of message in any given
round. (What we are calling “omission failures” here are what were termed
sending omission failures in [14]; we do not consider general omission failures
[18] here, where a processor may omit receiving a message as well as omitting
to send one.)

We do not consider the more general Byzantine failures, where faulty processors may
behave arbitrarily.

The first subtlety in comparing EBA and SBA already arises when we consider
what we mean by a nonfaulty processor. Should we consider a processor that fails at
some point in a run as faulty only after it has actually displayed faulty behavior, or
should it be considered faulty throughout the run? In the case of SBA both interpre-
tations work, while for EBA the distinction matters. Since all nonfaulty processors
are required to decide consistently, if we choose the first interpretation, then a pro-
cessor can decide on some value only when it is guaranteed that even if it fails after
its decision, all nonfaulty processors will finally decide upon the same value. On the
other hand, choosing the second interpretation enables the processor to decide on a
value as long as it knows that, provided that it does not fail, all nonfaulty processors
will decide on the same value. Clearly, in the crash or omission failure modes, when
considering protocols in which the processors do not send any message after they de-
cide, there is essentially no difference between these choices. Consequently, there is
no difference between the choices in the case of SBA. However, there is a substantial
difference in the case of EBA. For the purposes of this paper, we call a processor
“nonfaulty” in a particular run only if it is nonfaulty throughout the run. This usage
is consistent with the usual usage in other papers on EBA for crash and omission
failures (see, e.g., [7, 11, 18]), although it differs somewhat from that of [5], where
Dwork and Moses concentrate on the set of “active” processors, which can decrease
over time.

Notice that in EBA we require all the nonfaulty processors to eventually decide
on some value. It is occasionally useful to consider weaker notions. An agreement
protocol is a protocol that satisfies the following two properties:

2′. Weak consistency. Nonfaulty processors do not decide on different values.
3′. Weak validity. If all initial values vi are identical, then all nonfaulty processors

that decide, decide vi.

Note that an agreement protocol does not necessarily satisfy the decision property; a
nonfaulty processor may not decide at all.

We discussed the notion of one protocol dominating another in the introduction;
we will provide a formal definition of it in the next section. An optimal protocol
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for EBA (SBA, agreement, etc.) is one that is not strictly dominated by any other
protocol. An optimum protocol is one that dominates every other protocol. Although
it is possible to find optimum protocols for SBA [5, 14], this is not the case for EBA.
We give a proof here for the sake of completeness.

Proposition 2.1 (see [14]). There are no optimum EBA protocols.

Proof. Consider a variant of an EBA protocol for the crash failure mode that
was first introduced in [11]. When a processor first learns that some processor has an
initial value of 0, it decides 0, relays 0 (i.e., sends 0 to all the other processors), and
halts; if by time t+1 a processor does not know of any processors with initial value 0,
it decides 1 and halts. It is easy to see that this protocol achieves EBA. Moreover,
all nonfaulty processors with initial value 0 decide at time 0. Call this protocol P0.
There is a symmetric protocol P1 where the roles of 0 and 1 are reversed. In P1, all
nonfaulty processors with initial value 1 decide at time 0. An optimum EBA protocol
would have to dominate both P0 and P1. Thus, in an optimum EBA protocol, all
processors would have to decide at time 0. However, this is provably impossible
[4].

This proof shows even more. Since it is well known [4] that in any EBA protocol
there will always be some run in which some processor takes t + 1 rounds to decide,
it follows that given any EBA protocol P , there must be some run in which some
processor takes at least t + 1 rounds longer to decide than it does in one of P0 and
P1. Thus, no protocol is guaranteed to even be close to optimum in all runs.

2.2. Optimal protocols: An example. We have just seen that there is no
hope of obtaining optimum protocols for EBA. The existence of optimal protocols is,
however, guaranteed. Intuitively, the reason is that there are a finite number of initial
configurations of votes and a finite number of behaviors of faulty processors in the
first k rounds for every finite k. An easy application of König’s lemma thus shows
that there must be a bound on the time at which all processors halt in all executions
of any given EBA protocol. Thus, there cannot exist an infinite sequence P1, P2, . . .
of correct EBA protocols where Pi+1 strictly dominates Pi. It follows that if we start
with an EBA protocol and repeatedly generate a strictly dominating protocol, then
this process will terminate after a finite number of steps. Moreover, the last protocol
in this process will be optimal.

One of the main results of this paper is an effective method of generating an
optimal protocol dominating a given protocol. We now describe a simple optimal
protocol in the crash failure mode that is generated in this way. Consider the proto-
col P0 defined in the proof of Proposition 2.1. In this protocol, processors decide 0
and send 0 to everyone else as soon as they learn that some processor had initial value
0. A processor that has not learned about a value of 0 by time t + 1 decides 1 at
time t+ 1. While this protocol is fairly efficient, it is not optimal.

Clearly, the fact that some processor had an initial value of 0 is propagated as fast
as possible in this protocol. It follows that no correct EBA protocol can decide 0 any
faster than P0 does because, by the specification of EBA, in order to decide 0, it is
necessary that some processor started with an initial value of 0, and in P0, processors
decide 0 as soon as they learn that some processor had an initial value of 0. How
about deciding on 1? Here, it seems, the protocol P0 is not being as efficient as
possible. For example, we know from the specification of EBA that if all initial values
are 1, then a decision of 1 is forced. Obviously, in order to reach this decision as soon
as possible in runs with no failures, a processor should notify the other processors in
the first round about its having an initial value of 1 as well as about its having an
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initial value of 0.
One way to get an optimal EBA protocol is to get a rule for deciding 1 as soon

as possible without changing the rule used by P0 for deciding on 0. We now design
a protocol with this property. The idea is that processors decide 1 as soon as they
know that nobody is ever going to know that some processor had an initial value of 0.
The protocol uses the same rule for deciding on 0 as P0. The rule for deciding on 1
is based on the observation that processor i knows that no nonfaulty processor will
ever know that some processor had an initial value of 0 if either

(a) processor i knows that all initial values are 1 or
(b) every processor sends a message to all processors in every round telling them

which initial values each processor has (as far as it knows), i hears from the
same set of processors in two consecutive rounds, and i still does not know
that some processor had an initial value of 0.

Thus, each processor i maintains a list of the initial values it knows about and sends
this list to all other processors in every round. It decides 1 and communicates for one
more round if one of the two properties above holds. We call this protocol P0opt. It
is easy to check that by time t + 1, either processor i will learn that some processor
had an initial value of 0, or one of the properties (a) or (b) above holds. P0opt

thus dominates P0. Indeed, as we formally show in section 6, P0opt is an optimal
EBA protocol for the crash failure mode. In fact, it is the unique optimal protocol
dominating P0.

2.3. Protocols and systems. Up to now we have spoken informally of “proto-
cols.” We now give a more formal definition of the model and notions involved along
the lines of [5, 14, 6]; the interested reader is referred to [6] for more detail.

We consider a synchronous distributed system consisting of a finite collection of
n ≥ 2 processors (automata) {i1, . . . , in}, each pair of which is connected by a two-way
communication link. The processors share a global clock that starts out at time 0 and
advances by increments of one. Communication in the system proceeds in a sequence
of rounds, with round k taking place between time k − 1 and time k. In each round,
every processor first sends the messages it needs to send to other processors and then
receives the messages that were sent to it by other processors in the same round. The
identity of the sender and destination of each message, as well as the round in which
it is sent, are assumed to be part of the message.

We think of the processors as following a protocol, which specifies the actions of
each of the nonfaulty processors as a deterministic function of the processor’s local
state.1

A run of a protocol is a complete description of the system at each time step. This
includes each processor’s initial state the messages sent in every round, the decisions
taken by the processors, and the behavior of the faulty processors. We assume that at
every point in time each processor has a well-defined local state, which is recorded in
the run and which the protocol uses to determine the actions that the processor takes.
A point is a pair (r, k) consisting of a run r and a time k. We use ri(k) to denote
processor i’s local state at the point (r, k). For technical reasons, it is convenient
to assume that communication happens during a round (that is, between two points
(r,m) and (r,m+1)) but that a decision is actually made at a given point, not during
the round. Thus, we talk about a message being sent in round k and a decision being

1As discussed in detail in [14], a protocol is typically stated in terms of parameters n and t,
standing for the number of processors, and an upper bound on the number of failures. We do not
represent this explicitly here, since this fact does not affect our results in this paper.
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made at time k (of some run r). For simplicity, we assume that the only possible
outputs (decisions) are 0 and 1, and that a processor can output at most one of these
values at a given time. A system R is just a set of runs. We can associate with a
protocol P the systemsRcr

P (n, t) for all n ≥ t ≥ 0, consisting of its possible runs with n
processors in which no more than t processors crash. We similarly associate with P
the analogous systems Rom

P (n, t) corresponding to the omissions failure model. We
omit the parameters of n and t as the results are typically independent of these values.
Similarly, for the most part, our results do not depend on whether we consider crash
failures or omission failures. We omit the superscript and just write RP whenever the
type of failure is not relevant to the discussion.

As discussed in the previous section, we say that a processor is nonfaulty in a
given run if it follows the protocol throughout the run. Since we are considering
only crash and omission failures here, if i is a faulty processor in a run r, then its
faulty behavior can be characterized by describing to which processes i omits sending
required messages at each round. The failure pattern of a run contains the faulty
behavior of all the processors that fail in the run. (A more detailed and formal
exposition of the model can be found in [6, 14]; this brief exposition should suffice for
stating and proving our results.)

The list of processors’ initial states is the system’s initial configuration. A proto-
col P , an initial configuration, and a failure pattern uniquely determine a run. Two
runs r and r′ of protocols P and P ′ are called corresponding runs if they have the same
initial configuration and result from the same failure pattern. Two points (r,m) and
(r′,m′) of protocols P and P ′ are corresponding points if r and r′ are corresponding
runs of the two protocols and m = m′. As we said in the introduction, given two
protocols P and P ′, we say that P dominates P ′ if every nonfaulty processor that
makes a decision (i.e., outputs 0 or 1 at some point in a run) in a run r′ of P ′ also does
so in the corresponding run r of P , and in fact decides at least as soon in r as it does
in r′. We say P strictly dominates P ′ if P dominates P ′ and in some run r of P there
is a nonfaulty processor that decides sooner in r than it does in the corresponding
run of P ′.

Notice that our definition of “dominate” focuses on when the processors decide
and not when they halt. However, in all our protocols the processors can always halt
after they know that all the nonfaulty processors have decided. In many cases they
can in fact halt one round after they decide. Thus, we ignore issues of termination
here and assume that protocols run forever.

2.4. Full-information protocols. We now review the notion of a full-
information protocol and some of its implications. The treatment in this section
follows the lines of [2].

A protocol is said to be a full-information protocol if each processor is required
to send its current state to all processors at each round. The state of a processor
in a full-information protocol consists of the processor’s name, initial state, message
history, and the time on the global clock. Thus, the states of processors following a
full-information protocol are completely independent of their final decisions; at cor-
responding points in two full-information protocols, processors have the same states.
Indeed, the only way in which full-information protocols can differ is in the decisions
made by the processors.

Intuitively, the states of the processors in a full-information protocol make the
finest possible distinctions among histories. That is why the full-information protocol
is particularly well suited for proving possibility and impossibility of achieving certain



A CHARACTERIZATION OF EVENTUAL BYZANTINE AGREEMENT 845

goals in distributed systems, and for the design and analysis of distributed protocols.
The following proposition, essentially due to Coan [2], and corollary formalize this
intuition.

Proposition 2.2. Let P be an arbitrary protocol in a system with omission
(resp., crash) failures. Then for each processor i there is a function fi from i’s state
in a full-information protocol F to its state in P such that for every pair (r,m) and
(r′,m) of corresponding points of F and P , we have fi(ri(m)) = r′i(m).

As an immediate consequence, we get the following corollary.
Corollary 2.3. Let P be an arbitrary protocol in a system with omission (resp.,

crash) failures. Then there is a full-information protocol that dominates P .
This proposition shows that, just as in [5, 14] for the case of SBA, we can restrict

attention to full-information protocols when looking for optimal EBA protocols.

3. Continual common knowledge. As we mentioned in the introduction, we
want to perform a knowledge-theoretic analysis of EBA. In the case of SBA, the
notion of common knowledge was shown to be central, and its use facilitated the
construction of optimal (indeed optimum) protocols. A similar role for EBA will
be played by the notion of continual common knowledge, which is a strengthening
of common knowledge. Our purpose in this section is to define continual common
knowledge and present some of its most useful properties. To do so, we start by
describing the knowledge formalism and give definitions and properties of knowledge,
belief, and common knowledge. The reader familiar with these notions can skip
directly to section 3.2.

3.1. The knowledge formalism. We want to be able to reason about the states
of knowledge of the processors in the system. In order to do so, we use the formalism
first introduced in [8].

We start with a collection of basic facts (which can essentially be thought of as
primitive propositions). For each such basic fact, it will typically be clear whether or
not it is true at a given point.2 We define various basic facts as we go along. Among
the basic facts of interest is ∃0, which is true at a point (r, k) in R if some processor
started with initial value 0 in r; we similarly define ∃1. We close this language under
the standard Boolean connectives ∧, ¬, and ⇒, interpreted as conjunction, negation,
and implication, as well as various knowledge operators. The basic operator is Ki,
where Kiϕ is read “processor i knows ϕ.”

A processor is said to know a fact at a given point (r,m) exactly if the fact holds at
all of the points in which the processor has the same state as at (r,m). Thus, we have
(R, r,m) |= Kiϕ if (R, r′,m′) |= ϕ for all points (r′,m′) such that ri(m) = r′i(m

′).
Given a system R, a formula ϕ is said to be valid in R, denoted R |= ϕ, if it holds at
all points in R. It is well known that our definition of knowledge satisfies the axioms
of the modal logic S5.

Proposition 3.1 (see [9]). For every system R we have
(a) if R |= ϕ, then R |= Kiϕ (knowledge generalization);
(b) R |= (Kiϕ ∧Ki(ϕ⇒ ψ))⇒ Kiψ (distribution axiom);
(c) R |= Kiϕ⇒ ϕ (knowledge axiom);
(d) R |= Kiϕ⇒ KiKiϕ (positive introspection axiom);

2Strictly speaking, we need not just the system, but an interpreted system, which is a system
together with an interpretation of the primitive propositions (see [6] for details). In this paper
the basic facts of interest are few and their interpretation will be clear from context, so we do not
explicitly use interpretations here.
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(e) R |= ¬Kiϕ⇒ Ki¬Kiϕ (negative introspection axiom).
Having defined knowledge for individual processors, we now extend this definition

to states of knowledge of a group of processors. We are mainly interested in the
state of knowledge called common knowledge, since this has been shown to be closely
related to coordination and agreement [8]. Given a set G of processors, let EGϕ be an
abbreviation for ∧i∈GKiϕ. Thus, EGϕ holds if every processor in G knows ϕ. CGϕ
(ϕ is common knowledge among the processors in G) holds if everyone in G knows
ϕ, everyone knows that everyone knows, and so on. Formally, taking E1

Gϕ to be an
abbreviation for EGϕ and Ek+1

G ϕ to be an abbreviation for EGE
k
Gϕ, we define

(R, r,m) |= CGϕ iff (R, r,m) |= EkGϕ for k = 1, 2, 3, . . ..

In the analysis in [5, 14] of SBA, the key concept is not common knowledge among
a fixed set G of processors but common knowledge among the nonfaulty processors.
The set of nonfaulty processors is a nonrigid set: its elements vary from one point to
another. Formally, given a system R, a nonrigid set S of processors in the system is a
function associating with every point of the system a subset of the processors. In other
words, S(r,m) is a (possibly different) set of processors for every point (r,m) of R.
We denote by N the nonrigid set of nonfaulty processors. Since a nonfaulty processor
does not necessarily know that it is nonfaulty, we would like a notion of knowledge that
is appropriate even when processors are not guaranteed to know whether they belong
to the nonrigid set. Thus, following [14], given a nonrigid set S and a processor i, we
define BS

i ϕ = Ki(i ∈ S ⇒ ϕ). More formally,

(R, r,m) |= BS
i ϕ iff (R, r′,m′) |= ϕ for all (r′,m′)

such that ri(m) = r′i(m
′) and i ∈ S(r′,m′).

In other words, BS
i ϕ holds if i knows that if it is in S, then ϕ holds. This way of

defining belief is a special case of a notion of belief defined by Moses and Shoham
[13]. As they show, BS

i behaves much like knowledge. The following proposition
summarizes some of its properties.

Proposition 3.2 (see [13]). For every system R we have
(a) if R |= (i ∈ S)⇒ ϕ, then R |= BS

i ϕ;
(b) R |= (BS

i ϕ ∧BS
i (ϕ⇒ ψ))⇒ BS

i ψ;
(c) R |= i ∈ S ⇒ (BS

i ϕ⇒ ϕ);
(d) R |= BS

i ϕ⇒ BS
i B

S
i ϕ;

(e) R |= ¬BS
i ϕ⇒ BS

i ¬BS
i ϕ;

(f) R |= Kiϕ⇒ BS
i ϕ.

Properties (a), (b), (d), (e) are the obvious analogues of the corresponding prop-
erties in Proposition 3.1. Property (c) characterizes what is considered to be the
key difference between knowledge and belief. By definition, it is impossible to know
something which is false, while it is possible to have false beliefs. Thus, BS

i can be
considered to be a notion of belief, but a special one, in that a processor in S cannot
have false beliefs. An extreme case that will appear in our technical analysis is when a
processor knows that it is not in the set S. When this happens, the processor believes
everything:

|= Ki(i /∈ S) ⇒ BS
i ϕ.

We define ESϕ as
∧
i∈S B

S
i ϕ. In other words, everyone in S knows ϕ if every

processor in S knows that if it is in S, then ϕ holds. Notice that if S(r,m) is empty,
then, by definition, ESϕ holds at (r,m) (for all formulas ϕ).
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The notion of CSϕ is now defined as an infinite conjunction in terms of ESϕ.
Defining Ek+1

S ϕ inductively as an abbreviation for ESEkSϕ, we have

(R, r,m) |= CSϕ iff (R, r,m) |= EkSϕ for k = 1, 2, . . . .

It is easy to see that if S is the constant function that always returns G, then CSϕ
is equivalent to CGϕ. Thus, this definition of CSϕ extends the original definition of
CGϕ to nonrigid sets.

For the sake of completeness, we briefly mention the formal definition of the linear-
time temporal operator ✸ (standing for “eventually”) and its dual ✷ (“henceforth”)
in our setting. These operators will be used later on; for details about linear-time
temporal logic, see [12]:

(R, r,m) |= ✸ϕ iff (R, r,m′) |= ϕ for some m′ ≥ m,
(R, r,m) |= ✷ϕ iff (R, r,m′) |= ϕ for all m′ ≥ m.

3.2. Eventual common knowledge and agreement. As shown in [5, 14],
common knowledge among the nonfaulty processors is just the right tool for charac-
terizing optimal SBA. It is not quite right for EBA though, since in EBA it is clear
that a processor can decide 0 (or 1) well before it knows that other processors know
about this value and thus, a fortiori, before this value is common knowledge. As we
said in the introduction, we might have hoped that eventual common knowledge would
be the appropriate replacement for common knowledge, but that does not quite work.

To understand why, consider the following full-information protocol F0 that uses
eventual common knowledge in its decision rule. While we have not given a formal
definition of eventual common knowledge here (one can be found in [6, 9]), for the
purposes of this discussion it suffices to know that if ϕ eventually becomes common
knowledge, then it is eventual common knowledge. That is, if we denote eventual
common knowledge of ϕ by C✸ϕ, then ✸Cϕ ⇒ C✸ϕ is valid. According to F0, a
processor decides 0 when it knows there is eventual common knowledge that some
initial value was 0 (i.e., when it knows that C✸∃0 holds) and decides 1 when it knows
not only that there is eventual common knowledge that some initial value was 1, but
also that there can never be eventual common knowledge that some initial value was 0
(i.e., when it knows that C✸∃1∧✷¬C✸∃0 holds). Clearly F0 is an agreement protocol.

Although the state of knowledge required for decision according to this rule is
sufficient for agreement, it is not necessary. Just as in the case of the protocol P0
of section 2.2, it is possible to decide 1 earlier than F0. For example, consider a run
of the full-information protocol in the omission failure mode, in which all processors
start with initial value 1, there are t faulty processors, and the t faulty processors
send no messages in the first two rounds. Techniques of [14] show that in this case
it is common knowledge at the end of the second round that there exists an initial
value of 1 (indeed, the values of all nonfaulty processors are common knowledge), but
no processor knows that all initial values are 1. Indeed, each processor considers it
possible that one of the faulty processors has an initial value of 0 and that it will send
it to some nonfaulty processor in the third round. The analysis in [14] can be used
to show that, should such a message be received in the third round, the existence
of a value of 0 will become common knowledge (and thus also be eventual common
knowledge) at the end of the fourth round. Thus, according to the protocol F0, no
nonfaulty processor decides at the end of the second round in such a run. However, it
is not hard to construct a protocol which dominates F0 and does decide at this point.



848 JOSEPH Y. HALPERN, YORAM MOSES, AND ORLI WAARTS

To understand how this can be done, note that the reason we require a processor
to wait until it knows that C✸∃1∧✷¬C✸∃0 holds before it decides 1 is that otherwise
we may have inconsistency: some processor may decide 0 while another may decide 1.
Can we decide earlier while still avoiding inconsistency? One thought might be to have
a processor decide 1 if it knows that C✸∃1 holds and that every nonfaulty processor
that learns C✸∃0 does so after it learns C✸∃1. However, to avoid inconsistency, we
then have to modify the rule for deciding 0 so that a processor decides 0 if it knows that
C✸∃0 holds and it considers it possible that some nonfaulty processor will learn C✸∃0
no later than C✸∃1. It is easy to see that this gives us an agreement protocol: it is
impossible for one nonfaulty processor to decide 0 and another to decide 1. Moreover,
it is not hard to show that this protocol dominates F0: all processors decide no later
in runs of this protocol than in the corresponding run of F0 (although their decisions
in corresponding runs may be different).

This protocol itself can be improved though by refining the rule for deciding 0 in a
similar fashion. It turns out that an optimal protocol is obtained when the process of
refining the decision rules reaches a fixed point. These ideas can be formally captured
by use of a new state of knowledge that we call continual common knowledge. This is
the subject of the next section.

3.3. The definition of continual common knowledge. Roughly speaking, a
fact ϕ is continual common knowledge in a run r among the processors in the nonrigid
set S if, at all points (r,m′), every processor that belongs to S(r,m′) knows that at
every point in the run every processor that belongs to S at that point knows that . . .
ϕ holds. More formally, we first define

(R, r,m) |= ✷· ψ iff (R, r,m′) |= ψ for all m′ ≥ 0.

Thus, ✷· is analogous to the standard temporal logic operator ✷, except that instead
of restricting attention to the present and future as we do with ✷, with ✷· we consider
all times past, present, and future. Note that (R, r,m) |= ✷· ψ iff (R, r, 0) |= ✷ψ.

We define E✷·
S ϕ as an abbreviation for ✷· ESϕ. In other words, E✷·

S ϕ holds at the
point (r,m) if for all times m′, every processor in S(r,m′) knows at time m′ that if
it is in S, then ϕ holds. The twist here is, of course, that because S is nonrigid, the
members of S(r,m′) may be different for different values of r and m′. Notice that if
S(r,m′) is empty for all m′ ≥ 0, then by definition E✷·

S ϕ holds at (r,m) (and, in fact,
throughout the run r).

The notion of continual common knowledge of ϕ is now defined as an infinite
conjunction in terms of E✷·

S ϕ. Defining (E✷·
S )k+1ϕ inductively as an abbreviation for

E✷·
S (E✷·

S )kϕ, we define

(R, r,m) |= C✷·
S ϕ iff (R, r,m) |= (E✷·

S )kϕ for every k ≥ 1.

Thus, C✷·
S ϕ holds if at all times everyone in S knows that at all times everyone in S

knows that . . .ϕ holds. We remark that just as CSϕ can be shown to be a greatest
fixed point of the equation X ⇔ ES(ϕ ∧X) [6, 8], so C✷·

S ϕ is the greatest fixed point
of the equation X ⇔ E✷·

S (ϕ ∧X); we omit further details here.

We can characterize continual common knowledge as follows. A point (r′,m′) is
said to be S-✷· -reachable in k steps from a point (r,m) if there exist runs r0, . . . , rk,
times m0,m

′
0, . . . ,mk−1,m

′
k−1, and processors i0, . . . , ik−1 such that r0 = r, rk = r′,

m′k−1 = m′, and, for j = 0, . . . , k − 1, we have that ij ∈ S(rj ,mj) ∩ S(rj+1,m′j)
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and rjij (mj) = rj+1
ij

(m′j).
3 We say that (r′,m′) is S-✷· -reachable from (r,m) if it is

S-✷· -reachable from (r,m) in k steps for some k. It is not too hard to check that the
following proposition holds.

Proposition 3.3. (R, r,m) |= (E✷·
S )kϕ iff (R, r′,m′) |= ϕ for all points (r′,m′)

that are S-✷· -reachable from (r,m) in k steps.

Corollary 3.4. (R, r,m) |= C✷·
S ϕ iff (R, r′,m′) |= ϕ for all points (r′,m′) that

are S-✷· -reachable from (r,m).

We remark that this result is a variant of the characterization of CSϕ given in [5].
Using that characterization, it was shown that CS satisfies all the S5 axioms except
the knowledge axiom4 and that CSϕ⇒ ϕ holds at points where S is nonempty.5 CS
was also shown to satisfy two additional properties, known as the induction rule and
the fixed-point axiom. Using Corollary 3.4, we can prove the analogous properties for
continual common knowledge.

Lemma 3.5. For every system R we have that

(a) if R |= ϕ, then R |= C✷·
S ϕ (common knowledge generalization);

(b) R |= (C✷·
S ϕ ∧ C✷·

S (ϕ⇒ ψ))⇒ C✷·
S ψ (distribution axiom);

(c) R |= C✷·
S ϕ⇒ C✷·

S C
✷·
S ϕ (positive introspection);

(d) R |= ¬C✷·
S ϕ⇒ C✷·

S ¬C✷·
S ϕ (negative introspection);

(e) R |= C✷·
S ϕ⇔ E✷·

S (ϕ ∧ C✷·
S ϕ) (fixed-point axiom);

(f) if R |= ϕ⇒ E✷·
S (ϕ ∧ ψ), then R |= ϕ⇒ C✷·

S ψ (induction rule);
(g) R |= C✷·

S ϕ⇒ ✷· C✷·
S ϕ;

(h) R |= (i ∈ S)⇒ (C✷·
S ϕ⇔ BS

i C
✷·
S ϕ).

Proof. The proof of parts (a)–(f) is essentially identical to the proof of the anal-
ogous properties for CS in [5], so it is omitted here. Part (g) follows from the obser-
vation that for all m,m′, the set of points S-✷· -reachable from (r,m) and (r,m′) is
identical. Part (h) follows easily from part (e) and part (c) of Proposition 3.2. We
leave details to the reader.

It is easy to see that |= C✷·
S ϕ ⇒ CSϕ for all formulas ϕ. It is also not hard to

show that the converse does not hold in general. Thus, continual common knowledge
is a variant of common knowledge that is strictly stronger than common knowledge.

4. Continual common knowledge and agreement. In this section, we begin
our analysis of EBA in terms of continual common knowledge. Let decidei(y), y = 0, 1,
be the basic fact which is true at all points where processor i decides y. Since the
truth of decidei(y) at a point depends only on processor i’s local state at that point,
when decidei(y) holds, processor i knows it. Moreover, since we have assumed that
a processor cannot output 0 and 1 at the same time, we cannot have both decidei(0)
and decidei(1) holding at any point. Combining these observations with parts (c)
and (f) of Proposition 3.2, we immediately get the following result.

3The particular models we consider in this paper are synchronous, which means that if rj(m) =
rj(m

′), then m = m′. In synchronous models, we can simplify the notion of reachability slightly
because we can take mi = m′

i for i = 0, . . . , k − 1.
4The modal system satisfying precisely these properties is known as K45 [1].
5Actually, in [5] it is claimed that CS even satisfies the knowledge axiom. This is indeed the

case in the particular application in [5], in which the nonrigid sets S of interest are always nonempty.
However, CS does not satisfy the knowledge axiom in the more general case in which the nonrigid
set might occasionally be empty.
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Proposition 4.1. Let N stand for the set of nonfaulty processors. If P is an
agreement protocol, then for y = 0, 1 we have

(a) RP |= decidei(y)⇒ ¬decidei(1− y);
(b) RP |= (Kidecidei(y)⇔ decidei(y)) ∧ (Ki¬decidei(y)⇔ ¬decidei(y));
(c) RP |= i ∈ N ⇒ ((BNi decidei(y) ⇔ decidei(y)) ∧ (BNi ¬decidei(y) ⇔
¬decidei(y))).

Another property of agreement protocols that we will use later on is the following.
Lemma 4.2. Let P be an agreement protocol and assume that i, j are nonfaulty in

run r of P . Then for all times m we have (RP , r,m) |= decidei(0)⇒ ✷· ¬decidej(1).
Proof. The result is immediate from the definitions.
We want to focus on the decisions made according to protocol P . To do this,

the following definitions will be helpful. We say that a decision set A is a tuple
(A1, . . . ,An), where Ai is a subset of processor i’s states. We think of the Ai com-
ponent of a decision set as consisting of all the states where processor i has decided
on a particular value. A decision pair is a pair (Z,O) of decision sets. Intuitively,
Z (for zero) describes the local states of processors at points where they are deciding
or have decided on 0, while O (for one) describes the analogous states for a deci-
sion of 1. We say that (Z,O) is the decision pair for protocol P if Zi consists of
the local states at which processor i decides or has decided 0 when executing the
protocol P , and Oi consists of the local states at which processor i decides or has
decided 1. Typically, we shall describe a decision set such as Zi or Oi by a formula
of the form Kiϕ or BNi ψ. Given a system, the decision set is then the set of local
states in the system at which the formula is satisfied. For example, the decision set
defined by Kiϕ is {ri(m) : (R, r,m) |= Kiϕ}; similarly, the set defined by BNi ψ is
{ri(m) : (R, r,m) |= BNi ψ}.

Recall that N denotes the set of nonfaulty processors. Given a decision set A, let
N ∧A denote the nonrigid set described by

(N ∧A)(r,m) = {i : i ∈ N (r,m) and ri(m) ∈ Ai}.

With this machinery, we can now give a necessary condition for agreement.
Proposition 4.3. Let P be an agreement protocol with decision pair (Z,O).

Then
(a) RP |= decidei(0)⇒ BNi (∃0 ∧ ¬decidei(1) ∧ C✷·

N∧O∃0);
(b) RP |= decidei(1)⇒ BNi (∃1 ∧ ¬decidei(0) ∧ C✷·

N∧Z∃1).
Proof. We prove part (a); the proof of (b) is completely symmetric. The argument

is split into showing that decidei(0) implies belief in each of the three conjuncts. Sup-
pose that (RP , r,m) |= decidei(0). By Proposition 4.1(b) we have that (RP , r,m) |=
Kidecidei(0). From Proposition 3.2(f) we obtain that (RP , r,m) |= BN

i decidei(0).
The weak validity property for P implies that RP |= (i ∈ N ) ⇒ (decidei(0) ⇒
exist(0)). By Proposition 3.2(a) we have that (RP , r,m) |= BN

i (decidei(0))⇒ exist(0)),
and it follows by the distribution axiom for BN

i (Proposition 3.2(b)) that (RP , r,m) |=
BN
i exist(0). Similarly, we explicitly assumed that a processor cannot at once decide

on two values, and hence RP |= decidei(0) ⇒ ¬decidei(1). As before, this implies
that (RP , r,m) |= BN

i (decidei(0) ⇒ ¬decidei(1)), and the distribution axiom yields
belief in the second conjunct: (RP , r,m) |= BN

i ¬decidei(1). It remains to show that
(RP , r,m) |= BN

i C
✷·
N∧O∃0. Let (r′,m) be a point such that r′i(m) = ri(m) and

i ∈ N (r′,m). Since r′i(m) = ri(m) we have by Proposition 4.1 that (RP , r′,m) |=
decidei(0). Lemma 4.2 implies that (RP , r′,m) |= ✷· ¬decidej(1) for every nonfaulty
processor j. Thus, for all m′ ≥ 0, we have that (N ∧O)(r′,m′) = ∅. By definition of
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continual common knowledge, this immediately implies that (RP , r′,m) |= C✷·
N∧O∃0.

It follows by definition of BN
i that (RP , r,m) |= BN

i C
✷·
N∧O∃0 as desired, and we are

done.
Proposition 4.3 shows that in order to decide 0, processor i must believe, not

surprisingly, that some initial value was 0 and that it does not decide 1. More in-
teresting is the fact that it also must believe that it is continual common knowledge
among the nonfaulty processors that eventually decide 1 that there is an initial value
of 0. A moment’s thought will show that this is true simply because, in an agreement
protocol, if a nonfaulty processor decides 0 in run r it believes that there are no non-
faulty processors that decide 1, so (N ∧ O)(r,m) = ∅ for all m. Nevertheless, this
characterization is of interest because for optimal protocols this condition will turn
out to be necessary and sufficient. We now show that a closely related condition is
sufficient for agreement in general.

Proposition 4.4. Let P be a protocol with decision pair (Z,O) such that either
(a) RP |= decidei(0)⇒ BNi ∃0 and
(b) RP |= decidei(1)⇔ BNi (∃1 ∧ C✷·

N∧Z∃1)
or

(a′) RP |= decidei(0)⇔ BNi (∃0 ∧ C✷·
N∧O∃0) and

(b′) RP |= decidei(1)⇒ BNi ∃1.
Then P is an agreement protocol.

Proof. We prove the first claim regarding the pair (a) and (b), as the other
part is again completely symmetric. Assume that P satisfies (a) and (b). We first
show that P satisfies weak validity. Let i be a nonfaulty processor in the run r. We
claim that i can decide only on a value that appeared as one of the initial values.
Assume that i decides 0 in r. Part (a) implies that i believes ∃0 at that point. By
Proposition 3.2(c) we have that ∃0 indeed holds at that point, which implies that some
initial value was 0. Similarly, if i decides 1, then part (b) implies that i believes 1
and similarly at least one initial value was 1. It remains to show weak consistency.
Assume by way of contradiction that in a run r of RP nonfaulty processor i decides 0
at (r,m), while nonfaulty processor j decides 1 at (r,m′). Part (b) implies that
(RP , r,m′) |= (j ∈ N ) ∧ BN

j C
✷·
N∧Z∃1. Since the belief of a nonfaulty processor is

guaranteed to be true we have that (RP , r,m′) |= C✷·
N∧Z∃1. By Lemma 3.5(g) we

have that (RP , r,m) |= C✷·
N∧Z∃1 holds as well. From the fact that i decides 0 at

(r,m) it follows that i ∈ N ∧ Z(r,m). The fixed-point axiom for continual common
knowledge (Lemma 3.5(e)) implies that (RP , r,m) |= BN

i (∃1 ∧ C✷·
N∧Z∃1). We can

now apply property (b) to i at (r,m) and conclude that i decides 1 at that point,
contradicting the assumption that i decides 0 there.

We remark that the asymmetry between the decision sets for 0 and 1 in Proposi-
tion 4.4 is essential. While the conditions in Propositions 4.3 and 4.4 are not identical,
once we move to optimal protocols, we will be able to get a single necessary and suffi-
cient condition, expressed in terms of continual common knowledge, that characterizes
optimality.

5. Constructing and characterizing optimal agreement. It is not too hard
to show that for optimal agreement protocols the implications (“⇒”) in parts (a) and
(b) of Proposition 4.3 become equivalences (“⇔”). More importantly, we can show
that if “sufficient information” is transmitted, as is the case in a full-information
protocol, then a protocol satisfying these conditions is optimal. These points are made
precise and proved in this section. In the process, we also show how to construct an
optimal protocol dominating any given protocol.
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From here on in, we focus on full-information protocols. As we indicated in
section 2.4, full-information protocols are all we need to consider if we are interested in
optimal protocols for EBA. We use FIP(Z,O) to denote the (unique) full-information
protocol with decision pair (Z,O). We will be focusing on protocols of the form
FIP(Z,O) in the rest of our analysis. Notice that for any pair of protocols of this
form, there is a one-to-one and onto mapping from the runs of the first protocol
to corresponding runs of the second protocol. The only possible difference between
corresponding runs is in what decisions are made and when they are taken; the same
messages are sent at the same times, and the same processors fail in the same way
and at the same time. As a result, we can assume without loss of generality that
all decision sets A that we consider are defined in terms of the initial configuration
and the pattern of messages that are communicated. More formally, we assume that
all sets A that we consider for decision sets Z and O have the property that if F
and F ′ are full-information protocols and r and r′ are corresponding runs in RF
and RF ′ , respectively, then ri(m) ∈ A iff r′i(m) ∈ A. We use this observation in
our construction of optimal EBA protocols. During the construction, we start with
one full-information protocol and then modify its decision pair to get another full-
information protocol. After a finite number of modifications, we end up with an
optimal protocol.

When we represent full-information protocols in this way, the sets determining the
decision pair can be specified in a fairly flexible manner. For example, we will often use
knowledge formulas to describe these sets. As long as these formulas talk about initial
values (and not decisions), they will be uniquely determined by the communication
that takes place in the run and thus result in a well-defined protocol. For example, a
formula such as BN

i ∃0 uniquely specifies a set of local states for processor i in runs of
full-information protocols of this form. It can therefore be used to specify a decision
set in a decision pair.

The following result is the core of our technique for constructing optimal protocols.
It provides a knowledge-theoretic method for constructing protocols that dominate a
given (full-information) agreement protocol and plays a key role in our characteriza-
tion of optimal agreement protocols. It can be viewed as a formalization of some of
the intuitions presented in section 3.2.

Proposition 5.1. Let F = FIP(Z,O) be a full-information agreement protocol,
and define F ′ = FIP(Z ′,O′) and F ′′ = FIP(Z ′′,O′′), where

Z ′i = BNi (∃0 ∧ C✷·
N∧O∃0) and O′i = BNi (∃1 ∧ ¬C✷·

N∧O∃0),

while

O′′i = BNi (∃1 ∧ C✷·
N∧Z∃1) and Z ′′i = BNi (∃0 ∧ ¬C✷·

N∧Z∃1).

Then F ′ and F ′′ are both agreement protocols that dominate F .
Proof. The case of F ′′ = FIP(Z ′′,O′′) is symmetric to that of F ′ = FIP(Z ′,O′);

we prove for F ′.
First note that |= C✷·

N∧O∃0 ⇔ ✷· C✷·
N∧O∃0, and hence C✷·

N∧O∃0 is a property of
runs. The property Z ′i can hold at a point in a run only if the run satisfies C✷·

N∧O∃0,
while O′i can hold only if ¬C✷·

N∧O∃0 does. It follows that nonfaulty processors cannot
reach different decisions in the same run of F ′, and so weak agreement holds. In
addition, since |= Z ′i ⇒ ∃0 and |= O′i ⇒ ∃1, weak validity is guaranteed. It follows
that F ′ is an agreement protocol. It remains to show that F ′ dominates F .
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Let r be a run of RF , and let r′ be the corresponding run in RF ′ . First, suppose
that (RF , r,m) |= decidei(1) ∧ (i ∈ N ). We want to show that processor i decides
by time m in r′. If i decides in r′ before time m we are done. Assume not. Clearly,
either (a) (RF , r,m) |= C✷·

N∧O∃0 or (b) (RF , r,m) |= ¬C✷·
N∧O∃0. If (a) holds, then

ri(m) ∈ (N ∧O) and by Lemma 3.5(e) we have that

(RF , r,m) |= BNi (∃0 ∧ C✷·
N∧O∃0).

Thus, by definition of Z ′,we have that ri(m) ∈ Z ′i. If (b) holds, a similar argument
shows that (RF , r,m) |= BNi ¬C✷·

N∧O∃0. In addition, since F is an agreement protocol,
it follows from the fact that i decides 1 at (r,m) that (RF , r,m) |= BN

i ∃1. Therefore,
(RF , r,m) |= BN

i (∃1 ∧ ¬C✷·
N∧O∃0), and so ri(m) ∈ O′i. Thus, r′i(m) ∈ (Z ′i ∪ O′i) so

that in either case processor i decides at r′i(m).
Now suppose that (RF , r,m) |= decidei(0) ∧ (i ∈ N ). Then by Proposition 4.3,

we also have (RF , r,m) |= BNi (∃0 ∧ C✷·
N∧O∃0). Therefore, by definition, ri(m) ∈ Z ′i,

and again it follows that processor i decides at least as soon in r′ as in r.
Proposition 5.1 suggests a way to construct an optimal agreement protocol. Name-

ly, start with a full-information agreement protocol F = FIP(Z,O). Then construct
a new protocol F 1 = FIP(Z1,O1), where

Z1
i = BNi (∃0 ∧ C✷·

N∧O∃0) and
O1
i = BNi (∃1 ∧ ¬C✷·

N∧O∃0).

Notice that the new protocol is completely determined by the formula decision set O of
the original protocol. We then proceed to create a second protocol F 2 = FIP(Z2,O2),
where

Z2
i = BNi (∃0 ∧ ¬C✷·

N∧Z1∃1) and
O2
i = BNi (∃1 ∧ C✷·

N∧Z1∃1).

Protocol F 2 is thus completely determined by Z1. We can, of course, continue in this
fashion and define protocols F 2,1, F 2,2, . . .. By Proposition 5.1, each new protocol we
construct dominates the previous ones. By the observations in section 2.2, if we start
with an EBA protocol, this process eventually terminates, giving us an optimal EBA
protocol. However, it is far from clear how long it takes this process to terminate (or
if it even terminates at all if we start with an arbitrary agreement protocol). We now
show that, in fact, the process always terminates in two steps, so the resulting protocol
F 2 is indeed optimal. (Of course we can also show that the analogous construction,
exchanging the roles of Z and O, results in an optimal protocol.)

Theorem 5.2. Let F = FIP(Z,O) be an agreement protocol, and let F 1 and F 2

be as described above. Then F 2 is an optimal agreement protocol. Moreover, if F is
an EBA protocol, then F 2 is an optimal EBA protocol dominating F .

Proof. Suppose that F 2 is not optimal and that F 3 dominates F 2. Proposition 5.1
implies that F 2 dominates both F and F 1. Therefore, F 3 must also dominate both
F and F 1. By Lemma 5.3, if processor i decides 0 at the point (r′,m) of RF 3 , it
must be the case that (RF 3 , r′,m) |= BNi (∃0 ∧ C✷·

N∧O∃0). Thus, by definition of Z1
i ,

processor i decides at the corresponding point of RF 1 (if it has not done so earlier in
the run). Since F 2 dominates F 1, it must be the case that processor i has also decided
by the corresponding point of RF 2 . Similarly, since F 3 dominates F 1, if processor i
decides 1 at the point (r′,m), then (RF 3 , r′,m) |= BNi (∃1∧C✷·

N∧Z1∃1). By definition
of O2

i , it must be the case that processor i has decided by the corresponding point
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in RF 2 . We conclude that F 2 dominates F 3. Since F 3 was chosen as an arbitrary
protocol dominating F 2, it follows that F 2 is indeed optimal.

Notice that, in general, F 2 is not necessarily an EBA protocol because not all the
nonfaulty processors necessarily decide. However, if the protocol F we started out
with is an EBA protocol, then every protocol dominating F must satisfy the decision
condition of EBA. In this case, then, F 2 will in fact be an optimal EBA protocol
dominating F .

To complete the proof of Theorem 5.2, we need a technical lemma that relates the
stopping conditions of two protocols F and F ′, where F ′ dominates F . It describes
the state of knowledge that must hold in a run of F ′ in which the decision value is
different from that of the corresponding run of F .

Lemma 5.3. Let F = FIP(Z,O) and F ′ = FIP(Z ′,O′) be full-information
agreement protocols such that F ′ dominates F . Then we must have

(a) RF ′ |= decidei(0)⇒ BNi (∃0 ∧ C✷·
N∧O∃0);

(b) RF ′ |= decidei(1)⇒ BNi (∃1 ∧ C✷·
N∧Z∃1).

Proof. The proofs of (a) and (b) are identical, so we prove only (a). The fact that
RF |= decidei(0) ⇒ BNi ∃0 follows from the fact that F ′ is an agreement protocol.
Therefore, it suffices to show thatRF ′ |= decidei(0)⇒ BNi C

✷·
N∧O(∃0). Proposition 4.3

implies that RF ′ |= decidei(0) ⇒ BNi C
✷·
N∧O′(∃0). We need to show that the same

result holds with O′ replaced by O.
Let decide(0) denote the basic fact that is true at a point (r,m) in RF ′ exactly

if some nonfaulty processor decides 0 at some point in r. It is clearly the case that
RF ′ |= decidei(0) ⇒ BNi decide(0), since if decidei(0) holds, then i knows decidei(0),
and hence in particular i knows that if i is nonfaulty, then decide(0) holds. To complete
the proof, it remains to prove the following.

Claim. RF ′ |= decide(0)⇒ C✷·
N∧O∃0.

Proof. Since F ′ satisfies weak validity, it is easy to check that RF ′ |= decide(0)⇒
∃0. It therefore suffices to prove that RF ′ |= decide(0)⇒ C✷·

N∧Odecide(0). Using the
induction rule (part (f) of Lemma 3.5), it suffices to show that

RF ′ |= decide(0)⇒ E✷·
N∧Odecide(0).

To see this, assume that (RF ′ , r′,m) |= decide(0) and j ∈ (N ∧ O)(r′,m′) for some
point (r′,m′) in the run r′. We need to show that (RF ′ , r′,m′) |= BNj decide(0). Let
r be the run of RF that corresponds to r′. Since F = FIP(Z,O), if processor j
decides in run r at all, it does so at the first time m such that rj(m) ∈ Oj . Since
j ∈ (N ∧O)(r′,m′), it follows that r′j(m

′) = rj(m
′) ∈ Oj . Thus, processor j decides

no later than at time m′ in run r. Since F ′ dominates F , processor j must decide no
later than at time m′ in run r′ either. Since j is nonfaulty in r′, and the nonfaulty
processors decide 0 in r′, it follows that j decides 0 in r′ at some time m′′ ≤ m′.
Thus, we have (RF ′ , r′,m′′) |= decidej(0), from which it follows that (RF ′ , r′,m′′) |=
BNj decide(0). Finally, since in a full-information protocol processors keep track of
their history in their local state, it follows that once processor j believes that decide(0)
holds, it will continue to believe this at all points in the future. (Technically, the
property of no forgetting or perfect recall holds in full-information protocols [10].)
Thus, (RF ′ , r′,m′) |= BNj decide(0), as desired.

To complete the section, we now show that, as claimed earlier, the necessary con-
ditions of Proposition 4.3 actually characterize optimal (full-information) agreement
protocols.

Theorem 5.4. Let F = FIP(Z,O) be a full-information agreement protocol.
Then F is optimal iff both of the following conditions hold:
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(a) RF |= i ∈ N ⇒ (decidei(0)⇔ BNi (∃0 ∧ C✷·
N∧O∃0 ∧ ¬decidei(1))),

(b) RF |= i ∈ N ⇒ (decidei(1)⇔ BNi (∃1 ∧ C✷·
N∧Z∃1 ∧ ¬decidei(0))).

Proof. For the “only if” direction, we prove only (a) here; the proof of (b) is
analogous. Since F is an agreement protocol, it follows from Proposition 4.3 that

RF |= decidei(0)⇒ BNi (∃0 ∧ C✷·
N∧O∃0 ∧ ¬decidei(1)).

Hence it is enough to prove that

RF |= i ∈ N ⇒ (BNi (∃0 ∧ C✷·
N∧O∃0 ∧ ¬decidei(1))⇒ decidei(0)).

Suppose that

(RF , r,m) |= i ∈ N ∧BNi (∃0 ∧ C✷·
N∧O∃0 ∧ ¬decidei(1)).

Let Z ′i = BNi (∃0∧C✷·
N∧O∃0) and O′i = BNi (∃1∧¬C✷·

N∧O∃0), and consider the protocol
F ′ defined by F ′ = FIP(Z ′,O′). Proposition 5.1 shows that F ′ is an agreement
protocol that dominates F . Therefore, for F to be optimal, it must dominate F ′ as
well.

Let (r′,m) be the point of RF ′ corresponding to (r,m). Since (RF , r,m) |=
BNi (∃0 ∧ C✷·

N∧O∃0 ∧ ¬decidei(1)), we have that ri(m) ∈ Z ′i. From ri(m) = r′i(m), it
follows that r′i(m) ∈ Z ′i so that processor i decides or has decided by (r′,m) in protocol
F ′. Since F is optimal by assumption, we have that processor i must also decide by
(r,m). Thus, (RF , r,m) |= decidei(0) ∨ decidei(1). However, since (RF , r,m) |= i ∈
N ∧ BNi ¬decidei(1), it follows by Proposition 4.1(c) that (RF , r,m) |= ¬decidei(1),
and hence (RF , r,m) |= decidei(0) as desired.

For the “if” direction, suppose that both (a) and (b) hold. Proposition 2.3 implies
that it is enough to show that F dominates any full-information agreement protocol
F ′ that dominates it. Therefore, suppose F ′ dominates F . Let r′ be a run of RF ′ ,
and let r be the corresponding run in RF . First, suppose that (RF ′ , r′,m) |= i ∈
N ∧ decidei(0). We want to show that processor i decides by time m in r. The
proof that the same happens if decidei(1) holds is identical and hence is omitted. By
Lemma 5.3, we have

(RF ′ , r′,m) |= BNi (∃0 ∧ C✷·
N∧O∃0).

Since (r,m) and (r′,m) are corresponding points of RF and RF ′ , we have that

(RF , r,m) |= BNi (∃0 ∧ C✷·
N∧O∃0).

If, in addition, (RF , r,m) |= decidei(1), then processor i decides by time m in run
r. On the other hand, if (RF , r,m) |= ¬decidei(1), then Proposition 4.1 implies that
RF |= ¬decidei(1)⇒ BNi ¬decidei(1), so

(RF , r,m) |= BNi (∃0 ∧ C✷·
N∧O∃0 ∧ ¬decidei(1)).

From assumption (a), it follows that (RF , r,m) |= decidei(0), and thus we again get
that processor i decides by time m in run r.

6. Examples of optimal protocols. In this section, we apply the technique
of Theorem 5.2 to construct some optimal agreement protocols. We start with an
agreement protocol F (Z,O) and proceed as described in section 5. Though each
protocol constructed in this way is optimal, different choices of Z and O yield optimal
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protocols with different properties and different performance. Moreover, even if we
start with the same basic protocol, the protocol we end up with depends on the
failure mode considered. This stems from a subtle point that has not arisen in our
treatment so far. Up until now, we have ignored the issue of whether we are dealing
with crash failures or omission failures. Notice, however, that the sets Z1

i , O1
i , Z2

i ,
and O2

i are defined in terms of what processors know at certain points. Of course,
what they know at a given point will depend in part on whether we are dealing with
crash failures or omission failures. Suppose, for example, we start with an agreement
protocol F that works in the case of omission failure. Then it clearly also works in the
case of crash failures. However, Rcr

F (n, t) and Rom
F (n, t) are different systems. Thus,

we have different decision pairs (Zcr ,Ocr ) and (Zom ,Oom), depending on whether
we consider crash failures or omission failures. Because there are more runs in Rom

F

than Rcr
F , it follows that Zcr

i ⊆ Zom
i and Ocr

i ⊆ Oom
i . However, once we apply

the procedure of Proposition 5.1 to these sets, we may no longer have, for example,
(Z ′i)cr ⊆ (Z1

i )om . Nevertheless, all the results from section 5 apply whether we are
working with crash failures or omission failures, so we continue to suppress the failure
mode here. However, as we shall see, the issue of the failure mode plays a major role in
starting with the same protocol; our techniques lead to different protocols depending
on the type of failures considered. Since many of the proofs in this section are lengthy
and provide less insight than the ones in the previous sections, we defer them to the
appendix.

6.1. A simple optimal protocol. A particularly trivial agreement protocol is
one in which no processor ever decides. Let FΛ be the full-information protocol in
which no processor ever decides. That is, we define ZΛ

i = OΛ
i = ∅ for i = 1, . . . , n,

and let FΛ = FIP(ZΛ,OΛ). Suppose we apply our optimization technique to FΛ.
The first step of the construction consists of having the processors decide 0 as

soon as possible, given the criterion for deciding 1. Thus,

ZΛ,1
i = BNi (∃0 ∧ C✷·

N∧OΛ∃0) and

OΛ,1
i = BNi (∃1 ∧ ¬C✷·

N∧OΛ∃0).

Since in FΛ nonfaulty processors never decide 1, we have that RFΛ |= ✷· (N ∧
OΛ = ∅), and hence also RFΛ |= C✷·

N∧OΛ∃0. It follows that ZΛ,1
i = BN

i ∃0 and

OΛ,1
i = BN

i (∃1 ∧ false), which is equivalent to BN
i false.

The second step of the construction optimizes the decision on 1, given the defini-
tion of ZΛ,1. Following Proposition 5.1, we define

ZΛ,2
i = BNi (∃0 ∧ ¬C✷·

N∧ZΛ,1∃1) and

OΛ,2
i = BNi (∃1 ∧ C✷·

N∧ZΛ,1∃1).

We denote FIP(ZΛ,2,OΛ,2) by FΛ,2.
The analysis we have performed so far applies equally well to both the crash

and the omission failure mode. Thus, FΛ,2 is an optimal agreement protocol in both
cases. As we shall see, however, while FΛ behaves in essentially the same way in both
settings, the properties of FΛ,2 are dramatically different in the two failure modes.
The crux of the analysis will involve figuring out when ZΛ,2 and OΛ,2 hold in runs of
FΛ,2. This, in turn, will be determined by when C✷·

N∧BN∃0∃1 holds.
We begin with an analysis of FΛ,2 in the crash failure mode. As the next theorem

shows, FΛ,2 is quite simple in this case.
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Theorem 6.1. In the crash failure mode, FΛ,2 = FIP(Zcr ,Ocr ), where Zcr
i =

BNi ∃0 and Ocr
i = BN

i ((N ∧ Zcr ) = ∅).
Proof. The proof can be found in the appendix.
It is easy for processor i to compute when it should decide 0 according to FΛ,2 in

the crash failure mode: it decides 0 if it ever hears about a 0 from any processor. It
also turns out to be easy for processor i to compute when to decide 1. According to
Theorem 6.1, it should decide 1 when it believes that N ∧ Zcr = ∅, that is, when it
believes that no nonfaulty processor knows that some processor started with 0. The
relevant conditions for this to be the case are precisely those given for the protocol
P0opt described in the introduction. As we prove in Theorem 6.2, processor i decides 1
according to the protocol when it either knows that all initial values are 1 or it hears
from the same set of processors in two consecutive rounds and still does not know
that some processor had an initial value of 0. Thus, P0opt and FΛ,2 are essentially
equivalent protocols. The same decisions are made by all processors at corresponding
points of the systems generated by the two protocols in the crash failure mode. (The
two protocols are not identical because FΛ,2 is a full-information protocol, while
in P0opt the processors send much shorter messages.) It follows from this that not
only is FΛ,2 an optimal agreement protocol (this already follows from Theorem 5.2),
but it is also an optimal EBA protocol.

Theorem 6.2. In the crash failure mode, the same decisions are made by non-
faulty processors at corresponding points of the protocols P0opt and F

Λ,2. Thus, both
FΛ,2 and P0opt are optimal EBA protocols for the crash failure mode.

Proof. The proof can be found in the appendix.
Since P0opt can be implemented using messages of linear size, FΛ,2 gives us

an efficient optimal EBA protocol in the crash failure mode. The situation is very
different in the case of omission failures. While FΛ,2 is still an optimal agreement
protocol, and an analysis similar to that carried out for the case of crash failures
can be used to show that it has an efficient implementation, it is no longer an EBA
protocol. There are runs in which it never halts.

Proposition 6.3. If t > 1 and n ≥ t+ 2, then there are runs of FΛ,2 in Rom in
which the nonfaulty processors do not decide.

Proof. The proof can be found in the appendix.

6.2. Optimal EBA for omission failures. As the proof of Proposition 6.3
shows, the reason that FΛ,2 does not necessarily terminate in the presence of omission
failures is that there is no bound on the time at which a processor can learn that there
exists an initial value of 0. Clearly, if we start out with a terminating protocol and find
an optimal protocol that dominates it, then the optimal protocol we obtain will also
be terminating. We now use a well-known approach to generate a (terminating) EBA
protocol in the omission failure mode. Intuitively, we say that a processor accepts 0
in round m only if this value was transferred by a chain of m− 1 distinct processors
(cf. [4]). Formally, we say that a 0-chain exists at the point (r,m) full-information
F iff there is a sequence of m distinct processors i1, . . . , im, such that i1 has initial
value 0, ik+1 received a message from ik at round k and (RF , r, k) |= ¬BNik+1

(ik /∈ N ),
and im is nonfaulty. We say that (RF , r,m) |= ∃0∗ if there is a 0-chain at some point
(r,m′) with m′ ≤ m.

Let Z0
i = BNi ∃0∗ and O0

i = BNi ¬∃0∗, and consider the protocol FIP(Z0,O0).
It is easy to see that this is an agreement protocol. The following proposition shows
that it is actually an EBA protocol.

Proposition 6.4. In a run r of FIP(Z0,O0) in the omission failure mode where
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f processors actually fail, all nonfaulty processors decide by time f + 1.
Proof. The proof can be found in the appendix.
Clearly FIP(Z0,O0) satisfies the validity and consistency conditions, so we im-

mediately get the following corollary.
Corollary 6.5. FIP(Z0,O0) is an EBA protocol.
We can now apply the construction of Theorem 5.2 to FIP(Z0,O0) to get an

optimal EBA protocol that dominates it. The description of the protocol that we get
using the construction can be simplified somewhat. Let Z∗ = BNi (∃0 ∧ C✷·

N∧O0∃0),
O∗ = BNi (∃1 ∧ ¬C✷·

N∧O0∃0), and F ∗ = FIP(Z∗,O∗).
Proposition 6.6. F ∗ is an optimal EBA in the omission failure mode that

dominates FIP(Z0,O0).
Proof. The proof can be found in the appendix.
Note that the decision rules in F ∗ involve explicit tests for knowledge. Although it

is not hard to show that these tests can be implemented effectively (by which we mean
that the tests are decidable in principle; in fact, this can be done in PSPACE [5]), we
do not know if they can be implemented efficiently, even in the case of crash failures.
The question of whether there exists a polynomial-time protocol that is optimal for
EBA in the case of omission failures is still open; we conjecture that such a protocol
does exist. (We remark that in [5, 14], polynomial time protocols that are optimum
for SBA in the case of crash and omission failures are given.)

7. Conclusions. This paper completely characterizes optimal EBA protocols
in the case of crash and omission failures. It involves a new variant of common
knowledge—continual common knowledge—in an essential way. Interestingly, contin-
ual common knowledge is a stronger state of knowledge than common knowledge.
By contrast, all other variants of common knowledge considered in the literature
(cf. [8, 16]) are weakenings of common knowledge. The characterization is far from
trivial. While it would in principle be possible to characterize and prove these prop-
erties without using knowledge, we conjecture that it would be rather difficult.

Our results can be extended in a number of ways. First, although we have con-
sidered here only crash and omission failures, we believe that our results should be
extendible to the case of Byzantine failures, once a reasonable notion of corresponding
runs and protocols is given for that model. Second, although we assumed here that
the processors are synchronous, our knowledge analysis is also valid for asynchronous
systems (except for the implementations in section 6, of course). Third, although
this paper focuses on EBA and agreement protocols, it is straightforward to extend
our results to general coordination problems along the lines of [14], including ones
in which all processors (and not only the nonfaulty ones) are required to act consis-
tently. (Problems of the latter type are said to require uniform agreement.) Neiger
and Bazzi [15] consider these issues, using an approach based on ours. They consider
agreement in synchronous and asynchronous systems, and study both uniform and
nonuniform agreement. In addition, they look at cases where explicit termination, as
well as agreement, is required. To handle termination and agreement, they define a
notion of extended knowledge, which is essentially a combination of continual common
knowledge and eventual common knowledge.

An interesting question left open is whether our two-step optimizing process can
be done in a computationally efficient manner. Our examples in section 6 show that in
some cases we can obtain efficient optimal EBA protocols. However, a naive evaluation
of the formulas used in the optimization process does not guarantee computationally
efficient results.
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Appendix. Proofs. In this appendix, we prove the results in section 6. For the
convenience of the reader, we repeat the statements of the results.

Theorem 6.1. In the crash failure mode, FΛ,2 = FIP(Zcr ,Ocr ), where Zcr
i =

BNi ∃0 and Ocr
i = BN

i ((N ∧ Zcr ) = ∅).
Theorem 6.1 follows immediately from the next two lemmas. The first shows that

ZΛ,2
i = BNi ∃0, and the second shows that OΛ,2

i = BN
i ((N ∧ Zcr ) = ∅). This shows

that ZΛ,2 = Zcr and OΛ,2 = Ocr , proving the theorem. To simplify notation in the
proofs, we denote the system Rcr

FΛ,2 obtained by running protocol FΛ,2 in the crash
failure mode by Rcr .

Lemma A.1. In Rcr , ZΛ,2
i = BNi ∃0.

Proof. Recall that ZΛ,2
i = BNi (∃0∧¬C✷·

N∧ZΛ,1∃1) and that ZΛ,1
i = BN

i ∃0. Clearly

ZΛ,2
i ⊆ BNi ∃0. For the opposite containment, suppose (Rcr , r,m) |= BNi ∃0. We want

to show that (Rcr , r,m) |= BNi (∃0 ∧ ¬C✷·
N∧ZΛ,1∃1). Therefore, suppose that ri(m) =

r′i(m) and i is nonfaulty in r′. We must show that (Rcr , r′,m) |= ¬C✷·
N∧ZΛ,1∃1. Since

(Rcr , r′,m) |= i ∈ N ∧BNi ∃0, it certainly suffices to show that

Rcr |= (i ∈ N ∧BNi ∃0) ⇒ ¬C✷·
N∧ZΛ,1∃1.

To show this, we prove by induction on k that for all runs r′ of Rcr and processors i
that are nonfaulty in r′, if (Rcr , r′, k) |= BNi ∃0, then there is a point (r̂, k) that is
(N ∧BN∃0)-✷· -reachable from (r′, k) such that (Rcr , r̂, k) |= ¬∃1.

Suppose that k = 0. Since i does not believe it is faulty, BNi ∃0 holds only if i’s
initial value is 0. Let r̂ be the run where all processors have initial values 0 and no
processor fails. Clearly, (r̂, 0) has the desired properties.

For the inductive step, let k > 0 and assume that the claim has been shown for
all k′ < k. If (Rcr , r′, k′) |= BNi ∃0 for some time k′ < k, then the point (r′, k′) is
clearly (N ∧ZΛ,1)-✷· -reachable from (r′, k), and the claim follows from the induction
hypothesis for (r′, k′) and the transitivity of reachability.

Now suppose that (Rcr , r′, k′) �|= BNi ∃0 for all k′ < k. Since (Rcr , r′, k) |= BNi ∃0,
i must have received a value of 0 in one of the messages sent to it in round k, say, from
processor j. Since we are in the crash failure mode, if processor i receives a round k
message from j, then all other processors received messages from j in all rounds
preceding round k. Thus, i does not know at the point (r′, k) that j is faulty. Hence,
there must be a run r′′ in which both i and j are nonfaulty such that r′i(k) = r′′i (k)
and r′j(k − 1) = r′′j (k − 1). It follows that (Rcr , r′′, k − 1) |= (j ∈ N ) ∧ BNj ∃0.

Moreover, by construction, (r′′, k − 1) is (N ∧ ZΛ,1)-✷· -reachable from (r′, k) (since

ZΛ,1
j = BNj ∃0). The claim now follows from the inductive hypothesis for k − 1 (with

respect to r′′ and j), and (as before) from the transitivity of reachability.

We now consider OΛ,2.

Lemma A.2. In Rcr , OΛ,2
i = BN

i ((N ∧ Zcr ) = ∅).
Proof. Recall that OΛ,2

i = BNi (∃1∧C✷·
N∧ZΛ,1∃1). Observe thatRcr |= C✷·

N∧ZΛ,1∃1
⇔ ✷· ((N ∧ ZΛ,1) = ∅). The ⇐ direction is immediate, since ✷· (S = ∅) ⇒ C✷·

S ϕ is
valid for any nonrigid set S and formula ϕ. The proof of Lemma A.1 shows that
Rcr |= C✷·

N∧ZΛ,1∃1⇒ ((N ∧ ZΛ,1) = ∅). It is immediate that Rcr |= ✷· C✷·
N∧ZΛ,1∃1⇒

✷· ((N ∧ ZΛ,1) = ∅). Since C✷·
S ϕ⇒ ✷· C✷·

S ϕ is valid for all nonrigid sets S and formulas
ϕ (Lemma 3.5), the result follows.

To complete the proof it suffices to show that

Rcr |= BNi (∃1 ∧✷· ((N ∧ ZΛ,1) = ∅))⇔ BNi ((N ∧ ZΛ,1) = ∅).
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Setting ψ = ((N ∧ ZΛ,1) = ∅), this claim has the form

Rcr |= BNi (∃1 ∧✷· ψ)⇔ BNi ψ.

The ⇒ direction is straightforward, following from the validity |= ✷· ψ ⇒ ψ and the
monotonicity of BNi . The other direction uses properties of the crash failure mode.

Assume that i is nonfaulty and that (Rcr , r,m) |= BNi ((N ∧ ZΛ,1) = ∅). Since

ZΛ,1
i = BNi ∃0, this clearly implies that (Rcr , r,m) |= ¬BNi ∃0, and hence i’s own

initial value could not have been 0; thus, BNi ∃1 holds. It remains to show that
(Rcr , r,m) |= BNi ✷· ψ. Therefore, suppose ri(m) = r′i(m) and i is nonfaulty in both
r and r′. Note that (Rcr , r′,m) |= BN

i ψ. We must show that (Rcr , r′,m) |= ✷· ψ.
Clearly (Rcr , r′,m′) |= ψ for m′ < m, for if a nonfaulty processor j believed ∃0 at a
time m′ < m, this fact would have appeared in j’s message to i in round m′+ 1 ≤ m,
and hence i would already know about the 0 at time m in r′, contradicting the
fact that (Rcr , r′,m) |= ψ. Since (Rcr , r′,m) |= BN

i ψ and i ∈ N , it follows that
(Rcr , r′,m) |= ψ. Notice that, since we are in the crash failure mode, a processor that
is known by i to be faulty at time m cannot send messages after round m. Moreover,
for i to believe ψ at (r′,m), it must be the case that no processor not known by i to be
faulty knows ∃0 at (r′,m). (The formal proof of this is identical to that of the proof
of Theorem 5 in [5].) It immediately follows that, because we are in the crash failure
mode, no nonfaulty processor will know ∃0 at any later time m′ > m in r′.

Theorem 6.2. In the crash failure mode, the same decisions are made by non-
faulty processors at corresponding points of the protocols P0opt and F

Λ,2. Thus, both
FΛ,2 and P0opt are optimal EBA protocols for the crash failure mode.

Proof. Recall that information about the existence of a value of 0 and about the
identity of processors that started out with 1 are forwarded in P0opt as fast as in a
full-information protocol. Moreover, in P0opt every processor sends a message to all
other processors in every round. As a result, a straightforward inductive argument
shows that for every pair of corresponding runs r of Rcr

P0opt
and r′ of Rcr

FL2 , every

processor i nonfaulty in these runs, and every time m ≥ 0, we have that (1) BN
i ∃0

holds at (r,m) exactly if it holds at (r′,m), (2) BN
i ¬∃0 holds at (r,m) exactly if

it holds at (r′,m), and (3) i receives messages from the same set of processors in
round m of r and in round m of r′.

Since in both protocols a nonfaulty processor i decides 0 exactly when BN
i ∃0 first

holds, it follows that decisions on 0 take place at corresponding points of the two
systems. To complete the proof, we need to show that nonfaulty processors decide 1
at corresponding points of the two systems as well. Notice that the condition OΛ,2

i =
BN
i ((N ∧ ZΛ,1) = ∅) holds exactly if i knows that no nonfaulty processor can know of

a value of 0. It remains to show that this holds at a point of Rcr
FΛ,2 exactly if one of the

conditions (a) and (b) defining the decision on 1 in P0opt holds in the corresponding
point of Rcr

P0opt
.

We first argue that if the nonfaulty processor i does not decide 1 at the point
(r,m) of Rcr

P0opt
, then it does not do so in the corresponding point (r′,m) of Rcr

FΛ,2 .
The case m = 0 is straightforward, since processor i has no information about values
of other processors. Thus, it must consider it possible that some nonfaulty processor i1
has initial value 0, so OΛ,2

i cannot hold at (r′, 0) (since ZΛ,1
i = BNi ∃0). Now suppose

that m ≥ 1. Notice that if neither (a) nor (b) holds for i at all points (r,m′) with
m′ ≤ m, then there is a sequence i1, i2, . . . , im of processors such that, for all k < m, in
round k processor ik crashes and sends no messages to processors that survive round k,
except possibly to ik+1. In addition, processor im crashes in round m without sending
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a message to i. It follows that there is a run r′′ in which (i) i1 has initial value 0,
(ii) for all k < m we have that ik sends a message only to ik+1 in round k, (iii)
the same processors are nonfaulty in r and in r′′, (iv) rj(k) = r′′j (k) for all k < m
and all processors j nonfaulty in r (and hence also in r′′), and finally (v) im sends a
message in round m of r′′ to all nonfaulty processors j′ �= i. Thus, r′′i (m) = ri(m)
and at (r′′,m) there are nonfaulty processors that know ∃0. Since r′ is a run of a
full-information protocol in which the same processors are nonfaulty as in r, it follows
that OΛ,2

i will not hold at (r′,m) as well, so i does not decide 1 at (r′,m).

To complete the proof, we argue that if i decides 1 at the point (r,m) of P0opt,
then it also does so at the corresponding point (r′,m) of FΛ,2. By fact (1) above, if
condition (a) holds, so that i knows at (r,m) that all initial values were 1, then it

knows this fact at (r′,m) as well; as a result, i knows nobody can know ∃0, so OΛ,2
i

holds.

Suppose that condition (b) holds at (r,m); we need to show that in (r′,m) pro-
cess i believes that N ∧ ZΛ,1 = ∅. Since condition (b) holds at (r,m), then i does
not know ∃0 at (r,m), and i received messages from the same set G of processors in
rounds m− 1 and m of r. By facts (1) and (3) above, the same is true for r′ as well.
In the crash failure mode, a processor whose round m−1 message to i is not delivered
is definitely silent from round m on. Hence, no processor other than those in G sends
(or receives) messages in round m of r′. Since FΛ,2 is a full-information protocol, it
follows that if the set of messages sent by the processors in G in round m does not
contain information about the existence of a value of 0, then nobody knows ∃0 at
time (r′,m). Finally, by assumption, processor i receives all messages from processors

in G in round m and still does not know that ∃0 holds there. We conclude that OΛ,2
i

holds at (r′,m), and we are done.

We next want to prove that in the omission failure mode, FΛ,2 does not hold. We
first need to get some insight into ZΛ,1 in the case of omission failures. The following
is a variant of Lemma A.1 modified to suit the omission failure model.

Lemma A.3. Suppose that n ≥ t + 2, r is a run of Rom in which fewer than t
processors fail, and i is nonfaulty in r. Then for all times m ≥ 0 we have that
(Rom , r,m) |= BNi ∃0⇒ ¬C✷·

N∧ZΛ,1∃1.
Proof. We proceed by induction on k to show that if k is the first time in r

such that (Rom , r, k) |= BNi ∃0, then (Rom , r, k) |= ¬C✷·
N∧ZΛ,1∃1. This suffices since

if ¬C✷·
N∧ZΛ,1∃1 is true at (r, k), it is true at (r,m) for all m by part (g) of Lemma 3.5.

If k = 0, it must be the case that i has initial value 0, and hence its state at (r, 0)
is the same as at (r′, 0), where r′ is the run in which no processor started with
initial value 1 and all processors are nonfaulty. Since ∃1 does not hold at (r′, 0)
and i is nonfaulty at both (r, 0) and (r′, 0), then by Proposition 3.3 it follows that
(Rom , r, 0) |= ¬C✷·

N∧ZΛ,1∃1.

Now suppose that k > 1 and the induction hypothesis holds for k−1. Then i must
have received a 0 from some processor j in round k of r. If i does not know that j is
faulty, then let r′ be a run with the same failure pattern as r, except that processor j
is nonfaulty. (In particular, r′ = r if j is nonfaulty in r.) Since (Rom , r′, k′) |= BNj ∃0
for some k′ < k, by the induction hypothesis (Rom , r′, k′) |= ¬C✷·

N∧ZΛ,1∃1. The claim
follows since (r, k) is (N ∧ ZΛ,1)-✷· -reachable from (r′, k′). If i does consider j to
be faulty at (r, k), consider a run r′ that is identical to r up to time k, except that
there is a processor j′′ faulty in r′ that fails for the first time in round k of r and
sends messages to all processors in round k, except some nonfaulty processor j′ �= i.
Note that this means that ri(k) = r′i(k). (Such processors j′ and j′′ exist because,
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by assumption, n ≥ t + 2, and less than t processors fail in r.) Finally, consider a
run r′′ which is identical to r′ up to time k, except that whichever processor sent
j a message saying ∃0 in r at round k − 1 also sends it to j′, and at round k, and
all processors send the same messages in r′ and r′′, except that j′ sends i a message
saying ∃0. Note that r′j(k) = r′′j (k). Now, by construction, i learns about ∃0 in r′′

from a processor which it does not know to be faulty. Thus, by the earlier argument,
(Rom , r′′, k) |= ¬C✷·

N∧ZΛ,1∃1. The induction hypothesis carries us through as above,
and we are done.

Proposition 6.3. If t > 1 and n ≥ t+ 2, then there are runs of FΛ,2 in Rom in
which the nonfaulty processors do not decide.

Proof. Consider the run r where all the processors start with 1, processor 1 is
faulty and never sends messages to any processor, and no other processors fail. Clearly,
the weak validity condition implies that any nonfaulty processor which decides in
r must decide 1. We now show that no nonfaulty processor can ever decide 1 in
r. Assume that a nonfaulty processor i decides 1 at (r,m) for some m. Then, by
definition, O2

i holds at (r,m). Let r′ be a run of Rom in which processor 1 is the
only faulty processor and where the first m rounds of r′ differ from those of r only
in the following two ways: (a) processor 1 has initial value 0, and (b) exactly one
message sent by processor 1 is delivered in r′; it is a message sent in round m to some
nonfaulty processor j �= i. Clearly, ri(m) = r′i(m). It follows that O2

i , which depends
only on i’s local state, holds at (r′,m) as well. By definition of O2

i , we thus have that
(Rom , r′,m) |= BNi C

✷·
N∧ZΛ,1∃1. Since i is nonfaulty in r′, we have that

(Rom , r′,m) |= C✷·
N∧ZΛ,1∃1.

Notice, however, that in r′ the nonfaulty processor j �= i receives a message reporting
a value of 0 from processor 1 in round m. As a result, we have that (Rom , r′,m) |=
BNj ∃0. Applying Lemma A.3 with respect to r′ and j now yields (Rom , r′,m) |=
¬C✷·
N∧ZΛ,1∃1, giving us a contradiction.
Proposition 6.4. In a run r of FIP(Z0,O0) in the omission failure mode where

f processors actually fail, all nonfaulty processors decide by time f + 1.
Proof. Let F = FIP(Z0,O0). Suppose that r is a run in Rom

F in which f
processors fail. Then, for each nonfaulty processor i, there is a round m ≤ f + 1 such
that the only processors from which i does not receive a message in round m are ones
that did not send it a message in some earlier round. Since a nonfaulty processor
sends its state to everybody at each round, if processor j does not send a message to
i in round m′ < m, in round m (in fact, in all rounds between m′ and m) i tells all
processors that j is faulty. Thus, for each such j, we have

(Rom
F , r,m) |= Bi(EN (j �∈ N )).

We claim that (Rom
F , r,m) |= BNi ∃0∗ ∨BNi ¬∃0∗, so that i decides at (r,m). Clearly,

if i receives a message in round m from some processor j that is not known by i to be
faulty which implies ∃0∗, then (Rom

F , r,m) |= BNi ∃0∗, and i can decide 0. Otherwise,
we claim that (Rom

F , r,m) |= BNi ¬∃0∗. Suppose by way of contradiction that there
exists a run r′ such that r′i(m) = ri(m), i is nonfaulty in r′, and (Rom

F , r′,m) |= ∃0∗.
Thus, there must be a 0-chain in r′ ending with some nonfaulty processor j at some
time m′ ≤ m. Thus, j hears ∃0∗ at some round m′ ≤ m. If m′ < m, since j is
nonfaulty in r′, it will tell i ∃0∗ in round m′+1 of r′, so there will be a 0-chain ending
with i at (r′,m′ + 1). Thus, i decides 0 at (r′,m′ + 1). Since ri(m) = r′i(m) and F
is a full-information protocol, we must have ri(m

′ + 1) = r′i(m
′ + 1), and i decides 0
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at (r,m′ + 1), contradicting our assumption. Therefore, suppose that j hears ∃0∗ in
round m from j′. Thus, j considers j′ to be nonfaulty at (r′,m). However, this means
that i must consider j′ to be nonfaulty at (r′,m− 1) (and hence at (r,m− 1)), since
otherwise i would tell j that j′ was faulty in round m of r′. By choice of (r,m), i
must also hear from j′ in round m of r. Since ri(m) = r′i(m), i also hears from j′ in
round m of r′ and gets the same message in both r and r′. Again, this means that i
hears ∃0∗ in r, a contradiction.

Proposition 6.6. F ∗ is an optimal EBA in the omission failure mode that
dominates FIP(Z0, One0).

Proof. Applying the first step of our construction, optimizing the decision on 1,
given the rule in F (Z0,O0) for deciding 0, we get

Z1
i = BNi (∃0 ∧ ¬C✷·

N∧Z0∃1) and
O1
i = BNi (∃1 ∧ C✷·

N∧Z0∃1).

We claim that Z1 = Z1 and O1 = O0. This follows from the next two lemmas.
Lemma A.4. Let F be any full-information protocol. Then

Rom
F |= C✷·

N∧Z0∃1⇔ ✷· (N ∧ Z0) = ∅.
Proof. The “if” direction follows immediately from the definition, so we prove

the “only if” direction. Assume that (Rom
F , r,m) |= ¬✷· (N ∧ Z0) = ∅. Then there is

a first time l = l(r) at which we have (Rom
F , r, l(r)) |= (N ∧ Z0) �= ∅. We prove by

induction on l(r) that C✷·
N∧Z0∃1 does not hold in r. If l(r) = 0, since Z0

i = BNi ∃0∗, it
must be the case that all the nonfaulty processors in r have initial value 0. Thus, all
the nonfaulty processors in r initially consider it possible that ¬∃1 holds; the result
follows immediately.

Now suppose that l(r) > 0 and the induction hypothesis holds for l(r)−1. Suppose
BNi ∃0∗ holds at (r, l(r)) for some nonfaulty processor i. Then there must be some
processor j that is not known to i as faulty at (r, l) that tells i BNj ∃0∗ in round l of r.
Let r′ be the run with the same failure pattern and initial states as r, except that j is
nonfaulty in r′. It is easy to see that ri(l(r)) = r′i(l(r)). However, l(r′) = l(r)−1, and
hence by the induction hypothesis C✷·

N∧Z0∃1 does not hold in r′. By Proposition 3.3,
it follows that C✷·

N∧BN∃0∗∃1 does not hold in r either, and we are done.
Lemma A.4 implies that Z1,O1 reduce to

Z1
i ≡ BNi (∃0 ∧ ¬✷· ((N ∧ Z0) = ∅)) and
O1
i ≡ BNi (∃1 ∧✷· ((N ∧ Z0) = ∅)).

As the following lemma shows, even further simplification is possible.
Lemma A.5. Let F be any full-information protocol. Then

Rom
F |= BNi (∃0 ∧ ¬✷· ((N ∧ Z0) = ∅))⇔ BNi (∃0∗)

and

Rom
F |= BNi (∃1 ∧✷· ((N ∧ Z0) = ∅))⇔ BNi (¬∃0∗).

Proof. We first need the following claim.
Claim. Rom

F |= (N ∧ Z0) �= ∅ ⇔ ∃0∗.
Clearly, if ∃0∗ holds at (r,m), then there is a 0-chain ending at some nonfaulty

processor j at some point (r,m′) with m′ ≤ m. Then j ∈ (N ∧ Z0)(r,m′′) for all



864 JOSEPH Y. HALPERN, YORAM MOSES, AND ORLI WAARTS

m′′ ≥ m′. Conversely, if j ∈ (N ∧ Z0)(r,m), then BNj (∃∗0) holds at (r,m), and j is
nonfaulty in r. Thus, ∃∗0 holds at (r,m) too. This completes the proof of the claim.

For the first half of the lemma, BNi (∃0∗) clearly implies BNi (∃0). It is immediate
from the claim that Rom

F |= BNi (∃0∗) ⇒ BNi (¬✷· ((N ∧ Z0) = ∅)). For the converse,
the claim implies that Rom

F |= BNi (¬✷· ((N ∧ Z0) = ∅)) ⇒ BNi (¬✷· ¬∃∗0). However,
it should be clear that the only way processor i can believe that ∃0∗ holds at some
point in a run r is if i currently believes ∃0∗ holds.

For the second half of the lemma, note that it is immediate from the claim that
Rom
F |= BNi (∃1 ∧ ✷· ((N ∧ Z0) = ∅)) ⇒ BNi (¬∃0∗). For the converse, suppose that

(Rom
F , r,m) |= BNi (¬∃0∗). Clearly, this means that processor i must have an initial

value of 1 in r, so (Rom
F , r,m) |= BNi ∃1. To see that (Rom

F , r,m) |= BNi (✷· ((N∧Z0) =
∅)), suppose not. Then, by the claim, there is some time m′ such that (Rom

F , r,m′) |=
BNi (∃0∗). Since (Rom

F , r,m) |= BNi (¬∃0∗), we must have m′ > m. However, this
means that i believes at (r,m′) there is a 0-chain with m′ processors. Let im and im+1

be the mth and (m+ 1)st processors in that chain. Processor i must believe at time
m that im is faulty, otherwise we would not have (Rom

F , r,m) |= BNi (¬∃0∗). However,
this means that i would tell im+1 in round m+ 1 that im is faulty, contradicting the
existence of the 0-chain. This completes the proof of the lemma.

From Lemmas A.4 and A.5, we have that

Z1
i ≡ BNi ∃0∗ and
O1
i ≡ BNi ¬∃0∗.

Now we apply the second step of our construction and obtain

Z2
i = BNi (∃0 ∧ C✷·

N∧Z0∃0) and
O2
i = BNi (∃1 ∧ ¬C✷·

N∧Z0∃0).

Thus, F ∗ = FIP(Z∗,O∗). By Theorem 5.2, F ∗ dominates FIP(Z0,O0).
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Abstract. We prove new results on evasiveness of monotone graph properties by extending the
techniques of Kahn, Saks, and Sturtevant [Combinatorica, 4 (1984), pp. 297–306]. For the property
of containing a subgraph isomorphic to a fixed graph, and a fairly large class of related n-vertex
graph properties, we show evasiveness for an arithmetic progression of values of n. This implies a
1
2
n2 −O(n) lower bound on the decision tree complexity of these properties.

We prove that properties that are preserved under taking graph minors are evasive for all suf-
ficiently large n. This greatly generalizes a theorem due to Best, van Emde Boas, and Lenstra [A
Sharpened Version of the Aanderaa–Rosenberg Conjecture, Report ZW 30/74, Mathematisch Cen-
trum, Amsterdam, The Netherlands, 1974] which states that planarity is evasive. We prove a similar
result for bipartite subgraph containment.

Key words. decision tree complexity, monotone graph properties, evasiveness, topological
method, graph property testing

AMS subject classifications. 68Q17, 68Q25
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1. Introduction. Suppose we have an input graph G and are required to decide
whether or not it has a certain (isomorphism invariant) property P . The graph is
given by an oracle which answers queries of the form “Is (x, y) an edge of G?” A
decision tree algorithm for P is a strategy that specifies a sequence of such queries to
the oracle, where each query may depend upon the outcomes of the previous ones,
terminating when sufficient information about G has been obtained to decide whether
or not P holds for G. The cost of such a decision tree algorithm is the worst case
number of queries that it makes. The decision tree complexity of P is the minimum
cost of any decision tree algorithm for P .

Since an n-vertex graph has 1
2n(n − 1) vertex pairs each of which could either

be an edge or not, it is clear that any property of n-vertex graphs has complexity at
most 1

2n(n− 1). If a property happens to have complexity exactly 1
2n(n− 1), then it

is said to be evasive.1

A property of n-vertex graphs is said to be monotone if, starting with a graph
which has the property, the addition of edges does not destroy the property. It is
said to be nontrivial if there exists an n-vertex graph which has the property and one
which does not. Connectedness, nonplanarity, non-k-colorability, and the property of
containing a perfect matching are all examples of nontrivial monotone properties (for
sufficiently large n). Rosenberg [7] attributes to Karp the following conjecture which,
remarkably, remains open even today.

Karp Conjecture. Every nontrivial monotone graph property is evasive.

∗Received by the editors December 5, 2000; accepted for publication (in revised form) August
30, 2001; published electronically January 11, 2002. A preliminary version of this paper appeared
in Proceedings of the 18th International Symposium on Theoretical Aspects of Computer Science,
Dresden, 2001. This work was supported in part by NSF grant CCR-96-23768, NSF grant CCR-98-
20855, and ARO grant DAAH04-96-1-0181.

http://www.siam.org/journals/sicomp/31-3/38200.html
†Department of Computer Science, Princeton University, Princeton, NJ 08544 (amitc@

cs.princeton.edu, khot@cs.princeton.edu, shiyy@cs.princeton.edu).
1Some authors call such properties “elusive” instead of evasive.

866



EVASIVENESS OF SUBGRAPH CONTAINMENT 867

As a first step towards a resolution of this conjecture, Rivest and Vuillemin [6]
proved that such properties have complexity at least n2/16, thereby settling the
Aanderaa–Rosenberg conjecture [7] of an Ω(n2) complexity lower bound. The next
big advance was the work of Kahn, Saks, and Sturtevant [4], where an interesting
topological approach was used to prove that the Karp Conjecture holds whenever n is
a prime power. Triesch [8, 9] used this approach, together with complicated algebraic
constructions, to prove the evasiveness of some special classes of properties: specif-
ically, these papers established evasiveness of graph properties that are always false
when (i) the graph contains either a 3-cycle or a 4-cycle, and when (ii) the graph is
not bipartite, respectively. Similar topological ideas were used by Yao [10] to prove a
related result, namely, that nontrivial monotone bipartite graph properties are always
evasive. Prior to the work of Kahn, Saks, and Sturtevant [4], adversarial strategies
had been devised to prove the evasiveness, for all n, of certain specific graph prop-
erties (see, e.g., [1], [5], and [3, Ch. 8]). These strategies worked for the properties
of acyclicity, connectedness, 2-connectedness, planarity, and simple variants on these.
The most sophisticated of these adversarial strategies was one used by Bollobás [2] to
prove the evasiveness of the property of containing a k-clique, for any k, 2 ≤ k ≤ n.

Let H be any fixed graph. For n-vertex graphs, let QHn denote the property of
containing H as a subgraph (not necessarily as an induced subgraph). From the work
of Bollobás [2] we know that QHn is evasive for all n in the special case when H is
a complete graph. This raises the natural question “What can we say about general
H?”

In this paper, we study this question and some related ones, extending the topo-
logical approach of [4] to a fairly general class of graph properties. For each of these
properties, we draw stronger inferences than [4]. Our main theorem is stated below.

Theorem 1.1 (main theorem). For any fixed graph H there exists an integer
r0 with the following property. Suppose n =

∑r
i=1 q

αi , where q is a prime power,
q ≥ |H|, each αi ≥ 1, and r ≡ 1 (mod r0). Then QHn is evasive.

In order to understand the significance and strength of this theorem, consider the
following statements (proven in this paper). Each of these statements follows either
from the main theorem or from the techniques used in proving it.

1. For any graph H, there is an arithmetic progression such that QHn is evasive
for all n in the progression. Note that this is a much stronger inference than can be
drawn by applying the results of [4].

2. The decision tree complexity of QHn is 1
2n

2 − O(n). This bound does not
follow from the results of [4].

3. If the graph H is bipartite, then QHn is evasive for large enough n.
4. Any n-vertex nontrivial graph property that is preserved under taking graph

minors is evasive for large enough n. This includes lots of very natural graph properties
such as embeddability on any surface, outerplanarity, linkless embeddability in R3,
the property of being a series-parallel graph, etc. Thus, our result generalizes a result
of Best, van Emde Boas, and Lenstra [1], who show that planarity is evasive.

5. Any monotone boolean combination of the properties QHn for several different
graphs H still satisfies our main theorem. Thus, for example, if H1, H2, and H3 are
fixed graphs, then the property of containing as subgraph either H1 or both of H2

and H3 is still evasive for those n which satisfy the conditions of the main theorem.

The remainder of the paper is organized as follows. In section 2 we review the
basics of the topological approach of Kahn, Saks, and Sturtevant [4], establishing a
connection between proving evasiveness of monotone properties and computing Euler
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characteristics of abstract complexes. Then in section 3 we define a certain auxiliary
property of graphs and prove a technical result (called the main lemma) about this
property. This result is then used in section 4 to prove our main theorem. In sec-
tion 5, we provide proofs for the additional results itemized above. We end with some
concluding remarks in section 6.

Notations, terminology, and conventions. We call a graph trivial if it has no edges.
Throughout this paper, all graphs will be assumed to be nontrivial, to have no loops,
and to have no parallel edges. For a graph G, |G| will denote the number of vertices
in G, also called the size of G, V (G) will denote its vertex set, E(G) its edge set,
chr(G) its chromatic number, and clq(G) the size of its largest clique. Graphs which
occur as “input graphs” on which boolean properties are to be tested are assumed
to always be vertex-labeled. All other graphs are assumed to be unlabeled, unless
otherwise specified. When we speak of an “edge” in an input graph, we really mean
an unordered vertex pair which may or may not be an edge.

2. Review of the topological approach. A property of m boolean variables
x1, . . . , xm is a function P : {0, 1}m → {0, 1}; we say that the m-tuple (x1, . . . , xm)
has (or satisfies) property P if P (x1, . . . , xm) = 1. We say that P is monotone if for
every m-tuple (x1, . . . , xm) that satisfies P , increasing any xi from 0 to 1 yields an m-
tuple that also satisfies P . We say that P is evasive if any decision tree algorithm for
P has cost m. In our study of graph properties, the variables will be unordered pairs
of vertices (i.e., potential edges of the graph) and P will be required to be invariant
under relabelings of the graph.

Let [m] denote the set {1, 2, . . . ,m} and consider the collection of subsets S ⊆ [m]
with the following property: setting the variables indexed by S to 1 and those indexed
by [m] \ S to 0 yields an m-tuple which does not satisfy P . Since P is monotone,
this collection of sets is downward closed under set inclusion. Recall that such a
downward closed collection of sets is called an abstract complex and that the sets in
this collection are called the faces of the complex. This observation motivates the
following definition.

Definition 2.1. If P is monotone, then the abstract complex associated with P ,
denoted ∆(P ), is defined as follows:

∆(P ) = {S ⊆ [m] : If xi = 1⇐⇒ i ∈ S, then (x1, . . . , xm) does not satisfy P}.

Associated with an abstract complex ∆ is a topologically important number called
its Euler characteristic which is denoted χ(∆) and is defined as follows:

χ(∆) =
∑

∅�=F∈∆

(−1)|F |−1.(1)

Kahn, Saks, and Sturtevant [4] showed that nonevasiveness of P has topological
consequences for ∆(P ). The following theorem is implicit in their work.

Theorem 2.2 (Kahn, Saks, and Sturtevant [4]). If the monotone property P is
not evasive, then χ(∆(P )) = 1.

For our result, we shall need to use a stronger theorem which can also be found
in [4]. Let ∆ be an abstract complex defined on [m] and let Γ be a finite group which
acts on the set [m], preserving the faces of ∆. The action partitions [m] into orbits,
say A1, . . . , Ak. We use the action of Γ to define another abstract complex ∆Γ on [k]
as follows:
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∆Γ =

{
S ⊆ [k] :

⋃
i∈S
Ai ∈ ∆

}
.(2)

Sometimes, as is the case with our work, it is not easy to say much about ∆(P )
for a monotone property P . However, it is possible to find some group Γ such that its
action produces a more understandable abstract complex (∆(P ))Γ. The next theorem,
the most important tool in [4], says that if Γ has certain rather restrictive properties,
then nonevasiveness of P has a topological consequence on this new complex.

Theorem 2.3 (Kahn, Saks, and Sturtevant [4]). Suppose Γ has a normal sub-
group Γ1 which is such that |Γ1| is a prime power and the quotient group Γ/Γ1 is
cyclic. Then if P is not evasive, we have χ((∆(P ))Γ) = 1.

An application of this result leads to the following theorem which is the main
result of [4].

Theorem 2.4 (Kahn, Saks, and Sturtevant [4]). Let Pn be a nontrivial monotone
property of n-vertex graphs. If n is a prime power, then Pn is evasive.

In order to derive Theorem 2.4 from Theorem 2.3, Kahn, Saks, and Sturtevant [4]
construct a group which acts on the vertices of the input graph and thus, indirectly, on
the edges. The number theoretic constraint on n is a consequence of the fact that this
action depends crucially on being able to view the vertices of the graph as elements
of a finite field. Our approach to proving evasiveness for more general n will be to
devise a more sophisticated group action. Before we do so, we will need an auxiliary
result which we shall establish in the next section.

3. The main lemma. Consider the following operation on a graph G. Let the
vertices of G be colored, using all the colors in some set C, so that no two adjacent
vertices get the same color. Let G′ be a graph with vertex set C where two distinct
vertices c1, c2 ∈ C are adjacent iff the coloring assigns colors c1 and c2 to the end
points of some edge in G. We shall call G′ a compression of graph G induced by
coloring C. If there exists a C which induces a compression G′ of G, we shall write
G′ ✁G.

Definition 3.1. A family F of graphs is said to be closed under compression if
for graphs G,H such that G ∈ F and H ✁G we have H ∈ F .

Let F be a nonempty finite family of (nontrivial) graphs that is closed under
compression. The property PFn that an input graph G on n vertices contains some
member of F as a subgraph is clearly nontrivial, for n large enough, and monotone.
Let ∆Fn be the abstract complex associated with this property and let χn = χ(∆

F
n )

be the Euler characteristic of this complex.
The purpose of this section is to establish that for any such family F , we have

χn �= 1 infinitely often. Let us set
T = 22

t

, where t is the smallest integer such that T ≥ min
F∈F
|F |.(3)

We shall prove the following lemma.
Lemma 3.2 (main lemma). If n ≡ 1 (mod T − 1), then χn ≡ 0 (mod 2).
Since we care only about χn mod 2, we can use the fact that addition and sub-

traction are equivalent mod 2 in (1) to get2

χn ≡ #{G : G is nontrivial and does not satisfy PFn } (mod 2).(4)

2Note that we are counting not graphs, but labeled graphs.
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Consider n-vertex input graphs with vertices labeled with integers from 0 to n −
1. For n > T , let us define a group action on such graphs as follows. For a, b ∈
{0, 1, 2, . . . , T − 1} and a odd, let permutation φa,b be defined by mapping vertex i
to vertex (ai + b) mod T for i ∈ {0, 1, . . . , T − 1}. The other n − T vertices are left
fixed. It is routine to check that the set of all these permutations forms a group
Φ under composition, thereby defining a group action on the labeled vertices. This
action induces an action on graphs in the obvious manner, thereby partitioning the
set of all labeled n-vertex graphs into orbits. Since the order |Φ| of the group is T 2/2,
a power of 2, each orbit has size a power of 2. Therefore, (4) can be modified to

χn ≡ #

{
G :

G is nontrivial, invariant under

Φ and does not satisfy PFn

}
(mod 2).(5)

The action of Φ on the vertices also induces an action on edges (or rather, on
unordered pairs of distinct vertices, each of which may or may not be an edge), not to
be confused with the action on labeled graphs mentioned above. Therefore the set of
edges amongst vertices 0, 1, . . . , T −1 is partitioned into orbits. Since any odd integer
is invertible mod T , we get 2t orbits E0, E1, . . . , E2t−1, where

Ei = {(x, y) : 0 ≤ x < y < T, y − x = 2ik for some odd number k} .(6)

LetG be an invariant graph. From now on, let us refer to the vertices 0, 1, . . . , T−1
as left vertices and the rest as right vertices. Let Gleft and Gright denote the subgraphs
of G induced by the left and right vertices, respectively. By invariance of G, the set
of right vertices adjacent to any left vertex is the same for each left vertex; let R(G)
denote this set. Also, the set of edges E(Gleft) is the union of a certain number of the
orbits Ei; let orb(G) denote this number. We shall show that whether or not G has
the property PFn is completely determined once Gright,R(G) and this number orb(G)
are fixed; the specific Gleft does not matter.

Lemma 3.3. For any invariant G, we have chr(Gleft) = clq(Gleft) = 2
orb(G).

Proof. Let I ⊆ {0, 1, . . . , 2t − 1} be such that E(Gleft) =
⋃
i∈I Ei; then we have

|I| = orb(G). Consider two vertices x, y of Gleft. If their binary representations agree
on the bit positions indexed by I, then x − y = ∑

i∈I′ ±2i for some set I ′ disjoint
from I. By (6), this implies (x, y) /∈ E(Gleft). Therefore, the vertices of Gleft can be
partitioned into 2|I| independent sets; thus chr(Gleft) ≤ 2orb(G). On the other hand, if
x, y are such that the bits in positions outside I are all zero, then x− y =∑i∈I′′ ±2i
for some I ′′ ⊆ I, which by (6) implies that (x, y) ∈ E(Gleft). Therefore, Gleft has a
clique of size 2|I| = 2orb(G). The lemma follows.

Lemma 3.4. Let G1, G2 be two invariant n-vertex labeled graphs with G1,right =
G2,right, R(G1) = R(G2), and orb(G1) = orb(G2). Then G1 has property PFn iff G2

does.
Proof. Suppose G1 has property P

F
n ; we shall show that G2 does too. Suppose

G1 contains F ∈ F as a subgraph. We fix a particular occurrence of F within G1 so
that we can talk about Fleft, Fright and R(F ) := R(G1) ∩ V (F ).

Using Lemma 3.3 and the hypothesis, we obtain chr(Fleft) ≤ chr(G1,left) =
clq(G2,left). Let h = chr(Fleft); from the above inequality it is clear that G2,left

contains Kh as a subgraph. Fix a particular occurrence of Kh and, starting with the
graph Fright, connect each of the h left vertices in this occurrence to each vertex in
R(F ). Let F ′ be the resulting graph. Since R(F ) ⊆ R(G1) = R(G2) and since Fright

is a subgraph of G1,right = G2,right, it follows that F
′ is a subgraph of G2.
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Consider the following coloring of the graph F : we use h colors for its left vertices
and color each right vertex with a distinct color, never using any of these h colors.
Let F ′′ ✁ F be the compression of F induced by this coloring. It is not hard to see
that F ′′ is a subgraph of F ′ and therefore of G2. Since F is closed under compression,
F ′′ ∈ F . Therefore G2 has property P

F
n .

Lemma 3.5. For n ≥ T = 22t

, we have χn ≡ χn−T+1 (mod 2).
Proof. Let k be a fixed integer with 0 ≤ k ≤ 2t. Recall that the group action

induced on the edges creates 2t orbits. Consider the family of all n-vertex invariant
graphs G with R(G) and Gright fixed, and orb(G) = k. By Lemma 3.4, either all
graphs in this family have property PFn or none of them does. The size of this family

is
(
2t

k

)
which is even if k �= 0 and k �= 2t. If k = 2t, Gleft is a complete graph, and so

G contains a clique of size T . From (3), we see that G has property PFn . Therefore,
by (5),

χn ≡ #

{
G :

orb(G) = 0 and G is nontrivial,

invariant, and does not satisfy PFn

}
(mod 2).(7)

Suppose we take such a G with orb(G) = 0 and collapse all its left vertices into one
vertex which we connect to every vertex in R(G) and to no others, thereby yielding
a graph Ĝ. This gives a bijection from n-vertex invariant graphs G with orb(G) = 0
to (n− T + 1)-vertex graphs.

It is clear that if Ĝ has property PFn−T+1, then G has property P
F
n . Now suppose

G has property PFn and let F ∈ F be a subgraph of G. Since orb(G) = 0, the vertices
in Fleft form an independent set; thus we may color them all with one color and then
color each remaining vertex of F with a distinct color different from the one just used.
This coloring produces a compression F̂ ✁ F which clearly is a subgraph of Ĝ. Since
F is closed under compression, we have F̂ ∈ F and so Ĝ has property PFn−T+1. Thus
our bijection respects the relevant property and this completes the proof.

We now have all the pieces needed for the following proof.
Proof of Lemma 3.2. Set n = T = 22

t

. The only way for an n-vertex graph to
have orb(G) = 0 is for it to have no edges. Using (7), this implies χT ≡ 0 (mod 2).
Invoking Lemma 3.5 completes the proof.

4. Proof of the main theorem. We now return to proving Theorem 1.1. Ac-
cording to the theorem’s hypotheses

n =

r∑
i=1

qαi ,(8)

where q is a prime power, q ≥ |H|, each αi ≥ 1, and r ≡ 1 (mod r0). Our goal is to
show that QHn is evasive under these hypotheses for some choice of r0.

The chief difficulty in applying the topological approach outlined in section 2 lies
in having to construct a group action natural enough for the property under consid-
eration and satisfying the stringent conditions on the underlying group necessary for
Theorem 2.3 to apply. In this section we shall come up with a group action that allows
us to “merge together” big clusters of vertices in our graph, in the process changing
the property under consideration from QHn to P

F
r for some family F of graphs, r being

as in (8).
We partition the vertex set of our n-vertex graph into clusters V1, . . . , Vr, with

|Vi| = qαi , and identify vertices in Vi with elements of the finite field Fqαi . Define a
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permutation group Γ on the vertices as follows:

Γ = {〈a, b1, b2, . . . , br〉 : a ∈ F∗q , bi ∈ Fqαi} ,(9)

where 〈a, b1, b2, . . . , br〉 denotes a permutation which sends x ∈ Vi = Fqαi to ax+ bi ∈
Vi. Let Γ1 = {〈1, b1, . . . , br〉 : bi ∈ Fqαi}. It is easy to check that Γ1 is a normal
subgroup of Γ, |Γ1| = qα1+···+αr , a prime power, and Γ/Γ1

∼= F∗q , a cyclic group. Thus
Γ satisfies the hypotheses of Theorem 2.3.

As in section 3, the action of Γ induces a group action on the edges and thus
partitions the edges into orbits. Let A denote the set of these orbits and let ∆ =
∆(QHn ) denote the abstract complex associated with property Q

H
n . Define a complex

∆Γ on A as in (2):

∆Γ =

{
D ⊆ A :

⋃
A∈D

A ∈ ∆
}
.(10)

Our intention is to show that the Euler characteristic χ(∆Γ) �= 1. By Theorem 2.3,
evasiveness of QHn will follow. To this end, let us investigate what the faces of ∆Γ

look like. Call an edge an intracluster edge if both its end points lie in the same Vi
for some i; otherwise, call the edge an intercluster edge.

Lemma 4.1. An orbit containing an intracluster edge is not contained in any face
of ∆Γ.

Proof. Let A ∈ A be the orbit of the intracluster edge (u, v), u, v ∈ Vi. Then
A = {(au+ b, av+ b) : b ∈ Fqαi , a ∈ F∗q}. Set w = v− u. Then (0, w) ∈ A. Consider
the set of vertices X = {wz : z ∈ Fq}. For 0 �= x ∈ X we clearly have (0, x) ∈ A.
Thus for any pair of distinct vertices x1, x2 ∈ X, we have (0, x2 − x1) ∈ A, whence
(x1, x2) ∈ A. So A contains all edges among vertices in X. Since |X| = q ≥ |H|,
the orbit A contains H as a subgraph. By definition, ∆ cannot contain a face that
includes A and so no face of ∆Γ can contain A.

If u ∈ Vi, v ∈ Vj , i < j, then the orbit of the intercluster edge (u, v) is the set Eij
of all edges between Vi and Vj . Let E = {Eij | i < j} ⊆ A. From the preceding lemma
and (10) it is clear that

∆Γ =

{
D ⊆ E :

⋃
A∈D

A ∈ ∆
}
.(11)

Let D be any subset of E . Then GD =
⋃
A∈D A is a graph on n vertices with no

intracluster edges and such that if i �= j, the edges between Vi and Vj are either all
present or all absent. Define a graph ĜD on r vertices v1, . . . , vr such that (vi, vj) is
an edge iff all edges between Vi, Vj are present in GD.

Let TH denote the family of all graphs Ĥ such that Ĥ ✁H. It is easy to check
that TH is closed under compression (refer to Definition 3.1). The following lemma is
simple to prove and connects this section with section 3.

Lemma 4.2. H is a subgraph of GD iff there is a Ĥ ∈ TH such that Ĥ is a
subgraph of ĜD. In other words, GD satisfies QHn iff ĜD satisfies P THr .

Proof. Suppose H is a subgraph of GD. Consider the following coloring of GD: all
vertices in a cluster are colored the same and no two clusters use the same color. This
is a valid coloring since each cluster of vertices is an independent set. This coloring
induces a coloring of H which in turn induces a compression Ĥ ✁H. Clearly, this Ĥ
is a subgraph of ĜD.
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Now suppose Ĥ ✁H is a subgraph of ĜD. Consider the graph H1 with vertices
in ∪ri=1Vi formed by taking all edges in Eij whenever vi and vj are adjacent in Ĥ.
Since each |Vi| ≥ q ≥ |H|, a straightforward argument shows that H is a subgraph of
H1, and therefore of GD.

We are ready to prove our main theorem.
Proof of Theorem 1.1. Suppose QHn is not evasive. From Theorem 2.3, we have

χ(∆Γ) = 1. If r = 1, there is only one cluster, so by Lemma 4.1 we have ∆Γ = {∅},
whence χ(∆Γ) = 0, a contradiction. Therefore r > 1. Equation (11) and Lemma 4.2
imply that there is a one-to-one correspondence between faces of ∆Γ and nontrivial
r-vertex graphs not satisfying property P THr . Hence the abstract complex ∆Γ is the
same as the abstract complex ∆THr defined in section 3. It follows from the definition
of compression that TH contains the complete graph on chr(H) vertices and contains

no smaller graph. Therefore, (3) yields t = �lg lg chr(H)�. Setting r0 = 22t − 1 and
applying Lemma 3.2 we have χ(∆THr ) �= 1 and so χ(∆Γ) �= 1, a contradiction.

5. Consequences and extensions. Our techniques enable us to prove certain
results with “cleaner” statements than our main Theorem 1.1; we prove four such
results below. The first two are simple corollaries of Theorem 1.1 while the other
two can easily be proved using the machinery of its proof. Finally, we present an
interesting generalization of our main theorem.

Theorem 5.1. For any graph H there exist infinitely many primes p with the
following property: for all sufficiently large n divisible by p, the property QHn is eva-
sive.

Remark. Note that this establishes the evasiveness of QHn for an arithmetic pro-
gression of values of n.

Proof. Choose an integer t such that T = 22
t

is at least |H|. By Dirichlet’s
theorem there exist infinitely many primes p such that p ≡ 2 (mod T − 1). Fix one
such p ≥ T and pick any n ≥ p2(T − 1) divisible by p. Now p− 1 is relatively prime
to T − 1; therefore there is an integer x such that x(p − 1) ≡ n/p − 1 (mod T − 1)
and 0 ≤ x < T − 1. From the lower bound on n we have n/p− px > 0. Therefore we
can write

n =
x∑
i=1

p2 +

n/p−px∑
i=1

p,

which is an expression of n as a sum of powers of p. The number of summands in
this expression is x + n/p − px ≡ 1 (mod T − 1). Since p ≥ T ≥ |H|, we can apply
Theorem 1.1 to conclude that QHn is evasive.

Corollary 5.2. For any graph H there exists a constant c = c(H) such that for
all sufficiently large n, the decision tree complexity of QHn is at least 1

2n
2 − cn.

Theorem 5.3. If the graph H is bipartite, then QHn is evasive for all sufficiently
large n.

Proof. Since chr(H) = 2, in the proof of Theorem 1.1, using the notation of
that proof, we may take t = 0 which gives r0 = 1. The condition r ≡ 1 (mod r0) is
now trivially satisfied. The condition on n becomes a simple requirement that n be
divisible by a prime power q ≥ |H|. However, if n is sufficiently large, then it clearly
satisfies this condition.

Theorem 5.4. LetM be an infinite minor-closed family of graphs that does not
include all graphs. For n-vertex graphs, let RMn be the property of being in M. Then
RMn is evasive for all sufficiently large n.
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Remark. Planarity was already known to be evasive [1]. This result is a major
generalization. However, it is not the strongest possible generalization to “minor-
closed” properties, since planarity has been proven evasive whenever n is large enough
for it to be a nontrivial property (i.e., n ≥ 5).

Proof. Let H be a graph not in M with minimum size and let h = |H|. Then
H is a minor of both the complete graph Kh and the complete bipartite graph Kh,h;
therefore no graph inM can contain either Kh or Kh,h as a subgraph.

Suppose n is divisible by a prime power q ≥ h, a condition that always holds if n
is sufficiently large. Following the argument of section 4 we divide the labeled vertices
of the candidate graph G into clusters of size q and consider the orbits of the edges
created by the action of the group Γ described there. Let ∆ be the abstract complex
associated with the negation3 of RMn . An orbit containing an intracluster edge cannot
be included in a face of ∆Γ because its edges, if present, would create a Kq subgraph.
An orbit containing an intercluster edge cannot be included either because its edges,
if present, would create a Kq,q subgraph. Thus, ∆Γ = {∅} and so χ(∆Γ) = 0 �= 1. By
Theorem 2.3, the negation of RMn is evasive and therefore so is RMn .

The next theorem generalizes our main theorem and can be proved essentially
using the same argument as that for the main theorem.

Theorem 5.5. Let f : {0, 1}k → {0, 1} be a nontrivial monotone boolean func-
tion and let H1, . . . , Hk be arbitrary graphs. Define the composite property Qn =
f(QH1

n , . . . , Q
Hk
n ). Then there exists an integer r0 with the following property. Sup-

pose n =
∑r
i=1 q

αi , where q is a prime power, q ≥ max1≤i≤k |Hi|, each αi ≥ 1, and
r ≡ 1 (mod r0). Then Qn is evasive.

Remark. This theorem shows, for instance, that properties like “G either contains
H1 as a subgraph or else contains bothH2 andH3 as subgraphs” are evasive for several
values of n. This theorem has corollaries similar to Theorem 5.1 and Corollary 5.2.

6. Concluding remarks. The major open question in the area of decision tree
complexity of graph properties is to settle the Karp Conjecture. The pioneering
work of Kahn, Saks, and Sturtevant [4] has given us a possible direction to follow
in attempting to settle this conjecture. Our work takes steps in this direction by
extending their topological approach to prove stronger results for a fairly general
class of graph properties.

An obvious open question raised by our work is “How far can one enlarge the
set of values of n for which our results hold?” We conjecture that in the notation of
section 3, we have χn �= 1 for large enough n. If proved true, this conjecture would
remove all number theoretic restrictions in the main theorem.
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Abstract. We give a new definition of resource bounded measure based on compressibility of
infinite binary strings. We prove that the new definition is equivalent to the one commonly used.
This new characterization offers us a different way to look at resource bounded measure, shedding
more light on the meaning of measure zero results and providing one more tool to prove such results.
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result. We then show how this new characterization can be used to prove that the class of linear
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1. Introduction. While Lebesgue measure has been used in mathematics since
the previous century, and while it has been used earlier this century to study ran-
domness in infinite strings [19], its notable appearance in complexity theory is in the
formalization of “random oracles.” Bennett and Gill [5] showed, for example, that
relative to a random oracle A, PA �= NPA. The statement about the random oracle is
formalized as follows: the class of sets A such that PA = NPA has Lebesgue measure
zero.

When dealing with uncountable classes, measure zero is an intuitively appealing
concept to formalize the idea that sets having a certain property are rare. But the
concept seems to fall apart when dealing with countable classes, since all of these have
Lebesgue measure zero. For example, how would we formalize the statement “most
recursive oracles separate P from NP”?

In order to formalize this kind of statement, Lutz introduced resource bounded
measure [14]. A more useful definition based on resource bounded martingales ap-
peared in [15]. With resource bounded measure, one is able to formally state results
of the type “most languages in class C have property P .” These notions turned out
to be quite useful in complexity, as witnessed by a stream of results in recent years
(for example, see [9, 10, 16, 18, 17, 3, 4, 1]).

In this paper, we offer a different definition of resource bounded measure, equiva-
lent to that of Lutz in [15]. We say that a set is t(n)-compressible if its characteristic
sequence can be compressed and uncompressed in time t(n). The precise definition
is given in section 4. A class of sets has p-measure zero if all the sets in the class are
nk-compressible for some fixed k. This new characterization has several advantages.
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(i) This new characterization may allow more intuitive proofs of results about
resource bounded measure.

(ii) A result claiming that a class of set does not have p-measure zero is usually
seen as an abundance result. How should this abundance be interpreted? The new
characterization explains in a precise way what is meant: the sets in the class cannot
all be compressed with a fixed polynomial-time bound.

(iii) While the martingale characterization was not directly applicable to classes
below E, Mayordomo [21] gave a definition applicable to PSPACE, and Allender and
Strauss [1] gave a definition applicable to P and other subexponential classes. Further
related work on this can be found in [24, 8]. Although similar technical problems arise
with our definition, it may offer other alternatives for defining measures applicable to
subexponential classes.

A corollary of the proof of equivalence is as follows: a class C has p-measure zero
in E if and only if all the sets in C are nk-compressible for some fixed k. The nk-
compressible sets form a proper hierarchy, and E is not included in any fixed level of
that hierarchy. Moreover, if we define Comp(nk) as the class of sets in E that are nk-
compressible, then E = ∪k Comp(nk). So the abundance meaning can be understood
as follows: a class of sets X has p-measure 0 in E if and only if X ∩ E is included in
a fixed level of that hierarchy, while the hierarchy is itself infinite.

It should be noted that equivalence between a classical constructive measure and a
definition based on Kolmogorov complexity has been studied in the context of random
sequences. Martin-Löf’s definition of random sequences [19] based on constructive
measure is equivalent to a subsequent definition using incompressibility in the sense
of a version of prefix Kolmogorov complexity due to Levin [12]. See also Schnorr [22]
for a similar theorem. We refer the reader to the book by Li and Vitányi [13] for a
more detailed account.

There is also a way to define compressibility in the nonuniform context and prove
that Lebesgue measure zero is equivalent to that kind of compressibility [11].

Next we will use the new characterization to prove the following results:

(i) The class of c · n autoreducible sets has p-measure 0.
(ii) The class of sets that are polynomial-time truth-table reducible to a p-

selective set has p-measure 0. It follows immediately that there is no p-selective set
that is hard for E under polynomial-time truth-table reductions.

(iii) The class of sets that are Turing reducible to a set with subpolynomial
density has p-measure 0. This strengthens the results in [6].

2. Preliminaries. Let Σ = {0, 1}. Strings are elements of Σ∗and are denoted
by lower case letters x, y, u, v, . . .. Infinite strings are elements of Σ∞ and are denoted
by lower case Greek letters. The empty string is λ. For any string x, the length
of a string is denoted by |x|, x[i..j] is the substring of x from index i to index j
inclusively, x[i] stands for x[i..i], x = x[0..|x| − 1], and if j < i, then x[i..j] is λ.
For two strings x and y, x 
 y if y is an extension of x. Subsets of Σ∗ are denoted
by capital letters A,B,C, S, . . .. The set Σ∗ − A is denoted by A. The complement
of a class of sets X is Xc = {A ⊆ Σ∗|A �∈ X}. For a set A we use A=n(A≤n) to
denote the subset of all strings in A having length equal to n (≤ n, resp.). We use
χA to denote the infinite binary string where bit i is 1 if and only if string xi ∈ A,
for a standard enumeration {xi} of finite binary strings. With any infinite binary
string, we can associate a real between 0 and 1 through the natural binary expansion.
This mapping is one-to-one except on multiples of powers of 2 (dyadic rationals or
dyadic numbers). With each finite binary string x, we can associate an interval Ix
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that corresponds to the set of all reals associated with possible infinite extensions of
x. In this paper, intervals over the reals are half-open intervals, so Ix excludes its
right boundary. For an interval I over the reals, µ(I) is the length of the interval.
For any set A, the cardinality of A is denoted by ||A||. We define Cw, the cylinder
generated by w, as the class of languages {α ∈ Σ∞|w 
 α}. We fix a pairing function
λxy.〈x, y〉 that is computable in polynomial time from Σ∗ × Σ∗ to Σ∗. Without loss
of generality, we assume that the pairing function respects the length of its arguments
(i.e., |x|+ |y| ≤ |〈x, y〉| ≤ 2(|x|+ |y|)). We assume that the reader is familiar with the
standard Turing machine model. The class p is the class of all polynomials.

3. Resource bounded measure. We use the definition of resource bounded
measure based on martingales.

Let D = {m2−n|m,n ∈ N} be the set of nonnegative dyadic rationals.
Definition 1. A martingale is a function d : Σ∗ → D with the property that, for

all w ∈ Σ∗,

d(w) =
d(w0) + d(w1)

2
.

Definition 2. A martingale succeeds on language A ⊆ Σ∗ if

lim sup
n→∞

d(χA[0..n− 1]) =∞.

A martingale d is p-computable, and we call it a p-martingale, if d(w) can be
computed in time polynomial in |w|.

The intuition behind this definition is a game where a player is trying to predict
the next bit by looking at all the bits that have been produced so far. The player
starts with an initial capital d(λ) and can decide to bet an amount of money which
is at most the current capital. If the predicted bit is correct, the capital increases by
the amount bet, and if it’s incorrect, the capital decreases by that same amount. The
function d models the current capital of the betting strategy after having seen a finite
binary string.

Lutz [15] defined a martingale to give a real value and required computations
of the martingale to approximate the real value by using dyadic rationals. But,
as shown independently by Mayordomo [21] and by Juedes and Lutz [10], defining
the martingale directly with the dyadic rationals provides an equivalent definition of
resource bounded measure. Moreover, without loss of generality, we may assume that
d(w) is a dyadic number m2−n such that n < |w|.

Definition 3. A class X of languages has p-measure 0, and we write µp(X) = 0,
if there is a p-martingale d that succeeds on every element of X.

Definition 4. A class X of languages has p-measure 1, and we write µp(X) = 1,
if µp(X

c) = 0.

4. Compressibility. Compressibility of finite strings is usually defined using
Kolmogorov complexity. There are various problems in defining compressibility of in-
finite strings in terms of the Kolmogorov compressibility of its prefixes, mainly because
no string has all of its prefixes completely incompressible. We define compressibility
of an infinite string by using another infinite string that can generate it, with the
compressibility calculated as the amount of the prefix of the compressed string that
is needed to reproduce a prefix of the uncompressed string. For the time bounded
version, we also need that the compressed string can be efficiently computed, at least
in some weak sense.
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Results in this paper are in terms of p-measure, which is appropriate for studying
abundance with respect to E. The obvious extension to p2, the class of functions of
the form 2logc n and EXP also holds.

Definition 5. An infinite string ω ∈ {0, 1}∞ is f-compressible if ∃κ ∈ {0, 1}∞
such that the following conditions hold.

1. (Uncompression) There is a Turing machine M that, given κ[0..j], outputs
a prefix ω[0..i] of ω in time at most f(i+ j), such that the value i− j is not bounded
by any constant.

2. (Compression) There is a Turing machineM ′ that, given ω[0..i], uses at most
f(i) time to output a finite number of strings, one of which is a prefix κ[0..j′] such
that M , on input κ[0..j′], outputs a prefix of ω that is a proper extension of ω[0..i]
consistent with ω.

(Note: We could also add the restriction have that i − j′ is not bounded by any
constant. By the composition of uncompression and compression, it would turn out
to be an equivalent definition.)

We show in section 5 (Theorem 7) that

µp(C) = 0 ⇒ (∃f ∈ p)(∀A ∈ C) χA is f -compressible,

and in section 6 (Theorem 9) that

(∃f ∈ p)(∀A ∈ C) χA is f -compressible⇒ µp(C) = 0.

These two theorems together show that the definition of p-measure zero in terms
of our compressibility definition is equivalent to that of Lutz in [15].

5. Measure zero implies compressibility. We have defined measure zero
using basic martingales. We will need a few more properties of the martingales to
prove that measure zero implies compressibility. The following shows that such special
properties can be assumed without loss of generality.

Lemma 6. If µp(C) = 0, then there exists a p-martingale d that succeeds on every
element of C and satisfies the following properties:

1. d(λ) = 1,
2. d(x) is a dyadic number m2−n such that n ≤ |x|+ 4,
3. (∀x, y) d(x)/4 ≤ d(xy), where y is a finite binary string,
4. (∀x, b) d(xb) ≤ (7/4)d(x), where b is a bit.
Proof. Let d be a martingale witnessing that µp(C) = 0. Define a martingale d′

in the following way. Given a finite string x, let i0 = −1, and for k ≥ 1, let ik be the
smallest integer, if it exists, such that

d(x[0..ik])

d(x[0..ik−1])
≥ 2.

Define

d′(λ) = 1,

d′(x) = d′(x[0..ik])− 1/4 + (1/4)d(x)/d(x[0..ik]),

where k is the largest integer such that

x[0..ik] is a proper prefix of x.

Informally, d′ starts with $1.00 on λ, and its betting strategy on successively
longer prefixes of the characteristic function of a set A is to keep part of its capital
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frozen and use the rest to bet in proportion with the d strategy. The amount of frozen
capital is revised each time d has doubled its capital. At that time, all the capital is
frozen except for $0.25, which is kept for betting. Each time d is doubled, d′ earns
$0.25. If d is successful on A, the doubling occurs infinitely often, so d′ is unbounded
as well, and is thus successful.

Although d′ does not meet property 2 of the lemma, we show next that it meets
stronger versions of properties 3 and 4:

(i) (∀x, y) (3/5)d′(x) ≤ d′(xy), where y is a finite binary string,
(ii) (∀x, b) d′(xb) ≤ (7/5)d′(x), where b is a bit.

To see this, let k1 be the largest integer such that xy[0..ik1 ] is a (not necessarily
proper) prefix of xy, where indices ik are defined as above. Similarly, let k2 be
the largest integer such that x[0..ik2 ] is a (not necessarily proper) prefix of x. If
xy = xy[0..ik1 ], then the first equality below holds trivially. Otherwise, it holds by
the definition of d′. A similar argument goes for the second equality:

d′(xy) = d′(xy[0..ik1 ])− 1/4 + (1/4)d(xy)/d(xy[0..ik1 ]),

d′(x) = d′(xy[0..ik2 ])− 1/4 + (1/4)d(x)/d(xy[0..ik2 ]).

Now, notice that for any x, the function f(k) = d(x[0..ik]) is monotonically
increasing, so d(x[0..ik1 ]) ≥ 1. Notice also that d′(xy[0..ik2 ]) ≤ d′(xy[0..ik1 ]) because
ik2 ≤ ik1 and by monotonicity. Finally, notice that d(x)/d(x[0..ik2 ]) < 2, because if
it were ≥ 2, then k2 would not, by our definition, be the largest of indices ik. With
these observations, we can derive

d′(xy)− (3/5)d′(x) = d′(xy[0..ik1 ])− 1/4 + (1/4)d(xy)/d(xy[0..ik1 ])

−(3/5)d′(xy[0..ik2 ]) + 3/20− (3/20)d(x)/d(x[0..ik2 ])

≥ d′(xy[0..ik2 ])− 1/4 + (1/4)d(xy)/d(xy[0..ik1 ])

−(3/5)d′(xy[0..ik2 ]) + 3/20− (3/20)d(x)/d(x[0..ik2 ])

= (2/5)d′(xy[0..ik2 ])− 1/4 + (1/4)d(xy)/d(xy[0..ik1 ])

+3/20− (3/20)d(x)/d(x[0..ik2 ])

≥ 2/5− 1/4 + 0 + 3/20− (3/20) ∗ 2
= 0.

The other property can be proved in a similar fashion. Let k1 be the largest integer
such that x[0..ik1 ] is a (not necessarily proper) prefix of x. Then

d′(xb) = d′(xb[0..ik1 ])− 1/4 + d(xb)/4d(x[0..ik1 ]),

d′(x) = d′(xb[0..ik1 ])− 1/4 + d(x)/4d(x[0..ik1 ]),

and we can conclude that

d′(xb)− (7/5)d′(x) = d′(xb[0..ik1 ])− (7/5)d′(xb[0..ik1 ])− 1/4 + 7/20

+d(xb)/4d(x[0..ik1 ])− (7/20)d(x)/d(x[0..ik1 ])

≤ −(2/5)d′(xb[0..ik1 ]) + 1/10 + 2d(x)/4d(x[0..ik1 ])

−(7/20)d(x)/d(x[0..ik1 ])
≤ −(2/5) + 1/10 + (3/20)d(x)/d(x[0..ik1 ])

≤ −(2/5) + 1/10 + 3/10

= 0.
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Now, define martingale d′′ as follows. Define d′′(λ) = 1. If d′(x) > d′(x̃), where
x̃ is x where the last bit is flipped from 0 to 1 or from 1 to 0, then d′′(x) is the
value d′(x) approximated downwards to the closest dyadic number of the form m2−n,
where n ≤ |x| + 4. Otherwise, it is approximated upwards. The loss of capital for
d′′ compared to d′ is at most 2−|x|−4 when betting on x, which totals to at most
Σ∞i=11/2

i+4 = 1/16 cumulatively. Also, because d′(λ) = 1 for all y, d′(y) ≥ 3/5, so
for all y, (15/16)d′(y) ≤ d′′(y) ≤ (17/16)d′(y). Combining this and the property of d′

above, we get all properties 1, 2, 3, and 4 of the lemma.
Theorem 7. µp(C) = 0⇒ (∃f ∈ p)(∀A ∈ C) χA is f-compressible.
Proof. Assume that µp(C) = 0 and let d be a p-martingale as in Lemma 6. Let

A ∈ C and let ω = χA. If A is finite or cofinite, then χA is obviously f -compressible,
so without loss of generality, assume A is neither finite nor cofinite. We need an
infinite string κ to encode ω. We can interpret ω as the encoding of a real in the
half-open interval [0, 1). In the following arguments, all intervals have a boundary at
dyadic numbers. Since we assume A is neither finite nor cofinite, ω is not the binary
expansion of a dyadic number, so its binary expansion will never fall on the extremity
of any interval. In a standard encoding, all infinite strings starting with 0 encode
reals in the first half of the interval, and strings starting with 1 encode reals in the
right half of the interval. We will create an encoding scheme that possibly moves this
halfway border. If d(0) > d(1), then the binary expansion of reals in an interval larger
than 1/2 will be used to encode reals between 0 and 0.5. Similarly, if d(x0) > d(x1),
then the size of the interval reserved to encode reals that extend x0 will be larger
than that of extensions of x1. The idea is to keep an interval of reals to encode
extensions such that the size of the interval is proportionally related to the current
capital with the current betting strategy of the martingale. Intuitively, large intervals
can be described with few bits, so a winning strategy will result in compression.

More formally, let g be a function from finite binary strings to half-open intervals
in [0, 1) defined as follows:

g(λ) = [0, 1),

g(x0) = the left part of g(x) of size d(x0)/2|x0|,
g(x1) = g(x)− g(x0).

The following lemma has a straightforward proof by induction on the length of
the strings. The proof is omitted.

Lemma 8. µ(g(x)) = d(x)/2|x|.
Since g(xb) is a subinterval of g(x) and since property 4 of Lemma 6 ensures

that limn→∞ µ(g(ω[0..n])) = 0, an infinite sequence can be associated with the real r
defined by r = limn→∞ g(ω[0..n]). Since ω is not a dyadic number, r is not a dyadic
number, and hence r has a unique binary expansion. Let κ be the binary expansion
of r. We now have to show that κ is a valid compression of ω.

To generate ω[0..i] from κ[0..j], simulate the martingale starting at λ on succes-
sively longer strings. Suppose we have generated the string x so far. If g(x0) contains
Iκ[0..j], then append 0 to x. If g(x1) contains Iκ[0..j], then append 1 to x. Continue
until Iκ[0..j] is not contained in either of the intervals. At the end of this process, we
have a string x such that g(x) contains Iκ[0..j]. By the definition of κ, x is a prefix of
ω, say x = ω[0..i].

To generate κ[0..j] from ω[0..i], we compute the list of all possible strings that
encode extensions of ω[0..i]0 and of ω[0..i]1. Let I = g(ω[0..i]0). Since d(ω[0..i]0)
is a dyadic number m2−n, where n ≤ |ω[0..i]0| + 4 = i + 6, and since µ(I) =
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d(ω[0..i]0)/2i+2, the borders of I can be expressed by dyadic numbers m2−n, where
n ≤ 2i+ 8. The interval I can be covered exactly by a set of at most 2(2i+ 8) inter-
vals each expressible as Ix for some x. This is done by starting from a point inside
the interval which is expressible by a dyadic number m2−n, where n is the smallest.
Covering the part of I on the left of that point can be done with a set of at most 2i+8
intervals because each interval chosen decreases in size by at least half and covers at
least half of the remaining gap. Covering the part of I on the right of that point
can be done with another set of at most 2i + 8 intervals. Interval g(ω[0..i]1) can be
covered similarly. Output the set of all strings x such that Ix is one of the intervals
needed for the above covering. All of them generate proper extensions of ω[0..i] via
our uncompression algorithm, and one of them is a prefix of κ.

It remains to show that i− j is not bounded by any constant, where i is the index
of the last bit produced by the uncompression algorithm M on κ[0..j]. Select j such
that M on κ[0..j] produces ω[0..i] and such that M on κ[0..j − 1] produces a proper
prefix of ω[0..i]. Since M produces ω[0..i] on κ[0..j], g(ω[0..i]) includes Iκ[0..j]. Since
M produces a proper prefix of ω[0..i] on κ[0..j−1], g(ω[0..i]) does not contain Iκ[0..j−1].
Interval g(ω[0..i]) can be partitioned into 3 intervals: L, Iκ[0..j], and R, where L (resp.,
R) corresponds to the reals in g(ω[0..i]) that are smaller (resp., greater) than those
in Iκ[0..j]. Assume that κ[j] = 0. The case where κ[j] = 1 is similar. Then, R is
an interval included in Iκ[0..j−1]1 because g(ω[0..i]) does not include Iκ[0..j−1]. So,
µ(R) ≤ µ(κ[0..j]). Because g(ω[0..i]0) intersects Iκ[0..j], we can derive the following
upper bound for the size of L:

µ(L) ≤ µ(g(ω[0..i]0))

= d(ω[0..i]0)/2i+2

≤ (7/4)d(ω[0..i])/2i+2

≤ 7d(ω[0..i]1)/2i+2

= 7µ(g(w[0..i]1))

≤ 7(µ(Iκ[0..j]) + µ(R)),

µ(g(ω[0..i])) = µ(L) + µ(Iκ[0..j]) + µ(R)

≤ 8(µ(Iκ[0..j]) + µ(R))

≤ 16µ(Iκ[0..j]).

But µ(g(ω[0..i])) = d(ω[0..i])/2i+1 and µ(Iκ[0..j]) = 1/2j+1, so we get

d(ω[0..i])/2i+1 ≤ 16/2j+1,

d(ω[0..i]) ≤ 2i−j+4,

log(d(ω[0..i]))− 4 ≤ i− j.

Since the martingale is successful, d(ω[0..i]) is unbounded and hence so is i− j.

6. Compressibility implies measure zero. We now need to show the opposite
implication to show the equivalence between compressibility and measure zero.

Theorem 9. (∃f ∈ p)(∀A ∈ C) χA is f-compressible⇒ µp(C) = 0.
Proof. Let f be bounded by nk + k, and assume that for each A ∈ C, χA is

f -compressible. For each A ∈ C, we build below a martingale that succeeds on A
and is nk + k time computable. Since nk + k time bounded martingales are easily
enumerable for a fixed k, C is a p-union of p-measure 0 sets, so µp(C) = 0. (To build
a p-union of p-measure 0 sets, we need to build a sequence of martingales d1, d2, . . .
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witnessing that the sets have p-measure 0 and a uniform algorithm that receives k
and x as input and computes dk(x) in time polynomial in both k and x. See [15] for
more details and a proof of this.)

Let A ∈ C be a set such that χA is f -compressible. Assume we have algorithms
to compress ω = χA. Let’s say algorithm B1 (compress) computes κ from ω and
algorithm B2 (uncompress) computes ω from κ. We build a p-martingale. Suppose
we are given ω[0..i]. Let S0 be {λ}. To form Sj from Sj−1, simulate B1 on ω[0..j].
From the strings output by B1, keep only those that are extensions of strings in Sj−1.
For each remaining string x, if B2(x) is not a proper extension of ω[0..j], then discard
it. Otherwise, replace it by its smallest prefix y such that B2 on y is a proper extension
of ω[0..j]. Call the set of remaining strings Sj .

Compute strings in Si. Separate the strings in Si into two groups, those that
predict (via B2) a 0 and those that predict a 1. Call these groups G0 and G1. Let each
string vote for the next bit. The relative weight of each vote depends on the length of
the string: the shorter the string, the more weight. Let si = Σxk∈Si2

−|xk|. Let b0 =
Σxk∈G02

−|xk|. Let b1 = Σxk∈G1
2−|xk|. Then d(ω[0..i]0) = d(ω[0..i])(1 + (b0 − b1)/si)

and d(ω[0..i]1) = d(ω[0..i])(1 + (b1 − b0)/si).
We claim that for any i, d(ω[0..i]) ≥ ∑xk∈Si

2i−|xk| = 2isi. This can be proven
by induction on i. The statement is true for i = 0, assuming initial capital of 1.
Assume it’s true up to i. At step i+1, without loss of generality, suppose ω[i+1] = 0.
Let r = b0/si. Then, d(ω[1..i]0) = 2rd(ω[0..i]). This is greater than or equal to
2r2isi = 2i+1rsi, by the induction hypothesis. Thus, the proof of the claim is complete
if we show that rsi is greater than or equal to si+1. But rsi is just b0, and because
strings in Si+1 are extensions of strings in G0, b0 is no smaller than si+1.

Now, let k be an arbitrary value, and let j be such that algorithm B2 computes
ω[0..i] from κ[0..j] such that i− j > k. By the assumption on compressibility, such a
j must exist. Our construction guarantees that κ[0..j] is in Si−1. By the claim above,
d(ω[0..i− 1]) ≥∑xk∈Si−1

2i−1−|xk| ≥ 2i−1−|κ[0..j]| ≥ 2i−j−2 ≥ 2k−2. This shows that
the capital is unbounded, so the martingale succeeds.

7. Applications of the new characterization. In this section we give some
examples of how the new characterization can be applied. In each case we use The-
orem 9 to prove that some class has p-measure zero. In other words, to show that a
class has p-measure zero, we show that every set in the class can be f -compressed,
where f is a polynomial not depending on the particular set being compressed.

Definition 10. A set A is P-immune if no infinite subset of A is in P.
Definition 11. A set A is P-bi-immune if both A and A are P-immune.
Theorem 12 (see [20]). The class of non-P-bi-immune sets has p-measure 0.
Proof. Let A be an arbitrary non-P-bi-immune set and suppose there is an infinite

set C ⊆ A where C is in DTIME(nk). (The case where C ⊆ A is analogous.) If A ∈
P , then χA can obviously be compressed. Otherwise, the compressed characteristic
sequence of A is the concatenation of the bits χA(x) with x �∈ C. Since C is infinite,
the compression is unbounded.

To uncompress κ[0..j] into χA[0..i], for each string x in lexicographic order, if
x ∈ C, append 1, else append the next bit of κ. Continue until the bits of κ[0..j] are
exhausted. This requires i+1 tests of membership in C, for strings of length O(lg i).
The total time is in O(i lgk i) ⊆ O(i2).

To compress χA[0..i], just remove the bits corresponding to elements of C. Then
create two strings by adding a 0 and a 1. One of the two strings will uncompress into
the correct extension of χA[0..i]. This can also be done in time O(i2).
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(From the time analysis, we can see that the theorem holds even for larger run
times than P.)

The next theorem investigates the class of sets that are autoreducible [2]. A set
A is autoreducible if there is a polynomial-time oracle Turing machine that accepts A
with A as oracle provided that, on input x, it never queries x to the oracle.

Theorem 13. For any fixed constant c, the class of sets that are autoreducible
via oracle machines that query no more than c · |x| queries on input x has p-measure
0.

Proof. Let A be an arbitrary set in the class mentioned in the statement of the
theorem. Let n0 = 4 and nk+1 = nlognk

k . For k large enough, an autoreduction on
0nk will never query a string of size ≥ nk+1.

To compress χA[0..i], substitute the bit for 0nk by a sequence of bits corresponding
to the answers to all queries of strings y for y > 0nk in the lexicographic ordering. This
results in a local expansion of χA. Then, remove from χA all the bits corresponding
to those large queries. Overall, we removed the bit for 0nk and moved some other
bits around in χA. This results in one bit of compression for each section of χA
corresponding to strings between 0nk and 0nk+1 . Since this is done for each k, the
number of bits of compression is unbounded.

To uncompress κ[0..j], simulate the autoreduction machine on strings of the form
0nk , for successive k, using the appropriate bits of κ[0..j] to answer the queries. This
generates the missing bits and allows reordering of the other bits into χA[0..i]. The
time for uncompression includes the time for the autoreduction on strings of the form
0nk , which is polynomial in lg i, and the time for reordering the bits, which is in O(i).

To compress χA[0..i], if i does not represent a string of size nk for some k, the
compression is straightforward. Otherwise, the string χA[0..i] may not contain all
the bits that are needed for the substitution in the position corresponding to string
0nk . For this case, substitute the bit by all possible sequences of cnk bits, giving
2cnk candidate compressions. For each candidate compression, generate the rest
of the bits according to the autoreduction using the sequence included. The time
for the autoreduction is polynomial in nk, and since nk ≤ lg(i + 2), each candi-
date compression can be generated in linear time, and the total time is O(i2c lg i) =
O(ic+1).

The next theorem deals with p-selective sets, introduced by Selman [23]. A set A
is p-selective if there is a polynomial-time selector function f such that (1) f(x, y) ∈
{x, y} and (2) if x ∈ A or y ∈ A, then f(x, y) ∈ A. Intuitively, f(x, y) hands back the
most likely of x or y to be in A. We will use the following lemma.

Lemma 14 (see [7]). Let A be a p-selective set. Any finite set X can be ordered in
polynomial time, using the p-selector, as follows: {x1, . . . , xk} = X such that xi ∈ A
implies xj ∈ A for all j ≥ i.

Theorem 15. The class of sets that are polynomial-time truth-table reducible to
a p-selective set has p-measure 0.

Proof. Let A be polynomial-time truth-table reducible to a p-selective set S via
reduction r. Assume that the reduction r runs in time nk and that the p-selector
function f also runs in time nk. Let nj = 2j for some integer j. We compress
χA[2

nj − 1..2nj+1 − 2] (corresponding to strings of length nj) into a string sj as
follows. Let Sj be the set of all queries to S generated by applying reduction r on
all strings of length nj . This set has at most 2njnkj ≤ 22nj strings. Let sj be
the binary string of length 2nj encoding ||Sj ∩ S||. The compressed string κ is χA,
where for each nj , χA[2

nj − 1..2nj+1 − 2] has been replaced by sj . This will result
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in an unbounded compression.

To recover a piece of χA that has been replaced by sj , simulate the reduction
r on every string of length nj and collect all queries to form Sj . Then sort Sj by
using the p-selector as a string comparator. (This sorting is possible, using the lemma
above.) By the property of the p-selector, if sj encodes m, then the m largest strings
of Sj according to our sort are in S. Use this information about S and the reduction
to S to compute the membership of all strings of length nj in A. This requires 2nj

applications of the reduction r, each using nkj time, and then O(nj2
nj ) comparisons

for sorting, each comparison being an application of f using nkj time. If this process
produces χA[0..i], the largest j for which this is done is j = �lg lg((i + 2)/2)�. This
process can be done in time 22nj for each j, and the total process will recover χA[0..i]
in time Σj≤
log log((i+2)/2)�22nj ∈ O(i2).

To compute κ, we only need to compute candidates for κ, one of which is the
correct one. Generate all possible candidates. Starting from χA[0..i], the largest j for
which sj needs to be computed is j = �lg lg(i + 2)�. The number of undetermined
bits is at most Σj≤
lg lg(i+2)�2nj ≤ 4 log(i+ 2), so the number of possible candidates
is in O(i4). (Although not necessary here, it is possible to reduce the time to O(i2)

by putting the indices nj at 22j

instead of 2j .)

Corollary 16. There is no p-selective set that is hard for E under polynomial-
time truth-table reductions.

Proof. E does not have p-measure 0 [16].

The next result shows that the class of sets that reduce by Turing reductions to
a set that has subpolynomial density has p-measure 0. A function is subpolynomial
if ∀ε ∃n0 ∀n > n0 : f(n) < nε .

Theorem 17. Let f be a subpolynomial function. The class of sets that Turing
reduce to a set S with density f (i.e., ‖S≤n‖ ≤ f(n)) has p-measure 0.

Proof. Let A ≤pT S, where S has density f(n), via machine MT in time p(n).
Again we have to show that the characteristic sequence of A can be compressed and
uncompressed. We consider w = χA[2

n − 1..2n+1 − 2], corresponding to strings of
size n. We will compress the first n bits of w. Each string x of length n is mapped
by MT to at most p(n) many different queries, provided that the answers to these
queries are known. We replace the first n bits of w by pairs of the form 〈i, j〉, meaning
that the jth query asked by MT on the ith string of length n is in S. The number
of bits needed to write these pairs is O(f(p(n)) log n), which is less than n because
f is subpolynomial. To uncompress, simulate MT on all those n strings of length n,
using the compressed string to answer queries to S. To compress, generate all possible
sequences of pairs. This results in at most 2O(f(p(n))) log n possible extensions, with
the hidden constant in the exponent not depending on A. Only output the ones that
are consistent with the known part of χA. One of the possibilities has to be a prefix
of κ.

Corollary 18 (see [6]). There is no Turing hard set for E with subpolynomial
density.
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Abstract. We take a fresh look at CD complexity, where CDt(x) is the size of the smallest
program that distinguishes x from all other strings in time t(|x|). We also look at CND complexity, a
new nondeterministic variant of CD complexity, and time-bounded Kolmogorov complexity, denoted
by C complexity.

We show several results relating time-bounded C, CD, and CND complexity and their applica-
tions to a variety of questions in computational complexity theory, including the following:

• Showing how to approximate the size of a set using CD complexity without using the
random string as needed in Sipser’s earlier proof of a similar result. Also, we give a new
simpler proof of this result of Sipser’s.

• Improving these bounds for almost all strings, using extractors.
• A proof of the Valiant–Vazirani lemma directly from Sipser’s earlier CD lemma.
• A relativized lower bound for CND complexity.
• Exact characterizations of equivalences between C, CD, and CND complexity.
• Showing that satisfying assignments of a satisfiable Boolean formula can be enumerated in
time polynomial in the size of the output if and only if a unique assignment can be found
quickly. This answers an open question of Papadimitriou.

• A new Kolmogorov complexity-based proof that BPP ⊆ Σp
2.• New Kolmogorov complexity based constructions of the following relativized worlds:

– There exists an infinite set in P with no sparse infinite NP subsets.
– EXP = NEXP but there exists a NEXP machine whose accepting paths cannot

be found in exponential time.
– Satisfying assignments cannot be found with nonadaptive queries to SAT.

Key words. computational complexity, Kolmogorov complexity, CD complexity
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1. Introduction. Originally designed to measure the randomness of strings,
Kolmogorov complexity has become an important tool in computability and com-
plexity theory. A simple lower bound showing that there exist random strings of
every length has had several important applications (see [19, Chapter 6]).

Early in the history of computational complexity theory, many people naturally
looked at resource-bounded versions of Kolmogorov complexity. This line of research
was initially fruitful and led to some interesting results. In particular, Sipser [24] in-
vented a new variation of resource-bounded complexity, called CD complexity, where
one considers the size of the smallest program that accepts one specific string and no
others. Sipser used CD complexity for the first proof that BPP is contained in the
polynomial-time hierarchy.
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Complexity theory has marched on for the past two decades, but resource-boun-
ded Kolmogorov complexity has seen little interest. Now that computational complex-
ity theory has matured a bit, we ought to look back at resource-bounded Kolmogorov
complexity and see what new results and applications we can draw from it.

First, we use algebraic techniques to give a new upper bound lemma for CD
complexity, without the additional advice required of Sipser’s lemma [24]. With this
lemma, we can measure the approximate size of a set using CD complexity.

We obtain better bounds onCD complexity using extractor graphs. These graphs
are usually used for derandomization. However, these improved bounds apply only to
most of the strings.

We also give a new, simpler proof of Sipser’s lemma and show how it implies the
important Valiant–Vazirani lemma [27] that randomly isolates satisfying assignments.
Surprisingly, Sipser’s paper predates the result of Valiant and Vazirani.

We define CND complexity as a variation of CD complexity where we allow
nondeterministic computation. We prove a lower bound for CND complexity where
we show that there exists an infinite set A such that every string in A has high CND
complexity even if we allow access to A as an oracle. We use this lemma to prove
some negative results on nondeterministic search vs. deterministic decision.

Once we have these tools in place, we use them to unify several important the-
orems in complexity theory. We answer an open question of Papadimitriou [22] by
characterizing exactly when the set of satisfying assignments of a formula can be enu-
merated in output polynomial time. We also give straightforward proofs that BPP
is in Σp

2 (first proven by Gács (see [24])) and create relativized worlds where assign-
ments to SAT cannot be found with nonadaptive queries to SAT (first proven by
Buhrman and Thierauf [4]), and where EXP = NEXP but there exists a NEXP
machine whose accepting paths cannot be found in exponential time (first proven by
Impagliazzo and Tardos [15]).

These results in their original form require a great deal of time to fully understand
the proofs because either the ideas and/or technical details are quite complex. We
show that by understanding resource-bounded Kolmogorov complexity, one can see
full and complete proofs of these results without much additional effort. We also look
at when polynomial-time C, CD, and CND complexity coincide. We give a precise
characterization of when we have equality of these measures, and some interesting
consequences thereof.

2. Preliminaries. We use basic concepts and notation from computational com-
plexity theory texts like Balcázar, Dı́az, and Gabarró [1] and Kolmogorov complexity
from the excellent book by Li and Vitányi [19]. We use |x| to represent the length of
a string x and ||A|| to represent the number of elements in the set A. A=n is the set
of strings in A of length n. [N ] denotes the set of integers between 1 and N . All of
the logarithms are base 2.

Formally, we define the Kolmogorov complexity function Cφ(x|y) by
Cφ(x|y) = min

p
{|p| : φ(p, y) = x}.

There exists a universal machine U such that for all φ there is a constant c such that,
for all x and y, CU (x|y) ≤ Cφ(x|y) + c. We fix such a U and let C(x|y) = CU (x|y).
We define unconditional Kolmogorov complexity by C(x) = C(x|ε).

A few basic facts about Kolmogorov complexity follow:
• The choice of U affects the Kolmogorov complexity by at most an additive
constant.
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• For some constant c, C(x) ≤ |x|+ c for every x.
• For every n and every y, there is an x such that |x| = n and C(x|y) ≥ n.

We will also use time-bounded Kolmogorov complexity. Fix a fully time-construc-
tible function t(n) ≥ n. We define the Ct(x|y) complexity function as

Ct(x|y) = min
p
{|p| : U(p, y) = x and U(p) runs in at most t(|x|+ |y|) steps}.

As before, we let Ct(x) = Ct(x|ε). A different universal U may affect the complexity
by at most a constant additive term and the time by a log(t) factor.

While the usual Kolmogorov complexity asks about the smallest program to pro-
duce a given string, we may also want the smallest program to distinguish a string.
While this difference affects the unbounded Kolmogorov complexity by only a con-
stant, it can make a difference for the time-bounded case. Sipser [24] defined the
distinguishing complexity CDt by

CDt(x|y) = min
p





(1) U(p, x, y) accepts
|p| : (2) U(p, z, y) rejects for all z �= x

(3) U(p, z, y) runs in ≤ t(|z|+|y|) steps for all z ∈ Σ∗



 .

When the auxiliary input string y is the empty string, we write CDt(x).
We fix a universal nondeterministic Turing machine, Un. We define the nonde-

terministic distinguishing complexity CNDt by

CNDt(x|y) = min
p





(1) Un(p, x, y) accepts
|p| : (2) Un(p, z, y) rejects for all z �= x

(3) Un(p, z, y) runs in ≤ t(|z|+|y|) steps for all z ∈ Σ∗



 .

In this definition, we mean that the nondeterministic Turing machine accepts or rejects
in the usual sense of nondeterministic computation. Once again we let CNDt(x) =
CNDt(x|ε).

We can also allow for relativized Kolmogorov complexity. For example,CDt,A(x|y)
is defined as above except that the universal machine U has access to A as an oracle.

One can distinguish a string by generating it and then comparing it with the
input, as stated in the following lemma.

Lemma 2.1. For all t ∃c for all x, y : CDct log t(x | y) ≤ Ct(x | y) + c, where c is
a constant.

Likewise, every deterministic computation is also a nondeterministic computation,
hence the lemma that follows.

Lemma 2.2. For all t ∃c for all x, y : CNDct log t(x | y) ≤ CDt(x | y) + c.
In section 7 we examine the consequences of the converses of these lemmas.

3. Approximating sets with distinguishing complexity. In this section we
derive a lemma that enables one to approximate deterministically the density of a set,
using polynomial-time distinguishing complexity. The technique we use of considering
values modulo a prime is reminiscent of the hashing via the division method (see [17,
p. 515]).

Lemma 3.1. Let S = {x1, . . . , xd} ⊆ {0, . . . , 2n − 1}. For all xi ∈ S and at least
half of the primes p ≤ 4dn2, xi �≡ xj mod p for all j �= i.

Proof. For each xi, xj ∈ S, i �= j, it holds that for at most n different prime
numbers p, xi ≡ xj mod p by the Chinese remainder theorem. (Alternatively, |xi −
xj | < 2n, so it can not have more than n prime factors.) For xi there are at most dn
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primes p such that xi ≡ xj mod p for some xj ∈ S. The prime number theorem [14]
(see also [13]) states that for any m there are approximately m/ ln(m) > m/ log(m)
primes less than m. There are at least 4dn2/ log(4dn2) > 2dn primes less than 4dn2.
So at least half of these primes p must have xi �≡ xj mod p for all j �= i.

Lemma 3.2. Let A be any set. For all strings x ∈ A=n it holds that CDp,A=n

(x) ≤
2 log(||A=n||) +O(log(n)) for some polynomial p.

Proof. Fix n and let S = A=n. Fix x ∈ S and a prime px fulfilling the conditions
of Lemma 3.1 for x.

The CDpoly,A program for x works as follows:
input y
If y �∈ A=n then reject
else if y mod px = x mod px then accept
else reject

The size of the above program is |px|+|x mod px|+O(1). This is 2 log(||A||)+O(log(n)).
It is clear that the program runs in polynomial time and accepts only x.

We note that Lemma 3.2 also works for CNDp complexity for some polynomial
p.

Buhrman, Laplante, and Miltersen [3] show that Lemma 3.2 is tight.
Theorem 3.3 (Buhrman–Laplante–Miltersen). For every polynomial p and suf-

ficiently large n there exists a set of strings A ⊆ {0, 1}n containing more than 2n/50

strings such that there is an x in A with

CDp,A(x) ≥ 2 log(||A=n||)−O(1).

Corollary 3.4. Let A be a set in P. For each string x ∈ A it holds that
CDp(x) ≤ 2 log(||A=n||) +O(log(n)) for some polynomial p.

Proof. We will use the same scheme as in Lemma 3.2, now using that A ∈ P and
specifying the length of x, yielding an extra log(n) term for |x| plus an additional
2 log log(n) penalty for concatenating the strings.

Theorem 3.3 also gives a relativized tightness result for Corollary 3.4.
Corollary 3.5.
1. A set S is sparse if and only if, for all x ∈ S, CDp,S(x) ≤ O(log(|x|)) for
some polynomial p.

2. A set S ∈ P is sparse if and only if, for all x ∈ S, CDp(x) ≤ O(log(|x|)) for
some polynomial p.

3. A set S ∈ NP is sparse if and only if, for all x ∈ S, CNDp(x) ≤ O(log(|x|))
for some polynomial p.

Proof. Lemma 3.2 yields that all strings in a sparse set have O(log(n)) CDp

complexity. On the other hand, simple counting shows that for any set A there must
be a string x ∈ A such that CNDA(x) ≥ log(||A=|x|||).

3.1. Sipser’s lemma. We can also use Lemma 3.1 to give a simple proof of the
following important result due to Sipser [24].

Lemma 3.6 (Sipser). For every polynomial-time computable set A there exists
a polynomial p and constant c such that for every n, for most r in Σp(n) and every
x ∈ A=n,

CDp,A=n

(x|r) ≤ log(||A=n||) + c log(n).

Proof. For each k, 1 ≤ k ≤ n, let rk be a list of 4k(n + 1) randomly chosen
numbers less than 2k. Let r be the concatenation of all of the rk.
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Fix x ∈ A=n. Let d = ||A=n||. Fix k such that 2k−1 < 4dn2 ≤ 2k. Consider one of
the numbers y listed in rk. By the prime number theorem [13], the probability that
y is prime and less than 4dn2 is at least 1/2 log(4dn2). The probability that y fulfills
the conditions of Lemma 3.1 for x is at least 1/4 log(4dn2) > 1/4k. With probability
about 1 − 1/en+1 > 1 − 1/2n+1, we have that some y in rk fulfills the conditions of
Lemma 3.1.

With probability at least 1/2, for every x ∈ A there is some y listed in rk fulfilling
the conditions of Lemma 3.1 for x.

We can now describe x by x mod y and the pointer to y in r.
Note. Sipser’s original proof gives a tighter bound than c log(n), but for most

applications the additional O(log(n)) additive factor makes no substantial difference.
Comparing our Lemma 3.2 with Sipser’s lemma (Lemma 3.6), we are able to

eliminate the random string required by Sipser at the cost of an additional log(||A=n||)
bits.

4. Approximating sets with extractors. By using extractors, we can ob-
tain nearly the bound of Sipser’s lemma 3.6 without the random string it requires.
However, our result only works for most strings in A.

Theorem 4.1. For any set A and any function ε(n) there is a polynomial p

such that for all n and for all but a 2ε(n) fraction of the x ∈ A=n, CDp,A=n

(x) ≤
log ||A=n||+ logO(1)(n/ε(n)).

We give a nondeterministic version of this result and give a bound on CND
complexity. We also give a randomized version of these theorems, stating that the
shorter string can be chosen at random and the probability of getting a short string
which encodes as much information as the original string is bounded away from 1/2.

4.1. Extractors. An extractor can be thought of as a bipartite graph, whose
first color class is larger than the second color class. By convention, we think of the
first color class as being on the left, and the second on the right. The vertices on the
left side are all the strings of length n, so the first color class can be equated with
the set [N ], where N = 2n. Likewise, the vertices on the right side of the graph are
labeled by strings of length m ≤ n, so we let M = 2m, and [M ] is equated with the
vertices in the second color class.

4.1.1. Distributions. We will be choosing a node on the left side of the graph
at random according to a distribution X. The result of choosing a neighbor uniformly
at random in the graph will produce a distribution Y on vertices on the right.

The min-entropy of a distribution X over [N ] is defined as min{− log2(X(x))|x ∈
[N ]}. The min-entropy ofX can be thought of as a measure of the randomness present
in a string x chosen according to X.

A distribution Y is said to be ε-close to Z if both distributions are over the same
space [M ], and such that for any S ⊆ [M ], |Y (S)− Z(S)| ≤ ε.

4.1.2. Definition of extractors. A bipartite graph G with (independent) ver-
tex sets [N ] and [M ], N = 2n,M = 2m, and for which the degree of all the vertices
in the first color class is bounded by D = 2d, is an (n, k, d,m, ε) extractor if, given
any distribution X on the N vertices whose min-entropy is at least k, the result of
choosing an x according to this distribution and a random neighbor y of x in the graph
is ε-close to the uniform distribution over [M ]. In our setting, the distribution X will
be the uniform distribution over a subset A ⊆ [N ], so k will be log(||A||).

Γ(x) denotes the set of neighbors of x in G when x is a vertex on the left side
of the graph. The number of edges originating at some vertex x on the left side of
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the graph is called the outdegree of x, whereas the number w(y) of edges adjacent
with a vertex y on the right side of the graph is called the indegree (or weight) of
y. G(x, r) represents the rth neighbor of x in the graph, where multiple edges are
allowed. When y is a vertex on the right side of the graph, Γ−1

A (y) is the subset of
preimages of y which lie in A. The notation extends to sets in the natural way.

4.1.3. Best-known explicit constructions. The results we state are subject
to improvement if better explicit extractor constructions are found. We have stated
our results in general terms so that new results on extractors will be immediately
applicable.

The current best-known explicit constructions for extractors are due to Ta-Shma
[25], Zuckerman [29], Trevisan [26], and Raz, Reingold, and Vadhan [23]. The extrac-
tors best suited for our purposes are the ones which can be constructed for any k, and
with m = k, with the smallest amount of additional randomness. We illustrate our
results with the parameters obtained from Ta-Shma’s construction.

Theorem 4.2 (Ta-Shma). There is an explicit construction that, for every n and
for any function ε(n) and every m = m(n) ≤ n, yields an extractor with parameters
(n,m, logO(1)(n/ε(n)),m, ε(n)).

It is useful to compare this construction to the current lower bound on extractors,
due to Nisan and Zuckerman [20].

Theorem 4.3 (Nisan–Zuckerman). There is a constant c such that for all
n,m, k ≤ n− 1, ε < 1/2, if there is an extractor whose parameters are (n, k, d,m, ε),
then it must be the case that d ≥ min{m, c log (n/ε)}.

This lower bound also gives a good indication as to the limits of the techniques
described in this paper.

4.2. Extracting CD complexity. Theorem 4.1 follows immediately from the
following result, using the explicit extractor construction of Ta-Shma. For this theo-
rem we assume that there is an explicit extractor construction whose parameters are
(n, k, d,m, ε), and we write M = 2m.

Theorem 4.4. Fix a set A, a polynomial q(n), and ε = ε(n). Then there is a
polynomial p(n) such that for all n and for all but a 2ε fraction of the x ∈ A=n, there
is a y such that

1. |y| = m,
2. Cp(y|x) ≤ d+O(1),
3. CDp,A=n

(x) ≤ Cq(y)+3d+2 log(||A=n||/M)+ c log(n+d+log(||A=n||/M))+
O(1),

where the underlying extractor’s parameters are determined by n and k = log(||A=n||),
and c is a small absolute constant.

For the remainder of this section, we fix n and we let S = ||A=n||. In our setting,
we will think of the set A=n as defining a distribution of min-entropy k = log(S). The
string x represents an element of A=n and y is one of its neighbors in the graph G.
Hence y has length m; computing y from x requires knowing only a short (“random”)
string of length d. As we will see, y together with some short additional distinguishing
information will suffice to distinguish the string x (in the sense of CD complexity).

The following lemmas are at the heart of the argument. They allow us to upper-
bound the number of “bad” elements in A=n, where “bad” means the strings x for
which Theorem 4.4 will not apply.

In order to get a short description for x, we need to find a string y in its range
which has small indegree (counting only those edges originating in A=n).
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In Lemma 4.5, we use the properties of the extractor to obtain an upper bound
on the number of y which have large indegree. In the statement of the lemma, we use
the variable w0 to represent the threshold on degree: any vertex with degree larger
than w0 has large degree. A typical value for w0 is twice the average degree of the
graph.

Lemma 4.6 gives an upper bound on the number of x on the left side of the
extractor whose neighbors all lie within a small subset of the right side of the graph.
When the small subset is the set of vertices with large indegree, these x are the “bad”
x to which the theorem will not apply.

Lemma 4.5. Consider the restriction of the extractor to the set of edges orig-
inating in A=n. Recall that the degree of the graph is bounded by D = 2d. In this
restricted graph, let w0 be an indegree threshold,

DS
M < w0 ≤ DS, and Y be a subset

of vertices on the right-hand side of the extractor graph. If for all y ∈ Y, w(y) > w0,

then ||Y || ≤ ε ( w0

DS − 1
M

)−1
.

Proof. Let Y be the set of vertices whose indegree (in the restricted graph) exceeds

w0. Because the graph is an extractor, it must be the case that ε ≥ w(Y )
Γ(A=n) − ||Y ||M ≥

w(Y )
DS − ||Y ||M . Since w(Y ) ≥ w0||Y ||, we get ||Y || ≤ ε ( w0

DS − 1
M

)−1
as claimed.

Lemma 4.6. In the restricted graph, if Y is a set on the right side of the graph,
then

||{x ∈ A=n : Γ(x) ⊆ Y }|| ≤
(
ε+
||Y ||
M

)
S.

Proof. Let X = {x ∈ A=n : Γ(x) ⊆ Y }. The distribution which consists of picking
a random element of A=n and then choosing a random neighbor gives measure at least

||X||/S to the set Y . Because of the extractor property, ||X||S − ||Y ||M ≤ ε.
To conclude, we give the proof of Theorem 4.4.
Proof. Let A be a set and ε, n be given as in the statement of the theorem. By

Lemma 4.5, applied with w0 = 2DS/M (D = 2d), and Lemma 4.6 with Y as in the
hypothesis of Lemma 4.5, the size of the subset B ⊆ A=n such that for all x ∈ B, for
all y ∈ Γ(x), y has indegree at least w0 can have size at most 2εS. Therefore for all
but 2εS of the x in A=n, there is a y in its range whose indegree is at most 2DS/M .
For each such x, let rx be the label of one of the edges in G which connects x to such
a y. We need to verify 3 properties for each of these pairs x, y.

1. |y| = m: This is by choice of the extractor G.
2. Cp(y|x) ≤ d + O(1): y = G(x, rx) for some rx ∈ Σd, so the algorithm to

print y will contain an encoding of rx and on input x computes G(x, rx) and
output the result.

3. CDp,A=n

(x) ≤ Cq(y) + 3d + 2 log(S/M) + c log(n) + O(1): The program to
recognize x will contain an encoding for an rx and y for which G(x, rx) = y
and the indegree of y is at most 2DS/M . It must also contain a distinguish-
ing program px, which recognizes x among the 2DS/M vertices on the left
originating in A that are adjacent to y. (The encoding of rx is required to
test that x is adjacent to y, but may be omitted if the degree of the graph is
polynomial. This is not the case in the current explicit, efficient extractors,

whose degree is on the order of 2logO(1)(n).) The length of px is bounded by
2 log(2DS/M) + O(log(n + log(2DS/M))), by Lemma 3.2. (An additional
logarithmic term is needed to encode the lengths of the various components
of the encoding, but this is bundled in the O notation.)
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The algorithm follows:
input z
If z �∈ A=n then reject
else if G(z, rx) �= y then reject
else if px(z) = 1 then accept
else reject

So the program requires an encoding of y, r, and the distinguishing program
px, for a total length of Cq(y)+d+2 log(2DS/M)+c log(n+log(2DS/M))+
O(1).

4.3. Extracting CND complexity. A statement analogous to Theorem 4.4
can be made for CND complexity. Using a slight variant of the proof of Theorem 4.4,
we can get a bound which is smaller by a term of d. Also, in the upper bound, CDq(y)
is used instead of the possibly larger term Cq(y).

Theorem 4.7. Fix a set A in NP, a polynomial q(n), and ε = ε(n). Then there
is a polynomial p(n) such that for every n and for all but a 2ε fraction of the x ∈ A=n,
there is a y such that

1. |y| = log(||A=n||),
2. Cp(y|x) ≤ d+O(1),
3. CNDp(x) ≤ CDq(y) + 2d+ c log(n+ d) +O(1).

The proof is essentially the same as that of Theorem 4.4. To simplify the notation,
we make the assumption that the extractor used achieves k = m, as does Ta-Shma’s
construction. To obtain property 3, we need only guess y and verify our guess using a
distinguishing program for y whose length is bounded by CDq(y). Likewise, we can
simply guess r, omit its encoding, and use the distinguishing program p to verify our
guess for r.

4.4. Randomly extracting CD complexity. Another variant that saves a
d = log(D) term is to choose a counterpart y to a string x in a set in P at random.
We will require only that, for most x, at least half of the edges from x map to a
“good” y. Although this comes at the cost of applying only to “most” strings x, this
improves upon the result of Sipser [24] by reducing the length of the random string

from nO(1) to logO(1)(n/ε). The proof is similar to that of Theorem 4.4; it requires
only a slight modification to the counting argument.

Theorem 4.8. Fix a set A in P, a polynomial q(n), and a function ε(n). Then
there is a polynomial p(n) such that for every n and for all but a 4ε(n) fraction of the
x ∈ A=n, and at least half of the strings r of length d, there is a y such that

1. |y| = log(||A=n||),
2. Cp(y|x, r) ≤ O(1),
3. CDp(x|r) ≤ Cq(y) + 2d+ 2 log(n+ d) +O(1).

5. Extracting random strings. In the previous section, we used the fact that
the strings examined were in a small set of bounded complexity, and we showed
the existence of strings for which the mutual information was roughly the CND
complexity of the original string. Here we use extractor techniques to a achieve a
slightly different goal. We obtain an incompressible string whose length is close to the
CD complexity of x and which can be computed from x using only log(n/ε) bits.

In the case of unbounded Kolmogorov complexity, it is easy to see that the fol-
lowing proposition is true.

Proposition 5.1 (see [19, Example 2.1.5, p. 102]). For any string x of length n,
there is a y such that
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1. |y| = C(x),
2. C(y|x) ≤ log(n),
3. C(y) > |y| −O(1).

Namely, y is a minimal-length program for x and can be obtained from x by dove-
tailing, given the value of C(x). In the time-bounded setting, however, this argument
fails, since dovetailing would take too much time. Our use of extractors is far afield
from the above approach, yet it yields results surprisingly close to Proposition 5.1.
(Nonexplicit extractors actually allow us to give an alternate proof of Proposition 5.1,
although this is more an artifact than a useful new proof.)

Theorem 5.2. For any polynomial q(n) and function ε(n), there exists a poly-
nomial p(n) such that for any string x of length n there is a string y such that

1. |y| = CNDp(x)/2− c1 log(n),
2. Cp(y|x) ≤ logc2(n/ε(n)),
3. Cq(y) > |y| − cε,

where c1, c2 are absolute constants and cε depends only on ε.
Instead of giving the proof of Theorem 5.2, we prove the result in the following

more general form, which may be improved as explicit extractor constructions are
improved.

Theorem 5.3. For any polynomial q(n) and ε = ε(n), there exists a polynomial
p(n) such that for any string x there is a string y such that

1. |y| = m,
2. Cp(y|x) ≤ d+ c1,
3. Cq(y) > |y| − cε.

In the statement above, c1 is an absolute constant, cε is a constant depending only

on ε, k = 1
2 (CND2d·p(x)−2 log(n)−c1−1) and (n, k, d,m, ε) are the parameters of an

explicit extractor.
Theorem 5.2 follows by applying Theorem 5.3 with parameters obtained from

Ta-Shma’s extractor [25].
Proof (sketch). Consider a family of extractors with parameters n, k,m(k). Fix

any n, k and let G = Gn,k,m, m = m(k), be the extractor with parameters n,m, k.
(Later we will fix k to be a specific value.) Let An,m = {x|Γ(x) ⊆ C[q(n),m − cε]},
where C[t, l] = {z|Ct(z) ≤ l}, and let cε be chosen so that cε > log( 1

1−ε ) for large
enough n.

The fact that G is an extractor prohibits the set An,m from being large, as we see
now. If ||An,m|| > 2k, then by the properties of the extractor,

1− ε ≤ ||C[q(n),m− cε]||
2m

.

But ||C[q(n),m− cε]|| ≤ 2m−cε , and we have chosen cε > log( 1
1−ε ) in order to get a

contradiction. Hence we must conclude that ||An,m|| ≤ 2k.
Now we may apply Lemma 3.2 for CND to conclude that all x ∈ An,m must

have small CND complexity. First notice that verifying membership in An,m is in
NTIME[2d · p] for some polynomial p, since it suffices to guess, for each neighbor y
of x in Gn,m, a program of length m − cε which prints out y. Hence, there exists a

constant c1 such that for every x ∈ An,m, CND2d·p(x) ≤ 2 log(||An,m||)+2 log(n)+c1.
Now consider x with respect to the extractor Gn,k̂,m(k̂), where

k̂ =
1

2

(
CND2d·p(x)− 2 log(n)− c1 − 1

)
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and m is maximal for this k. By the observation above, it must be the case that x �∈
An,m. Therefore there must be a y not in C[q(n),m− cε] to which x is mapped under
Gn,k,m. It is easy to verify that y satisfies the properties claimed in the statement of
the theorem.

6. Lower bounds. In this section we show that there exists an infinite set A
such that every string in A has high CND complexity, even relative to A.

Fortnow and Kummer [8] prove the following result about relativized CD com-
plexity.

Theorem 6.1. There is an infinite set A such that for every polynomial p,
CDp,A(x) ≥ |x|/5 for almost all x ∈ A.

We extend and strengthen their result for CND complexity.

Theorem 6.2. There is an infinite set A such that CND2
√

|x|,A(x) ≥ |x|/4 for
all x ∈ A.

The proof of Fortnow and Kummer of Theorem 6.1 uses the fact that one can
start with a large set A of strings of the same length such that any polynomial-
time algorithm on an input x in A cannot query any other y in A. However, a
nondeterministic machine may query every string of a given length. Thus we need a
more careful proof.

This proof is based on the proof of a result due to Goldsmith, Hemachandra, and
Kunen [9], which we obtain as Corollary 6.3 below. In section 9, we will also describe
a rough equivalence between this result and an “X-search” theorem of Impagliazzo
and Tardos [15].

Proof of Theorem 6.2. We create our set A in stages. In stage k, we pick a large n
and add to A a nonempty set of strings B of length n such that for all nondeterministic
programs p running in time 2

√
n such that |p| < n/4, pB∪A accepts either zero or more

than one string in A. We first create a B that makes as many programs as possible
accept zero strings in B. After that, we carefully remove some strings from B to
guarantee that the rest of the programs accept at least two strings.

Let P be the set of nondeterministic programs of size less than n/4. We have
||P || < 2n/4. We will clock all of these programs so that they will reject if they take
time more than 2

√
n. We also assume that on every program p in P , input x and

oracle O, pO(x) queries x.
Let v = 2

√
n+1||P || and w = ||P ||v2

√
n. Pick sets ∆ ⊆ P and H ⊆ Σn that

maximize ||∆|| + ||H|| such that ||H|| ≤ w||∆||, and for all X ⊆ Σn − H and p ∈ ∆,
X ∩ pA∪X = ∅.

Note that H �= Σn since ||H|| ≤ w||∆|| ≤ w||P || ≤ 22
√
n+123n/4 < 2n. Since some

small program p always accepts, we have that ∆ �= P .
Our final B will be a subset of Σn−H, which guarantees that for all p ∈ ∆, pA∪B

will not accept any strings in B. We will create B such that for all p ∈ P −∆, pA∪B

accepts at least two strings in B. Initially let B = Σn −H. For each p ∈ P −∆ and
for each integer i, 1 ≤ i ≤ v, do the following:

• Pick a minimal X ⊆ B such that for some y ∈ X, pA∪X(y) accepts.
• Fix an accepting path and let Qpi be all the queries made on that path. Let
yp,i = y, Xp,i = X, and B = B −Qp,i.

Note that ||Qp,i|| ≤ 2
√
n. We remove no more than ||P ||v2

√
n ≤ w strings in total.

So if we cannot find an appropriate X, we have violated the maximality of ||∆||+ ||H||.
Note that yp,i ∈ Xp,i ⊆ Qp,i and all of the Xp,i are disjoint.

Initially set all of the Xp,i as unmarked. For each p ∈ P − ∆ do the following
twice:
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• Pick an unmarked Xp,i. Mark all Xq,j such that Xq,j ∩ Qp,i �= ∅.
Let B = B ∪Xp,i.

We have that yp,i ∈ B and pA∪B(yp,i) accepts for every Xp,i processed.

At most 2 · 2
√
n||P || − 1 < v of the Xq,j ’s get marked before we have finished; we

always can find an unmarked Xp,i.
Finally, note that B ⊆ Σn − H and for every p ∈ P − ∆ we have at least two

y ∈ B such that pA∪B(y) accepts. Since P −∆ �= ∅, this also guarantees that B �= ∅.
Thus we have fulfilled the requirements for stage k.

Using Theorem 6.2 we get the following corollary first proved by Goldsmith,
Hemachandra, and Kunen [9].

Corollary 6.3 (Goldsmith–Hemachandra–Kunen). Relative to some oracle,
there exists an infinite polynomial-time computable set with no infinite sparse NP
subsets.

Proof. Let A from Theorem 6.2 be both the oracle and the set in PA. Suppose
A has an infinite sparse subset S in NPA. Pick a large x such that x ∈ S. Applying
Corollary 3.5 (3), it follows that CNDA,p(x) ≤ O(log(n)). This contradicts the fact
that x ∈ S ⊆ A and Theorem 6.2.

Actually, the above argument shows something stronger.
Corollary 6.4. Relative to some oracle, there exists an infinite polynomial-time

computable set with no infinite subset in NP of density less than 2n/9.
It remains open whether Corollary 6.4 holds for 2δn for 1

9 < δ < 1.

7. CD vs. C and CND. This section deals with the consequences of the
assumption that one of the complexity measures C, CD, and CND coincides for
polynomial time. We will see that these assumptions are equivalent to well-studied
complexity-theoretic assumptions. This allows us to apply the machinery developed
in the previous sections. We will use the following function classes.

Definition 7.1.
1. The class FPNP[log(n)] is the class of functions computable in polynomial time
that can adaptively access an oracle in NP at most c log(n) times, for some
c.

2. The class FPNP
tt is the class of functions computable in polynomial time that

can nonadaptively access an oracle in NP.
Theorem 7.2. The following are equivalent:
1. For all p2 ∃p1, c for all x, y : Cp1(x | y) ≤ CNDp2(x | y) + c log(|x|+ |y|).
2. For all p2 ∃p1, c for all x, y : CDp1(x | y) ≤ CNDp2(x | y)+ c log(|x|+ |y|).
3. FPNP[log(n)] = FPNP

tt .
Proof. (1 ⇒ 2) is trivial.
(2 ⇒ 3) We will first need the following lemma due to Lozano (see [16, pp. 184–

185]).

Lemma 7.3. FPNP[log(n)] = FPNP
tt if and only if for every f in FPNP

tt there
exists a function g ∈ FP that generates a polynomial-size set such that f(x) ∈ g(x).

In the following, let f ∈ FPNP
tt . Let f(x) = y. We will see that there exists

a p and c such that CNDp(y | x) ≤ c log(|x|). We can assume that the machine
computing f(x) produces a list of queries Q = {q1, . . . , ql} to SAT. Let w be the
exact number of queries in Q that are in SAT. Thus w = ||Q⋂SAT||. Given x,
consider the following CNDp program:

Input z.
Use f(x) to generate Q.
Guess q1, . . . , qw ∈ Q that are in SAT
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Guess satisfying assignments for q1, . . . , qw.
Reject if not all q1, . . . , qw are satisfiable.
Compute f(x) with q1, . . . , qw answered yes

and qj ∈ Q \ {q1, . . . , qw} answered no.
Accept if and only if f(x) = z.

The size of the above program is c log(|x|), accepts only y, and runs in time p,
for some polynomial p and constant c depending only on f . Also, it follows that
all the prefixes of y have CNDp complexity bounded by c log(|x|) + log(|x|) + O(1).
By assumption there exists a polynomial p′ and constant d such that CDp′(z | x) ≤
d log(|x|) for z a prefix of y. For each of these z there is some program r such that

1. |r| ≤ d log(|x|),
2. U(r, z, x) accepts,
3. U(r, u, x) rejects for each u �= z, and
4. U(r, u, x) runs in time at most p′(|x|) for each |u| ≤ |x|.

We can use the following procedure to enumerate possibilities for y.

Let S0 = {ε}.
For m = 1 to |y|.

Let S′m consist of all strings u of length m such that
u extends some string in Sm−1.

Let Sm consist of all strings u in S′m such that
there is some r, |r| ≤ d log(|x|),
such that U(r, u, x) accepts in p′(|x|) steps, and
for all v ∈ S′m − {u}, U(r, v, x) does not accept in p′(|x|) steps.

Note for all m, Sm and S′m will have size bounded by 2|x|d, so the above algorithm
runs in polynomial time. By our discussion, y will belong to S|y|, so it follows (using

Lemma 7.3) that FPNP[log(n)] = FPNP
tt .

(3 ⇒ 1) Let y be a string such that CNDp′(y | x) = k. Let e be the program of
length k that witnesses this. Consider the following function:

f(〈e, 0l, 0m, x〉) = w1w2 . . . wm,

where

wi =





1 if there is a z of length m with the ith bit equal to one
such that Un(e, z, x) nondeterministically accepts in l steps,

0 otherwise.

Note that if e is a CND program that runs in l steps, then it accepts exactly one
string, w of length m. Hence f(〈r, 0p′(|y|+|x|), 0|y|, x〉) = y. It is not hard to see

that, in general, f is in FPNP
tt and by assumption in FPNP[log(n)] via machine M .

Next, given e = r, m = |y|, l = p′(|y| + |x|), x, and the c log(|y| + |x|) answers to
the NP oracle that M makes, we can generate y in polynomial time. We have that

Cp(y | x) ≤ CNDp′(y | x) + c log(|y|+ |x|).
For the next corollary we will use some results from [16]. We will use the following

class of limited nondeterminism defined in [6].

Definition 7.4. Let f(n) be a function from N �→ N. The class NP[f(n)]
denotes that class of languages that are accepted by polynomial-time bounded nonde-
terministic machines that, on inputs of length n, make at most f(n) nondeterministic
moves.
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Jenner and Torán [16] show a series of consequences of the assumption FPNP[log(n)]

= FPNP
tt . By Theorem 7.2 we also get these consequences from a collapse of CD and

CND complexity.
Corollary 7.5. If for all p2 ∃p1, c for all x, y : CDp1(x | y) ≤ CNDp2(x |

y) + c log(|x|+ |y|), then for any k
1. NP[logk(n)] is included in P,
2. SAT ∈ NP[ n

logk(n)
],

3. SAT ∈ DTIME(2n
O(1/ log log(n))

),
4. there exists a polynomial q such that for every m formulae φ1, . . . , φm of n
variables, each such that at least one is satisfiable, there exists an i such that
φi is satisfiable and

CNDq(φi|〈φ1, . . . , φm〉) ≤ O(log log(n+m)).

The last consequence simply restates one of the Jenner–Torán results in the no-
tation of this paper.

We can use Corollary 7.5 to get a complete collapse if there is only a constant
difference between CD and CND complexity.

Theorem 7.6. The following are equivalent:
1. For all p2 ∃p1, c for all x, y : Cp1(x | y) ≤ CNDp2(x | y) + c.
2. For all p2 ∃p1, c for all x, y : CDp1(x | y) ≤ CNDp2(x | y) + c.
3. P = NP.
Proof (sketch). (1 ⇒ 2) and (3 ⇒ 1) are easy.
(2 ⇒ 3) By combining Corollary 7.5(4) with the assumption, we have for any

formula φ1, . . . , φm, where at least one is satisfiable, that

CDp1(φi|〈φ1, . . . , φm〉) ≤ c log log(n+m)

for some satisfiable φi. We can enumerate all the programs p of length at most
c log log(n + m) and find all the formula φi such that p(φi, 〈φ1, . . . , φm〉) = 1 and
p(φj , 〈φ1, . . . , φm〉) = 0 for j �= i.

Thus, given φ1, . . . , φm, we can, in polynomial time, create a subset of size
logc(n+m) that contains a satisfiable formula if the original list did. We then apply
a standard tree-pruning algorithm to find the satisfying assignment of any satisfiable
formula.

A simple modification of the proof shows that Theorem 7.6 holds if we replace
the constant c with a log(n) for any a < 1.

For the next corollary we will need the following definition (see [7]).
Definition 7.7. A promise problem is a pair of sets (Q,R). A set L is called a

solution to the promise problem (Q,R) if the following property holds: for all x(x ∈
Q ⇒ (x ∈ L ⇔ x ∈ R)). For any function f , fSAT denotes the set of Boolean
formulas with at most f(n) satisfying assignments for formulae of length n.

The next theorem states that nondeterministic computations that have few ac-
cepting computations can be “compressed” to nondeterministic computations that
have few nondeterministic moves if and only if Cpoly ≤ CDpoly.

Theorem 7.8. The following are equivalent:
1. For all p2 ∃p1, c for all x, y : Cp1(x | y) ≤ CDp2(x | y) + c.
2. (1SAT,SAT) has a solution in P.
3. For all time constructible f , (fSAT,SAT) has a solution inNP[2 log(f(n))+
O(log(n))].
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Proof. (1 ⇐⇒ 2) This was proven in [8].

(3 ⇒ 2) Take f(n) = 1 and the fact [6] that NP[O(log(n))] = P.

(2⇒ 3) Let φ be a formula with at most f(|φ|) satisfying assignments. Lemma 3.2
yields that for every satisfying assignment a to φ, there exists a polynomial p such
that CDp(a | φ) ≤ 2 log(f(|φ|)) + O(log(|φ|)). Hence (using that 1 ⇐⇒ 2) it follows

that Cp′(a | φ) ≤ 2 log(f(|φ|)) + c log(|φ|) for some constant c and polynomial p′.
The limited nondeterministic machine now guesses a Cp′ program e of size at most
2 log(f(|φ|))+c log(|φ|), runs it (relative to φ), and accepts if and only if the generated
string is a satisfying assignment to φ.

Corollary 7.9. FPNP[log(n)] = FPNP
tt implies the following:

1. For any k, the promise problem (2logk(n)SAT,SAT) has a solution in P.
2. For any k, the class of languages that is accepted by nondeterministic ma-

chines that have at most 2logk(n) accepting paths on inputs of length n is
included in P.

Proof. This follows from Theorem 7.2, Theorem 7.8, and Corollary 7.5.

8. Satisfying assignments. We show several connections between CD com-
plexity and finding satisfying assignments of Boolean formulae. By Cook’s theorem [5],
finding satisfying assignments is equivalent to finding accepting computation paths of
any NP computation.

8.1. Enumerating satisfying assignments. Papadimitriou [22] mentioned the
following proposition.

Proposition 8.1. There exists a Turing machine that, given a formula φ, will
output the set A of satisfying assignments of φ in time polynomial in |φ| and ||A||.

We can use CD complexity to show the following.

Theorem 8.2. Proposition 8.1 is equivalent to (1SAT,SAT) having a solution
in P.

In Proposition 8.1, we do not require the machine to halt after printing out the
assignments. If the machine is required to halt in time polynomial in φ and ||A||, we
have that Proposition 8.1 is equivalent to P = NP.

Proof of Theorem 8.2. The implication of (1SAT,SAT) having a solution in P
is straightforward. We concentrate on the other direction.

Let d = ||A||. By Lemma 3.2 and Theorem 7.8 we have that for every element x of
A, Cq(x|φ) ≤ 2 log(d)+c log(n) for some polynomial q and constant c. We simply now
try every program p in length-increasing order and enumerate p(φ) if it is a satisfying
assignment of φ.

8.2. Computing satisfying assignments. In this section we turn our atten-
tion to the question of the complexity of generating a satisfying assignment for a
satisfiable formula [28, 12, 21, 2]. It is well known [18] that one can generate (the
leftmost) satisfying assignment in FPNP. A tantalizing open question is whether
one can compute some (not necessarily the leftmost) satisfying assignment in FPNP

tt .
Formalizing this question, we define the function class Fsat by f ∈ Fsat if, when
ϕ ∈ SAT, f(ϕ) is a satisfying assignment of ϕ.

The question now becomes Fsat
⋂
FPNP

tt = ∅? Translating this to aCND setting,
we have the following lemma.

Lemma 8.3. Fsat
⋂
FPNP

tt �= ∅ if and only if for all φ ∈ SAT there exists a
satisfying assignment a of φ such that CNDp(a | φ) ≤ c log(|φ|) for some polynomial
p and constant c.
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Lemma 8.3 relativizes when we consider a relativized version of SATA [10] by
adding a series of extra predicates A0, A1, A2, . . . such that An(x1, . . . , xn) is true if
x1, . . . , xn is in A.

Toda andWatanabe [28] showed that, relative to a random oracle, Fsat
⋂
FPNP

tt �=
∅. On the other hand, Buhrman and Thierauf [4] showed that there exists an oracle
where Fsat

⋂
FPNP

tt = ∅. Their result also holds relative to the set constructed in
Theorem 6.2.

Theorem 8.4. Relative to the set A constructed in Theorem 6.2, Fsat
⋂
FPNP

tt =
∅.

Proof. For some n, let φ be the formula on n variables such that φ(x) is true if
and only if x ∈ A. Suppose Fsat

⋂
FPNP

tt �= ∅. It now follows by Lemma 8.3 that
there exists an x ∈ A such that CNDp,A(x) ≤ O(log(|x|)) for some polynomial p,

contradicting the fact that for all x ∈ A, CND2
√

|x|,A(x) ≥ |x|/4.
8.3. Isolating satisfying assignments. In this section we take a Kolmogorov

complexity view of the statement and proof of the famous Valiant–Vazirani lemma [27].
The Valiant–Vazirani lemma gives a randomized reduction from a satisfiable formula
to another formula that, with a nonnegligible probability, has exactly one satisfying
assignment.

We state the lemma in terms of Kolmogorov complexity.
Lemma 8.5. There is some polynomial p such that for all φ in SAT and all r

such that |r| = p(|φ|) and C(r) ≥ |r| there is some satisfying assignment a of φ such
that CDp(a|〈φ, r〉) ≤ O(log(|φ|)).

The usual Valiant–Vazirani lemma follows from the statement of Lemma 8.5 by
choosing r and the O(log(|φ|))-size program randomly.

We show how to derive the Valiant–Vazirani lemma from Sipser’s lemma (see
Lemma 3.6). Note that Sipser’s result predates Valiant–Vazirani by a couple of years.

Proof of Lemma 8.5. Let n = |φ|. Consider A, the set of satisfying assignments of
φ. We can apply Lemma 3.6 conditioned on φ using part of r as the random strings.
Let d = �log(||A||)�. We get that every element of A has a CD program of length
bounded by d+c log(n) for some constant c. Since two different elements from A must
have different programs, we have at least 1/nc of the strings of length d + c log(n)
that must distinguish some assignment in A.

We use the rest of r to list n2c different strings of length d + c log(n). Since r is
random, one of these strings w must be a program that distinguishes some assignment
a in A. We can give a CD program for a in O(log(n)) bits by giving d and a pointer
to w in r.

9. Search vs. decision in exponential time. If P = NP, then given a satis-
fiable formula, one can use binary search to find the assignment.

One might expect a similar result for exponential-time computation, i.e., ifEXP =
NEXP, then one should find a witness of a NEXP computation in exponential time.
However, the proof for polynomial time breaks down because as one does the binary
search the input questions get too long. Impagliazzo and Tardos [15] give relativized
evidence that this problem is indeed hard.

Theorem 9.1 (see [15]). There exists a relativized world where EXP = NEXP,
but there exists a NEXP machine whose accepting paths cannot be found in exponen-
tial time.

We can give a short proof of this theorem using Theorem 6.2.
Proof of Theorem 9.1. Let A be from Theorem 6.2.
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We will encode a tally set T such that EXPA⊕T = NEXPA⊕T . Let M be a
nondeterministic oracle machine such that M runs in time 2n and, for all B, MB is
NEXPB-complete.

Initially let T = ∅. For every string w in lexicographic order, put 12w into T if
MA⊕T (x) accepts.

Let B = A⊕T at the end of the construction. SinceM(w) could only query strings
with length at most 2|w| ≤ w, this construction will give us EXPB = NEXPB .

We will show that there exists a NEXPB machine whose accepting paths cannot
be found in time that is exponential relative to B.

Consider the NEXPB machine M that on input n guesses a string y of length n
and accepts if y is in A. Note that M runs in time 2|n| ≤ n.

Suppose accepting computations of MB can be found in time 2|n|
k

= 2logk(n)

relative to B. By Theorem 6.2, we can fix some large n such that A=n �= ∅ and, for
all x ∈ A=n,

CND2logk(n),A(x) ≥ n/4.(9.1)

Let wi = ||{1m | 1m ∈ T and 2i < m ≤ 2i+1}||. We will show the following lemma.
Lemma 9.2.

CND2logk(n),A
(
x|w1, . . . , wlogk(n)

)
≤ log(n) +O(1).

Assuming Lemma 9.2, Theorem 9.1 follows since, for each i, |wi| ≤ i+1. We thus
have our contradiction with (9.1).

Proof of Lemma 9.2. We will construct a program pA to nondeterministically
distinguish x. We use log(n) bits to encode n. First p will reconstruct T using the
wi’s.

Suppose we have reconstructed T up to length 2i. By our construction of T ,
strings of T of length at most 2i+1 can only depend on oracle strings of length at
most 2i+1/2 = 2i. We guess wi strings of the form 1m for 2i < m ≤ 2i+1 and
nondeterministically verify that these are the strings in T . Once we have T , we also

have B = A⊕ T , so in time 2logk(n), we can find x.
Impagliazzo and Tardos [15] prove Theorem 9.1 using an “X-search” problem.

We can also relate this problem to CND complexity and Theorem 6.2.
Definition 9.3. The X-search problem has a player who, given N input variables

not all zero, wants to find a one. The player can ask r rounds of l parallel queries of
a certain type each and wins if the player discovers a one.

Impagliazzo and Tardos [15] use the following result about the X-search problem
to prove Theorem 9.1.

Theorem 9.4 (see [15]). If the queries are restricted to k-DNFs and N >
2(klr)2(l + 1)r, then the player will lose on some nonzero setting of the variables.

One can use a proof similar to that of Theorem 9.1 to prove a similar bound for
Theorem 9.4: one just needs to apply Theorem 6.2 relative to the strategy of the
player.

One can also use Theorem 9.4 to prove a weaker version of Theorem 6.2. Pick a
large n and a time bound t. Let N = 2n and suppose for all B ⊆ Σn there is an x in
B, CNDt,B(x) ≤ w. Let N = 2n.

For a fixed B and x, let p be the CND program that distinguishes x. Non-
deterministically we can find the ith bit of x using t queries to B by guessing x
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and the accepting computation of Un(p, x). We can express this computation as the
complement of a t-DNF question.

We now build a strategy for X-search: Try all p and i, |p| ≤ 2|p| and 1 ≤ i ≤ n, in
the first round using the t-DNF described above. This gives us a list of 2|p| possible
x’s. We just try them all.

This solves the X-search problem using k = t, l = n2|w|, and r = 2. By The-
orem 9.4 we have N ≤ 2(tn2w2)2(n2w)2. Taking logarithms we get n ≤ 2(log t +
log n + w + log 2) + 2(logn + w). Thus we have a contradiction whenever w = an
and t = 2bn for 4a + 2b < 1. In particular this gives us an infinite set A such that

CND2n1/6
,A(x) ≥ |x|/7 for all x in A.

10. BPP in the second level of the polynomial hierarchy. One of the
applications of Sipser’s [24] randomized version of Lemma 3.2 is the proof that BPP
is in Σp

2. We will show that the approach taken in Lemma 3.2 yields a new proof of
this result. We will first prove the following variation of Lemma 3.1.

Lemma 10.1. Let S = {x1, . . . , xd} ⊆ {0, . . . , n−1}. There exists a prime number
p such that for all xi, xj ∈ S (i �= j), xi �≡ xj mod p, and such that p ≤ 2d2 log(n).

Proof. We consider only prime numbers between c and 2c. For xi, xj ∈ S it

holds that, for at most logc(n) = log(n)
log(c) different prime numbers p, xi ≡ xj mod p.

Moreover, there are at most d(d − 1) different pairs of strings in S, so there exists a

prime number p among the first d(d − 1) log(n)
log(c) + 1 prime numbers such that, for all

xi, xj ∈ S(i �= j), it holds that xi �≡ xj mod p. Applying again the prime number
theorem [13], it follows that if we take c > d(d− 1) log(n), then p ≤ 2d2 log(n).

The idea is to use Lemma 10.1 as a way to approximate the number of accepting
paths of a BPP machine M . Note that the set of accepting paths ACCEPTM(x) of
M on x is in P. If this set is “small,” then there exists a prime number satisfying
Lemma 10.1. On the other hand, if the set is “big,” no such prime number exists. This
can be verified in Σp

2: There exists a number p such that for all pairs of accepting
paths xi, xj of M , xi �≡ xj mod p. In order to apply this idea, we need the gap
between the number of accepting paths when x is in the set and when it is not to
be a square: if x is not in the set, then ||ACCEPTM(x)|| ≤ k(|x|), and if x is in
the set, ||ACCEPTM(x)|| > k2(|x|). We will apply Zuckerman’s oblivious sampler
construction [29] to obtain this gap.

Theorem 10.2. Let M be a probabilistic machine that witnesses that some set
A is in BPP. Assume that M(x) uses m random bits. There exists a machine M ′

that uses 3m+9m1− 1
2 log∗(m) random bits such that if x ∈ A, then Pr[M ′(x) accepts] >

1− 1
22m , and if x �∈ A, then Pr[M ′(x)accepts] < 1

22m .

Proof. Use the sampler in [29] with ε < 1/6, γ = 1
22m , and α = 3m−

1
2 log∗(m) .

Let A ∈ BPP be witnessed by probabilistic machine M . Apply Theorem 10.2 to
obtain M ′. The Σp

2 algorithm for A works as follows:

input x

Guess p ≤ 22m+18m
1− 1

2 log∗(m)
(3m+ 9m1− 1

2 log∗(m) )
If for all u, v ∈ ACCEPTM ′(x) u �≡ v mod p accept else reject

If x ∈ A, then ||ACCEPTM ′(x)|| ≤ 2m+9m
1− 1

2 log∗(m)
, and Lemma 10.1 guarantees that

the above program accepts. On the other hand, if x ∈ A, then ||ACCEPTM ′(x)|| >
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23m+9m
1− 1

2 log∗(m)−1 and for every prime number

p ≤ 22m+18m
1− 1

2 log∗(m)
(3m+ 9m1− 1

2 log∗(m) )

there will be a pair of strings in ACCEPTM ′(x) that are not congruent modulo p.

This follows because for every number p ≤ 22m+18m
1− 1

2 log∗(m)
(3m + 9m1− 1

2 log∗(m) )

at most 22m+18m
1− 1

2 log∗(m)
(3m + 9m1− 1

2 log∗(m) ) different u and v it holds that u �≡
v mod p.

Goldreich and Zuckerman [11] independently used Zuckerman’s sampler [29] to
give another proof that BPP is in Σp

2.
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and David Zuckerman for their comments on this subject. We thank John Tromp
for the current presentation of the proof of Lemma 3.2. We thank Richard Beigel,
Bill Gasarch, Stuart Kurtz, Amber Settle, Leen Torenvliet, and the two anonymous
referees for comments on earlier drafts.

REFERENCES
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Abstract. We use hypotheses of structural complexity theory to separate various NP-
completeness notions. In particular, we introduce an hypothesis from which we describe a set in
NP that is ≤PT-complete but not ≤Ptt-complete. We provide fairly thorough analyses of the hypothe-
ses that we introduce.
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1. Introduction. Ladner, Lynch, and Selman [LLS75] were the first to com-
pare the strength of polynomial-time reducibilities. They showed, for the common
polynomial-time reducibilities, Turing (≤P

T), truth-table (≤P
tt), bounded truth-table

(≤P
btt), and many-one (≤P

m), that

≤P
m ≺ ≤P

btt ≺ ≤P
tt ≺ ≤P

T,

where ≤P
r≺≤P

s means that ≤P
r is properly stronger than ≤P

s ; that is, A ≤P
r B implies

A ≤P
s B, but the converse does not hold. In each case, the verifying sets belong to

E = DTIME(2n). Ladner, Lynch, and Selman raised the obvious question of whether
reducibilities differ on NP. If there exist sets A and B in NP (other than the empty
set or Σ∗) such that A≤P

TB but A �≤P
mB, then, of course, P �= NP follows immediately.

With this in mind, they conjectured that P �= NP implies that ≤P
T and ≤P

m differ on
NP.

In the intervening years, many results have explained the behavior of polynomial-
time reducibilities within other complexity classes and have led to a complete under-
standing of the completeness notions that these reducibilities induce. For example,
Ko and Moore [KM81] demonstrated the existence of ≤P

T-complete sets for EXP that
are not ≤P

m-complete. Watanabe [Wat87] extended this result significantly, show-
ing that ≤P

1−tt-, ≤P
btt-, ≤P

tt-, and ≤P
T-completeness for EXP are mutually different,

while Homer, Kurtz, and Royer [HKR93] proved that ≤P
m- and ≤P

1−tt-completeness
are identical.

However, there have been few results comparing reducibilities within NP, and we
have known very little concerning various notions of NP-completeness. It is surprising
that no NP-complete problem has been discovered that requires anything other than
many-one reducibility for proving its completeness. The first result to distinguish
reducibilities within NP is an observation of Wilson in one of Selman’s papers on p-
selective sets [Sel82]. It is a corollary to results there that if NE∩co-NE �= E, then there
exist sets A and B belonging to NP such that A≤P

pttB, B≤P
ttA, and B �≤P

pttA, where
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≤P
ptt denotes positive truth-table reducibility. Regarding completeness, Longpré and

Young [LY90] proved that there are ≤P
m-complete sets for NP for which ≤P

T-reductions
to these sets are faster, but they did not prove that the completeness notions differ.
The first to give technical evidence that ≤P

T- and ≤P
m-completeness for NP differ

are Lutz and Mayordomo [LM96], who proved that if the p-measure of NP is not
zero, then there exists a ≤P

3-tt-complete set that is not ≤P
m-complete. Ambos-Spies

and Bentzien [ASB00] extended this result significantly. They used an hypothesis of
resource-bounded category theory that is weaker than that of Lutz and Mayordomo to
separate nearly all NP-completeness notions for the bounded truth-table reducibilities.

It has remained an open question as to whether we can separate NP-completeness
notions without using hypotheses that involve essentially stochastic concepts. Fur-
thermore, the only comparisons of reducibilities within NP known to date have been
those just listed.

Here we report some exciting new progress on these questions. Our main new
result introduces a strong, but reasonable, hypothesis to prove existence of a ≤P

T-
complete set in NP that is not ≤P

tt-complete. Our result is the first to provide ev-
idence that ≤P

tt-completeness is weaker than ≤P
T-completeness. Let Hypothesis H

be the following assertion: There is a UP-machine M that accepts 0∗ such that (i)
no polynomial time-bounded Turing machine correctly computes infinitely many ac-
cepting computations of M , and (ii) for some ε > 0, no 2n

ε

time-bounded Turing
machine correctly computes all accepting computations of M . Hypothesis H is simi-
lar to, but seemingly stronger than, hypotheses considered by researchers previously,
notably Fenner et al. [FFNR96], Hemaspaandra, Rothe, and Wechsung [HRW97], and
Fortnow, Pavan, and Selman [FPS99].

This result is especially interesting because the measure theory and category
theory techniques seem to be successful primarily for the nonadaptive reducibilities.
We will prove an elegant characterization of the genericity hypothesis of Ambos-Spies
and Bentzien and compare it with Hypothesis H. Here, somewhat informally, let us
say this: The genericity hypothesis asserts existence of a set L in NP such that no 22n

time-bounded Turing machine can correctly predict membership of infinitely many
x in L from the initial characteristic sequence L|x = {y ∈ L | y < x}. That is, L
is almost-everywhere unpredictable within time 22n. Clearly, such a set L is 22n-bi-
immune. In contrast, we show that Hypothesis H holds if there is a set L in UP∩co-UP
such that L is P-bi-immune and L ∩ 0∗ is not in DTIME(2n

ε

) for some ε > 0. Thus,
we replace “almost-everywhere unpredictable” with P-bi-immunity and we lower the
time bound from 22n to 2n

ε

, but we require L to belong to UP ∩ co-UP rather than
NP.

We prove several other separations as well and some with significantly weaker
hypotheses. For example, we prove that NP contains ≤P

T-complete sets that are not
≤P
m-complete, if NP ∩ co-NP contains a set that is 2n

ε

-bi-immune, for some ε > 0.

2. Preliminaries. We use standard notation for polynomial-time reductions
[LLS75], and we assume that readers are familiar with Turing, ≤P

T, and many-one, ≤P
m,

reducibilities. A set A is truth-table reducible to a set B (in symbols A ≤Ptt B) if there
exist polynomial-time computable functions g and h such that on input x, g(x) is a set
of queriesQ = {q1, q2, · · · , qk}, and x ∈ A if and only if h(x,B(q1), B(q2), · · · , B(qk)) =
1. The function g is the truth-table generator and h is the truth-table evaluator. For
a constant k > 0, A is k-truth-table reducible to B (A ≤Pk-tt B) if for all x, ‖Q‖ = k,
and A is bounded-truth-table reducible to B (A≤P

bttB) if there is a constant k > 0
such that A ≤Pk-tt B. Given a polynomial-time reducibility ≤P

r , recall that a set S is
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≤P
r -complete for NP if S ∈ NP and every set in NP is ≤P

r -reducible to S.
Recall that a set L is p-selective if there exists a polynomial-time computable

function f : Σ∗ × Σ∗ → Σ∗ such that for all x and y, f(x, y) ∈ {x, y} and f(x, y)
belongs to L if either x ∈ L or y ∈ L [Sel79]. The function f is called a selector for L.

Given a finite alphabet Σ, let Σω denote the set of all strings of infinite length of
order type ω. For r ∈ Σ∗ ∪ Σω, the standard left cut of r [Sel79, Sel82] is the set

L(r) = {x | x < r},

where < is the ordinary dictionary ordering of strings with 0 less than 1. It is obvious
that every standard left cut is p-selective with selector f(x, y) = min(x, y).

Given a p-selective set L such that the function f defined by f(x, y) = min(x, y)
is a selector for L, we call f a min-selector for L. We will use the following simplified
version of a lemma of Toda [Tod91]. Let ⊥ be a special symbol such that ⊥≤ x for
all x ∈ Σ∗.

Lemma 2.1. Let L be a p-selective set with a min-selector f . For any finite
set Q there exists a string z ∈ Q ∪ {⊥} such that Q ∩ L = {y ∈ Q | y ≤ z} and
Q ∩ L = {y ∈ Q | y > z}. The string z is called a “pivot” string.

Now we review various notions related to almost-everywhere hardness. A language
L is immune to a complexity class C, or C-immune, if L is infinite and no infinite
subset of L belongs to C. A language L is bi-immune to a complexity class C, or C-bi-
immune, if L and L are both immune to C. Then, L is bi-immune to C if and only if L
is infinite, no infinite subset of L belongs to C, and no infinite subset of L belongs to C.
A language is DTIME(T (n))-complex if L does not belong to DTIME(T (n)) almost
everywhere; that is, every Turing machine M that accepts L runs in time greater than
T (|x|) for all but finitely many words x. Balcázar and Schöning [BS85] proved that
for every time-constructible function T , L is DTIME(T (n))-complex if and only if L
is bi-immune to DTIME(T (n)).

Given a time bound T (n), a language L is T (n)-printable if there exists a T (n)
time-bounded Turing machine that, on input 0n, prints all elements of L∩Σ=n [HY84].
A set S is T (n)-printable-immune if S is infinite and no infinite subset of S is T (n)-
printable.

In order to compare our hypotheses with the genericity hypothesis we describe
time-bounded genericity [ASFH87]. For this purpose, we follow the exposition of
Ambos-Spies, Neis, and Terwijn [ASNT96]. Given a set A and string x, A|x =
{y | y < x and y ∈ A}. Let Σ∗ = {zn}n, where zn is the nth string in lexicographic
order. We identify the initial segment A|zn with its characteristic sequence; i.e.,
A|zn = A(z0) · · ·A(zn−1). A condition is a set C ⊆ Σ∗. A meets C if for some x,
the characteristic sequence A|x ∈ C. C is dense along A if for infinitely many strings
x there exists i ∈ {0, 1} such that the concatenation (A|x)i ∈ C. Then, the set A
is DTIME(t(n))-generic if A meets every condition C ∈ DTIME(t(n)) that is dense
along A. To simplify the notation, we say that A is t(n)-generic if it is DTIME(t(n))-
generic.

Finally, we briefly describe the Kolmogorov complexity of a finite string. Later
we will use this in an oracle construction. The interested reader should refer to Li
and Vitányi [LV97] for an in-depth study. Fix a universal Turing machine U . Given
a string x and a finite set S ⊆ Σ∗, the Kolmogorov complexity of x with respect to S
is defined by

K(x|S) = min{|p| | U(p, S) = x}.



SEPARATION OF NP-COMPLETENESS NOTIONS 909

If S = ∅, then K(x|S) is called the Kolmogorov complexity of x, denoted K(x). We
will also use time-bounded Kolmogorov complexity Kt(x). For this definition, we
require that U(p) runs in at most t(|x|) steps.

3. Separation results. Let Hypothesis H be the following assertion.
Hypothesis H. There is a UP-machine M that accepts 0∗ such that
1. no polynomial time-bounded Turing machine correctly computes infinitely

many accepting computations of M , and
2. for some ε > 0, no 2n

ε

time-bounded Turing machine correctly computes all
accepting computations of M .

Theorem 3.1. If Hypothesis H is true, then there exists a ≤P
T-complete language

for NP that is not ≤P
tt-complete for NP.

Proof. Let ε > 0, and let M be a UP-machine that satisfy the conditions of
Hypothesis H. For each n ≥ 0, let an be the unique accepting computation of M on
0n, and let ln = |an|. Define the language

L1 = {〈x, an〉 | |x| = n, and x ∈ SAT}.
Define the infinite string a = a1a2 . . ., and define

L2 = L(a) = {x | x < a}
to be the standard left-cut of a.

We define L = L1⊕L2 to be the disjoint union of L1 and L2. We will prove that
L is ≤P

T-complete for NP but not ≤P
tt-complete.

Lemma 3.2. L is ≤P
T-complete for NP.

Proof. It is clear that L belongs to NP. The following reduction witnesses that
SAT≤P

TL: Given an input string x, where |x| = n, use a binary search algorithm
that queries L2 to find an. Then, note that x ∈ SAT if and only if 〈x, an〉 belongs to
L1.

Lemma 3.3. L is not ≤P
tt-complete for NP.

Proof. Assume that L is ≤P
tt-complete for NP. Define the set

S = {〈0n, i〉 | the ith bit of an = 1}.
Clearly, S belongs to NP. Thus, by our assumption, there is a ≤P

tt-reduction 〈g, h〉
from S to L. Given this reduction, we will derive a contradiction to Hypothesis H.

Consider the following procedure A:
1. Input 0n.
2. Compute the setsQj = g(〈0n, j〉) for 1 ≤ j ≤ ln. LetQ =

⋃{Qj | 1 ≤ j ≤ ln}.
3. Let Q1 be the set of all queries in Q to L1, and let Q2 be the set of all queries

in Q to L2 (Q = Q1 ∪Q2).
4. If Q1 contains a query 〈x, at〉, where t ≥ nε, then output “Unsuccessful” and

Print at, else output “Successful.”
Observe that this procedure runs in polynomial time. We treat two cases, namely,

A(0n) is either unsuccessful, for infinitely many n, or it is successful for all but finitely
many n.

Claim 1. If the procedure A(0n) is unsuccessful for infinitely many n, then there
is a polynomial time-bounded Turing machine that correctly computes infinitely many
accepting computations of M , thereby contradicting Clause 1 of Hypothesis H.

Proof. If A(0n) is unsuccessful, then it outputs a string at such that t ≥ nε.
Hence, if A(0n) is unsuccessful for infinitely many n, then for infinitely many t there
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exists an n, where n ≤ t1/ε, and A(0n) outputs at. The following procedure uses this
observation to compute infinitely many accepting computations of M in polynomial
time.

input 0t;
for j = 1 to j = t1/ε do

if A(0j) outputs at
then output at and halt.

The procedure runs in polynomial time because the procedure A(0j) runs in
polynomial time.

Claim 2. If A(0n) is successful for all but finitely many n, then there is a 2n
ε

time-bounded Turing machine that correctly computes all accepting computations of
M , thereby contradicting Clause 2 of Hypothesis H.

Proof. We will demonstrate a procedure B such that for each n, if A(0n) is
successful, then B on input 0n outputs the accepting computation of M on 0n in 2n

ε

time.

If A(0n) is successful, then no member of the set Q1 is of the form 〈x, at〉 where
t ≥ nε. We begin our task with the following procedure C that for each query q = 〈y, z〉
in Q1 decides whether q ∈ L1.

1. Input q = 〈y, z〉.
2. If z �= at for any t, then 〈y, z〉 does not belong to L1. (This can be determined

in polynomial time.)
3. If z = at, where t ≤ nε, then 〈y, z〉 belongs to L1 only if |y| = t and y belongs

to SAT. (Since t ≤ nε this step can be done in time 2n
ε

.)

Thus, C decides membership in L1 for all queries q in Q1. Therefore, if for each
query q in Q2, we can decide whether q belongs to L2, then the evaluator h can
determine whether each input 〈0n, j〉, 1 ≤ j ≤ ln, belongs to S. That is, if for
each query q in Q2, we can decide whether q belongs to L2, then we can compute
an. We can accomplish this using a standard proof technique for p-selective sets
[HNOS96, Tod91]. Namely, since L2 is a standard left-cut, by Lemma 2.1, there
exists a pivot string z in Q2 ∪ {⊥} such that Q2 ∩ L2 is the set of all strings in Q2

that are less than or equal to z. We do not know which string is the pivot string, but
there are only ‖Q2‖ choices, which is bounded by a polynomial in n. Thus, procedure
B on input 0n proceeds as follows to compute an: For each possible choice of pivot
and the output from procedure C, the evaluator h computes a possible value for each
jth bit of an. There are only a polynomial number of possible choices of an because
there are only a polynomial number of pivots. B verifies which choice is the correct
accepting computation of M on 0n and outputs that value. Finally, we have only to
note that the entire process can be carried out in 2n

ε

steps. This completes the proof
of our claim.

Lemma 3.3 follows from Claims 1 and 2, and the theorem follows from Lemmas 3.2
and 3.3.

Let Hypothesis H
′
be the following assertion.

Hypothesis H
′
. There is an NP-machine M that accepts 0∗ such that for some

0 < ε < 1, no 2n
ε

time-bounded Turing machine correctly computes infinitely many
accepting computations of M .

Theorem 3.4. If Hypothesis H
′
is true, then there exists a Turing complete

language for NP that is not ≤P
m-complete for NP.

Proof. Let 0 < ε < 1, and let M be an NP-machine that satisfy the conditions of
Hypothesis H

′
. For each n ≥ 0, let an be the lexicographically maximum accepting
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input 0n;
y := λ;
Repeat ln times

begin
x0 := f(〈0n, y0〉);
x1 := f(〈0n, y1〉);
if both x0 and x1 are queries to L2

then if x0 ≤ x1

then y := y0
else y := y1

else {At least one of x0 and x1 is a query to L1; let b ∈ {0, 1} be the least index
such that xb queries L1, and let xb = 〈z, u〉.}

if u is not an accepting computation of M {thus, xb /∈ L1}
then y = yb̄
else {u is an accepting computation of M on some string 0t}

if t ≥ nε

then output “Unsuccessful,” print u, and terminate
else {t < nε}

if |z| = tε/2 and z ∈ SAT {thus, xb ∈ L1}
then y := yb
else {xb /∈ L1} y := yb̄

end;
output “Successful” and print y.

Fig. 3.1. Procedure D.

computation of M on 0n, and let |an| = ln. Define the language

L1 = {〈x, u〉 | |x| = n, u is an accepting computation

of M on 0m, n = mε/2, and x ∈ SAT}.

Let a = a1a2a3 · · ·, and define

L2 = L(a) = {x | x < a}.

Define L = L1 ⊕ L2.
It is easy to see, as in the previous argument, that L is ≤P

T-complete for NP. In
order to prove that L is not ≤P

m-complete, we define the set

S = {〈0n, y〉 | y is a prefix of an accepting computation of M on 0n},

which belongs to NP, and assume there is a ≤P
m-reduction f from S to L. Consider the

procedure D in Figure 3.1: First we will analyze the running time and then we treat
two cases, namely, D(0n) is either successful for infinitely many n, or it is unsuccessful
for all but finitely many n.

Claim 3. The above procedure halts in O(ln2
nε2/2) steps.

Proof. Consider an iteration of the repeat loop. The most expensive step is
the test of whether “z ∈ SAT.” This test occurs only when |z| = tε/2 and t < nε.

Hence we can decide whether z belongs to SAT in 2n
ε2/2 steps. All other steps take

polynomial time. Hence the time taken by the procedure is O(ln2
nε2/2).
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Since 0 < ε < 1, the running time of procedure D is bounded by 2n
ε

.

Claim 4. If D(0n) is successful for infinitely many n, then there is a 2n
ε

-time-
bounded Turing machine that correctly computes infinitely many accepting computa-
tions of M .

Proof. We demonstrate that if D is successful on an input 0n, then the string that
is printed is an accepting computation of M on 0n. In order to accomplish this, we
prove by induction that y is a prefix of an accepting computation of M on 0n during
every iteration of the repeat loop (i.e., a loop invariant). Initially, when y = λ, this is
true. Assume that y is a prefix of an accepting computation of M at the beginning
of an iteration. Then, at least one of f(〈0n, y0〉) = x0, f(〈0n, y1〉) = x1 must belong
to L. If both x0 and x1 are queries to L2, then the smaller of x0 and x1 belongs to
L2 because L2 is p-selective. Thus, in this case, the procedure extends y correctly.
If at least one of x0 and x1 is a query to L1, then the procedure determines whether
xb ∈ L1, where xb is the query to L1 with least index. If xb belongs to L, then
〈0n, yb〉 ∈ S. Hence, yb is a prefix of an accepting computation. If xb /∈ L, then xb̄
belongs to L because at least one of xb or xb̄ belongs to L. Thus, in this case, yb̄ is a
prefix of an accepting computation. This completes the induction argument.

The loop repeats ln times. Therefore, the final value of y, which is the string that
D prints, is an accepting computation.

Claim 5. If D(0n) is unsuccessful for all but finitely many n, then there is a
2n

ε

-time-bounded Turing machine that correctly computes infinitely many accepting
computations of M .

Proof. The proof is similar to the proof of Claim 1. The following procedure
computes infinitely many accepting computations of M .

input 0n;
for j = 1 to j = n1/ε do

if D(0j) outputs u and u is an accepting computation of M on 0n

then print u and terminate.

The running time of this algorithm can be bounded as follows: The procedure

D(0j) runs in time lj2
jε

2
/2 steps. So the total running time is

∑n1/ε

1 lj2
jε

2
/2 =

O(2n
ε

).

Since the cases treated both by Claims 4 and 5 demonstrate Turing machines that
correctly compute infinitely many accepting computations of M in 2n

ε

time, we have
a contradiction to Hypothesis H

′
. Thus L is not ≤P

m-complete for NP.

The following results give fine separations of polynomial-time reducibilities in NP
from significantly weaker hypotheses. Moreover, they follow readily from results in
the literature.

Theorem 3.5. If there is a tally language in UP − P, then there exist two
languages L1 and L2 in NP such that L1≤P

ttL2, L2≤P
TL1, but L1 �≤P

bttL2.
1

Proof. Let L be a tally language in UP − P. Let R be the polynomial-time
computable relation associated with the language L. Define

L1 = {〈0n, y〉 | ∃w,R(0n, w) and y ≤ w}

and

L2 = {〈0n, i〉 | ∃w,R(0n, w) and ith bit of w is one}.

1The class of all languages that are ≤PT-equivalent to L1 is a noncollapsing degree.
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It is clear that L1 is ≤P
tt-reducible to L2. To see that L2 is ≤P

T-reducible to L1,
implement a binary search algorithm that accesses L1 to determine the unique witness
w such that R(0n, w) and then find the ith bit.

Observe that L2 is a sparse set. Ogiwara and Watanabe [OW91] call L1 the left
set of L, and they and Homer and Longpré [HL94] proved for every L in NP that if the
left set of L is ≤P

btt-reducible to a sparse set, then L is in P. Hence L1 �≤btt L2.
We now prove that Turing and truth-table reducibilities also differ in NP under

the same hypothesis.
Theorem 3.6. If there is a tally language in UP − P, then there exist two

languages L1 and L2 in NP such that L1≤P
TL2, but L1 �≤P

ttL2.
Proof. Hemaspaandra et al. [HNOS96] proved that the hypothesis implies exis-

tence of a tally language L in UP−P such that L is not ≤P
tt-reducible to any p-selective

set. In the same paper they also showed, given a tally language L in NP − P, how
to obtain a p-selective set S such that L is ≤P

T-reducible to S. Combining the two
results we obtain the theorem.

4. Analysis of the hypotheses. This section contains a number of results that
help us to understand the strength of Hypotheses H and H

′
.

4.1. Comparisons with other complexity-theoretic assertions. We begin
with some equivalent formulations of these hypotheses and then relate them to other
complexity-theoretic assertions. The question of whether P contains a P-printable-
immune set was studied by Allender and Rubinstein [AR88], and the equivalence of
items 1 and 3 in the following theorem is similar to results of Hemaspaandra, Rothe,
and Wechsung [HRW97] and Fortnow, Pavan, and Selman [FPS99]. The second item
is similar to the characterization of Grollmann and Selman [GS88] of one-one, one-
way functions with the addition of the attribute almost-always one-way of Fortnow,
Pavan, and Selman.

Theorem 4.1. The following statements are equivalent:
1. There is a language L in P that contains exactly one string of every length
such that L is P-printable-immune and, for some ε > 0, L is not 2n

ε

-printable.
2. There exists a polynomial-bounded, one-one, function f : 0∗ → Σ∗ such that

f is almost-everywhere not computable in polynomial time, for some ε > 0, f
is not computable in time 2n

ε

, and the graph of f belongs to P.2

3. Hypothesis H is true for some ε > 0.
Proof. Let L satisfy item 1. In order to prove item 2, define

f(0n) = the unique string of length n that belongs to L.

Clearly, f is polynomial-bounded and one-one. The graph of f belongs to P because
L belongs to P. Suppose that M is a Turing machine that computes f and that runs
in polynomial time on infinitely many inputs. Then, on these inputs, M prints L∩Σn.
Similarly, f is not computable in time 2n

ε

.
Let f satisfy item 2. To prove that item 3 holds, define a UP-machine M to accept

0∗ as follows: On input 0n, M guesses a string y of length within the polynomial bound
of f and accepts if and only if 〈0n, y〉 ∈ graph(f). The rest of the proof is clear.

Now we prove that item 3 implies item 1. Let M be a UP-machine that satisfies
item 3, i.e., that satisfies the conditions of Hypothesis H. Let an be the unique ac-
cepting computation of M on 0n, and let |an| = nl. Let rn be the rank of an among

2f is polynomial-bounded if for some polynomial q, for all x, |f(x)| ≤ q(|x|).
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all strings of length nl. Now we define L as follows: Given a string x, if |x| = nl for
some n, then x belongs to L if and only if x = an. If (n − 1)l < |x| < nl, then x
belongs to L if and only if the rank of x (among all the string of length |x|) is rn−1.
It is clear that L ∈ P and has exactly one string per each length. We claim that L is
P-printable-immune and is not 2n

ρ

-printable, where ε = lρ. Any machine that prints
infinitely many strings of L in polynomial time can be used to print infinitely many
accepting computations of M in polynomial time. Thus L is P-printable-immune.
Any machine that prints all the strings of L in 2n

ρ

time can be used to print all the
accepting computations of M in 2n

ε

time. Thus L is not 2n
ρ

-printable.

We prove the following theorem similarly.

Theorem 4.2. The following statements are equivalent:

1. There is a language L in P that contains at least one string of every length
such that, for some ε > 0, L is 2n

ε

-printable-immune.
2. There is a polynomial-bounded, multivalued function f : 0∗ → Σ∗ such that
every refinement of f is almost-everywhere not computable in 2n

ε

-time, and
the graph of f belongs to P.

3. Hypothesis H
′
holds for some ε > 0.

Next we compare our hypotheses with the following complexity-theoretic asser-
tions:

1. For some ε > 0, there is a P-bi-immune language L in UP ∩ co-UP such that
L ∩ 0∗ is not in DTIME(2n

ε

).
2. For some ε > 0, there is a language L in UP ∩ co-UP such that L is not in

DTIME(2n
ε

).
3. For some ε > 0, there is a 2n

ε

-bi-immune language in NP ∩ co-NP.

Theorem 4.3. Assertion 1 implies Hypothesis H and Hypothesis H implies as-
sertion 2.

Proof. Let L be a language in UP ∩ co-UP that satisfies assertion 1. Define M
to be the UP-machine that accepts 0∗ as follows: On input 0n, nondeterministically
guess a string w. If w either witnesses that 0n is in L or witnesses that 0n is in L,
then accept 0n. It is immediate that M satisfies the conditions of Hypothesis H.

To prove the second implication, let M be a UP-machine that satisfies the condi-
tions of Hypothesis H. Let an denote the unique accepting computation of M on 0n

and define

L = {〈0n, x〉 | x ≤ an}.

It is clear that L ∈ UP ∩ co-UP. If L ∈ DTIME(2n
ε

), then a binary search
algorithm can correctly compute an, for every n, in time 2n

ε

. This would contradict
Hypothesis H. Hence, L /∈ DTIME(2n

ε

).

The discrete logarithm problem is an interesting possible witness for assertion

2. The best known deterministic algorithm requires time greater than 2n
1
3 [Gor93].

Thus, the discrete logarithm problem is a candidate witness for the noninclusion
UP ∩ co-UP �⊆ DTIME(2n

ε

) for any 0 < ε ≤ 1
3 .

Corollary 1. If, for some ε > 0, UP ∩ co-UP has a 2n
ε

-bi-immune language,
then ≤P

T-completeness is different from ≤P
tt-completeness for NP.

Theorem 4.4. Assertion 3 implies Hypothesis H
′
.

Corollary 2. If, for some ε > 0, NP ∩ co-NP has a 2n
ε

-bi-immune language,
then ≤P

T-completeness is different from ≤P
m-completeness for NP.
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4.2. Comparisons with genericity. The genericity hypothesis of Ambos-Spies
and Bentzien [ASB00], which they used successfully to separate NP-completeness
notions for the bounded-truth-table reducibilities, states that “NP contains an n2-
generic language.” Our next result enables us to compare this with our hypotheses.

We say that a deterministic oracle Turing machine M is a predictor for a language
L if for every input word x, M decides whether x ∈ L with oracle L|x. L is predictable
in time t(n) if there is a t(n) time-bounded predictor for L. We define a set L
to be almost-everywhere unpredictable in time t(n) if every predictor for L requires
more than t(n) time for all but finitely many x. This concept obviously implies
DTIME(t(n))-complex almost everywhere, but the converse does not hold.

Proposition 4.5. EXP contains languages that are DTIME(2n)-complex but
not almost-everywhere unpredictable in time 2n.

Let L ∈ EXP be DTIME(2n)-complex [GHS91]. Then L⊕ L satisfies the condi-
tions of the proposition. Now we state our characterization of t(n)-genericity.

Theorem 4.6. Let t(n) be a polynomial. A decidable language L is t(n)-generic
if and only if it is almost-everywhere unpredictable in time t(2n − 1).

Proof. Assume that L is not almost-everywhere unpredictable in time t(2n − 1),
and let M be a predictor for L that for infinitely many strings x runs in time t(2n−1).
Define a condition C so that the characteristic sequence

(L|x)x ∈ C ⇔M with oracle L|x runs in time t(2|x| − 1) on input x,

where x = ¬(M accepts x). Then, C is dense along L because M correctly predicts
whether x ∈ L for infinitely many x. It is easy to see that C ∈ DTIME(t(n)).
However, L is not t(n)-generic because we defined C so that L does not meet C.

Assume that L is not t(n)-generic, and let C ∈ DTIME(t(n)) be a condition that is
dense along L such that L does not meet C. Let T be a deterministic Turing machine
that halts on all inputs and accepts L. Define a predictor M for L to behave as follows
on input x with oracle A|x: If (A|x)1 ∈ C, then M rejects x, and if (A|x)0 ∈ C, then
M accepts x. If neither holds, then M determines membership in L by simulating T
on x. Since L does not meet C, M is a predictor for L. Since C is dense along L and
L does not meet C, for infinitely many x, either (A|x)1 ∈ C or (A|x)0 ∈ C, and in
each of these cases, M runs for at most t(2 · 2|x|) steps. Since t(n) is a polynomial
function, by the linear speedup theorem [HS65], there is a Turing machine that is
equivalent to M that runs in time t(2|x| − 1).

Corollary 4.7. NP contains an n2-generic language if and only if NP contains
a set that is almost-everywhere unpredictable in time 22n.

By Theorem 4.4, Hypothesis H
′
holds if NP∩ co-NP contains a set that, for some

ε > 0, is 2n
ε

-bi-immune. So, Hypothesis H
′
requires bi-immunity, which is weaker

than almost-everywhere unpredictability, and the time bound is reduced from 22n to
2n

ε

. On the other hand, we require the language to belong to NP ∩ co-NP instead
of NP. Similarly, when we consider Hypothesis H, we require the language to be P-
bi-immune and not in DTIME(2n

ε

), whereas now we require the language to be in
UP ∩ co-UP. Moreover, the conclusion of Theorem 3.1 is not known to follow from
the genericity hypothesis. At the same time, we note that the genericity hypothesis
separates several bounded-truth-table completeness notions in NP that do not seem
obtainable from our hypotheses.

4.3. Relativization.
Theorem 4.8. There exists an oracle relative to which the polynomial hierarchy

is infinite and Hypotheses H and H
′
both hold.
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Proof. Define Kolmogorov random strings r0, r1, . . . as follows: rn is the first
string of length n such that

K2n

(rn | r0, r1, . . . , rn−1) > n/2.

Then, define the oracle A = {rn | n ≥ 0}.
Define M to be an oracle Turing machine that accepts 0∗ with oracle A as follows:

On input 0n, guess a string y of length n. If y ∈ A, then accept. M is a UPA-machine
that accepts 0∗ because A contains exactly one string of every length.

Now we show that no 2n
ε

oracle Turing machine with oracle A, for any 0 < ε <
1, correctly computes infinitely many accepting computations of M . Observe that
relative to A, this implies both Hypotheses H and H

′
. Suppose otherwise, and let T

be such an oracle Turing machine. The gist of the remainder of the proof is that we
will show how to simulate T without using the oracle, and that will contradict the
randomness of rn.

Suppose that TA(0n) = rn. Let l = 3nε. Then we simulate this computation
without using an oracle as follows:

1. Compute r0, r1, . . . , rl−1. Do this iteratively: Compute ri by running every
program (with input strings r0, r1, . . . , ri−1) of length ≤ i/2 for 2i steps. Then
ri is the first string of length i that is not output by any of these programs.
Note that the total time for executing this step is

l2l/22l ≤ l23l/2 ≤ 25nε

.

2. Simulate T on input 0n, except replace all oracle queries q by the following
rules: If |q| < l, answer using the previous computations. Otherwise, just
answer “no.”

If the simulation is correct (i.e., the rules in step 2 correctly answer each query
q to A), then this procedure outputs rn without using the oracle. The running time
of this procedure on input 0n is 25nε

+ 2n
ε

, which is less than 2n. So we can describe
rn by a string of length O(log n), namely a description of T and 0n. This contradicts
the definition of rn.

We need to show that the simulation is correct. The simulation can only be
incorrect if |q| ≥ l and q = rm for some m > l. Let rm be the first such query.
This yields a short description of rm, given r0, r1, . . . , rl−1. Namely, the description
consists of the description of T (a constant), the description of 0n (log n bits), and
the description of the number j such that q = rm is the jth query (at most nε). Thus,
the length of the description is O(nε). Since l = 3nε, it follows that the length of the
description of rm is less than m/2. The running time of T , given r0, r1, . . . , rl−1, is
2n

ε

, which is less than 2m. (The reason is that the first step in the simulation of T is
not needed.) Therefore, the simulation is correct.

Finally, because A is a sparse set, using results of Balcázar, Book, and Schöning
[BBS86], there is an oracle relative to which the hypotheses holds and the polynomial
hierarchy is infinite.

Hypothesis H fails relative to any oracle for which P = NP ∩ co-NP [BGS75].
Fortnow and Rogers [FR94] obtained an oracle relative to which NP �= co-NP and
Hypothesis H

′
fails. We know of no oracle relative to which P �= NP, and every

≤P
T-complete set is ≤P

m-complete.

4.4. Extensions. The extensions in this section are independently observed by
Regan and Watanabe [RW01]. In Hypothesis H we can replace the UP-machine by
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an NP-machine under a stronger intractability assumption. Consider the following
hypothesis: There is an NP-machine M that accepts 0∗ such that

1. no probabilistic polynomial time-bounded Turing machine correctly outputs
infinitely many accepting computations with nontrivial (inverse polynomial)
probability, and

2. for some ε > 0, no 2n
ε

time-bounded Turing machine correctly computes all
accepting computations with nontrivial probability.

We can prove that Turing completeness is different from truth-table completeness
in NP under the above hypothesis. The proof uses the randomized reduction of Valiant
and Vazirani [VV86] that isolates the accepting computations. We define L as in the
proof of Theorem 3.4. Let

S = {〈0n, k, r1, r2, · · · , rk, i〉 | ∃v such that v is an accepting computation of M,

v.r1 = v.r2 = · · · = v.rk = 0, and the ith bit of v = 1},

where v.ri denotes the inner product over GF[2].
Valiant and Vazirani showed that if we randomly pick r1, r2, . . . , rk, then with a

nontrivial probability there exists exactly one accepting computation v of M whose
inner product with each ri is 0. Thus, for a random choice of r1, . . . , rk, there is
exactly one witness v for 〈0n, k, r1, . . . , rk, i〉. The rest of the proof is similar to that
of Theorem 3.1.

We also note that we can replace the UP-machine in Hypothesis H with a FewP-
machine.
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Abstract. In the single-source unsplittable flow problem, we are given a network G, a source
vertex s, and k commodities with sinks ti and real-valued demands ρi, 1 ≤ i ≤ k. We seek to route
the demand ρi of each commodity i along a single s-ti flow path so that the total flow routed across
any edge e is bounded by the edge capacity ue. The conceptual difficulty of this NP-hard problem
arises from combining packing constraints due to the existence of capacities with path selection in a
graph of arbitrary topology. In this paper we give a generic framework, which yields approximation
algorithms that are simpler than those previously known and achieve significant improvements upon
the approximation ratios. Our framework, with appropriate subroutines, applies to all optimization
versions previously considered and, unlike previous work, treats in a unified manner directed and
undirected graphs. We provide extensions of our algorithms which yield the best possible approxi-
mation guarantees for restricted sets of demand values and an associated scheduling problem.

Key words. approximation algorithms, network algorithms, routing, network flow, unsplittable
flow, disjoint paths, parallel machine scheduling
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1. Introduction. In the single-source unsplittable flow problem (Ufp), we are
given a network G = (V,E, u), a source vertex s, and a set of k commodities with sinks
t1, . . . , tk and associated real-valued demands ρ1, . . . , ρk.We seek to route the demand
ρi of each commodity i along a single s-ti flow path so that the total flow routed
across any edge e is bounded by the edge capacity ue. See Figure 1 for an example
instance. The minimum edge capacity is assumed to have value at least maxi ρi.
The requirement of routing each commodity on a single path bears resemblance to
integral multicommodity flow and in particular to the multiple-source edge-disjoint
path problem. For the latter problem, a large amount of work exists either for solving
exactly interesting special cases (e.g., [9, 37, 36]) or for approximating, with limited
success, various objective functions (e.g., [35, 11, 24, 25, 22]). Further, shedding light
on single-source unsplittable flow may lead to a better understanding of multiple-
source disjoint-path problems. From a different perspective, Ufp can be approached
as a variant of standard, single-commodity, maximum flow since in both problems
there is one source for the flow. From this point of view, Ufp generalizes single-source
edge-disjoint paths. Ufp is also important as a unifying framework for a variety of
scheduling and load balancing problems [23]. It can be used to model bin packing
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Fig. 1. Example Ufp instance. Numbers on the vertices denote demands; all edge capacities
are equal to 1.

[23] and certain scheduling problems on parallel machines [32]. Another possible
application for Ufp is in virtual-circuit routing, where the source would represent a
node wishing to multicast data to selected sinks. The conceptual difficulty in Ufp
arises from combining packing constraints due to the existence of capacities with path
selection in a graph of arbitrary topology.

The feasibility question for Ufp, i.e., can all commodities be routed unsplittably,
is strongly NP-complete [22]. We focus thus on efficient algorithms to obtain approxi-
mate solutions. For a minimization (resp., maximization) problem, a ρ-approximation
algorithm, ρ > 1 (resp., ρ < 1), outputs in polynomial time a solution with objective
value at most (resp., at least) ρ times the optimum. Three main optimization versions
of unsplittable flow can be defined.

Minimum congestion. Find an unsplittable flow f satisfying all demands, which
minimizes congestion, i.e., the quantity max{maxe{fe/ue}, 1}. That is, the minimum
congestion is the smallest number α ≥ 1 such that if we multiplied all capacities by
α, f would satisfy the capacity constraints. The congestion metric was a primary test
bed for the randomized rounding technique of Raghavan and Thompson [35] and has
been studied extensively for its connections to multicommodity flow and cuts (e.g.,
[31, 21, 30, 20]).1

Maximum routable demand. Route unsplittably a subset of the commodities of
maximum total demand, while respecting capacity constraints.

Minimum number of rounds. Partition the commodities into a minimum number
of sets, called rounds, so that commodities assigned to the same round can be routed

1In [30] congestion is defined as maxe{fe/ue}. In this setting a congestion of λ ∈ (0, 1) implies
that it is possible to multiply all demands by 1/λ and still satisfy them by a flow which respects the
capacity constraints. Algorithmically the two definitions are equivalent: with a polynomial number of
invocations of an algorithm which minimizes congestion according to our definition, one can minimize
congestion according to the definition in [30].
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unsplittably without violating the capacity constraints.
The randomized rounding technique applies to the more general multiple-source

unsplittable flow problem and provides an O(log |E|/ log log |E|) approximation for
congestion; for the maximum demand and minimum number of rounds versions, it can
give meaningful approximations only when the minimum capacity value is Ω(log |E|)
times the value of the maximum demand [35, 34]. Kleinberg [22, 23] was the first
to consider the Ufp as a distinct problem and gave constant-factor approximation
algorithms for all three optimization versions presented above, on both directed and
undirected graphs.

Our results. We give a new approach for single-source unsplittable flow that has
three main advantages.

• The algorithms are simple and do not need the machinery developed in [23].
• Our approach treats directed and undirected graphs in a unified manner.
• We obtain significant improvements upon the approximation ratios for all
three optimization versions.

Our algorithms follow the same grouping-and-scaling technique. We first find a
maximum flow. This relaxation is a “splittable” solution, i.e., it allows the demand
for a commodity to be split along more than one path. As in the previous work [23],
we use the maximum flow solution as a guide for the discovery of an unsplittable rout-
ing. However, we use this solution in a much stronger way: we employ information
from maximum flow to allocate capacity to a set of subproblems, where each subprob-
lem Gi contains commodities with demands in a fixed range. For each subproblem
Gi, a near-optimal routing gi is separately computed by exploiting the fact that de-
mands are close in range. These solutions are then combined by superimposing the
gi’s on the original graph. Since we are interested in constant-factor approximations,
when combining the solutions it is important to avoid an additive deterioration of
the approximation guarantees obtained for each individual Gi. One of our conceptual
contributions lies in showing that this is possible, given an appropriate initial capac-
ity allocation. Combining solutions presents different challenges for the maximum
demand and minimum number of rounds versions of our algorithms as opposed to
minimizing congestion. In the congestion version, increasing the original edge capac-
ities as the routings gi are superimposed on G only affects the approximation ratio.
For the other two versions, it would be infeasible to do so. We note that a grouping
scheme on the commodities is also used in [23], though in a more complicated way;
ours is based solely on demand values and does not require any topological information
from the graph. We now elaborate on the approximation ratios we obtain.

Minimum congestion. We give a 3-approximation algorithm for both directed and
undirected graphs. The bounds known before our work were 16 for the directed and
8.25 for the undirected case [23]. In the first publication of this work [27] we gave
Partition, a 4-approximation algorithm and obtained also a 10/3 = 3.33 . . . bound2

for a more elaborate version of Partition. Dinitz, Garg, and Goemans recently ob-
tained a new 2-approximation result (appearing in [5]). Following this development
we further refined our 10/3-approximation algorithm and obtained H Partition, a
3-approximation algorithm appearing also in [26]. In this paper we describe both
Partition and H Partition. Algorithm H Partition also exploits the grouping
and scaling technique by scaling demands in a fixed range to the same value. How-
ever, instead of producing “in parallel” an unsplittable solution for all the ranges,
H Partition outputs the partial routings gi by iteratively improving the quality

2Erroneously reported in [27] as 3.23.
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of the solution to a maximum flow relaxation. The quality of the latter solution
is characterized by the minimum amount of flow routed along a single path to any
commodity which has not been routed yet unsplittably.

Minimizing congestion and cost. A natural optimization question arises when
routing a unit of flow through edge e incurs cost ce. The objective is to find an
unsplittable flow that minimizes the total cost. More precisely, if z is the optimal
congestion, define the optimal cost to be the minimum cost of an unsplittable flow that
is feasible with respect to the capacity function zu. Since Ufp without costs is already
NP-hard, we aim for a bicriteria approximation of cost and congestion. Our approach
gives the first constant-factor approximation for minimum-cost, minimum-congestion
unsplittable flow on directed graphs; it also improves considerably upon the constants
known for the minimum cost version on undirected graphs. In particular, existing
results for undirected graphs [23] give a simultaneous (7.473, 10.473) approximation for
cost and congestion. We provide a (2, 3) simultaneous approximation on both directed
and undirected graphs. Moreover, we show how to obtain a 1 + δ approximation for
cost, for any δ > 0, at the expense of a larger constant factor for congestion.

Maximum routable demand. We show how to route at least .075, i.e., 7.5% of the
optimum. In [23] the constant is not given explicitly, but it can be as low as .031 for
undirected graphs and on the order of 10−9 for directed graphs.

Minimum number of rounds. We show how to route all the demands in at most
13 times the optimum number of rounds, an improvement upon the 32 upper bound
given in [23]. A guarantee of routing in x rounds implies that at least 1/x of the total
demand is routed in some round. Kleinberg’s 32-approximation algorithm for rounds
can be seen to imply a 1/32 = 0.03125 approximation for routable demand when the
cut condition is met, i.e., when the maximum flow relaxation satisfies all demands.
Accordingly we obtain a 1/13 = .0769 approximation for routable demand under the
cut condition. We elaborate on this observation in section 8.

We emphasize that our algorithms for all three different versions are simple and
make use of the same generic framework. Although they are presented separately for
ease of exposition, they could all be stated in terms of one algorithm, with different
subroutines invoked for subproblems. The dominant computational steps are maxi-
mum flow and flow decomposition; these are tools that work well on both directed
and undirected graphs. In [23] it is noted that “the disjoint paths problem is much
less well understood for directed than it is for undirected graphs . . . in keeping with
the general principle we will find that the algorithms we obtain for directed graphs
will be more complicated.”

Generalizations. The algorithmic techniques we introduce are quite general and
can be applied to related problems. We show how to use them to obtain a constant-
factor approximation for minimum congestion on a network, where the minimum edge
capacity can be arbitrarily low with respect to the maximum demand. This is the first
result of this type that we are aware of. In subsequent work [28], we show how to apply
the algorithmic techniques developed here forUfp to obtain improved approximations
for classes of packing integer programs and multiple-source unsplittable flow. On the
negative side, we show in this paper that for the unsplittable flow problem with two
sources on a directed network, no ρ-approximation with ρ < 2 can be achieved for
congestion, unless P = NP, even when all the demands and capacities have value 1.
This gives an idea of how hard it might be to formulate an approximate version of
the fundamental Theorem 2.1 that we use in our single-source algorithms.

Applications to scheduling. We also examine applications of unsplittable flow to
scheduling problems. A lower bound of 3/2 exists for the approximability of mini-
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Fig. 2. Reduction of the scheduling problem to Ufp. Job 2 can be processed only on machines
2 and 4. The capacity of the edges connecting s to the machine vertices is equal to a makespan
estimate.

mum makespan on parallel machines when a job j can be processed only on a subset
M(j) of the available machines [32]. Let S denote this scheduling problem. The 2-
approximation algorithm of Lenstra, Shmoys, and Tardos [32] or Shmoys and Tardos
[38] for the more general problem of scheduling on unrelated machines is the best
known for S. On the other hand an approximation-preserving reduction is known to
exist from S to single-source unsplittable flow (see Figure 2) [23], so the 3/2 lower
bound for S [32] applies to single-source unsplittable flow as well. The lower bound
holds when processing times (or demands) take the values p or 2p for some p > 0.
We provide an additive p approximation for this restricted unsplittable flow problem,
which corresponds to a ratio of at most 3/2. This is the best possible approxima-
tion ratio for the problem unless P = NP. Improved approximation factors are also
obtained for the more general case, in which all demand values are powers of 1/2.

The outline of this paper is as follows. In section 2 we present definitions and a
basic theorem from flow theory. In section 3 we provide a (4 + o(1))-approximation
algorithm for congestion, which introduces our basic techniques. In section 4 we pro-
vide the improved 3-approximation. In section 5 we give the approximation algorithm
for minimum congestion unsplittable flow with arbitrarily small capacities. In section
6 we present the simultaneous cost-congestion approximation. In sections 7 and 8
the approximation algorithms for maximum total demand and minimum number of
rounds are presented. In section 9 we present the hardness result for 2-source un-
splittable flow. Finally, in section 10 we examine the connection between Ufp and
scheduling problems. A preliminary version of the material in this paper appeared in
[27]. Experimental results on implementations of our algorithms appeared in [29]. Af-
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ter the first publication of this work, Dinitz, Garg, and Goemans obtained improved
approximation ratios by using a different approach [5], and Skutella gave improved
results for the simultaneous optimization of cost and each of the three metrics [39].

2. Preliminaries. All logarithms in this paper are base 2 unless otherwise noted.
A single-source unsplittable flow problem (Ufp) (G, s, T ) is defined on a capacitated
network G = (V,E, u) where a subset T = {t1, . . . , tk} of V is the set of sinks; each
edge e has a real-valued capacity ue; each sink ti has a real-valued demand ρi. The
pair (ti, ρi) defines the commodity i. To avoid cumbersome notation, we occasionally
use the set T to denote the set of commodities. We assume in our definition that each
vertex in V hosts at most one sink; the input network can always be transformed
to fulfill this requirement. A source vertex s ∈ V is specified. For any I ⊆ T , a
partial routing is a set of |I| s-ti paths, in which path Pi is used to route ρi amount
of flow from s to ti for each ti ∈ I. A partial routing that contains a path to each
sink in T is simply called a routing. Given a routing g, the flow ge through edge
e is equal to

∑
Pi∈g|Pi�e ρi. A (partial) routing g for which ge ≤ ue for each edge e

is a (partial) unsplittable flow. A fractional routing is a set of flow paths, satisfying
capacity constraints, in which the flow to each sink is split along potentially many
paths. A fractional routing can be computed by standard maximum flow. Thus we
shall refer to a fractional routing satisfying all demands of the underlying Ufp as a
feasible fractional flow solution. For clarity we will also refer to a standard maximum
flow as fractional maximum flow. We assume that a Ufp input meets the following
two requirements:

Cut condition. There is a feasible fractional flow solution.
Balance condition. All demands have value at most 1 and the minimum edge

capacity is 1.
The first requirement is introduced only for simplicity. For each of the optimiza-

tion metrics studied, an optimal fractional solution, potentially violating the unsplit-
tability requirement, can be efficiently found. Since our analysis uses the fractional
optima as lower bounds, our approximation results hold without the cut condition.
For the balance condition, we note that the actual numerical value of 1 is not crucial;
demands and capacities can be scaled without affecting solutions. The important
requirement is that the minimum capacity is greater than or equal to the maximum
demand. We will explicitly state it when we deal with a Ufp in which the minimum
capacity can be arbitrarily small. Finally, the k-source unsplittable flow problem (k-
Ufp) is similarly defined, but now k > 1 sources exist and demands are defined for
pairs (si, ti) of sources and sinks. Unless otherwise stated, we use n,m to denote
|V |, |E|, respectively.

The following theorem is an easy consequence of the well-known augmenting path
algorithm [7, 6] and will be of use. It was also used as part of the approximation
techniques in [23] and is a consequence of the integrality property for maximum flow
with all demands and capacities scaled by σ.

Theorem 2.1. Let (G = (V,E, u), s, T ) be a Ufp on an arbitrary network G
with all demands ρi, 1 ≤ i ≤ k, equal to the same value σ, and edge capacities ue
equal to integral multiples of σ for all e ∈ E. If there is a fractional flow of value
f, then there is an unsplittable flow of value at least f. This unsplittable flow can be
found in O(km) time, where k is the number of sinks in T .

We defined a routing as a collection of flow paths; it can equivalently be rep-
resented as an edge flow, i.e., a collection of functions assigning flow values to each
edge. Conversely, an edge flow, whether fractional or unsplittable, can be represented
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as a path flow. In particular our algorithms will make use of the well-known flow
decomposition theorem [2]. Given problem (G, s, T ) let a fractional flow solution f be
represented as an assignment of flow values to edges. Then one can find, in O(nm)
time, a representation of f as a path and cycle flow, where the paths join s to sinks
in T . In the remainder of the paper, we will assume that the cycles are deleted from
the output of a flow decomposition. The flow decomposition theorem trivially applies
also to transforming an unsplittable flow from edge representation to a path represen-
tation. We will point out cases in which outputting the unsplittable flow as an edge
flow results in faster algorithms.

3. The approximation algorithm for minimum congestion. In this section
we give a (4 + o(1))-approximation algorithm for minimizing congestion. In section
4 we show how to improve the approximation guarantee to 3. All our results can be
seen to hold for minimizing absolute congestion as well, defined as max{maxe{fe}, 1}.
The same algorithm works on both directed and undirected graphs with the same
performance guarantee. The algorithm works by partitioning the original Ufp into
subproblems, each containing only demands in a fixed range. We use an initial max-
imum flow solution to allocate capacity to different subproblems. Capacities in the
subproblems are arbitrary and may violate the balance condition. The subproblems
are separately solved by introducing bounded congestion; the partial solutions are
then combined by superimposing on the original network G the flow paths obtained
in the respective routings. The combination step will have a subadditive effect on the
total congestion and thus near-optimality of the global solution is achieved.

We present first two simple lemmas for cases in which demands are bounded.
They will be used to provide subroutines to the final algorithm.

Lemma 3.1. For a Ufp with demands in the interval (0, α], there is an algorithm,
α-Routing, which finds, in time O(n+m), an unsplittable routing in which the flow
through each edge is at most nα.

Proof. Algorithm α-Routing works as follows. A depth first search from the
source s gives a path from s to each of the at most n sinks. For each sink ti, route,
along the corresponding path, flow equal to the demand ρi ≤ α.

Given a real number interval with endpoints a and b, 0 < a < b, the ratio r(a, b)
of the interval is b/a. The following fact is also used in [23]; we include a proof for the
sake of completeness.

Lemma 3.2 (see [23]). Given a Ufp Π = (G, s, T ), with demands in the interval
(a, b] and arbitrary capacities, there is an algorithm, Interval Routing, which finds
in polynomial time an unsplittable routing g, such that for all edges e, ge ≤ r(a, b)ue+
b.

Remark. The statement of the lemma holds also when demands lie in the interval
[a, b].

Proof. Let f be a feasible fractional solution to Π. Round all demands up to b and
call Π′ the resulting Ufp instance. To obtain a feasible fractional solution for Π′, it
suffices to multiply the flow fe and the capacity ue on each edge e by a factor of at most
r(a, b). Further round all capacities up to the closest multiple of b by adding at most b.
The new edge capacities are now at most r(a, b)ue+b. By Theorem 2.1 an unsplittable
routing for Π′ can now be found in polynomial time. Algorithm Interval Routing
finds first this unsplittable routing g′ for Π′. To obtain an unsplittable routing g for
Π, from each path in g′, the flow in excess of the demands in T is removed.

We are now ready to present Algorithm Partition in Figure 3. Algorithm Par-
tition takes as input a Ufp (G, s, T ), together with a set of parameters ξ, α1, . . . , αξ,
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Algorithm Partition(G = (V,E, u), s, T , ξ, α1, . . . , αξ)
Step 1. Find a feasible fractional solution f.
Step 2. Define a partition of the (0, 1] interval into ξ consecu-

tive subintervals (0, α1], (α1, α2], . . . , (αξ−1, αξ], αξ = 1.
Construct ξ copies of G where the set of sinks in Gi,
1 ≤ i ≤ ξ, is the subset Ti of T with demands in the in-
terval (αi−1, αi]. Using flow decomposition determine for
each edge e the amount uie of ue used by f to route flow
to sinks in Ti. Set the capacity of edge e in Gi to u

i
e.

Step 3. Invoke Interval Routing on each Gi, 2 ≤ i ≤ ξ, to
obtain an unsplittable routing gi. Invoke α-Routing on
G1 to obtain an unsplittable routing g1.

Step 4. Output routing g, the union of the path sets gi, 1 ≤ i ≤ ξ.

Fig. 3. Algorithm Partition.

that will determine the exact partitioning scheme. Subsequently we show how to
choose these parameters so as to optimize the approximation ratio. The algorithm
outputs an unsplittable routing g. The two previous lemmas will be used to provide
subroutines. Recall that in a Ufp demands lie in the interval (0, 1] and capacities are
at least 1.

We need to examine the effect of the combination on the total congestion.

Lemma 3.3. Algorithm Partition outputs an unsplittable routing g with con-
gestion at most

nα1 + max
2≤i≤ξ

{r(αi−1, αi)}+
ξ∑
i=2

αi.

The running time of Partition is O(T1(n,m)+nm+mξ) where T1(n,m) is the time
to solve a fractional maximum flow problem.

Proof. In order to determine in Step 2 the capacity uie of edge e in the ith copy
Gi, 1 ≤ i ≤ ξ, of G we use the flow decomposition theorem [8]. Any flow along cycles
given by the decomposition theorem is discarded since it does not contribute to the
routing of demands. We focus on the congestion of a particular edge e. By Lemma
3.2 algorithm Interval Routing finds an unsplittable routing in Gi, 2 ≤ i ≤ ξ, at
Step 3 by pushing through edge e at most r(αi−1, αi)u

i
e+αi units of flow. By Lemma

3.1 algorithm α-Routing pushes at most nα1 units of flow through edge e to find a
routing on G1. At Step 4 the superposition of the routings gi gives an approximate
unsplittable solution g, in which, for each edge e,

ge ≤ nα1 +

ξ∑
i=2

uier(αi−1, αi) +

ξ∑
i=2

αi

≤ nα1 + max
2≤i≤ξ

{r(αi−1, αi)}
ξ∑
i=2

uie +

ξ∑
i=2

αi

≤ nα1ue + max
2≤i≤ξ

{r(αi−1, αi)}ue +
ξ∑
i=2

αiue.
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The last step follows because
∑ξ
i=2 u

i
e ≤ ue from the feasibility of f, and ue ≥ 1, and

thus the congestion bound in the lemma follows.

As for the running time, finding the fractional flow in Step 1 requires T1(n,m)
time. Flow decomposition can be done in O(nm) time [2], thus the running time of
Step 2 is O(nm+mξ). Implementing Interval Routing with the augmenting path
algorithm gives total running time O(km) for all the ξ−1 invocations at Step 3. This
time includes the time required by flow decomposition to output each partial routing
in a path representation. The reason is that by Theorem 2.1 the algorithm takes
O(m) time per sink. The total number of sinks in the ξ subproblems is k ≤ n. Hence
the total running time of Partition is O(T1(n,m) + nm+mξ).

In order to substantiate the approximation factor we need to come up with a
partitioning scheme to be used at Step 2 of algorithm Partition. The following
theorem is the main result of this section.

Theorem 3.1. Given a Ufp Π, algorithm Partition finds a (4 + ε)-approxima-
tion for relative congestion for any ε > 0. The running time of the algorithm is
O(T1(n,m)+nm+m log(n/ε)), where T1(n,m) is the time to solve a fractional max-
imum flow problem.

Proof. At Step 2 of Partition, partition the interval (0, 1] of demand values into
ξ geometrically increasing subintervals

(0, 1/2ξ−1], . . . , (1/2i+1, 1/2i], . . . , (1/22, 1/2], (1/2, 1]

such that 1/2ξ−1 ≤ ε/n. Thus it suffices for ξ to be Θ(log(n/ε)). By Lemma 3.3, the
congestion of the routing g returned at Step 4 of the algorithm is at most n εn + 2 +∑ξ−2
i=0

1
2i < 4 + ε.

In order to achieve ε = o(1), it suffices to set 1/2ξ−1 ≤ 1/nc, c > 1. Obtain-
ing a better o(1) factor is straightforward by increasing the number of intervals. A
fractional maximum flow can be found by the push-relabel method of Goldberg and
Tarjan [13], whose currently fastest implementation has running time T1(n,m) =
O(nm log m

n log n
n) [19]. In that case even when our algorithm is used to obtain a

(4 + 1
2n )-approximation, the running time is dominated by a single maximum flow

computation. Alternatively, the new maximum flow algorithm of Goldberg and Rao

[12] with T1(n,m) = O(min(n2/3,m1/2)m log(n
2

m ) logU) may be used, if edge capac-
ities can be expressed as integers in a range [1, . . . , U ]. We point out that if an edge
representation of the output routing suffices, the Goldberg–Rao algorithm can be used
to surpass the O(nm) bottleneck.

Theorem 3.2. If an edge-representation of the output routing is sought, algo-

rithm Partition can be implemented to run in O(log(n/ε)min(n2/3,m1/2)m log(n
2

m )
log(UD)) time, assuming in the original network we have integral capacities in the
range [1, . . . , U ] and the minimum demand is 1/D for D ∈ Z>0.

Proof. The flow decomposition computation in Step 2 of Partition can be re-
placed by ξ = O(log(n/ε)) maximum flow computations; in the ith such computation
only the set of sinks Ti, as defined in Step 3, with demand values in the corresponding
subinterval is included.

The first maximum flow computation has available on each edge the capacity
used by the original fractional solution f. The flow found at the ith computation is
subtracted from the capacity allotted to the (i + 1)st computation. Intuitively, this
iterative procedure is correct for the same reason that standard flow decomposition
is correct. In the latter case, flow is subtracted along a single path (or cycle) at each
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iteration. In each iteration of our scheme, we use Goldberg–Rao to find in one “shot”
all the flow paths leading to sinks with demand values in a given subinterval and
remove their capacity. It is enough to show that implementing flow decomposition by
successive invocations of Goldberg–Rao maintains the following invariant.

INV: After the ith Goldberg–Rao flow computation, the available capacity across
any cut (S, T ) with s ∈ S is equal to the sum of the demand values of the sinks in
T ∩ (T − ∪j≤iTj).

The induction hypothesis is that INV is true after the end of the (i−1)st iteration.
Across a given (S, T ) cut the available capacity is equal to the sum of the demand
values of the sinks in T ∩ (T −∪j<iTj). Goldberg–Rao will make unusable during the
ith invocation an amount of cut capacity equal to the sum of the demand values of
the sinks in T ∩ Ti. Hence INV will be true after the ith iteration as well.

Also the Interval Routing subroutine at Step 3 can be implemented by the
Goldberg–Rao algorithm yielding an edge-only representation of the partial routing.
Finally, the demand value of a sink can be represented as the capacity of the unique
edge leading to it. Multiplying demands and capacities by D results in a network
with integral capacities in the range [1, . . . , UD].

Although in the next section we improve upon the 4-approximation, algorithm
Partition introduces some of the basic ideas behind all of our algorithms. For this
reason a demonstration of the algorithm execution on an example instance follows
in Figures 4–7. In these figures, numbers on vertices denote demands while numbers
on edges denote capacities. The capacities on the original input are equal to 1. Flow
paths are depicted as lines parallel to the original edges. Solid and dashed flow paths
carry 1 and 1/2 units of flow, respectively.

4. A 3-approximation algorithm for congestion. An improved approxima-
tion algorithm can be obtained by combining the partitioning idea above with a more
careful treatment of the subproblems. At the first publication of our results [27] we
obtained a (10/3 + o(1))-approximation. Subsequently we improved our scheme to
obtain a 3 ratio; prior to this improvement, a 2-approximation for Ufp was indepen-
dently obtained by Dinitz, Garg, and Goemans [5]; see also [26].

We give first a specialized version of Lemma 3.2 to be used in the new algorithm.
Lemma 4.1. Let Π = (G, s, T ) be a Ufp in which all demands have value 1/2x

for x ∈ N, and all capacities are multiples of 1/2x+1, and let f be a fractional flow
solution such that the flow fe through any edge is a multiple of 1/2x+1. We can find
in polynomial time an unsplittable routing g where the flow ge through an edge e is at
most fe + 1/2x+1.

Algorithm Partition finds a routing for each subproblem by scaling up sub-
problem capacities to ensure they conform to the requirements of Lemma 3.2. The
new algorithm operates in phases, during which the number of distinct paths used to
route flow for a particular commodity is progressively decreased. Call granularity the
minimum amount of flow routed along a single path to any commodity which has not
been routed yet unsplittably. Algorithm Partition starts with a fractional solution
of arbitrary granularity and, in essentially one step per commodity, rounds this frac-
tional solution to an unsplittable one. In the new algorithm, we delay the rounding
process in the sense that we keep computing a fractional solution of successively in-
creasing granularity. The granularity will always be a power of 1/2, and this unit will
be doubled after each iteration. Once the granularity surpasses 1/2x, for some x, we
guarantee that all commodities with demands 1/2x or less have already been routed
unsplittably. Each iteration improves the granularity at the expense of increasing the
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Fractional Solution:

s

1/2

1/2

1

1

Subproblem G1 for demands of 1/2:

1/2

1/2

1/2

s

1/2

Subproblem G2 for demands of 1:

1

1

1

s

1/2
1/2

1/21/2

1/2

1/21/2

Fig. 4. Algorithm Partition Demonstration I. Numbers on the edges and the vertices denote
capacities and demands, respectively. Original input capacities are 1. Flow paths are depicted as
lines parallel to the original edges. Solid and dashed flow paths carry 1 and 1/2 units of flow,
respectively.

congestion. The method has the advantage that, by Lemma 4.1, a fractional solution
of granularity 1/2x requires only a 1/2x additive offset to current capacities to find
a new flow of granularity 1/2x−1. Therefore, if the algorithm starts with a fractional
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Scale up capacities for G1 to 2u1
e + (1/2). Unsplittable solution:

3/2

1/2

1/2

s

3/2

Fig. 5. Algorithm Partition Demonstration II. Numbers on the edges and the vertices denote
capacities and demands, respectively. Original input capacities are 1. Flow paths are depicted as
lines parallel to the original edges. Solid and dashed flow paths carry 1 and 1/2 units of flow,
respectively.

Scale up capacities for G2 to 2u2
e + 1. Unsplittable solution:

3

1

1

s

2
2

22

2

22

Fig. 6. Algorithm Partition Demonstration III. Numbers on the edges and the vertices denote
capacities and demands, respectively. Original input capacities are 1. Flow paths are depicted as
lines parallel to the original edges. Solid and dashed flow paths carry 1 and 1/2 units of flow,
respectively.

solution of granularity 1/2λ, for some potentially large λ, the total increase to an edge

capacity from then on would be at most
∑j=λ
j=1 1/2

j < 1. Expressing the granularity
in powers of 1/2 requires an initial rounding of the demand values; this rounding will
force us to scale capacities by at most a factor of 2. We first provide an algorithm
for the case in which demand values are powers of 1/2. The algorithm for the general
case will then follow easily.

Theorem 4.1. Let Π = (G = (V,E, u), s, T ) be a Ufp in which all demand
values are of the form 2−ν with ν ∈ N, the maximum demand value is denoted by
ρmax, and the minimum demand value is denoted by ρmin. There is an algorithm,
2H Partition, which obtains in polynomial time an unsplittable routing such that
the flow through any edge e is at most zue + ρmax − ρmin where z is the optimum
congestion.
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Superimpose the two solutions to obtain final solution:

s

1/2

1/2

1

1

Fig. 7. Algorithm Partition Demonstration IV. Numbers on the edges and the vertices denote
capacities and demands, respectively. Original input capacities are 1. Flow paths are depicted as
lines parallel to the original edges. Solid and dashed flow paths carry 1 and 1/2 units of flow,
respectively. Final congestion is 3/2.

Remark. We first obtained a relative (1+ρmax−ρmin)-approximation for the case
with demand values in {1/2, 1} in [27]. Dinitz, Garg, and Goemans [5] first extended
that theorem to arbitrary powers of 1/2 to obtain a ue+ρmax−ρmin absolute guarantee
on the flow through edge e. Their derivation uses a different approach.

Proof. We describe the algorithm 2H Partition. The crux of the algorithm is a
relaxed decision procedure that addresses the question, Is there an unsplittable flow
after scaling all the input capacities by x? The procedure will either return no or
will output a solution where the flow through edge e is at most xue + ρmax − ρmin.
Embedding the relaxed decision procedure in a binary search completes the algorithm.
See [15] for background on relaxed decision procedures. The following claim will be
used to show the correctness of the procedure.

Claim 4.1. Given a Ufp Π with capacity function r, all demands of the form
2−ν , ν ∈ N , and minimum demand 2−λ, let Π′ be the modified version of Π in which
each edge capacity re has been rounded down to the closest multiple r′e of 1/2λ. If the
optimum congestion is 1 for Π, the optimum congestion is 1 for Π′ as well.

Proof of claim. Let G be the network with capacity function r and G′ be the
network with rounded capacities r′. The amount re − r′e of capacity will be unused
by any optimal unsplittable flow in G. The reason is that the sum

∑
i∈S 1/2

i for any
finite multiset S ⊂ N is equal to a multiple of 1/2i0 , i0 = mini∈S{i}.

We describe now the relaxed decision procedure. Let u′ denote the scaled capacity
function xu. Let ρmin = 1/2λ. The relaxed decision procedure is broken into at most
λ− log(ρ−1

max) + 1 iterations; each iteration aims to double the granularity.
During the first iteration, split each commodity in T , called an original commod-

ity, with demand 1/2y, 0 ≤ y ≤ λ, into 2λ−y virtual commodities each with demand
1/2λ. Call the resulting set of commodities T1. Round down all capacities to the closest
multiple of 1/2λ. By Theorem 2.1 we can find an unsplittable flow solution f0 ≡ g1,
for T1, in which the flow through any edge is a multiple of 1/2λ. If this solution does
not satisfy all demands, the decision procedures returns no; by Claim 4.1 no unsplit-
table solution is possible without increasing the capacities u′. Otherwise the decision
procedure continues to iterate as described below. We denote by uie, i ≥ 1, the flow
through edge e at the end of the ith iteration. Observe that f0 is a fractional solution
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for the set of original commodities as well, a solution with granularity 1/2λ. The flow
u1
e through an edge is trivially f0

e ≤ u′e ≤ ue.
At iteration i > 1, the following steps are taken.
Step i1. Extract from gi−1, using flow decomposition, the set of flow paths f i−1

used to route the set Si−1 of virtual commodities in Ti−1 which correspond to original
commodities in T with demand 1/2λ−i+1 or higher.

Step i2. Pair up the virtual commodities in Si−1 corresponding to the same
original commodity. Call the resulting set of virtual commodities Ti.

Step i3. Find an unsplittable routing gi for Ti.
At Step i2, pairing is possible since the demand of an original commodity is

inductively an even multiple of the demands of the virtual commodities. Ti will
contain virtual commodities with demand 1/2λ−i+1. For Step i3 observe that the set
of flow paths f i−1 is a fractional solution for the commodity set Ti. Inductively each
flow path in f i−1 carries flow which is a multiple of 1/2λ−i+2. By Lemma 4.1, we can
find an unsplittable routing gi for Ti such that the flow gie through an edge e is at
most

f i−1
e + 1/2λ−i+2.

After the ith iteration the granularity has been doubled to 1/2λ−i+1. A crucial obser-
vation is that from this quantity, gie, only an amount of at most 1/2λ−i+2 corresponds
to new flow, added to e during iteration i. It is easy to see that during the execution
of the procedure the following two invariants are maintained.

INV1: After iteration i, all original commodities with demands 1/2λ−i+1 or less
have been routed unsplittably.

INV2: After iteration i > 1, the total flow uie through edge e, which is due to all
i first iterations, satisfies the relation

uie ≤ ui−1
e + 1/2λ−i+2.

Given that u1
e = u′e, the total flow through e used to route unsplittably all commodities

in T is at most

u′e +
λ−log(ρ−1

max)+1∑
i=2

1/2λ−i+2 = xue + ρmax − 1/2λ= xue + ρmax − ρmin.

Therefore the relaxed decision procedure returns the claimed guarantee. For
the running time, we observe that in each of the l = λ − log(ρ−1

max) + 1 iterations,
the number of virtual commodities appears to be O(k2l), where k is the number
of the original commodities. We opted to present a “pseudopolynomial” version of
the decision procedure for clarity. There are two approaches to ensure polynomial-
ity of our method. One is to consider only demands of value 1/2λ > 1/nd for some
d > 1. It is known [27] that we can route the very small demands while affecting
the approximation ratio by an o(1) factor. The other approach relies on changing
the units at which demands and capacities are expressed. During iteration i scale all
demands up by multiplying by a factor of 2λ−i+1. This means that all demands of
value 1/2λ−i+1 are now demands of 1. The different virtual commodities hosted by
the same sink t are not represented explicitly. Their number will be equal to the total
demand of t under the new units. Lemma 4.1 requires the capacity of each edge e
to be a multiple de(1/2

λ−i+1) of 1/2λ−i+1; change this capacity to de. An integral
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solution to the problem after remapping demands and capacities in the manner de-
scribed corresponds to an unsplittable one for the virtual commodities of demand
1/2λ−i+1.

Recall that for a given Ufp we assume that the cut condition holds. In the proof
of Theorem 4.1 one can avoid the binary search if all the capacities are multiples of
2−λ. In particular, integral capacities fulfill this requirement. Together with the cut
condition, the extra condition implies that under the original capacity function u, a
routing g1 which satisfies all the demands in T1 can always be found. This gives the
following corollary.

Corollary 4.1. Let Π = (G = (V,E, u), s, T ) be a Ufp in which all demand
values are of the form 2−ν with ν ∈ N, the maximum demand value is denoted by ρmax,
and the minimum demand value is denoted by ρmin. If all capacity values are multi-
ples of ρmin, algorithm 2H Partition will obtain in polynomial time an unsplittable
routing such that the flow through any edge e is at most ue + ρmax − ρmin.

Theorem 4.2. Let Π = (G = (V,E, u), s, T ) be a Ufp with maximum and
minimum demand values ρmax and ρmin, respectively. There is an algorithm,
H Partition, which obtains in polynomial time a

min{3− ρmin, 2 + 2ρmax − ρmin}

approximation for congestion.
Proof. We describe the algorithm H Partition. Round up each demand to its

closest power of 1/2. Call the resulting Ufp Π′ with sink set T ′.Multiply all capacities
in Π′ by at most 2 and let u′ denote the resulting capacity function in Π′. Then there
is a fractional feasible solution f ′ to Π′. The purpose of the rounding is to always be
able to express the granularity as a power of 1/2. The remainder of the proof consists
of finding an unsplittable solution to Π′; this solution can be efficiently converted to
an unsplittable solution to Π without further capacity increase. Such a solution to Π′

can be found by the algorithm 2H Partition from Theorem 4.1. Observe that the
optimum congestion for Π′ is at most z, the optimum congestion for Π. 2H Partition
will route through edge e flow that is at most

zu′e + ρ′max − ρ′min ≤ 2zue + ρ′max − ρ′min,

where ρ′max and ρ′min denote the maximum and minimum demand values in Π′. But
ρ′max < 2ρmax, ρ

′
max ≤ 1, and ρ′min ≥ ρmin from the construction of Π′. Therefore

ρ′max − ρ′min ≤ 1 − ρmin and ρ′max − ρ′min ≤ 2ρmax − ρmin. Dividing the upper bound
on the flow by zue ≥ 1 yields the claimed guarantees on congestion.

5. Minimizing congestion with arbitrary capacities. We examine here
Ufp in its full generality, when demands lie in (0, 1] and capacities in (0,∞). In
particular, let 1/D be the minimum demand value for a real D ≥ 1. We assume
without loss of generality that ue ≥ 1/D for all e, since the optimal solution will not
use any edge violating this condition. Our approximation algorithm will have time
complexity polynomial in �logD�. In subsequent sections we return to the original
balance condition on the capacity values as stated in section 2.

The essential modification required in algorithm Partition is at Step 1. We
compute a feasible fractional solution such that the flow of commodity i through edge
e is set to 0 if ρi > ue. These constraints can be easily enforced, for example, in a linear
programming formulation. The resulting problem formulation is a valid relaxation of
the original problem and the unsplittable optimum is not affected by the additional
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constraints. A second modification is that no subproblem is constructed for a range of
the form (0, α1]. The first subinterval of the decomposition is [a1, a2] with a1 = 1/D.
The analysis of the performance guarantee is largely the same. Let L Partition be
the modified algorithm as outlined above. We maintain the notation of Partition
for the decomposition parameters.

Lemma 5.1. Algorithm L Partition runs in polynomial time and outputs an un-
splittable routing g with total flow through edge e at most max2≤i≤ν{r(αi−1, αi)}ue+∑ν
i=2 αi, where ue ∈ (αν−1, αν ], ν ≤ ξ.
Proof. The proof is similar to that of Lemma 3.3. The additional observation is

that because of the new constraints in the fractional relaxation, during Step 2 of the
algorithm edge e is not included in any graph Gi with i ≥ ν.

Theorem 5.1. Given Ufp Π with arbitrary capacities and minimum demand
value ρmin = 1/D, D ≥ 1, algorithm L Partition finds a (5.8285 − 1.4144ρmin)-
approximation for congestion. The algorithm runs in polynomial time.

Proof. We instantiate the partitioning scheme as follows. The parameter r > 1,
to be chosen later, is the ratio of the geometrically decreasing intervals. (In the proof
of Theorem 3.1, r = 2.) We partition the interval [1/D, 1] of demands into O(logrD)
geometrically increasing subintervals:

[1/D, 1/r	logr D
], . . . , (1/ri+1, 1/ri], . . . , (1/r, 1].

By Lemma 5.1 the total flow through an edge e such that 1/ri+1 < ue ≤ 1/ri is at
most

rue +

	logr D
∑
j=i

1/rj = rue +
r

ri(r − 1)
− 1

(r − 1)r	logr D
 ≤ rue +
r2ue
r − 1

− ue
(r − 1)D

.

Thus we obtain a congestion of 2r2−r
r−1 − 1

(r−1)D . Selecting r = 1.707, yields 5.8285 −
1.4144ρmin. This analysis hinges on the fact that ue ≤ 1. The total flow through an
edge e with ue > 1 will be

rue +

	logr D
∑
j=0

1/rj < rue +
r

r − 1
ue,

which is at most 4.12143ue when r = 1.707. Since ρmin ≤ 1, 4.12143 < 5.8285 −
1.4144ρmin.

6. Minimum-cost unsplittable flow. In this section we examine the problem
of finding a minimum-cost unsplittable flow for (G, s, T ) when a cost ce ≥ 0 is associ-
ated with each edge e. The cost c(P ) of a path P is

∑
e∈P ce. The cost of a routing is

defined as
∑
ti∈T ρic(Pi). Similarly we define the cost of an unsplittable flow to be the

cost of the corresponding routing. The optimization problem we consider is defined
as follows: find among all routings of minimum congestion the one of minimum cost.
Given that this problem has two objectives, we give a bicriteria (α, β)-approximation
which finds an unsplittable routing with (i) congestion β times the optimum conges-
tion z and (ii) cost α times the minimum cost of an unsplittable flow which is feasible
with respect to the capacity function zu.

We show how to modify algorithm Partition to invoke a minimum-cost flow
subroutine instead of maximum flow routines. Since Partition works on both di-
rected and undirected graphs the same holds for the new algorithm. First we need
the analogue of Theorem 2.1.
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Theorem 6.1. Let (G = (V,E, u), s, T ) be a Ufp with costs on an arbitrary net-
work G with all demands ρi, 1 ≤ i ≤ k, equal to the same value σ and edge capacities
ue equal to integral multiples of σ for all e ∈ E. There is a maximum fractional flow
of minimum cost that is an unsplittable flow. Moreover, this unsplittable flow can be
found in polynomial time.

This theorem is an easy consequence of the well-known successive shortest path
algorithm for minimum-cost flow (developed independently by [17, 16, 3]), and it is a
corollary of the integrality property of minimum-cost flow, with integral units scaled
by σ.

Two lemmas for the analysis follow. They generalize Lemmas 3.1 and 3.2 to
accommodate costs.

Lemma 6.1. Given a minimum-cost Ufp with demands in the interval (0, α] and
a fractional solution f with cost c(f), there is an algorithm, α-C Routing, which
finds an unsplittable routing of cost at most c(f), such that the flow through an edge
is at most nα. The running time of the algorithm is O(n log n+m).

Proof. Algorithm α-C Routing works as follows. Find shortest paths from s to
all the sinks in G using Dijkstra’s algorithm [4, 10]. For each sink ti route on the
shortest path from s flow equal to the demand ρi.

Lemma 6.2. Let a minimum-cost Ufp Π have demands in the interval (a, b],
arbitrary capacities, and a fractional solution f of cost c(f). There is an algorithm,
C Interval Routing, which finds in polynomial time an unsplittable routing of cost
at most r(a, b)c(f) such that the flow through an edge e is at most r(a, b)ue + b.

Proof. The proof is similar to that of Lemma 3.2, but we use Theorem 6.1 instead
of Theorem 2.1. Round up all the demands to b and call Π′ the resulting problem.
By multiplying the flow fe and the capacity ue on each edge e by at most r(a, b),
we obtain a feasible fractional solution f ′ for Π′; the cost of f ′ is at most r(a, b)c(f).
Now add at most b to each edge capacity so that it becomes a multiple of b. Find an
unsplittable routing by using Theorem 6.1. The cost of the unsplittable routing is at
most equal to the cost of the fractional solution f ′.

Algorithm C Partition takes the same steps as Partition, with two differences
in Steps 1 and 3. At Step 1 of C Partition a fractional minimum-cost solution f is
found. At Step 3 we invoke C Interval Routing instead of Interval Routing.
C Interval Routing is implemented with the successive shortest paths algorithm
for minimum-cost flow. Finally algorithm α-C Routing is used to compute a routing
for graph G1 of the decomposition. We keep the same notation for the partitioning
scheme. The proof is very similar to that of Lemma 3.3, and we omit it.

Lemma 6.3. Algorithm C Partition outputs an unsplittable routing g with con-
gestion at most

nα1 + max
2≤i≤ξ

{r(αi−1, αi)}+
ξ∑
i=2

αi

and cost at most max2≤i≤ξ{r(αi−1, αi)}c(f), where c(f) is the minimum cost of a
fractional solution. The running time of C Partition is O(T2(n,m) + nm + mξ)
where T2(n,m) is the time to solve a fractional minimum-cost flow problem.

Using the same partitioning scheme as in Theorem 3.1 we obtain the following.
Theorem 6.2. Given a minimum-cost Ufp Π, we can obtain a simultaneous

(2, 4 + ε)-approximation for cost and congestion, for any ε > 0. The running time of
the algorithm is O(T2(n,m) + nm +m log(n/ε)) where T2(n,m) is the time to solve
a fractional minimum-cost flow problem.
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We observe that the approximation factor for the cost in the above algorithm
is the ratio of the subintervals used in the partitioning scheme. By increasing the
constant for congestion we can improve upon the cost approximation.

Theorem 6.3. Given a minimum-cost Ufp Π we can obtain a simultaneous
(1 + δ, 2 + δ2+1

δ + ε)-approximation for cost and relative congestion for any δ, ε > 0.
The running time of the algorithm is O(T2(n,m)+m log(n/ε)), where T2(n,m) is the
time to solve a fractional minimum-cost flow problem.

Proof. The new algorithm is the same as C Partition except for the partitioning
scheme. The interval (0, 1] of demands is partitioned into ξ geometrically increasing
subintervals

(0, 1/(δ+1)ξ−1], . . . , (1/(δ+1)i+1, 1/(δ+1)i], . . . , (1/(δ+1)2, 1/(δ+1)], (1/(δ+1), 1]

such that 1/(δ + 1)ξ−1 ≤ ε/n. According to this scheme, by Lemma 6.3 the approxi-
mation ratio for the cost will be 1+ δ and the approximation ratio for the congestion
will be at most

1 + δ +

ξ−2∑
i=0

1

(δ + 1)i
+ ε

≤ 1 + δ +
1 + δ

δ
+ ε

= 2 +
δ2 + 1

δ
+ ε.

Currently the best time bound T2(n,m) for fractional minimum-cost flow is

O(min{nm log(n2/m) log(nC), nm(log logU) log(nC), (m log n)(m+ n log n)})

due to [14, 1, 33]. Finally, by modifying the congestion algorithm of Theorem 4.2, it
is easy to see how to obtain a (2, 3) simultaneous approximation for cost and conges-
tion. The essential modification to H Partition lies in the use of the minimum-cost
analogue to Lemma 4.1.

Lemma 6.4. Let Π = (G, s, T ) be a minimum-cost Ufp in which all demands
have value 1/2x for x ∈ N and all capacities are multiples of 1/2x+1, and let f be
a fractional flow solution of cost c(f) such that the flow fe through any edge is a
multiple of 1/2x+1. We can find in polynomial time an unsplittable routing g of cost
at most c(f) such that the flow ge through an edge e is at most fe + 1/2x+1.

Theorem 6.4. Let Π be a minimum-cost Ufp, with maximum and minimum
demand values ρmax and ρmin, respectively. We can obtain in polynomial time a
simultaneous

(2,min{3− ρmin, 2 + 2ρmax − ρmin})

approximation for cost and congestion.

7. Maximizing the routable demand. In this section we turn to the maxi-
mization problem of finding a routable subset of sinks with maximum total demand.
Let the value of a (partial) routing be the sum of the demands of the commodities
being routed. We seek a routing of maximum value such that the capacity constraints
are satisfied. We obtain a .075 approximation which is slightly improved in the next
section to .0769 as an indirect application of the algorithm for minimizing the number
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of rounds; the latter algorithm uses subroutines from matroid theory. In contrast to
most of the results in this paper, the cut condition is a necessary prerequisite for the
.0769-approximation. Therefore the .075-approximation is our most generally applica-
ble algorithm for maximum demand. The exposition in the present section introduces
in a direct fashion the general technique while the algorithm invokes only maximum
flow subroutines. Note that if the value definition was relaxed to take into account
paths carrying flow to commodities without fully satisfying the respective demands,
a c-approximation, c > 1, for congestion would imply a 1/c-approximation for this
relaxed maximization problem.

Let (G, s, T ) be the given Ufp. Consider splitting the interval (0, 1] of demands
into two intervals, (0, α] and (α, 1], for an appropriate breakpoint α.We will give sepa-
rate constant-factor approximation algorithms for each of the two resulting problems.
At least one of the two intervals contains at least half of the total demand in T ,
so we obtain a constant-factor approximation for the entire problem. This was also
the high-level approach used in [23]. In fact, in order to route the demands in the
subinterval (α, 1] we will use an intuitive algorithm developed by Kleinberg [23]. For
the demands in (0, α], we show how a partitioning scheme, similar to the one used
for minimizing congestion, can give a simple algorithm with a constant performance
guarantee. For our partitioning scheme to succeed in the maximization setting, it is
essential to have the maximum demand bounded away from 1. Hence the different
treatment for (0, α] and (α, 1].

Let αf (G, s, T ) denote the total demand routed by a fractional solution f. For
any given Ufp we will use αf (G, s, T ), with f a fractional solution of maximum value,
as an upper bound to measure the quality of our approximation.

The following lemma, shown in [23], will be used for demands in (α, 1]. The spirit
of the proof is similar to that of Lemma 3.2.

Lemma 7.1 (see [23]). Given a Ufp Π = (G, s, T ) with demands in the interval
(a, b], there is an algorithm, K Routing, which finds a partial unsplittable flow g of
value at least 1

2 [r(a, b)]
−1αf (G, s, T ). The algorithm runs in polynomial time.

Adapting the proof of Lemma 7.1 we can show a slightly different lemma, which
will be also of use in our algorithm. We include the proof for the sake of completeness.

Lemma 7.2. Given a Ufp Π = (G, s, T ) with demands in the interval (a, b] and
capacities that are multiples of b, there is an algorithm, M Routing, which finds, in
polynomial time, a partial unsplittable flow g of value at least [r(a, b)]−1αf (G, s, T ),
where f is a fractional solution to Π.

Proof. We outline algorithm M Routing. Round down all demands to a. Mul-
tiply all capacities in G by [r(a, b)]−1 < 1. Let Π′ = (G′, s, T ′) be the resulting
problem. We show that Π′ has a fractional solution f ′ of value αf

′
(G′, s, T ′) ≥

[r(a, b)]−1αf (G, s, T ): multiply the flow pushed by f on each edge by [r(a, b)]−1 and
let f ′ be the resulting fractional flow. Clearly f ′ does not route more than a units of
flow to any sink in T ′ and respects the capacities in G′, so it is feasible for Π′.

We now show how to obtain a partial unsplittable solution for Π of value at least
αf

′
(G′, s, T ′). In G all capacities are multiples of b so in G′ they are multiples of a.

But all demands in G′ are a so by Theorem 2.1 there is an unsplittable flow g′ of
value at least αf

′
(G′, s, T ′). Multiplying the flow on each path in g′ by a factor of at

most r(a, b) gives a partial unsplittable flow g for Π, respecting the capacities in G
and of value at least αf

′
(G′, s, T ′).

We now outline our approach for the second half of the problem, namely the
demands in (0, α]. Our aim is to use a partitioning scheme as in the congestion case:
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Algorithm M Partition(G = (V,E, c), s, T , ξ, α1, . . . , αξ, x)
Step 1. Find a feasible fractional solution f.
Step 2. Let x be a constant, 0 < x < 1. Define a parti-

tion of the (0, 1] interval into ξ consecutive subinter-
vals (0, α1], (α1, α2], . . . , (αξ−1, αξ], αξ = 1, such that∑ξ−1
i=1 αi ≤ x. Construct ξ − 1 copies of G where the set

of sinks in Gi, 2 ≤ i ≤ ξ, is the subset Ti of T with de-
mands in the interval (αi−1, αi]. Using flow decomposition
determine for each edge e the amount cie of ue used by f
to route flow to sinks in Ti.

Step 3. Set the capacity of edge e in Gi, 2 ≤ i ≤ ξ−1, equal to the
smallest multiple of αi greater than or equal to (1− x)cie.
Set the capacity of edge e in Gξ to ue.

Step 4. InvokeM Routing on each Gi, 2 ≤ i ≤ ξ−1, to obtain a
partial unsplittable flow gi. Invoke K Routing on Gξ to
obtain a partial unsplittable flow gξ.

Step 5. Set partial routing g to be the union of the path sets gi,
2 ≤ i ≤ ξ − 1. Of the two partial routings g and gξ output
the one of greater value.

Fig. 8. Algorithm M Partition.

partition the interval (0, α] of demand values into subintervals and generate an appro-
priate subproblem for each subinterval. We would like to find a near-optimal solution
to each subproblem, by exploiting Lemma 7.2. Ideally, we could then combine these
near-optimal solutions to the subproblems to obtain a close-to-maximum unsplittable
flow for the original problem. However, in the congestion version, only a fraction of
the capacity of an edge is assigned initially to each subproblem, a fraction determined
by flow decomposition. On the other hand, in order to make use of Lemma 7.2 on each
subproblem, we require capacities to be multiples of the maximum demand. In the
congestion algorithm, adding the necessary amount to each capacity only increased
the approximation ratio. In the current setting we are not allowed to increase the orig-
inal input capacities, as this would violate feasibility. To circumvent this difficulty we
scale down the fractional solution to the original problem. On each edge a constant
fraction of the edge capacity is then left unused and can provide the required extra
capacity for the subproblems. The scaling of the fractional solution by a 1−x factor,
for appropriately chosen x, will incur a scaling by the same factor to the approxima-
tion ratio, as the value of the final routing is given in terms of the value αf (G, s, T ) of
the maximum flow with which we begin. We give the general algorithm in Figure 8. It
takes as input a Ufp (G, s, T ) together with a set of parameters x, ξ, α1, . . . , αξ that
will determine the exact partitioning scheme. The breakpoint α will be αξ−1 with αξ
set to 1. Subsequently we show how to choose these parameters so as to optimize the
approximation ratio. The algorithm outputs a partial routing.

By Lemma 7.1, partial routing gξ computed in Step 4 is a partial unsplittable
flow, which respects the capacities. We need to establish this fact for partial routing g
computed in Step 5 as well and also get an estimate of its value. Note that algorithm
M Partition does not route any demands in (0, α1]. Let α

f (G, s, Ti) denote the flow
routed by the fractional solution to demands in the interval (αi−1, αi].

Lemma 7.3. Partial routing g found by algorithm M Partition is a partial
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unsplittable flow of value at least

min
2≤i≤ξ−1

{[r(αi−1, αi)]
−1}(1− x)αf


G, s,

⋃
2≤i≤ξ−1

Ti

 .

Moreover, g respects the capacity constraints in G. The running time ofM Partition
is O(T1(n,m)+nm+mξ), where T1(n,m) is the time to solve a fractional maximum
flow problem.

Proof. We examine first the value of g. Let fxi be the fractional optimal flow on
Gi. By Lemma 7.2 the value of the partial routing gi, 2 ≤ i ≤ ξ − 1, found at Step
5, is at least [r(αi−1, αi)]

−1fxi . By the capacity assignment in Gi, α
fx
i (G, s, Ti) ≥

(1− x)αf (G, s, Ti). Hence the value of the partial routing gi is at least
(1− x)[r(αi−1, αi)]

−1αf (G, s, Ti).
Since αf (G, s,

⋃
2≤i≤ξ−1 Ti) =

∑i=ξ−1
i=2 αf (G, s, Ti), the claim on the value follows.

For the capacity constraints, the aggregate capacity used in all partial routings
gi, 2 ≤ i ≤ ξ − 1, on any edge e, is by Step 4 at most (1− x)

∑i=ξ−1
i=2 cie +

∑i=ξ−1
i=2 αi.

By Step 2,
∑ξ−1
i=2 αi ≤ x and

∑i=ξ−1
i=2 cie ≤ ue. Thus, the aggregate capacity used by

g is at most (1− x)ue + x ≤ ue. The running time follows in the same manner as in
Lemma 3.3.

It remains to choose the parameters x, ξ, and the αi of the partitioning and to
account for the “missing” flow αf (G, s, T1). Without loss of generality we assume
that there is one demand in T of value 1. Otherwise we can rescale the interval of
demands. Thus αf (G, s, T ) is at least 1.

Theorem 7.1. Let x1, x2, x3 be constants in (0, 1) such that x3 = x1(1 − x2).
Given a Ufp Π = (G, s, T ) and choosing parameters based on x1, x2, x3, algorithm
M Partition finds a β(1− ε)-approximation for maximum routable demand for any
0 < ε < β and β = min{(1 − x1)x2/2, x3/4}. The running time of the algorithm
is O(T1(n,m) + nm + m log(n/ε)) where T1(n,m) is the time to solve a fractional
maximum flow problem.

Proof. At Step 3 of M Partition, partition the interval (0, 1] of demand values
into ξ geometrically increasing subintervals

(0, x3(x2)
ξ−2], . . . , (x3(x2)

i+1, x3(x2)
i], . . . , (x3x2, x3], (x3, 1]

such that x3(x2)
ξ−2 ≤ ε/n. Thus it suffices for ξ to be Θ(logn/ε). The flow αf (G, s, T1)

is at most ε so

αf


G, s,

⋃
2≤i≤ξ

Ti

 ≥ αf (G, s, T )− ε ≥ (1− ε)αf (G, s, T ).

Achieving therefore a β-approximation to αf (G, s,
⋃

2≤i≤ξ Ti) will yield the claimed
β(1− ε) ratio.

Set parameter x in the algorithm to x1. Note that by the choice of x3 the sum∑i=ξ−2
i=0 x3(x2)

i is at most x1 as required by the algorithm. By Lemma 7.3, the
partial unsplittable flow g found by M Partition is a (1 − x1)x2-approximation
to αf (G, s,

⋃
2≤i≤ξ−1 Ti). By Lemma 7.1, the partial unsplittable flow gξ is a x3/2-

approximation to αf (G, s, Tξ). Choosing of the two the one of greatest value at Step
5 yields a β-approximation to αf (G, s,

⋃
2≤i≤ξ Ti).

By choosing x1, x2, and x3 to be 4/10, 1/4, and 3/10, respectively, we obtain
(1− x1)x2 = x3/2 = 0.15. Accordingly, β = .075.
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8. Minimizing the number of rounds. In this section we examine the prob-
lem of routing in rounds. A partitioning of the set of sinks into a minimum number of
communication rounds is sought so that the set of terminals assigned to each round
is routable under the capacity constraints. The requirement to satisfy the capacity
constraints leads to a high-level treatment similar to the one for the maximum de-
mand metric. We split the interval of demand values into (0, α] and (α, 1], for an
appropriate breakpoint α, and give a constant-factor approximation for each of the
two resulting problems. Demands in (0, α] will be processed under a partitioning
scheme that will generate subproblems. In the subproblems, we relax the capacities
to allow congestions of up to 1/(1−x) in order to free up capacity that we can reallo-
cate conveniently among subproblems. This scaling will be reflected in an increase on
the approximation ratio by 1/(1 − x). Intuitively, since we are using paths from the
fractional solution in the unsplittable routings, when the fractional solution carries
(1− x) times less flow for each commodity, we need more rounds.

Recall that the input Ufp comes with the assumption that a fractional solution
with relative congestion 1 exists, i.e., the cut condition holds. In this section we
will generate subproblems on which this assumption does not hold. Therefore we
introduce notation ζf (G, s, T ) for the congestion of a fractional solution f to a Ufp
(G, s, T ). Note that if f is a fractional solution of minimum congestion for a problem
(G, s, T ), the quantity �ζf (G, s, T )� is a lower bound on the minimum number of
rounds, which we denote by χ(G, s, T ). Our analysis bounds the number of rounds
against ζf (G, s, T ), which we have assumed to be 1 (because of the cut condition).
But since χ(G, s, T ) ≥ �ζf (G, s, T )�, the approximation ratio holds even if we drop
this assumption. For the sake of clarity we include ζf (G, s, T ) in the approximation
guarantees because we find that the rounds metric is the least intuitive of the three
metrics as far as validity of the approximations without the cut condition is concerned.

We employ a subroutine that we call KR Routing (see Lemma 5.3 in [23]) and
a variant R Routing to deal with subproblems having demands in a bounded range.
The subroutines are similar in spirit to the subroutines K Routing andM Routing
used for the maximum demand metric; however, their basic ingredient is not Theorem
2.1. Maximum flow integrality is not useful in the rounds setting and instead a result
from [23] is used, given as Theorem 8.1 below. The proof of the latter theorem uses
results from matroid theory.

Theorem 8.1 (see [23]). Given a Ufp (G, s, T ) with all demands equal to σ
and all capacities multiples of σ, �ζf (G, s, T )� = χ(G, s, T ). Moreover, a routing in
χ(G, s, T ) rounds can be found in polynomial time.

Lemma 8.1 (see [23]). Let Π = (G, s, T ) be a Ufp with demands in the interval
(a, b] and f a corresponding fractional solution. There is a polynomial-time algorithm,
KR Routing, which routes Π in at most �2r(a, b)ζf (G, s, T )� rounds.

Again we can adapt the proof of Lemma 8.1 to show a slightly different result.

Lemma 8.2. Let Π = (G, s, T ) be a Ufp with demands in the interval (a, b], and
capacities multiples of b, and f a corresponding fractional solution not necessarily re-
specting capacities. There is a polynomial-time algorithm, R Routing, which routes
Π in at most �r(a, b)ζf (G, s, T )� rounds.

Proof. We outline algorithm R Routing. Round all the demands up to b. Call
Π′ the resulting problem and f ′ a corresponding fractional solution not necessarily
respecting capacities. In Π′ all demands are equal to b and all capacities are multiples
of b; therefore by Theorem 8.1 we can route in χ(Π′) = �ζf ′

(Π′)� rounds and use the
paths from this routing to route Π. Clearly, the paths used in each round respect the
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capacity constraints in (G, s, T ). This completes the description of the algorithm.
It remains to demonstrate a suitable f ′, which will help us to upper bound ζf

′
(Π′)

in terms of ζf (G, s, T ). Decompose the flow f for Π and consider the paths routing
demand to a particular sink ti. Multiply the flow on each path by the same constant
(no greater than b/a) so that b units of flow are routed to each ti. Do this for all sinks.
Let f ′ be the resulting fractional solution; f ′ satisfies all the demands for Π′ and has
congestion ζf

′
(Π′) at most r(a, b)ζf (G, s, T ).

Our algorithm R Partition and its analysis are very similar to M Partition
up to the subroutine level. When dealing with (α1, αξ−1], we scale down the fractional
capacity on each edge by (1 − x), thereby inducing congestion of up to 1/(1 − x) in
the subproblems, in order that we can reallocate capacity among the subproblems
to satisfy the hypotheses of Lemma 8.2. Steps 1 through 3 are exactly the same for
both algorithms. In Step 4 routines R Routing and KR Routing are invoked on
Gi, 2 ≤ i ≤ ξ − 1, and Gξ, respectively. Algorithm R Routing outputs for each Gi,
2 ≤ i ≤ ξ − 1, a set of paths Pij to be used on round j. Let j∗ be the maximum
number of rounds output from R Routing for any Gi, 2 ≤ i ≤ ξ − 1. During round
j, 1 ≤ j ≤ j∗, we route along all paths in

⋃
i Pij . Subsequently we route the demands

in (0, α1] and (αξ−1, 1] in two separate sets of rounds. Recall that ζf (G, s, Ti) is the
minimum congestion for routing demands fractionally in Ti on the original unscaled
capacities and thus is equal to 1. The following lemma accounts for the rounds needed
to route all demands except for the ones in the (0, α1].

Lemma 8.3. Algorithm R Partition runs in polynomial time and routes the
demands in (α1, 1] in at most

max
2≤i≤ξ−1

{⌈
1

1− x
r(αi−1, αi)ζ

f (G, s, Ti)
⌉}

+
⌈
2r(aξ−1, 1)ζ

f (G, s, Tξ)
⌉

rounds.
Proof. For the number of rounds to route demands in (αi, αi+1], 1 ≤ i ≤ ξ − 2,

we note that Lemma 8.2 applies in the corresponding subproblems. A fractional
solution satisfying all demands in subproblem Gi would have to potentially introduce
congestion given that at Step 3 we assign capacity to edge e inGi which is as low as (1−
x)cie. There is a fractional solution fi to Gi with congestion at most 1

1−xζ
f (G, s, Ti),

obtained by setting f ie = cie. Therefore, the number of rounds for a subproblem is
at most � 1

1−xr(αi−1, αi)ζ
f (G, s, Ti)�. By the same argument as in Lemma 7.3, the

aggregate capacity on any edge e used on all these subproblems does not exceed ue.
Thus during the same round j, 1 ≤ j ≤ j∗, we can route all paths in

⋃
2≤i≤ξ−1 Pij .

To route the demands in (αξ−1, 1] we need by Lemma 8.1 at most an additional
�2r(aξ−1, 1)ζ

f (G, s, Tξ)� number of rounds.
By choosing α1 ≤ 1/n, all the demand in (0, α1] can be routed in one round, by

Lemma 3.1.
Theorem 8.2. Let x1, x2, x3 be constants in (0, 1) so that x3 = x1(1 − x2).

Given a Ufp Π = (G, s, T ), we can obtain in polynomial time a β-approximation for
minimum number of rounds where β = �1/(1− x1)x2�+ �2/x3�+ 1.

Proof. The partitioning scheme is the same as in the proof of Theorem 7.1 with
ε = 1. The demands in (0, x3(x2)

ξ−2] are small enough to be routed in one round
using the algorithm α-Routing from Lemma 3.1. Substituting x1, x2, x3 in the num-
ber of rounds given by Lemma 8.3 and adding one extra round for the demands in
(0, x3(x2)

ξ−2] complete the proof.
By choosing x1, x2, x3 to be 1/2, 1/2, and 1/4, respectively, we obtain β = 13.
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Routing all commodities in x rounds implies that during one round at least a 1/x
fraction of the total demand is routed. If for the problem Π = (G, s, T ) we begin with
ζf (G, s, T ) = 1, i.e., the cut condition is met, Theorem 8.2 implies that we can route
all commodities in at most 13 rounds. During one of those at least 1/13 = .0769 of
the total demand is routed.

Corollary 8.1. Given a Ufp Π = (G, s, T ) which satisfies the cut condition,
we can obtain in polynomial time a .0769-approximation for maximizing routable de-
mand.

Observe that Theorem 7.1 guarantees routing at least .075 of αf (G, s, T ), which
is an upper bound on the maximum routable demand but less than the total demand
if the cut condition is not met. We do not see how to apply Theorem 8.2 to obtain a
guarantee for maximum demand when the cut condition is violated.

9. A hardness result for unsplittable flow. In this section we consider the
hardness of approximation for minimum congestion unsplittable flow on a directed
network with 2 sources (2-Ufp). We give a gap-preserving reduction from the NP-
complete problem 3-D Matching [18]. Our reduction establishes that it is NP -hard
to achieve an approximation ratio better than 2 for 2-Ufp. In the 3-D Matching
problem, we are given a setM ⊆ A×B×C, where A, B, and C are disjoint sets each of
cardinality n. The objective is to find a perfect matching, i.e., a subset M ′ ⊆M such
that |M ′| = n and no two elements of M ′ agree in any coordinate. In our reduction
we use ideas from Theorem 5 in [32].

Lemma 9.1. Given an instance I of 3-D Matching, we can obtain in polynomial
time an instance I ′ of 2-Ufp on a directed network such that

I ∈ 3-D Matching⇒ OPT (I ′) = 1,

I �∈ 3-D Matching⇒ OPT (I ′) ≥ 2.

Proof. Let A = {a1, . . . , an}, B = {b1, . . . , bn}, and C = {c1, . . . , cn} so that
the m triples in I are of the form (ai, bj , ck). We show how to construct a directed
network G for the corresponding instance I ′ of unsplittable flow. G contains two
source vertices sd and sc. For each ai occurring in ti triples in I, G contains ti − 1
vertices called the dummies. We denote as d̄iτ , 1 ≤ τ ≤ ti − 1, the dummy vertices
corresponding to ai. For each element bj and ck in I, we have, respectively, a vertex
bj and c̄k in I ′. We refer collectively to the 2n vertices bj , c̄k, 1 ≤ j, k ≤ n, as b-
and c-type vertices, respectively. There are m commodities corresponding to terminal
pairs (sc, c̄k), 1 ≤ k ≤ n, and (sd, d̄iτ ), 1 ≤ i ≤ n, 1 ≤ τ ≤ ti − 1, and they have
demand 1 each. We use the bar symbol to emphasize that a vertex has a nonzero
demand. All the edges in G have capacity 1.

For each of the m triples in I there will be a triple gadget (see Figure 9) in G.
Let the µth triple be (ai, bj , ck). The gadget for µ contains two dedicated vertices: xµ
and yµ. The edges of the gadget are (xµ, yµ), (bj , xµ), (yµ, c̄k) and there is an edge
from yµ to each d̄iτ , 1 ≤ τ ≤ ti − 1. This completes the description of a gadget. For
convenience let us identify a gadget with the triple it represents. Finally, an edge is
directed from sd to each xµ, 1 ≤ µ ≤ m, and from sc to each bj , 1 ≤ j ≤ n.

Since all demands and capacities are 1, each feasible unsplittable flow is simply
a set of disjoint source-sink paths each carrying unit flow. Note that each flow path
must pass through some gadget µ and in particular through the edge (xµ, yµ) of the
gadget.
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Fig. 9. Gadget corresponding to the µth triple (ai, bj , ck) together with the edges connecting it
to the two sources.

If I contains a three-dimensional (3-D) perfect matching M ′, it is straightforward
to construct an unsplittable flow g in G with congestion 1. Flow g uses the n gadgets
corresponding to triples in M ′ to satisfy the demands of vertices c̄k, 1 ≤ k ≤ n.
The remaining gadgets are used to route 1 unit of flow each (via vertex yµ for the
µth gadget) to a dummy vertex. Since M ′ is a matching, only one of the ti gadgets
associated with ai, for any i, is used to route flow to a c-type vertex. As a result, for
any i, there are ti − 1 gadgets available to route the dummy vertices associated with
ai.

We show now that if I ′ has an unsplittable flow g′, which satisfies the capacity
constraints, then I contains a 3-D perfect matching. Let Γ be the set of n gadgets
used by g′ to route flow to c-type vertices. We claim that Γ forms a 3-D perfect
matching in I. For each 1 ≤ i ≤ n, each dummy vertex d̄iτ (1 ≤ τ ≤ ti − 1) requires
one flow path, so only one gadget in Γ corresponds to αi. Each node bi has in-degree
1, so only one gadget in Γ contains bi, and the demand at each node ci is 1, so only
one gadget in Γ contains ci.

The ensuing theorem is an immediate consequence of Lemma 9.1.
Theorem 9.1. No ρ-approximation algorithm, ρ < 2, exists for 2-Ufp on di-

rected graphs unless P = NP. The result holds even when all capacities and demands
are equal to 1.

10. Restricted sets of demands and applications to scheduling. In this
section we examine connections between unsplittable flow and scheduling problems.
Consider the scheduling problem S defined as follows. A set J of jobs is to be scheduled
on a set M of parallel nonidentical machines. A job j can be scheduled to run with
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processing time pj on a set of machines M(j) and has processing time ∞ on all
machines in M −M(j). In other words, it is technologically infeasible for job j to
run on machines in M −M(j). The objective is to find a schedule which minimizes
the makespan, i.e., the maximum completion time of a job. S is a special case of
minimizing makespan on unrelated machines. In the unrelated machine setting, job
j has a machine-dependent processing time pij on i ∈ M. The best approximation
algorithm known for S is the 2-approximation for unrelated machine scheduling [32,
38]. From a straightforward modification to Theorem 5 in [32], the following hardness
result is obtained.

Theorem 10.1 (see [32]). Unless P = NP, no approximation better than 3/2
exists for S with processing times from the set {1, 2,∞}.

Kleinberg [23] gave an approximation-preserving reduction from S to minimum
congestion unsplittable flow on a three-level directed graph G. A source vertex has
edges directed to vertices representing the machines. The vertex set of G contains also
one vertex for each job. Machine vertex i has an edge directed to job vertex j if and
only if i ∈M(j). The edges out of the source have capacity T and the edges into the
job vertices have infinite capacity. Finally each job vertex has demand equal to pj .
An unsplittable routing in G where at most ρT amount of flow is pushed through any
edge corresponds to a schedule with makespan ρT for S. See Figure 2 for an example
network.

Consider a Ufp on an arbitrary network with demands p and 2p, for some p >
0. This includes the family of networks obtained for the scheduling problem with
processing times {1, 2,∞}. As a corollary to Theorem 4.1 and Corollary 4.1 we obtain
a tight approximation ratio of 3/2. The lower bound comes from Theorem 10.1.

Corollary 10.1. Given a Ufp Π = (G, s, T ) with demands from the set {p, 2p},
0 < p ≤ 1/2, there is an algorithm to find in polynomial time an unsplittable routing
where the flow through an edge e is at most zue+p, where z is the optimal congestion.
If all capacities are multiples of p the flow is at most ue + p. Thus the approximation
ratio for congestion is at most 3/2. This is best possible, unless P = NP.

Corollary 10.2. For problem S with processing times from {p, 2p,∞} there
is a polynomial-time algorithm, which outputs a schedule within an additive p of the
optimum makespan. The approximation ratio is at most 3/2 and this is best possible,
unless P = NP.

It is instructive to consider the action taken by algorithm 2H Partition on the
Ufp resulting from scheduling problem S. The algorithm splits each job of process-
ing time 2p into two virtual jobs each of processing time p. Then a schedule g1 with
optimum makespan is computed for the resulting instance. In the scheduling con-
text, when all the jobs have the same processing time, an optimum schedule can be
found by solving an assignment problem. Schedule g1 corresponds to a half-integral
superoptimal solution for S. In the second phase of 2H Partition this half-integral
solution is rounded to an integral one.

The results of Corollary 10.1 can be generalized to the following.

Corollary 10.3. Given a Ufp Π = (G, s, T ), with demands from the set
{p, Cp}, C > 1, 1/C ≥ p > 0, there is an algorithm to find in polynomial time an
unsplittable routing where the flow through an edge e is at most zue+(C− 1)p, where
z is the optimal congestion. If all capacities are multiples of p the flow is at most
ue + (C − 1)p. Thus the approximation ratio for congestion is at most 2− 1

C .

We now proceed to examine the case in which the demands lie in the interval
[p, Cp], p > 0. Lemma 3.2 would give in this setting a (C + 1)-approximation for
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congestion, since the minimum capacity is now Cp. We show how to achieve a C-
approximation, the same as the ratio of the interval.

Theorem 10.2. Given a Ufp Π = (G, s, T ) with demands from the interval
[p, Cp], C > 1, p > 0, there is an algorithm to find in polynomial time an unsplittable
routing where the flow through an edge e is at most Cue.

Proof. As in the proof of Theorem 4.1 we assume without loss of generality that
Π has an unsplittable routing with congestion 1. Otherwise one can use the algorithm
we propose as a C-relaxed decision procedure [15] in conjunction with a binary search
for the optimum congestion to obtain the claimed approximation. The algorithm is
as follows. Round all demands down to p. Call the resulting problem Π′. Since an
unsplittable flow solution exists for Π, one exists for Π′ as well. Rounding down the
capacities of edges to the closest multiple of p does not affect the existence of this
solution. But for Π′ all demands are p and all capacities are multiples of p. Therefore,
by Theorem 2.1 we can find an unsplittable flow solution g′ in polynomial time. To
obtain from g′ an unsplittable routing for Π it suffices to increase the flow along paths
in g′ that lead to sinks in T with demands more than p. The increase will be at most
by a multiplicative factor of C on each path, hence the approximation theorem.

Interestingly, the approach in Theorem 10.2 does not seem to yield an improve-
ment on the result of Lemma 3.3. For problem Π′ in the proof above, the capacities
are already multiples of p, an assumption we cannot make in the setting of Lemma 3.2.
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Abstract. Contextual equivalences for cryptographic process calculi, like the spi-calculus, can
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1. Introduction. Recently, there has been much interest in using formal meth-
ods for analyzing cryptographic protocols. Here, we focus on a specific approach,
which aims at modeling protocols as concurrent processes, described as terms of a
process calculus (e.g., the spi-calculus [7, 5], a cryptographic version of the π-calculus
[17, 18]). As an example, consider the very simple protocol where two principals A
and B share a private key k, and A wants to send B a datum d encrypted under k
through a public channel c:

Message 1 A→ B: {d}k on c.

This informal notation can be expressed in the spi-calculus as follows:

A(d)
def
= c{d}k.0,

B
def
= c(x).F (x),

P (d)
def
= (ν k)(A(d) |B).

Here, c{d}k. means output of message {d}k at channel c and 0 stands for termi-
nation. The prefix c(x). indicates the intention to input a message at channel c and
to bind it to x, and F (x) is some expression describing the behavior of B after the
reception of x. The whole protocol P (d) is the parallel composition A(d) | B, with
the restriction (ν k) indicating that the key k is known only to A(d) and B.

The main advantage of this kind of description is that process calculi have formal
yet simple semantics that permit rendering rigorously such notions as “attacker” and
“secrecy.” Continuing with the example above, a way of asserting that P (d) keeps d
secret is requiring that P (d) be equivalent to P (d′) for every other d′. An appropriate
notion of equivalence is may-testing [11, 8, 7]; its intuition is precisely that no external
context (which in the present setting can be read as “attacker”) may notice any
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difference when running in parallel with P (d′) or P (d). A similar intuition is supported
by other contextual equivalences, like barbed equivalence [19]. While rigorous and
intuitive, the definitions of these equivalences suffer from universal quantification over
contexts (attackers) that makes equivalence checking very hard. It is then important
to devise proof techniques that avoid such quantification. Results in this direction
have been obtained for traditional process calculi (for example, in CCS [11, 15] and
in π-calculus [17, 18], may-testing is easily proven to coincide with trace equivalence),
but little has been done for cryptographic calculi.

In this paper, we consider may-testing and barbed equivalence for a variant of the
spi-calculus with shared-key encryption primitives [7]. We develop an “environment-
sensitive” labeled transition system (lts), whose transitions are constrained by the
knowledge that the environment has of names and keys. A trace-based equivalence
and a purely coinductive notion of weak bisimulation, which avoid quantification over
contexts, are defined on the new lts, and it is shown that they are in agreement with
may-testing and barbed equivalence, respectively. A more detailed account of our
work follows.

The handling of names is a crucial aspect in the semantics of process calculi.
Let us first consider the nature of the transitions in the noncryptographic π-calculus.
There are three kinds of basic moves which correspond to output of a message, input of

a message, and internal computation. An output transition like P
(ν b)a〈b〉−−−−−−→ P ′ says

that process P passes a new (or fresh; (ν ·) means “new”) name b to the environment
along channel a and becomes P ′ in doing so. The environment can use at will names

it has got to know. For example, the two-step sequence P
(ν b)a〈b〉−−−−−−→ P ′ b c−−−→ P ′′

(where b c means “input c along b”) is possible. In general, if a process is ready to
perform some action, the environment will always be able to react. The reason is that,
in the π-calculus, environment and process share at each stage the same knowledge of
names. Thus, to determine whether two processes are, say, may-testing equivalent, it
is sufficient to establish that they can perform the same sequences of (input/output)
actions.

The correspondence between environment and process knowledge is lost when
moving to the spi-calculus, i.e., when adding encryption and decryption primitives to
the π-calculus. Indeed, two new facts must be taken into account.

(a) When the environment receives a new name encrypted under a fresh key, it
does not acquire the knowledge of that name immediately. For instance, after

P outputs a new name b encrypted under a fresh key k (written P
(ν b,k)a〈{b}k〉−−−−−−−−−−→

P ′), name b is part of the knowledge of P ′ but not part of the knowledge
of the environment. Thus, if P ′ is willing to input something at b (say
P ′ = b(c).P ′′), the environment cannot satisfy P ′’s expectations: a sequence

like P
(ν b,k)a〈{b}k〉−−−−−−−−−−→ P ′ b c−−−→ P ′′ (that is possible in the traditional-style

transition system) cannot be considered as meaningful in the spi-calculus.

For similar reasons, a sequence like P
(ν b,k)a〈{b}k〉−−−−−−−−−−→ P ′ a′ b−−−→ P ′′, where the

environment is expected to send back the cleartext b, cannot be considered
as meaningful.

(b) Equivalent processes need not exhibit the same sequences of transitions. The
process that performs the single output (ν k)a〈{b}k〉 and terminates, and
the one that performs (ν k)a〈{c}k〉 and terminates, are equivalent because
messages {b}k and {c}k cannot be distinguished by the environment (as it
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cannot open something encrypted with k). However, the two messages could
be distinguished if the environment got the key k. Thus, the two processes
(ν k)a{b}k. ak.0 and (ν k)a{c}k. ak.0 are not equivalent.

To cope with these issues and recover the correspondence between environment
and process actions, we introduce an enriched lts that explicitly keeps track of the
environment’s knowledge. The states of the new lts are configurations σ ✄ P , where P
is a process and σ is the current environment’s knowledge, modeled as a mapping from
a set of variables to a set of messages. Informally, σ plays the role of a database storing
the messages received by the environment; each entry of the database is referenced by
a distinct variable. Transitions represent interactions between the environment and
the process and take the form

σ ✄ P
µ

|−−→
δ

σ′ ✄ P ′,

where µ is the action of process P and δ is the “complementary” environment action.
We have three different kinds of situations.
1. The process performs an output and the environment an input. As a conse-

quence, the environment’s knowledge gets updated. For instance,

σ ✄ P
(ν b̃)a〈M〉

|−−−−−−−→
z(x)

σ[M/x] ✄ P ′.

Here σ[M/x] is the update of σ with the new entry [M/x] for a fresh variable

x. Moreover, b̃ is the set of new names the process has just created. For the
transition to take place, channel a must belong to the knowledge of σ, which
in this case amounts to saying that σ(z) = a.

2. The process performs an input and the environment an output. As discussed
previously, messages from the environment cannot be arbitrary. They must
be built, via encryption and decryption, using only the knowledge stored in
σ. Thus, a transition might be

σ ✄ P
aM

|−−−−−−→
(ν b̃)z〈ζ〉

σ[̃b/̃b] ✄ P ′.

Informally, b̃ is the set of new names the environment has just created and
added to its knowledge, while ζ is an expression describing how M has been
built out of σ and b̃. For example, if σ(x1) = {c}k, σ(x2) = k, and M = c,
then ζ might be decx2

(x1), indicating that message c results from decrypt-
ing the x1-entry using the x2-entry as a key. Again, a must belong to the
knowledge of σ; thus σ(z) = a.

3. The process performs an internal move and the environment does nothing:

σ ✄ P
τ

|−−→
−

σ ✄ P ′.

When defining trace and bisimulation semantics (section 3) on the top of the new lts,
the point of view is taken that equivalent configurations should exhibit the same envi-
ronment actions. As an example, take σ with entries σ(x) = a, σ(y) = b, and σ(z) = c

and consider the configurations C1
def
= σ ✄ (ν k)a{b}k.0 and C2

def
= σ ✄ (ν k)a{c}k.0.
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These configurations are both trace and bisimulation equivalent, because the only
transitions they have are

C1

(ν k)a〈{b}k〉
|−−−−−−−−−→

x(w)
σ[{b}k/w] ✄ 0

and

C2

(ν k)a〈{c}k〉
|−−−−−−−−−→

x(w)
σ[{c}k/w] ✄ 0,

which exhibit the same environment action, x(w). On the other hand, as discussed

above, C3
def
= σ ✄ (ν k)a{b}k. ak.0 and C4

def
= σ ✄ (ν k)a{c}k. ak.0 should not be

regarded as equivalent. Indeed, after two steps, C3 reaches a state where the envi-
ronment is σ[{b}k/w][k/v], which cannot be considered “equivalent” to the environment
reachable from C4, i.e., σ[{c}k/w][k/v]: The decryption of the entry w, which is now pos-
sible because k is known, yields distinct names, b and c, in the two cases. Equivalence
on environments is a notion crucial to our approach and will be formalized in terms of
logical equivalence. For both trace and bisimulation equivalence, we shall insist that
matching transitions should take equivalent environments to equivalent environments.
We shall show that these equivalences imply their contextual counterparts (sound-
ness); hence the former can be used as proof techniques for the latter. The converse
implication (completeness) is also proven for trace equivalence. As to bisimulation,
we establish completeness relative to a broad class of processes (which includes all the
image-finite ones [15]).

Trace and bisimulation equivalences avoid quantification over contexts and only
require considering transitions of the enriched lts. As such, they make reasoning
on processes much easier than the contextual definitions. While trace semantics are
sufficient for expressing many security properties (especially those of secrecy and
authenticity [7]), bisimulation is sometimes preferable because it embodies a notion
of fairness and is supported by a nice, purely coinductive proof technique. The latter
can be enhanced by tailoring, as we do, some “up to” techniques [22, 10] to the
cryptographic setting. Another advantage of our semantics is the congruence rules
that make compositional proofs possible. The use of trace and bisimulation semantics
as proof techniques is illustrated with a few examples; some of them concern the
problem of implementing secure channels using encrypted public channels (like in
[4]). Some of the equalities we establish are hard and lengthy to prove if relying on
the original, contextual definitions (see, e.g., the secure channel implementations in
section 5).

The rest of the paper is organized as follows. The language is presented in sec-
tion 2; there, we also introduce the contextual semantics: may-testing and barbed
equivalences. Section 3 introduces the new lts for the spi-calculus and, based on that,
trace and bisimulation semantics. In section 4, we establish soundness and complete-
ness of trace semantics with respect to may-testing and of bisimulation with respect
to barbed equivalence. Section 5 presents a number of properties of trace and bisim-
ulation semantics and their applications. In section 6, we present the extension of the
theory to a richer calculus, which permits handling pairs of messages. Comparisons
to related works and a few concluding remarks are reported in section 7. The most
technical proofs and definitions are relegated to appendices A, B, and C.

2. The language. We first present syntax and (conventional) operational se-
mantics of the language, which is a variant of the spi-calculus. We then define the
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contextual semantics: may-testing and barbed equivalence. In the definition of the
language, there are a few implicit assumptions on the underlying system of shared-key
cryptography. We make them explicit below:

1. A message M encrypted under a key k, written {M}k, can only be decrypted
using k. The only way to produce the ciphertext {M}k is to encrypt M under
k. If k is secret, the attacker cannot guess or forge k (perfect encryption).

2. There is enough redundancy in the structure of messages to tell whether
decryption of a message with a given key has actually succeeded or not.

3. There is enough redundancy in the structure of messages to tell their role
(key or compound ciphertext).

4. The only way to form a new key is to get a fresh name from a primitive set
of names.

These assumptions are quite common in the literature. In particular, the first two are
also found in the original spi-calculus [7]. The third and fourth assumptions might
be regarded as a limitation over the practice of crypto-protocols, where new keys are
sometimes formed by assembling pieces of old messages together (especially if random
bits are considered as an expensive resource). However, many interesting protocols
do fulfill these assumptions.

2.1. Syntax. The syntax of the calculus is summarized in Figure 1. A count-
able set N of names a, b . . . , h, k, . . . , x, y, z . . . is assumed. Names can be used as
communication channels, primitive data, or encryption keys: we do not distinguish
between these three kinds of objects (in notation, we prefer letters h, k, . . . when we
want to stress the use of a name as a key). In the standard π-calculus, names are
the only transmissible objects. In the spi-calculus the possibility has been added to
communicate messages obtained via shared-key encryption: message {M}k represents
the ciphertext obtained by encrypting message M under key k, using a shared-key en-
cryption system. Encryptions can be arbitrarily nested. Expressions are obtained by
applying encryption and decryption operators to names and ciphertexts. For exam-
ple, the result of evaluating decη(ζ) is the text obtained by decrypting the ciphertext
ζ using the value of η as a key. Expressions are also used to represent dummy terms
that can be generated at run but do not represent proper messages (such as {a}{b}k ,
where a compound term {b}k is used as a key instead of an atomic name). Logical
formulae generalize the usual equality operator of the π-calculus with a predicate
name(·), which tests for the format of the argument (plain name or a compound
ciphertext), and with a let construct that binds the value of some expression ζ to
a name z. Processes are built using a set of operators which include those from the
standard π-calculus, plus two new operators: boolean guard and a let construct. An
informal explanation of the operators might be the following:

• 0 is the process that does nothing.
• η(x).P represents input of a generic message x along η: the only useful case

is when η is a name; otherwise the whole process is stuck.
• ηζ.P represents output of ζ along η: the only useful case is when η is a name

and ζ is a message; otherwise the whole process is stuck.
• P +Q can behave either as P or Q: the choice might be triggered either by

the environment, or by internal computations of P or Q.
• P |Q is the parallel execution of P and Q.
• (ν a)P creates a new name a which is only known to P .
• !P behaves like unboundedly many copies of P running in parallel, i.e.,
P | P | P | · · ·.
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a, b . . . , h, k, . . . , x, y, z . . . names N

M, N ::= a | {M}k messages M

η, ζ ::= a | {η}ζ | decη(ζ) expressions Z

φ, ψ ::= tt | name(ζ) | [ζ = η] formulae Φ
| let z = ζ in φ | φ ∧ ψ | ¬φ

P, Q ::= processes P
0 (null)

| η(x). P (input prefix)
| ηζ. P (output prefix)
| P +Q (nondeterministic choice)
| P |Q (parallel composition)
| (ν a)P (restriction)
| !P (replication)
| φP (boolean guard)
| let z = ζ in P (encryption/decryption)

It is assumed that dec·(·) does not occur in name(ζ), [ζ = η], η(x)., and ηζ..
Operators a(x).·, (ν a)·, and let z = ζ in · are binders, with the obvious scope, for
names x, a, and z, respectively. In let z = ζ in ·, it is assumed that z does not appear
in ζ.

Fig. 1. Syntax of the calculus.

• φP behaves like P if the formula φ is logically true; otherwise it is stuck.
• let z = ζ in P attempts evaluation of ζ: if the evaluation succeeds, the result

is bound to z within P ; otherwise the whole process is stuck.
There are a few differences from Abadi and Gordon’s spi-calculus [7]. In partic-

ular, the differences are as follows:
• Our decryption keys cannot be compound messages, as already noted.
• For decryption, we use a “let” construct instead of the “case” construct of [7].

This enables us to write process expressions in a more compact form; for in-
stance, the spi-calculus process case M of {k}h in (case N of {z}k in P )
can be written as let z = decdech(M)(N) in P in our syntax.

• We have included a nondeterministic choice +, which is sometimes useful for
specification purposes. Another, technical, reason for including + in the lan-
guage is that this operator appears to be necessary when proving coincidence
of barbed equivalence and bisimilarity.

• We do not consider public key and hash functions, which are present in the
original spi-calculus.

A minor difference is that the syntax above does not mention tuples, which we
have preferred to treat separately (in section 6). This permits a cleaner presentation
of the overall approach.

We shall often abbreviate α.0 as α, where α is an input or output prefix, and
(ν a)(ν b)P as (ν a, b)P . We shall use the tilde ·̃ to denote tuples of objects (e.g., x̃ is
a generic tuple of names); this will sometimes be written as x̃i∈I , for an appropriate
index-set I. If x̃ = (x1, . . . , xn) and ỹ = (y1, . . . , ym), then x̃ỹ will denote the tuple
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(x1, . . . , xn, y1, . . . , ym). When convenient, we shall regard a tuple simply as a set
(writing, e.g., x̃ ⊆ S to mean that all components of x̃ are in S). All our notations

are extended to tuples componentwise. In particular, if k̃ = (k1, . . . , kn), then {M}
k̃

means {· · · {M}k1 · · ·}kn and dec
k̃
(M) means deckn(· · · deck1(M) · · ·).

Notions of free names of a process P , f n(P ), of bound names of P , bn(P ), and
of alpha-equivalence arise as expected; n(P ) is f n(P ) ∪ bn(P ). Often, we shall write
f n(P,Q) in place of f n(P ) ∪ f n(Q) (similarly for bn(·) and n(·)). Similar notations
are used for formulae, expressions, and messages.

A substitution σ is a finite partial map from N to the set of messages M.
The domain and proper codomain of σ are written dom(σ) and range(σ), respec-
tively. We let n(σ) = dom(σ) ∪ (∪M∈range(σ)n(M)). Given a tuple of distinct

names x̃ = (x1, . . . , xn) and a tuple of messages M̃ = (M1, . . . ,Mn), the substitution

mapping each xi to Mi will be sometimes written as [M̃/̃x] or [Mi/xi]i∈1..n
. When

x̃ ∩ dom(σ) = ∅, we write σ[M̃/̃x] for the substitution σ′, which is the union of σ and

[M̃/̃x] (in this case we say that σ′ extends σ). For a given V ⊆fin N , we write εV for
the substitution with dom(εV ) = V that acts as the identity on V . For any term
(name/expression/formula/process) t, tσ denotes the term obtained by simultane-
ously replacing each x ∈ f n(t) ∩ dom(σ) with σ(x), with renaming of bound names
of t possibly involved to avoid captures.

2.2. Operational semantics. The (conventional) operational semantics de-
fined below only accounts for process intentions. In fact, the subsequent definitions
of contextual equivalences use only the part of this semantics that describes “internal
computation” (denoted by τ−−→) of processes.

First, we need two evaluation functions: one for expressions, the other for formu-
lae. The evaluation function for expressions, ·̂ : Z →M∪{⊥} (where ⊥ is a distinct
symbol) is defined by induction on ζ as follows:

• â = a,

• ̂{ζ1}ζ2 =

{
{M}k if ζ̂1 = M and ζ̂2 = k ∈ N , for some M and k,
⊥ otherwise,

• ̂decζ2(ζ1) =

{
M if ζ̂1 = {M}k and ζ̂2 = k ∈ N , for some M and k,
⊥ otherwise.

Note that the evaluation of an expression “fails,” i.e., returns the value ⊥, when-
ever an encryption/decryption with something different from a name is attempted, or
whenever a decryption with something different from the encryption key is attempted.
For instance, the evaluation of {a}{b}c and decb({a}c) is ⊥, while decc({a}c) evaluates
to a.

The evaluation function for formulae, [[ · ]] : Φ → {tt, ff}, is defined by induction
on φ. The only nonstandard clauses are those for name(ζ) and for let z = ζ in φ:

• [[ name(ζ) ]] =

{
tt if ζ ∈ N ,
ff otherwise,

• [[ let z = ζ in φ ]] =

{
[[ φ[ζ̂/z] ]] if ζ̂ �= ⊥,
ff otherwise.

For any substitution σ, σ |= φ means that [[ φσ ]] = tt.
The operational semantics is defined by the early-style inference rules of Figure 2.

All rules but the last two are standard from π-calculus. Rule (Guard) says that
process φP behaves like P , provided that φ evaluates to true; otherwise, process φP
is stuck. Rule (Let) attempts evaluation of expression ζ: if the evaluation succeeds,
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(Inp) a(x). P
aM−−−−→ P [M/x] (Out) aM.P

a〈M〉−−−−−→ P

(Sum)
P

µ−−→ P ′

P +Q
µ−−→ P ′

(Rep)
P | !P µ−−→ P ′

!P
µ−−→ P ′

(Par)
P

µ−−→ P ′

P |Q µ−−→ P ′ |Q
(Com)

P
(ν b̃)a〈M〉−−−−−−−−→ P ′ Q

aM−−−−→ Q′

P |Q τ−−→ (ν b̃)(P ′ |Q′)

(Res)
P

µ−−→ P ′

(ν c)P
µ−−→ (ν c)P ′

c /∈ n(µ) (Open)
P

(ν b̃)a〈M〉−−−−−−−−→ P ′

(ν c)P
(ν b̃c)a〈M〉−−−−−−−−−→ P ′

c �= a, c ∈ n(M)− b̃

(Guard)
[[ φ ]] = tt P

µ−−→ P ′

φP
µ−−→ P ′

(Let)
ζ̂ �= ⊥ P [ζ̂/z]

µ−−→ P ′

let z = ζ in P
µ−−→ P ′

Fig. 2. Operational semantics (symmetric versions of (Sum), (Par), and (Com) omitted).

then process let z = ζ in P behaves like process P [ζ̂/z]; otherwise, let z = ζ in P
is stuck.

Process actions (i.e., labels of the transition system), ranged over by µ, λ, . . ., can
be of three forms: τ (internal action), aM (input at a where message M is received),

and (ν b̃)a〈M〉 (output at a where message M containing the fresh, private names b̃

is sent). We shall write a〈M〉 instead of (ν b̃)a〈M〉 whenever b̃ = ∅. Input and output
actions will be called visible actions. We use s to range over sequences of visible
actions (traces), and write =⇒ or ε==⇒ to denote the reflexive and transitive closure

of τ−−→ and, inductively, s==⇒ for =⇒ µ−−→ s′==⇒ when s = µ · s′. P s==⇒ will stand for
“there is P ′ such that P s==⇒ P ′ for some P .”

From now on, we shall adopt the following convention.
Convention 2.1. We identify alpha-equivalent processes and formulae. Moreover,

both in actions and in sequences of actions, we shall assume that bound names can be
freely renamed with fresh names. In particular, we shall always assume that bound
names are distinct from each other and from the free names and are not touched by
substitutions.

2.3. May-testing and barbed equivalence. We instantiate the general frame-
work of may-testing [11] to our calculus. Observers, ranged over by O,O′, . . ., are
processes that can perform a distinct “success” action ω. Informally, the latter is
used to signal that the observed process has passed a test. For instance, the observer
(ν b)ab. b(x). [x = c]ω, when run in parallel with any process, tests for the ability of
the process to receive a new name b on channel a and then to send name c along b.
The may-testing preorder is defined in terms of the ability of processes to pass tests
proposed by observers. Since we work in a nondeterministic setting, a process may or
may not pass a specific test. If one interprets “passing a test” as “revealing a piece of
information,” then two processes that may pass the same tests may potentially reveal
the same information to observers. As such, they should be considered as equiva-
lent from a security point of view. We can formalize this concept solely in terms of
sequences of internal computations (=⇒) and success action (ω).
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Definition 2.2 (may-testing preorder). P ❁∼Q if, for every observer O,

P |O ω==⇒ implies Q |O ω==⇒.
The equivalence obtained as the kernel of the preorder ❁∼ is denoted by � (�

= ❁∼ ∩ ❁∼
−1

) and is called testing equivalence.
The intuition behind barbed equivalence [19] is somehow similar to that of testing,

but is based on a notion of step-by-step simulation between two processes. Throughout
the rest of the paper, we say that a process P commits to a, and write P ↓ a, if

P aM−−−−→ or P
(ν b̃)a〈M〉−−−−−−−→ for some M and b̃. We also write P ⇓ a if P =⇒ P ′ and

P ′ ↓ a for some P ′.
Definition 2.3 (barbed equivalence). A symmetric relation S ⊆ P × P is a

barbed bisimulation if whenever PSQ holds true, then
1. for each P ′, if P τ−−→ P ′, then there is Q′ such that Q =⇒ Q′ and P ′SQ′,

and
2. for each a, if P ↓ a, then Q ⇓ a.

Barbed bisimilarity, written
·∼= , is the largest barbed bisimulation relation. Two pro-

cesses P and Q are barbed equivalent, written P ∼= Q, if for all R we have that
P |R ·∼=Q |R.

It is worthwhile to notice that neither ❁∼ nor ∼= are (pre)congruences, because
they are not preserved by input prefix. This is standard in name-passing languages
(see, e.g., [17, 18, 10]).

3. Trace and bisimulation semantics. In this section we shall first introduce
an “environment-sensitive” lts for our calculus and then define trace and bisimulation
equivalences over the new lts.

3.1. An environment-sensitive lts. States are configurations of the form
σ ✄ P , where P is a process and where substitution σ represents the environment
(from now on, terms “substitution” and “environment” will be used interchangeably).
Transitions take the form

σ ✄ P
µ

|−−→
δ

σ′ ✄ P ′

and represent atomic interactions between process P and environment σ, µ is the
process action (i.e., input, output, or τ), and δ is the complementary environment
action. The latter can be of three forms, output, input and “no action”:

δ ::= (ν b̃)η〈ζ〉 | η(x) | − .

The upper transition labels are not strictly necessary for the development of our
theory. However, they are useful because they show the process action that triggers
the transition.

Free names and bound names of δ are defined as expected, in particular bn(η(x)) =
{x}. The visible environment actions are input and output. We shall use u to range
over sequences of visible environment actions. The inference rules for the transition
relation

µ
|−−→
δ

are displayed in Figure 3. Note that judgements from the conventional

transition system are used in the premises.
In rule (E-Out), the environment receives a message M and updates its knowl-

edge accordingly. For the transition to take place, channel a must belong to the
knowledge of the environment; thus η is some expression describing how a can be
obtained out of σ (this is what η̂σ = a means). In rule (E-Inp), the environment
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It is assumed that n(η) ⊆ dom(σ) and that names in b̃ are fresh for σ and P .

(E-Out) P
(ν b̃)a〈M〉−−−−−−−→ P ′ η̂σ = a

σ ✄ P
(ν b̃)a〈M〉

|−−−−−−−→
η(x)

σ[M/x] ✄ P ′
(E-Tau)

P τ−−→ P ′

σ ✄ P
τ

|−−→
−

σ ✄ P ′

(E-Inp) P aM−−−−→ P ′ η̂σ = a M = ζ̂σ b̃
def
= (n(ζ) − dom(σ))

σ ✄ P
aM

|−−−−−−→
(ν b̃)η〈ζ〉

σ[̃b/̃b] ✄ P ′

Fig. 3. Rules for the environment-sensitive lts.

sends a message M to the process. Expression ζ describes how message M is built

out of σ and b̃. The update [̃b/̃b] records the creation of the new names b̃.1 As in the
previous rule, a must belong to the knowledge of σ.

In the following, we write |=⇒ to denote the reflexive and transitive closure of
τ

|−−→− and, inductively, write
s|==⇒
u

for |=⇒ µ
|−−→
δ

s′|===⇒
u′ when s = µ · s′ and u = δ · u′.

3.2. Trace and bisimulation semantics. In order to define observational se-
mantics based on

µ
|−−→
δ

, we have to precisely define when two environments, repre-

sented by substitutions σ and σ′, can be considered as equivalent. Informally, two
environments σ and σ′ are equivalent whenever they are logically indistinguishable.

Definition 3.1 (equivalence on environments). Two substitutions σ and σ′

are equivalent, written σ ∼ σ′, if dom(σ) = dom(σ′) and, for each formula φ with
f n(φ) ⊆ dom(σ), it holds that σ |= φ if and only if σ′ |= φ.

This logical characterization is difficult to check, as it contains a quantification
on all formulae. Below, we shall give an equivalent definition that is easy to check.
To do this, we start by making precise the concept of knowledge of an environment
σ, that is, all the information that can be deduced from σ.

Definition 3.2 (decryption closure and knowledge). Let W be a set of messages.
The decryption closure of W , written dc(W ), is the set of messages defined inductively
as follows:

(i) W ⊆ dc(W ), and
(ii) if k ∈ dc(W ) and {M}k ∈ dc(W ), then M ∈ dc(W ).

The knowledge of W , written kn(W ), is the set of names in dc(W ), i.e., kn(W )
def
=

dc(W ) ∩ N . Let σ be a substitution; we let dc(σ)
def
= dc(range(σ)) and kn(σ)

def
=

kn(range(σ)).
Note that kn(σ) can be computed in a finite number of steps. For instance, it is

not difficult to see that kn([{b}l/w, {a}k/x, {k}h/y, h/z]) = {a, h, k}. Next, we list some
notational shorthand.

• Given any substitution σ = [Mi/xi]i∈I
and i ∈ I, we denote by core(σ, xi)

what is left of Mi after decrypting as much as possible using the keys in
kn(σ). Formally, we define core(σ, xi) as the message N such that, for some

k̃ ⊆ kn(σ), it holds Mi = {N}
k̃

and either N is a name, or N = {N ′}h

1Actually, any update [̃b/̃x]—with x̃ a tuple of fresh names—could have been used instead.
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for some N ′ and h /∈ kn(σ). For example, given σ = [{a}hk/x1, k/x2], then
core(σ, x1) = {a}h and core(σ, x2) = k.

• Given a tuple x̃ = xi∈I and a tuple of indices ̃ = (j1, . . . , jk) ⊆ I, we let
x̃[ ̃ ] denote the tuple (xj1 , . . . , xjk). For instance, if x̃ = (x1, x2, x3) and
̃ = (3, 1, 1, 2), then x̃[ ̃ ] = (x3, x1, x1, x2).

We are now set to give an alternative definition of equivalence on environments.
The intuition behind the definition below is that, for any two equivalent environments,
it should not be possible to tell apart two messages Mi and M ′i referenced by the same
variable xi by (a) trying decryption with different keys, (b) format mismatch (name
vs. compound ciphertext), or (c) syntactic comparison.

Definition 3.3 (equivalence on environments: alternative definition). Let σ =
[Mi/xi]i∈I

and σ′ = [M
′
i/xi]i∈I

be two substitutions with the same domain. For each

i ∈ I, let Ni = core(σ, xi) and N ′i = core(σ′, xi), and let Ñ = Ni∈I and Ñ ′ = N ′i∈I .
We write σ ∼′ σ′ if for each i ∈ I the following three conditions hold:

(a) for some tuple of indices ̃i ⊆ I, it holds that Mi = {Ni}Ñ [̃i]
and M ′i =

{N ′i}Ñ ′[̃i]
;

(b) Ni ∈ N if and only if N ′i ∈ N ;
(c) for each j ∈ I, it holds that Ni = Nj if and only if N ′i = N ′j.
As an example, σ1 = [b/x1, c/x2, {b}k/x3] and σ2 = [b/x1, c/x2, {c}k/x3] are equiva-

lent. On the contrary, σ3 = σ1[k/x4] and σ4 = σ3[k/x4] are not equivalent, because
core(σ3, x3) = b = core(σ3, x1), while core(σ4, x3) = c �= core(σ4, x1); thus condi-
tion (c) is violated.2 Also note that equivalent environments need not have the same
kn(·): for instance, the environments [{b}kh/x1, h/x2] and [{b}k′h′/x1, h

′
/x2] are equiva-

lent, though they have different knowledge. Environment pairs of this sort may arise
when comparing two processes (this is due to the interplay between encryption and
restriction—see Example 3.9).

The following theorem, whose proof can be found in Appendix A, allows us to
freely interchange the use of ∼ and of ∼′ in the rest of the paper.

Theorem 3.4 (coincidence of ∼ and ∼′). For any two substitutions σ and σ′, it
holds that σ ∼ σ′ if and only if σ ∼′ σ′.

We are now ready to define a trace-based preorder. Recall that the bound names
of s and u below are assumed to be fresh. A similar remark applies to µ and δ in
Definition 3.8.

Definition 3.5 (trace preorder). Let σ1 ∼ σ2. Given two processes P and Q,

we write (σ1, σ2) � P � Q if, whenever σ1 ✄ P
s|===⇒
u

σ′1 ✄ P ′, there are s′, σ′2, and

Q′ such that σ2 ✄Q
s′|===⇒
u

σ′2 ✄Q′ and σ′1 ∼ σ′2 .

Note that, when comparing configurations, just the lower transition labels are
considered, while the upper labels (in s and s′) are ignored. We give them to help in
reading the definition. We revise below the example given in the introduction.

Example 3.6. Define σ = [a/x, b/y, c/z]. Then σ ✄ (ν k)a{b}k and σ ✄ (ν k)a{c}k
are �-equivalent. On the contrary, σ ✄ (ν k)a{b}k.ak and σ ✄ (ν k)a{c}k.ak are not

2In general, once kn(σ1) and kn(σ2) have been computed, σ1 ∼′ σ2 can be very easily checked.
In particular, the existential on (a) does not imply any search among the tuples ̃. Given i ∈ I, we
just choose any tuple ̃i s.t. Mi = {Ni}Ñ [ ̃i ]

and check whether M ′
i = {N ′

i}Ñ′[ ̃i ]
. If this is the case,

then condition (a) is verified for i; otherwise, we can immediately conclude that σ �∼′ σ′. Indeed,

if condition (a) were validated by a different tuple ̃′, then we would get that Ñ [ ̃i ] = Ñ [ ̃′i ], but

Ñ ′[ ̃i ] �= Ñ ′[ ̃′i ]; thus condition (c) would be violated.
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related, because σ[{b}k/v, k/w] �∼ σ[{c}k/v, k/w] for any fresh v, w.
Example 3.7. A subtler example. Consider

P
def
= (ν a, k)c{k}k.ca and Q

def
= (ν a, k)c{k}ak.ca.

It is easy to check that, for σ
def
= [c/c], it holds both that (σ, σ) � P � Q and that

(σ, σ) � Q� P . The difference between P and Q is that Q’s first message contains a
private name (a) that is later disclosed to the environment; however, the environment
cannot detect this difference without the key k, which is never disclosed. Indeed, P
and Q are may (and barbed) equivalent.

More examples will be given in section 5. Let us switch to bisimulation. In

what follows, σ ✄ P
µ̂|==⇒
δ

σ′ ✄ P ′ stands for σ ✄ P
µ|==⇒
δ

σ′ ✄ P ′ if µ �= τ , and for

σ ✄ P |=⇒ σ′ ✄ P ′ if µ = τ (the ·̂ defined here has of course nothing to do with the

evaluation function on expressions defined in the previous section). We say that a
pair of configurations (σ1 ✄ P , σ2 ✄Q) is compatible if σ1 and σ2 are equivalent. A
relation R is compatible if it only contains compatible pairs of configurations. Given
a binary relation R, we write (σ1, σ2) � P RQ if (σ1 ✄ P , σ2 ✄Q) ∈ R.

Definition 3.8 (weak bisimulation). Let R be a binary compatible relation of
configurations. We say that R is a weak bisimulation if, whenever (σ1, σ2) � P RQ

and σ1 ✄ P
µ

|−−→
δ

σ′1 ✄ P ′, there are µ′, σ′2, and Q′ such that σ2 ✄Q
µ̂′
|===⇒
δ

σ′2 ✄Q′

and (σ′1, σ
′
2) � P ′RQ′, and the converse on the transitions of Q and P . Bisimilarity,

written ≈, is the largest weak bisimulation relation.
Example 3.9. This example shows that, when establishing process equivalence,

pairs of equivalent environments with different kn(·) may arise, even when starting
from a pair of identical environments. Consider

P
def
= (ν a, k)c{k}k.ca.ac and Q

def
= (ν a, k)c{k}ak.ca.ac,

and let σ
def
= [c/c]. It is easy to see that (σ, σ) � P ≈ Q. In particular, the move

σ ✄ P
(ν k)c〈{k}k〉

|−−−−−−−−−→
c(x)

σ[{k}k/x] ✄ (ν a)ca.ac
def
= P ′

is matched by

σ ✄Q
(ν k,a)c〈{k}ak〉

|−−−−−−−−−−−→
c(x)

σ[{k}ak/x] ✄ ca.ac
def
= Q′,

where (σ[{k}k/x], σ[{k}ak/x]) � P ′ ≈ Q′. Thus, the move

σ[{k}k/x] ✄ P ′
(ν b)c〈b〉

|−−−−−−→
c(y)

σ[{k}k/x, b/y] ✄ bc
def
= P ′′

(where we have alpha-renamed a into a fresh b) must be matched by

σ[{k}ak/x] ✄Q′
c〈a〉

|−−−−→
c(y)

σ[{k}ak/x, a/y] ✄ ac
def
= Q′′,

where (σ[{k}k/x, b/y], σ[{k}ak/x, a/y]) � P ′′ ≈ Q′′. In particular, the process action b〈c〉
originating from P ′′ is matched by the process action a〈c〉 originating from Q′′.
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To end the section, we note that bisimilarity ≈ is strictly included in the trace
preorder �. This fact holds for labelled transition systems in general; it is not specific
to cryptography. As an example, it is easily checked that if V = {a, b, c}, then

(εV , εV ) � P def
= aa.(ν z)((zz.bb |zz.cc) |z(x)) � (ν z)((zz.aa.bb |zz.aa.cc) |z(x))

def
= Q

but

(εV , εV ) � P �≈ Q.

Indeed, εV ✄ P has an aa-move that εV ✄Q cannot match.

4. Soundness and completeness. In this section we show the agreement be-
tween the contextual semantics of section 2 and the semantics based on the environment-
sensitive lts of section 3. More precisely, we will prove that

• the trace preorder (�) coincides with the may-testing preorder ( ❁∼ ), and
• bisimilarity (≈) is included in barbed equivalence (∼=), while the opposite

inclusions hold for the class of structurally image-finite processes (defined
later in this section).

The inclusions �⊆, ❁∼ , and ≈⊆∼= will be referred to as soundness, while the
opposite inclusions will be referred to as completeness. There are a few basic ingre-
dients for the proofs of soundness and completeness, which we list below. First, it is
technically convenient to introduce a notion of structural equivalence, ≡ , in the same
vein of [16].

Definition 4.1 (structural equivalence). Structural equivalence is the least
equivalence relation ≡ over processes that is preserved by parallel composition and
restriction and satisfies the structural laws of [16], i.e.,

• the monoid laws for parallel composition: P | 0≡P , P | Q≡Q | P , and
P | (Q |R)≡ (P |Q) |R,

• the laws for restriction: (ν b)0≡0, (ν a)(ν b)P ≡ (ν b)(ν a)P , and (ν a)(P |Q)≡
P | (ν a)Q if a �∈ f n(P ),

• the law for replication: !P ≡P | !P ,
plus the law

(let z = ζ in P ) ≡ P [ζ̂/z] if ζ̂ �= ⊥ .

A property of structural equivalence that we shall use extensively in what follows

is that ≡ commutes with
µ−−→; i.e., if P ≡Q and P

µ−−→ P ′, then there exists Q′ such

that Q
µ−−→ Q′ and P ′≡Q′ (the proof goes by inspection of the rules; see also [16]).

The key to soundness is the following proposition that relates equivalence on
environments (∼) to the (conventional) operational semantics of Figure 2 (its proof
can be found in Appendix B).

Proposition 4.2. Consider two equivalent substitutions, σ1 and σ2. Let R be
any process or observer such that f n(R) ⊆ dom(σ1).

(1) Suppose that Rσ1
(ν b̃)a〈M〉−−−−−−−→ R1. Then (i) there is η such that (s.t.) n(η) ⊆

dom(σ1) and η̂σ1 = a; (ii) there are ζ and R′ s.t. f n(ζ,R′) ⊆ dom(σ1) ∪ b̃,
M = ζ̂σ1, and R1≡R′σ1; (iii) it holds that Rσ2

(ν b̃)a′〈M ′〉−−−−−−−−→ R2, where

a′ = η̂σ2, M
′ = ζ̂σ2, and R2≡R′σ2.
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(2) Suppose that Rσ1
aM−−−−→ R1. Then (i) there is η s.t. n(η) ⊆ dom(σ1) and

η̂σ1 = a; (ii) given any fresh y and σ′1
def
= σ1[M/y], there is R′ s.t. f n(R′) ⊆

dom(σ′1) and R1≡R′σ′1; (iii) for any M ′, it holds that Rσ2
a′ M ′−−−−−→ R2,

where a′ = η̂σ2, R2≡R′σ′2, and σ′2
def
= σ2[M

′
/y].

(3) Suppose that Rσ1
µ−−→ R1 with µ = τ or µ = ω. Then (i) there is R′

s.t. f n(R′) ⊆ dom(σ1) and R1≡R′σ1; (ii) we have Rσ2
µ−−→ R2, where

R2≡R′σ2.
The main ingredient for completeness is the notion of a characteristic formula of

an environment σ, written φσ. The exact definition of φσ can be found in Appendix A.
Here, we only wish to recall the properties that will be used below. It holds that
n(φσ) ⊆ dom(σ) and that σ |= φσ; moreover, the following crucial theorem (whose
proof can be found in Appendix A) says that φσ characterizes all and only those
environments σ′ equivalent to σ.

Theorem 4.3. Let σ and σ′ be two substitutions such that dom(σ) = dom(σ′).
We have that σ ∼ σ′ if and only if σ′ |= φσ.

We will now proceed to prove soundness and completeness, first for may-testing
and then for barbed equivalence.

4.1. May-testing and trace semantics.

Soundness. It is convenient to prove soundness of � with respect to a notion
more general than ❁∼ , which is introduced below.

Definition 4.4 (generalized may-testing). For equivalent σ1 and σ2, we write

(σ1, σ2) � P ❁∼Q if, for each observer O with f n(O) ⊆ dom(σ1), P |Oσ1
ω==⇒ implies

Q |Oσ2
ω==⇒.

The above definition subsumes that of may preorder, as P ❁∼Q holds if and only

if (εV , εV ) � P ❁∼Q for some V ⊇ f n(P,Q). The “only if” part of this statement is

trivial. To see that the “if” part is true, use the fact that, for any R and O, R |O ω==⇒
if and only if (ν b̃)(R |O)≡R | (ν b̃)O ω==⇒, where b̃ = f n(O)− f n(R).

We need some properties of sequences of transitions. To state these properties we
introduce some additional notions.

Notation 4.5. Given two process actions µ and λ, we write µ compl λ when

µ = aM and λ = (ν b̃)a〈M〉, or vice versa, for some a, b̃, and M . The notation
extends to sequences of visible actions of the same length (s compl r) as expected.

Note that whenever P |O ω==⇒, we can find s and r (possibly empty) s.t. P s==⇒,

O rω===⇒, and s compl r. Conversely, P s==⇒ and O rω===⇒ with s compl r can be

composed to yield P |O ω==⇒.

Definition 4.6. Given an environment action δ and an environment σ, δ̂σ is
the process action defined as

δ̂σ =





(ν b̃)a〈M〉 if δ = (ν b̃)η〈ζ〉, η̂σ = a, and M = ζ̂σ,
aM if δ = η(x), η̂σ = a, and M = xσ,
undefined otherwise.

Given a trace u with n(u) ⊆ dom(σ), ûσ is defined as expected.
For proving the soundness theorem we make use of the following three auxiliary

lemmas whose proofs can be found in Appendix B. The first lemma is a generalization
of Proposition 4.2 to sequences of transitions.
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Lemma 4.7. Suppose σ1 ∼ σ2 and let O be any observer such that f n(O) ⊆
dom(σ1). Suppose that Oσ1

r==⇒ O1, where, for some u and σ′1 extending σ1, it is r =

ûσ′1. Then, there is O′ with f n(O′) ⊆ dom(σ′1) such that O1≡O′σ′1. Furthermore,

for any σ′2 extending σ2 and such that σ′2 ∼ σ′1, it holds that Oσ2
r′===⇒ ≡O′σ′2, with

r′ = ûσ′2.
The next lemma gives a sufficient condition to infer the existence of a sequence

of transitions σ ✄ P
s|==⇒
u

σ′ ✄ P ′.

Lemma 4.8. Consider σ, P , and any observer O with f n(O) ⊆ dom(σ). Suppose

that P s==⇒ P ′ and that Oσ r==⇒ with s compl r. Then there are u and σ′ extending

σ such that r = ûσ′ and σ ✄ P
s|===⇒
u

σ′ ✄ P ′.

Finally, a simple result relates the form of s to that of u in a sequence of transitions
s|==⇒
u

.

Lemma 4.9. Suppose that σ ✄ P
s|===⇒
u

σ′ ✄ P ′. Then it holds that P s==⇒ P ′,

that σ′ extends σ, and that s compl r, where r = ûσ′.
We can now state and prove the soundness theorem.
Theorem 4.10 (soundness of trace semantics). If (σ1, σ2) � P � Q, then

(σ1, σ2) � P ❁∼Q.
Proof. Suppose that (σ1, σ2) � P � Q and let O be any observer with f n(O) ⊆

dom(σ1). Suppose that P | Oσ1
ω==⇒; we have to show that Q | Oσ2

ω==⇒. Since

P |Oσ1
ω==⇒ we can find P ′, s, and r such that

P s==⇒ P ′ and Oσ1
rω===⇒ with s compl r.

(As usual, we suppose that bn(s, r) are fresh.) Due to Lemma 4.8, we can find u and
σ′1 extending σ1 such that

σ1 ✄ P
s|==⇒
u

σ′1 ✄ P ′ and r = ûσ′1 .

Thus, by hypothesis, there are s′, σ′2 extending σ2 and Q′ such that

σ2 ✄Q
s′|==⇒
u

σ′2 ✄Q′ with σ′1 ∼ σ′2 .

Moreover, due to Lemma 4.9, it holds that Q s′==⇒ Q′ and s′ compl r′, where r′ = ûσ′2.

From Lemma 4.7 applied to Oσ1
rω===⇒ and to σ′2, we get that Oσ2

r′ω===⇒ . From this

fact, Q s′==⇒ Q′, and s′ compl r′, we get the wanted Q |Oσ2
ω==⇒.

Completeness. We begin by introducing some notation. We write 〈ηζ〉.P in-
stead of let z1 = η in (let z2 = ζ in z1z2.P ) and 〈η(x)〉.P instead of let z = η in

z(x).P (z, z1, and z2 fresh). The output-bound names of δ, obn(δ), are defined as

follows: obn((ν b̃)ηζ) = b̃ and obn(δ) = ∅ if δ is not an output action. This notation
extends to traces (obn(u)) as expected. Given u and σ, we say that u is consistent

with σ if (i) n(u) ⊆ dom(σ); (ii) σ extends [̃b/̃b], where b̃ = obn(u); and (iii) ûσ is
defined.

Based on φσ, we can define a class of canonical observers o(u, σ), depending on
specific u and σ.
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Definition 4.11 (canonical observers). Consider u consistent with σ. The
observers o(u, σ) are defined by induction on u as follows:

o(ε, σ)
def
= φσω,

o((ν b̃)η〈ζ〉 · u, σ)
def
= (ν b̃) 〈ηζ〉.o(u, σ),

o(η(x) · u, σ)
def
= 〈η(x)〉.o(u, σ).

Note that f n(o(u, σ)) ⊆ dom(σ)− bn(u). We now need two technical lemmas.
Lemma 4.12. Consider u consistent with σ. Let σ0 be the restriction of σ to

dom(σ)− bn(u).

(1) We have o(u, σ)σ0
rω===⇒, where r = ûσ.

(2) Consider any σ′0 ∼ σ0. If o(u, σ)σ′0
rω===⇒, then (up to the renaming of bound

names of r) r = ûσ′ for some σ′ extending σ′0 and s.t. σ ∼ σ′.
Proof. Both parts are proven by straightforward induction on u and relying on

Theorem 4.3 for the base case.
Lemma 4.13. Consider P , σ, and σ′ extending σ. Suppose that P s==⇒ P ′, with

s compl ûσ′, for some u consistent with σ′ and s.t. bn(u) = dom(σ′)−dom(σ). Then

σ ✄ P
s|===⇒
u

σ′ ✄ P ′.

Proof. The proof may be made by straightforward induction based on u, which
relies on Proposition 4.2.

We are now ready to prove completeness.
Theorem 4.14 (completeness for may-testing). If (σ1, σ2) � P ❁∼Q, then (σ1, σ2) �

P � Q.
Proof. Suppose that (σ1, σ2) � P ❁∼Q and that σ1 ✄ P

s|==⇒
u

σ′1 ✄ P ′, where as

usual bn(s, u) are taken fresh. We have to show that for some s′, σ′2, and Q′ it holds

that σ2 ✄Q
s′|==⇒
u

σ′2 ✄Q′ and σ′1 ∼ σ′2.

Due to Lemma 4.9, we know that s compl r
def
= ûσ′1. Furthermore, it is easy to

show that u is consistent with σ′1. Since σ1 is the restriction of σ′1 to dom(σ′1)−bn(u),

by virtue of Lemma 4.12(1) we get that o(u, σ′1)σ1
rω===⇒. From this, P s==⇒ P ′,

and s compl r, we get that P | o(u, σ′1)σ1
ω==⇒. Thus, by hypothesis, we also have

Q | o(u, σ′1)σ2
ω==⇒. This implies that there are s′, Q′, and r′ such that

Q s′==⇒ Q′ and o(u, σ′1)σ2
r′ω===⇒ with s′ compl r′ .

From this and Lemma 4.12(2), we obtain that r′ = ûσ′2, for some σ′2 extending σ2

and s.t. σ′1 ∼ σ′2. From this fact, Q s′==⇒ Q′, and Lemma 4.13, we get the desired

σ2 ✄Q
s′|==⇒
u

σ′2 ✄Q′.

4.2. Barbed equivalence and bisimilarity.

Soundness. It is convenient to generalize Definition 2.3 of barbed equivalence.
Definition 4.15 (generalized barbed equivalence). Let σ1 = [Mi/xi]i∈I

and

σ2 = [M
′
i/xi]i∈I

be equivalent substitutions. For each i ∈ I, let Ni = core(σ1, xi) and
N ′i = core(σ2, xi). A binary relation S of processes is a (σ1, σ2)-barbed bisimulation
if, whenever PSQ holds true,

1. for each P ′, if P τ−−→ P ′, then there is Q′ such that Q =⇒ Q′ and P ′SQ′,
and
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2. for each i ∈ I, if P ↓ Ni, then Q ⇓ N ′i
and the converse on the transitions and commitments of Q and P .

Two processes P and Q are (σ1, σ2)-barbed bisimilar, written (σ1, σ2) � P ·∼=Q,
if (P,Q) belongs to the largest (σ1, σ2)-barbed bisimulation.

Two processes P and Q are (σ1, σ2)-barbed equivalent, written (σ1, σ2) � P ∼= Q,

if for all R with f n(R) ⊆ dom(σ1) we have that (σ1, σ2) � P |Rσ1
·∼=Q |Rσ2.

Note the differences of this definition from Definition 2.3. First, the “barbs”
(the ↓ predicate) are only checked relative to those names that are known to the
environments, which are precisely those Ni’s and those N ′i ’s that are in N . Second,
for each i ∈ I, names Ni and N ′i are not required to be the same, but are just required

to be the “cores” of the same environment entry xi. Most important,
·∼= is just closed

under those contexts that can be obtained via instantiation with σ1 and σ2. Of course,
P ∼= Q holds if and only if (εV , εV ) � P ∼= Q for some V containing f n(P,Q).

The purely coinductive formulation of ≈ given in Definition 3.8 gives us a pow-
erful proof technique when proving equalities between two processes: it is sufficient
to exhibit any bisimulation relation containing the given pair. This technique can be
enhanced using the so-called up to techniques (similar to those in, e.g., [22, 10]), which
often permit one to reduce the size of the relation to exhibit. We introduce below
some useful up to techniques, which will be used in later proofs and examples. Up to
structural equivalence allows one to freely identify structurally equivalent processes;
up to weakening permits discarding environment entries, while up to contraction per-
mits adding redundant (hence harmless) entries to the environments. Finally, up to
restriction and up to parallel composition permit cutting away top-level restrictions
and common parallel contexts, respectively, in process derivatives.

Definition 4.16 (up to techniques). Given a compatible relation R, define Rt,
for t ∈ {s, w, c, r, p}, as the least binary relations over configurations that satisfy the
following rules:

• up to structural equivalence:
P ′≡P , Q′≡Q and (σ1, σ2) � P ′RQ′

(σ1, σ2) � P RsQ
;

• up to weakening:
(σ1[M̃/̃x], σ2[M̃

′
/̃x]) � P RQ

(σ1, σ2) � P RwQ
;

• up to contraction:
(σ1, σ2) � P RQ, ⊥ �∈ ̂̃ζσ1 and n(ζ̃)− dom(σ1) are fresh for σ1, σ2, P , and Q

(σ1[
̂̃
ζσ1/̃y], σ2[

̂̃
ζσ2/̃y]) � P RcQ

;

• up to restriction:
h̃ ∩ n(σ1) = ∅ , k̃ ∩ n(σ2) = ∅ and (σ1, σ2) � P RQ

(σ1, σ2) � (ν h̃)P Rr (ν k̃)Q
;

• up to parallel composition:
A ≡ P |Rσ1, B ≡ Q |Rσ2 and (σ1, σ2) � P RQ and f n(R) ⊆ dom(σ1)

(σ1, σ2) � ARpB
.
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A relation R is a weak bisimulation up to structural equivalence if R satisfies the def-
inition of weak bisimulation (Definition 3.8), but with the condition on the derivatives
“(σ′1, σ

′
2) � P ′RQ′” replaced by the weaker “(σ′1, σ

′
2) � P ′RsQ

′.” Weak bisimula-
tion up to weakening, contraction, restriction, and parallel composition are defined
similarly.

Thus an up to technique t is essentially a functional (·)t from compatible rela-
tions to compatible relations. We say that an up to technique t is sound if, whenever
R is a bisimulation up to t, then R ⊆≈. Our first task is therefore to prove that
the techniques we have defined above are sound. Next, it should be obvious that
different up to techniques can be combined to get new techniques. As an example,
weak bisimulation up to parallel composition and contraction is defined by replacing
(σ′1, σ

′
2) � P ′RQ′ with (σ′1, σ

′
2) � P ′(Rp)cQ

′ in Definition 3.8. Formally, a combina-
tion of techniques is a composition of the corresponding functionals (see [22]). The
results of [22] ensure that, if the techniques we have introduced in Definition 4.16 are
sound, then any combination of them is sound too.3 The next proposition, whose
proof can be found in Appendix B, states the soundness of our up to techniques.

Proposition 4.17. Let R be a weak bisimulation up to structural equivalence
(resp., weakening, contraction, restriction, parallel composition). Then R ⊆ Rs ⊆≈
(resp., R ⊆ Rt ⊆≈, for t = w, c, r, p).

We are now ready to prove the soundness theorem.
Theorem 4.18 (soundness of weak bisimilarity). Let P and Q be processes and

σ1 and σ2 be equivalent substitutions. If (σ1, σ2) � P ≈ Q, then (σ1, σ2) � P ∼= Q.
Proof. Note that ≈ is trivially a weak bisimulation up to parallel composition;

thus (≈)p ⊆≈ due to Proposition 4.17. Hence (σ1, σ2) � P ≈ Q implies (σ1, σ2) �
P | Rσ1 ≈ Q | Rσ2 for each R with f n(R) ⊆ dom(σ1). Since ≈ is finer than

·∼= , this
fact implies the wanted (σ1, σ2) � P ∼= Q.

Completeness. We shall prove completeness of ≈ relative to a class of processes
that have an image-finiteness property (defined below). This property makes the
proof relatively simple (and not far from, e.g., the proof for asynchronous bisimilarity
given in [3]). On the other hand, the class of processes enjoying the property is broad
enough to ensure that ≈ is a fairly general proof technique. At present, we do not
know whether the proof can be extended to the full language.

Formally, a process P is structurally image-finite if, for each visible trace s, the
set of equivalence classes {P ′ : P s==⇒ P ′}/≡ is finite. Note that this notion is
slightly more general than the usual image-finiteness (as considered, e.g., in [3]).
This is due to our use of ≡ to quotient the set of s- derivatives. As an example,

process P
def
= ! a(x).bx is structurally image-finite but not image-finite; indeed, for

each s, P has infinitely many s-derivatives, which are, however, finite up to structural

equivalence (use the law !P | P ≡ !P ). On the contrary, process Q
def
= ! (τ.a + τ.b) is

not structurally image-finite (hence not image-finite); for instance, for any n,m ≥ 0,
Q has an ε-derivative of the form a | · · · | a | b | · · · | b | Q, with n a’s and m b’s in
parallel.

Next, it is convenient to introduce a chain of relations ≈i, i ≥ 0, which are used
to approximate bisimilarity ≈ over configurations. In what follows, |E| is used to

denote the syntactic size of some term E. Given any σ, we let rk(σ)
def
= |φσ|.

3Technically, our techniques enjoy the “respectfulness” property of [22] with respect to the tran-

sition relation
µ|−−→
δ

.
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Definition 4.19. The binary relations ≈i over configurations are defined by
induction on i as follows:

• (σ1, σ2) � P ≈0 Q if σ1 ∼ σ2;
• (σ1, σ2) � P ≈i Q, for i > 0 and σ1 ∼ σ2 if, whenever σ1 ✄ P

µ
|−−→
δ

σ′1 ✄ P
′

with |δ| ≤ i and rk(σ′1) ≤ i, there are µ′, σ′2, and Q′ s.t. σ2 ✄Q
µ̂|==⇒
δ

σ′2 ✄Q
′
,

rk(σ′2) ≤ i, and (σ′1, σ
′
2) � P ′ ≈i−1 Q

′, and the converse on the transitions
of Q and P .

We let ≈ω
def
= ∩i≥0 ≈i.

The following is a variation on a standard result for bisimulation (see, e.g., [15,
21]).

Lemma 4.20. Let P and Q be structurally image-finite processes. Then (σ1, σ2) �
P ≈ Q if and only if (σ1, σ2) � P ≈ω Q.

We now show that ∼= implies ≈ω, from which completeness of ≈ for structurally
image-finite processes will follow. In order to do this, we exploit the formula φσ and
define a class of canonical contexts Ri,σ, depending on some i ≥ 0 and σ, which can
be used to test whether two configurations are related by ≈i. In what follows, we
shall use some of the process notation introduced at the beginning of the subsection
on completeness for may-testing. Furthermore, we shall sometimes omit the object
part of action prefixes, writing, e.g., c instead of cx, when x is not relevant. We will
let τ.P denote the process (ν c)(c.P | c) (c /∈ f n(P )) and, for any finite set of processes
{P1, . . . , Pk}, we will let

∑ {P1, . . . , Pk} denote the process P1 + · · ·+ Pk (the exact
way the summands are arranged does not matter).

Definition 4.21 (canonical contexts). Define the processes Ri,σ, for i ≥ 0, by

induction on i as follows. R0,σ
def
= 0 and, for i > 0,

Rn,σ
def
=

∑ {
Rinp
η +Rout

η : n(η) ⊆ dom(σ), η̂σ ∈ N and |η| < i
}

+Rε + ei,where

Rinp
η

def
= 〈η(x)〉.∑ {

φσ′
(
fη,φσ′ ,i + τ.Ri−1,σ′

)
:

there is M s.t. σ′ = σ[M/x], and rk(σ′) ≤ i
}
,

Rout
η

def
=

∑ {
(ν b̃)〈ηζ〉.(gη,ζ,i + τ.Ri−1,σ′

)
:

fn
(
(ν b̃)

)
η〈ζ〉 ⊆ dom(σ), σ′ = σ[̃b/̃b] and |ζ| < i

}
,

Rε
def
= τ.

(
hi + τ.Ri−1,σ

)
,

where the names ej, fη,φσ′ ,j, gη,ζ,j, and hj (0 ≤ j ≤ i) are all distinct and fresh.
Note that, in the above definition, the sum in Rinp

η is finite because, for fixed x̃ and
i, there are finitely many φσ’s and Ri,σ s.t. dom(σ) = x̃ and rk(σ) ≤ i (this is formally

proven by induction on i). The sum in Rout
η is finite as well, because actions (ν b̃)η〈ζ〉

are considered up to alpha-equivalence. Note also that f n(Ri,σ) ⊆ dom(σ)∪ l̃, where

l̃ is the set of all names ej , fη,φσ′ ,j , gη,ζ,j , and hj (0 ≤ j ≤ i) occurring in Ri,σ.
An easy lemma on characteristic formulae follows; its proof can be found in Ap-

pendix B.
Lemma 4.22. If σ ∼ σ′, then rk(σ) = rk(σ′).
We are now ready to prove completeness.
Theorem 4.23 (completeness for barbed equivalence). Let P and Q be struc-

turally image-finite processes. If (σ1, σ2) � P ∼= Q, then (σ1, σ2) � P ≈ Q.
Proof. By virtue of Lemma 4.20, it is sufficient to prove that for each i ≥ 0 it

holds (σ1, σ2) � P ≈i Q. Consider Ri,σ1
and let ρ1

def
= σ1 [̃l/̃l] and ρ2

def
= σ2 [̃l/̃l], where

l̃ is the set of all names ej , fη,φσ′ ,j , gη,ζ,j , and hj (0 ≤ j ≤ i) occurring in Ri,σ1
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(we suppose that l̃ has been chosen fresh for σ1, σ2, P , and Q). We prove that if

(ρ1, ρ2) � (P | Ri,σ1σ1)
·∼= (Q | Ri,σ1σ2), then (σ1, σ2) � P ≈i Q. From this fact and

(σ1, σ2) � P ∼= Q, the thesis will follow (note that (σ1, σ2) � P ∼= Q trivially implies
(ρ1, ρ2) � P ∼= Q).

We proceed by induction on i. The case i = 0 is trivial; thus suppose i > 0. We
only consider the case of a (C-Inp) transition, that is,

σ1 ✄ P
(ν b̃)a〈M〉

|−−−−−−−→
η(x)

σ′1 ✄ P
′

(1)

with |η(x)| ≤ i, σ′1 = σ1[M/x], and rk(σ′1) ≤ i, as the other cases are similar or easier.
We show the existence of a transition of σ2 ✄Q that matches this one. From (1)
above, we can infer that

P |Ri,σ1σ1
τ−−→ (ν b̃)

(
P ′ |

(
φσ′

1

(
fη,φσ′

1
,i + τ.Ri−1,σ′

1

))
σ′1

)
def
= A.

Since (ρ1, ρ2) � P |Ri,σ1σ1
·∼=Q |Ri,σ1σ2 and A ↓ fη,φσ′

1
,i, we deduce the existence of

a transition

Q |Ri,σ1σ2 =⇒ (ν b̃′)
(
Q′ |

(
φσ′

1

(
fη,φσ′

1
,i + τ.Ri−1,σ′

1

))
σ′2

)
def
= B

with (ρ1, ρ2) � A
·∼=B and B ↓ fη,φσ′

1
,i, where σ′2 = σ2[M

′
/x], for some M ′ s.t.

Q
(ν b̃′)a′〈M ′〉

=========⇒ Q′ (a′ = η̂σ2). Hence

σ2 ✄Q
(ν b̃′)a′〈M ′〉
|=========⇒

η(x)
σ′2 ✄Q

′
.(2)

Moreover, since B ↓ fη,φσ′
1
,i, it holds that σ′2 |= φσ′

1
.

Now, from A τ−−→≡ (ν b̃)((P ′ | Ri−1,σ′
1
)σ′1)

def
= A′ we deduce that B =⇒ B′ with

(ρ1, ρ2) � A′ ·∼=B′. Since A′ ↓ ei−1, it must hold that B′ ⇓ ei−1; hence we must have

B′ ≡ (ν b̃′)((Q′′ |Ri−1,σ′
1
)σ′2) with Q′ =⇒ Q′′. We can strip the restrictions (ν b̃) and

(ν b̃′) away from (ρ1, ρ2) � A′ ·∼=B′ and deduce that

(ρ1, ρ2) � (P ′ |Ri−1,σ′
1
σ′1)

·∼= (Q′′ |Ri−1,σ′
1
σ′2),

which, by induction, implies that (σ′1, σ
′
2) � P ′ ≈i−1 Q

′′. Now, from Q′ =⇒ Q′′ and
transition (2), we deduce

σ2 ✄Q
(ν b̃′)a′〈M ′〉
|=========⇒

η(x)
σ′2 ✄Q

′′
.

We show that this transition matches (1). Indeed, we have that σ′1 ∼ σ′2 (by σ′2 |= φσ′
1

and Theorem 4.3), that rk(σ′2) = rk(σ′1) ≤ i (Lemma 4.22), and that (σ′1, σ
′
2) �

P ′ ≈i−1 Q
′′.

5. Applications. In this section we first give some properties which are useful
when reasoning on cryptographic processes and then use them in a few examples.



PROOF TECHNIQUES FOR CRYPTOGRAPHIC PROCESSES 967

Let rel ∈ {≈,�}.

(C-Inp) Suppose that for all ζ such that ỹ
def
= (n(ζ) − dom(σ1)) are fresh and ζ̂σ1 �= ⊥

it holds that (σ1[ỹ/̃y], σ2[ỹ/̃y]) � P [ζ̂σ1/x] rel Q[ζ̂σ2/x].
Suppose ai = η̂σi (i = 1, 2) with n(η) ⊆ dom(σ1).
Then (σ1, σ2) � a1(x).P rel a2(x).Q.

(C-Out) Suppose that (σ1[M1/x], σ2[M2/x]) � P rel Q and that ai = η̂σi (i = 1, 2)
with n(η) ⊆ dom(σ1).

Then (σ1[M1/x], σ2[M2/x]) � a1M1.P rel a2M2.Q.

(C-Par) Suppose that f n(R) ⊆ dom(σ1) and (σ1, σ2) � P relQ .
Then (σ1, σ2) � P |Rσ1 rel Q |Rσ2.

(C-Res) Suppose that (σ1, σ2) � P rel Q, that k̃ ∩ n(σ1) = ∅ , and that h̃ ∩ n(σ2) = ∅ .
Then (σ1, σ2) � (ν k̃)P rel (ν h̃)Q.

Fig. 4. Some congruence rules for 
 and ≈.

5.1. Some useful laws. We start by stating some simple properties.
Proposition 5.1. Let rel ∈ {≈,�}.
• (Reflexivity) For any σ and P , (σ, σ) � P relP .
• (Transitivity) If (σ1, σ2) � P relQ and (σ2, σ3) � Q relR, then (σ1, σ3) �
P relR.

• (Weakening) Suppose that (σ1[M/x], σ2[N/x]) � P relQ. Then (σ1, σ2) �
P relQ.

• (Contraction) Suppose that (σ1, σ2) � P relQ and consider any ζ such that

n(ζ) ⊆ dom(σ1) and ζ̂σ1 �= ⊥. Then (σ1[ζ̂σ1/x], σ2[ζ̂σ2/x]) � P relQ.
• (Structural equivalence) Suppose that P ≡Q. Then for any σ, (σ, σ) �
P relQ.

Proof. Reflexivity, transitivity, and structural equivalence are trivial. The other
cases are consequences of Proposition 4.17 for ≈. For �, the proof becomes triv-
ial when one switches to the original definition of ❁∼ ; for contraction, note that

Oσi[ζ̂σi/x]≡ (let x = ζ in O)σi for i = 1, 2 and f n(O) ⊆ dom(σi).
Some congruence laws are listed in Figure 4. These laws are very useful (especially

(C-Par) and (C-Res)) because they permit a kind of compositional reasoning, as we
shall see in later examples in this section.

Proposition 5.2. The laws listed in Figure 4 are correct.
Proof. The proof for (C-Inp) and (C-Out) is trivial. Laws (C-Par) and (C-Res)

are a consequence of Proposition 4.17 in the case of ≈. In the case of �, the proof
becomes trivial if one switches to the original definition of ❁∼ .

We shall also need a few rules to reason on environments. They are given in the
following two lemmas (whose proofs can be found in Appendix A). The first lemma
characterizes kn(σ) in terms of the expressions that can be formed using the variables
in dom(σ).

Lemma 5.3. Let σ be an environment. Then kn(σ) = {ζ̂σ ∈ N : n(ζ) ⊆
dom(σ) }.

The next lemma is about the effect of evaluating the same expression ζ under two
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equivalent environments, σ and σ′.
Lemma 5.4. Let σ = [Mi/xi]i∈I

and σ′ = [M
′
i/xi]i∈I

be two substitutions s.t. σ ∼′
σ′. Define Ñ = core(σ, xi)i∈I and Ñ ′ = core(σ′, xi)i∈I . For each ζ s.t. n(ζ) ⊆ x̃,
either

(a) ζ̂σ = ζ̂σ′ = ⊥, or

(b) there are i ∈ I and a tuple ̃ ⊆ I such that ζ̂σ = {Ni}Ñ [ ̃ ]
and ζ̂σ′ =

{N ′i}Ñ ′[ ̃ ].

We end this subsection with a small example (borrowed from [6]) that shows the
use of our congruence laws.

Example 5.5. Let us consider the processes P
def
= (ν k)c{d}k. c(x). [x = k]c{d}k

and Q
def
= (ν k)c{d}k. c(x). Process P creates a private key k, sends d encrypted under

k, listens for an input, and if it receives k, then resends {d}k. Process Q behaves like
P , but, after the reception of one message, it becomes stuck. Since k is a private
key that is never disclosed to the environment, P will never receive k back at c; as
a consequence the matching [x = k] will never become true. Therefore P and Q
should be considered as equivalent. Let V = f n(P,Q) = {c, d}; we want to show that
(εV , εV ) � P � Q.

We can prove that (εV , εV ) � Q � P by simply noting that traces of Q are
also traces of P . To prove that (εV , εV ) � P � Q, let z be any fresh name and let

σ
def
= εV [{d}k/z]. The crucial step is showing that

(σ, σ) � c(x). [x = k]c{d}k � c(x).

Indeed, for any ζ with ỹ
def
= (n(ζ) − dom(σ)) fresh, it holds that

̂
ζσ[ỹ/̃y] = ζ̂σ �= k

(because of k �∈ kn(σ) and of Lemma 5.3); hence we have (σ[ỹ/̃y], σ[ỹ/̃y]) � [ζ̂σ =
k]c{d}k � 0. The thesis for this step follows by using (C-Inp). Now, using (C-Out),
we have that

(σ, σ) � c{d}k. c(x). [x = k]c{d}k � c{d}k. c(x).

The thesis follows from this fact, using first weakening and then (C-Res).

5.2. Secure channels implementation. In the following examples, we show
the use of our framework for proving security properties of communication protocols.
In the same vein of [1, 4], the idea is that of implementing communication on secure
(private) channels by means of encrypted communication on public channels. Let us
consider the π-calculus process:

P
def
= (ν c)(cd | c(z). R),

where c does not occur in R. Process P creates a private channel c which is used
to transmit name d. Communication on c is secure because no execution context
knows c. Since P consists of two concurrent subprocesses, the actual implementation
could allocate them onto two different computers, whose interconnections are not
guaranteed to be secure. Communication on c has to be implemented in terms of
lower-level, encrypted communication on some public channel, say p. Thus, process
P might be implemented as

IP
def
= (ν kc)(p{d}kc | p(x).let z = deckc(x) in R) (kc, x /∈ f n(R)).
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In IP , name kc is a private encryption key that corresponds to channel c. The be-
havior of the process is as follows: the process p{d}kc sends d encrypted under kc,
while p(x).let z = deckc(x) in R tries to decrypt a ciphertext x received at p. If the
decryption succeeds, a cleartext is obtained and bound to z and the process behaves
like R, otherwise the process is stuck. Note that this implementation does not guar-
antee that d will eventually be passed to R: message {d}kc

could be captured by some
context (attacker) listening at p. The last example of this section shall present an
implementation that solves this problem.

A secrecy property. Assume that R keeps z secret under any context; i.e., for
every d and d′, and σ1 ∼ σ2, it holds that (σ1, σ2) � R[d/z] � R[d

′
/z]. Under this

hypothesis, we want to prove that the implementation scheme for P preserves secrecy.

To see this, we consider a generic d′, let Q
def
= (ν c)(cd′ | c(z). R), and show that

(εV , εV ) � IP � IQ,

where IQ is the obvious implementation of Q and V = f n(IP , IQ). In order to prove

this, let y be any fresh name and define σ1
def
= εV [{d}kc/y] and σ2

def
= εV [{d′}kc/y]. First,

rule (C-Inp) allows one to prove that

(σ1, σ2) � (p(x).let z = deckc(x) in R) � (p(x).let z = deckc(x) in R).

To prove this, one exploits two facts: (1) for any ζ s.t. n(ζ) − dom(σ1) are fresh, if

ζ̂σ1 = {M}kc , then M = d and ζ̂σ2 = {d′}kc (by Lemma 5.4(b) and kc /∈ kn(σ1)); (2)
R[d/z] is may-equivalent to R[d

′
/z] under σ1 and σ2. These facts and (C-Par) can be

used to infer that

(σ1, σ2) � (p{d}kc | p(x).let z = deckc(x) in R)

� (p{d′}kc | p(x).let z = deckc(x) in R).

Finally, the desired claim follows by applying weakening and then (C-Res) (with
(ν kc)) to the equality above.

Preservation of may semantics. Here we show that the previous implementation
scheme also preserves may semantics. We relax the hypothesis that R keeps name z

secret and, for the sake of simplicity, assume that R
def
= bz. In π-calculus, process P

is may-equivalent to process bd. We want to show that the implementations of P and
of process bd are still may-equivalent, under the assumption that the communication
channel p is both asynchronous and noisy. Thus, the actual implementation also

includes a buffer B
def
=!p(x).px and a noise generator N

def
=!(ν k)p{k}k for p. Both

noise and asynchrony are necessary to prevent the execution context from detecting
traffic on the public channel p. Let V = f n(IP , bd,N,B). To sum up, we want to
show that

(εV , εV ) � (IP |N |B) � (bd |N |B).(3)

(Note that this equation is not valid for ≈.) We do this in two steps.
• First, we prove that (εV , εV ) � bd | N | B � IP | N | B. The only possible

trace for the configuration εV ✄ bd is

εV ✄ bd
bd

|−−−→
b(x)

εV [d/x] ✄ 0.
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Configuration εV ✄ IP can simulate the action above by first communicating
{d}kc on p, and then decrypting {d}kc :

εV ✄ IP
bd|====⇒

b(x)
εV [d/x] ✄ (ν kc)0.

Hence, (εV , εV ) � bd � IP , and the thesis follows by applying law (C-Par)
in Figure 4.

• Let us now prove that (εV , εV ) � IP |N |B � bd |N |B. Let y be any fresh

name and let σ
def
= εV [{d}kc/y].

– The crucial step is showing that

(σ, σ) � p(x).let z = deckc
(x) in bz � p(x).bd.(4)

Indeed, taking any ζ such that w̃
def
= (n(ζ)−dom(σ)) are fresh names and

such that ζ̂σ �= ⊥, we have (σ[w̃/w̃], σ[w̃/w̃]) � let z = deckc
(ζ̂σ) in bz �

bd. In fact, the only case in which deckc(ζ̂σ) does not evaluate to ⊥
is when ζ̂σ = {d}kc (Lemma 5.4(b) and kc /∈ kn(σ)), which implies

let z = deckc(ζ̂σ) in bz≡ bd. Then (4) above follows, using (C-Inp).
– Now, using (C-Par) and (4) above, we have that

(σ, σ) � p{d}kc | (p(x).let z = deckc(x) in bz) � p{d}kc | p(x).bd;

hence, by weakening and (C-Res), we have that

(εV , εV ) � (ν kc)(p{d}kc | p(x).let z = deckc(x) in bz)

� (ν kc)(p{d}kc | p(x).bd)≡ (ν kc)(p{d}kc) | p(x).bd.

In the last step we have used a structural law for restriction ((ν a)(A1|A2)
≡ ((ν a)A1) | A2 if a �∈ f n(A2)). Using (C-Par) again, we can put the
context N |B in parallel with the two processes:

(εV , εV ) � (ν kc)(p{d}kc | p(x).let z = deckc(x) in bz) |N |B
� (ν kc)(p{d}kc) | p(x).bd |N |B.

Now, (ν kc)(p{d}kc) in the right-hand side above can be turned into
a particle of noise, because (εV , εV ) � (ν kc)(p{d}kc

) � (ν k)(p{k}k).
Using the structural law for replication (!A≡A | !A), this particle of
noise can be absorbed by N ; hence

(εV , εV ) � (ν kc)(p{d}kc) | p(x).bd |N |B � p(x).bd |N |B.

Moreover, as an instance of a general law for asynchronous channels, we
have that

(εV , εV ) � p(x).bd |B � bd |B,

and the thesis easily follows by (C-Par).
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Ensuring message delivery. We consider a more sophisticated implementation
scheme for process P and prove that (under a fairness assumption) this scheme guar-
antees that a message sent on channel c is eventually delivered. Again, we implement
c with an asynchronous and noisy public channel p. This time, however, we need a

more complex source of noise, N
def
=!(ν k)!p{k}k. Note the difference from the previous

example: N can now spawn at any time a process (ν k)!p{k}k which emits a constant

noise {k}k at p. The buffer B for p is still B
def
=!p(x).px.

In this example, we shall use recursive definitions of agent constants of the kind
A ⇐= S, where A is an agent constant that may appear in the process expression S
(these can be taken as primitive—the theory extends smoothly—or can be coded up
using replication like in [15]). We also use the shorthand “let z = ζ in A else B”
for “(let z = ζ in A) + ¬(let z = ζ in tt)B.”

The implementation of P is the process

IP
def
= (ν kc)(!p{d}kc

|R), where

R⇐= p(x).let z = deckc
(x) in bz else (px |R).

Component !p{d}kc constantly emits d encrypted under key kc on p, while R repeat-
edly tries to decrypt a ciphertext x received on p using kc. When the decryption
succeeds, the cleartext is sent on b.

Let V = f n(IP , bd,B,N); we want to prove that

(εV , εV ) � (IP |B |N) ≈ (bd |B |N).

In order to see this, define σ1
def
= εV [{d}kc/y] and σ2

def
= εV [{k}k/y] (y fresh). We first

show that

(σ1, σ2) � T def
= (!p{d}kc

|R |B |N) ≈ (bd | !p{k}k |B |N)
def
= U,(5)

from which the thesis will follow by first applying weakening to discard the y-entry,
then (C-Res) (with (ν kc) on the left-hand side and (ν k) on the right-hand side),
and then the structural laws for restriction and the structural law for replication
(N | (ν k)!p{k}k ≡ N) on the right-hand side. To prove (5), we consider a relation R
consisting of three pairs (w is fresh):

R =
{

(σ1 ✄ T , σ2 ✄ U), (σ1 ✄ bd, σ2 ✄ bd), (σ1[d/w] ✄ 0, σ2[d/w] ✄ 0)
}

and show that R is a weak bisimulation up to parallel composition and contraction.
The proof consists of analyzing every transition of σ1 ✄ T and σ2 ✄ U and of showing
that a matching transition exists in the other configuration in each case. In particular,
note the following:

• transitions of σ1 ✄ T originating from !p{d}kc are matched up to contraction
via transitions from !p{k}k in σ2 ✄ U , and vice-versa;

• the transition of σ1 ✄ T originating from R
p {d}kc−−−−−−→≡ bd is matched up to

parallel composition via B
p {k}k−−−−−→ p{k}k | B in σ2 ✄ U—to see this, first

note that p{k}k | !p{k}k ≡!p{k}k, and then cut away the parallel contexts
!p{d}kc | B | N (from the left-hand side) and !p{k}k | B | N (from the right-
hand side);
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• a transition of σ1 ✄ T originating from R
pM−−−→≡ pM | R, with M = ζ̂σ1 �=

{d}kc , is matched up to parallel composition and contraction via a transition

B
pM ′
−−−−→≡ pM ′ |B in σ2 ✄ U , where M ′ = ζ̂σ2 (contraction may be used to

discard any new name introduced by ζ);

• the transition of σ2 ✄ U originating from bd
b〈d〉−−−−→ 0 is matched up to parallel

composition via a communication between R and !p{d}kc , followed by a b〈d〉-
transition in σ1 ✄ T .

Communications between R and !p{d}kc or R and N are treated as in the second
and in the third item above, respectively. It should be now obvious how the other
transitions match with each other.

5.3. Verification of a small protocol. Consider a system where two agents A
and B share two secret keys, kAS and kBS , respectively, with a server S. The purpose
of the protocol is to establish a new secret key k between A and B, which A may
use to pass some confidential information d to B. This is achieved with a version
of the Wide Mouthed Frog Protocol (see, e.g., [7]). For the sake of simplicity, we
suppose that the protocol is always started by A and that all communications occur
on a public channel, say p. Informally, the protocol can be described as follows:

Message 1 A −→ S : {k}kAS

Message 2 S −→ B : {k}kBS

Message 3 A −→ B : {d}k.
Our intent here is to verify one run of the protocol (that is, we do not consider the case
of multiple agents simultaneously executing the protocol). In our language, the above
notation translates to a process P (d) defined as follows (using the notation R(w) to
stress that name w may occur free in R, and, for any M , abbreviating R[M/w] as
R(M); bound names are all distinct):

A(d)
def
= p{k}kAS

.p{d}k.0,
S

def
= p(x).let x′ = deckAS

(x) in p{x′}kBS
.0,

B
def
= p(y).let y′ = deckBS

(y) in p(z).let z′ = decy′(z) in 0,

P (d)
def
= (ν kAS , kBS)(((ν k)A(d)) | S |B) .

Here we assume that A, S, and B terminate after the exchange of message 3: this
assumption simplifies the reasoning below and seems sensible, because the correctness
of the protocol should be assessed independently of the subsequent behavior of the
participants. In what follows, following Abadi and Gordon [7], we use the contextual
equivalence ∼= to express the properties of secrecy and integrity of P (d) (below, we
suppose by alpha-equivalence that names kAS , kBS , k, x, x′, y, y′, z, z′ do not occur
in messages M and M ′):

Secrecy (“P (d) does not leak d”).
For any M and M ′, it holds that P (M) ∼= P (M ′).

Integrity (“if B accepts a message {N}k then N = d”).
For any M , it holds that P (M) ∼= PM

spec, where

PM
spec

def
= (ν kAS , kBS)(((ν k)A(d)) | S |BM

spec),
BM
spec

def
= p(y).let y′ = deckBS

(y) in p(z).let z′ = decy′(z) in [z′ �= M ] p err.0.

Output of name err on p is used to signal a violation of integrity, i.e., that some
message {N}k with N �= M has been accepted. The fact that P (M) and PM

spec are
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equivalent means that action p〈err〉, hence the violation, never occurs (in this point
our formalization differs a little from Abadi and Gordon’s). Fix M and M ′ and let

V
def
= f n(P (M), P (M ′)). By virtue of our soundness results for secrecy it will be

sufficient to show that

(εV , εV ) � P (M) ≈ P (M ′),(6)

while, for integrity, it will be sufficient to establish that

(εV ∪{err}, εV ∪{err}) � P (M) ≈ Pspec(M).(7)

We will prove the above equalities by reasoning compositionally on processes. To
do this, we first show a compositionality result for ≈. Let us say that a process R is σ-

safe if for each s, whenever σ ✄R
s|==⇒
u

σ′ ✄R′
(ν b̃)a〈M〉
|=======⇒

η(x)
, then M ∈ dc(σ′) (hence

b̃ = ∅ ). Intuitively, R is σ-safe if R cannot increase the knowledge of σ. The following
proposition strengthens the congruence rule for parallel composition (C-Par), under
the assumption that the involved processes are safe for the appropriate environments
(the proof is in Appendix B).

Proposition 5.6. Suppose that (σ1, σ2) � Q1 ≈ Q2 and that (σ1, σ2) � R1 ≈
R2. Suppose that, for i = 1, 2, Qi and Ri are σi-safe. Then (σ1, σ2) � Q1 | R1 ≈
Q2 |R2.

Let us examine secrecy first. Define

σ
def
= εV [{k}kAS/x1, {k}kBS/x2, {M}k/x3] and

σ′ def
= εV [{k}kAS/x1, {k}kBS/x2, {M ′}k/x3].

Clearly, σ ∼ σ′. As a first step, check that

(σ, σ′) � A(M) ≈ A(M ′),
(σ, σ′) � S ≈ S,
(σ, σ′) � B ≈ B.

The first equality follows from (C-Out), while the second and the third follow from
(C-Inp) and Lemma 5.4. For instance, to establish the second equality, Lemma 5.4 is

first used to check that whenever names n(ζ)− dom(σ) are fresh and ζ̂σi = {N}kBS
,

then N = k; then (C-Inp) is applied. Next, it is easy to see that A(M) is σ-safe and
that A(M ′) is σ′-safe, while S and B are both σ- and σ′-safe (again, this requires the
use of Lemma 5.4). Applying Proposition 5.6, we can infer that

(σ, σ′) � A(M) | S |B ≈ A(M ′) | S |B.
Next, apply weakening (so as to discard entries x1, x2, and x3) and then (C-Res)
with (ν k) and a structural law ((ν a)(Q | R)≡ ((ν a)Q) | R if a /∈ f n(R)) and deduce
that

(εV , εV ) � ((ν k)A(M)) | S |B ≈ ((ν k)A(M ′)) | S |B.
Finally apply (C-Res) with (ν kAS , kBS) to get the desired (6).

As to integrity, let σ
def
= εV ∪{err}[{k}kAS/x1, {k}kBS/x2, {M}k/x3]. First, the crucial

point is that (σ, σ) � B ≈ BM
spec (use twice Lemma 5.4 and (C-Inp)). Next, note that

B, BM
spec, A, and S are all σ-safe (use Lemma 5.4 again). Thus we can compose these

processes and proceed like in the case of secrecy to obtain (7).
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6. A calculus with pairs. Our most relevant omission from the calculus of
Abadi and Gordon has been pairing, that is, the possibility of transmitting pairs of
messages of the form 〈M1,M2〉. It is, however, easy to extend our theory to a calculus
with pairs: The necessary modifications are reported below.

The syntax of messages and of expressions is extended by introducing appropriate
constructors and selectors for pairs:

M ::= . . . | 〈M1,M2〉,
ζ ::= . . . | π1(ζ) | π2(ζ) | 〈ζ1, ζ2〉 .

The evaluation functions for expressions and formulae are extended accordingly (for

example, ̂π1({a}k) = ⊥). The definition of dc(·) is extended with the clause: if
〈M1,M2〉 ∈ dc(S), then M1,M2 ∈ dc(S). The definition of core needs to be revised;
informally, a message M can now have several cores, which are found at different
positions inside M . If we code a position inside M as a string p ∈ {l, r}∗ (that is, a
path through the nested pairs of M), then the core of M at position p with respect
to σ, written M [σ, p], can be formally defined as follows by induction on M :

• a[σ, p] =

{
a if p = ε,
⊥ otherwise,

• {M}k[σ, p] =




{M}k if k /∈ kn(σ) and p = ε,
M [σ, p] if k ∈ kn(σ),
⊥ otherwise,

• 〈M1,M2〉[σ, p] =





M1[σ, p′] if p = lp′,
M2[σ, p′] if p = rp′,
⊥ otherwise.

As an example, consider message M = 〈〈{b}hk, {c}k〉, k〉 and substitution σ =
[M/x, {h}d/y]. We have dc(σ) = {M,M ′, k, {h}d, {b}hk, {b}h, {c}k, c}, where M ′ =
〈{b}hk, {c}k〉, and kn(σ) = {k, c}. Moreover, we have that M [σ, r] = k, M [σ, ll] =
{b}h, M [σ, lr] = c, and M [σ, p] = ⊥ for p �∈ {r, ll, lr}. Note also that the same would
hold for every substitution σ′ such that kn(σ) = kn(σ′).

Every core in σ = [Mi/xi]i∈I
is now determined by an index pair (index i, position

p) which we write as ip. The following notation is useful: given a function f defined
over I × {l, r}∗ and a tuple of index pairs ̃ = (i1p1, . . . , ikpk), we let f [ ̃ ] denote the
tuple (fi1p1 , . . . , fikpk) (we write fxy instead of f(x, y) for function application). We
can now give the new definition of ∼.

Definition 6.1 (equivalence on environments: pairing). Consider two substitu-

tions σ1 = [Mi/xi]i∈I
and σ2 = [M

′
i/xi]i∈I

. Let Ñ , Ñ ′ : I × {l, r}∗ →M∪ {⊥} be the

functions defined as Nip
def
= Mi[σ1, p] and N ′ip

def
= M ′i [σ2, p] for each index pair ip. We

write σ1 ∼′ σ2 if and only if for each i ∈ I the following three conditions hold:
(a) (σ1, σ2) �Mi ∼M ′i ;
(b) for each p, Nip ∈ N if and only if N ′ip ∈ N ;
(c) for each p, j ∈ I, and q, Nip = Njq if and only if N ′ip = N ′jq,

where the predicate (σ1, σ2) � M ∼ M ′ (a recursive version of condition (a) in the
old definition) is defined by induction on M as follows:

(σ1, σ2) � M ∼ M ′ if and only if there is a tuple ̃ of index pairs
such that M = {M0}Ñ [ ̃ ]

and M ′ = {M ′0}Ñ ′[ ̃ ] for some M0,M
′
0

such that either (i) M0 = Nip and M ′0 = N ′ip for some i and p, or
(ii) M0 = 〈M1,M2〉, M ′0 = 〈M ′1,M ′2〉, and (σ1, σ2) � Mj ∼ M ′j for
j = 1, 2.
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Note that the new definition of ∼′ is still effective, because for each i ∈ I there
are finitely many p’s s.t. Nip �= ⊥ (not more than |Mi|). With the new definitions,
the results we obtained in the previous sections carry over smoothly, modulo a few
notational changes. For instance, the crucial Lemma 5.4 now enjoys the more compact
formulation that takes advantage of the predicate (σ1, σ2) �M ∼M ′:

Suppose that σ1 ∼ σ2 and that n(ζ) ⊆ dom(σ1). Then either ζ̂σ1 =

ζ̂σ2 = ⊥ or (σ1, σ2) � ζ̂σ1 ∼ ζ̂σ2,
The changes in the other statements and proofs are obvious and omitted, with

the exception of the construction of φσ, which is given in Appendix C.
Example 6.2. The following example is used by Abadi and Gordon to discuss

the incompleteness of their proof technique for cryptographic protocols, framed bisim-
ulation [6]. Processes P and Q defined below are not equated by framed bisimilarity,
but Abadi and Gordon conjecture that they are barbed congruent (hence barbed- and
testing-equivalent). Here, we indeed prove that P and Q are barbed equivalent: this
fact confirms that framed bisimulation is not complete with respect to barbed equiva-
lence.

Fix some name 0 and define (writing {A,B}c instead of {〈A,B〉}c)

P
def
= (ν k, k01) c{k01}k. c(x).P ′,

Q
def
= (ν k, k0, k1) c{k0, k1}k. c(x).Q′,

where

P ′ def
= [x = 0]ck01 | [x �= 0]ck01,

Q′ def
= [x = 0]ck0 | [x �= 0]ck1,

for fresh and distinct k, k0, k1, and k01. The difference between P and Q is that P
discloses a single secret k01, whereas Q may disclose either secret k0 or secret k1, but
not both. The environment cannot detect this difference, because key k, under which
the first message is encrypted, is never disclosed. To prove this, take V = f n(P,Q)

and let σ1
def
= εV [{k01}k/y] and σ2

def
= εV [{k0, k1}k/y]. Clearly σ1 ∼ σ2 and, furthermore,

for each ζ s.t. w̃
def
= n(ζ)− dom(σ1) are fresh names and ζ̂σ1 �= ⊥, we have that

(σ1[w̃/w̃], σ2[w̃/w̃]) � P ′[ζ̂σ1/x] ≈ Q′[ζ̂σ2/x].

In fact, it holds both that σ1[w̃/w̃][k01/z] ∼ σ2[w̃/w̃][k0/z] and that σ1[w̃/w̃][k01/z] ∼
σ2[w̃/w̃][k1/z], for any fresh z. Therefore, whether ζ̂σ1 is equal to 0 or not, we can infer
the equivalence above. (εV , εV ) � P ≈ Q then follows by applying to the equivalence
above first law (C-Inp), then law (C-Out), then weakening to discard the y-entry of
the two environments, and finally law (C-Res) with (ν k, k01) on the left-hand side
and (ν k, k0, k1) on the right-hand side. Thus we can conclude that P ∼= Q.

7. Final remarks and related work. We have studied contextual equivalences
and relative proof techniques for a variant of the spi-calculus, an extension of the π-
calculus proposed by Abadi and Gordon [7]. We have considered a few examples of
verification, concerning secure channels implementation and protocol security, which
demonstrate how these techniques can be used in practice.

In this paper, we have applied our techniques to small examples, as the emphasis
was more on theory. However, we believe that our methodology can be used to reason
on more complex systems. In this respect, a major advantage of our approach is the
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possibility of compositional reasoning offered by a set of congruence laws. A further
step in this direction would be the design of a sound and complete proof system for
the considered equivalences. Another direction for future research is the study of
algorithms for mechanical equivalence checking (especially in the case of bisimilarity).
We are also considering extensions of the theory to public keys and digital signatures.
A subtle point that remains to be solved is in connection with the so-called “known
plaintext attack”; for instance, knowing a, b, and a public key k+, an attacker could
distinguish by comparison {b}k+ from {a}k+ , even without knowing the private key
k− that “opens” these messages. As a consequence, and in contrast with the shared
key case, two environments like σ = [a/x, {a}k+/y] and σ′ = [a/x, {b}k+/y] cannot be
regarded as equivalent.

The relevance of may-testing to the analysis of security properties was first pointed
out by Abadi and Gordon in [7]. May-testing was originally introduced for CCS in
[11], and subsequently studied for the π-calculus in [8].

Two papers closely related to our work are [10] and [6]. In [10], Boreale and
Sangiorgi introduce an lts for a typed version of π-calculus, where the environment’s
input/output capabilities on names are explicitly described and updated. Here, we
use a similar approach to model the environment’s knowledge about names and keys.

Abadi and Gordon present in [6] framed bisimulation, a proof technique to ana-
lyze cryptographic protocols. In framed bisimulation, when comparing two processes
P and Q, a frame-theory pair (fr, th) is used to represent the knowledge of P ’s and
Q’s environments. A judgement (fr, th) �M ↔ N is also introduced to express that
the effect of message M on P ’s environment is the same as the effect of message N on
Q’s environment. The judgement is used to check indistinguishability of messages M
and N that are exchanged by P and its environment and by Q and its environment.
In our case, the indistinguishability of M and N is guaranteed by requiring matching
transitions to exhibit the same environment action and to take equivalent environ-
ments into equivalent environments. This results in a relevant difference between the
work in [6] and ours when considering output transitions. In our case, given an output
transition, it is sufficient to check (like in standard bisimilarity) whether the other
configuration can perform a matching output transition. Output transitions are, at
least for finite-control processes, finitely many. In the case of [6], one must also build
a new frame-theory pair that relates N to M and consistently extends the old one;
this might be not completely trivial [12]. Moreover, in [6] there seem to be very few
tools for compositional reasoning (congruence laws) and no obvious way of tailoring
the “up to” techniques to their setting. Finally, as shown in Example 6.2, framed
bisimulation is not complete for barbed equivalence.

The process algebraic approach to cryptographic protocols has also been followed
by Roscoe [20], Lowe [14], and Schneider [23], all of whom consider model-checking
of security protocols in a CSP-based framework. This approach requires explicitly
designing a specific (powerful enough) attacker and carrying out the analysis with
it. Of course, there is always a certain amount of arbitrariness in determining the
attacker; any modification of the attacker would require a new analysis. In our paper,
like in [7], a more radical approach is taken: the attacker may be any process that
can be defined in spi-calculus.

In [2], Abadi presents an approach to secrecy that combines the spi-calculus and
the use of type systems: the idea is that a process P (d) that type-checks guarantees
secrecy of d (in a sense made precise via testing equivalence).

All the approaches mentioned so far, including ours, work under a perfect en-
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cryption hypothesis: this prevents the attacker from, for example, randomly guessing
some bits of a secret key, or performing statistical analysis of messages. A first step
towards relaxing this hypothesis has been made in [13], where probabilistic versions of
the spi-calculus and of testing equivalence are introduced. Further research is required
for a fuller understanding of these notions and for devising techniques to reason over
them.

Appendix A. Results on environment equivalence. In this appendix we
keep the definitions of ∼ (Definition 3.1) and of ∼′ (Definition 3.3) separate and
introduce the notion of characteristic formula, φσ. The main steps taken here are

1. φσ characterizes all and only those environments ∼′-equivalent to σ (Theo-
rem A.11);

2. using 1, one proves that ∼ and ∼′ coincide (Theorem 3.4/Theorem A.13);
3. hence, φσ characterizes all and only those environments ∼-equivalent to σ

(Theorem 4.3/Theorem A.14).
Along the way, a few properties of ∼ are established which are of independent interest
and are useful for the examples of section 5 (Lemma 5.3 and Lemma 5.4).

First we show that evaluation ·̂ commutes with substitution.
Lemma A.1. Let ζ and η be two expressions and σ a substitution. If x /∈ dom(σ),

n(ζ) ⊆ dom(σ) ∪ {x}, and n(η) ⊆ dom(σ), then
̂

ζσ[η̂σ/x] = ̂(ζ[η/x])σ.
Proof. The proof follows from a straightforward induction on ζ.
The following lemma establishes a first relationship between ζ-expressions and

the decryption closure dc(·), and between the knowledge kn(·) and the set of cores of
σ.

Lemma A.2. Let σ = [Mi/xi]i∈I
.

(1) If M ∈ dc(σ), then there is ζ s.t. n(ζ) ⊆ dom(σ) and ζ̂σ = M .
(2) If a ∈ kn(σ), then a = core(σ, xi) for some i ∈ I.
Proof. Part (1) is easily proven by induction on the definition of dc(·). Part (2)

follows from the following statement, easily proven by induction on the definition of
dc(·): If M ∈ dc(σ), then there are i ∈ I and k̃ s.t. M = {core(σ, xi)}k̃.

We proceed by showing that the knowledge kn(σ) of σ is precisely the set of those
names that can be obtained by arbitrary combinations of encryption and decryption
operations (represented by ζ-expressions), starting from messages stored in σ.

Lemma A.3 (see Lemma 5.3). Let σ be a substitution. Then kn(σ) = {ζ̂σ ∈ N :
n(ζ) ⊆ dom(σ) }.

Proof. That kn(σ) ⊆ {ζ̂σ ∈ N : n(ζ) ⊆ dom(σ) } is a consequence of Lemma

A.2(1). We now prove the opposite inclusion. Consider the set S
def
= {ζ̂σ �= ⊥ : n(ζ) ⊆

dom(σ) } and the set T
def
= {{M}

k̃
: M ∈ dc(σ) and k̃ ⊆ kn(σ)}. We prove that

S ⊆ T , from which the thesis follows, because S ∩ N = {ζ̂σ ∈ N |n(ζ) ⊆ dom(σ) }
and T ∩ N = kn(σ). The proof proceeds by induction on the structure of ζ. We
explicitly show only the case ζ = decζ1(ζ2), as the other cases are similar or easier.

Let ζ̂σ = M . Since ζ̂σ �= ⊥, there is a name k such that ζ̂2σ = {M}k and ζ̂1σ = k.
By induction, we can assume that {M}k ∈ T , which, by definition of T , implies that

there are M ′ ∈ dc(σ) and h̃ ⊆ kn(σ) such that {M}k = {M ′}
h̃
. Hence M = {M ′}

h̃′ ,

for h̃′ such that h̃ = h̃′k, and the thesis follows.
The next lemma is about the effect of applying two ∼′-equivalent substitutions σ

and σ′ onto the same expression ζ.
Lemma A.4 (see Lemma 5.4). Let σ = [Mi/xi]i∈I

and σ′ = [M
′
i/xi]i∈I

be two
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substitutions such that σ ∼′ σ′. Define Ñ = core(σ, xi)i∈I and Ñ ′ = core(σ′, xi)i∈I .
For each ζ s.t. n(ζ) ⊆ x̃, either

(a) ζ̂σ = ζ̂σ′ = ⊥, or

(b) there are i ∈ I and a tuple ̃ ⊆ I such that ζ̂σ = {Ni}Ñ [ ̃ ]
and ζ̂σ′ =

{N ′i}Ñ ′[ ̃ ].

Proof. The proof proceeds by induction on ζ. We explicitly consider only the

case ζ = decζ2(ζ1); the other cases are similar or easier. If ζ̂1σ = ⊥ or ζ̂2σ = ⊥, then

by induction hypothesis it easily follows that ζ̂σ = ζ̂σ′ = ⊥. Otherwise, by induction
hypothesis we have that for some tuples ̃, ?̃ ⊆ I and indices i, j ∈ I

ζ̂1σ, = {Ni}Ñ [ ̃ ]
, ζ̂1σ′, = {N ′i}Ñ ′[ ̃ ],

ζ̂2σ = {Nj}Ñ [ +̃ ]
, ζ̂2σ′ = {N ′j}Ñ ′[ +̃ ]

.

There are two cases:
• ?̃ �= ∅ or Nj /∈ N . Then by definition ζ̂σ = ζ̂σ′ = ⊥ (note that Nj /∈ N

implies N ′j /∈ N , because σ ∼′ σ′).
• ?̃ = ∅ and Nj = a ∈ N . Hence N ′j = a′ ∈ N , because σ ∼′ σ′. Now, if the

last component of ̃ is some j′ s.t. Nj′ = a, say ̃ = (̃′, j′), then it is also

N ′j′ = a′, because σ ∼′ σ′; thus ζ̂σ = {Ni}Ñ [ ̃′ ]
and ζ̂σ′ = {N ′i}Ñ ′[ ̃′ ]

, which

is the desired claim for this case. Otherwise, ζ̂σ = ζ̂σ′ = ⊥.
The intuition underlying the following lemma is that ∼′-equivalence is preserved

when uniformly adding entries to two equivalent environments.

Lemma A.5. If σ1 ∼′ σ2, then σ1[ζ̂σ1/y] ∼′ σ2[ζ̂σ2/y], provided that ζ̂σ1 �= ⊥ and
that n(ζ) ⊆ dom(σ1).

Proof. Apply Lemma 5.4 to σ1, σ2, and ζ. The thesis then follows by definition
of ∼′.

We can now prove that ∼′ implies ∼.
Lemma A.6. Let σ and σ′ be two substitutions. If σ ∼′ σ′, then σ ∼ σ′.
Proof. Suppose that σ ∼′ σ′. We must show that for each φ with f n(φ) ⊆ dom(σ)

it holds that σ |= φ if and only if σ′ |= φ. The proof proceeds by induction on
φ. Here, we explicitly consider only the case where φ is let z = ζ in φ′, as the
other cases are similar or easier. By definition, σ |= let z = ζ in φ′ means that

ζ̂σ �= ⊥ and that σ[ζ̂σ/z] |= φ′. Now, we have that ζ̂σ′ �= ⊥ (Lemma A.4) and

σ[ζ̂σ/z] ∼ σ′[ζ̂σ′/z] (Lemma A.5). By induction, σ′[ζ̂σ′/z] |= φ′ and we can conclude
that σ′ |= let z = ζ in φ′.

We proceed now to showing the converse implication, that ∼ implies ∼′. Two
crucial ingredients for the proof will be the notion of the characteristic formula of an
environment σ, φσ, and Theorem A.11, which will give a logical characterization of
∼′. We need some notational shorthand.

Notation A.7.
• “letj∈1..k zj = ζj in φ” stands for “let z1 = ζ1 in (· · · (let zk = ζk in φ) · · ·).”
• “ζ �= ⊥” stands for “let z = ζ in tt”, for any z, and “ζ = ⊥” stands for

“¬(ζ �= ⊥).”
• “w ∈ {M1, . . . ,Mm}” stands for “

∨m
j=1[w = Mj ].”

Definition A.8 (characteristic formula). Let σ = [Mi/xi]i∈I
be a substitution.

For each i ∈ I, let Ni = core(σ, xi) and let ζi be the least4 expression such that

4With respect to some fixed total ordering of expressions.
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letj∈I zj = ζj in [

(∗)
∧

i,j∈I
[deczj (zi) = ⊥] ∧

(a)
∧
i∈I

[xi = {zi}
z̃[̃i]

] ∧

(b)

∧
Ni∈N name(zi) ∧

∧
Ni �∈N ¬name(zi) ∧

(c)
∧

i,j∈I s.t. Ni=Nj
[zi = zj ] ∧

∧
i,j∈I s.t. Ni �=Nj

[zi �= zj ]

]

Fig. 5. The formula φσ.

n(ζi) ⊆ x̃ and ζ̂iσ = Ni. Let Ñ = Ni∈I and ζ̃ = ζi∈I . Finally, for each i ∈ I, let
̃i ⊆ I be a tuple such that Mi = {Ni}Ñ [̃i]

. The formula φσ is then defined as in

Figure 5.
About Definition A.8 we have the following.
Remark A.9. Note that the expressions ζi∈I mentioned in the definition above

do exist by virtue of Lemma A.2(1). Furthermore, we are allowed to assume that

Mi = {Ni}Ñ [̃i]
, for some tuple ̃i, because, by virtue of Lemma A.2(2), kn(σ) ⊆ Ñ .

Finally, note that f n(φσ) ⊆ dom(σ) and that σ |= φσ.

The next lemma gives conditions under which a tuple of messages Z̃ can be
identified as the tuple of “cores” of a given σ.

Lemma A.10. Consider σ = [Mi/xi]i∈I
and a tuple Z̃ = Zi∈I s.t. Z̃ ⊆ dc(σ).

Suppose that the following two conditions hold:

(a) for each i, j ∈ I, ̂decZj
(Zi) = ⊥;

(b) for each i ∈ I, there is a tuple ̃ ⊆ I s.t. Mi = {Zi}Z̃[ ̃ ]
.

Then Z̃ = core(σ, xi)i∈I .
Proof. The proof consists of two steps.
• We first show that kn(σ) ⊆ Z̃. To this end, consider the set of messages

T
def
= {N : {N}

k̃
= Mi for some i ∈ I and k̃ ⊆ Z̃ }. First, one proves by

induction on the definition of dc(·) that dc(σ) ⊆ T . Then, it is easy to see

that T ∩N ⊆ Z̃: indeed, if {a}
k̃

= Mi for some k̃ ⊆ Z̃, then it also holds that
{a}

k̃
= {Zi}Z̃[ ̃ ]

(condition (b)), which, by virtue of condition (a), implies

a = Zi. Therefore we can conclude Z̃ ⊇ kn(σ).

• Let Ñ = core(σ, xi)i∈I and take any i ∈ I; we show that Zi = Ni. By
definition of core and by condition (b), we have that Mi = {Ni}h̃ = {Zi}Z̃[ ̃ ]

for some tuple ̃ ⊆ I and h̃ ⊆ kn(σ). There are two cases:

– Zi = {Ni}k̃ with (k̃, Z̃[ ̃ ]) = h̃. Since k̃ ⊆ kn(σ) (as h̃ ⊆ kn(σ)), due to

kn(σ) ⊆ Z̃ and condition (a), we deduce that k̃ = ∅; hence Zi = Ni.

– Ni = {Zi}k̃ with (k̃, h̃) = Z̃[ ̃ ]. Again, we have that k̃ ⊆ kn(σ) (as

k̃ ⊆ Z̃ ∩ N and Z̃ ⊆ dc(σ)); hence, by definition of core, we get k̃ = ∅,
and hence Zi = Ni.
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We arrive at the crucial result on ∼′ and characteristic formulae.
Theorem A.11. Let σ and σ′ be two substitutions such that dom(σ) = dom(σ′).

We have that σ ∼′ σ′ if and only if σ′ |= φσ.
Proof. The “only if” part is a consequence of Lemma A.6 (as σ |= φσ). Let us see

the “if” part. Suppose that σ = [Mi/xi]i∈I
, and take any σ′ = [M

′
i/xi]i∈I

s.t. σ′ |= φσ:

we show that σ′ ∼ σ. With the notation of Figure 5, let Zi = ζ̂iσ′ and Z̃ = Zi∈I .

From σ′ |= φσ, we deduce that ⊥ /∈ Z̃ and that σ′[Z̃/̃z] |= (∗) ∧ (a) ∧ (b) ∧ (c). Now,
we have that

• σ′[Z̃/̃z] |= (∗) means that for each i, j ∈ I, ̂decZj
(Zi) = ⊥;

• σ′[Z̃/̃z] |= (a) means that for each i ∈ I there is a tuple ̃ ⊆ I s.t. M ′i =
{Zi}Z̃[ ̃ ]

.

The above two facts and Lemma A.10 imply that Z̃ = core(σ′, xi)i∈I . Thus σ′[Z̃/̃z] |=
(a) ∧ (b) ∧ (c) precisely says that σ ∼ σ′.

We can prove that ∼ implies ∼′.
Lemma A.12. Let σ and σ′ be substitutions. If σ ∼ σ′, then σ ∼′ σ′.
Proof. By definition, f n(φσ) ⊆ dom(σ) and σ |= φσ. Hence, by hypothesis,

σ′ |= φσ, and the thesis immediately follows from Theorem A.11.
The coincidence of ∼ and ∼′ is now an immediate consequence of Lemma A.6

and of Lemma A.12.
Theorem A.13 (see Theorem 3.4). Let σ and σ′ be substitutions. Then σ ∼ σ′

if and only if σ ∼′ σ′.
The following important property of characteristic formulae is an immediate con-

sequence of Theorem A.11 and of Theorem A.13.
Theorem A.14 (see Theorem 4.3). Let σ and σ′ be substitutions such that

dom(σ) = dom(σ′). We have that σ ∼ σ′ if and only if σ′ |= φσ.
We end the section with two technical lemmas. The first lemma is useful for

manipulating environments: it says that equivalence is preserved when uniformly
removing entries from two equivalent environments. Its proof is an easy consequence
of the definition of ∼.

Lemma A.15. If σ1[M/y] ∼ σ2[M
′
/y], then σ1 ∼ σ2.

The second lemma is about the size of characteristic formulae (recall that rk(σ) =
|φσ|).

Lemma A.16 (see Lemma 4.22). If σ ∼ σ′, then rk(σ) = rk(σ′).
Proof. Referring to the notation of Definition A.8, note that the size of φσ and

φσ′ may only differ due a different choice of some ζi, i ∈ I. But Lemma A.4(a) (which
ensures that the same ζi’s can be used in both φσ and φσ′) and the requirement of
minimality imply that the ζi’s in φσ and those in φσ′ are actually the same.

Appendix B. Results on trace and bisimulation semantics. We begin the
section with a crucial result on operational semantics.

Proposition B.1 (see Proposition 4.2). Consider two equivalent substitutions
σ1 and σ2. Let R be any process or observer s.t. f n(R) ⊆ dom(σ1).

1. Suppose that Rσ1
(ν b̃)a〈M〉−−−−−−−→ R1. Then (i) there is η with n(η) ⊆ dom(σ1)

s.t. η̂σ1 = a; (ii) there are ζ and R′ with f n(ζ,R′) ⊆ dom(σ1) ∪ b̃ s.t.

M = ζ̂σ1, and R1≡R′σ1; (iii) it holds that Rσ2
(ν b̃)a′〈M ′〉−−−−−−−−→ R2, where

a′ = η̂σ2, M
′ = ζ̂σ2, and R2≡R′σ2.

2. Suppose that Rσ1
aM−−−−→ R1. Then (i) there is η with n(η) ⊆ dom(σ1) s.t.
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η̂σ1 = a; (ii) given any fresh y and σ′1
def
= σ1[M/y], there is R′ with f n(R′) ⊆

dom(σ′1) s.t. R1≡R′σ′1; (iii) for any M ′, it holds that Rσ2
a′ M ′−−−−−→ R2, where

a′ = η̂σ2 and R2≡R′σ′2 with σ′2
def
= σ2[M

′
/y].

3. Suppose that Rσ1
µ−−→ R1 with µ = τ or µ = ω. Then (i) there is R′ with

f n(R′) ⊆ dom(σ1) such that R1≡R′σ1; (ii) we have Rσ2
µ−−→ R2, where

R2≡R′σ2.

Proof. The proof follows from an induction on the derivation of Rσ
µ−−→ R1.

Here, we explicitly consider only the case where the last rule applied is (Let), which
is the most delicate.

Suppose that R is let z = ξ in P and that R
µ−−→ R1 is inferred via (Let) from

the premise Pρ1
µ−−→ R1, where ρ1

def
= σ1[ξ̂σ1/z] (ξ̂σ1 �= ⊥). Depending on the form

of µ, we have three cases; here we consider only the case when µ is an output, say

µ = (ν b̃)a〈M〉. Since ξ̂σ2 �= ⊥ (Lemma A.4), we can define ρ2
def
= σ2[ξ̂σ2/z]. Since

ρ1 ∼ ρ2 (Lemma A.5), by induction hypothesis applied to the premise Pρ1
µ−−→ R1

we have that
(j) there is η′ with dom(η′) ⊆ dom(ρ1) and η̂′ρ1 = a;

(jj) there are ζ ′ and R′′ with f n(ζ ′, R′′) ⊆ dom(ρ1) ∪ b̃ s.t. M = ζ̂ ′ρ1 and R1≡
R′′ρ1;

(jjj) Pρ2
(ν b̃)a′〈M ′〉−−−−−−−−→ R2, where a′ = η̂′ρ2, M ′ = ζ̂ ′ρ2, and R2≡R′′ρ2.

Define η
def
= η′[ξ/z], ζ def

= ζ ′[ξ/z], and R′ def
= let z = ξ in R′′. Then we have

that η̂σ1 = a, ζ̂σ1 = M (Lemma A.1) and that R′σ1≡R1: this proves parts (i)

and (ii) of the claim. Similarly, it holds that η̂σ2 = a′ and ζ̂σ2 = M ′ and that
R′σ2≡R2. Part (iii) follows from these equalities and applying (Let) to transition

Pρ2
(ν b̃)a′〈M ′〉−−−−−−−−→ R2.

B.1. Trace semantics.
Lemma B.2 (see Lemma 4.7). Suppose σ1 ∼ σ2 and let O be any observer

such that f n(O) ⊆ dom(σ1). Suppose that Oσ1
r==⇒ O1, where, for some u and

σ′1 extending σ1, we have r = ûσ′1. Then, there is O′ with f n(O′) ⊆ dom(σ′1) s.t.
O1≡O′σ′1. Furthermore, for any σ′2 extending σ2 and s.t. σ′2 ∼ σ′1, it holds that

Oσ2
r′===⇒ ≡O′σ′2, with r′ = ûσ′2.

Proof. The proof consists in iterating the statement of Proposition 4.2. Formally
one proceeds by induction on trace u. We only examine the case when u = u′ · η(x).
For any substitution σ, let us write σ−x for the substitution that behaves like σ but is

undefined on x. Then we can write r = ̂u′σ′−x
1 · ̂η(x)σ′1

def
= s·aM for η̂σ−x1 = a and M =

xσ′1, and similarly r′ = ̂u′σ′−x
2 · ̂η(x)σ′2

def
= s′ ·a′M ′ for η̂σ−x2 = a′ and M ′ = xσ′2 (recall

that, by our convention on bound names, name x does not occur in u′). Applying

induction and Proposition 4.2(2) and (3), the sequence of transitions Oσ1
r==⇒ O1

can be decomposed as follows, for suitable O′′ with f n(O′′) ⊆ dom(σ
′−x
1 ), and O′′′

and O′ with f n(O′′′, O′) ⊆ dom(σ′1):

Oσ1
s==⇒ ≡O′′σ′−x

1
aM−−−→ ≡O′′′σ′1 =⇒ ≡O′σ′1≡O1.

Similarly,

Oσ2
s′==⇒ ≡O′′σ′−x

2
a′M ′−−−−→ ≡O′′′σ′2 =⇒ ≡O′σ′2
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is inferred, again using induction and Proposition 4.2(2) and (3) (note that σ
′−x
1 ∼

σ
′−x
2 by Lemma A.15). This implies Oσ2

r′==⇒ ≡O′σ′2, which concludes the proof for
this case.

Lemma B.3 (see Lemma 4.8). Consider σ, P and any observer O with f n(O) ⊆
dom(σ). Suppose that P s==⇒ P ′ and that Oσ r==⇒ with s compl r. Then there are u

and σ′ extending σ such that r = ûσ′ and σ ✄ P
s|===⇒
u

σ′ ✄ P ′.

Proof. The proof consists of iterating the following two statements (the first one
is an easy consequence of Proposition 4.2):

1. Suppose that P
µ−−→ P ′ (µ �= τ). Suppose that, for some observer O

with f n(O) ⊆ dom(σ), it holds that Oσ λ−−→ O1, with µ compl λ. Then

there are σ′ extending σ, δ, and O′ with f n(O′) ⊆ dom(σ′) s.t. σ ✄ P
µ

|−−→
δ

σ′ ✄ P ′ with λ = δ̂σ′ and O1≡O′σ′ .
2. Suppose that P τ−−→ P ′. Then σ ✄ P

τ
|−−→
−

σ ✄ P ′.

Lemma B.4 (see Lemma 4.9). Suppose that σ ✄ P
s|===⇒
u

σ′ ✄ P ′. Then it holds

that P s==⇒ P ′, that σ′ extends σ, and that s compl r, where r = ûσ′.
Proof. The proof follows by an easy induction on u.

B.2. Bisimilarity.
Proposition B.5 (see Proposition 4.17). Let R be a weak bisimulation up to

structural equivalence (resp., weakening, contraction, restriction, parallel composi-
tion). Then R ⊆ Rs ⊆≈ (resp., R ⊆ Rt ⊆≈, for t = w, c, r, p).

Proof. It is obvious from the definition that R ⊆ Rt for any t. Let us examine
the other inclusion. For t ∈ {s, w, c} the proof simply consists in showing that Rt is a
weak bisimulation. This is straightforward by relying on the fact that (Rt)t = Rt; in

the case t = c, we also use the fact that, when ⊥ �∈ ̂̃ζσ and n(ζ̃) ⊆ dom(σ), it holds

σ[
̂̃
ζσ/̃y] ✄ P

µ
|−−→
δ

σ′[
̂̃
ζσ/̃y] ✄ P ′ if and only if σ ✄ P

µ
|−−→
δ′

σ′ ✄ P ′, where if δ is an input,

then δ′ = δ[ζ̃/̃y]; if δ is an output, then δ′ = (ν b̃)δ[ζ̃/̃y], with b̃ = n(ζ)− dom(σ), and
δ′ = δ otherwise (the proof of this fact uses Lemma A.1). Next, we examine in more
detail the two most interesting cases, up to restriction and parallel composition.

• Up to restriction. The proof is a variation on the proof for π-calculus found,
e.g., in [22]. In order to cope with the fact that the output of a name which
is bound by a restriction (like k in (ν k)ak.P ) gives rise to infinitely many
transitions, all of which differ by some injective renaming of this bound name,
it is convenient to introduce bisimulation up to injective renaming.
A substitution of names ρ : N → N is injective on V ⊆ N if for each
x, y ∈ V , xρ = yρ implies x = y; given any σ = [Mi/xi]i∈I

, we denote by σ ◦ ρ
the substitution [Miρ/xi]i∈I

. We adapt the definition in [22] to our setting
and define up to injective renaming as the technique that corresponds to the
functional (·)in defined by the rule

(σ1, σ2) � P1RP2 ρi injective on ∪i=1,2 n(σi) ∪ f n(Pi)

(σ1 ◦ ρ1, σ2 ◦ ρ2) � P1ρ1Rin P2ρ2

.

It is straightforward to show that if R is a bisimulation up to injective re-
naming then Rin ⊆≈ (this relies on the fact that the both the transition
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relation
µ−−→ and the relation ∼ on environments are preserved by injective

renaming). Next, it is easy to show that if R is a bisimulation up to restric-
tion, then Rr is a bisimulation up to injective renaming (the proof also uses
the fact that (Rr)r = Rr); thus we have that Rr ⊆≈.

• Up to parallel composition. We will show that Rp is a weak bisimulation
up to weakening, restriction, and structural equivalence. Since these tech-
niques have already been proven sound, this implies Rp ⊆≈. Suppose that
(σ1, σ2) � ARpB, with A ≡ P | Rσ1 and B ≡ Q | Rσ2 as given by the defi-
nition of Rp. One analyzes the possible transitions from σ1 ✄A and in each
case finds a matching (weak) transition from σ2 ✄B.
We examine only the most delicate case, which is when P and Rσ1 interact
with each other:

σ1 ✄A
τ

|−−→
−

σ1 ✄A′,

where A ≡ P |Rσ1
τ−−→ (ν h̃)(P ′ |R1) ≡ A′, P

(ν h̃)a〈M〉−−−−−−−→ P ′, and Rσ1
aM−−−−→

R1. By virtue of Proposition 4.2(2)(i) applied to Rσ1
aM−−−−→ R1, there must

be some η with n(η) ⊆ dom(σ1) s.t. η̂σ1 = a. Since (σ1, σ2) � P RQ and R
is a bisimulation up to parallel composition, it holds that Q

(ν k̃)a′〈M ′〉
=========⇒ Q′

with a′ = η̂σ2 and (σ1[M/x], σ2[M
′
/x]) � P ′RpQ

′ (x fresh). Moreover, by

virtue of Proposition 4.2(2)(iii) applied to Rσ1
aM−−−−→ R1 and M ′, there is

R′ with f n(R′) ⊆ dom(σ1) ∪ {x} s.t. R1 ≡ R′σ1[M/x] and Rσ2
a′ M ′−−−−→≡

R′σ2[M
′
/x]. Hence

Q |Rσ2 ≡ B =⇒ B′ ≡ (ν k̃)(Q′ |R′σ2[M
′
/x]).

By definition, (σ1[M/x], σ2[M
′
/x]) � (P ′ |R′σ1[M/x])Rp (Q′ |R′σ2[M

′
/x]) (here

we have used the fact that (Rp)p = Rp for any R); hence, by weakening (to
discard the x-entries) and restriction, we get that

(σ1, σ2) � (ν h̃)(P ′ |R′σ1[M/x]) ((Rp)w)r (ν k̃)(Q′ |R′σ2[M
′
/x]).

Finally, by structural equivalence, (σ1, σ2) � A′(((Rp)w)r)sB
′, which is the

desired claim for this case.
The following proposition strengthens the congruence rule for parallel compo-

sition (C-Par), under the assumption that the involved processes are safe for the
appropriate environments. Recall that a process R is σ-safe if for each s, whenever

σ ✄R
s|==⇒
u

σ′ ✄R′
(ν b̃)a〈M〉
|=======⇒

η(x)
, then M ∈ dc(σ′) (hence b̃ = ∅ ).

Proposition B.6 (see Proposition 5.6). Suppose that (σ1, σ2) � Q1 ≈ Q2 and
that (σ1, σ2) � R1 ≈ R2. Suppose that, for i = 1, 2, Qi and Ri are σi-safe. Then
(σ1, σ2) � Q1 |R1 ≈ Q2 |R2.

Proof. Consider the relation R defined by

(σ1, σ2) � (Q1 |R1) R (Q2 |R2) if and only if
(a) (σ1, σ2) � Q1 ≈ Q2 and (σ1, σ2) � R1 ≈ R2,
(b) for i = 1, 2, Qi and Ri are σi-safe.

One shows that R is a weak bisimulation. Suppose that (σ1, σ2) � Q1 |R1RQ2 |R2.
We only examine the most delicate case, that is, when Q1 and R1 interact with one
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another. Thus, suppose that

σ1 ✄Q1 |R1

τ
|−−→
−

σ1 ✄ (ν h̃)(Q′1 |R′1),(8)

where Q1
(ν h̃)a〈M〉−−−−−−−→ Q′1 and R1

aM−−−−→ R′1 (the other cases follow by symmetry).

Note that it must be h̃ = ∅ , because M ∈ dc(σ1). Since (σ1, σ2) � Q1 ≈ Q2, we

get that Q2
(ν k̃)a′〈M ′〉

=========⇒ Q′2, for some a′, M ′, and Q′2, s.t. (σ′1, σ
′
2) � Q′1 ≈ Q′2 (here

σ′1
def
= σ1[M/x] and σ′2

def
= σ2[M

′
/x], for a fresh x). Also in this case, k̃ = ∅, because

M ′ ∈ dc(σ2).

Now, since M ∈ dc(σ1), there is ζ s.t. n(ζ) ⊆ dom(σ1) and M = ζ̂σ1 (Lemma

A.2(1)). From Lemma A.4, it follows that ζ̂σ1 = {Ni}Ñ [ ̃ ]
and that ζ̂σ2 = {N ′i}Ñ ′[ ̃ ],

for appropriate indices i, ̃ and cores Ñ and Ñ ′. Hence, from σ′1 ∼ σ′2, we get that

M ′ = {N ′i}Ñ ′[ ̃ ]; hence M ′ = ζ̂σ2. Similarly, one finds an η s.t. n(η) ⊆ dom(σ1) and

a = η̂σ1 and a′ = η̂σ2.
Now, using the facts on M and M ′ established above, from R1

aM−−−−→ R′1 we de-

duce σ1 ✄R1
aM

|−−−→
ηζ

σ1 ✄R′1; hence, from (σ1, σ2) � R1 ≈ R2, we get σ2 ✄R2
a′ M ′
|=====⇒

ηζ

σ2 ✄R′2, where (σ1, σ2) � R′1 ≈ R′2. Combining Q2
a′〈M ′〉

======⇒ Q′2 and R2
a′ M ′

=====⇒ R′2,

we get Q2 |R2 =⇒ Q′2 |R′2; hence

σ2 ✄Q2 |R2 |===⇒− σ2 ✄Q′2 |R′2 .

To see that the above weak transition matches (8), let us check conditions (a) and
(b) of the definition of R. Indeed, (σ1, σ2) � Q′1 ≈ Q′2 (by (σ′1, σ

′
2) � Q′1 ≈ Q′2 and

weakening) and (σ1, σ2) � R′1 ≈ R′2 imply condition (a); moreover, for i = 1, 2, R′i
and Q′i are σi-safe, because Ri and Qi are; thus condition (b) is true.

Appendix C. Characteristic formula: Calculus with pairing.
Definition C.1. Let σ = [Mi/xi]i∈I

be a substitution. For each i ∈ I and
p ∈ {l, r}∗, let

• Nip be Mi[σ, p];

• ζip be the least expression s.t. n(ζip) ⊆ x̃ and ζ̂ipσ = Nip;
• zip be some fixed fresh name.

Let Ñ be the function that maps each ip to Nip, ζ̃ be the function that maps each ip
to ζip, and z̃ be the function that maps each ip to zip (z̃ will also denote the set of all
zip’s). Let ρσ be the substitution that maps each zip to Nip if Nip �= ⊥.

Finally, for any i ∈ I, let Mσ
i be a message s.t. n(Mσ

i ) ⊆ {zip : p ∈ {l, r}∗} and
(Mσ

i )ρσ = Mi. The formula φσ is then defined as in Figure 6.
The existence of expressions ζip can be easily proven by relying on (the analogue

of) Lemma A.2, while in the case of the Mσ
i , it is sufficient to prove that for each

M ∈ dc(σ) there is M ′ with n(M ′) ⊆ z̃ip s.t. M ′ρσ = M (induction on M). The
interested reader can easily supply the details. Note that f n(φσ) ⊆ dom(σ) and that
σ |= φσ.

The proof of Theorem A.11 is easily extended via the following lemma (the ana-
logue of Lemma A.10), where we refer to the notation introduced in Definition C.1.

Lemma C.2. Consider σ = [Mi/xi]i∈I
and σ′ = [M

′
i/xi]i∈I

, and let ρ′ be a sub-

stitution s.t. dom(ρ′) = dom(ρσ) and Z̃
def
= range(ρ′) ⊆ dc(σ′). Suppose that the

following two conditions hold:
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letNjq 	=⊥ zjq = ζjq in [

(∗)
∧

Nip,Njq �=⊥ [deczjq (zip) = ⊥] ∧ [π1(zip) = ⊥] ∧ [π2(zip) = ⊥] ∧

(a)
∧
i∈I

[xi = Mσ
i ] ∧

(b)

∧
Nip∈N name(zip) ∧

∧
Nip �=⊥ and Nip �∈N ¬name(zip) ∧

(c)
∧

Nip,Njq �=⊥ and Nip=Njq
[zip = zjq] ∧

∧
Nip,Njq �=⊥ and Nip �=Njq

[zip �= zjq]

]

Fig. 6. The formula φσ (calculus with pairing).

(a) for each Z1, Z2 ∈ Z̃, ̂decZ2(Z1) = ⊥ and Z1 is not a pair;
(b) for each i ∈ I, it holds that M ′i = (Mσ

i )ρ′.
Then for each i and p s.t. M ′i [σ

′, p] �= ⊥, it holds that M ′i [σ
′, p] = ρ′(zip). Further-

more, for each i ∈ I it holds that (σ, σ′) �Mi ∼M ′i .
Proof. We just outline the proof. There are three steps:

• kn(σ′) ⊆ Z̃. To prove this, consider the set T
def
= {Mρ′ : n(M) ⊆ dom(ρ′)}

and show that dc(σ′) ⊆ T (by induction on the definition of dc(·)). The

thesis then follows because T ∩N ⊆ Z̃.
• For any M and context C[·] (a message with a “hole”), if C[M ] = Mσ

i and
(Mρ′)[σ′, p] �= ⊥, then (Mρ′)[σ′, p] = ρ′(zi(qp)), where q is the position of the
hole [·] inside C[·] (this implies M ′i [σ

′, p] = ρ′(zip) when C[·] is the empty
context [·]). The proof of this fact proceeds by induction on M and relies, for

the base case, on the fact that kn(σ′) ⊆ Z̃.
• For any M that is a submessage of Mσ

i , it holds that (σ, σ′) � Mρσ ∼ Mρ′

(this implies (σ, σ′) �Mi ∼M ′i when M is Mσ
i , by virtue of hypothesis (b)).

The proof of this fact proceeds by induction on M , and relies on the fact that
M ′i [σ

′, p] = ρ′(zip), which has been proven above.
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CORRIGENDUM: PROXIMITY IN ARRANGEMENTS
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Abstract. This erratum corrects an error found in [J. H. Rieger, SIAM J. Comput., 29 (1999),
pp. 433–458].

PII. S0097539700380201

At present, it is not known whether the singular stratification of a real algebraic
hypersurface B̂ ⊂ Rd has O((deg B̂)d) strata, contrary to the statement in parentheses
on the bottom of [1, p. 440].

As a consequence, the upper bounds for the number of connected regions of Rd\B
and for the size of A(B) stated in Propositions 2.2, 3.1(iii), and 3.2(iii) are only valid
for the number of regions of Rd \ B but not for the size of A(B).
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We would like to correct a small error involving some conditioning in the argument
of [1]. It arose from trying to oversimplify the algorithm and proof. We are given an
expander graph G = (V,E) and κ pairs of vertices ai, bi, i = 1, 2, . . . , κ, which must
be joined by edge-disjoint paths.

As part of the algorithm we partition E into a number of sets Ei, i = 1, 2, . . . , k,
such that each Gi = (V,Ei) has some guaranteed expansion properties. The next
step is to generate two random sets Ã, B̃ of κ vertices in V . We then join A =
{a1, a2, . . . , aκ} to Ã using a network flow algorithm on the graph G1 and B =
{b1, b2, . . . , bκ} to B̃ using a network flow algorithm on the graph G2. The endpoints
of the paths produced are then relabelled ãi, b̃i, i = 1, 2, . . . , κ. This constitutes Phase
1. The task now is to join the random pairs ãi, b̃i, i = 1, 2, . . . , κ, by edge-disjoint
paths using graphs Gi, i ≥ 3.

The paper then claims it is sufficient to (try to) join ãi to b̃i for i = 1, 2, . . . , κ
by a shortest path in G3. If we fail to find a path we put the pair into a set L which
will be dealt with later. The pairs are considered in this order, and it is crucial for
the analysis that when we come to consider ãi or b̃i this vertex can be considered
to be uniformly chosen from some large set, i.e., of size order n, independent of the
previous history. This is true looking at each sequence ã1, ã2, . . . , ãκ and b̃1, b̃2, . . . , b̃κ
individually, and we tried to argue that this was sufficient:

“It is important to note here that regardless of the history of Phase 1, Ã is a
random set and we can assume that ã1, ã2, . . . , ãκ is a random ordering of its elements.
(Phase 1 may cause some correlation between the orderings of Ã, B̃, but we compute
the contribution of each set separately.)”

This is not actually true. The problem is that knowing ã1, ã2, . . . , ãi, b̃1, b̃2,
. . . , b̃i−1 we do learn something about the distribution of b̃i.

Fortunately, there is a simple way of dealing with this problem. We can gener-
ate x1, x2, . . . , xκ uniformly at random from V and then (try to) join ãi to xi, i =
1, 2, . . . , κ, using the graph G3 and then (try to) join b̃i to xi, i = 1, 2, . . . , κ, using
the graph G4. We can then analyze the joining of the ãi’s to the xi’s separately from
the joining of the b̃i’s to the xi’s and add up the separate contributions to the set L.
It is now the case that when considering, say, the pairs ãi, xi in sequence, they are
independently chosen from large sets.
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A LAYERED ANALYSIS OF CONSENSUS∗
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Abstract. This paper introduces a simple notion of layering as a tool for analyzing well-behaved
runs of a given model of distributed computation. Using layering, a model-independent analysis of the
consensus problem is performed and then applied to proving lower bounds and impossibility results
for consensus in a number of familiar and less familiar models. The proofs are simpler and more
direct than existing ones, and they expose a unified structure to the difficulty of reaching consensus.
In particular, the proofs for the classical synchronous and asynchronous models now follow the same
outline. A new notion of connectivity among states in runs of a consensus protocol, called potence
connectivity, is introduced. This notion is more general than previous notions of connectivity used
for this purpose and plays a key role in the uniform analysis of consensus.

Key words. distributed systems, shaved-memory systems, topology, consensus, impossibility
results, lower bounds
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1. Introduction. For almost two decades now, the consensus problem has played
a central role in the study of fault-tolerant distributed computing, e.g., [33, 18, 19,
15, 20, 29, 22, 9, 13]. It has clearly received the greatest amount of attention of any
problem treated in the theoretical literature on distributed computing and has been
studied in a large variety of models and under many types of failure assumptions. The
structure of the consensus problem in different settings is frequently based on closely
related notions. However, proofs for different models are often based on distinct and
somewhat ad hoc techniques. In particular, there have been considerable differences
between the study of consensus in asynchronous models and its study in synchronous
and partially synchronous ones.

In order to cope with the proliferation of distributed computing models, re-
searchers have proposed a variety of simulations between models. The aim is to
establish a relation (often of equivalence) between the possibility of solving problems
of certain types in different models. This is used to establish impossibility results in
particular models or to provide a systematic way to transform protocols written in one
model into protocols for another model. Various such simulations have been given,
e.g., between shared memory and message passing [3]; between snapshot shared mem-
ory and read/write shared memory [1]; between immediate snapshot shared memory
and read/write shared memory [10, 11]; between synchronous and asynchronous mes-
sage passing [6]; and between two shared-memory models of different resilience [12].

This paper attempts to present a uniform approach to the study of solvability
of consensus in various models of computation in which, intuitively, crash failure
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behavior can occur. That is, where a process can be silenced from some point on in
an execution and thus appear as if it has crashed. The standard forms of malicious
(Byzantine) faults [33], in which faulty processes may behave in an arbitrary manner,
satisfy the crashlike behavior condition, as do models of omission failures and, of
course, the usual models of crash failures. Our results apply even to situations in
which there are only link failures [35], provided there are sufficiently many of them
to enable the environment to silence a process.

We start by presenting an alternative proof of the impossibility of consensus in
the asynchronous shared-memory model treated by Loui and Abu-Amara [29]. This
proof is based on a new notion of connectivity which we call potence connectivity and
on an analysis based on a nicely structured subset of the runs. This subset consists
of runs that are obtained by imposing a round-by-round layering structure on the
model. Roughly, we use layerings in the following sense. Given a model of distributed
computation, we identify particular legal sequences of actions for the scheduler, each
of which we think of as generating a “layer.” We require that any way of performing
such layers repeatedly starting from a legal initial state will result in a legal run
in the model. Thus, in a precise sense, such a layering can be viewed as defining
a submodel of the original model.1 Any protocol for the original model translates
directly to one in the submodel. Moreover, the model and submodel generally share
many features. In particular, lower bounds and impossibility results proven for the
submodel translate directly into the original model. The use of layerings facilitates
performing round-by-round analysis: Almost all of our results regarding consensus
will follow from analyzing a single layer of computation.

The benefit of working in a submodel or a set of runs with a simpler structure than
that of the original model is well known; some recent examples are [4, 10, 11, 9, 27, 34].

In this paper we concentrate on proving lower bounds and impossibility results
for the consensus problem; in a sequel paper (as briefly described in [32]) we show
how the ideas of this paper extend naturally to other decision tasks and are useful
also to prove solvability results. First, we perform an abstract and model-independent
analysis of consensus using layering. Based on this analysis, implications for specific
models are obtained by demonstrating that appropriate layerings can be defined in the
model. We exemplify this approach by applying it to the following models: Shared-
memory asynchronous model with one crash failure, message-passing asynchronous
model with one crash failure, message-passing synchronous model with one mobile
failure, and message-passing synchronous model with t crash failures.

For the asynchronous models, we describe two styles of layerings: the synchronic
and the permutation layering. The synchronic layerings we consider define submodels
of the asynchronous models that are very close in structure to being synchronous,
thereby defining “almost synchronous” submodels of the asynchronous models. In-
deed, we show that synchronic layerings can be applied to the synchronous message-
passing model too. The permutation layering is inspired by the immediate snapshot
wait-free model of [10, 34], although we define it both for the message-passing and
for the shared-memory models, both 1-resilient. This appears to be the first variant
of the immediate snapshot model suggested for a message-passing model.

Regarding consensus, we provide the following:
• New, simple and uniform lower bound and impossibility proofs for the stan-
dard synchronous and asynchronous models. In particular, we show a simple

1Layering saves us the trouble of explicitly defining the submodel as a model of computation
with a new transition function, new actions, etc.
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bivalence-style proof for the synchronous case, and a direct round-by-round
construction of a bivalent run (not employing a critical state argument) in
asynchronous cases.
• Stronger impossibility results with respect to submodels of the full asyn-
chronous models, in which there is only a small degree of asynchrony. These
demonstrate how little asynchrony is needed to make consensus unsolvable.

In a sequel paper we show that the asynchronous models are equivalent in terms
of the 1-resilient solvability of decision tasks. In particular, the slightly asynchronous
submodels are no more powerful than the fully asynchronous ones. Moreover, in a
precise sense, these models are strictly stronger than what can be done t-resiliently
in t rounds of the standard synchronous model.

We consider the layering technique to be useful in a number of ways:

• It provides a tool for performing model-independent round-by-round analysis
of decision tasks and related problems.
• Results are obtained directly and not by means of specially tailored reduc-
tions.
• Popular topological treatments (e.g., [25, 10, 26, 34]) focus on the local final
states of processes. We consider states at intermediate stages of the com-
putation as well. Moreover, the state of the environment is represented as
an explicit component in the global state, which facilitates the treatment of
message-passing as well as shared-memory models.
• We make use of a novel notion of potence connectivity of a set of states, whose
definition depends on the decisions taken by the protocol in the possible
futures of these states. In addition we use the more traditional notion of
connectivity based on indistinguishability of states. The combined use of the
two notions proved very useful for unifying the analysis of consensus in the
synchronous and asynchronous models.

Our analysis in this paper concentrates on the consensus problem. By focusing
on this “basic” case we obtain a direct and uniform analysis in simple and elementary
terms. The proofs of all of our results are short and rather straightforward, which
suggests to us that the notions we use are fairly natural. We believe that, with small
modifications, the same type of analysis and style of reasoning can be applied to study
more general problems involving topological connectivity of higher dimensionality
(e.g., [25]).

There are two other papers that attempt to unify synchronous and asynchronous
models in a round-by-round style. The research project of [21], concurrent and inde-
pendent to ours, is based on a notion of fault detectors. Then there is the work of [24],
which uses topological techniques in synchronous, asynchronous, and partially syn-
chronous message-passing systems, with applications to set-consensus. There are two
other papers that independently discovered bivalence arguments for the synchronous
consensus lower bound: in the randomized setting there is [7], while in the determin-
istic setting (same as our application in section 7.2) there is [2]. A different abstract
model based on the runs of a distributed system is proposed in [30]. Recently our lay-
ering technique was used to prove a synchronous lower bound for uniform consensus
[28].

This paper is organized as follows. In section 2 we define the consensus problem
and the basic elements of a distributed computing model, such as processes, envi-
ronment (which can be used to model different communication mechanisms), states,
actions, runs, and failures. In section 3 we illustrate the layering approach in the
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concrete setting of an asynchronous shared-memory system by proving the impossi-
bility of consensus. The notion of potence of a state is introduced here. This section
provides a complete example of the use of our ideas; a reader uninterested in the full
generality of the approach developed in the remaining of the paper could stop here. In
section 4 we present a generic framework for defining models of a distributed system.
As an example, we show how the synchronous mobile failures model is captured in
our abstract framework. In section 5 we develop the generic setting for using potence
connectivity to study consensus in the presence of crashlike failure behavior. In addi-
tion, the connection between potence connectivity and earlier notions of connectivity
is formalized and proven. In section 6 we introduce layering in the generic setting,
and its basic properties. In section 7.1 we illustrate the ideas with an impossibility
result in the mobile failures (synchronous) model, demonstrating that asynchrony is
not necessary in order to make consensus impossible. In section 7.2 we apply our
framework to provide a new proof for the classic synchronous message-passing model.
More applications are presented in section 8 for asynchronous systems, where various
particular layerings are described. The conclusions are in section 9.

2. Preliminaries.

2.1. Consensus. In the consensus problem, we start out in an initial state in
which the local state of a process i consists of a binary initial value variable vi ∈ {0, 1}
and an undefined write-once decision variable di = ⊥. All communication channels (if
any exist) are empty, and shared variables (if any exist) all have an undefined value
of ⊥. We denote the set of (all 2n) initial states of consensus by Con0. A protocol for
consensus is a deterministic protocol D all of whose runs satisfy the following three
properties:

Agreement: All nonfaulty processes reach the same decision.

Decision: Every nonfaulty process irrevocably decides on a value.

Validity: In runs in which all processes start with the same initial value w, the
value that the nonfaulty processes decide on is w.

As presented, the consensus problem is well defined only once we have provided
a model of computation. In this model, we must, in particular, define the structure
of local and global states, as well as what protocols are and how they generate runs
(computations).

In addition, we need to define when a process is faulty in a run, since the consensus
problem distinguishes between the behavior of faulty processes and that of nonfaulty
ones. In section 2.2 we introduce the most basic elements of a distributed system:
states, actions, and runs.2 Then in section 2.3, we consider the notion of a system,
which is simply a set of runs of the model with an associated definition of who is
faulty in each of the runs.

2.2. States, actions, and runs. Throughout the paper we will assume there
is a fixed finite set of n ≥ 2 processes, which we shall denote by 1, 2, . . . , n, and an
environment, denoted by e, which is used to model aspects of the system that are
not modeled as being part of the activity or state of the processes. For example,
we will model the communication channels or shared variables as being part of the
environment’s state. In addition, we will assume that various nondeterministic choices
such as various delays and failures are actions performed by the environment. (What

2Our modeling here and in section 4.1 is based on the work of [36], which in turn extends the
modeling style of [17].
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are typically thought of as actions of the “scheduler” or the “adversary” we model as
actions of the environment.)

For every i ∈ {e, 1, 2, . . . , n}, we assume there is a set Li consisting of all possible
local states for i. The set of global states, which we will simply call states, will consist
of

G = Le × L1 × · · · × Ln.

We denote by xi the local state of i in the state x.
In a given setting, every i ∈ {e, 1, 2, . . . , n} is associated with a nonempty set ACTi

of possible actions. Intuitively, these may include shared-memory operations that the
process can perform, messages the process sends, and any internal bookkeeping op-
erations or computations the process may perform. In principle, a single action can
cause a number of operations to take place. However, the important point is that the
decision to perform this action is taken atomically. We find it convenient to model
the environment as performing actions as well. Depending on the model, the environ-
ment’s actions may involve the delivery of messages, the loss of messages, determining
what failures happen and when they occur, resolving race conditions, etc. We also
think of the environment as being in charge of scheduling the processes, determining
which processes are to move in each round of the computation. A scheduling action is
a set Sched ⊆ {1, . . . , n} of the processes that are scheduled to move next. We assume
the existence of a set acte describing the aspects of the environment’s actions that
handle everything other than the scheduling of processes. Without loss of generality
we will assume that an environment’s action (an element in ACTe) is a pair (Sched, a),
where Sched is a scheduling action and a ∈ acte. A joint action is a pair ā = (ε,a),
where ε = (Sched, a) is in ACTe, and a is a function with domain Sched such that
a(i) ∈ ACTi for each i ∈ Sched. Thus, ā specifies an action for the environment
(via a) and an action for every process that is scheduled to move. We define the set
of joint actions by ACT. Clearly, ACT is determined by a collection of action sets
{ACTi}i=1,...,n and a set acte. Roughly speaking, joint actions are the events that
cause the global state to change into a new state. Thus, for example, a joint action
in which process i sends j a message m, and the environment delivers the message m′

to process i′ will typically cause the local state of i′ to change, as well as modifying
the state of the communication channel between i and j (this state will be part of
the environment’s local state). This is formally captured by the notion of a transition
function, which is a function τ : G ×ACT→ G from global states and joint actions to
global states, describing how a joint action transforms the global state.

A deterministic protocol for i is a function Pi : Li → ACTi specifying the action
that i is ready to perform in every state of Li. A nondeterministic protocol for i is
a function Pi : Li → 2ACTi \ ∅ specifying for every state of Li a nonempty set of
actions, one of which i must perform in that state. In this paper, we will focus our
attention on the case in which the processes follow deterministic protocols, while the
environment may follow a nondeterministic protocol.3

Intuitively, we think of a run as consisting of an infinite sequence of global states
and the joint actions that cause the transitions among them. Notice that once we fix a

3The assumption that the environment’s protocol may be nondeterministic is necessary for a
faithful description of many models of interest. The assumption that processes follow deterministic
protocols is without loss of generality in this paper, in which we are interested in worst-case lower
bounds and impossibility results. It is well known and straightforward to show that any result of this
type for a protocol for consensus in a given model that is proved for deterministic protocols applies
to the more general class of nondeterministic protocols as well.
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deterministic protocol D = (D1, . . . , Dn) for the processes, an action ε = (Sched, a) of
the environment uniquely determines the joint action ā = (ε,a) that will be performed
in a given (global) state x: the set Sched determines the processes that participate
in the joint action, and a(i) = Di(xi) for each i ∈ Sched. Proving lower bound and
impossibility results can often be thought of as showing that the adversary, which
here is the environment, always has a strategy that can guarantee the desired bad
behavior. With this end in mind, we will represent a joint action by specifying the
environment action that determines it. Formally, we model a run over G and ACTe
as a pair R = (r, α), where r : N → G is a function from the natural numbers to G
defining an infinite sequence of states of G, and α : N → ACTe defines a corresponding
sequence of environment actions. The intuition will be that the joint action caused
by α(k) and the underlying protocol leads us from a state r(k) to a state r(k + 1).
As we will see later on, once we fix a model of computation and a protocol D for the
processes to follow, there will be additional conditions relating the sequences r and α.
These conditions guarantee, for example, that the actions recorded by α do indeed
cause the transitions among the corresponding states recorded by r. The state r(0) is
called the initial state of the run R. We denote by r(k)i (resp., r(k)e) the local state
of process i (resp., of the environment) in r(k).

An execution is a finite or infinite subinterval of a run, starting and ending in
a state, as described next. For a run R = (r, α) and a pair m ≤ m′ where m is
finite and m′ is finite or infinite, we denote by R[m, m′] the execution starting at the
state r(m) and ending in r(m′) and behaving as R does between them. Formally,
R[m, m′] = (σ, β) where σ has domain [0, m′ −m] and β has domain [0, m′ −m− 1],
and they satisfy σ(k) = r(m+ k) and β(k) = α(m+ k) for every k in their respective
domains. Notice that, in principle, the same execution can occur in different runs,
and for that matter even at different times. A suffix of a run R is an execution of the
form R[m,∞] for some finite m; similarly, a prefix of R is an execution of the form
R[0, m].

Given an execution R (possibly consisting of just one state), let us denote by
R�ε the execution that results from extending R by having the environment perform
the action ε. In models in which performing a joint action at a state results in a
unique next state (which will invariably be the case in this paper), every run of a
deterministic protocol D can be represented in the form x� ε1 � ε2 � · · · where x is
an initial state and εi is an environment action, for every integer i ≥ 0.

2.3. Systems and failures. We define a system to be a pair (R, Faulty) whereR
is a set of runs and Faulty is a predicate on processes and runs of R. In what follows,
Faulty(i, R) will be taken to mean that i is faulty in the run R. We often focus on
the runs of a system S = (R, Faulty) and write R ∈ S as shorthand for R ∈ R.
Notice that Faulty determines who is faulty in a run as a function of the whole infinite
run. Obviously, in some models of distributed computation it is possible to determine
that a process is faulty by considering only a prefix of the run, sometimes even a
single state. In other cases, however, the full history of the run is needed in order
to determine who is faulty (this is the case, for example, in the asynchronous models
of [20, 29]).

With respect to a system S, a state y is said to extend the state x if there is a
finite execution in some run of S that starts in x and ends in y. A run R is said to
contain a state x if x is one of the global states in R. For conciseness, we will use
terminology such as a state x of S, when we mean a state x appearing in a run of S,
or an initial state of S, when we mean a state appearing as an initial state in a run
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of S. By convention, x extends x for every state x of S.

3. Proving impossibility using layering. Our purpose in this section is to
give a simple and elegant proof of the Fischer, Lynch, and Patterson impossibility
result for consensus [20], based on the notion of layering. This concrete example
serves to introduce the more general ideas developed in the rest of the paper. We
will present the proof for the asynchronous shared-memory model [29]. Later on in
the paper we will describe the properties that play a role in the proof. The standard
asynchronous shared-memory model is well known, and detailed formal descriptions
can be found in textbooks such as [5, 31]. We now briefly review the features of the
model that are relevant for the analysis presented in this section.

We assume the standard asynchronous shared-memory model where n processes,
n ≥ 2, communicate by reading and writing to single-writer/multi-reader, shared
variables, and one process can crash. A (global) state x of the system is a tuple
specifying a local state xi for every process i, and the state of the environment, which
in this case consists of the assignment of values to the shared variables, as well as
the set of pending shared-memory operations, and the set of pending reports for read
operations that have been recorded (the value has been read) but not yet reported to
the reading process. The pending operations are the read and write operations that
have been issued for these variables and have not yet taken effect.

The sets ACTi and ACTe of the actions of the processes and the environment are
defined as follows. A process performs an action only when it is scheduled to move.
This action is either a local operation, a read of a shared variable (belonging to it or to
some other process), or a write to one of its own variables. An action of the environ-
ment can have one of three forms: (a) scheduling a process to move—resulting in the
process performing an action, (b) performing a pending shared-memory operation, or
(c) reporting the value read in a recorded read operation to the reading process.

A process that is scheduled to move only a finite number of times in a given
run R is said to have crashed. We define Faulty(i, R) to hold, and we consider i to
be faulty in R exactly if i crashes in R. (Notice that in this model, there is no way
to determine at a finite state x that a given process is faulty in the run; a process
can always “recover” in the future.) As mentioned earlier, we consider deterministic
protocols without loss of generality, because any nondeterministic protocol that solves
consensus in this model can, by fixing the nondeterministic choices in a fixed arbitrary
way, be turned into a deterministic protocol solving it.

A run of a given deterministic protocol D in this model is a run R = (r, α)
satisfying the following:

(i) r(0) ∈ Con0,
(ii) each process follows its protocol, and every pair of consecutive states are

related according to the operations that take place as scheduled by the envi-
ronment.

If in addition

(iii) every read and write action issued is eventually serviced appropriately by the
environment, and

(iv) at most one process fails in R,

then we say that the run is admissible. Let S(D) be the system consisting of the
set of all admissible runs of D and the predicate Faulty described above. Now, the
consensus problem is well defined: D solves consensus if all runs of S(D) satisfy
agreement, decision, and validity with failures as defined by Faulty.
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3.1. Layers in the shared-memory model. We define a layer to consist of a
finite sequence of environment actions. Our intention is to focus on runs of a protocol
that are generated by a particular set of layers. If the set of layers is chosen appro-
priately, these runs can have structural properties that will simplify their analysis.

We define the set Lrw of layers in the asynchronous shared-memory model to
consists of all layers of the forms

• [p1, . . . , pn] and
• [p1, . . . , pn−1],

where the pi’s are process names (elements of {1, . . . , n}), and the names appearing
in a given layer are pairwise distinct. We think of layers of the first type as full
layers, since in such a layer every process moves. Layers of the second type enable
the environment to “silence” a process from any point in the computation; this will
play an important role in determining the “topological” properties of the layered runs
(e.g., in Lemma 3.4(b)). A layer specifies a linear ordering in which the environment
schedules the processes to move. In a given layer, whenever a process pi is scheduled
to move, it performs a single action, and this action (internal, a read or a write) is
serviced (i.e., the read or write action is performed and, in the case of a read, the
value that was read is reported to the reader) before the next process moves. Since
in our model every process can be scheduled to move at any state (although in some
cases the pending operation may just be a “skip” internal operation), the sequence
of environment actions described in a layer of Lrw can be applied at every state.
The intuition behind the definition of Lrw is that a layer consists of a “round” in
which at least n − 1 processes get to move (sequentially). Notice that in an infinite
sequence of layers, at least n − 1 process names appear infinitely often. The layers
just defined are designed to ensure that each layer contributes towards the fairness
conditions (iii) and (iv). As a result, every run generated by an infinite sequence
of such layers is admissible. Notice that a layer of the first type is specified by a
permutation on {1, . . . , n}. We will find it useful to identify a layer of the first type
with the corresponding permutation. Because of this connection we call this layering
a permutation layering.

Once we have fixed the protocol D, we can think of a layer L ∈ Lrw as an individual
“higher-level” action by the environment. An individual environment step in a run
would then consist of performing a whole layer. We define an Lrw-run of D to be a
run of the form

x0 � L1 � L2 � · · · ,
where x0 ∈ Con0 and Li ∈ Lrw for every i ≥ 1. More formally, let us denote by
x · L the state that is reached at the end of an execution that starts in x, where the
processes follow D and the environment performs actions according to L. The Lrw-
run depicted above is a run RL = (rL, α) with α = (L1, L2, . . .) and rL = (x0, x1, . . .)
where for i ≥ 0 we inductively define xi+i = xi · Li+1. Thus, in an Lrw-run, we view
the environment as performing actions consisting of whole layers, and we ignore the
intermediate states that arise “in the middle” of a layer.

Notice that every Lrw-run RL of D corresponds to a unique run R ∈ S(D) that is
obtained from RL by “expanding” the layers into the detailed sequence of environment
actions they describe, and adding the intermediate states. We call a process faulty
in RL if it is faulty in the corresponding run R. We denote by SL(D) the system
consisting of the Lrw-runs of D, with this definition of failures. The argument above
that executing an infinite number of Lrw layers yields an admissible run can now be
formalized as follows.
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Lemma 3.1. For every run RL ∈ SL(D), the run R ∈ S(D) corresponding to RL

is admissible.
Proof. By definition of RL, the corresponding run R is clearly a run of D in the

model. It is admissible because (a) by definition of the layers, each read and write
action that is performed by a process is serviced immediately, and (b) at most one
process can fail in R because in each of the infinite sequence of layers that generate R
at least n−1 of the n processes is scheduled to perform an action; hence, at most one
process can move only a finite number of times in R.

3.2. Potence connectivity. Recall that decisions made by the processes appear
in their local states from the point of decision on. Therefore, any infinite subsequence
of the states of a run will contain the information about the decisions that the different
processes perform in the run. Thus, we do not lose information about the decision
values by considering the states of an Lrw-run instead of looking at the full detail of
the run corresponding to it. If a protocol D solves consensus in the asynchronous
model just described, it must do so in every admissible run. It follows that in every
Lrw-run of D the nonfaulty processes must decide on a value v ∈ {0, 1}. A crucial role
in the proof of impossibility of consensus in the asynchronous shared-memory model
is played by the decision values that are possible in the future of a given global state.
This is captured by the notion of the potential valence (or potence for short)4 of a
state with respect to a set of runs.

Definition 3.2. A state x is w-potent with respect to a system S if x is a state
of a run R ∈ S in which at least one nonfaulty process decides w. The state x is
bipotent if it is both 0-potent and 1-potent.

When discussing potence, we sometimes omit the system S when it is clear from
context. Notice that if a state x is w-potent (resp., bipotent) with respect to SL(D),
then it is guaranteed to be w-potent (resp., bipotent) with respect to S(D): If RL is
the witness proving that x is w-potent in SL(D), then x appears in the run R ∈ S(D)
corresponding to RL, and R is a witness to w-potence of x with respect to S(D).
Clearly, the converse need not hold. Bipotent states play an important role in delaying
(or precluding) consensus, as we shall see in the next section. Our goal will be to show
that every consensus protocol must have a run where agreement is not reached. We
will do this in the next section by demonstrating that every protocol for consensus
must have a run whose states are all bipotent. Such a run we call a bipotent run. The
notion of potence connectivity is a powerful tool for proving this and other impossibility
results.

Definition 3.3. With respect to a system S,
(i) two states x and y have shared potence, denoted by x ∼p y, if both are w-

potent for some w ∈ {0, 1};
(ii) a set of states X is potence connected if the graph (X,∼p) induced by ∼p

on X is connected.
Potence connectedness is not a very strong condition. Indeed, it is easy to check

that a set X of states is potence connected exactly if either (i) for some value w,
all states of X are w-potent, or (ii) there exists at least one bipotent state in X.
Equivalently, X is not potence connected exactly if X contains both 0-potent and
1-potent states but does not contain a bipotent state.

4In [32] we used the term valence instead of potence. This is changed here because the term
valence is used slightly differently in the literature, starting with [20]. Briefly, a state is said to be
w-valent if all extensions decide w. (However, bivalent is equivalent to bipotent.) We thank Gerard
Tel for suggesting the term.
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The following criterion will serve us to prove that two states have shared potence.
Lemma 3.4. Assume the protocol D satisfies the decision property, and let x

and x′ be states of SL(D). If there are states y, y′ ∈ SL(D), where y extends x and
y′ extends x′, such that y and y′ differ at most in the local state of a single process,
then x ∼p x′ with respect to SL(D).

Proof. Let Rx be an execution in SL(D) that ends in state x, and let Rx′ be one
that ends in x′. Since y extends x, there is a finite sequence of layers σ such that
Rx � σ ends in y, and a corresponding sequence σ′ such that Rx′ � σ′ ends in y′.
By assumption, we have that y and y′ differ at most in the local state of process p.
Choose a layer L ∈ Lrw in which p is not scheduled to move. We extend each state by
applying L repeatedly. There are two runs R, R′ ∈ SL(D) such that R = Rx�σ�L∞

and R′ = Rx′ � σ′ � L∞. Both are clearly runs of SL(D), and in both runs process p
is faulty and the rest are not faulty. A straightforward induction on the number of
actions performed by the environment shows that all processes other than p have the
same local state history in the suffix of R starting at y as they do in corresponding
points in the suffix of R′ starting at y′. It follows that the nonfaulty processes reach the
same decision in both. Since D satisfies the decision property, decisions are reached
by the nonfaulty processes in these runs, and we have that x ∼p x′.

Lemma 3.4 directly captures as particular instances many useful cases. Thus, for
example, it implies that if x extends y, then they have a shared potence. Similarly, if
a state z extends both x and y, then x ∼p y. A third useful instance is that if x and
y differ only in the local state of one process, then x ∼p y.

The crux of the impossibility proof is captured in the following lemma, which
shows that the set of successors of a state in SL(D) is guaranteed to be potence
connected.

Lemma 3.5. Assume D satisfies the decision property. For every state x of
SL(D), the set of states Lrw(x) = {y | y = x·L, for some L ∈ Lrw} is potence connected
with respect to SL(D).

Proof. We start by showing two cases in which states of Lrw(x) have a shared
potence, from which the result will follow. For every permutation p1, p2, . . . , pn of
{1, . . . , n} we claim that the following holds:

(i) x · [p1, . . . , pn−1] ∼p x · [p1, . . . , pn].
This is true by Lemma 3.4 because there is a state of SL(D) that extends both

states. This state results from extending the first state by applying the layer L =
[pn, p1, . . . , pn−1], and it also results from extending the second state by L′ =
[p1, . . . , pn−1]. Clearly,

x · [p1, . . . , pn−1] · [pn, p1, . . . , pn−1] = x · [p1, . . . , pn] · [p1, . . . , pn−1],

since in both cases exactly the same actions take place in the same order in the two
layers following x.

For a permutation π = [p1, . . . , pn], we denote the permutation [p1, . . . , pk−1, pk+1,
pk, pk+2, . . . , pn] that is obtained by transposing the kth and (k + 1)st elements of π
by Tr(k, π). We claim the following.

(ii) Let π be a full layer and k ∈ {1, . . . , n− 1}. Then x · π ∼p x · Tr(k, π).
Let y = x · π and y′ = x · Tr(k, π). In moving from x to both y and y′, every

individual process performs the same action. Recall that in our model each shared
variable can be written by a single process. Thus, every process that executes a
write writes the same value in both cases, and the state of the shared memory is the
same in y and in y′. In addition, every process except possibly for pk and pk+1 end



A LAYERED ANALYSIS OF CONSENSUS 999

up in the same local state in y and in y′. Now, if both processes perform a read or
both perform a write, each of them will end up in the same local state in y and in y′.
Finally, if one of them executes a read and the other a write, only the reading process
may end up in a different state in y and in y′. It follows that y and y′ differ at most
in the local state of one process, so y ∼p y′ by Lemma 3.4.

The potence connectivity of Lrw(x) follows: A well-known property of the group
of permutations is that we can transform any permutation π of {1, . . . , n} to any other
permutation π′ using a finite number of single transpositions Tr(k, π) as in (ii). Thus,
by transitivity of connectivity we have that all states x · π obtained from x by a full
layer are potence connected. Each of the remaining states of Lrw(x) is obtained by a
layer [p1, . . . , pn−1] and is connected to the rest by part (i).

The last connectivity property is implicit in [20].
Lemma 3.6. If D satisfies the decision property, then Con0 is potence connected

with respect to SL(D).
Proof. In this proof, given a state z we denote by zj the local state of process j

in the state z. Let x, y ∈ Con0, and for every 0 ≤ m ≤ n define xm by setting

xmj =

{
yj ∀j ≤ m, and
xj ∀j > m.

Clearly, xm ∈ Con0, and it is easy to check that x0 = x and xn = y. Moreover,
for every 0 < l ≤ n we have that xm−1 and xm differ exactly in the local state of
process m. Con0 is a subset of the states of SL(D). Hence, by Lemma 3.4 we have that
xm−1 ∼p xm. It follows that x and y are potence connected and we are done.

3.3. Using bipotence to prove impossibility. In the previous section we
used the decision requirement of consensus, together with the possibility of having
one process crash, to establish connectivity properties. In this section we show how
these properties, together with the agreement and validity requirements of consensus,
imply the impossibility result. We start by demonstrating that bipotent states can
play a role in delaying, or precluding, consensus.

Lemma 3.7. Assume that the protocol D satisfies the agreement and decision
properties. If a state x of SL(D) is bipotent with respect to SL(D), then no process
has decided in x.

Proof. Assume by way of contradiction that i has decided on value w in x. Since
x is bipotent, there is a run R ∈ SL(D) containing x in which some process, say j,
decides 1−w. Let y be a state of this run extending x in which j has already decided
1 − w. Thus, at y processes i and j have (irrevocably) decided on different values.
Let P be a prefix of this run that ends in y, and let L ∈ Lrw be any full layer. The
run R′ = P �L∞ is a run of SL(D) in which i decides w, process j decides 1−w, and
both are nonfaulty (they move infinitely often). Processes i and j similarly decide w
and 1− w, respectively, in the run R̂ ∈ S(D) corresponding to R′, contradicting the
assumption that D satisfies the agreement property.

The following lemma is the basis for the impossibility proof.
Lemma 3.8. Let X be a potence connected (with respect to SL(D)) set of states

of SL(D). If X contains both 0-potent and 1-potent states, then there is a bipotent
state in X.

Proof. Let X0 be the subset of X consisting of 0-potent states, while X1 is the
subset of 1-potent states. By assumption, both subsets are nonempty. It thus follows
that there must be an edge x0 ∼p x1 with x0 ∈ X0 and x1 ∈ X1 (otherwise X is not
potence connected).
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Since x0 ∼p x1, the states x0 and x1 have a shared potence. If their shared
potence is 0, then x1 is bipotent, while if the shared potence is 1, then x0 is bipotent.
In either case there is a bipotent state in X, as desired.

We can use Lemma 3.6 to obtain a bipotent initial state x0, a well-known result
of [20].

Lemma 3.9. If D satisfies the decision and validity properties, then the set Con0

contains a bipotent state with respect to SL(D).
Proof. Let x0 ∈ Con0 be the initial state in which all initial values are 0, and

let x1 be the corresponding state with all values 1. By the validity condition in
every admissible run of D starting in the state x0 (resp., x1) the nonfaulty processes
decide 0 (resp., 1). Since Lrw-runs correspond to admissible runs, and there is an Lrw-
run starting in x0 and an Lrw-run starting in x1, x0 is 0-potent and x1 is 1-potent. By
Lemma 3.6 Con0 is potence connected, and thus by Lemma 3.8 we obtain that there
is a bipotent state in Con0.

Lemma 3.10. Every protocol D that satisfies decision and validity has a bipotent
run in SL(D).

Proof. By Lemma 3.9, there is a bipotent state, say x0, in Con0. We will construct
a sequence of bipotent states x1, x2, . . . , xk, . . . and a corresponding sequence of layers
L1, L2, . . . , Lk, . . . such that xi+1 = xi · Li+1 for all i ≥ 0. The desired run will be

RL = x0 � L1 � L2 � · · · � Lk � · · · .
It remains to define the two sequences. We will define the layers Li and the states

xi by induction on i. Notice that x0 is bipotent. Let k ≥ 0, and assume that we have
constructed sequences L1, L2, . . . , Lk and x1, x2, . . . , xk with the desired properties.
In particular, xk is a bipotent state. Since D satisfies decision, we have by Lemma 3.5
that Lrw(xk) is potence connected. Since xk is bipotent, Lrw(xk) contains both 0-
potent and 1-potent states. It follows from Lemma 3.8 that there is a bipotent state
y ∈ Lrw(xk). Since y ∈ Lrw(xk) we have by the definition of Lrw(xk) that y = xk · L
for some layer L. Set Lk+1 = L and xk+1 = y.

We conclude the following.
Theorem 3.11. There is no 1-resilient consensus protocol in the asynchronous

shared-memory model.
Proof. We need to show that no protocol D can satisfy all three properties of

consensus: decision, validity, and agreement. Assume that D satisfies decision and
validity. By Lemma 3.10 there is a bipotent run R ∈ SL(D). This run has an
infinite number of bipotent states. If D were to satisfy agreement as well, we have
by Lemma 3.7 that no process could have decided in a bipotent state. But then no
process would ever decide in the run R, and hence no process would ever decide in the
corresponding run of S(D), contradicting the assumption that D satisfies the decision
property.

3.4. Discussion. In this section we have used layering to provide an alternative
proof of the impossibility of consensus in the asynchronous shared-memory model.
Our proof differs from those of [20, 29] in a number of ways. First, it does not depend
on a “critical state” argument; rather, it constructs a bipotent run inductively one
state (or rather one layer) at a time. A subtle aspect of the standard proofs is proving
that prefixes of a run can be extended into full runs in a manner that satisfies the
fairness (or admissibility) conditions. In our case this is simplified by having each layer
contribute “enough” to the fairness conditions to guarantee that any run constructed
as a sequence of layers is admissible. We have attempted to provide a proof that
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makes fairly limited and local use of the particular properties of the model. As a
result, as we shall see in the following, the same proof outline is applicable to the
analysis of consensus in other models. Thus, we believe that the notions of potence
connectivity and layering capture some of the topological structure underlying the
consensus problem (and more generally 1-resilient solvability, as described in [32]). For
example, the layering approach can be used to prove global connectivity properties of a
model, as opposed to the approach described in this section, which shows connectivity
of successors of a state; more about this is in section 9.

We next provide a more general framework and show how the notions of potence
and layering and the proof outline just given can be applied more broadly. We start
by describing how to model different types of distributed systems in a general fashion.

4. Layering consensus in general models. We now consider how layering
can be used to analyze consensus for a variety of models. We start by defining models
of distributed systems in a more general manner, and we show how layering can be
applied to consensus in such generic models.

4.1. Models of distributed computation. Using the notions of section 2.2,
we define a generic model of computation. A model of distributed computation is
determined by sets Li, i ∈ {e, 1, 2, . . . , n}, of local states for the processes and the
environment, and corresponding sets of actions ACTi, for every i ∈ {e, 1, 2, . . . , n},
and by a tuple M = (G0, Pe, τ,Ψ, FGen), where the following hold:

• G0 ⊆ G is called the set of initial states. The identity of G0 will depend on
the type of analysis for which the model is introduced. When we focus on a
particular problem such as consensus, G0 is the set Con0 of initial states for
consensus.
• Pe is a (nondeterministic) protocol for the environment.
• τ is a transition function.
• Ψ is a set of runs over G and ACTe, such that for every pair of runs R and R′

that have a suffix in common, R ∈ Ψ if and only if R′ ∈ Ψ. The set Ψ is called
the set of admissible runs in the model. This is a tool for specifying fairness
properties of the model. For example, properties such as “every message sent
is eventually delivered” or “every process moves infinitely often” are enforced
by allowing as admissible only runs in which these properties hold. The
condition we have on Ψ being determined by the suffixes of its runs ensures
that admissibility depends only on the infinitary behavior of the run.
• FGen is a function that, for each protocol D gives a predicate FaultyD defined

on the runs of D in M (defined below). We remark that the dependence of
the FaultyD on the protocol is useful when we want to capture the idea that
a process is faulty if it deviates from the protocol it is supposed to follow.
This is relevant for handling malicious failures, for example.

We say that a run R = (r, α) is a run of the protocol D = (D1, . . . , Dn) in
M = (G0, Pe, τ,Ψ, FGen) when

(i) r(0) ∈ G0, so that R begins in a legal initial state according to M ,
(ii) α(k) ∈ Pe(r(k)e) for all k,
(iii) r(k + 1) = τ(r(k), (α(k),ak)) holds for all k ≥ 0, where the domain of ak is

the set Sched in α(k), and aki = Di(r(k)i) for every i ∈ Sched,5 and

5Given this choice, any deviations of a process from the protocol, as may happen in a model
with malicious failures, will need to be modeled as resulting from the environment’s actions. The
behavior of faulty processes in such a case will be controlled by the environment.
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(iv) R ∈ Ψ, so that R is admissible.

Condition (ii) implies that the environment’s action at every state of R is legal ac-
cording to its protocol Pe, and condition (iii) states that the state transitions in R
are according to the transition function τ , assuming that the joint action is the one
determined by the environment’s action and the actions that the protocol D specifies
for the processes that are scheduled to move. A run satisfying properties (i)–(iii) but
not necessarily the admissibility condition (iv) is called a run of D consistent with M .
It is a run in which the initial state and local transitions are according to D and M ,
but the admissibility conditions imposed by Ψ are not necessarily satisfied. We will
find it useful to consider such runs in section 6.

The notions of models and protocols give us a way of focusing on a special class
of systems, resulting from the execution of a given protocol in a particular model.
We denote by S(D, M, I) the system (R, Faulty), where R is the set of all runs of
protocol D in the model M that start in initial states from a set I, where I ⊆ G0,
and Faulty = FGenM (D).

We say that a system S satisfies the pasting property if, for every pair R = (r, α)
and R′ = (r′, α′) of runs of S such that r(m) = r′(m′) for some integers m, m′, there
is a run R′′ of S such that R′′[0, m] = R[0, m] and R′′[m,∞] = R′[m′,∞]. Intuitively,
the pasting property says that we can “paste” any prefix ending in a state x with
a suffix starting in x, and obtain a run of S. In a sense, this means that all of the
information that is relevant to determining the future of a state is included in the
state.

It is straightforward to show the following.

Lemma 4.1. Every system of the form S = S(D, M, I) has the pasting property.

Proof. Assume that R = (r, α) and R′ = (r′, α) are runs of S, and that r(m) =
r′(m′), and let R′′ be defined as in the definition of the pasting property. We need
to show that R′′ satisfies conditions (i)–(iv) above. For condition (i), r′′(0) = r(0)
and r(0) ∈ G0 since R satisfies condition (i). For k < m, we have that r′′(k) = r(k),
α′′(k) = α(k), and r′′(k + 1) = r(k + 1). Therefore properties (ii) and (iii) follow for
k < m from the fact that they hold for R. Similarly, for k ≥ m, r′′(k) = r′(m′+k−m),
α′′(k) = α′(m′ + k −m), and r′′(k + 1) = r′(m′ + k + 1 −m) so that (ii) and (iii)
for these values of k follow from the fact that they hold for the run R′ (at time
m′ + k − m). Finally, R′′[m,∞] = R′[m′,∞], so that R′′ and R′ have a suffix in
common. Since R′ ∈ Ψ, it thus follows that R′′ ∈ Ψ so R′′ satisfies (iv), and we are
done.

Finally, recall that the definition of consensus depends in an essential way on the
behavior of the nonfaulty processes. Since we have a very general notion of a Faulty
predicate that may depend on the model, we will restrict attention to cases in which
the notion of failures is not completely out of hand. A predicate Faulty defined for
the runs of a system S induces a notion of a process being failed at a state (with
respect to S). We say that a process i is failed at state x if i is faulty in all runs of S
containing x. Otherwise i is nonfailed at x.

Definition 4.2. A system S = (R, Faulty) satisfies fault independence if the
following hold:

(i) For every state x of S there is a run Rx ∈ S in which x appears, such that
the only processes that fail in Rx are those that are already failed at x.

(ii) No process is failed at an initial state of S.
(iii) If R and R′ have a common suffix, then the same processes fail in both runs.
(iv) At most n− 1 processes fail in any run R ∈ S.
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Part (i) is formally captured by the condition

(∀x of S)(∃Rx ∈ S)∀i [Faulty(i, Rx) iff i is failed at x].

The intuition here is that every instance of faulty behavior should be the result of
the failure of some component in the system. If there is an extension of a state in
which one component fails and another does not, and there is a different execution
where the second component fails but the first one does not, then there should be a
third execution where neither one fails. Failures are thus independent in this sense.
Part (ii) implies that for any initial state x and every process i, there is a run Rx

containing x where i is nonfaulty. (Of course there may be another such run where i
is faulty.) Part (iii) is included because the failures we are interested in (e.g., crashes)
are determined by the infinite part (i.e., suffix) of a run. Notice that there are failure
models in which a failure can be committed at a given point in time and not be
reflected in the processes’ states at a later time. This could cause two runs to have
the same suffix while a particular process behaves in a faulty manner in one of the
runs but not in the other. However, by appropriately modeling the environment’s
state to keep track of such failures, part (iii) can be guaranteed in such models as
well. Part (iv) allows us to concentrate on runs where at least one process did not
fail.

All systems we will consider are assumed to satisfy fault independence.

4.2. Example: The mobile failures model. We illustrate the use of the
abstract framework just described by describing a synchronous model with a single
mobile failure [35]. The model is the standard synchronous message-passing model in
which communication proceeds in lockstep rounds; in every round each process can
send a message to each of the other processes, and messages are delivered in the round
they are sent with no corruptions. The failure assumption is that in every round m
there can be at most one process im some of whose messages are lost. The set of
messages lost by this process in the round in question is arbitrary. We use the term
mobile failure because the identity of the process whose messages may be lost can
change from one round to the next.

We now sketch how this model, which we denote by Mm = (Gm
0 , P m

e , τm,Ψm, FGenm),
can be represented in terms of our formalism. The environment’s state is assumed
to be the same in all states of Gm

0 . The environment’s protocol P m
e is uniform at all

states: nondeterministically choose a process i ∈ {1, . . . , n} and a set T ⊆ {1, . . . , n}
and perform the action ({1, . . . , n}, (i, T )). Notice that in all cases Sched = {1, . . . , n}
so that, intuitively, all processes are scheduled to move in every round. The action
a = (i, T ) specifies that any message sent from i to members of T will be lost. The
actions a process can perform in this model specify a list of at most one message to be
sent to each process in the current round. Thus, given a protocol D = (D1, . . . , Dn)
for the processes, for every state x the protocol Di for i defines an action Di(xi) that
specifies what is its next state and the messages that i sends in that state.

Given a state x and a joint action ā = (ae,a), ae = ({1, . . . , n}, (j0, T0)), the
transition function τm updates the local state of a process i as a function of its current
action, Di(xi), and the list of messages that are sent to it in the current round that
are not blocked (i.e., the list of messages sent to i by processes j according to Dj(xj)
except that if i ∈ T0, we ignore any message that may be sent by j = j0).

The set Ψm makes no restrictions whatsoever: it consists of all possible runs
consistent with Mm. Finally, FGenm(D)(i, R) = false for all processes i, runs R, and



1004 YORAM MOSES AND SERGIO RAJSBAUM

protocols D; in this model, no process is ever considered faulty.6

Note that Mm satisfies fault independence. Namely, consider any system S =
S(D, Mm, I). All properties of Definition 4.2 hold trivially for S, because no processes
are ever considered faulty in Mm.

5. Abstract impossibility framework for consensus. We are now ready
to initiate a general model-independent analysis of the consensus problem. We will
attempt to show that the general structure of the proof we presented in section 3
is widely applicable. As in section 2.1, we will assume a uniform set Con0 of initial
states for consensus. The local state of every process i in a state x of Con0 consists
of two distinct variables, vi and di. The first has a binary value and is considered i’s
initial value for the purpose of the consensus procedure. The second is a write-once
variable that appears in all of i’s local states and is initially undefined (i.e., initially
di = ⊥). The environment’s state is assumed to be the same in all states of Con0.

In what follows, we shall focus on systems that are compatible with the consensus
problem. We call a system S = S(D, M, I) a system for consensus if (i) the set I
of initial states in S is Con0 and (ii) the local state xi of every process i in each
state x of S contains the variable di, and in all runs the variable di is write-once.
A model M = (G0, Pe, τ,Ψ, FGen) is a model for consensus if Con0 ⊆ G0 and every
system of the form S(D, M, Con0) is a system for consensus.

All models are models for consensus satisfying fault independence.

The consensus problem in section 2.1 is now well defined with respect to a general
model M : a protocol D solves consensus if all the runs of the system S(D, M, Con0)
satisfy agreement, decision, and validity, where faulty processes are defined according
to the function FaultyD = FGen(D).

5.1. Potence and bipotence in general models. Recall the definitions of
w-potence and bipotence with respect to a system S of section 3.2. In particular,
they hold for S = S(D, M, I). In this section we consider two useful ways to show
that x ∼p y in general models. We start with some specific conditions under which
analogues to Lemma 3.4 hold.

Lemma 5.1. Assume that S satisfies decision and let x, y, z be states of S.
(i) For v ∈ {0, 1}, if z is v-potent and z extends y, then y is also v-potent.
(ii) If z extends both x and y, then x ∼p y.
Proof. For part (i), assume z is v-potent. Then there exists a run R = (r, α) of S

and a time m ≥ 0 such that r(m) = z and some nonfaulty process i in R decides v.
Since z extends y, there is a run R′ = (r′, α′) and there are times k′ ≥ k ≥ 0 such
that r′(k) = y and r′(k′) = z, in which the only processes that fail are those that are
already failed at z (fault independence (i) and (iii)). Consider the run R′′ obtained
by pasting the prefix R′[0, k′] with the suffix R[m,∞]. Since the system S satisfies
the pasting property (by Lemma 4.1), R′′ is a run of S. Process i reaches the same
decisions in R and in R′′ (decisions are write-once and the di variable appears in all
of i’s local states). Since R and R′′ have a common suffix, the same processes fail in
both runs (fault independence (iii)). It follows that i is a nonfaulty process deciding v
in R′′. The state y is therefore v-potent and we are done.

6This assumption is made for simplicity. Notice that the process im, some of whose messages
may be lost in a given round m, still receives all messages sent to it. This process should therefore
not be at a disadvantage when it comes to being able to decide on the consensus value. The same
analysis and conclusions as we present here would hold if, for example, we would assume that a
process that is silenced from some point on in a given run is considered faulty in that run.
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We now show part (ii). Since S satisfies the decision property, every state of S,
including z in particular, is either 0-potent or 1-potent (or both). Assume that z is
v-potent. By part (i) y is v-potent, and by the same argument x is v-potent as well.
Hence x ∼p y and we are done.

Recall that a run is bipotent if all of its states are bipotent. An important
consequence of the agreement property is that a consensus protocol cannot terminate
while in a bipotent state. As a result, if a protocol has a bipotent run, then it
cannot solve consensus. This is an important feature underlying impossibility proofs
for consensus. We now capture these claims as they apply to general models more
formally. One feature of many popular models, including the common asynchronous
ones, is that the failure of a process is not determined in finite time. We say that
a system S displays no finite failure if, for all states x of S, no process is failed
at x. Namely, for every process i, there is a run containing x in which i is nonfaulty.
For such systems we have the following lemma, which is a slight generalization of
Lemma 3.7 and whose proof has the same structure.

Lemma 5.2. Let S satisfy the agreement requirement and assume there is a
bipotent run Rb ∈ S. If S displays no finite failure then S does not satisfy the
decision property.

Proof. We will show that if a state x of S is bipotent, then no process has decided
by x. The claim follows, since in a bipotent run no process will ever decide, and we
have by the fault independence assumption part (iv) that there must be at least one
nonfaulty process in Rb.

Assume by way of contradiction that x is bipotent and i is decided at x. Let
its decision at x be di = w �= ⊥. Since x is bipotent, there is a run R containing
x in which some process, say j, decides 1 − w. It follows that there is in R a state
y extending x in which dj = 1 − w. Since S displays no finite failure, both i and j
are nonfailed at y. By the fault independence assumption part (i), there is a run
R′ containing y in which both i and j are nonfaulty. Since di and dj are write-once,
however, in R′ process i decides w while j decides 1−w, contradicting the assumption
that S satisfies the agreement property.

Lemma 5.2 clearly demonstrates that consensus cannot be attained at a bipotent
state of a system that displays no finite failure. The following lemma shows that a
consensus protocol is still unable to terminate in a bipotent state even in systems in
which failures can be observed in finite time.

Lemma 5.3. Let S be a system satisfying the agreement requirement and assume
that no more than t < n processes fail in any run of S. If x is a bipotent state of S
then at least n− t nonfailed processes at x have not decided by x.

Proof. Since x is bipotent, there is a run R0 containing x in which at least one
nonfaulty process decides 0. The set P0 of nonfaulty processes in R0 consists of at
least n− t processes. They are all nonfailed at x, and by the agreement property none
of them has decided 1 by x. By symmetry of 0 and 1, we obtain the existence of a
set P1 of at least n− t nonfailed processes at x that have not decided 0 by x. By the
fault independence property part (i), there is a run R̂ containing x in which the only
processes that fail are the ones that are already failed at x. All processes in P0 ∪ P1

are nonfaulty in R̂. By the agreement property, there is at most one value w ∈ {0, 1}
on which nonfaulty processes decide in R̂. If nonfaulty processes do not decide 0 in
R̂, then no process in P0 has decided by x, and if they do not decide 1 in R̂, then no
process in P1 has decided by x. In either case, the claim holds.
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5.2. Potence connectivity revisited. The central role played by connectivity
in the analysis of consensus and decision problems in general has been observed by
many authors starting with [18]. The traditional notion of connectivity in the liter-
ature [18, 31, 35] is based on comparing the local states of processes in the current
(global) state: Two states are similar if they share enough structure (e.g., equal envi-
ronment and process states), and the transitive closure of this binary relation provides
a corresponding notion of (similarity-based) connectivity. In contrast, the shared po-
tence of states depends on their possible future extensions, and hence so is potence
connectivity. Clearly, a notion of the first kind is independent of the protocol used,
while potence connectivity is protocol dependent. It is our view that potence connec-
tivity plays a crucial role in the structure of consensus. In addition to generalizing our
treatment of potence connectivity slightly, in this section we will draw a formal con-
nection between similarity connectivity and potence connectivity. Intuitively, we will
show that in models in which the environment can always silence an arbitrary process,
similarity connectivity yields potence connectivity. Similarity-based connectivity will
thus prove to be a useful tool for showing potence connectivity.

Similarity connectivity + crashlike behavior ⇒ potence connectivity.
Many failure models considered in the study of fault tolerance allow faulty behavior
in which the state of a process is “hidden” from some point on. Usually this happens
as a result of a process crash, but it can also be the result of the process’s memory
being erased, for example. When such hiding can occur, states that differ only in the
local state of one process will often have a shared potence. It follows that there is a
connection between similarity of states and potence connectivity. We now formalize
this connection.

The state of the environment is often best described as a tuple of distinct com-
ponents, each accounting for a separate aspect of the system. In some models, part
of the components of the state of the environment can affect only the state of a single
process. For example, in a shared-memory model, if there is a variable that can be
read only by process j, then it can affect only j. A similar situation occurs in the
message-passing model, when a channel contains messages that were all sent to j. We
call such components j-components. Clearly, in some models the environment state
has no j-components. When they do exist, the following notions depend on a clear
definition of these components. Two environment states are said to agree modulo j if
they are the same except, possibly, for their j-components. We say that two states x
and y agree modulo j if xi = yi for all i �= j and their environment states xe and ye
agree modulo j. The intuition is that if process j can somehow be “silenced” or if its
local state can be “hidden” and not observed by others in the future, runs resulting
from both states will be the same from the point of view of the other processes. In
models in which there are no j-components to the environment’s state, states x and y
that agree modulo j differ at most in the identity of process j’s local state.

Definition 5.4 (similarity). With respect to a system S,
(i) states x and y are similar, denoted by x ∼s y, if there is a process j such

that (a) the states x and y agree modulo j and (b) there exists i �= j that is
nonfailed in both x and y,

(ii) a set of states X is similarity connected if the graph (X,∼s) induced by ∼s
on X is connected.

A well-known and useful property of the initial states for consensus, Con0, is given
by the following lemma.

Lemma 5.5. The set Con0 is similarity connected.
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Proof. To prove that Con0 is similarity connected we will show that every two
initial states x, y ∈ Con0 are connected by a sequence of states in which each pair of
neighbors are similar. Choose x, y ∈ Con0. For 0 ≤ l ≤ n, define xl by setting

xlj =

{
yj ∀j ≤ l, and
xj ∀j > l.

(Recall that xe = ye by definition of Con0.) Clearly, xl ∈ Con0, and it is easy to
check that x0 = x and xn = y. Moreover, for every 0 < l ≤ n we have that xl−1

and xl agree modulo l, since the local states of the environment and of all processes,
except possibly that of l, are equal. The assumption that no process is failed in an
initial state (fault independence (ii)), and the fact that n ≥ 2, imply that there is a
process i �= l that is nonfailed in both xl−1 and xl, and hence these two states are
similar.

We now formalize the intuition that similarity connectedness yields potence con-
nectedness when processes may crash.

Definition 5.6 (crashlike behavior). Let X be a set of states of the system S.
We say that S displays crashlike behavior with respect to X if the following condition
holds. For every x, y ∈ X and process j, if x and y agree modulo j, then there exist
in S runs Rx and Ry and times mx, my ≥ 0 such that

(i) rx(mx) = x and ry(my) = y,
(ii) rx(mx + k) and ry(my + k) agree modulo j for all k ≥ 0, and
(iii) every process i �= j that is not failed in x and in y is nonfaulty in Rx and

in Ry.
It is worth noting that the abstract definition of crashlike behavior is not restricted

to crash failures. What the definition requires is that the state of j may be “hidden”
from the rest of the processes indefinitely from some point. This can happen in models
of process failures such as crash, omission, or Byzantine failures. It can also happen
in models of link failures [35] or even in some cases when a failure may simply change
the local state of a process, thereby effectively corrupting or erasing its memory.

A very useful relation between potence connectedness and similarity connected-
ness is given by the following lemma.

Lemma 5.7. Let S be a system satisfying the decision property, and let X be a
similarity connected set of states of S. If S displays crashlike behavior with respect to
X, then X is potence connected.

Proof. Since similarity connectedness is the transitive closure of ∼s and potence
connectedness is the transitive closure of ∼p, it suffices to show that for all x, y ∈ X,
if x ∼s y, then x ∼p y. Assume x ∼s y and S displays crashlike behavior with respect
to X ⊇ {x, y}. Then there exists a process j such that (i) the states x and y agree
modulo j and (ii) there exists a process i �= j that is nonfailed in both x and y.
Since S displays crashlike behavior with respect to {x, y}, part (i) implies that there
exist in S runs Rx and Ry and times mx, my ≥ 0 such that (a) rx(mx) = x and
ry(my) = y, (b) rx(mx + k) and ry(my + k) agree modulo j for all k ≥ 0, and (c)
every process i �= j that is nonfaulty in x and in y is nonfaulty in Rx and in Ry.
Moreover, by (ii), there is at least one such nonfaulty process i. Since S satisfies the
decision requirement, process i eventually decides in both runs. Let w be the value
that i decides in Rx. Because di is write-once and appears in all local states of i, and
since rx(mx + k)i = ry(my + k)i for all k ≥ 0, we conclude that process i decides on
w in Ry as well. It follows that both x and y are w-potent, and hence x ∼p y.

Notice that Lemma 3.8 holds also for a general model M . Also, recall from the
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proof of Lemma 3.9 that when decision and validity hold, the initial state with all
initial values 0 is 0-potent, while the one with all values 1 is 1-potent; this holds in
the generic setting due to fault independence. Thus, an immediate consequence of
Lemmas 3.8, 5.5, and 5.7 is a generalization of the well-known fact from [20] that when
even a single process can crash, there must be a bipotent initial state for consensus.

Theorem 5.8. Let S be a system for consensus satisfying the decision and
validity conditions. If S displays crashlike behavior with respect to Con0, then there is
a bipotent initial state in S.

6. Layering. In section 3.1 we defined a set of layers to facilitate the analysis of
particular well-behaved runs of the shared-memory model. We now consider a similar
operation for general models. Recall that given a finite execution R we denote by
R�ε the execution that results from extending R by having the environment perform
ε = (Sched, a) in its final state. A run of S = S(D, M, I) can thus be represented in
the form x� ε0 � ε1 � · · ·, where x ∈ I and εi ∈ ACTe for i ≥ 0.

In some cases we are interested in single actions of the environment, while in
others we may be interested in thinking of sequences of such actions as constituting
a “round” or “layer” of the computation. In such cases, we will be interested only in
those states that appear at the end of layers, and we want to ignore the intermediate
states. Given a model M = (G0, Pe, τ,Ψ, FGen), we define a layer over ACTe to be a
nonempty finite sequence ' = ε1, ε2, . . . , εk of actions of the environment, εi ∈ ACTe.
If a protocol D is specified, given a state x, the round ' would lead from x to the
state at the end of x � ε1 � ε2 � · · · � εk = x � ', provided each εi is an action that
can be executed according to the environment protocol in the state at the end of
x� ε1 � ε2 � · · · � εi−1. In this case we say that ' is executable at x. We denote the
state at the end of the execution x� ' by x · '.

One of the principles behind the use of layers and layerings is that we would like
to ignore small steps and intermediate states and center our attention on interesting
landmarks in the computation. Given a set of layers L, we define an L-run to be a
pair RL = (rL, αL), where rL : N → G defines an infinite sequence of states of G, and
αL : N → L is a sequence of layers. We will be interested in L-runs that describe
runs of a system S = S(D, M, I). We say that a run R = (r, α) of S corresponds to
an L-run RL = (rL, αL) if there is an infinite sequence i0 < i1 < · · · < ik < · · ·, such
that i0 = 0 and for all k ≥ 0 we have both (a) r(ik) = rL(k) and (b) the sequence
α(ik), α(ik + 1), . . . , α(ik+1 − 1) is exactly the layer αL(k).

Intuitively, an L-run is a run that is obtained by starting at some initial state and
repeatedly performing layers of L. The run RL keeps track of the specific sequence of
layers used, and of the states at the end of layers. Thus, the view presented in RL

is that the actions that the environment performs are in the form of whole layers. It
is easy to check that there can be at most one run R corresponding to a given RL

in the system S(D, M, I). Suppose that rL(0) ∈ I and for every m ≥ 0 there is an
execution xm � 'm in S = S(D, M, I), where xm = rL(m) and 'm = αL(m). In this
case, there is a unique run R of D consistent with M that corresponds to RL. Notice,
however, that R might still not be a run of D in M , because it may fail to satisfy
the fairness condition Ψ of M . We will be interested in sets L of layers in which this
cannot happen.

Definition 6.1. A nonempty set L of layers is called a layering of a model M
if, for every protocol D, the following condition holds. Every run R of D consistent
with M that corresponds to an L-run RL is a run of D in M .

Notice that for every set of layers, L, we can consider the runs of a protocol D in
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which the environment performs actions according to the layers in this set. A set of
layers is a layering if it satisfies the property that every run obtained by performing
an infinite sequence of layers of L must satisfy the fairness conditions imposed by M ,
as specified by its admissibility condition Ψ. Roughly speaking, then, each layer must
carry out a sufficient amount of work to guarantee that the fairness requirements
imposed by Ψ are ultimately satisfied.

Given a system S = S(D, M, I) and a layering L of M , we define the corresponding
layered system SL = SL(D, M, I) by

SL = {RL | there is a run R of S that corresponds to RL},
with Faulty predicate as follows. Since every run RL of SL has associated a unique
run R of the original system S, the FaultyD predicate from M can be extended to
the runs of SL by defining FaultyD(RL) = FaultyD(R) for all runs RL ∈ SL. Thus, to
figure out who the faulty processes in a run of SL are, we check the corresponding run
of S. Notice, however, that fault independence of S does not necessarily imply fault
independence of SL.

Definition 6.2. A layering L of a model M satisfies fault independence if every
system of the form SL(D, M, I) satisfies fault independence.

There are several obvious close correspondences between SL and S that follow
directly from the definition of SL in terms of the runs of S. First of all, SL inherits
a number of “universal” properties from S: Each of the properties of decision, agree-
ment, and validity is satisfied by SL if it is satisfied by S. In the other direction,
“existential” properties of SL pass on to S: If a state x is bipotent with respect to SL,
then it is bipotent with respect to S. Moreover, if RL is a bipotent run of SL, then
the run R of S that corresponds to RL is a bipotent run with respect to S.

Our use of layering to prove lower bound and impossibility results for consensus
will be based on the close correspondence between SL and S. The general idea is
to assume there is a protocol D solving consensus in some particular model M . An
appropriate layering L for M is then defined, for which it can be shown that there
is a bipotent run (or in the case of a lower bound a bipotent prefix of a run) in
SL = SL(D, M, Con0).

For every state x of SL we define L(x) to be the set of the successors of x in SL.
More formally,

L(x) = {x · ' | ' ∈ L and x� ' is an execution of SL}.
Provided the layering L guarantees that L(x) is potence connected, we can use the
following theorem to prove the existence of a bipotent run in S = S(D, M, Con0). We
can then apply Lemma 5.2 to show that the protocol D does not solve consensus.

Theorem 6.3. Let L be a layering of M satisfying fault independence, and
let S = S(D, M, Con0) be a system for consensus satisfying the decision condition.
Consider the layered system SL = SL(D, M, Con0), and assume that there is a bipotent
initial state in SL. If, for every state x of SL the set L(x) is potence connected in SL,
then there is a bipotent run in the original system S.

Proof. We will construct a bipotent L-run Rb
L in SL, and the corresponding run

Rb will be a bipotent run in S. We obtain this run by starting from a bipotent initial
state x0 and constructing an infinite sequence of layers '0, '1, . . . from L, such that
the state xm = x0 · '0 · . . . · 'm−1 is bipotent with respect to SL for all m ≥ 0. By
construction, for all m ≥ 0 we will have that xm � 'm is an execution in SL, since it
will be taken from L(xm). This means that it is consistent with D and M to execute
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the sequence of environment actions 'm, and corresponding protocol actions starting
in xm, leading to xm+1. Hence the run

Rb = x0 � '0 � '1 � · · ·

will be a run of D consistent with M . The fact that L is a layering of M will then imply
that Rb is a run of S(D, M, Con0). Recall that a bipotent state of SL is necessarily
also a bipotent state of S. Moreover, if a state of a run R is bipotent, then all states
preceding x in R are also bipotent, by Lemma 5.1(i). Since there are infinitely many
bipotent states in Rb (all the states xm from the construction), it follows that all
states of Rb are bipotent, so that Rb is a bipotent run of S.

It remains to define x0 and the sequence of layers 'k. By assumption, there is a
bipotent initial state in SL. We shall choose this state to be x0. Assume inductively
we have chosen '0, . . . , 'm−1 so that xm = x0 · '0 · · · · · 'm−1 is bipotent (with respect
to SL). Since xm is bipotent, the set L(xm) contains both 0-potent and 1-potent
states. By assumption, L(x) is potence connected for every state x of SL, and hence
in particular L(xm) is potence connected. It follows by Lemma 3.8 that there is a
bipotent state x′ ∈ L(xm). By definition of L(xm) there must also be a layer '′ ∈ L
such that x′ = xm · '′. Set 'm = '′, and let xm+1 = x0 · '0 · · · · · 'm−1 · 'm. Clearly,
xm+1 = xm ·'m = xm ·'′ = x′. It follows that xm+1 is bipotent, and we are done.

We have essentially completed the description of our abstract framework for prov-
ing impossibility of consensus. Given a model M , the strategy would be to choose
an appropriate layering L for M . With respect to an arbitrary protocol D, we use
Theorem 5.8 to prove the existence of a bipotent initial state, and use Theorem 6.3
to extend this state into a bipotent run. Finally, from Lemmas 5.2 or 5.3 we conclude
that this run is a counterexample to the decision property of consensus. We now
apply this scheme to prove impossibility of consensus and lower bounds for models
with synchronous message passing.

7. Synchronous message passing. We present two applications of the general
framework to synchronous models: first for mobile failures and then for the classic
crash failure model.

7.1. Impossibility for mobile failures. We illustrate the use of the abstract
framework just described by proving a new impossibility result for consensus in the
presence of a single mobile failure in the synchronous model. This model, denoted
Mm = (Gm

0 , P m
e , τm,Ψm, FGenm), is described in section 4.2. Recall that Mm is the

standard synchronous model with the failure assumption that in every round m there
can be at most one process im some of whose messages are lost. The environ-
ment’s protocol P m

e is uniform in all states: nondeterministically choose a process
i ∈ {1, . . . , n} and a set T ⊆ {1, . . . , n} and perform the action ({1, . . . , n}, (i, T )),
denoted simply by (i, T ); all processes are scheduled to move in every round. The mes-
sages from i to members of T will be lost. Recall that Ψm makes no restrictions whatso-
ever: it consists of all possible runs consistent with Mm, and FGenm(D)(j, R) = false
for all processes j, runs R, and protocols D.

To get the following impossibility result in Mm, we assume for contradiction that
there is a protocol D solving consensus, and prove three basic claims:

(i) there exists a layering L for Mm that satisfies fault independence;
(ii) SL = SL(D, Mm, Con0) displays crashlike behavior with respect to every sub-

set X of its states; and
(iii) for every state x in a layer of SL, the set L(x) is potence connected.
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The following proof establishes these claims in detail. The general scheme will be the
same in the next sections (and we will not include as many details).

Theorem 7.1. No protocol solves the consensus problem in Mm.

Proof. We start by choosing a layering for Mm. Each layer in this case will consist
of a single action of the environment. We use [k] to denote the set {1, . . . , k}, with
[0] denoting the empty set. Define L = {(i, [k]) : 1 ≤ i ≤ n and 0 ≤ k ≤ n}. To see
that L is a layering of Mm, observe that every layer is an action of the environment and
the admissibility condition Ψm in this model makes no restrictions. Hence, for every
protocol D, every run resulting from an infinite sequence of layers of L is immediately
a run of Mm as desired. Moreover, L satisfies (trivially) fault independence because
no processes are ever considered faulty in Mm.

Assume by way of contradiction that there is a protocol D solving consensus in
Mm. Then the system S = S(D, Mm, Con0) is a system for consensus that satisfies
decision, agreement, and validity. Given that no process is ever considered faulty in
this model, we have by Lemma 5.2 that if there is a bipotent run in S, then the decision
property must fail in S, contradicting the assumption that D solves consensus. We
will complete the proof by demonstrating the existence of a bipotent run in S via
Theorem 6.3. Hence, we next consider the layered system SL = SL(D, Mm, Con0).

Our next goal is to show that there is a bipotent initial state in SL. Notice that,
by definition of L, the environment is able to “silence” any given process j from a
given state on, simply by performing the layer (j, [n]) in all subsequent rounds. The
other processes will have no way to learn anything about j’s state. It immediately
follows that SL displays crashlike behavior with respect to every subset X of its states.
More precisely, we verify that Definition 5.6 holds. Let x, y be two states in a layer of
SL, such that x and y agree modulo j. Let R̂x and R̂y be prefixes of L-runs ending in
x and y, respectively. Then the L-runs Rx = R̂x � (j, [n])∞ and Ry = R̂y � (j, [n])∞

are in SL. Letting Rx = (rx, αx) and Ry = (ry, αy), it is straightforward to verify
that there are times mx, my ≥ 0 such that

(i) rx(mx) = x and ry(my) = y,
(ii) rx(mx + k) and ry(my + k) agree modulo j for all k ≥ 0, and
(iii) every process i �= j that is not failed in x and in y is nonfaulty in Rx and

in Ry.

Recall that S is a system for consensus satisfying decision and validity. As men-
tioned above, SL inherits these properties from S. It now follows from Theorem 5.8
that there is a bipotent initial state in SL.

We are finally in a position to apply Theorem 6.3 to derive the existence of
a bipotent run Rb in SL. To do so, we still need to show that for every state x
of SL, the set L(x) is potence connected. For every pair of processes j, j′ we have
that x · (j, [0]) = x · (j′, [0]) because in both cases no messages are lost in the round
following x. It follows that x · (j, [0]) ∼s x · (j′, [0]). Moreover, for every k < n we have
that x · (j, [k]) ∼s x · (j, [k + 1]), because the two states can differ only in the state
of process k + 1. It follows that L(x) is similarity connected for all x. That L(x) is
potence connected now follows from Lemma 5.7, since S displays crashlike behavior
with respect to L(x). We thus obtain that there exists a bipotent run Rb in SL, and
the run of S that corresponds to Rb is bipotent with respect to S, as desired.

Theorem 7.1 illustrates the fact that it doesn’t take much to make consensus
impossible. The adversary in Mm has fairly limited powers. Furthermore, we obtained
the impossibility with a layering that restricts the adversary even more. We remark
that this result can be obtained by a modification of the proof of a theorem by Santoro
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and Widmayer in [35]. Their analysis involved attaining consensus in the presence of
communication link failures. Their proof is the only one we have found that predates
this paper and that uses a bipotence-based argument in the style of Fischer et al. [20]
in the synchronous context.

7.2. The synchronous lower bound. The analysis we performed for the mo-
bile failure model Mm in the synchronous case should, intuitively, apply equally well
to the standard t-resilient case in the synchronous model. In this model there is a
bound of t on the total number of processes who may fail in the run, and a process
some of whose messages are lost is considered faulty. The well-known lower bound for
this case (originally due to [18, 15]) states that every consensus protocol must require
at least t + 1 rounds in its worst-case run. Roughly speaking, any prefix consisting
of t rounds of a run of Mm can be viewed as a prefix of a run in the standard omis-
sions failure model with at most t failures. (Formally, the only modification required
would be to have the environment’s state record processes that have omitted in the
past.) The impossibility of solving consensus in Mm therefore immediately implies
that there can be no protocol solving consensus in t rounds in the omissions model.
For if one existed, it would also solve consensus in Mm. This argument immediately
implies the (t+1)-round lower bound for the omissions and Byzantine failure models.
We cannot, however, use the impossibility for Mm to derive the lower bound for the
crash failure model. Nevertheless, even in the crash failure model one might expect
to prove that there will exist a bipotent state at the end of round t, and thus derive
the (t + 1)-round lower bound just as in our analysis for Mm. A close inspection,
however, shows that things are not that simple. There will typically not need to be a
bipotent state at the end of round t. But the essence of this idea still works.

We shall now provide the lower bound analysis for the crash failure model and a
number of related failure models at once. We assume the failure model satisfies the
following: (i) in the first round in which a process fails, the environment can block
the delivery of an arbitrary subset of its messages; (ii) the environment can silence a
faulty process forever in all rounds after the first one in which it fails; and (iii) the
environment’s local state keeps track of the processes that have failed. It is easy to
check that it satisfies fault independence. The layers we will focus on will consist of
single environment actions, each corresponding to a single round of the synchronous
model. Specifically, we consider two kinds of actions by the environment:

clean This environment action, applicable at all states, involves no new process
failure. Messages of failed processes are not delivered, but all messages of
nonfailed processes are delivered.

(j, k) This action is applicable to a state x only if fewer than t processes are failed
at x, and process j is not failed at x. As before, messages of failed processes
are not delivered, while all messages of nonfailed processes other than j are
delivered. The messages of j act as with the action (j, [k]) in Mm: Those
addressed to processes up to and including k are not delivered, while the
others are delivered.

We denote the layering consisting of all actions of these types by Lt. Notice that
the number of processes that fail in a run of SLt is at most t, since once t processes
are failed at a state, all later layers will be clean. It is now straightforward to show
the following.

Lemma 7.2. Let M be one of the standard synchronous t-resilient models with
either crash, omission, or Byzantine failures. Let D be a protocol for the processes in
the model M , and let S = S(D, M, Con0). Finally, let x be a state of SLt . Then
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(i) Lt is a layering of M that satisfies fault independence;
(ii) for every state x of SLt the set Lt(x) is similarity connected; and
(iii) if no more than t− 2 processes are failed at x, Lt(x) is potence connected.

Proof. For part (i), recall that in a run of SLt the number of failed processes
does not exceed t. Moreover, every Lt action is a legal action for the environment
in the model M . It follows that Lt is a layering of S. Also, it is easy to check fault
independence.

Part (ii) follows the pattern from Mm: If t processes are failed at x, then the
set Lt(x) consists of the singleton state x � clean and is hence trivially similarity
connected. If fewer than t processes are failed at x, then Lt(x) = {x� clean} ∪ {x�
(j, k)|j not failed in x}. It is straightforward to check that x� (j, k) ∼s x� (j, k +1)
for all j and k < n; additionally, x � clean ∼s x � (j, 0). It follows that Lt(x) is
similarity connected in either case.

Finally, for part (iii), notice that SLt displays crashlike behavior with respect to
every set X consisting of states in each of which at most t − 1 processes are failed.
Since an Lt-action fails at most one new process, if at most t− 2 processes are failed
in x, then Lt(x) is similarity connected by part (ii), and at most t − 1 processes are
failed in any given state of Lt(x). It now follows from Lemma 5.7 that Lt(x) is potence
connected and we are done.

We thus have the following lemma.

Lemma 7.3. Consider the system SLt = SLt(D, M, Con0). Let x0 be a bipotent
state in a layer of SLt in which no more than f processes are failed. Then there is an
Lt-execution with states x0, x1, . . . , xt−f−1, such that xt−f−1 is bipotent and no more
than t− 1 processes are failed in xt−f−1.

Proof. We prove by induction on m, for 0 ≤ m ≤ t− f − 1, that an execution of
the desired form exists, with xm bipotent and where no more than m + f processes
are failed in xm. The basis m = 0 holds by assumption. Assume inductively that
the claim holds for m < t − f − 1. Thus, we have that m + f < t − 1 processes are
failed in xm. By Lemma 7.2(iii) we have that Lt(xm) is potence connected, and by
an argument similar to the one in the proof of Theorem 6.3, there is a bipotent state
xm+1 ∈ Lt(xm). By definition of Lt, the number of failed processes in xm+1 is at
most m + f + 1 ≤ t.

Since Theorem 5.8 guarantees the existence of a bipotent initial state with f = 0
failed processes, Lemma 7.3 immediately implies the existence of a bipotent state
xt−1 at the end of round t − 1. By Lemma 5.3, this gives us a t-round lower bound
for consensus. The true (t + 1)-round lower bound is obtained by showing that two
rounds are still necessary after a bipotent state.

Lemma 7.4. Under the conditions of Lemma 7.2, assume that t ≤ n − 2 and
let D be a protocol for consensus. If x̂ is a bipotent state in a layer of SLt , then there
is a state y ∈ Lt(x̂) in which at least one nonfailed process has not decided.

Proof. Notice that a state x with t failed processes cannot be bipotent, since there
is a unique infinite Lt extension starting at x. Hence, to be bipotent, the state x̂ can
have no more than t − 1 failed processes. By Lemma 7.2(ii), we have that Lt(x̂) is
similarity connected. Since x̂ is bipotent, there are states y0, y1 ∈ Lt(x̂) such that y0 is
0-potent and y1 is 1-potent. The similarity connectivity of Lt(x̂) implies the existence
of states z0, z1 ∈ Lt(x̂) (not necessarily distinct) satisfying z0 ∼s z1 that are 0- and 1-
potent, respectively. Recall that all states of SLt have at most t faulty processes. Since
t ≤ n−2 and z0 and z1 agree modulo j for some j, it follows that there is at least one
process i �= j such that i is not failed in both states and z0

i = z1
i . Assume by way of
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contradiction that every nonfailed process is decided in both z0 and z1. In particular,
i is decided, say with value v. Agreement implies that in both states, every nonfailed
process decides v. It follows that both z0 and z1 are v-potent, and neither of them
is (1− v)-potent, contradicting the assumption that one of them is 0-potent and the
other is 1-potent.

We can now put the two results together and obtain the desired lower bound.
Theorem 7.5. Let t ≤ n − 2. Every t-resilient protocol for consensus in syn-

chronous models where faulty processes can either crash, omit, or behave in a Byzan-
tine fashion has a run in which decision requires at least t + 1 rounds. Moreover, for
t = n− 1, every such protocol has a run in which decision requires at least t rounds.

This result was first proved for crash failures by Dolev and Strong [15], and the
latest version of the proof is in [16]. Our proof here is the first one we are aware
of that is in the style and spirit of the impossibility proofs for the asynchronous
case.7 Moreover, we feel that it is even simpler than the one of [16]. In addition to
generalizing the lower bound for t-resilient consensus, we feel that our proof provides
further insight into the structure of consensus protocols in this model. Let us briefly
consider an example. It is well known [33] that there are t-resilient consensus protocols
that are guaranteed to decide in precisely t + 1 rounds. Thus, the worst-case lower
bound of Dolev and Strong is tight. We call a protocol in which consensus is always
reached in at most t + 1 rounds fast. We can now show the following.

Lemma 7.6. Let D be a fast t-resilient consensus protocol. For every execution
with states x0, x1, . . . , xk, xk+1 of D, if at most k processes have failed by xk, and the
(k + 1)st round is failure-free, then xk+1 cannot be bipotent.

Proof. By assumption, only k processes have failed by xk+1. If xk+1 is bipotent,
then by Lemma 7.3 it can be extended to a run with a bipotent state xt at the end of
t rounds. By Lemma 7.4, two more rounds are necessary for agreement in the worst
case, contradicting the assumption that D is fast.

Clearly, Lemma 7.3 also partially describes the situation in runs in which po-
tentially more than one process can crash in a given round. It matches the upper
(and lower) bounds given in [16], which show roughly that if in some execution k +w
crashes are detected by the end of round k, then agreement can be secured by the
end of round t + 1 − w. Hence, by allowing k + w crashes by the end of round k,
the environment has essentially “wasted” w faults in its quest to delay agreement.
Lemma 7.3 guarantees that the environment has not lost more than w rounds in this
case.

8. Asynchronous message passing. In section 3 we illustrated the layering
technique by proving impossibility of consensus in the asynchronous shared memory
model. The proof was based on a “permutation layering,” in which processes move
one at a time and there is very little concurrency. Our proof of impossibility for Mm,
on the other hand, considered every synchronous round to be a layer, and such a layer
contains a great deal of concurrency. In this section we apply our framework to prove
impossibility for the asynchronous message-passing model. We will give two proofs:
one using a permutation layering based on the proof of section 3 and the other using
a “synchronic layering,” which is very close to the layering used in the synchronous
model Mm. We do this to illustrate the closeness of the different models and to
show the choice and flexibility that are often provided by the layering technique.

7We have recently been informed that Aguilera and Toueg [2] have independently and slightly
later given a proof for this result using a bipotence argument. The structure of their proof is similar
to ours. Bar-Joseph and Ben-Or also reported having found some of the arguments in [7].
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As we have already seen in the shared-memory case, in asynchronous models “slow”
behavior of processes can be used to imitate the omitting behavior in Mm. The small
but crucial difference now will be that, in the asynchronous model, delayed messages
will nevertheless eventually be delivered or, similarly, a slow process that is about to
write a variable will ultimately write the value. In the synchronous model Mm, the
lost messages are gone forever. Hence, to perform a careful analysis of the round by
round evolution, we need to consider as part of the state (i.e., in the environment’s
local state) the status of the messages in transit or, similarly, the current values of
shared variables. In this sense, our treatment goes slightly beyond the scope of most
of the recent work on topological approaches, in which the state of the environment
does not play a role, and asynchronous message-passing models are often somewhat
subtle to deal with.

Consider the standard (see, for example, [20, 31]) asynchronous message-passing
model Mmp in which processes communicate by message passing and both processes
and communication are asynchronous. A process is faulty if it is scheduled to move
only a finite number of times in an infinite run. The celebrated result of Fischer,
Lynch, and Paterson [20] proving the impossibility of solving consensus in the presence
of a single crash failure was carried out in this model. In the asynchronous message-
passing model Mmp, an action for i is a pair: it contains a local action on the variables
of the local state, and a communication action, which is either skipi that does nothing,
or is a sendi(j, m) action, specifying the sending of the message m to process j. The
effect of a sendi(m, j) action is to change the environment’s state by recording the
new message as being in the channel between i and j. For the definition of similarity
among states in this model, we consider the j-component of the environment’s state
to consist of the set of channels whose destinations are process j. Since channels
are point-to-point in this model, components corresponding to different processes are
disjoint. The environment’s actions consist of either scheduling a process i to move,
or delivering a set of one or more messages that have been sent and not yet delivered
to their destination. The fairness conditions in this model are that (a) at most one
process can fail in any given run and (b) every message that is sent to a process that
does not fail in the run must eventually be delivered.

In this model we consider a layering Lmp consisting of all layers of the following
three types:

• [p1, . . . , pn],
• [p1, . . . , pn−1], and
• [p1, . . . , pk−1, {pk, pk+1}, pk+2, . . . , pn] with k < n.

The first two layers are of the same form as in the layering Lrw for the shared-memory
model. In a layer of Lmp, when a process i is scheduled to move it first performs
its action, and then it receives all the messages that have been sent to i by that
point and have not yet been delivered (if any exist). The third type of layer is
considered a full layer, since it involves all processes as the first type does. In this
case, the processes take steps in the linear order given by the sequence, except that pk
and pk+1 move concurrently. Thus, a message sent by one of these two processes
to the other will not be delivered in the current layer. The reason we use the new
third type of layer is that with this particular layering, a transposition in a layer
of the first two types can change the local state of both pk and pk+1. Whereas in
the case of Lrw a move by a process involved either a read or a write, in Lmp when
a process moves it may both send a message and receive messages. Adding a layer
of the third type enables us to take smaller steps, in which at most one process at a
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time will change its state. We identify a layer of the first type with the corresponding
permutation on {1, . . . , n}. For a permutation π = [p1, . . . , pn], we denote the layer
[p1, . . . , pk−1, {pk, pk+1}, pk+2, . . . , pn] of the third type by π{k,k+1}. Notice that the
set notation in layers of the third type is justified, since the exact same sequence of
operations occurs in π{k,k+1} and π{k+1,k}. Hence, for every state x of SLmp(D) and
permutation π we have that x · π{k,k+1} = x · π{k+1,k}.

We can show the following.
Lemma 8.1. Let D be a protocol for the processes in the model Mmp.
(i) Lmp is a layering of Mmp that satisfies fault independence;
(ii) SLmp = SLmp(D, Mmp, Con0) displays crashlike behavior with respect to every

subset X of its states; and
(iii) for every state x in a layer of SLmp , the set Lmp(x) is potence connected.
Proof. (i) Let R be an Lmp-run. By definition, R consists of an infinite sequence

of layers from Lmp. Since in each layer L of Lmp at least n − 1 processes move, in
an infinite number sequence there can be at most one process that fails to take an
infinite number of steps. It follows that at most one process can be faulty in R. Since a
process that moves receives all of the pending messages sent to it, all messages sent to
nonfaulty processes in R are delivered. It follows that the run R′ that corresponds to R
is admissible. It is, in addition, easy to check that Lmp satisfies fault independence,
since Mmp satisfies no finite failure.

Part (ii) follows from the fact that the environment can halt the operation of an
arbitrary process j at any given state by repeatedly performing layers of the form
[1, 2, . . . , j − 1, j + 1, . . . , n] from that state on.

It remains to show part (iii). First notice that just as in the case of Lrw we have
that

x · [p1, . . . , pn−1] · [pn, p1, . . . , pn−1] = x · [p1, . . . , pn] · [p1, . . . , pn−1],

since in both cases exactly the same actions take place in the same order in the two
layers following x. Lemma 5.1(ii) implies that x · [p1, . . . , pn] ∼p x · [p1, . . . , pn−1], and
it follows that every state of Lmp(x) obtained from x by a layer of the second type is
potence connected to a state obtained by a (full) layer of the first type. Let Xf be
the subset of Lmp(x) consisting of states of the form x� L, where L is a full layer. It
remains to show that Xf is potence connected. Since, by part (ii), SLmp(D) displays
crashlike behavior with respect to Xf , Lemma 5.7 implies that it suffices to show that
the set Xf is similarity connected.

We first claim that, for a full layer L = π of the first type and an index k < n,
we have that

x · π ∼s x · π{k,k+1}.

To see why, recall that according to the environment’s actions in a layer of the types
we are considering, a process that is scheduled first performs its action and then
receives the messages that were sent to it and are still in transit. Thus, the actions
of a process pj in the layer x� π depend only on pj ’s local state in x. It now follows
that every process pi with i �= k +1 performs the same actions and receives the same
messages in the layer following x in both x � π and x � π{k,k+1}. The only process
whose state at the end of the layer may differ in the two cases is pk+1. If pk sends
pk+1 a message, it will be delivered in the first case and will remain in the channel
from pk to pk+1 in the second case. Since the channel from pk to pk+1 is part of the
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pk+1-component of the environment’s state,8 the two states agree modulo pk+1 and
are thus similar. The claim follows.

Finally, we use this last claim to argue as in the shared-memory case. Recall
(proof of Lemma 3.5) that Tr(k, π) is the permutation obtained by transposing the
kth and (k+1)st elements in π. Since the order of the concurrent processes in a layer
of the third type is immaterial and since π{k+1,k} = Tr(k, π){k,k+1} we obtain

x · π ∼s x · π{k,k+1} = x · π{k+1,k} = x · Tr(k, π){k,k+1} ∼s x · Tr(k, π),

and we are done, since any layer of the first type can be transformed into any other
by a sequence of transpositions.

Given Lemma 8.1, we can use Theorem 6.3 which, together with Theorem 5.8
and Lemma 5.2, now yields the following.

Theorem 8.2. No protocol solves the consensus problem in Mmp.
Observe that the layers in a given layering need not be of the same length. Indeed,

we saw both full and nonfull layers being used in the permutation layerings above. In
addition, in the permutation layerings we discussed above each process performed at
most one action in a layer. This was chosen for simplicity. In [32], other variants of
permutation layerings are given in which a process may perform many actions in a
layer.

8.1. A synchronic layering. We now sketch a second type of layering for the
asynchronous models we have considered. This one, which we call the synchronic
layering, imitates the synchronous model and yields layered systems of Mmp whose
runs are very close in structure to those of Mm. We shall describe it for the message-
passing model, and a completely analogous treatment works for the asynchronous
shared memory model sketched in section 3 as well.

The synchronic layering, denoted by Ls, is defined as follows. The layers are
denoted by (j, A) or (j, k) with 1 ≤ j ≤ n and 0 ≤ k ≤ n. In the sequence (j, A), all
processes except j move, and then they all receive whatever outstanding messages are
addressed to them (including messages that have just been sent). The “A” in (j, A)
stands for process j being absent from the layer. In an action of the form (j, k), all n
processes move simultaneously, and then all outstanding messages to the processes
are delivered as before, with one exception: If j’s current action is sendj(', m) and
' ≤ k, then this message remains outstanding and is not delivered. Notice that the
actions (j, 0) are all identical and independent of j; they are written this way for ease
of exposition. We think of j as being the “slow” process in the layer defined by (j, n)
or (j, A).

As with the permutation layering, a layer in the synchronic case contributes suf-
ficiently to the fairness requirements made by the model: At least n− 1 processes get
to move in every layer, and all messages that have been sent by the previous layer to
a process that moves are guaranteed to be delivered by the end of the current layer.
It follows that Ls is a layering of Mmp, and it is easy to check that it satisfies fault
independence. Crashlike behavior is immediate as well. To complete the impossibility
argument, one needs to show that Ls(x) is potence connected. The argument for this
uses elements from the proof for Mm and from the proof in the case of permutation
layerings. For every j and every k < n, the states x � (j, k) and x � (j, k + 1) agree

8This is the place where we make use of the notion of j-component in the definition of similarity.
Intuitively, we expect this will be needed whenever message-passing models are considered, in which
messages can be delayed in the channels for more than one “round.”
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modulo process k +1; they can differ at most in the state of k +1 and of the channel
from j to k +1, which is part of the k +1-component of the state. It follows that the
set of states of the form x� (j, k) is similarity connected, and by Lemma 5.7 this set
is also potence connected.

The argument that all of Ls(x) is potence connected uses the diamond property
that

x� (j, n)� (j, A) = x� (j, A)� (j, 0).

To see why this equality is true, notice that in both x�(j, n) and x�(j, A) no process
receives a message from j in the last round. These messages are sent, based on j’s
local state in x, in the last round of x� (j, n), but are only received in the following
round. In the last round of x�(j, A)�(j, 0) process j sends messages to everyone, and
these messages are all received in that round. Notice, however, that these messages
are sent before j has received any new messages following the state x. Hence, the
messages it sends are again based on j’s local state in x. It follows that the same
messages are sent by j in the last round of x� (j, A)� (j, 0) and in the last round of
x � (j, n). Moreover, in both cases these messages are received in the second round
following x. It follows that x� (j, n)� (j, A) and x� (j, A)� (j, 0) are equal.

9. Conclusions. Roughly speaking, we have seen that invariably, when the pro-
cesses follow a protocol D in a given model M , the environment has a simple best
strategy to delay consensus: Start with a bipotent state and, for as long as possible,
find a layer that will cause a transition from the current bipotent state to a successor
state that is also bipotent. If there exists a layering function L for which L(x) can
be shown to be potence connected for all x, then we obtain impossibility. For lower
bounds the analogy is almost (but not quite) complete.

Interestingly, some of the layering functions for the different models turn out to
be extremely similar. Moreover, we believe that the vast majority of lower bounds
and impossibility results for consensus in the different models can be cast in terms of
such layering functions, with essentially the same proof. We feel that this uniformity
provides new insight into the inherent structure of the consensus problem and helps
pinpoint, in a fairly model-independent way, the reason why consensus is difficult.

Our analysis emphasized and focused on the role of connectivity in the structure
of consensus. Indeed, it is straightforward to convert our proofs of the existence of
a bipotent state to ones that show the following, roughly: For a set X of states and
a layering function L, define L(X) = ∪x∈XL(x). Let X0 = Con0, and inductively
define Xk+1 = L(Xk). The proof of Lemma 5.8 shows that X0 is similarity connected
and potence connected (in the presence of a single failure). For the layering functions
we have been discussing it is not hard to modify our proofs to show that, roughly,
if Xk is potence connected then so is Xk+1. Therefore, we have two possible styles
of proofs. First is the FLP [20] style, which we followed in the paper. The strategy
in this case is to show that there is a bipotent initial state and then find a sequence
of successor bipotent states by proving locally the connectivity of the successors of
a bipotent state. The other, more global, type of proof is closer to the topological
approach of works such as [10, 26, 23, 34] and, in particular, [24]. It shows that each
layer Xk is connected, and since it has at least one 0-potent and one 1-potent state,
then it must have a bipotent state. The connectivity of these sets is essentially a
topological property (although clearly the analysis involves no deep topology). As
long as these sets are connected, Lemma 3.8 guarantees that there is a bipotent state
in the set.
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In this paper we dealt with consensus only, but the connectivity properties we
prove hold for arbitrary decision problems as well, and we pursue this line further
in a sequel paper (as described in [32]), where we show how our work generalizes
the necessary conditions of [8] to other models, perhaps more remarkably to the
synchronous model.

It is often useful to ask what knowledge [17] about the state is required by a
process in order to be able to reach a decision. We note that once the protocol is
fixed, as long as the state is bipotent, even an observer with complete information
about the state cannot determine the final outcome. In a precise sense, no knowledge
about the actual state can help the process decide at that point. Indeed, this has been
formally captured in Lemma 5.3. Once the state ceases to be bipotent (and becomes
“unipotent”), however, information about the state can be of use in determining what
value a process should decide on. In fact, the proof of Lemma 7.4 shows that at the
first instant along a run in which the state ceases to be bipotent in the t-resilient
synchronous case, there are often many processes who have insufficient knowledge
to be able to decide. An additional round is sufficient for providing them with this
knowledge, in which case they can safely decide. In summary, as long as the state is
bipotent, there are “structural” reasons why decisions cannot be taken. After that, the
reasons merely involve disseminating the relevant information to all relevant parties.
In particular, in the (t + 1)-round lower bound (Theorem 7.5), t rounds are paid on
account of topological reasons (the need to disconnect the set of global states), while
an additional round is paid on account of the insufficient knowledge available after t
rounds. A similar phenomena may occur in other topology-related problems, such as
the k-set consensus problem in the synchronous case [14], where the tight lower bound
is �t/k�+ 1 rounds.
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Abstract. Let us consider an ordered vector A[1 : n]. If the cost of testing each position is
similar, then the standard binary search is the best strategy to search the vector. This is true in
both the average and worst case. However, if the costs are nonuniform, then the best strategy is not
necessarily the standard binary search. The best algorithm to construct a strategy that minimizes
the expected search cost runs in O(n3) time and requires O(n2) space. The same complexities hold
for the best algorithm to construct a strategy that minimizes the worst case search cost.

Here, we show how to efficiently construct search strategies that are at most at a constant factor
from the optimal one. These constructions take linear time and use only linear space. For both the
problem of minimizing the expected search cost, under uniform access probabilities, and the problem
of minimizing the worst case search cost, we present algorithms that require O(n) space and give a
(2 + ε+ o(1))-approximated solution in O(n) time for any fixed value of ε > 0.
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1. Introduction. Let A = [a1 < · · · < an] be an ordered list of keys with
each key having an associated access cost c(ai). Any search strategy for A can be
represented by a binary search tree (BST) with n nodes, where each node corresponds
to a key of A. Let N(ai, T ) be the set of ancestors of node ai in a BST T . The cost
of searching a key a in a BST T is defined by

∑

x∈N(a,T )

c(x).

The average cost problem (ACP) for the input list A consists of finding a BST
T ∗ that minimizes the expected search cost

EC(T ) =
1

n

n∑
i=1

∑

x∈N(ai,T )

c(x)(1)

in the set of all BSTs for A. Observe that we are assuming uniform access probabilities.
We can discard the 1/n factor and reformulate the ACP as follows: find a BST T ∗

that minimizes the search cost

c(T ) =

n∑
i=1

∑

x∈N(ai,T )

c(x)(2)

in the set of all BSTs for A.
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On the other hand, the worst cost problem (WCP) for the input list A consists
of finding the BST T ∗ that minimizes the worst case access cost

w(T ) = max
i=1,...,n





∑

x∈N(ai,T )

c(x)



(3)

in the set of all BSTs for A. Throughout this paper, we assume without loss of
generality that

∑n
i=1 c(ai) = 1.

Although the problem of searching a sorted array with nonuniform access costs is
a basic problem, an efficient solution for it (in the sense of many applications) is not
known. In [3], Knight uses dynamic programming to devise an O(n3) time algorithm
that requires O(n2) space to construct a search strategy that minimizes the expected
access cost, where n is the number of array positions. His motivation is to solve a
filter design problem. Knight also considers the particular cost structure where the
cost of accessing the ith key is ci = ik for a fixed integer value of k. In this case, he
proves that the expected cost of a standard binary search is at most at a constant
factor from the expected cost of an optimal strategy.

In [7], Navarro et al. considered a more general problem, where the access cost
of a position depends on the previously accessed position. Their motivation was to
minimize the time spent by the disk head during a search on a text indexed by a
suffix array. If the disk head is on track i, then it requires time c(i, j) to go to track
j. They also used dynamic programming to devise two algorithms: one to minimize
the expected search cost and another to minimize the worst case search cost. Both
algorithms run in O(n3) time with O(n2) space requirement. For a particular cost
structure that arises on a tape search problem, Wachs [9] extended Yao quadrangle
inequalities [10] to obtain an O(n2) time algorithm to construct an optimal search
strategy.

As far as we know, all the algorithms proposed to construct optimal strategies for
searching on a sorted array with nonuniform costs are based on dynamic programming.
As a consequence, they do not give much insight on the combinatorial structure of
the optimal search strategy. Moreover, these algorithms run in Ω(n2) time, which
is extremely slow for several applications. On the other hand, simpler and faster
strategies, such as the standard binary search or a greedy strategy that always accesses
the “cheapest” position, achieve only good results for particular cost structures. In
a recent paper [5], the authors proposed an O(n2) time algorithm that constructs
a strategy whose expected cost, under uniform access probabilities, is at most at a
O(log n) factor from the optimal one. In this case, no particular cost structure is
assumed.

1.1. Results. In this paper, our major contribution is to efficiently construct
search strategies that are at most at a constant factor from the optimal one without
assuming anything about the cost structure. These constructions take linear time and
use only linear space.

We propose two algorithms: ACT and WCT. ACT requires O(n) space and gives
a (2+ ε+o(1))-approximated solution for the ACP in O(n) time for any fixed value of
ε > 0. On the other hand, WCT also requires O(n) space and gives a (2 + ε+ o(1))-
approximated solution for the WCP in O(n) time for any fixed value of ε > 0.

1.2. Notation. Let L be a contiguous sublist of the input list A. We use the
following notation throughout this paper:
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c(L): search cost of the BST constructed by ACT for the sublist L;
w(L): worst case cost of the BST constructed by WCT for the sublist L;
ACP(L): average cost problem (ACP) for the input sublist L;
WCP(L): worst cost problem (WCP) for the input sublist L;
c∗(L): search cost of an optimal solution for ACP(L);
w∗(L): worst case access cost of an optimal solution for WCP(L).
A strictly BST is a BST where every internal node has exactly two children. The

level of a node v in a BST T is the number of edges in the path that connects v to the
root of T . Let us define the concept of ancestor in a tree. Every node is an ancestor
of itself. If s is a node, then the parent of any ancestor of s is also an ancestor of s.
We say that a node s1 is a strict ancestor of a node s2 if and only if s1 is an ancestor
of s2 and s2 �= s1.

1.3. Paper organization. This paper is organized as follows. In section 2, we
detail the algorithms ACT and WCT. In section 3, we introduce the partitioning
technique and prove lower bounds on both c∗(L) and w∗(L). In section 4, we analyze
the ACT algorithm. In section 5, we analyze the WCT algorithm. In section 6, we
describe how the two algorithms can be implemented in linear time. Finally, in section
7 we present our conclusions and some open questions.

2. The algorithms. Both ACT and WCT try to balance the following goals:
(i) test the keys with small access costs first;
(ii) produce a reasonably balanced BST.
For that, each key in the input list is ranked according to its cost. In order to

construct a BST, both algorithms use a “smallest-rank-first” rule; that is, the keys
with smaller ranks are always searched before those with greater ranks. This rule
reflects goal (i). Goal (ii) is considered to decide which key, among the keys with
equal ranks, shall be tested first.

Both algorithms use a top-down approach to construct a BST. First, they select
all the keys with the smallest rank in the current input list. Furthermore, every con-
tiguous sublist of nonselected keys is condensed into a single node. After that, both
algorithms construct an auxiliary strictly BST TD, where each internal node corre-
sponds to a selected key and each leaf corresponds to a (possibly empty) condensed
sublist. The only point where ACT and WCT differ is the way that TD is constructed.
Assume that we have already solved the subproblem associated to each sublist rep-
resented by a condensed leaf. Then, both ACT and WCT obtain the final BST by
replacing each condensed leaf of TD by the BST constructed for the associated sub-
problem. In fact, the construction of each BST that will replace each corresponding
condensed leaf is performed by a recursive call. Later in this section, we explain the
construction of TD.

Now, we illustrate ACT with an example. Let us consider a list of keys L =
[a1, . . . , a9] with corresponding costs [0.1, 0.1, 0.05, 0.03, 0.3, 0.1, 0.08, 0.2, 0.04],
where the bold printed costs correspond to the keys with the smallest rank. Figure
1 illustrates the steps performed by ACT when L is the input list. ACT splits L
into seven sublists: L1 = [a1, a2], L2 = [a3], L3 = [], L4 = [a4], L5 = [a5, . . . , a8],
L6 = [a9] and L7 = []. Each of the sublists with even index (L2, L4, and L6) contains
exactly one key. These keys are associated to the internal nodes of the auxiliary BST
TD represented by Figure 1(a). On the other hand, the sublists with odd indices
(L1, L3, L5, and L7) correspond to the condensed leaves of TD. Figures 1(b) and
1(c) represent the BSTs constructed for L1 and L5, respectively. At the end of the
execution, these BSTs replace their corresponding leaves in TD. Moreover, since both
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Fig. 1. (a) The auxiliary strictly BST TD with a3, a4, and a9 corresponding to internal nodes.
(b) The BST constructed by ACT for the subproblem ACP (L1), where L1 = [a1, a2]. (c) The BST
constructed by ACT for the subproblem ACP (L5), where L5 = [a5, a6, a7, a8]. (d) The final BST
TL.

the sublists L3 and L7 are empty, their corresponding leaves are removed from TD.
The resulting BST TL is represented by Figure 1(d).

Now, let us formalize the notion of ranks. Let t be a positive integer number and
let α be a real scaling constant greater than one. In the approximation analysis, we set
the appropriate values for α and t. Assume that the real interval [0, 1) is partitioned
into t + 1 subintervals, where the first subinterval is given by [0, 1/αt) and the ith
interval, for i = 2, . . . , t+ 1, is given by [1/αt−i+2, 1/αt−i+1). We define the rank of a
key aj as the index of the subinterval that contains c(aj). Furthermore, the rank of
a sublist L is defined as the rank of the key with smallest rank in L. We use r(L) to
denote the rank of L.

Observe that, for the example of Figure 1, we may have t = 4 and α = 2. In this
case, since the first subinterval is [0, 1/16), only the keys a3, a4, and a9 have rank one.

A unique pseudocode for both algorithms is presented in Figure 2. The only
difference between them is the construction of the auxiliary strictly BST TD, which is
performed by the CONSACT procedure for ACT and by the CONSWCT procedure
for WCT. Observe that each parameter of CONSACT gives the number of keys that
correspond to a node (leaf or internal node) in the auxiliary tree. On the other hand,
CONSWCT receives as parameter the cost of each BST that will replace each leaf of
TD. Procedure BUILD returns a BST for L and its worst case cost w(TL). The latter
returned value is not used if the problem is an ACP.

In order to improve the approximation ratio of both algorithms, BUILD constructs
an optimal BST for every list L such that |L| ≤ K for a fixed integer parameterK. The
optimal tree is constructed through the cubic time dynamic programming algorithm
proposed in [3].

2.1. The CONSACT procedure. Let us recall the well-known weighted path
length problem. Given a list of weights [w1, . . . , w2n+1], the weighted path length of a
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Function BUILD(L : list of keys)
If |L| ≤ K

TL ← optimal BST for L constructed through dynamic programming
return TL and its worst case cost w(TL);

Let ai1 , ai2 , . . . , aik be the keys of L with rank r(L);
Let also i0 = 0 and ik+1 = |L|+ 1 ;
For j = 1, . . . , k do

Create L2j as the one element list [aij ];
For j = 0, . . . , k do

Create L2j+1 as the list [aij+1, aij+2, . . . , aij+1−1];
For j = 0, . . . , k do

(TL2j+1
, w(TL2j+1

))← BUILD(L2j+1) ;
If THE PROBLEM IS ACP, then

TD ← CONSACT(|L1|, |L2|, . . . , |L2k+1|)
Else

TD ← CONSWCT(w(TL1), w(TL3), . . . , w(TL2k+1
))

For j = 1, . . . , k do
Associate aij to the jth internal node visited in an in-order traversal of TD

For j = 0, . . . , k do
Replace the (j + 1)th leaf of TD, from left to right, by TL2j+1 ;

Let TL be the resulting tree;
Return TL and w(TL);

Fig. 2. Pseudocode for both ACT and WCT.

strictly binary tree T with 2n+ 1 nodes is defined by

n∑
i=0

w2i+1l2i+1 +

n∑
i=1

w2i(l2i + 1),

where li is the level of the ith visited node during an in-order traversal of T . Observe
that the leaf levels are associated to the odd indices, while the internal nodes levels are
associated to the even indices. The weighted path length problem consists of finding a
strictly binary tree that minimizes the weighted path length for a given list of weights.
There are several algorithms to address this problem [4, 6, 2]. CONSACT uses the
linear time approximate algorithm proposed in [2] to construct a strictly binary tree
TD for the list of weights defined by the cardinality of each list Li, that is, the list
of weights [|L1|, |L2|, . . . , |L2k+1|]. In our example, CONSACT gets the parameters
[2, 1, 0, 1, 4, 1, 0] and constructs the tree presented in Figure 1(a).

2.2. The CONSWCT procedure. In [8], Sebö and Waksman proposed an
algorithm to solve the following problem: Given a list of numbers w = [w1, w2, . . . , wq],
find a binary tree T , with q leaves, that minimizes

f(T,w) = max
i=1,...,q

{li + wi},

where li is the level of the ith leaf in T from left to right. Their algorithm runs in
O(q) time.

Let TD be the tree that solves this problem for the list of numbers

[w(L1)αt−r(L)+1, w(L3)αt−r(L)+1, . . . , w(L2k+1)αt−r(L)+1].
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The procedure CONSWCT receives as parameters w(L1), w(L3), . . . , w(L2k+1)
and returns the tree TD, which is constructed by Sebö’s algorithm.

We must note that TD also solves the following problem: Find a tree T that
minimizes

w′(T ) = max
i=0,...,k

{l2i+1/α
t−r(L)+1 + w(L2i+1)},(4)

where l2i+1 is the level of the ith leaf, from left to right, in T . This is true because
we have multiplied only the objective function of the first problem by 1/αt−r(L)+1.

3. Partitioning. Now, let us introduce a technique that provides lower bounds
on both the ACP and WCP.

Let L = [a1, . . . , am] be a list of keys and let T be a BST for L. Now, we
consider a generic partition of L into k nonempty contiguous sublists [a1, . . . , ai1 ],
[ai1+1, . . . , ai2 ], . . . , [aik−1+1, . . . , am]. We use Lj to denote the jth sublist

[aij−1+1, . . . , aij ],

where i0 = 0 and ik = m. We show how to obtain a lower bound on the average
(worst case) search cost of an optimal BST for L as a function of the average (worst
case) search cost of the optimal BSTs for L1, . . . , Lk. We start with a simple lemma.

Lemma 3.1. For all i, with 1 ≤ i ≤ k, there is a key in Li that is an ancestor in
T of all other keys of Li.

Proof. If |Li| = 1, the result is obvious. Hence, we assume that |Li| > 1. In this
case, let a be the key of Li with maximum number of descendants in T . If all the
keys of Li are descendants of a, we are done. Hence, we assume that there is a key b
in Li that is not a descendant of a. We have two cases. If b is an ancestor of a, we
contradict the assumption that a has the maximum number of descendants among
the keys of Li. On the other hand, if b is not an ancestor of a, then let c be the lowest
common ancestor of both a and b. Since T is a BST and Li is a contiguous sublist
of L, then we have that c also belongs to Li. Hence, c has more descendants than a,
which contradicts our assumption that a has the maximum number of descendants
in Li. As a result, there is a key in Li that is an ancestor of all other keys of Li in
T .

If a key a of Li is an ancestor of all other keys of Li in T , then we say that a is the
pivot of Li in T . Given a key a ∈ Li, if a is not the pivot of Li in T , let close(a) be the
closest strict ancestor of a in T that also belongs to Li. Otherwise, let close(a) = a.
We construct a tree Ti for the keys of the sublist Li by using the following procedure.

Procedure CONSTRUCT (T,Li).
For all a ∈ Li, with close(a) �= a, do

If a is in the left subtree rooted at close(a) in T, then
turn a into a left child of close(a) in Ti

else turn a into a right child of close(a) in Ti.

As an example, let L = [a1, . . . , a11], L1 = [a1, a2, a3], L2 = [a4, a5, a6, a7, a8], and
L3 = [a9, a10, a11]. A BST T for L is shown in Figure 3(a). The trees T1, T2, and T3

are shown in Figure 3(b). The number inside each node represents the index of the
corresponding key. In addition, the nodes of L2 are shaded in Figure 3. The pivots
of the sublists L1, L2, and L3 in T are a2, a8, and a10, respectively.

We claim that, for any cost structure, the sum of the search costs of the trees
T1, T2 and T3 in Figure 3(b) is not greater than the search cost of T . This is true
because every ancestor of a key in Ti is also an ancestor of this key in T .
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Fig. 3. (a) BST T for the list [a1, . . . , a11]. (b) BST’s T1, T2 and T3 for the lists L1 =
[a1, a2, a3], L2 = [a4, . . . , a8] and L3 = [a9, a10, a11], respectively.

Now, let us state another simple result.

Lemma 3.2. Given a list L, let T be a BST for L and let Li be a contiguous
sublist of L. Furthermore, let Ti be the tree constructed by CONSTRUCT(T,Li).
Then, Ti is a binary search tree.

Proof. The proof is in Appendix A.

This partition technique can be used to obtain lower bounds for both the ACP
and WCP. As an example, let us assume that the BST T presented in Figure 3(a)
solves ACP(L). Since Ti is a feasible solution for ACP(Li), for i = 1, 2, 3, then the
search cost of Ti is bounded below by c∗(Li). Hence, we can conclude that

c∗(L) ≥ c∗(L1) + c∗(L2) + c∗(L3).(5)

In the same fashion, one can conclude that

w∗(L) ≥ max{w∗(L1), w∗(L2), w∗(L3)}.

These observations yield the following lemma.

Lemma 3.3. Let us assume that L is partitioned into k nonempty contiguous
sublists L1, L2, . . . , Lk. Then,

c∗(L) ≥
k∑
i=1

c∗(Li)

and

w∗(L) ≥ max
i=1,...,k

{w∗(Li)}.

Nevertheless, this kind of lower bound is not enough to assure a constant approx-
imation factor for both WCT and ACT. In the next sections, we show how to sharpen
these lower bounds.
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3.1. Lower bounds. Now, we develop specific lower bounds using the partitions
suggested by both the ACT and the WCT algorithms. For that, let us assume that L is
partitioned by BUILD into the sublists L1, L2, . . . , L2k+1 (lines 5–8 of the pseudocode
presented in Figure 2). The reader should observe that we are not considering the
subpartitioning of L due to the recursive calls to BUILD. Moreover, let us define

I(L) = {i| |Li| > 0 and r(Li) > r(L)}
and

I ′(L) = {2, 4, . . . , 2k}.
3.1.1. The partitioning lower bound for the ACP. Here, we construct a

parametric lower bound on the cost of the tree that solves ACP(L).
First, let us define a parametric problem ACP(L,d). Given a real number d, with

d ≤ mina∈L{c(a)} and an input list L, the problem ACP(L, d) is to find a BST that
minimizes

cd(T ) =
∑
ai∈L

∑

x∈N(ai,T )

(c(x)− d)

in the set of all BSTs for the list L.
The key idea to improve the lower bound given by Lemma 3.3 is to decompose

the cost c(a) of each key a ∈ L into two components d and c(a)− d and then obtain
a lower bound on c∗(L) as the sum of two distinct lower bounds: a lower bound on
a particular instance of ACP(L), where every key in L has the same cost d, and a
lower bound on ACP(L, d). The next theorem formalizes this idea. First, we need
some definitions. We use T ∗L(d) to denote the tree that solves the ACP(L, d). For
the sake of simplicity, we use c∗(L, d), and not cd(T

∗
L(d)), to denote the cost of the

optimal tree for ACP(L, d). When d = 0, we drop d, that is, c∗(L) = c∗(L, 0). Now,
we generalize (improve) the lower bound on c∗(L) given by Lemma 3.3.

Theorem 3.4. Let d1 and d2 be two nonnegative numbers such that d1 + d2 ≤
mina∈L{c(a)}. Then,

c∗(L, d1) ≥ d2 × |L|(log |L| − 1) +
∑

i∈I(L)∪I′(L)

c∗(Li, d1 + d2).

Proof. Let us consider a key a that belongs to a list Li. We use l(a) to denote the
level of a in T ∗L(d1) and NL(a) to denote the set of ancestors of a in T ∗L(d1). Hence,
we have that

c∗(L, d1) =
∑
a∈L

∑

x∈NL(a)

d2 +
∑
a∈L

∑

x∈NL(a)

(c(x)− d1 − d2)

≥
∑
a∈L
d2(l(a) + 1) + c∗(L, d1 + d2),(6)

where the last inequality holds since T ∗L(d1) is a feasible solution for ACP(L, d1 +d2).
Moreover, it follows from Lemma 3.3 that

c∗(L, d1 + d2) ≥
∑

i∈I(L)∪I′(L)

c∗(Li, d1 + d2).(7)
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On the other hand, since
∑
a∈L(l(a) + 1) is the internal path length of a binary

tree, we have that d2
∑
a∈L(l(a) + 1) ≥ d2|L|(log |L| − 1). Hence, from (6) and (7),

we can conclude that

c∗(L, d1) ≥ d2|L|(log |L| − 1) +
∑

i∈I(L)∪I′(L)

c∗(Li, d1 + d2).

For example, if we apply the previous theorem for the partition of Figure 3, we
obtain that

c∗(L, d1) ≥ 27d2 + c∗(L1, d1 + d2) + c∗(L2, d1 + d2) + c∗(L3, d1 + d2).

In particular, for d1 = d2 = 0, we get the lower bound given by (5).

The main lower bound for the ACP, stated later in Theorem 4.1, is obtained by
recursively using the previous result for every sublist of A generated by procedure
BUILD. The values of d1 and d2 are adequately set in that theorem.

In the next theorem, we present a technical result that relates c∗(L) to c∗(L, d1).
This result is used only in the proof of Theorem 4.5, the constant approximation
theorem.

Theorem 3.5. Let 0 ≤ d1 < d2 ≤ mina∈L{c(a)} . Then

c∗(L)

c∗(L, d1)
≤ d2
d2 − d1 .

Proof. Let T ∗L(d1) be the tree that solves ACP(L, d1). Also let NL(a) be the set
of all ancestors of the key a in T ∗L(d1). By definition, we have that

c∗(L, d1) =
∑
a∈L

∑

x∈NL(a)

(c(x)− d1).

In addition, we have

c∗(L) ≤
∑
a∈L

∑

x∈NL(a)

c(x),

since c∗(L) is the optimum cost of ACP(L) and T ∗L(d1) is a feasible solution for this
problem. Hence,

c∗(L)

c∗(L, d1)
≤

∑
a∈L

∑

x∈NL(a)

c(x)

∑
a∈L

∑

x∈NL(a)

(c(x)− d1)
≤ max

a∈L

{
c(a)

c(a)− d1

}
=

c(a∗)
c(a∗)− d1 ,

where a∗ = argmina∈L{c(a)}.
Since d2 ≤ c(a∗), it follows that

c∗(L)

c∗(L, d1)
≤ c(a∗)
c(a∗)− d1 ≤

d2
d2 − d1 .
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3.1.2. The partitioning lower bound for the WCP. In this section, we
improve the lower bound on w∗(L) given by Lemma 3.3. For that, we take into
account the level of the pivots in T ∗W (L), the BST that solves WCP(L). As an
example, in Figure 3, the worst case search cost of the BST T1 corresponding to L1

is a lower bound on the worst case search cost of the BST T for the list L. Let d be a
real number with d ≤ mina∈L{c(a)}. If we take into account the fact that the pivot
of L1 in T , the node with label 2, is on level 2 in T , then we can conclude that the
worst case cost of T1 added to 2d is also a lower bound on the worst case search cost
of T . The next lemma formalizes this idea.

For j ∈ I(L) ∪ I ′(L), let yj be the pivot of the sublist Lj in the tree T ∗W (L).
Furthermore, let lWj be the level of yj in T ∗W (L). We can state the following result.

Lemma 3.6. Let d be a real number such that 0 ≤ d ≤ mina∈L{c(a)}. Then,

w∗(L) ≥ max
i∈I(L)∪I′(L)

{d× lWi + w∗(Li)}.(8)

Proof. Let us consider the key a of Li. The key a has two kinds of ancestors in
T ∗W (L): the ones that belong to Li and the ones that do not belong to Li. Since the
strict ancestors of yi in T ∗W (L) do not belong to Li, then we can conclude that the
cost of searching a in T ∗W (L) is at least

d× lWi +
∑

x∈(NL(a)∩Li)

c(x),

where NL(a) denotes the set of all ancestors of the key a in T ∗W (L). Hence, the cost
of searching the key of Li with worst case access cost in T ∗W (L) is bounded below by

d× lWi + max
a∈Li





∑

x∈(NL(a)∩Li)

c(x)



 .(9)

Observe that the second term of (9) is exactly the worst case access cost of the
BST Ti constructed by CONSTRUCT(T ∗W (L), Li). Since Ti is a feasible solution
for WCP(Li), it follows that its worst case access cost is bounded below by w∗(Li).
Hence, the cost of searching the key of Li with worst case access cost in T ∗W (L) is
bounded below by

d× lWi + w∗(Li).

The result is established by taking the maximum lower bound among all sublists
{Li|i ∈ I(L) ∪ I ′(L)}.

Later, in the analysis of WCT, we relate d to the rank of the list L. More
precisely, we set d = 1/αt−r(L)+2 when r(L) > 1 and d = 0, otherwise. The reader
should observe that, for these settings, d ≤ mina∈L{c(a)}.

4. Analysis of ACT. In this section, we analyze the approximation ratio of
ACT. For that, we need to introduce some ideas and definitions.

Let Z be the set of all nonempty sublists of A that are passed as a parameter
in some call to function BUILD. In addition, let ZK be the set of all sublists of Z
with cardinality greater than K. Recall that, for every list L, with |L| ≤ K, BUILD
constructs an optimal search tree. The main lower bound for the ACP, stated later in
Theorem 4.1, is basically a function of the rank and the cardinality of the lists in Z.
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[a1,...,a 9]

[a1,a2] [a5,...,a 8]

[a5] [a8]

Fig. 4. A tree T(Build).

Similarly, the main upper bound on the search cost of the BST constructed by ACT
(Theorem 4.4) is a function of the rank and the cardinality of the lists in Z.

The lists of Z can be arranged in a tree T (Build) in the following way. Each node
of T (Build) corresponds to a sublist that belongs to Z. The root is the input list
A. Given a sublist L ∈ Z, the children of L in T (Build) correspond to the sublists
{Li|i ∈ I(L)}. Note that the sublists L2, L4, . . . , L2k are not passed as a parameter
of function BUILD, and, as a consequence, they do not appear in T (Build).

Observe that Theorem 3.4 gives a lower bound on c∗(L) as a function of L and
its children in T (Build). On the other hand, an upper bound on c(L) presented later
in this section (Corollary 4.3) is also a function of L and its children in T (Build).
As a result, by recursively evaluating these upper (lower) bounds, we can express an
upper (lower) bound on c(A) (c∗(A)) as a function of all the lists corresponding to
the nodes of T (Build). That is exactly the approach used in the proofs of Theorems
4.4 and 4.1.

As an example of T (Build), consider the input list A = [a1, . . . , a9] with cor-
responding costs [0.1, 0.1, 0.05, 0.03, 0.3, 0.1, 0.08, 0.2, 0.04]. Moreover, assume that
α = 2, t = 4, and K = 2. Figure 4 shows a tree T (Build) for this example. In this
case, we have that Z2 = {[a1, . . . , a9], [a5, . . . , a8]} and Z − Z2 = {[a1, a2], [a5], [a8]}.

We use g(L) to denote the rank of the parent of L in T (Build); that is, if L is a
child of L′ in T (Build), then g(L) = r(L′). For the input list A, we define g(A) = −∞.
Finally, we use TL to denote the tree constructed by ACT for the list L.

4.1. Lower bounds. In this section, we obtain a lower bound on the cost of
the optimal BST for the input list A. For that, we apply the partition technique
developed in section 3. We define

R(L) =

{
0 if r(L) = 1,
1/αt−r(L)+2 if r(L) > 1.

Observe that R(L) is a lower bound on the cost of the keys of L, that is, R(L) ≤
mina∈L{c(a)}. If L′ is the parent of L in T (Build), then we define G(L) = R(L′).
For the input list A, G(A) = 0.

The following theorem gives a lower bound on the cost of the tree that solves the
ACP for an input list A.
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Theorem 4.1.

c∗(A) ≥ max



1,

∑
L∈ZK

(R(L)−G(L)) |L|(log |L| − 1) +
∑

L∈(Z−ZK)

c∗(L,G(L))



 .

Proof. Basically, the proof is obtained by applying Theorem 3.4, recursively,
starting with the input list A. For a complete proof, see Appendix B.

4.2. Upper bounds. In this section, we obtain an upper bound on the cost
c(A) of the tree TA constructed by the ACT algorithm for the input list A. The main
upper bound stated in Theorem 4.4 is a function of both the cardinality and the rank
of the lists in Z.

Let L be a list that belongs to Z. We consider two cases separately: (i) |L| ≤ K
and (ii) |L| > K.

In case (i), we have that

c(L) ≤ c∗(L),(10)

since ACT constructs an optimal BST for L when |L| ≤ K.
Now, we consider case (ii). The next theorem gives an upper bound on c(L) as a

function of the levels of nodes of the BST constructed by CONSACT.
Theorem 4.2. For j ∈ I(L) ∪ I ′(L), let lj be the level of the node associated

to the sublist Lj in the tree TD constructed by CONSACT for the input parameters
|L1|, |L2|, . . . , |L2k+1|. Then,

c(L) ≤ 1

αt−r(L)+1


 ∑

j∈I(L)

|Lj |lj +
∑

j∈I′(L)

(lj + 1)


+

∑

j∈I(L)

c(Lj).

Proof. Let us consider a key a that belongs to a sublist Lj with j ∈ I ′(L)∪ I(L).
The key a has two kinds of ancestors in TL: the ones that belong to Lj and the
ones that do not belong to Lj . The construction of TD implies that every ancestor
of a that does not belong to Lj is an internal node in TD with rank equal to r(L).
Moreover, the number of ancestors of a that do not belong to Lj is lj . Hence, the
cost of searching a in TL is bounded above by

lj
αt−r(L)+1

+
∑

x∈(NL(a)∩Lj)

c(x),

where NL(a) denotes the set of all ancestors of the key a in TL.
Adding the previous upper bound for all the keys of Lj , we obtain the following

upper bound on the cost of searching the keys of Lj in TL:

∑
a∈Lj


 lj
αt−r(L)+1

+
∑

x∈(NL(a)∩Lj)

c(x)


 =

|Lj |lj
αt−r(L)+1

+ c(Lj).

Hence, by adding the previous upper bound for all sublists Lj , with j ∈ I(L) ∪
I ′(L), we obtain that

c(L) ≤ 1

αt−r(L)+1


 ∑

j∈I(L)

|Lj |lj +
∑

j∈I′(L)

lj


+

∑

j∈I′(L)

c(Lj) +
∑

j∈I(L)

c(Lj).
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The result is established by observing that c(Lj) ≤ 1/αt−r(L)+1 for j ∈ I ′(L).
Now, we refine the previous result obtaining an upper bound on c(L) as a function

of both the cardinality and the rank of the lists that are children of L in T (Build).
For that, we take into account the fact that CONSACT uses the algorithm presented
in [2] to construct a BST. We remark that the following result also holds if CONSACT
uses the algorithm proposed in [6] instead of the one presented in [2].

Corollary 4.3.

c(L) ≤ 1

αt−r(L)+1


|L| log |L|+ 2|L| −

∑

i∈I(L)

|Li| log |Li|

+

∑

i∈I(L)

c(Li).

Proof. In [2], an approximation algorithm, say DPDS, is presented to solve
the weighted path length problem. In particular, Theorem 7 of [2] states that if
h1, . . . , h2n+1 are the levels of the nodes of the BST constructed by DPDS for the list
of weights w1, . . . , w2n+1, then

n∑
i=0

w2i+1h2i+1 +

n∑
i=1

w2ih2i ≤
(

2n+1∑
i=1

wi

)
log

(
2n+1∑
i=1

wi

)
−

2n+1∑
i=1

wi logwi

+ wmax − w1 − w2n+1 +

2n+1∑
i=1

wi,

where wmax = maxi=0,...,n{w2i+1}. We point out that the previous inequality is stated

in [2] as a function of probabilities p1, . . . , p2n+1, where pi = wi/
∑2n+1
i=1 wi.

Here, we need the weaker upper bound

n∑
i=0

w2i+1h2i+1 +

n∑
i=1

w2ih2i ≤
(

2n+1∑
i=1

wi

)
log

(
2n+1∑
i=1

wi

)
−

2n+1∑
i=1

wi logwi + 2

2n+1∑
i=1

wi.

Since l1, . . . , l2k+1 are the levels of the nodes of the BST TD, constructed by
CONSACT for the list of weights [|L1|, . . . , |L2k+1|], it follows from the discussion
above that

∑

j∈I(L)

|Lj |lj +
∑

j∈I′(L)

(lj + 1) ≤ |L| log |L|+ 2|L| −
∑

j∈I(L)

|Lj | log |Lj |.

Hence, it follows from the previous inequality and from Theorem 4.2 that

c(L) ≤ 1

αt−r(L)+1


|L| log |L|+ 2|L| −

∑

i∈I(L)

|Li| log |Li|

+

∑

i∈I(L)

c(Li).

Now, we can state the main upper bound on the cost of the BST constructed by
ACT for the input list A.

Theorem 4.4.

c(A) ≤
∑
L∈ZK

( |L| log |L|
αt−r(L)+1

− |L| log |L|
αt−g(L)+1

+
2|L|

αt−r(L)+1

)
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+
∑

L∈(Z−ZK)

(
c∗(L)− |L| log |L|

αt−g(L)+1

)
.

Proof. This result can be proved by induction on the level of T (Build) as we did
in Theorem 4.1. For a complete proof we refer to Appendix C.

4.3. Approximation. In this section, we prove that ACT obtains a (2+ε+o(1))-
approximated solution for the ACP. For that, we basically compare the lower bound
given by Theorem 4.1 with the upper bound given by Theorem 4.4. Let us assume
that K ≥ 2.

Theorem 4.5.

c(A)

c∗(A)
≤ n log n+ 2n

αt
+ max

{
α

α− 1
,
α(α− 1) log(K + 1) + 2α2

(α− 1)(log(K + 1)− 1)

}
.

Proof. If |A| ≤ K, ACT generates the optimal BST. Hence, we assume that
|A| > K. We divide our analysis into two cases:

(i) r(A) = 1;
(ii) r(A) > 1.
First, we analyze case (i). It follows from Theorem 4.4 that

c(A) ≤ |A|(log |A|+ 2)

αt
(11)

+
∑

L∈(ZK−{A})

( |L| log |L|
αt−r(L)+1

− |L| log |L|
αt−g(L)+1

+
2|L|

αt−r(L)+1

)
+

∑

L∈(Z−ZK)

c∗(L).

On the other hand, Theorem 4.1 assures that

c∗(A) ≥ max



1,

∑
L∈ZK

(R(L)−G(L)) |L|(log |L| − 1) +
∑

L∈(Z−ZK)

c∗(L,G(L))



 .

Dividing (11) by the previous inequality, and using the facts that 1/αt−r(L)+1 =
αR(L) and αG(L) ≤ 1/αt−g(L)+1 , for L ∈ ZK − {A}, we obtain that

c(A)

c∗(A)
≤ |A| log |A|+ 2|A|

αt

+

∑

L∈(ZK−A)

α(R(L)−G(L))|L| log |L|+ 2αR(L)|L|+
∑

L∈(Z−ZK)

c∗(L)

∑
L∈ZK

(R(L)−G(L)) |L|(log |L| − 1) +
∑

L∈(Z−ZK)

c∗(L,G(L))
.

Now, let

P = max
L∈(Z−ZK)

{
c∗(L)

c∗(L,G(L))

}
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and

Q = max
L∈(ZK−A)

{
α(R(L)−G(L)) log |L|+ 2αR(L)

(R(L)−G(L))(log |L| − 1)

}
.

Hence, we have that

c(A)

c∗(A)
≤ |A| log |A|+ 2|A|

αt
+ max{P,Q}.(12)

Now, let us analyze P . Observe that 0 ≤ G(L) < R(L) ≤ mina∈L{c(a)} for all
L ∈ (Z − ZK). Hence, it follows from Theorem 3.5 that

P = max
L∈(Z−ZK)

{
c∗(L)

c∗(L,G(L))

}
≤ max
L∈(Z−ZK)

{
R(L)

R(L)−G(L)

}
.(13)

Since G(L) ≤ R(L)/α, then

P ≤ max
L∈(Z−ZK)

{
R(L)

R(L)−G(L)

}
≤ α

α− 1
.(14)

Now, let us analyze Q. Since G(L) ≤ R(L)/α and |L| > K, for all L ∈ (ZK −A),
we have that

Q ≤ α log(K + 1)

log(K + 1)− 1
+

2α2

(α− 1)(log(K + 1)− 1)
.(15)

Let |A| = n. It follows from (12), (14), and (15) that

c(A)

c∗(A)
≤ n log n+ 2n

αt
+ max

{
α

α− 1
,
α(α− 1) log(K + 1) + 2α2

(α− 1)(log(K + 1)− 1)

}
.(16)

Case (ii), where r(A) > 1, is similar. The only difference is that we do not need
to consider the list A separately. Hence, the term (n log n+ 2n)/αt does not appear
in the right-hand side of (16).

Corollary 4.6. The ACT algorithm is (2 + ε + o(1))-approximated for any
ε > 0.

Proof. Let ε > 0. Then, set α = 2, t = 2 log n, and K = 21+10/ε − 1. It follows
from Theorem 4.5 that

c(A)

c∗(A)
≤ n log n+ 2n

n2
+ 2 + ε.

5. WCT analysis. Here, we prove a constant approximation ratio for WCT.
Recall that we have defined T ∗W (L) as the optimal tree for WCP(L). We define Tpv(L)
as the tree that connects the pivots of the sublists {Li|i ∈ I ′(L) ∪ I(L)} in T ∗W (L).
More precisely, given a pivot yi, let close(yi) be the closest strict ancestor of yi in
T ∗W (L) that also belongs to {yi|i ∈ I ′(L) ∪ I(L)}. Tpv(L) is constructed by the
following procedure:
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For all y ∈ {yi|i ∈ I ′(L) ∪ I(L)} do
If y is in the left subtree rooted at close(y) in T ∗W (L), then

turn y into a left child of close(y) in Tpv(L)
else turn y into a right child of close(y) in Tpv(L)

Figure 5(b) shows an example of a tree Tpv(L) for the case where L = [a1, . . . , a9],
L1 = [a1, a2], L2 = [a3], L3 = [], L4 = [a4], L5 = [a5, . . . , a8], L6 = [a9], L7 = [] and
T ∗W (L) is the tree of Figure 5(a).

[a3]

[a9]

[a4]

[a1]

[a2]

[a
7
]

[a6]

[a5] [a8]

(a)

[a3]
[a9]

[a4]

[a2] [a6]

(b)

Fig. 5. (a) An optimal tree T ∗
W (L) for L = [a1, . . . , a9]. (b) The corresponding tree Tpv(L) for

L1 = [a1, a2], L2 = [a3], L3 = [], L4 = [a4], L5 = [a5, . . . , a8], L6 = [a9], and L7 = [].

Proposition 5.1. Tpv(L) is a BST.
Proof. We omit this proof, since it is similar to that of Lemma 3.2.
Our strategy to prove the constant approximation ratio for WCT is to obtain a

lower bound on w∗(L) as a function of the levels of the nodes in Tpv(L) and to obtain
an upper bound on w(L) as a function of these same levels.

Now, we state a combinatorial lemma that will be used later to relate the levels
of leaves in the tree TD constructed by CONSWCT with the levels of the nodes in
Tpv(L).

Lemma 5.2. For i ∈ I(L) ∪ I ′(L), let li be the level of yi in Tpv(L). Then, there
is a BST T ′ formed by the pivots {yi : i ∈ I(L) ∪ I ′(L)} such that

(i) if i ∈ I(L), then yi is a leaf in T
′, where its level is at most 2li + 2;

(ii) if i ∈ I ′(L), then yi is a node (leaf or internal node) in T
′, where its level is

at most 2li.
Proof. The proof is in Appendix D.

5.1. Lower bounds. In this section, we present lower bounds on w∗(L). The
main lower bound, stated in the next lemma, follows from a direct application of
Lemma 3.6.

Lemma 5.3. Let li be the level of yi in Tpv(L). If r(L) = 1, then

w∗(L) ≥ max
i∈I(L)∪I′(L)

{w∗(Li)}.(17)

On the other hand, if r(L) > 1, then

w∗(L) ≥ max
i∈I(L)∪I′(L)

{li/αt−r(L)+2 + w∗(Li)}.(18)
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Proof. Clearly, if lWi is the level of yi in T ∗W (L), then we have li ≤ lWi for
all i ∈ I(L) ∪ I ′(L). Hence, we establish the lower bounds given by (17) and (18)
applying Lemma 3.6 with d = 0 and with d = 1/(αt−r(L)+2), respectively.

Next, we prove a simple lower bound on w∗(L) that is exclusively used in the
approximation analysis for the case where L ≤ K. The reader should observe that
the lower bound given by Lemma 5.3 cannot be applied for such a list since it is not
partitioned by procedure BUILD, that is, I(L) ∪ I ′(L) = ∅.

Proposition 5.4. Let L be a sublist of A with r(L) > 1. Then,

w∗(L) ≥ log(|L|+ 1)

αt−r(L)+2
.

Proof. Observe that w∗(L) is bounded below by the cost of an optimal tree T ∗ for
a list of |L| keys with costs equal to 1/αt−r(L)+2. Furthermore, observe that T ∗ is a
balanced tree, and its worst case access cost is not smaller than log(|L|+1)/αt−r(L)+2,
which establishes the proposition.

5.2. Upper bounds. In this section, we obtain upper bounds on w(L). We
start with a simple lemma that gives an upper bound as a function of the leaf levels
of the tree constructed by CONSWCT.

Lemma 5.5. Let TD be the tree constructed by CONSWCT for the input param-
eters w(L1), w(L3), . . . , w(L2k+1). Then,

w(L) ≤ w′(TD) = max
i=0,...,k

{
lD2i+1/α

t−r(L)+1 + w(L2i+1)
}
,

where lD1 , l
D
3 , . . . , l

D
2k+1 are the leaf levels of TD.

Proof. Let a be the key with maximum search cost in TL and let NL(a) be the
set of ancestors of a in TL. Moreover, assume that a ∈ Li, where i ∈ I(L) ∪ I ′(L).

If i ∈ I(L), then

w(L) =
∑

x∈NL(a)∩Li

c(x) +
∑

x∈NL(a)−Li

c(x) = w(Li) +
∑

x∈NL(a)−Li

c(x),

where the last inequality follows from the fact that a is also the key with maximum
search cost in TLi . Moreover, since the cost of every internal node of TD is bounded
above by 1/αt−r(L)+1, we obtain that

w(L) = w(Li) +
∑

x∈NL(a)−Li

c(x) ≤ w(Li) + lDi /α
t−r(L)+1 ≤ w′(TD).

On the other hand, if i ∈ I ′(L), then

w(L) =
∑

x∈NL(a)

c(x) ≤ max{lDi−1, l
D
i+1}/αt−r(L)+1 ≤ w′(TD).

Now, we prove the main upper bound, which is a function of the node levels of
the tree Tpv(L). Roughly speaking, this upper bound is a factor of 2α larger than
the lower bound given by Lemma 5.3. The key idea in the proof of the main upper
bound is to show that w′(TD) ≤ w′(T ′′), where T ′′ is a BST obtained by adding some
particular leaves to the BST T ′ given by Lemma 5.2.
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Lemma 5.6. Let li be the level of yi in Tpv(L). Then,

w(L) ≤ max
i∈I(L)∪I′(L)

{
2li + 2

αt−r(L)+1
+ w(Li)

}
.(19)

Proof. For the sake of simplicity, let γ(L) = 1/αt−r(L)+1. Let T ′ be the BST
given by Lemma 5.2 and let l′i be the level of yi in T ′ for i ∈ I(L) ∪ I ′(L). For
i ∈ {1, 3, . . . , 2k + 1} − I(L), define

l′i =




l′2 + 1 if i = 1,
max{l′i−1, l

′
i+1}+ 1 if 1 < i < 2k + 1,

l′2k + 1 if i = 2k + 1.

This last definition gives the levels of the leaves corresponding to the empty
sublists {Li|i ∈ {1, 3, . . . , 2k + 1} − I(L)} in a BST T ′′ obtained from T ′ by adding
such leaves. Moreover, we have that

w′(T ′′) = max
i=1,3,...,2k+1

{l′iγ(L) + w(Li)} .(20)

Now, let i∗ be the index that maximizes the right-hand side of (20). If i∗ ∈ I(L), it
follows from Lemma 5.2 that l′i∗ ≤ 2li∗ +2. Hence, if i∗ ∈ I(L), we have that l′i∗γ(L)+
w(Li∗) ≤ (2li∗ + 2)γ(L) +w(Li∗). On the other hand, if i∗ ∈ {1, 3, . . . , 2k+ 1}− I(L),
we have that l′i∗ = l′j + 1 for some j ∈ I ′(L). Then, it follows from Lemma 5.2 that
l′i∗ ≤ 2lj+1, and, as a consequence, l′i∗γ(L)+w(Li∗) = l′i∗γ(L) ≤ (2lj+2)γ(L)+w(Lj).
This analysis allows us to conclude that

w′(T ′′) ≤ max
i∈I(L)∪I′(L)

{(2li + 2)γ(L) + w(Li)} .(21)

Since T ′′ is a feasible solution for the problem defined at the end of section 2.2
and TD is an optimal solution for this same problem, we have that w′(TD) ≤ w′(T ′′).
Hence, it follows from inequality (21) and from Lemma 5.5 that

w(L) ≤ w′(TD) ≤ w′(T ′′) ≤ max
i∈I(L)∪I′(L)

{(2li + 2)γ(L) + w(Li)} .

5.3. Approximation. Here, we prove a constant approximation for WCT. The
next lemma shows how to relate w(A) and w∗(A) when r(A) = 1, while Lemma 5.8
shows how to relate w(L) and w∗(L) when r(L) > 1. The constant approximation
ratio stated later in Theorem 5.9 is obtained by recursively applying Lemmas 5.7 and
5.8.

Lemma 5.7. Let us assume that the input list A is partitioned by BUILD into
the sublists A1, A2, . . . , A2k+1. Moreover, let us assume that r(A) = 1 and that Am =
argmax{w(Ai)|i ∈ {1, 2, . . . , 2k + 1}}. Then,

w(A)

w∗(A)
≤ n log n+ n

αt
+
w(Am)

w∗(Am)
.

Proof. For the sake of simplicity, we assume that CONSWCT builds a balanced
tree when r(A) = 1. Hence, we have that w(A) ≤ (log n+1)/αt+w(Am). The lemma
is established by using the facts that w∗(A) ≥ w∗(Am) > 0 and w∗(A) ≥ 1/n.

Now, we show how to compare the upper bound given by Lemma 5.6 with the
lower bounds given by Lemma 5.3 and by Proposition 5.4.
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Lemma 5.8. Let us assume that BUILD is called with parameter L such that
r(L) > 1 and |L| > K. Furthermore, let p be the index that maximizes the right-hand
side of (19). If |Lp| > K, then

w(L)

w∗(L)
≤ max

{
2α,

2/αt−r(L)+1 + w(Lp)

w∗(Lp)

}
.(22)

Otherwise, if |Lp| ≤ K, then
w(L)

w∗(L)
≤ 2α

log(K + 1)
+ 2α.(23)

Proof. First, let us consider that case where |Lp| > K. By Lemma 5.6, we have
that w(L) ≤ (2lp + 2)/αt−r(L)+1 +w(Lp). Moreover, it follows from Lemma 5.3 that
w∗(L) ≥ lp/αt−r(L)+2 + w∗(Lp). Dividing the upper bound on w(L) by the lower
bound on w∗(L), we obtain that

w(L)

w∗(L)
≤ 2lp/α

t−r(L)+1 + 2/αt−r(L)+1 + w(Lp)

lp/αt−r(L)+2 + w∗(Lp)
,

which yields to (22). Next, let us consider that case where |Lp| ≤ K. In this case, we
have that w(L) ≤ (2lp + 2)/αt−r(L)+1 + w∗(Lp), since BUILD constructs an optimal
BST for Lp. Hence, we have that

w(L)

w∗(L)
≤ 2/αt−r(L)+1

w∗(L)
+

2lp/α
t−r(L)+1 + w∗(Lp)

lp/αt−r(L)+2 + w∗(Lp)
≤ 2/αt−r(L)+1

w∗(L)
+ 2α.(24)

Nevertheless, it follows from Proposition 5.4 that w∗(L) ≥ log(K + 1)/αt−r(L)+2.
The result is established replacing this lower bound in the right-hand side of (24).

The following theorem provides an approximation factor for WCT.
Theorem 5.9.

w(A)

w∗(A)
≤ n log n+ n

αt
+

2α2

(α− 1) log(K + 1)
+ 2α.

Proof. If |A| ≤ K, then w(A)/w∗(A) = 1. Hence, we assume that |A| > K. An
upper bound on the ratio w(A)/w∗(A) can be constructively obtained as follows.
Step 1. Obtain an initial upper bound on the ratio w(A)/w∗(A) by applying either

Lemma 5.7 or Lemma 5.8, depending whether or not r(A) = 1.
Step 2. While the current upper bound depends on the ratio w(L)/w∗(L) for a sublist

L of A, replace the ratio w(L)/w∗(L) by the upper bound on this ratio given
by Lemma 5.8.

First, let us assume that r(A) = 1. It follows from Lemma 5.7 that

w(A)

w∗(A)
≤ n log n+ n

αt
+
w(Am)

w∗(Am)
.

Let L0 = Am. Given Li, define Li+1 as the sublist of Li that is used by Lemma
5.8 to provide an upper bound on w(Li)/w∗(Li). Let g be the largest integer such
that |Lg| > K. By applying Step 2 g times, we obtain that

w(A)

w∗(A)
≤ n log n+ n

αt
+

g∑
i=1

2/αt−r(L
i−1)+1

w∗(Li)
+
w(Lg)

w∗(Lg)
.(25)
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Moreover, we have that

g∑
i=1

(
2

αt−r(Li−1)+1

)
≤ 2

αt−r(Lg−1)+1

∞∑
i=0

(
1

αi

)
≤ 2/αt−r(L

g)+1

α− 1
(26)

and that

log(K + 1)

αt−r(Lg)+2
≤ w∗(Lg) ≤ w∗(Li)(27)

for i = 0, . . . , g − 1. By combining (25), (26), and (27), we obtain that

w(A)

w∗(A)
≤ n log n+ n

αt
+

2α

log(K + 1)(α− 1)
+
w(Lg)

w∗(Lg)
.

Since |Lg+1| ≤ K, it follows from Lemma 5.8 that

w(A)

w∗(A)
≤ n log n+ n

αt
+

2α2

log(K + 1)(α− 1)
+ 2α.

If r(A) > 1, then the term (n log n + n)/αt is removed from the approximation
ratio.

Corollary 5.10. The WCT algorithm is (2 + ε + o(1))-approximated for any
ε > 0.

Proof. For any ε > 0, we can set α = 1+ ε/4, t = �2 logα n� and K = 216α2/ε2−1.
In this case, it follows from Theorem 5.9 that

w(A)

w∗(A)
≤ n log n+ n

n2
+ ε/2 + (2 + ε/2).

6. Implementation. In this section, we describe how to implement both algo-
rithms in O(n) time. For that, we initially set α = 2 and t = �log n2�.

Let r(ai) be the rank of the key ai. We can calculate the ranks of all keys in
O(n) time by constructing a table T with 2n entries, where the value of the jth entry
T [j] is equal to �log(j + 1)� + 1 for j = 0, . . . , 2n − 1. Observe that this table can
be computed in O(n) time because the expression �log(j + 1)�+ 1 has only O(log n)
distinct values. In order to calculate the rank of ai, we check if c(ai) < 2�logn�−t. In
the affirmative case, the rank of ai is T [�c(ai) × 2t�]. Otherwise, if c(ai) < 1, then
the rank of ai is given by T [�c(ai) × 2t−�logn��] + �log n�. Finally, if c(ai) = 1, then
we set r(ai) = 1. In Appendix E, we show how to compute the ranks for α = 21/p,
where p is a given integer larger than 1.

Let us assume that BUILD is called with the input parameter L. If |L| ≤ K, then
the optimal tree is constructed through a dynamic programming algorithm, which
takes O(|L|3) time. Now, we assume that |L| > K. If BUILD traverses the list L to
obtain the keys with rank r(L), then it spends O(|L|) time. Let k(L) be the number
of keys in L with rank r(L). The other operations performed by BUILD, including
the call to CONSACT (CONSWCT), spend O(k(L)). Hence, the time complexity
of both algorithms can be calculated by adding the time effort due to every call to
BUILD. We get the following time complexity:

O


 ∑
L∈ZK

k(L) +
∑
L∈ZK

|L|+
∑

L∈(Z−ZK)

|L|3

 ,
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where both Z and ZK are defined at the beginning of section 4.
Since two different lists in (Z − ZK) do not overlap, then

∑

L∈(Z−ZK)

|L|3 = O(nK2),

which is linear in n for a fixed K. Moreover,

∑
L∈ZK

k(L) = O(n).

Unfortunately, for some bad instances,
∑
L∈ZK

|L| is Θ(n log n). Hence, a direct
implementation takes O(n log n) time.

In order to reduce the time complexity, we shall avoid traversing the entire list
L to find the keys with rank r(L). If we find these keys in O(k(L)) time, then the
overall time complexity is reduced to O(n). For that, we do some preprocessing.

6.1. Preprocessing. First, we spend O(n) time to create t + 1 doubly linked
lists R1, . . . , Rt+1. The list Ri contains the keys of A with rank i ordered by their
indices.

Afterwards, we solve the range minimum query (RMQ) problem for the rank vec-
tor [r(a1), r(a2), . . . , r(an)]. Given a vector of numbers [x1, x2, . . . , xn] and i < j, the
RMQ problem is to find the index of a minimum element in the range [xi, xi+1, . . . , xj ].
Bender and Farach-Colton showed that every query can be responded in O(1) time
after preprocessing the input vector [x1, x2, . . . , xn] in linear time [1]. Therefore, for
every list L, one can obtain the keys of L with rank r(L) in O(k(L)) time as follows:

1. Find a key with minimum rank in L in O(1) time using the Bender’s algo-
rithm.

2. Traverse the k(L) keys of L with rank r(L) using the double linked list Rr(L).

7. Conclusions. In this paper, we proposed two linear time algorithms with
constant approximation ratios for binary searching with nonuniform costs. We have
considered both the worst case and the average case problems. For the average case, we
have assumed uniform probabilities. It would be interesting to devise a fast algorithm
with a good approximation ratio for the general case where the probabilities are
also nonuniform. Another interesting question is to determine whether there exists a
unique approximate algorithm for both criteria: the worst case cost and the average
cost.

Appendix A. Proof of Lemma 3.2. We can prove by induction on the size
of Li that Ti is a BST rooted by the pivot of Li. If |Li| = 1, the result holds since
a unique node is a BST. Let us assume that the result holds for every sublist with
less than k keys and let us consider the case where |Li| = k. Let a be the pivot of
Li and let L1

i and L2
i be the sublist of L containing the keys smaller than a and the

sublist of L containing the keys greater than a, respectively. Let T 1
i (T 2

i ) be the tree
constructed by CONSTRUCT(T,L1

i ) (CONSTRUCT(T,L2
i )). By induction, both T 1

i

and T 2
i are BSTs rooted by the pivots of L1

i and L2
i , respectively. Moreover, only the

pivot of L1
i (L2

i ) is a left (right) child of a in Ti because for all other nodes of L1
i (L2

i ),
the pivot of L1

i (L2
i ) is closer than a in T . As a result Ti is a BST.

Appendix B. Proof of Theorem 4.1. Since
∑n
i=1 ci = 1, then c∗(A) cannot

be smaller than 1.
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We define Zi and ZiK , respectively, by

Zi = {L|L ∈ Z and L is at level at most i in T (Build)}
and

ZiK = {L|L ∈ Zi and |L| > K}.
Now, let l be a nonnegative integer number. In order to establish the theorem,

we prove that

c∗(A) ≥
∑

L∈Zl
K

(R(L)−G(L)) |L|(log |L| − 1) +
∑

L∈(Zl+1−Zl
K

)

c∗(L,G(L)).(28)

Observe that (28) implies on the correctness of the theorem, since if we set l equal
to the height of T (Build), then we obtain that ZlK = ZK and Zl+1 = Z.

Now, we prove the correctness of (28) by induction on l. The basis is l = 0.
If |A| ≤ K, then the result follows from the fact that Z1 = {A}, Z0

K = ∅, and
G(A) = 0. Hence, we assume that |A| > K. First, we observe that Z0

K = {A} and
that Z1 − Z0

K = {Ai|i ∈ I(A)}. Hence, we must prove that

c∗(A) ≥ R(A)× |A|(log |A| − 1) +
∑

i∈I(A)

c∗(Ai, G(Ai)).

Since G(A) = 0, it follows that R(A) + G(A) ≤ mina∈A{c(a)}. By applying
Theorem 3.4 for the input list A with d1 = G(A) = 0 and d2 = R(A), we obtain that

c∗(A) ≥ R(A)|A|(log |A| − 1) +
∑

i∈I′(A)

c∗(Ai, R(A)) +
∑

i∈I(A)

c∗(Ai, R(A))

≥ R(A)|A|(log |A| − 1) +
∑

i∈I(A)

c∗(Ai, G(Ai)).

Hence, (28) holds for l = 0. Now, we assume that the result holds for l = p and
we prove that it also holds for l = p+ 1. Applying the inductive hypothesis for l = p,
we obtain that

c∗(A) ≥
∑

L∈Zp
K

(R(L)−G(L)) |L|(log |L| − 1) +
∑

L∈(Zp+1−Zp
K

)

c∗(L,G(L)).

Since the set Zp+1−ZpK can be rewritten as the union of two disjoint sets Zp+1−
Zp+1
K and Zp+1

K − ZpK , it follows that

c∗(A) ≥
∑

L∈Zp
K

(R(L)−G(L)) |L|(log |L| − 1) +
∑

L∈(Zp+1−Zp+1
K

)

c∗(L,G(L))(29)

+
∑

L∈(Zp+1
K
−Zp

K
)

c∗(L,G(L)).

Let L ∈ (Zp+1
K − ZpK). Since R(L) ≤ minai∈L{c(ai)}, it follows that G(L) +

R(L) −G(L) ≤ minai∈L{c(ai)}. By applying Theorem 3.4 for the input list L, with
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d1 = G(L) and d2 = R(L)−G(L), we obtain that

c∗(L,G(L)) ≥ (R(L)−G(L))|L|(log |L| − 1) +
∑

i∈I′(L)

c∗(Li, R(L)) +
∑

i∈I(L)

c∗(Li, R(L))

≥ (R(L)−G(L))|L|(log |L| − 1) +
∑

i∈I(L)

c∗(Li, G(Li)).

By adding the previous inequality for all sublists that belong to (Zp+1
K −ZpK), we

obtain that

∑

L∈(Zp+1
K
−Zp

K
)

c∗(L,G(L)) ≥
∑

L∈(Zp+1
K
−Zp

K
)

(R(L)−G(L))|L|(log |L| − 1)(30)

+
∑

L∈(Zp+2−Zp+1)

c∗(L,G(L)).

Replacing the rightmost operand of (29) by the right-hand side of (30) and using
the fact that the two sets Zp+2−Zp+1 and Zp+1−Zp+1

K form a partition for Zp+2−
Zp+1
K , we obtain that

c∗(A) ≥
∑

L∈Zp+1
K

(R(L)−G(L)) |L|(log |L| − 1) +
∑

L∈(Zp+2−Zp+1
K

)

c∗(L,G(L)),

which completes the induction, and, as a consequence, establishes the result.

Appendix C. Proof of Theorem 4.4. This result can be proved by induction
on the level of T (Build) as we did in Theorem 4.1.

In fact, let l be an integer; we must prove that

c(A) ≤
∑

L∈Zl
K

( |L| log |L|
αt−r(L)+1

− |L| log |L|
αt−g(L)+1

+
2|L|

αt−r(L)+1

)
(31)

+
∑

L∈(Zl+1−Zl
K

)

(
c(L)− |L| log |L|

αt−g(L)+1

)
,

where Zl and ZlK are the sets defined at the beginning of the proof of Theorem 4.1.
Observe that (31) implies the correctness of the theorem, since if we set l equal to the
height of T (Build), we obtain that ZlK = ZK and Zl+1 = Z. Furthermore, for every
L, with L ∈ Z − ZK , we have c(L) = c∗(L).

Now, we prove the correctness of (31) by induction on l. The basis is l = 0.
If |A| ≤ K, then the result follows from the fact that Z1 = {A}, Z0

K = ∅ and
g(A) = −∞. Hence, we assume that |A| > K. First, we observe that Z0

K = {A} and
that Z1 − Z0

K = {Ai|i ∈ I(A)}. Hence, we must prove that

c(A) ≤ 1

αt−r(A)+1


|A| log |A|+ 2|A| −

∑

i∈I(A)

|Ai| log |Ai|

+

∑

i∈I(A)

c(Ai).
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This result follows by Corollary 4.3 when L = A.
Hence, (31) holds for l = 0. Now, we assume that the result holds for l = p, and

we prove that it also holds for l = p+ 1. Applying the inductive hypothesis for l = p,
we obtain that

c(A) ≤
∑

L∈Zp
K

( |L| log |L|
αt−r(L)+1

− |L| log |L|
αt−g(L)+1

+
2|L|

αt−r(L)+1

)
(32)

+
∑

L∈(Zp+1−Zp
K

)

(
c(L)− |L| log |L|

αt−g(L)+1

)
.

Since the set Zp+1−ZpK can be rewritten as the union of two disjoint sets Zp+1−
Zp+1
K and Zp+1

K − ZpK , it follows that

c(A) ≤
∑

L∈Zp
K

( |L| log |L|
αt−r(L)+1

− |L| log |L|
αt−g(L)+1

+
2|L|

αt−r(L)+1

)
(33)

+
∑

L∈(Zp+1−Zp+1
K

)

(
c(L)− |L| log |L|

αt−g(L)+1

)
+

∑

L∈(Zp+1
K
−Zp

K
)

(
c(L)− |L| log |L|

αt−g(L)+1

)
.

Let L ∈ (Zp+1
K − ZpK). Applying Corollary 4.3 we obtain that

c(L) ≤ 1

αt−r(L)+1


|L| log |L|+ 2|L| −

∑

i∈I(L)

|Li| log |Li|

+

∑

i∈I(L)

c(Li).

By adding the previous inequality for all sublists that belong to (Zp+1
K −ZpK), we

obtain that

∑

L∈(Zp+1
K
−Zp

K
)

c(L) ≤
∑

L∈(Zp+1
K
−Zp

K
)

|L| log |L|+ 2|L|
αt−r(L)+1

(34)

−
∑

L∈(Zp+2−Zp+1)

|L| log |L|
αt−g(L)+1

+
∑

L∈(Zp+2−Zp+1)

c(L).

Replacing the rightmost operand of (33) by the right-hand side of (34) and using
the fact that (Zp+2 −Zp+1) and (Zp+1 −Zp+1

K ) form a partition of Zp+2 −Zp+1
K , we

conclude that the result also holds for l = p+ 1, which completes the induction, and,
as a consequence, establishes the result.

Appendix D. Proof of Lemma 5.2. The proof is by induction on the number
of nodes of Tpv(L). Clearly, the result holds if |Tpv(L)| = 1. Now, assume that the
result holds for all trees Tpv(L) with |Tpv(L)| < m. We shall prove that the result
also holds for all trees Tpv(L) with |Tpv(L)| = m. Let yr be the root of Tpv(L). Then,
we have two cases:
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(a) r ∈ I ′(L);

(b) r ∈ I(L).

Let T � and T r be the left and the right subtrees of yr in Tpv(L), respectively.

Moreover, let T̂ � and T̂ r be the two trees obtained by using the inductive hypothesis
on T � and T r, respectively. We observe that the level of yi, for i �= r, in T � (T r) is
li − 1.

In case (a), the tree T ′ is constructed as follows: yr becomes the root of T ′; T̂ �

and T̂ r become, respectively, the left and the right subtrees of yr. By construction,
the level of yi in T ′, for all i ∈ I(L), is at most 2(li − 1) + 2 + 1 < 2li + 2, which
satisfies condition (i). Moreover, the level of yi in T ′, for all i ∈ (I ′(L) − {r}), is at
most 2(li − 1) + 1 < 2li, which satisfies condition (ii).

In case (b), let us initially assume that 2 < r < 2k. We use two artificial nodes, say
y and y′. The tree T ′ is constructed as follows: y becomes the root of T ′; y′ becomes
the left child of y and yr becomes the right child of y′; T̂ � becomes the left subtree of
y′ and T̂ r becomes the right subtree of y. Figure 6 illustrates this construction. The
trees Tpv(L) and T ′ for this case are represented by Figures 6(a) and 6(b), respectively.
We observe that the node yr is a leaf at level 2 in T ′. Moreover, if yi is a node of T ′,
with i ∈ I(L)−{r}, then its level is at most 2(li − 1) + 2 + 2 = 2li + 2. Furthermore,
if yi is a node of T ′, with i ∈ I ′(L), then its level is at most 2(li − 1) + 2 = 2li.
Hence, the conditions concerning the levels are respected. Now, we must choose two
convenient pivots of Tpv(L) to replace both the artificial nodes y and y′. The nodes y′

and y are respectively replaced by the rightmost node yr−1 of T̂ � and by the leftmost
node yr+1 of T̂ r. Since both r − 1 and r + 1 belong to I ′(L) and the levels of yr−1

and yr+1 do not increase due to the replacement, then both conditions (i) and (ii)
still hold.

If we have r = 1 (r = 2k+1), then the construction of T ′ is analogous. We remark
that the artificial node y′ (y) is not used in this case because T � (T r) is empty.

yr

T r

(a) (b)

Tl

yr

T
r

Tl

y'

y

ˆ

ˆ

Fig. 6. (a) A tree Tpv(L) of pivots, where r ∈ I(L). (b) The tree T ′ obtained from Tpv(L),
satisfying the conditions of Lemma 5.2.

Appendix E. Calculating the ranks for fractional α. Now, let p be a fixed
positive integer greater than 1. We show how to compute the key ranks for α = 21/p

and t = p�log n2� + p − 1 in O(n) time. This can be useful for the WCT algorithm
since better approximations are attained making α close to 1.

Let r′(ai) be the rank of ai when the scaling parameter is equal to 2 and the
total number of ranges is t′ = �log n2�. These auxiliary ranks can be computed in
O(n) time as described in the implementation section. Now, consider the following
proposition.
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Proposition E.1. For every ai ∈ A, we have that r′(ai) = � r(ai)p �.
Proof. We have three cases:
(i) r(ai) = 1;
(ii) 2 ≤ r(ai) ≤ p− 1;
(iii) r(ai) ≥ p.
For case (iii), it is easy to check that c(ai) ∈ [1/αt−r(ai)+2, 1/αt−r(ai)+1)

⊂ [1/2t
′−r′(ai)+2, 1/2t

′−r′(ai)+1). The proofs for the remaining two cases are simi-
lar.

By the previous proposition, if the value of r′(ai) is given, then ai has only
p possible ranks: pr′(ai) − p + 1, pr′(ai) − p + 2, . . . , pr′(ai). In order to compute
r(ai), we construct two additional tables U and U ′ at the preprocessing step. We set
U [l] = αl for l = 0, . . . , p − 1, and U ′[j] = 1/2t

′−j+1, for j = 1, . . . , t′. Let l be the
greatest index such that c(ai) < U

′[r′(ai)]/U [l]. Then, r(ai) is given by pr′(ai) − l,
which can be computed in O(1) time for a fixed value of p.
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Abstract. We consider several problems related to the use of resolution-based methods for
determining whether a given boolean formula in conjunctive normal form is satisfiable. First, building
on the work of Clegg, Edmonds, and Impagliazzo in [Proceedings of the Twenty-Eighth Annual ACM
Symposium on Theory of Computing, Philadelphia, PA, 1996, ACM, New York, 1996, pp. 174–
183], we give an algorithm for unsatisfiability that when given an unsatisfiable formula of F finds
a resolution proof of F . The runtime of our algorithm is subexponential in the size of the shortest
resolution proof of F . Next, we investigate a class of backtrack search algorithms for producing
resolution refutations of unsatisfiability, commonly known as Davis–Putnam procedures, and provide
the first asymptotically tight average-case complexity analysis for their behavior on random formulas.
In particular, for a simple algorithm in this class, called ordered DLL, we prove that the running
time of the algorithm on a randomly generated k-CNF formula with n variables and m clauses

is 2Θ(n(n/m)1/(k−2)) with probability 1 − o(1). Finally, we give new lower bounds on res(F ), the
size of the smallest resolution refutation of F , for a class of formulas representing the pigeonhole
principle and for randomly generated formulas. For random formulas, Chvátal and Szemerédi [J.
ACM, 35 (1988), pp. 759–768] had shown that random 3-CNF formulas with a linear number of
clauses require exponential size resolution proofs, and Fu [On the Complexity of Proof Systems,
Ph.D. thesis, University of Toronto, Toronto, ON, Canada, 1995] extended their results to k-CNF
formulas. These proofs apply only when the number of clauses is Ω(n logn). We show that a lower
bound of the form 2n

γ
holds with high probability even when the number of clauses is n(k+2)/4−ε.
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1. Introduction. The satisfiability problem for boolean formulas in conjunctive
normal form (CNF formulas) plays a central role in computer science. Historically, it
was the “first” NP-complete problem. It is the natural setting in which to formulate
a wide variety of constraint satisfaction problems. Its companion problem, finding a
proof of unsatisfiability of a given unsatisfiable formula, plays an important role in
artificial intelligence, where it is referred to as propositional theorem proving, and also
in circuit testing.
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In the last three decades, a tremendous amount of research has been directed
towards understanding the mathematical structure of the satisfiability problem and
developing algorithms for satisfiability testing and propositional theorem proving.
Much of this research has centered around the method of resolution. The resolution
principle says that if C andD are clauses and x is a variable, then any assignment that
satisfies both of the clauses C∨x and D∨¬ x also satisfies C∨D. The clause C∨D is
said to be a resolvent of the clauses C ∨x and D∨¬ x on the variable x. A resolution
refutation for a CNF formula F consists of a sequence of clauses C1, C2, . . . , Cs where
(i) each clause Ci is either a clause of F , or is a resolvent of two previous clauses, and
(ii) Cs is the empty clause, denoted by Λ. We can represent the proof as an acyclic
directed graph on vertices C1, . . . , Cs where each clause of F has in-degree 0, and any
other clause has in-degree 2 with its two in-arcs from the two clauses that produced it.
It is well known that resolution is a sound and complete propositional proof system;
i.e., a formula F is unsatisfiable if and only if there is a resolution refutation for F .
Resolution is the most widely studied approach to propositional theorem proving, and
there is a large body of research exploring resolution algorithms, i.e., algorithms that
on input an unsatisfiable formula F , output a resolution refutation of F .

Any resolution algorithm can be used trivially to test satisfiability of an arbitrary
(satisfiable or unsatisfiable) formula F , since F is satisfiable if and only if the algorithm
finds no refutation. Nearly all satisfiability testers that have been studied in the
literature can be derived in this way from resolution algorithms, and we say that such
satisfiability testers are resolution-based.

One fundamental approach to satisfiability testing is to use backtrack search to
look for a satisfying assignment. Algorithms that use this approach are commonly
called Davis–Putnam procedures, but we will refer to them as DLL algorithms af-
ter Davis, Logemann, and Loveland, who first considered them [DLL62]. A DLL
algorithm can be described recursively as follows. First check whether F is trivially
satisfiable (has no clauses) or is trivially unsatisfiable (contains an empty clause) and
if so, stop. Otherwise, select a literal li (a variable or the complement of a variable)
and apply the search algorithm recursively to search for a satisfying assignment for
the formula F �li=0 obtained by setting li = 0 in F . If the search succeeds, then we
have an assignment for F . Otherwise, repeat the search with the formula F �li=1. If
neither of these searches finds a satisfying assignment, then F is not satisfiable.

A particular DLL algorithm is specified by a splitting rule, which is a subroutine
that for each recursively constructed formula determines the next splitter (literal
to recurse on) and the assignment to try first. In general, the splitting rule may
depend on the details of the structure of the original formula and on the results of the
computation in other recursive calls. For a particular formula F , different splitting
rules may result in vastly different running times.

If the splitter for some given formula F is a literal l such that l is contained in
a unit clause (a clause C of size one), then the l = 0 branch falsifies C and thus
terminates immediately. Effectively, the algorithm fixes l = 1. A splitting rule is
said to use unit propagation if, for any formula F that has a unit clause (clause of
size one), the splitter is chosen to be a literal in such a clause. Virtually all splitting
rules considered in the literature use unit propagation, and it can be shown that any
splitting rule can be modified so that it uses unit propagation at the cost of a factor
of at most O(n) in the running time of the algorithm, where n is the number of
underlying variables. We will consider only algorithms that use unit propagation.

The simplest such splitting rule is as follows: fix an ordering of the variables
x1, . . . , xn. For a subformula F ′ obtained by fixing some variables, if there is a unit
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clause, the splitter is the first literal belonging to such a clause. Otherwise, select the
first unfixed variable. The algorithm obtained from this splitting rule is called ordered
DLL.

The execution of a DLL algorithm A on formula F can be represented by a
labeled rooted binary tree, denoted TA(F ), in the usual way. Each node corresponds
to a recursive call. Each internal node is labeled by its splitter, and the two out-edges
correspond to the possible assignments. For any node, the path from the root to that
node defines a partial assignment (restriction) of the variables, and the recursive call
at that node is applied to the subformula obtained by applying the restriction to the
original formula. Each leaf is either a success leaf, i.e., all of the original clauses are
satisfied by the associated restriction, or a failure leaf, i.e., at least one original clause
is falsified by the restriction. Each failure leaf is labeled by one of the original clauses
that if falsifies. F is unsatisfiable if and only if all leaves are failure leaves, in which
case the tree as labeled above (with internal nodes labeled by splitters and leaves
labeled by falsified clauses) is called a DLL refutation of F . The size of the refutation
is defined to be the number of nodes of the tree. It is easy to see that a formula F
has a DLL refutation if and only if it is unsatisfiable. Thus DLL refutations form a
complete and soundproof system.

Given a DLL refutation, it is not hard to show by induction that if we start
from the clauses labeling the leaves, and work towards the root, we can label each
internal node by a clause which is a resolvent of the clauses labeling its two children,
and the root will be labeled by the empty clause. This tree is now the directed
graph representation of a resolution refutation, and thus the DLL proof system can
be viewed naturally as a restricted version of resolution.

This paper focuses on some problems concerning resolution refutations, DLL refu-
tations, and algorithms for satisfiability. Of central importance are two parameters
defined for any unsatisfiable formula F :

(i) res(F ), the size of the smallest resolution refutation of F ,
(ii) DLL(F ), the size of the smallest DLL refutation of F .

We define res(F ) = DLL(F ) = ∞ for satisfiable formulas. It follows from the
above discussion that DLL(F ) ≥ res(F ) for all formulas F . Furthermore, for any
DLL-procedure for satisfiability, DLL(F ) is a lower bound for its running time on F .

Our results fall into three groups. The first group of results shows that the
resolution and DLL proof systems are, to some extent, automatizable in the sense
that for each of these systems, there is an algorithm that on input an unsatisfiable
formula F , finds a refutation of F within the proof system in time that can be upper
bounded nontrivially in terms of the size of the optimal refutation within that system.
In particular, we show that for any formula F in n variables and m clauses that has
a DLL refutation of size at most S, there is an algorithm running in nO(log S)m
time that finds a DLL refutation of F . The analogous algorithm for resolution uses
2O(
√
n log S logn)m time to find a resolution refutation for a formula F possessing one of

size S. Clegg, Edmonds, and Impagliazzo [CEI96] have given algorithms to determine
unsatisfiability within these time bounds, but they do not produce resolution or DLL
refutations.

The second group of results concerns lower bounds for general resolution proofs.
We develop simpler methods for obtaining resolution lower bounds than previously
used. We illustrate this by first showing a very simple lower bound on the resolu-
tion proof complexity of the pigeonhole principle which also significantly improves
on the best previous lower bounds for this problem. Our main object of study for
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resolution, however, is that of randomly chosen k-CNF formulas, and we use our
technique to obtain much stronger lower bounds on the resolution proof complexity
of such formulas.

Our third group of results analyzes the complexity of proving unsatisfiability
for random formulas (above the threshold) using DLL algorithms, the algorithms
that are used most commonly in practice for satisfiability testing. We obtain the
first nontrivial upper bound for resolution proofs of unsatisfiability of random for-
mulas by showing that one of the simplest of all DLL algorithms, ordered DLL, has
a running time that is qualitatively similar to the size of the best possible resolu-
tion proofs. There is still a gap between our upper bounds for DLL and the lower
bounds for resolution, but we show that our analysis for ordered DLL is tight. We
also make progress towards showing that our upper bound is tight for all DLL al-
gorithms by extending our lower bound for ordered DLL to a broader class of DLL
algorithms.

Our techniques result in significant simplifications and improvements of previous
algorithms and lower bounds. A preliminary version of this work [BP96] pointed out
that further simplification could be obtained by finding a direct relationship between
res(F ) and the minimum b for which F has a proof with all clauses at most b. Re-
cently, Ben-Sasson and Wigderson [BSW99] have developed such a characterization
of res(F ) and DLL(F ). Using this characterization, one can derive some of our gen-
eral resolution bounds more simply. We conclude our paper with a discussion of this
improvement and other directions for further research.

Because our bounds for random formulas for both DLL and general resolution
are our most significant results, but are necessarily spread over several sections of the
paper, we discuss them now in more detail.

Random k-CNF formulas. We consider the usual random k-CNF model,
which is defined in terms of three integer parameters n, k, and m. A formula is
generated by selecting m clauses of size k independently and uniformly from the set
of all clauses of size k on n variables. We denote this distribution by Fk,n

m and write
F ∼ Fk,n

m to mean that F is selected from this distribution. The ratio ∆ = m/n is
referred to as the clause density.

The random k-CNF model has been widely studied for several good reasons. First,
it is an intrinsically natural model, analogous to the random graph model, that sheds
light on fundamental structural properties of the satisfiability problem. Second, for
appropriate choice of parameters, randomly chosen formulas are empirically difficult
for satisfiability and are a commonly used benchmark for testing satisfiability algo-
rithms. (See, for example, the encyclopedic survey of the SAT problem in [GPFW97].)
Last, it is a useful model for evaluating the effectiveness of a particular propositional
proof system: strong lower bounds on proof size for random k-CNF formulas attest
to the fact that the proof system in question is ineffective on average.

A fundamental conjecture about the random k-CNF formula model (see [CS88,
BFU93, CF90, CR92, FS96, KKKS98]) says that there is a constant θk, the satisfi-
ability threshold, such that a random k-CNF formula of clause density ∆ is almost
certainly satisfiable for ∆ bounded below θk (as n gets large) and almost certainly
unsatisfiable if ∆ is bounded above θk. There is considerable empirical and ana-
lytic evidence for this. Recently, Friedgut [Fri99] showed that for each n and k there
is a threshold θk(n) such that for any ε > 0, random k-CNF formulas with clause
density ∆ ≤ θk(n) − ε are almost certainly satisfiable and those with clause density
∆ ≥ θk(n) + ε are almost certainly unsatisfiable. However, he does not rule out the
possibility that θk(n) fails to converge to a constant. It is known that θ2 = 1 is
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independent of n [CR92, Goe96] and that for each k, θk(n) is bounded between two
constants, bk and dk, that are independent of n; e.g., 3.26 ≤ θ3(n) ≤ 4.596 [AS00,
JSV00].

The threshold indicates three distinct ranges of clause density for investigating
complexity. For ∆ at the threshold, an effective algorithm must be able to distinguish
between unsatisfiable and satisfiable instances. Below the threshold, a random for-
mula is almost certainly satisfiable, and the problem of interest is to find a satisfying
assignment quickly.

Above the threshold, the formula is almost certainly unsatisfiable, and we have the
two closely related questions, (i) What is the typical size of the smallest unsatisfiability
proof? and (ii) How quickly can an algorithm find a proof?

Several empirical studies of DLL procedures on random k-CNF formulas have
been done, e.g., by Selman, Mitchell, and Levesque [SML96] and Crawford and Au-
ton [CA96]. The former applies ordered DLL (defined earlier) to random k-CNF for-
mulas for various values of ∆. The curves in [SML96, CA96] show very low complexity
for ∆ below the threshold, a precipitous increase in complexity at the threshold, and
a speedy decline to low complexity above the threshold.

Much has been made of the analogy with statistical physics [KS94], and there
has been a suggestion that the computational complexity at the threshold is evidence
of a critical phenomenon in complex systems and based on underlying edge-of-chaos
behavior present only near the threshold. The empirical observation that satisfiability
is easy below the threshold is supported by analytical work. The proofs of the afore-
mentioned lower bounds on θk were obtained by analyzing some DLL algorithm and
showing that it almost certainly finds a satisfying assignment in linear time, provided
that ∆ is below some specified constant.

In their seminal paper, Chvátal and Szemerédi [CS88] showed that for any fixed
∆ above the threshold there is a constant κ∆ > 0 such that res(F ) ≥ 2κ∆n al-
most certainly if F is a random k-CNF formula of clause density ∆. (This result
substantially improved the previous work of Franco and Paull [FP83] which showed
subexponential time lower bounds for refuting the same class of formulas using par-
ticular DLL algorithms.) On the other hand, Fu [Fu95] showed that res(F ) is almost
certainly polynomial in n for m = Ω(nk−1). These results together with the em-
pirical work motivate the problem of determining the best constant κ∆ for which
res(F ) ≥ 2κ∆n with prob 1 − o(1) for random k-CNF formulas F of density ∆. The
lower bound in [CS88] as presented does not give bounds on the dependence of κ∆

on ∆, but rough estimates show that for 3-CNF formulas the bound decreases as
1/∆Ω(∆4). This implies that the lower bound declines extremely quickly and be-

comes trivial when the number of clauses grows above n log1/4 n. For larger clause
size k Fu [Fu95] obtained better bounds but with a similar exponential drop-off.
Is there really such a sharp decline in complexity for random formulas above the
threshold?

Our new lower bounds show that the drop-off in κ∆ is at most polynomial in
∆. We show that for any constant ε > 0 there is a constant aε > 0 such that
for random 3-CNF formulas the complexity of resolution proofs is almost certainly
at least 2aε(n/∆

4+ε) and obtain similar results for random k-CNF formulas having
larger values of k. In particular, our results imply that even random formulas with
moderately large clause densities require proofs of weakly exponential size. More
precisely, for any k ≥ 3 and ε > 0, we show that there is a γ > 0 such that almost
all k-CNF formulas in n variables with at most n(k+2)/4−ε clauses require resolution
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refutations of size at least 2n
γ

. For example, a random 3-CNF formula with n5/4−ε

clauses requires exponentially large resolution proofs.
Although these resolution bounds show that the decline in κ∆ is at most inverse

polynomial in ∆, it is not immediately clear that even a polynomial decline with ∆
is achievable. There seem to be no previously known nontrivial upper bounds on the
running time of algorithms on random instances above the threshold. We prove the
first such nontrivial upper bound by showing that for F ∼ Fk,n

m , the size of the DLL

refutation of F produced by ordered DLL is 2O(n/∆1/(k−2))nO(1). Thus κ∆ does indeed
decline as a fixed power of ∆.

At the upper end, our result shows that when m = Ω(nk−1/ logk−2 n), the algo-
rithm runs in polynomial time, improving on Fu’s Ω(nk−1) bound on the number of
clauses needed for polynomial-size resolution proofs but also giving an algorithm to
find such proofs.

There is a gap between the exponents on ∆ given by our lower bounds for general
resolution and our upper bound for ordered DLL. What is the optimal exponent for
general resolution or for DLL, which is more interesting since such bounds would have
implications for practical satisfiability testing? We show that our upper bound for

ordered DLL is indeed tight in that ordered DLL requires proofs of 2Ω(n/∆1/(k−2)) size.
Can a different splitting rule achieve a better exponent than ordered DLL on

random formulas? We expand our understanding of DLL algorithms by showing that
in the case k = 3, for m = Ω(n3/2 logε n), the lower bound for ordered DLL extends
to a larger class of algorithms, whose splitting rule (aside from unit propagation) is
independent of the formula. The key step in proving this lower bound is Lemma 6.7,
which applies to any DLL splitting rule and therefore may be of independent interest.
It shows that with high probability, along every path of a DLL tree that is “not too
long,” the number of unit clauses generated cannot be very large. While Lemma 6.7 is
general, the remainder of the proof of the lower bound unfortunately depends heavily
on the independence of the splitting rule from the formula.

Overall, our results show that for F ∼ Fk,n
∆n , log2 res(F ) decays as a fixed power

of ∆, suggesting that there is not an isolated point of complexity at the threshold but
rather a slow and gradual decline in complexity as ∆ increases.

2. Preliminary definitions. Let X = {x1, . . . , xn} be a set of boolean vari-
ables. Following usual parlance, an assignment ρ of 0-1 values to some subset of the
variables is called a restriction. We will abuse notation and identify ρ with the set of
literals set to 1 by ρ. We write v(ρ) for the set of variables that are assigned values
by ρ.

Similarly, a clause C over the variables X can be viewed as a set of literals, and
we write v(C) for the underlying set of variables. If C is a set of clauses, or F is a
CNF formula, we write v(C) or v(F ) for the underlying sets of variables.

If C is a clause and ρ is a restriction, then ρ satisfies C if it sets some literal of C
to 1. If ρ does not satisfy C, we define C�ρ, the restriction of C by ρ, to be the clause
obtained from C by deleting all literals set to 0 by ρ. For a formula F the restriction
of F by ρ, F �ρ, is the formula obtained by removing all clauses satisfied by ρ and
replacing any other clause C of F by C�ρ.

If P = (C1, . . . , Cr) is a resolution refutation of a formula F and ρ is a restriction
we can construct a refutation of F �ρ, denoted P�ρ= (D1, . . . , Dr), as follows. For ease
of description, we allow the proof to contain clauses that are identically 1. For i ∈ [r]
having defined D1, . . . , Di−1, if ρ satisfies Ci, then let Di be the identically 1 clause.
Otherwise, (i) if Ci is a clause of F , let Di = Ci�ρ, and (ii) if Ci is the resolvent of Cj
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and Ck on variable x, then if either Dj or Dk is 1, then let Di equal the other one,
and otherwise let Di be the resolvent of Dj and Dk on x. It is not hard to show that
after deleting the 1-clauses, the result is a resolution proof of F �ρ.

A resolution refutation P is said to be b-bounded if all of the clauses appearing in
it have size at most b.

For the purpose of generating test formulas, the most natural model of a random
k-CNF formula on n variables with clause density ∆ is to choose m = ∆n clauses
independently with replacement. This distribution, which we denote Fk,n

m , is the one
analyzed in [CS88]. Another model, which is used in [Fri99], is to choose each of the
possible clauses independently with probability p = m/

(
n
k

)
2k; call this Fk,n(p). An

easy argument shows that when considering properties of formulas that are monotone
(or antimonotone) with respect to sets of clauses, the almost certain properties under
both distributions are the same up to a change from m to m ± o(m). This is just a
natural extension of the similar (and more precise) equivalences for the random graph
model as shown, for example, in [AV79]. We generally assume the distribution Fk,n

m .
We write F ∼ F to mean F is a random formula selected according to distribution F .

We make frequent use of two well-known tail bounds for the binomial distribution
(see [ASE92, Appendix A]).

Proposition 2.1. If Y is a random variable distributed according to the binomial
distribution B(n, p), then

1. Pr[Y < np/4] ≤ 2−(np)/2,
2. Pr[Y > Cnp] ≤ ( e

C )−Cnp.

3. Automatizability of DLL and resolution. The quantity res(F ) (resp.,
DLL(F )) tells us the size of the smallest resolution refutation (resp., DLL refutation)
of F . A fundamental problem is to find effective algorithms for constructing reso-
lution refutations and DLL refutations whose size is “close” to optimal. This is the
automatizibility problem for proof systems, which was formalized in [BPR97].

Definition 3.1. Let S be an arbitrary propositional proof system.1 For the
unsatisfiable formula F , let s(F ) denote the size of the smallest refutation of F in
S. Then S is said to be automatizable if there exists a deterministic algorithm that
takes as input an unsatisfiable formula F on n variables and m clauses, and outputs
an S-refutation of f in time polynomial in s(F ) and n and m. More generally S
is q(s, n,m)-automatizable if there exists a deterministic algorithm that runs in time
q(s(F ), n,m) and outputs an S-refutation of F (whose size is necessarily also bounded
by q(s(F ), n,m)).

Theorem 3.2.

1. The DLL proof system is q(s, n,m)-automatizable for q(s, n,m) = nO(log s)m.
2. The resolution proof system is q(s, n,m)-automatizable for q(s, n,m) =

2O(
√
n log s logn)m.

These results, especially the second, fall short of the desired polynomial autom-
atizability. Nevertheless, even the second is strong enough that if res(F ) is subexpo-
nential, 2o(n), then our algorithm finds a subexponential size resolution refutation in
subexponential time. The results are closely related to, and motivated by, previous
results of Clegg, Edmonds, and Impagliazzo. Their results concern the polynomial
calculus proof system (called Groebner in [CEI96]), which is more general than the

1We will not provide a general definition of propositional proof system, since we are focusing
exclusively on the two concrete systems, resolution and DLL, that we have defined above. The
interested reader can readily formulate a general definition or consult [CR77].
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resolution system. In their paper, they proposed and analyzed satisfiability testing
algorithms based on the Groebner basis algorithm from commutative algebra. When
run on an unsatisfiable formula F , their algorithm produces a refutation in the poly-
nomial calculus proof system (but not necessarily a resolution refutation). They give
two algorithms for this, the first of which finds a refutation in time bounded above
by O((DLL(F ))logn), and the second finds a refutation in time bounded above by

O(2
√

nres(F ) log n). In other words, provided that F has a short DLL refutation (resp.,
resolution refutation), their first (resp., second) algorithm finds a refutation that is
“not too big” but in the stronger polynomial calculus proof system. Our two algo-
rithms, which closely parallel theirs, achieve comparable running times, but produce,
respectively, a DLL refutation and a resolution refutation.

Proof of Theorem 3.2. The theorem asserts the existence of two algorithms, which
on input an unsatisfiable formula F , find, respectively, a DLL refutation and a reso-
lution refutation within a specified time bound. The two algorithms are most easily
described together.

First, we need a subroutine, called Bounded-search, which takes as input F and
an integer parameter b and finds a b-bounded resolution refutation of F if one exists.
It is not hard to implement this subroutine in time T0(n,m, b) = nO(b)+O(m)poly(n),
e.g., by listing the b-bounded clauses of F and, for each clause on the list, resolve it
with each clause preceding it (if possible) and add the resolvent to the end of the list,
if it is of size at most b and does not duplicate anything on the list. If the algorithm
constructs the empty clause, we have the desired refutation; otherwise, there is no
such refutation.

The main algorithm called Resolution-search also takes as input F and an
auxiliary parameter b. First we use Bounded-search(F, b) to find a b-bounded res-
olution refutation for F if it exists. If not, then for each of the 2v(F ) literals l, apply
Resolution-search to the formula F �l=1 in order to identify the literal l for which
Resolution-search(F �l=1) terminates fastest. These 2n calls to Resolution-search
are executed in a sequence of parallel rounds; in round i the ith step of each of the
2n calls is performed. As soon as the first of the calls terminates, say for literal l∗, all
of the other calls are aborted, except the call corresponding to ¬ l∗, which is run to
completion. The output of Resolution-search(F, b) consists of the derivation of the
singleton clause l∗, followed by the derivation of the singleton clause ¬ l∗ followed by
∅. (Note that the parallel search for the literal l∗ described above can be replaced by
a more space efficient “doubling search” which in iteration i runs each of the recursive
calls one by one from the beginning for 2i steps, stopping the first time that one of the
calls terminates. The time analysis below can be modified to apply to this variant.)

The analysis of the algorithm will rely on the following technical fact, which is
easily proved by induction.

Proposition 3.3. Suppose that T (n, s) is a function defined for nonnegative
integers n and s > 0 that satisfies, for some positive increasing function h(n), positive
constant C and λ > 1:

T (0, s) ≤ h(0),
T (n, s) ≤ h(n) if s ≤ 1,
T (n, s) ≤ h(n) + CnT (n− 1, sλ ) + T (n− 1, s) if n ≥ 1 and s > 1.

Then T (n, s) ≤ h(n)(1 + C logλ sn2 logλ s).
We now prove the first part of the automatization theorem. Here we use the above

algorithm with b = 0. It is not hard to see that in this case, the output by Resolution-
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search can be viewed as a DLL refutation, since the DAG associated to the proof
is a tree. We upper bound the running time of the algorithm in terms of DLL(F ).
Let T1(n, s;m) denote the maximum running time of Resolution-search(F, 0) over
all formulas F with at most n variables and m clauses and for which DLL(F ) ≤ s.
Consider a DLL refutation of size at most s and let xi be the splitting variable at the
root. The left and right branches of the tree give refutations for F �xi

and F �¬xi
, and

the smaller of these is of size at most s/2. Hence at least one of the recursive calls
terminates after at most T1(n − 1, s/2;m) steps, and so the literal l∗ is found after
at most that number of rounds. The time for each round can be bounded above by
Cn for some constant C. Once l∗ is found, it takes at most T1(n − 1, s;m) steps to
complete the call to Resolution-search(F �¬ l∗). Thus, we conclude that for fixedm,
T1(n, s;m) satisfies the recurrence of the above proposition with h(n) = T0(n,m, b)
and λ = 2. We conclude that T1(n, s;m) = nO(log s)O(m) as required to prove the
first automatization result.

For the second result, first define, for a set P of clauses, P[b] to be the subset
of clauses of size greater than b. For a formula F , let res(F, b) denote the minimum
of |P[b]| over all resolution refutations of F (so that for b < 0, res(F ) = res(F, b)).
Let T2(n, s;m, b) denote the maximum time needed by Resolution-search(F, b) on
(n,m)-formulas F satisfying res(F, b) ≤ s. Note that T2(n, s;m, b) ≤ T0(n, b) if
s < 1 and T2(0, s;m, b) = O(1). Suppose n and s are both at least 1. Let F
be an (n,m)-formula and let P be a resolution refutation of F with |P[b]| ≤ s.
For a literal l, let c(b, l) be the number of clauses of P[b] containing l. The aver-
age of c(b, l) over literals is greater than |P[b]|b/2n, and hence there exists a literal
l with c(b, l) > b|P[b]|/2n. Note that the refutation P�l=1 of F �l=1 has at most
|P[b]|(1 − b

2n ) clauses, and hence T2(n, s;m, b) satisfies the recurrence for T in the
proposition with λ = 2n

2n−b and h(n) = T0(n, b). Applying the proposition, we con-

clude that T2(n, b) ≤ T0(n, b)n
O(n

b log s). Choosing b =
√
n log s yields an upper bound

of 2O(
√
n log s logn)O(m) to complete the proof of the theorem.

Remark. The result of Ben-Sasson and Wigderson mentioned in the introduction
implies that the Bounded-search routine is sufficient to automatize resolution. More
specifically, they show that for any formula F , if DLL(F ) ≤ s, then Bounded-search
with b = O(log s) finds a resolution refutation of F , and if res(F ) ≤ s, then Bounded-
search with b = O(

√
n log s) finds a resolution refutation of F .

4. Lower bounding resolution proof complexity. For any unsatisfiable for-
mula on n variables, res(F ) ≤ DLL(F ) ≤ 2n + 1, since a DLL proof of an n-variable
formula is a binary tree of maximum depth n. Unless coNP = NP one would expect
that there are formulas where res(F ) is superpolynomial in |F |, but it is not obvious
how to prove such lower bounds. In a breakthrough paper, Haken [Hak85] proved the
first exponential lower bounds in general resolution for a class of formulas related to
the pigeonhole principle. Haken obtained his bounds using an elegant new technique
called “bottleneck counting.” The technique was developed further in [Urq87] to give
more general bounds on resolution refutations. Building on Haken’s and Urquhart’s
arguments, Chvátal and Szemerédi [CS88] used the bottleneck counting method to
show that for a sufficiently large constant c, almost certainly a random 3-CNF for-
mula with cn clauses requires an exponential length resolution refutation. Fu [Fu95]
recently extended this bound to apply when the number of clauses is larger, but for
3-CNF formulas it gives no improvement on [CS88].

All of these proofs have the same general structure. To prove a lower bound
on res(F ) for all F belonging to some specified class of formulas F , the first step
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is to prove a result of the following type: for some larger class F ′ of formulas, any
resolution refutation of G ∈ F ′ must have a “large” clause.

In the second step, which is typically the more involved part, an arbitrary reso-
lution refutation of F is considered. Each clause in the proof is viewed as allowing
certain truth assignments to flow through it, namely those that it falsifies. Using the
result of the first step, one shows that every truth assignment must flow through some
“complex” or “large” clause that permits only a small number of truth assignments
to pass (thus the term “bottleneck counting”). Therefore, the number of clauses in
the refutation must be large. The complications in the argument come in making the
association between complex clauses and truth assignments.

Our method uses something very much like the first step but replaces the second
step by an argument that leads to stronger results with simpler arguments. We assume
for contradiction that F ∈ F has a small proof. We use this assumption to show that
F can be modified to a formula F ′ ∈ F ′ that has a proof with no large clauses,
contradicting the first step.

We consider two methods for modifying the formula F to get F ′. The first is
to apply a restriction, i.e., fix a small set of variables. The second is to augment F ,
i.e., add some additional clauses to F . The restriction method is equivalent to the
special case of the augmentation method where the clauses that are added are all unit
clauses.

4.1. Lower bounds for the pigeonhole principle. We illustrate our approach
to lower bounds for general resolution proofs by giving a very simple proof of the
exponential lower bounds for the class {¬ PHPm

n : m > n} of pigeonhole principle
formulas considered by Haken. The variables of the formula ¬ PHPm

n correspond to
the entries Pi,j of an m× n boolean matrix. (We think of the rows as corresponding
to“pigeons” and the columns as corresponding to “holes”.) Its clauses are (1) Pi,1 ∨
Pi,2 ∨ · · · ∨ Pi,n for each i ≤ m (each row has at least one 1, or every pigeon goes
into a hole) and (2) ¬Pi,k ∨ ¬Pj,k for each i, j ≤ m, k ≤ n, i �= j (each column has
at most one 1, or every hole gets at most one pigeon). Since m > n, this is trivially
unsatisfiable. Note that the number of clauses in ¬ PHPm

n is m +
(
m
2

)
n ≤ m3. We

prove the following theorem.
Theorem 4.1. For n ≥ 2, any resolution refutation of ¬PHPn

n−1 has size at

least 2n/20.
Proof. As in the lower bound proof of Haken [Hak85], a truth assignment to the

underlying variables Pi,j is critical if it defines a one-to-one, onto map from n−1 rows
(pigeons) to n − 1 columns (pigeonholes), with the remaining pigeon not mapped to
any hole. A critical assignment where i is the pigeon left out is called i-critical. In
what follows we will be interested only in critical truth assignments.

Let C be a clause. The monotone clause M(C) associated to C is obtained by
replacing each occurrence of a negative literal ¬ Pi,k by the set of literals {Pl,k | l �= i}.
It is easy to check that C and M(C) are satisfied by precisely the same set of critical
assignments.

We will be interested in restrictions corresponding to partial matchings that one
obtains by repeatedly choosing an i, j, and setting Pi,j = 1, Pi,j′ = 0 for j′ �= j,
and Pi′,j = 0 for i′ �= i. Observe that if one begins with a resolution refutation of
¬PHPn

n−1 and one chooses such a partial matching restriction that sets t variables to
1, then the result is resolution refutation of ¬PHPn−t

n−t−1. Furthermore, the restric-
tion applied to the monotone conversion of each clause results in the same clause as
doing the monotone conversion of the clause first and then applying the restriction.
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(The transformation to monotone clauses, due to Buss, is not essential, but it will
make our argument slightly cleaner.)

So let C1, . . . , CS be a resolution refutation of ¬PHPn
n−1 and M1 = M(C1), . . . ,

MS = M(CS) be its monotone conversion. Say that a clause Mt is large if it has at
least n2/10 (positive) literals, i.e., at least one-tenth of all the variables. To show that
S ≥ 2n/20, we will show that the number L of large clauses is at least 2n/20. Assume for
contradiction that L < 2n/20. Let di,j denote the number of large clauses containing
Pi,j . By averaging, there is an i, j with di,j ≥ L/10. Choose such an i, j, and apply
the restriction Pi,j = 1, Pi,j′ = 0 for j′ �= j, and Pi′,j = 0 for i′ �= i. Applying
this restriction we obtain a monotone conversion of a refutation of ¬PHPn−1

n−2 with at
most 9L/10 large clauses. Applying this argument iteratively log10/9 L many times,
we are guaranteed to have knocked out all large clauses. Thus, we are left with a
refutation of ¬PHPn′

n′−1, where

n′ ≥ n− log10/9 L = (1− (log10/9 2)/20)n > 0.671n

and where no clause in the refutation is large. However, this contradicts the following
lemma (originally due to Haken [Hak85]) which states that such a refutation must
have a clause whose monotone conversion has size at least 2(n′)2/9 > n2/10.

Lemma 4.2. Any resolution refutation of ¬PHPn
n−1 must contain a clause C

such that M(C) has at least 2n2/9 literals.
Proof. Given a clause C, let

badpigeons(C) = {i | there is some i-critical assignment α falsifying C}.

Define the complexity comp(C) = |badpigeons(C)|.
Let P be a resolution refutation of ¬PHPn

n−1 and consider the complexity of the
clauses that appear in P. The complexity of each initial clause is at most 1, and the
complexity of the final false clause is n.

Note that if we use the resolution rule to derive a clause C from two previous
clauses C ′ and C ′′, we have that comp(C) ≤ comp(C ′)+ comp(C ′′), since any assign-
ment falsifying C must also falsify at least one of C ′ or C ′′. If C is the first clause in
the proof with comp(C) > n/3, we must have n/3 < comp(C) ≤ 2n/3. We will show
that M(C) contains a large number of variables.

For comp(C) = t will now show that M(C) has at least (n− t)t ≥ 2n2/9 distinct
literals mentioned. Fix some i ∈ badpigeons(C) and let α be an i-critical truth assign-
ment falsifying C. For each j �∈ badpigeons(C), consider the j-critical assignment, α′,
obtained from α by replacing i by j, that is, by mapping i to the place that j was
mapped to in α. This assignment satisfies C and differs from α only in one place:
if α mapped j to l, then α′ maps i to l. Since C and M(C) agree on all critical
assignments and M(C) is monotone, it must contain the variable Pi,l.

Running over all n − t j’s not in badpigeons(C) (using the same α), it follows
that M(C) must contain at least n − t distinct variables Pi,l, l ≤ n. Repeating the
argument for all i ∈ badpigeons(C) shows that C contains at least (n − t)t positive
literals.

We note that Theorem 4.1 improves somewhat upon Haken’s bound of 2n/577,
although our major interest is in its simpler proof rather than in the better size
bound. Buss and Turán [BT88] extend Haken’s argument to show that ¬PHPm

n

requires superpolynomial size resolution lower bounds as long as m < n2/ log n. Our
argument can be extended to rederive their result.
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5. Resolution lower bounds for random formulas. The previous section
gave a simple proof that res(F ) is large for a specific class of formulas. Abstractly,
we can summarize the approach as follows. We assume for contradiction that F has
a small proof. In particular, F has a proof with a small number of large clauses. We
then modify F (in the above case, restrict some variables) to obtain another formula
F ′ having a proof with no large clauses. We then obtain a contradiction by showing
that any proof of F ′ contains a large clause.

In this section we show how the same idea can be used to obtain simple and im-
proved lower bounds on res(F ) that hold with high probability when F is a randomly
chosen formula of a given clause density.

5.1. Resolution refutations usually require big clauses. The first main
ingredient is a result (essentially from [CS88]) that provides a set of parameterized
conditions on a formula F that imply that any resolution refutation of F has at least
one large clause. We then show that when F is a random formula of clause density ∆,
these conditions hold for certain values of the parameters. We need some definitions.

Definition 5.1. For a real number σ, a set of clauses C is σ-sparse if |C| ≤
σ|v(C)|, where v(C) is the set of variables appearing in C.

Definition 5.2. If C is a set of clauses and l is a literal, we say that l is pure
in C if some clause of C contains l and no clause of C contains ¬ l.

Definition 5.3. For s ≥ 1 and ε ∈ (0, 1), the following properties are defined
for formulas F :

Property A(s): Every set of r ≤ s clauses of F is 1-sparse.
Property Bε(s): For r satisfying s/2 < r ≤ s, every subset of r
clauses of F has at least εr pure literals.

The following result is essentially due to Chvátal and Szemerédi (and is closely
related to Haken’s argument in Lemma 4.2).

Proposition 5.4. Let s > 0 be an integer and F be a CNF formula. If properties
A(s) and Bε(s) both hold for F , then F has no εs/2-bounded proof.

Proof. The result holds trivially if F is satisfiable, so assume that F is unsat-
isfiable. We say that a set S of clauses implies a clause C if every assignment that
satisfies all of the clauses in S satisfies C. Since F is unsatisfiable, F implies any
clause C. The complexity of a clause C with respect to F , comp(C) is the minimum
size of a set of clauses that implies C.

Let P be a resolution refutation of F .
Claim. If F satisfies A(s), then there is a clause C ∈ P for which s/2 <

comp(C) ≤ s.
It is easy to see that if S is a minimal set of clauses that implies C and the literal

l is pure in S, then l is in C. Hence for the C given by the above claim, property
Bε(F ) implies that |C| ≥ εcomp(C) ≥ εs/2.

So it suffices to prove the claim. We first note that if C is a set of clauses such that
any subset is 1-sparse, then it is satisfiable. Indeed, the sparsity condition is equivalent
to the hypothesis of the Hall theorem on systems of distinct representatives, and the
conclusion of the theorem is that there is a one-to-one mapping sending each clause
C ∈ C to a variable vC ∈ C. We can thus satisfy each clause C by appropriately
fixing vC .

Now if S implies Λ, then S is unsatisfiable, so A(s) implies comp(Λ) > s. Choose
C to be the first clause in P with comp(C) ≥ s/2. Since C is the resolvent of
two previous clauses Ch, Cj and comp(C) ≤ comp(Ch) + comp(Cj) we conclude that
comp(C) < s.
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Lemma 5.5. For each integer k ≥ 3 and ε > 0, there are constants C(k), cε(k) > 0
such that the following holds. Let m,n be integers with m = ∆n for some ∆ ≥ 1. Let
F ∼ Fk,n

m .
1. If s ≤ C(k)n/∆1/(k−2), then F satisfies A(s) probability 1− o(1) in s.
2. If s ≤ cε(k)n/∆2/(k−2−ε), then F satisfies Bε(s) with probability 1−o(1) in s.

This lemma is proved by elementary combinatorial probability. We defer the
proof until section 5.3 where we state and prove a generalization (Lemma 5.11).

5.2. The formula augmentation method. Armed with these results we give

a very simple proof that a random k-CNF F of density ∆ satisfies res(F ) ≥ 2n/∆
O(1)

with probability 1 − o(1). An augmentation of a formula F is a formula obtained
by adding additional clauses to F . As we now describe, augmentations can simplify
proofs.

We say that a clause C subsumes a clause D if C ⊂ D. Suppose that P is a proof
of F and let G be a CNF formula. We can obtain a proof of the augmented formula
F ∧ G, denoted P�G, as follows: For each clause D ∈ P, if there is a clause C in G
such that C subsumes D replace D by C and propagate this simplification forward
through the rest of the proof by (possibly) shortening clauses that were produced
using D.

Observe that in the case that G consists of clauses of size 1, G corresponds
naturally to a restriction ρ, and there is a close correspondence between the proofs
P�G and P�ρ.

Following our general approach, suppose we want to prove that res(F ) is big.
Assuming for contradiction that F has a small proof P, we show that for some integer
s and ε > 0, there is a G such that (i) G subsumes all clauses of size εs/2 of P and
such that (ii) F ∧G satisfies A(s) and Bε(s). This is a contradiction since (i) implies
that P�G is an εs/2 bounded refutation of F ∧G, while (ii) and Proposition 5.4 imply
that no such refutation is possible.

We will realize this approach by considering G chosen at random from some
distribution G. We say that the distribution G satisfies property g(b,M), for b,M > 0
if for any clause C of size at least b, if G ∼ G, then Pr[G does not subsume C] ≤ 1/M .

Proposition 5.6. Let F be a formula. Let s,M ≥ 1 and ε > 0, and let G be a
distribution over formulas that satisfies g(εs/2,M). Then

res(F ) ≥M × PrG∼G [F ∧G satisfies both A(s) and Bε(s)].

Proof. The conclusion follows immediately from the chain of inequalities:

res(F )/M ≥ PrG∼G [P�G is not εs/2 bounded]

≥ PrG∼G [F ∧G satisfies both A(s) and Bε(s)].

The second inequality is immediate from Proposition 5.4. For the first inequality, if
P is a proof of F of size res(F ), it has at most res(F ) clauses of size at least εs/2,
and by property g(εs/2,M) the probability that there is a clause not subsumed by G
is at most res(F )/M .

The above is stated for a fixed formula F . For distributions over formulae we
have the following theorem.

Theorem 5.7. Let F be a distribution over formulas. Let s,M ≥ 1 and ε > 0
and suppose that G is a distribution over formulas that satisfies g(εs/2,M). Then

PrF∼F [res(F ) < M/2] ≤ 2(PrF∼F,G∼G [F ∧G does not satisfy A(s)]

+ PrF∼F,G∼G [F ∧G does not satisfy Bε(s)]).
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Proof. For a formula F , let

p(F ) = PrG∼G [F ∧G does not satisfy A(s)] + Prρ[F �ρ does not satisfy Bε(s)].

By Proposition 5.6, res(F ) > (1− p(F ))M . Thus

PrF∼F [res(F ) < M/2] ≤ PrF [p(F ) > 1/2] < 2EF [p(F )],

where E[·] denotes expectation. This last quantity is equal to the right-hand side of
the claimed inequality.

We now use a form of self-reduction to obtain the following theorem.
Theorem 5.8. For each µ > 0, there exists a constant aµ > 0 such that if

F ∼ Fk,n
m for m = ∆n with ∆ > 1, then res(F ) ≥ 2aµn/∆

1+4/(k−2)+µ

with probability

1− o(1) in n. In particular, when k = 3 this reduces to res(F ) ≥ 2aµn/∆
5+µ

.
Proof. We apply Theorem 5.7 to the case F = Fk,n

m by choosing G = F . Note

that F ∧G has the distribution Fk,n
2m , so Lemma 5.5 implies that for any ε > 0 and for

some constant cε(k) > 0, if s ≤ cε(k)n/(2∆)2/(k−2−ε), then F ∧ G satisfies A(s) and
Bε(s) with probability 1 − o(1). (Note that the requirement on s for Bε(s) is more
stringent than that for A(s).) Next, we chooseM as large as possible so that G satisfies
g(εs/2,M). For a clause C of size at least εs/2, the probability that a single randomly

chosen clause subsumes C is
(
εs/2
k

)
/(2k

(
n
k

)
. If G ∼ G, then the probability that none

of its m clauses subsume C is at most (1−(εs/2k

)
/(2k

(
n
k

)
))m ≤ 2−dεmsk∆/nk−1

for some

constant dε. Substituting s = cεn/∆
2/(k−2−ε), we have that, for sufficiently small ε,

G satisfies g(εs/2, 2eεn∆1+4/(k−2)+O(ε)

) for some constant eε. Hence with probability

1− o(1), res(F ) ≥ 2Ω(n/∆1+4/(k−2)+α) for any α > 0.
Corollary 5.9. For any k ≥ 3 and ε > 0, there is a constant γ such that almost

all k-CNF formulas in n variables with at most n2k/(k+2)−ε clauses require resolution
proofs of size at least 2n

γ

.
These results provide strong lower bounds on res(F ) for random formulas. How-

ever, note that as k gets large, the exponent in the lower bound of res(F ) tends
to n/∆, while in the upper bound obtained by using ordered DLL, the exponent is
n/∆1/(k−2). We’d like to close this gap.

Observe that for property A(s), Lemma 5.5 requires s = O(n/∆1/(k−2)) while
for property Bε(s) it requires s ≤ O(n/∆2/(k−2−ε)). It turns out that one way to
significantly close the above gap would be to show that the second part of Lemma 5.5
holds if we weaken the bound on s.

Problem. Is it true that if F ∼ Fk,n
m , then F satisfies Bε(s) with probability near

1 for s ≤ n∆1/(k−2−ε)+o(1)?
If this were true, then the argument used in the above theorem would be improved

substantially to the following: for F ∼ Fk,n
m , with probability near 1, res(F ) ≥

2n/∆
2/(k−2−ε)

, which is very comparable to the upper bound. The corollary is improved
so that m can be as large as n(k−ε)/2. We discuss this problem further in section 7.

Lacking an affirmative answer to the above problem, we look for other ways to
improve our result. In section 5.3, we will see that we can narrow the gap substantially
using random restrictions instead of augmentations.

5.3. The random restriction method. We now apply an approach analogous
to the above, using restrictions instead of augmentations. As mentioned above, ap-
plying a restriction can be viewed as applying an augmentation consisting of clauses
of size one, but we use the language of restrictions because it is more familiar and
natural.
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Specializing Theorem 5.7 to the case of restrictions yields the following. If R is a
probability distribution over the set of restrictions, we say thatR has property R(b,M)
if for b,M > 0 for any clause C onX of size at least b, Pr[ρ does not satisfy C] ≤ 1/M .
Then we have the following theorem.

Theorem 5.10. Let F be a distribution over k-bounded formulae. Let s, M ≥
1 and ε > 0 and suppose that R is a distribution over restrictions that satisfies
R(εs/2,M). Then

PrF∼F [res(F ) < M/2] ≤ 2(PrF∼F,ρ∼R[F �ρ does not satisfy A(s)]

+ PrF∼F,ρ∼R[F �ρ does not satisfy Bε(s)]).

We will use this result to get a lower bound on res(F ) for random k-CNF formulas,
using the distribution Rt over restrictions where we first choose v(ρ) ⊆ X by selecting
each variable independently with probability t/n and then set the selected variables
uniformly at random.

Lemma 5.5 needs to be generalized to formulas obtained from a random k-CNF
by applying a random restriction.

Lemma 5.11. For each integer k ≥ 3 and ε > 0 there are constants C(k), cε(k) >
0 such that the following holds. Let m,n, s, t be integers with m = ∆n for some ∆ ≥ 1.
Let F ∼ Fk,n

m and ρ ∼ Rt.
1. If t ≤ C(k)n/m1/k and s ≤ C(k)n/∆1/(k−2), then F �ρ satisfies A(s) proba-

bility 1− o(1) in s.
2. If s, t ≤ cε(k)n/∆2/(k−2−ε), then F �ρ satisfies Bε(s) with probability 1− o(1)

in s.
The proofs of these lemmas require a preliminary result. Let F and ρ be as in

the statements of the lemmas. Let M denote the event that F �ρ contains an empty
clause. For r, q > 0, let Q(r, q) denote the event that there exists a set R of at most
r variables such that v(C) ⊆ R for at least q nonempty clauses C of F �ρ.

Proposition 5.12. Let m ≥ n ≥ t ≥ k ≥ 3 be positive integers.
1. If t ≤ n/m1/(k−1), then Pr[M ] ≤ m−1/(k−1).

2. Assume n ≥ 2k2. For r, q ≥ 1, Pr[Q(r, q)] ≤ (ner
)r ( 2ekmr(t+r)k−1

qnk

)q
.

Proof. For the first part, if C is a fixed k-clause, then C�ρ is empty if and
only if ρ sets all literals in C to 0. Thus PrC [C�ρ is empty] = (t/2n)k. Therefore,
Pr[M ] is upper bounded by the expected number of empty clauses of F�ρ which is
m( t

2n )k ≤ m−1/(k−1).
For the second part, let R ⊆ X with |R| = r ≥ 1. Let C denote a randomly

chosen clause and I = v(C) ∩ R. Let W (C) denote the event that C�ρ is nonempty

and its variables are contained in R. Then Pr[W (C)] =
∑k

i=1 Pr[|I| = i]Pr[v(C)−I ⊆
v(ρ) : |I| = i]. Now Pr[v(C) − I ⊆ v(ρ) : |I| = i] = (t/n)k−i, while Pr[|I| = i] =(
r
i

)(
n−r
k−i
)
/
(
n
k

) ≤ (ri
)

k!
(k−i)! (n − k)i ≤

(
k
i

)
( r
n−k )i ≤ 2

(
k
i

)
( r
n )i, where the last inequality

holds since we assume n ≥ 2k2. Thus

Pr[W (C)] ≤ 2

k∑
i=1

(
k

i

)(
r

n

)i(
t

n

)k−i

≤ 2kr

n

k−1∑
j=0

(
k − 1

j

)(
r

n

)j(
t

n

)k−1−j

=
2kr

n

(
r + t

n

)k−1

.
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Calling this latter probability p, if F is a random formula, the number of clauses
of F for which W (C) holds has the binomial distribution, B(m, p). The probability
that at least q clauses of F are contained in S after ρ is applied is bounded above by

Pr[B(m, p) ≥ q] ≤
(
m

q

)
pq ≤

(
2ekmr(r + t)k−1

qnk

)q

.(5.1)

Summing this over the
(
n
r

) ≤ (en/r)r subsets of X of size r we obtain the desired
upper bound on Pr[Q(r, q)].

Proof of Lemma 5.11. We begin with the first part. The probability that A(s)
fails is at most

∑s
r=1 Pr[Q(r, r + 1)] + Pr[M ]. By the first part of Proposition 5.12,

Pr[m] = o(1) in m and hence also in s. For r ≤ s we have

Q(r, r + 1) ≤
(ne
r

)r (2ekmr(r + t)k−1

(r + 1)nk

)r+1

(5.2)

≤ r

en

(
2ekm(r + t)k−1

(r + 1)nk−1

)r+1

.(5.3)

For t ≤ r ≤ s, and for some constant C1(k) > 0, if s ≤ C1(k)n/∆
1/(k−2), the

quantity (5.3) is at most r
2rn . Similarly, for 1 ≤ r < t, the quantity (5.3) is at most

r
n (C2(k)m( t

n )k−1)r+1 which is at most r
2rn for t ≤ C3(k)n/m

1/(k−1) for some positive
constants C2(k), C3(k). Thus the

∑s
r=1Q(r, r+1) is at most 1

n

∑s
r=1

r
2r < 2/n which

is o(1) in n and hence in s.
Finally, in the hypothesis of the lemma, we take C(k) = min(C1(k), C2(k)).
Now for the second part of the lemma. We first observe

Pr[¬ Bε(s)] ≤
∑

�s/2σ�≤r≤s/σ
Pr[Q(r, σr)] + Pr[M ],

where σ = 2/(k + ε). To see this, suppose that Bε(s) fails. We want to show that
either M holds or Q(r, σr) holds for some r in the given range. Assume M does not
hold. Since Bε(s) fails, there is a collection C of w clauses that has at most εw pure
literals with s/2 ≤ w ≤ s. We upper bound |v(C)|. The sum of the clause sizes is wk
and if u is the number of pure literals, the impure variables contribute at most wk−u
to this sum. Each impure variable appears in at least two clauses, so the number

of impure variables is at most wk−u
2 and thus |v(C)| ≤ wk−u

2 + u = wk+u
2 ≤ w(k+ε)

2 .

Extend the set v(C) to a set R of size r = �w(k+ε)
2 � so that � s

2σ � ≤ r ≤ s
σ and R

contains at least σr clauses. Thus Q(r, σr) holds.
So it suffices to upper bound the sum of Q(r, σr) for � s

2σ � ≤ r ≤ s
σ . We have

Q(r, σr) ≤
(ne
r

)r (2ekm(r + t)k−1

σnk

)σr

=

(
(ne)1/σC1m(r + t)k−1

σr1/σnk

)σr

≤
(
C4mr

−1/σ(r + t)k−1

nk−1/σ

)σr

< 2−σr

for appropriate constant C4(k), provided that

C4mr
−1/σ(r + t)k−1

nk−1/σ
≤ 1

2
.
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For σ = 2/(k + ε), this last condition is satisfied if both s and t are at most
cε(k)n · ( n

m )2/(k−2−ε) for some constant cε(k) ≥ 0. Now the total failure probability
for property Bε(s) is at most

∑s
r=� s

2σ � 2
−σr + Pr[M ] which is clearly o(1) in s and

part 2 is proved.
Next, in order to apply Theorem 5.10, we determine as large anM as possible such

that the distribution Rt satisfies R(εs/2,M), where s and t are the largest numbers
satisfying the hypotheses of both parts of the previous lemma.

Lemma 5.13. Rt satisfies R(εs/2, eεst/4n).
Proof. For a fixed clause C and for ρ ∼ Rt, a variable x that is in C is fixed by ρ

to satisfy C with probability t/2n, so the probability that ρ does not satisfy a given
clause C is at most (1− t/2n)|C| ≤ e−|C|t/2n.

Applying Theorem 5.10 using Lemmas 5.11 and 5.13 yields the following theorem.
Theorem 5.14. For any integer k ≥ 3 and ε > 0 there is a constant c′ε > 0

such that the following holds. Let F ∼ Fk,n
m , where m = ∆n with ∆ at least the

satisfiability threshold θk.

(i) If m ≤ c′εn
2(k−1)/(k+ε), then res(F ) ≥ 2Ω(n1−1/(k−1)/∆1/(k−1)+2/(k−2−ε)) with

probability 1− o(1) in n.

(ii) If m ≥ c′εn
2(k−1)/(k+ε), then res(F ) ≥ 2Ω(n/∆4/(k−2−ε)) with probability 1 −

o(1) in n.
Proof. Let C(k) and cε(k) be the constants from Lemma 5.11. Let s =

cε(k)n/∆
2/(k−2−ε). The two cases of the theorem correspond to the two constraints

on t in Lemma 5.11. The constraint t ≤ C(k)n/m1/(k−1) is the more stringent
constraint if and only if m1/(k−1) ≥ (cε(k)/C(k))(m/n)2/(k−2−ε). This holds if
and only if n ≥ c′′(k)m1−(k−2−ε)/(2k−2) = c′′(k)m(k+ε)/(2k−2) for some constant
c′′(k) > 0, i.e., if m ≤ c′εn

(2k−2)/(k+ε) for some constant c′ε > 0. In this case, ap-
plying Lemma 5.13 yields the first bound. In the case that m > c′εn

(2k−2)/(k+ε), the
constraint t ≤ cεn(n/m)2/(k−2−ε) is the more stringent and Lemmas 5.13 and 5.11
yield the second bound.

When k = 3, the maximal possible value of m which still yields a lower bound of
the form 2n

γ

is n6/5−ε, which matches the result obtained for k = 3 in Corollary 5.9.
For k ≥ 4 we obtain the following corollary.

Corollary 5.15. For k ≥ 4, and ε > 0, there is a constant γ > 0 such that
almost all k-CNF formulas with at most n(k+2)/4−ε clauses require resolution proofs
of size at least 2n

γ

.
Proof. To see this, assume that m = n(k+2)/4−ε. Since k ≥ 4 if we take ε′ = 4ε,

then (k+2)/4−ε = 1+(k−2−ε′)/4 > 1+(k−2−ε′)/(k+ε′) = (2k−2)/(k+ε′). Thus
we can apply the second bound of Theorem 5.14 to derive that k-CNF formulas with

at most m clauses almost certainly require resolution proofs of size 2Ω(n/∆4/(k−2+ε′))

which is 2Ω(n2ε′/(k−2+ε′)).

5.4. The deletion argument. In this subsection we sketch a variant of the
restriction approach, which, in a preliminary version of this work [BKPS98], was
shown to yield the following theorem.

Theorem 5.16. For each γ > 0, there exists a constant aγ such that for all
m ≥ n, if F is a 3-CNF formula chosen according to F3,n

m , then with probability

1− o(1), res(F ) ≥ 2aγ(n/∆4+γ).
Observing that this bound is nontrivial for m = o(n5/(4+γ)) and combining with

Corollary 5.15 we obtain the following corollary.
Corollary 5.17. For k ≥ 3, and ε > 0, there is a constant γ > 0 such that

almost all k-CNF formulas with at most n(k+2)/4−ε clauses require resolution proofs
of size at least 2n

γ

.
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The proof of Theorem 5.16 in [BKPS98] is rather technical. The recent work of
Ben-Sasson and Wigderson [BSW99] referred to earlier shows how one can derive the
same bound in a substantially simpler way given Proposition 5.4 and Lemma 5.5.
Therefore, we do not include our entire proof but instead give a short sketch.

The major bottleneck in the argument of section 5.1 is the upper bound on t
needed for Lemma 5.11. Indeed, for t much larger than n/

√
m, there is a substantial

probability that A(s) does not hold for F �ρ. In particular, the bound computed in the
proof of Lemma 5.11 on the probability that a clause of a random F becomes empty
is nearly tight; an easy computation shows that the probability that no clause of a
random F becomes empty when ρ is applied is e−Θ(mt3/n3) and so, since the presence
of an empty clause in F �ρ violates A(s), we have that t = o(n/m1/3). (The creation
of unit clauses under the restriction placed an even stronger limitation on t.)

To overcome this limitation, we want to avoid the creation of clauses of size 0
or 1 in F �ρ. To do this we modify the distribution on restrictions so that ρ may
depend on F . The general idea is to first choose a random restriction and then delete
any assignment that sets more than one variable in any clause of F . For technical
reasons one must also delete assignments to variables that share some clause with too
many other variables. By careful arguments one can show appropriate analogues of
Theorem 5.10 and Lemma 5.11, allowing the condition t ≤ cn/√m on the size of the
restriction to be eliminated.

6. The behavior of DLL on random formulas. We now analyze particular
DLL algorithms when applied to random formulas and show that we can obtain
quite good upper bounds using a very simple splitting rule and that even certain
generalizations of this splitting rule require much larger proofs than our current lower
bound for general resolution shows.

6.1. Ordered DLL on random formulas.

Theorem 6.1. Let k ≥ 3 and let m = ∆n, where ∆ is greater than the threshold
θk(n) and m = ∆n. Suppose that F ∼ Fk,n

m . Then with probability 1 − o(1) in n,

the size of the refutation of F produced by ordered DLL is 2Θ(n/∆1/(k−2))n±Θ(1). In
particular, when k = 3, the refutation has size 2Θ(n/∆)n±Θ(1).

The proof of this result has two parts, the upper bound, and lower bound, which
we prove separately. To analyze the upper bound, we first consider a variant of ordered
DLL that is easier to analyze.

Upper bound for ordered DLL. We first consider a variant of ordered DLL
which is bit more complicated to state but easier to analyze.

Algorithm A. Set t = 6k�n(n/m)1/(k−2)�; in particular, when k = 3 this is
18�n2/m�. Run ordered DLL, as long as the variables x1, . . . , xt are not all assigned.
When reaching a partial assignment ρ in which x1, . . . , xt are all assigned (and possibly
other variables by unit propagation), run the (polynomial-time) algorithm for 2-SAT
on the subset C2(F, ρ) consisting of clauses of size at most 2 in the induced subformula
F �ρ. The algorithm succeeds (finds a resolution refutation of F ) provided that for
each such ρ reached in the algorithm the subformula C2(F, ρ) is unsatisfiable.

To analyze Algorithm A we need the following lemma.

Lemma 6.2. Let F be a random 2-CNF formula chosen from F2,n′
2n′ . Then the

probability that F is satisfiable is o(2−n
′/9).

Proof. Observe that the expected number of satisfying assignments for
a 2-CNF formula with m′ clauses and n′ variables is 2n

′
(3/4)m

′
which is o(2−n

′/9)
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for m′ > 2.678n′. (This bound can be reduced below 2 by using the techniques of
[KKKS98].)

Theorem 6.3. Let ∆ be greater than the satisfiability threshold θk(n) and m =
∆n. If F ∼ Fk,n

m , then, with probability 1 − o(1) in n, Algorithm A produces a

resolution refutation in time 2O(n/∆1/(k−2))nO(1); in particular, if k = 3 Algorithm A
produces a resolution refutation in time 2O(n/∆)nO(1).

Proof. Let t = 6k�n(n/m)1/(k−2)� and assume without loss of generality that t <

n/10. Algorithm A clearly runs in time 2O(n/∆1/(k−2))nO(1). To show that Algorithm
A finds a refutation of F with probability 1 − o(1), it suffices to show that with
probability 1 − o(1), C2(F, ρ) is unsatisfiable for all assignments ρ to {x1, . . . , xt}.
(Note that the restrictions occurring in the algorithm may have additional variables
fixed by unit propagation, but this can only increase our probability of success.)

Fix ρ. Consider the set Ĉ2(F, ρ) of clauses of size exactly 2. This size is a binomial
random variable B(m, q), where q is equal to the probability, for a random k-clause
C, that C�ρ is a 2-clause:

Pr[C�ρ is a 2-clause] =
1

2k−2
· Pr[|{x1, . . . , xt} ∩ v(C)| = k − 2]

=
1

2k−2
·
((

n−t
2

)(
t

k−2

)
(
n
k

)
)

=
1

2k−2
·
((
k

2

)
n− t
n

n− t− 1

n− 1

t

n− 2

t− 1

n− 3
· · · t− k + 3

n− k + 1

)

>
1

2k−2

(
k

2

)2
4

5

(
t

2n

)k−2

>

(
k

2

)
4

5

(
3k

2

)k−2
n

m

> 8n/m.

Using the binomial tail bound of Proposition 2.1 (1), it follows that Pr[|Ĉ2(F, ρ)| ≤
2n] ≤ 2−4n. By Lemma 6.2 and the fact that the clauses in Ĉ2(F, ρ) are distributed
uniformly at random on the remaining n′ = n− t variables,

Pr[Ĉ2(F, ρ) is satisfiable : |Ĉ2(F, ρ)| > 2n] = o(2−n
′/9).

Since there are 2t choices for ρ, the total failure probability is 2t ·(o(2−(n−t)/9)+2−n),
which is o(1) since (n− t)/9 ≥ t for t ≤ n/10.

Next we consider ordered DLL and prove the upper bound of Theorem 6.1. At a
point in the execution of DLL, say that a variable is critical if setting that variable
either to 0 or 1 and then applying unit propagation creates the empty clause. Thus,
if the splitting rule chooses that variable the current branch will terminate simply by
unit propagation.

A point in the execution of DLL corresponds to some restriction ρ. We give a
sufficient condition for a variable to be critical in terms of the set Ĉ2(F, ρ) of induced
2-clauses on the remaining set of n′ variables. Define the standard directed graph
G(F, ρ) on 2n′ vertices, one for each literal, that has directed edges (¬x, y), and
(¬y, x) corresponding to each 2-clause (x ∨ y) in Ĉ2(F, ρ). It is easy to see that a
sufficient condition for the variable xi to be critical is that there be directed paths
from xi to ¬xi and from ¬xi to xi, i.e., that xi and ¬xi lie in the same strongly
connected component.
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Lemma 6.4. For any k ≥ 3, there exists a constant c such that if F ∼ Fk,n
m

and ρ is a fixed restriction of t variables with n/2 ≥ t ≥ c�n(n/m)1/(k−2)�, then with
probability at least 1 − 2−n, for at least half of the n′ = n − t unrestricted variables,
xi and ¬xi belong to the same strongly connected component of G(F, ρ).

Proof. Clearly, it suffices to show that with probability at least 1− 2−n, G(F, ρ)
has a strongly connected component of size at least 3n′/2. Let C1, C2, . . . , Cd be
the strongly connected components ordered so that all edges between components
go from lower to higher numbered components and consider the first j such that
|C1 ∪ · · · ∪Cj | ≥ n′/4. We will show that the probability that |Cj | < 3n′/2 is at most
2−n. If |Cj | < 3n′/2, then the set S = C1 ∪ · · · ∪ Cj satisfies n′/4 ≤ |S| ≤ 7n′/4, and
there is no edge from S̄ to S.

So to upper bound the probability that |Cj | < 3n′/2 it suffices to upper bound
the probability that there is a set S with n′/4 ≤ |S| ≤ 7n′/4 which is bad in the sense
that there is no edge from S̄ to S. Fix S of size s, with n′/4 ≤ s ≤ 7n′/4. The
probability that a randomly chosen k-clause C, when restricted by ρ, gives an edge
from S̄ to S is at least s(n′ − s − 1)

(
t

k−2

)
/2k
(
n
k

) ≥ β′(t/n)k−2 ≥ β�n/m� for some
constants β, β′ > 0 depending only on k. Hence the probability that none of the m
clauses of F gives such an edge is at most (1− βn/m)m ≤ e−βcn ≤ 2−3n for c chosen
greater than 3/β. There are at most 22n′

such sets S, so the probability that there is
a bad set S of size between n′/4 and 7n′/4 is at most 2−n.

Proof of the upper bound of Theorem 6.1. Without loss of generality we may
assume that m ≥ (4c)k−2n where c is the constant of the previous lemma, and let
t = cn(n/m)1/(k−2) so that t ≤ n/4.

Fix a restriction ρ of the first t variables. We claim that the probability that there
is a branch of the DLL tree consistent with ρ that is still active (not terminated) after
the first 4t variables are set and the resulting unit propagations are processed is at
most 2−2t. Since there are 2t choices for ρ, this will imply that with probability
1− 2−t, every branch of ordered DLL is completed after at most the first 4t variables
are fixed and all resulting unit propagations are done, and so the tree has at most
n24t nodes (including nodes from unit propagation).

To prove the claim, condition on the size r of the set of critical variables for
F �ρ. By Lemma 6.4, the probability that r < n′/2 is at most 2−n ≤ 2−4t, so we
assume r ≥ n′/2. The set of critical variables is equally likely to be any r-subset
of the n′ = n − t unset variables, and so the probability that none of the next 3t

variables in order are critical is at most
(
n′−3t

r

)
/
(
n′

r

) ≤ (1 − 3t/n′)r ≤ e−3t/2. Hence
the probability that some branch consistent with ρ is unfinished after fixing the next
3t variables is at most 2−4t + e−3t/2 ≤ 2−2t.

Note that in order to obtain the claimed upper bound with probability 1−o(1) in
n, we can assume without loss of generality that t is at least log n. (If m, the number
of clauses, is large enough so that t is less than log n, we can carry out the analysis
with fewer clauses since the complexity of ordered DLL decreases monotonically with
the number of clauses.)

Lower bound for ordered DLL. We now complete the proof of Theorem 6.1
by proving the lower bound.

Proof of the lower bound for Theorem 6.1. Fix t < n( 1
4k∆ )1/(k−2) and let S be the

first t variables with respect to the given ordering and L(S) be the associated set of
2t literals. Let F ′ denote the set of all clauses of F that contain at least k− 1 literals
from L(S).

Claim. With probability 1 − o(1) in t, there is a partial assignment τ to t/2 of
the variables of S that satisfies all clauses in F ′.
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Assuming the claim, we finish the proof by noting that for each of the at least
2t/2 restrictions ρ to S that are compatible with τ , all clauses of F �ρ will have size at
least 2. This implies that when applying ordered DLL along the path specified by ρ,
no variables outside of S are fixed by unit propagation, and so there is a unique node
corresponding to ρ, and hence there are at least 2t/2 nodes in the tree. Without loss
of generality, we can assume that t is at least log n; since t < log n, our claimed lower
bound is just 1.

So we prove the claim. For each C ∈ F , the probability q that it is in F ′ is at
most k( t

n )k−1 ≤ t kn ( t
n )k−2 ≤ t

4m . Construct a 2-CNF F ′′ of size |F ′| by replacing
each clause C ′ of F ′ by a clause C ′′ obtained by selecting two literals of C ′ ∩ L(S)
uniformly at random. It is easy to see that F ′′ is a randomly chosen 2-CNF whose
number of clauses is binomially distributed according to B(m, q). The tail bound of
Proposition 2.1 (2) implies that |F ′′| < t/2 with probability 1− o(1). Conditioned on
|F ′′| < t/2, the probability that F ′′ (and hence F ′) is satisfiable is 1 − o(1) because
a random 2-CNF formula with (1 − ε)t variables on a set of size t is satisfiable with
probability 1−o(1) [Goe96, CR92]. If F ′′ is satisfiable, there is a setting τ of at most
|F ′′| < t/2 variables of S that satisfies it. This completes the proof of the claim and
the theorem.

6.2. Lower bounds for more general DLL procedures. Having analyzed
ordered DLL, we next turn to the problem of proving lower bounds for a wider class
of DLL procedures. In the following discussion it will be useful to introduce some
additional terminology. Let A be a DLL algorithm and F be a formula, and let
TA(F ) denote the DLL tree associated to the execution of A on F . We classify the
nodes of TA(F ) into two types: unit propagation nodes (those corresponding to a
variable in a unit clause) and branching nodes.

We will prove a lower bound for a class of algorithms called oblivious DLL al-
gorithms. Let Bn denote the full binary tree of depth n and let λ be a labeling of
the internal nodes by literals with the property that along each root-leaf path each
variable occurs in exactly one literal. The labeling λ specifies an algorithm A = Aλ

as follows. On input F , Aλ recursively traverses Bn starting from the root. When
arriving at node v it has a formula G which is a restriction of F , and it performs a
procedure Test(G, v) defined as follows. While G has at least one unit clause but no
empty clause, choose a unit clause and fix its literal to true, simplifying G accordingly.
If the empty clause is produced, stop; the formula is unsatisfiable. If G ever has no
clauses, then stop; the formula is satisfiable. Otherwise, when G has no empty or
unit clauses, let v0 and v1 denote the left and right children of v. If the literal λ(v)
is already assigned a value i ∈ {0, 1}, move to vi and run Test(vi, G). Otherwise,
run Test(v0, G�λ(v)=0) and Test(v1, F �λ(v)=1) and return unsatisfiable if both return
unsatisfiable, and satisfiable if at least one of them returns satisfiable.

In the special case that Bn is labeled so that each node of distance i from the
root is labeled xi the above algorithm is ordered DLL. Another case of interest is that
of random DLL in which the labeling of Bn is chosen at random. In general, we call
such algorithms oblivious because (except for unit propagation) the choice of splitter
does not depend on the function F .

It is worth emphasizing the distinction between the labeled tree (Bn, λ) (which
is independent of F ) and the DLL tree TAλ

(F ) associated to an execution of the
algorithm on F .

It is not hard to show that if F ∼ Fk,n
m , then the expected running time of any

oblivious algorithm is the same. However, this does not rule out the possibility that
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some oblivious algorithm may run much faster than ordered DLL on most instances
by concentrating the bad behavior on a small set of instances. Here we show that
provided thatm is big enough, no oblivious algorithm can do much better than ordered
DLL on most instances (see Theorem 6.8 below).

In the lower bound on ordered DLL, we showed that during the first t steps, with
high probability unit propagation plays no role. We will prove something like this
for oblivious algorithms. The key step is a lemma that implies that for any DLL
procedure (oblivious or not) on a random formula, the number of variables fixed by
unit propagation along any path in the DLL tree is not much more than the number
of branching nodes along the path. For technical reasons, it is easier to consider a
generalization of unit propagation that ignores the sign of variables.

The general idea is as follows. Let F be a formula and T a set of variables that
have been set so far. We want to describe a natural algorithm that defines a set
T̂ , where T̂ will contain T plus the set of additional variables that are set by unit
propagation. The algorithm is as follows. Initially T̂ = T . Given F , let S be the
corresponding set system, where each k-clause of F corresponds to a k-set in S (over
a universe of size n.) Given F (and hence S), and T , define S′ ⊆ S to be those clauses
that intersect T̂ in exactly k− 1 elements. Add the elements occurring in S′ that are
not already in T̂ to T̂ and continue recursively until S′ is empty. Note that the set T̂
produced by this algorithm is a minimal set of variables that will be set by setting the
variables in T , plus the additional variables set by unit-clause propagation, assuming
that we ignore early termination as a result of the formula being set to 0 or 1. The
intuition behind the proof of Theorem 6.8 is that with high probability, the size of T̂
will be not much larger than the size of T . The proof of this fact will be a compression
argument showing that for each fixed T , if F has the property that T̂ is large, then
F can be encoded succinctly. Intuitively, if there are a lot of variables that become
unit clauses, then these clauses are not random with respect to T and therefore can
be described succinctly.

We need some definitions. Given a k-CNF formula F , a set T of variables is closed
with respect to F if no clause contains exactly k − 1 variables of T (either positively
or negatively). It is easy to see that the intersection of closed sets is closed, and hence
for any set T of variables the set T̂ obtained by intersecting all closed sets containing
T yields the unique minimal closed set containing T . We call this the closure of T
(with respect to F ). A clause is said to be threatened by (F, T ) if it is contained in
T̂ . Note that T̂ = T ∪ ∪Dv(D), where D ranges over all clauses of F threatened by
(F, T ). The following fact relates these notions to unit propagation.

Proposition 6.5. Let A be any DLL algorithm and F be a k-CNF formula.
Suppose v is a node in the DLL tree of TA(F ). Let T be the variables that appear at
the branching nodes on the path to v. Then

1. the variables at the unit propagation nodes on the path to v are contained
in T̂ ;

2. the only clauses that can be empty upon reaching v are the clauses threatened
by (F, T ).

Proof. For the first part, let v0, . . . , vj = v be the nodes on the path to v and let
xi be the variable whose literal li appears at vi. Applying induction on i, we assume
that {x0, . . . , xi−1} ⊆ T̂ . Then if vi is a branching node, then xi ∈ T and otherwise,
if ρ is the restriction defined by the literals l0, . . . , li−1, there is a clause C of F such
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that C�ρ is the unit clause li. If T̂ does not contain xi, then C contains exactly k− 1

variables of T̂ , which contradicts that T̂ is closed.
For the second part, a clause that becomes empty must have all its literals set to

0, which means that all of its variables are in T̂ .
We next present an algorithm for constructing T̂ from T ; the details of this

algorithm are needed in what follows. Fix an ordering x1, . . . , xn of the variables.
The algorithm Close(F, T ) takes as input a formula F (viewed as a list C1, . . . , Cm

of clauses) and subset T of variables with t = |T |, and outputs the following:
(i) A sequence D1, . . . , Du of distinct clauses of F , consisting of the set of

clauses threatened by (F, T ).
(ii) A sequence z1, . . . , zt+u of variables consisting of the variables of T̂ (possibly

with repetition). Furthermore, T = {z1, . . . , zt}, listed according to the global variable
ordering, and for i ∈ [u], zt+i ∈ v(Di) ⊆ {z1, . . . , zt+i}.

(iii) A sequence j1 ≤ · · · ≤ ju of integers in the range 1 to t+ u, where ji is the
least index such that |{z1, . . . , zt+u} ∪Di| = k − 1.

We will build these three lists in a series of iterations, which we divide into two
phases. The initialization phase consists of the first t iterations, where we place the
variables of T on the list, constructing z1, . . . , zt. During the second (main) phase,
in iteration t+ i, we determine zt+i, Di, and ji. During both phases, we maintain a
list of eligible clauses of F . Each item on the list is a triple (D, j(D), y(D)), where D
is a clause that contains at least k − 1 variables on the list so far, j(D) is the least
index for which |v(D) ∩ {z1, . . . , zj(D)}| = k − 1, and y(D) is the unique variable of
v(D) − {z1, . . . , zj(D)}. At iteration j, after adding a variable zj , the eligible list is
updated by identifying all clauses Cs of F that contain zj and that contain exactly
k − 2 distinct variables from z1, . . . , zj−1. For each such clause, let j(Cs) = j and let
y(Cs) be the unique variable of Cs that does not appear in the list. Order the set of
all such triples (Cs, j, y(Cs)) according to the index s and append this to the list of
eligible clauses.

In the initialization phase, during iteration i, we choose zi to be the ith variable
of T according to the global variable ordering, and then we update the eligible list.
During iteration t + i of the main phase, if there are no eligible clauses, then the
algorithm terminates. Otherwise, remove the first triple (D, j, y) from the eligible list
and set zt+i = y, Di = D and ji = j and update the eligible list.

It is easy to show by induction on i that {z1, . . . , zt+i} ⊆ T̂ and that at termination
the list {z1, . . . , zt+u} is closed and hence is T̂ . The other properties of the output
asserted above are similarly obvious.

We are now ready to state and prove the key lemma.
Lemma 6.6. For k ≥ 3 there is a constant c(k) such that the following holds.

Let n,m, t, w be positive integers and let ∆ = m/n > 1. Suppose that t ≤ w ≤
c(k)n/∆1/(k−2). Let T be a set of variables of size t. Then for F ∼ Fk,n

m , the
probability that (F, T ) threatens at least w clauses is at most 2−w.

Proof. Fix n,m,w, t and T as in the hypothesis of the lemma. We view an
arbitrary formula F ∼ Fk,n

m as an ordered sequence C1, . . . , Cm of clauses. Thus
F is uniformly chosen from (2k

(
n
k

)
)m possible formulas. Say that F is bad if (F, T )

threatens at least w clauses. We will upper bound the probability that F is bad by
showing that each bad F can be uniquely “encoded” in such a way that the number
of encodings is a 2−w fraction of the number of formulas.

Now suppose that F is bad, and thus the number u of threatened clauses is at
least w. In this case, will show how to encode F efficiently. Our encoding will first
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give enough information in order to recover the first w clauses, D1, . . . , Dw, output
by the above algorithm, and then we will code more directly the remaining clauses of
F . The encoding of D1, . . . , Dw refers to some of the output of the above algorithm
on F and will include the following:

(i) The list zt+1, . . . , zt+w.
(ii) The list j1,j2,. . . ,jw.
(iii) For i ∈ [w], the sequence di(1) < · · · < di(k − 2), where di(j) is the least

index such that in |v(Di) ∩ {z1, . . . , zdi(j)}| = j.

(iv) For each i ∈ [w], the vector αi ∈ {+,−}k, where αi(j) is the sign of the
appearance of zdi(j) in Di.

It is clear that this information is enough to reconstruct D1, . . . , Dw. To recon-
struct the remaining clauses of F , C1, . . . , Cm, along with their ordering, we need two
more things:

(i) The list h1, h2, . . . , hw of indices such that Di = Chi
.

(ii) The ordered list of clauses (Ci : i �∈ {h1, . . . , hw}).
Let us count the number of such encodings. There are at most mw ways to choose

h1, . . . , hw. There are (2k
(
n
k

)
)m−w ways to choose the sequence of clauses that are not

among the Di. There are at most nw ways to choose zt+1, . . . , zt+w. Since the list
j1, . . . , jw satisfies j1 ≤ · · · ≤ jw, the number of ways to choose this sequence is at most(
t+2w−1

w

) ≤ 2t+2w. For each i the number of ways to choose di(1), . . . , di(k − 2) is at
most (t+w)k−2, and the number of ways to choose αi is at most 2k. Multiplying these
together and dividing by (2k

(
n
k

)
)m we get that the probability that (F, T ) threatens

at least w clauses is at most

mwnw2t+2w+kw(t+ w)(k−2)w

(2k
(
n
k

)
)w

≤ mwkw2t+2w(t+ w)(k−2)w

n(k−1)w

≤
(

8km(2w)k−2

nk−1

)w

.

For some constant c(k) > 0, if w ≤ c(k)n(n/m)1/(k−2) the above expression is at most
2−w.

Before we use this to prove the theorem, we derive an immediate corollary which
we hope will be useful in analyzing other DLL algorithms. It says that for almost all
formulas F every path in any DLL tree for F contains not many more unit propagation
nodes than it does branching nodes.

Lemma 6.7. For k ≥ 3 there is a constant c(k) such that the following holds. Let
n,m, t be positive integers, ε > 0 w = �(1+ε) max(t, log2

(
n
t

)
)�, and let ∆ = m/n > 1.

Suppose that t ≤ w ≤ c(k)n/∆1/(k−2). Then for F ∼ Fk,n
m , the probability that there

is a partial assignment of size t that generates at least w unit clauses is o(1) in t.
Proof. There are only

(
n
t

)
sets of variables T of size t that can be the underlying

set of variables of the partial assignment. Furthermore, any unit clause generated by
such a partial assignment must be a clause threatened by (F, T ). By Lemma 6.6, any
single set T threatens w clauses with probability only 2−w. Summing over all possible
sets T yields the desired result.

Theorem 6.8. Let k ≥ 3 and let n,m be integers and ∆ = m/n. Let A be any
oblivious DLL algorithm for k-CNF formulas on n variables and suppose F ∼ Fk,n

m .
If m = ω(nk/2), then with probability 1 − o(1) in n, the running time of A on F is

2Ω(n/∆1/(k−2)).
Proof. Fix k and let n,m satisfy the hypotheses of the theorem. There are

two cases to consider, when F is satisfiable and when F is not satisfiable. Since
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m = ω(nk/2), the probability that F is satisfiable is exponentially small in n. Thus,
we can assume without loss of generality that F is unsatisfiable in what follows, and,
in particular, every leaf node in any DLL tree for F is labeled by 0. Observe that
the conclusion of the theorem is trivial if m = Ω(nk−1), so we may assume that
m = o(nk−1). Fix an oblivious DLL algorithm and let λ be the associated labeling of
Bn. Let t = c(k)n/∆1/(k−2), where c(k) is as in Lemma 6.6. The hypothesis and the
assumption m = o(nk−1) imply t = o(

√
n) and t = ω(1).

For a formula F , let R = R(F ) be the set of vertices at level t in Bn that are
visited by the traversal of Bn in the execution Aλ(F ). Note that v ∈ R means that
no clause of F becomes empty along the path to v. We will show that the probability
that |R| ≤ 2t−1 is o(1), and since |R| is a lower bound on the running time of Aλ(F )
this will prove the theorem.

First, for a fixed vertex v at level t in Bn we upper bound Pr[v �∈ R]. Let T be
the set of variables labeling the nodes in Bn on the path to v. By the definition of
the algorithm and by Proposition 6.5 the variables set by unit propagation along the
path to v must be in T̂ , and any empty clause must be a clause threatened by (F, T ).
Consider the output D1, . . . , Du and z1, . . . , zt+u of the algorithm Close(F, T ). We
claim that if the variables z1, . . . , zt+u are all distinct, then no clause of F becomes
empty along the path to v, and since F is unsatisfiable, this implies that Aλ(F )
reaches v. For this, it suffices to show that for i ∈ [u], if the variable zt+i is set
by unit propagation, then it can only be set because Di becomes a unit clause. So
assume for contradiction that zt+i is set because some clause Dj with j �= i becomes
a unit clause and that this is the first time that this happens. However, then since
zt+j ∈ v(Dj), it must have been set before Dj became a unit clause, which contradicts
the choice of zt+i.

Thus we have

Pr[v �∈ R] ≤ Pr[z1, . . . , zt+u are not distinct]

≤ Pr[u > t] + Pr[z1, . . . , zt+u are not distinct : u ≤ t].

Now Pr[u > t] ≤ 2−t by Lemma 6.6. We claim that the second term is bounded
above by 3t2/2n. To see this, note that by the definition of the algorithm Close the
triple (Di, ji, zt+i) is the ith item placed on the eligible clause list. Think of this triple
as a random variable (which depends on the random formula F ). The key observation
is that at the time that we add (Di, ji, zt+i) to the eligible list (at the end of iteration
ji) the conditional distribution of zt+i is given by the uniform distribution over the
set {x1, . . . , xn} − {z1, . . . , zji}. Thus the probability that zt+i �∈ {z1, . . . , zt+i−1} is
1 − (t + i − 1 − ji)/(n − ji) ≥ 1 − (t + i − 1)/n, and the probability that there is

some i ∈ [t] for which zt+i ∈ {z1, . . . , zt+i−1} is at most
∑t

i=1(t + i − 1)/n ≤ 3t2

2n , as
claimed.

We conclude that Pr[v �∈ R] ≤ 2−t + 3t2

n , which is o(1) in n since t = o(
√
n) and

t = ω(1). Therefore, the expected number of vertices v �∈ R is at most o(2t), which
under the assumption on t is o(2t). Thus, by Markov’s inequality, the probability
that more than 2t−1 vertices are not in R is o(1) and thus |R| ≥ 2t−1 with probability
1− o(1), as required to complete the proof.

7. Related work and further research. The question of whether or not res-
olution is automatizable is still open. In particular, what is the fastest deterministic
or probabilistic search algorithm for resolution? The best that is known is presented
in section 3 which is essentially due to Clegg, Edmonds, and Impagliazzo. It can be
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shown that this is the best algorithm in the tree-like case, but we know of no negative
results of this kind for the general case.

A problem pertinent to our results in section 4 is to prove exponential lower
bounds for the weak pigeonhole principle, ¬PHPm

n , where the number of pigeons, m,
is large (say n3). Buss and Pitassi [BP97] showed that there exists a resolution refu-
tation of ¬PHPm

n when m ≥ 2
√
n logn of size 2

√
n logn. It has been conjectured that

when m is polynomial in n, any resolution refutation of ¬PHPm
n requires superpoly-

nomial size. Razborov has shown that such a lower bound would imply that proving
superpolynomial circuit lower bounds for an explicit function in NP is independent
of certain systems of bounded arithmetic.2

In a preliminary version of this paper ([BP96]) we asked:

Can one show that for any 3-CNF formula f , if f has a polynomial-
size resolution refutation, then f also has a resolution refutation with
maximum clause size

√
n? Such a result would justify the simple and

natural deterministic simulation of resolution whereby we exhaus-
tively search for proofs of maximum clause length i, for increasing
i.

Based on the Clegg–Edmonds–Impagliazzo algorithm, a version of this clause-
width conjecture has recently been proven by Ben-Sasson and Wigderson [BSW99]—
in particular that size S resolution refutations can be made O(

√
n logS)-bounded

and size S DLL proofs can be converted to O(logS)-bounded resolution refutations.
As stated above, this simplifies the algorithm in section 3 and can be used to show
that random k-CNF formulas with n variables with clause density ∆ ≥ θk(n) require

resolution proofs of size 2Ω(n/∆4/(k−2)+ε) and DLL proofs of size 2Ω(n/∆2/(k−2)+ε). This
size lower bound for general resolution refutations provides a simpler smooth tradeoff
between ∆ and proof size than our results, but it does not improve the largest densities
for which exponential lower bounds for resolution are known to hold almost certainly.
The size lower bound for DLL proofs is not as large as our lower bounds in section
6.1 but applies to all DLL procedures, not just oblivious ones.

The problem posed at the end of section 5.2 is whether the hypothesis on s in
Lemma 5.5 needed for property Bε(s) can be weakened. As mentioned, such a weaken-
ing would strengthen the lower bounds on res(F ) for random formulas. Furthermore,
when combined with the Ben-Sasson–Wigderson approach for lower bounding DLL

refutation size, this improvement would yield a tight 2Ω(n/∆1/(k−2)+o(1)) lower bound
on DLL(F ) for F a random formula.3

Examining the proof of Lemma 5.11 we see that a critical place to look for im-
provement is in the last step of the proof of Proposition 5.12, where we obtain an
upper bound on Pr[Q(r, q)] by multiplying Pr[B(m, p) ≥ q] by

(
n
r

)
, which corresponds

to upper bounding the probability of the union of
(
n
r

)
events by their sum. Can this

union bound be refined by a more careful analysis?

The essence of the question is captured by a natural question about random
hypergraphs. Given a collection H of subsets of [n], say that a subset A of [n] is
γ-crowded by H if A contains at least γn members of H. Let s(H, γ) be the largest s
for which there is no set of size s that is γ-crowded by H. The question is, If H is a

2Following a proof of subexponential lower bounds for a restricted version of resolution [PR01],
such lower bounds have indeed been proved for general resolution by Raz [Raz01a] and simplified
and strengthened by Razborov [Raz01b].

3Ben-Sasson and Galesi [BSG01] have recently shown just such a lower bound by replacing the
property Bε(s) with a weaker expansion property of such formulas.
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random collection consisting of ∆n subsets of [n] each of size k what is the best lower
bound on s(H, γ) that holds with probability 1 − o(1)? A calculation analogous to

that in Lemma 5.11 (using the union bound) shows that s(H, γ) ≥ Ω(n/∆1/(k−2− 1
γ )),

while it is also not hard to show that s(H, γ) ≤ O(n/∆1/(k−2)). An argument that the
upper bound is tight could almost certainly be adapted to give an affirmative answer
to the problem at the end of section 5.2.

A final open problem is to produce a better algorithm for finding unsatisfiability
proofs for random formulas. In particular, is there a polynomial-time algorithm that
succeeds in finding a proof of unsatisfiability with high probability for random formu-
las with cn clauses for some c > 0? We are not aware of any algorithm that provably
beats the very simple ones we analyzed in section 6, even if we consider more powerful
search methods that are not resolution-based.4
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Abstract. Linear quantum cellular automata were introduced recently as one of the models of
quantum computing. A basic postulate of quantum mechanics imposes a strong constraint on any
quantum machine: it has to be unitary; that is, its time evolution operator has to be a unitary
transformation. In this paper we give an efficient algorithm to decide if a linear quantum cellular
automaton is unitary. The complexity of the algorithm is O(n(3r−1)/(r+1)) = O(n3) in the algebraic
computational model if the automaton has a continuous neighborhood of size r, where n is the size
of the input.
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1. Introduction. The classical models of computation, such as Turing ma-
chines, random access machines, circuits, or cellular automata, are all universal in
the sense that they can simulate each other with only polynomial overhead. These
models are based on classical physics, whereas physicists believe that the universe is
better described by quantum mechanics.

Feynman [8, 9] pointed out first that there might be a substantial gap between
computational models based on classical physics and those based on quantum mechan-
ics. The quantum Turing machine (QTM), the first model of quantum computation,
was introduced by Benioff [1, 2]. Deutsch in [5] described a universal simulator for
QTMs with exponential overhead. Bernstein and Vazirani [3] were able to construct
a universal QTM with only polynomial overhead.

Other quantum computational models were also studied recently. Deutsch [6]
has defined the model of quantum circuits, and later Yao [19] has shown that QTMs
working in polynomial time can be simulated by polynomial size quantum circuits.
Physicists were also interested in quantum cellular automata: Biafore [4] considered
the problem of synchronization, Margolus [14] described space-periodic quantum cel-
lular automata, and Lloyd [12, 13] discussed the possibility of realizing a special type
of quantum cellular automaton. Linear quantum cellular automata (LQCAs) were
formally defined by Watrous [18] and by Dürr, LêThanh, and Santha [7]. In the
former paper it was shown that a subclass of LQCAs, partitioned linear quantum cel-
lular automata (PLQCAs), can be simulated by QTMs with linear slowdown. Van
Dam [17] defined space-periodic LQCAs and gave a universal instance of this model.

We should make clear at this point that most of these models are only theoretically
motivated. Real life quantum computers as built today in laboratories are essentially
small quantum circuits or partitioned cellular automata.
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d’Estudis Catalans, Bellaterra, Spain.

1076



A DECISION PROCEDURE FOR UNITARY LQCAs 1077

A quantum computational device is at any moment of its computation in a su-
perposition of configurations, where each configuration has an associated complex
amplitude. A superposition is valid if it has unit norm. If the device is observed, then
a configuration will be chosen at random, where the probability of a configuration to
be chosen is equal to the squared magnitude of its amplitude. Therefore it is essential
that valid superpositions be transformed into valid superpositions, or, equivalently,
that the time evolution operator of the device preserves the norm. This property is
called well-formedness, and thus it is a natural problem to decide if a given quantum
machine is well-formed. In the case of QTMs and PLQCAs there exist easily checkable
constraints on the finite local transition function of the machine which are equivalent
to its well-formedness. Such constraints were identified, respectively, by Bernstein
and Vazirani [3] and by Watrous [18]. In the case of LQCAs no such local constraints
are known, still Dürr, LêThanh, and Santha [7] gave a polynomial time algorithm to
decide if an LQCA is well-formed. Part of this algorithm was improved by Høyer [10]
using a different approach.

However, one of the basic postulates of quantum mechanics imposes an even
stronger constraint than norm-preserving on the time evolution operator. It actually
requires that this operator—as any other quantum operator—be a unitary transfor-
mation. We will call a machine which satisfies this constraint unitary. In [3] and [18]
it was proven that norm-preserving already implies unitarity in the case of QTMs and
PLQCAs. It is also trivially true for machines with finite configuration sets such as
quantum circuits. However, this is not true for LQCAs; it is quite simple to construct
a well-formed LQCA which is not unitary.1

In this paper we give an efficient algorithm to decide if an LQCA is unitary. The
complexity of our algorithm is cubic if the input LQCA has continuous neighborhood.
(Most papers in the literature about classical linear cellular automata deal only with
such cases.) Our algorithm will use the procedure of [7] which in quadratic time
decides if the LQCA is well-formed. The present paper actually gives an algorithm
which decides if a well-formed LQCA is also unitary.

Well-formedness is equivalent to the orthonormality of the column vectors of the
time evolution operator; unitarity also requires orthonormality from the row vectors.
Deciding unitarity is much harder than deciding well-formedness. One way of seeing
this is that whereas the column vectors have finite support, the row vectors can have
an infinite number of nonzero components.

2. The computational model. Let us fix for the paper the following notation.
If u and v are vectors in some inner-product space over the complex or the real
numbers, then 〈u|v〉 will denote the inner product of u and v, and ‖u‖ the norm of u.
If M is a matrix in such a space, then M∗ denotes its conjugate transpose.

We recall here the definition of an LQCA which is the quantum generalization of
the classical one-dimensional cellular automaton. A more detailed description of this
model can be found in [18] and in [7].

An LQCA is a 4-tuple A = (Σ, q,N, δ). The cells of the automaton are organized
in a line and are indexed by the elements of Z. The finite, nonempty set Σ is the
set of (cell-)states, and q ∈ Σ is a distinguished quiescent state. The neighborhood
N = (a1, . . . , ar) is a strictly increasing sequence of integers, for some r ≥ 1, giving
the addresses of the neighbors relative to each cell. This means that the neighbors of

1A well-known example is the classical LCA Xor= ({0, 1}, 0, (0, 1), δ), where δ(x, y) = (x +
y) mod 2. This cellular automaton is injective for finite configurations but not surjective; thus the
associated LQCA is well-formed but not unitary.
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cell i are indexed by i+ a1, . . . , i+ ar. An automaton is simple if its neighborhood is
an interval of integers, that is ar = a1 + r− 1. In this paper we deal only with simple
automata, and we will explain only briefly in the conclusion how our results apply to
the general case.

The states of the cells are changing simultaneously at every time step according
to the local transition function. This is the mapping δ : Σ|N | → CΣ, which satisfies
that, for every (x1, . . . , xr) ∈ Σr, there exists y ∈ Σ such that [δ(x1 . . . xr)](y) 	= 0.
If at some time step the neighbors of a cell are in states x1, . . . , xr, then at the next
step the cell will change into state y with amplitude [δ(x1 . . . xr)](y) which is denoted
by 〈δ(x1 . . . xr)|y〉. The quiescent state q satisfies that

〈δ(qr)|y〉 =
{

1 if y = q,
0 if y 	= q.

The set of configurations is ΣZ, where for every configuration c, and for every integer i,
the state of the cell indexed by i is ci. A configuration c is finite if its support {i : ci 	=
q} is finite. We are dealing only with LQCAs which evolve on finite configurations.
We will denote the set of finite configurations by CA, and from now on we use the word
configuration to mean a finite configuration. For a configuration c, let idom(c) be the
interval domain of c, which is the smallest integer interval containing the support of
c. For the sake of definiteness, we define the empty interval as [0,−1] which is the
interval domain of the everywhere quiescent configuration.

The local transition function induces the time evolution operator which we write
in matrix form UA : CA × CA → C, where UA(d, c) is the transition amplitude of
changing configuration c to configuration d in one step. It is defined by

UA(d, c) =
∏
i∈Z

〈δ(ci+N )|di〉,

where δ(ci+N ) is a short notation for δ(ci+a1 , . . . , ci+ar ). This product is well-defined
since c has finite support.

The automaton evolves on superpositions of configurations which are elements of
the Hilbert space �2(CA). If at some time step the automaton is in the superposition
u ∈ CCA , then at the next time step it will be in the superposition UAu. Therefore
UA is also an operator on �2(CA). A is well-formed if UA is norm-preserving, and we
say that it is unitary if UA is a unitary transformation.

We will work in the algebraic computational model where complex numbers take
unit space and arithmetic and logical operations take unit time. The description size
of an automaton is clearly dominated by the local transition table δ. Therefore we
define the size of the automaton to be n = |Σr+1|.

For the rest of the paper we will fix a well-formed simple LQCA A = (Σ, q,N, δ).
Without loss of generality we assume N = (0, 1, . . . , r − 1). Indeed, let A′ =
(Σ, q,N ′, δ) be the well-formed simple LQCA with the general neighborhood N ′ =
(j, . . . , j + r − 1) for some integer j. We claim that A is unitary if and only if A′

is unitary. Let A′′ = (Σ, q, (j), δ′) be the shift cellular automaton, where δ′ is the
identity. A′′ is unitary since δ′ is unitary. Moreover, UA = UA′′UA′ which proves the
claim.

2.1. Example. The figures in this paper will illustrate our algorithm with the
following LQCA: Qflip= ({a, b}, a, (0, 1), δ) with 〈δ(x, y)|z〉 defined for all x, y, z ∈



A DECISION PROCEDURE FOR UNITARY LQCAs 1079

{a, b} by the following table:

xy\z a b
aa 1 0
ba 0 1

ab 1/
√
2 1/

√
2

bb 1/
√
2 −1/√2

Using the algorithm in [7] it can be shown that Qflip is well-formed, and in this
article we show that its evolution operator UQflip is even unitary. This LQCA has an
interesting property. For n ≥ 0, let cn be the configuration which is b in all cells of
index i ∈ [−n,−1] and is a elsewhere. Then we have for all n ≥ 1, UQflip(c

1, cn) =
(1/
√
2)n. Thus an infinite number of configurations lead with nonzero amplitude to

the single configuration c1.

For the all quiescent configuration c0, we have UQflip(c
0, c0) = 1; thus there is a

unique configuration leading to it. Therefore when the LQCA Qflip runs backwards
in time, every cell with index i ≤ −1 depends on cell −1. From this we conclude
that there cannot be a LQCA with finite neighborhood whose evolution operator is
exactly U∗Qflip.

This makes the model of LQCAs different from QTMs, since for every well-formed
QTM M , there exists a QTM which runs M backward in time with a constant time
overhead. It explains a bit why it seems difficult to simulate any LQCA by a QTM.

3. The main result. The main result of the paper is the following theorem.

Theorem 1. There exists an algorithm which takes a simple LQCA as input and

decides in time O(n
3r−1
r+1 ) = O(n3) if it is unitary.

Since in [7] a O(n2) algorithm is given to decide if an LQCA is well-formed, we
will give only an algorithm which decides if a well-formed LQCA is unitary. The
following lemma states that we have to verify only that the rows of the time evolution
operator are of unit norm.

Lemma 2. Let U ∈ CCA×CA be a linear operator. If U is norm-preserving, then
its rows have norm at most 1. If all the rows are of unit norm, then U is unitary.

Proof. Let c be a configuration, and let c be the superposition which has amplitude
1 for c and 0 elsewhere. Then the norm of the row indexed by c in U is ‖U∗c‖. Since
U is norm-preserving ‖U∗c‖ = ‖UU∗c‖ and the projection of UU∗c on c has norm

|〈c|UU∗c〉| = |〈U∗c|U∗c〉| = ‖U∗c‖2.

However, the projection of UU∗c on a unit vector has norm at most ‖U∗c‖, and
therefore ‖U∗c‖ ≤ 1.

For the second part of the lemma observe that the projection of UU∗c on c has
norm 1. Since U is norm-preserving the projection on any other basis vector c′ must
be 0. Thus 〈c′|UU∗c〉 is 1 if c = c′ and 0 otherwise, or in other words UU∗ = I, which
concludes the proof.

The outline of the proof is the following. First we give a sequence of reduction
steps in section 4 to a graph theoretical problem and to another one from linear
algebra. We then give an algorithm to solve the problem. The different steps of the
algorithm are presented in sections 5, 6, and 7. The proof of the main theorem is then
summarized in section 8.
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Fig. 1. The configuration graph of the LQCA Qflip. The bold path corresponds to the config-
uration . . . aababbaa . . . .

4. The reduction. The different reduction steps are illustrated in Figures 1–3.
Our problem is the following. We have to decide if all row vectors of the evolution

operator associated to a given LQCA have unit norm, under the assumption that the
operator is norm-preserving. The naive method fails because one would have to
compute the norm for an infinite number of rows. Moreover, for every row there can
be an infinite number of nonzero entries and every entry is defined by a product on
an unbounded number of terms. The purpose of this section is to reduce our problem
to a finite one.

The configuration graph is the infinite directed graph G∞(V,E) defined by V =
Σr−1 × Z and E = {((xt, i), (ty, i+ 1)) : x, y ∈ Σ, t ∈ Σr−2, i ∈ Z}. To our knowledge
this type of graph was first used by Sutner and Maas [16] to show that a particular
robot motion planning problem in the presence of moving obstacles is Pspace-hard.
It was used again by Sutner [15] to prove that the predecessor of every recursive
configuration is also recursive.

A nonempty sequence (possibly infinite to the left, to the right, or in both di-
rections) of vertices (. . . , (wi, i), . . . ) in G∞ is a path if and only if for at most a
finite number of indices i we have wi 	= qr−1 and there is an edge between every two
immediate vertices. Note that a sequence with a single vertex is already a path. We
denote by F,L,R, and P, respectively, the set of paths which are finite, infinite to the
left, infinite to the right, and infinite to both directions. Figure 1 illustrates a path
of P .

We say that two paths p1 and p2 are compatible if the last vertex of p1 and the
first vertex of p2 exist and they are the same. In that case the composition p1 ⊗ p2
is the concatenation of the two sequences after identifying the extreme vertices. If P1

and P2 are sets of paths, then

P1 ⊗ P2 =

{
p1 ⊗ p2 : p1 ∈ P1, p2 ∈ P2,

p1 and p2 are compatible

}
.

Let d be an arbitrary configuration. It induces a weight function gd for the edges
of G∞, where gd((xt, i), (ty, i+1)) = |〈δ(xty)|di〉|2. We extend the weight function gd
to paths and to sets of paths. The weight of a path is the product of the respective
edge weights, and the weight of a path set is the sum of the respective path weights.
The weight of a path consisting of a single vertex is 1, and the weight of the empty
path set is 0. We denote this weighted configuration graph by Gd∞ which is illustrated
in Figure 2.

Although the weight of an infinite path is an infinite product, it is well-defined
since all but a finite number of edges have weight 1. The following lemma establishes
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Fig. 2. The configuration graph of the LQCA Qflip weighted by the configuration d =
. . . aabbabaa . . . . The bold edges have weight 1, the normal edges have weight 1/2, and the dotted-line
edges have weight 0.

a strong relationship between the weight of an infinite path in Gd∞ and the entries of
the time evolution matrix.

Lemma 3. For any configuration d the row indexed by d in UA has norm
√
gd(P ).

Proof. We will show that there is a bijection h between the set of configurations
CA and the set of infinite paths P in Gd∞ such that for every configuration c and d

gd(h(c)) = |UA(d, c)|2.

Summing up over all configurations c will immediately conclude the lemma.

Let h : CA → P be defined for all configuration c by

h(c) = (. . . , (ci . . . ci+r−2, i), . . . ).

Then it is a bijection, and the following equalities conclude the proof:

gd(h(c)) =
∏
i∈Z

gd((ci . . . ci+r−2, i), (ci+1 . . . ci+r−1, i+ 1))

=
∏
i∈Z

|[δ(ci+N )](di)|2

=

∣∣∣∣∣
∏
i∈Z

[δ(ci+N )](di)

∣∣∣∣∣
2

= |UA(d, c)|2.

With Lemma 2 we got the following reduction of our problem.

Corollary 4. In a well-formed LQCA, for every configuration d, we have
gd(P ) ≤ 1. Moreover, the automaton is unitary if and only if for every d, gd(P ) = 1.

Let us fix an interval [j, k] and a configuration d with idom(d) ⊆ [j, k]. This
interval induces a subset of the path sets L,F, and R. For every w,w′ ∈ Σr−1 we set

Ljw = {p ∈ L : the last vertex of p is (w, j)},
F j,kw,w′ =

{
p ∈ F :

first vertex of p is (w, j),
last vertex of p is (w′, k + 1)

}
,

Rkw′ = {p ∈ R : the first vertex of p is (w′, k + 1)}.
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Since the set of infinite paths can be decomposed as

P =
⋃

w,w′∈Σr−1

Ljw ⊗ F j,kw,w′ ⊗Rkw′ ,

we have

gd(P ) =
∑

w,w′∈Σr−1

gd(L
j
w) · gd(F j,kw,w′) · gd(Rkw′).

The following lemma shows that gd(L
j
w) and gd(R

k
w) are independent from j, k, and

d.
Lemma 5. For any intervals [j, k], [j′, k′] and configurations d, d′ such that

idom(d) ⊆ [j, k], idom(d′) ⊆ [j′, k′] and for every w ∈ Σr−1, we have

gd(L
j
w) = gd′(L

j′
w) and gd(R

k
w) = gd′(R

k′
w ).

Proof. We prove only the first equation; the proof for the second one is analogous.
Let m = j′ − j. We define a bijection from Ljw to Lj

′
w which preserves the weight.

If p = (. . . , (wi, i), . . . , (wj , j)) is a path in Ljw, then we define its image as p′ =
(. . . , (wi, i+m), . . . , (wj , j+m)). This is clearly a bijection and we also have gd(p) =
gd′(p

′) since di = q for i < j and d′i = q for i < j′.
We define the left and right border vectors, respectively, )l = (lw)w∈Σr−1 and

)r = (rw)w∈Σr−1 as follows: for w ∈ Σr−1, lw = gd(L
j
w) and rw = gd(R

k
w), where [j, k]

is an arbitrary interval and d is an arbitrary configuration satisfying idom(d) ⊆ [j, k].

The next lemma states that )l and )r are in RΣr−1

.
Lemma 6. For all w ∈ Σr−1, lw and rw are finite.
Proof. Suppose there is a w such that lw =∞. (The case rw =∞ is symmetric.)

We will prove that this implies the existence of a configuration such that the associated
line vector has infinite norm, thus contradicting by Corollary 4 the hypothesis that A
is well-formed.

Let w′ be such that rw′ > 0. There exists such a w′, since, for example, rqr−1 ≥ 1.
Let x1, x2, . . . , x2r−1 ∈ Σ such that w = x1 . . . xr−1 and w′ = xr . . . x2r−2. We set
wi = xixi+1 . . . xi+r−2 for i = 1, . . . , r and vi = xixi+1 . . . xi+r−1 for i = 1, . . . , r− 1.
Note that w1 = w and wr = w′. For i = 1, . . . , r−1 let yi ∈ Σ be such that 〈δ(vi)|yi〉 	=
0. Let j be an arbitrary integer and set k = j+r−2. We define the configuration d to
be the quiescent state outside the interval [j, k] and dj+i−1 = yi for i = 1, . . . , r − 1.
Then in Gd∞ the set of paths going through the vertices (w1, j), . . . , (wr, k+1) already
has infinite weight. Since each path has nonnegative weight, P also has infinite
weight.

The first part of our algorithm will be the computation of the border vectors )l and
)r. For the second part, we reduce now our problem to a question in linear algebra.

For every a ∈ Σ, let Ma ∈ RΣr−1×Σr−1

be the linear operator whose matrix is
defined for all w,w′ ∈ Σr−1 as

Ma(w
′, w) =

{ |〈δ(xty)|a〉|2 if w = xt, w′ = ty for some x, y ∈ Σ and t ∈ Σr−2,
0 otherwise.

We extend this definition to finite sequences over Σ. If ε denotes the empty word,
then Mε is the identity operator. Let s > 1 be an integer, and let b = b1 . . . bs be an
element of Σs. We define

Mb =Mbs · · ·Mb1 .
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Lemma 7. Let d be a configuration with idom(d) = [j, k]. Then

gd(P ) = 〈Mdj ...dk
)l|)r〉.

Proof. We have

gd(P ) =
∑

w,w′∈Σr−1

gd(L
j
w) · gd(F j,kw,w′) · gd(Rkw′)

=
∑
w,w′

lw · gd(F j,kw,w′) · rw′

=
∑
w,w′

lw ·Mdj ...dk(w
′, w) · rw′

=
∑
w′

(∑
w

lw ·Mdj ...dk(w
′, w)

)
· rw′

=
∑
w′

(Mdj ...dk
)l)(w′) · rw′

= 〈Mdj ...dk
)l|)r〉.

Since for every b ∈ Σ∗ there exists a configuration d whose nonquiescent part is b,
Corollary 4 and Lemma 7 imply the following reduction.

Corollary 8. A well-formed LQCA is unitary if and only if for every b ∈ Σ∗

we have 〈Mb
)l|)r〉 = 1.

We also have the following property, which simplifies our next reduction step.
Lemma 9. For every well-formed LQCA A we have 〈)l|)r〉 = 1.
Proof. Let d be the all quiescent configuration. Then in UA the column indexed

by d has the entry 1 at row d and 0 elsewhere. Since the column vectors of UA
are pairwise orthogonal, Lemma 2 implies that the row indexed by d has only zero
entries besides column d. Therefore this row has norm 1, and the claim follows from
Lemmas 3 and 7.

Let m = |Σr−1|. The border vectors can be seen as elements of Rm, and the
elements of the set M = {Ma : a ∈ Σ} can also be seen as linear transformations
in Rm. Let us fix a few notations for the inner-product space Rm. Let S ⊆ Rm be
a finite set of vectors. The linear subspace and the affine subspace generated by S,
denoted here, respectively, by 〈S〉 and [S], are defined as

〈S〉 = {λ1)s1 + · · ·+ λt)st| t ≥ 0;)s1, . . . , )st ∈ S;λ1, . . . , λt ∈ R},
[S] = {λ1)s1 + · · ·+ λt)st| t ≥ 0;)s1, . . . , )st ∈ S;λ1, . . . , λt ∈ R;λ1 + · · ·+ λt = 1}.

B is said to be a basis of 〈S〉 (respectively, of [S]) if 〈B〉 = 〈S〉 (respectively, [B] = [S])
and has minimal cardinality for this property.

Let )u ∈ Rm be a vector and F ⊆ Rm×m be a finite family of linear transforma-
tions. We set S + )u = {)v + )u : )v ∈ S}, and F(S) = {f()v) : )v ∈ S, f ∈ F}. Let H�u
denote the linear subspace whose normal vector is )u, that is, H�u = {)v : 〈)v|)u〉 = 0}.

We define by induction on i, for i ≥ 0, the sets F i(S). Let F0(S) = S, and
F i+1(S) = F i(S)∪F(F i(S)). We say that S is closed for )v under F if

⋃∞
i=0 F i({)v}) ⊆

S.
From Lemma 9, H�r + )l is the set of vectors which have unit inner product with

)r, that is,

H�r +)l = {)u : 〈)u|)r〉 = 1}.
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-1 0 1 2 3
-1

0
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2

Fig. 3. For the LQCA Qflip, the border vectors l and r and the affine subspace H�r +l. In this
example l is a fixpoint for the operators Ma and Mb, which shows that UQflip is unitary.

It is an affine subspace since H�r +)l = [H�r +)l]. Clearly for every b ∈ Σ∗, 〈Mb
)l|)r〉 = 1

if and only if H�r +)l is closed for )l underM. Therefore by Corollary 8 our reduction
steps lead to the following theorem.

Theorem 10. A well-formed LQCA is unitary if and only if H�r +)l is closed for
)l underM.

This characterization is illustrated in Figure 3.

5. Computing the border vectors. In this section we will give an algorithm
for computing the border vectors. By symmetry, it will be sufficient to give it only for
the left vector. The main tool in the computation will be the weighted border graph.
Its underlying graph can be seen as a slight modification of the finite version of the
configuration graph. This graph was also used in [7] for checking that all the columns
of UA had unit norms. However, there the weights were defined as the norms of the
transition state superpositions, whereas here they will be the squared magnitudes of
the amplitude of the quiescent state in those superpositions.

The (left) border graph is the finite, directed, weighted graph Gl = (V,E, g). The
vertex set is V = Σr−1 and the edge set is

E = {(xt, ty) : x, y ∈ Σ, t ∈ Σr−2}.

The weight function is defined as

g((xt, ty)) = |〈δ(xty)|q〉|2.

A path in Gl is a finite, nonempty sequence of at least two vertices such that there is
an edge between every two consecutive vertices. Observe that a single vertex alone
here does not form a path. As usual, the weight of a path is the product of the edge
weights, and the weight of a set of paths is the sum of the individual path weights.
The weight of the empty path set is 0.

For every w ∈ Σr−1, we define Pw as the set of paths in Gl whose first vertex is
qr−1, whose second vertex is different from qr−1, and whose last vertex is w.

Lemma 11. For every w ∈ Σr−1, we have

lw =

{
g(Pw) if w 	= qr−1,
g(Pw) + 1 if w = qr−1.
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a b

s 1/2

1/2

1 1/2 a b

s

1/2

1 1/2

Fig. 4. The graphs G′
l (left-hand) and G

′
r (right-hand) associated to the LQCA Qflip. From

these graphs we can compute l =
(1
1

)
and r =

(1
0

)
.

Proof. Let d be a configuration with interval domain [j, k], and let

pq = (. . . , (qr−1, i), . . . , (qr−1, j)).

We set L′w = Ljw − {pq}. We will give a weight-preserving bijection from L′w to Pw
which maps p to p′. Let p = (. . . , (wi, i), . . . , (wj , j)) be an element of L′w, where
wj = w. Let h ≤ j be the greatest integer such that for every i ≤ h we have wi = qr−1.
Then we set p′ = (qr−1, wh+1, . . . , wj). This is clearly an injective mapping, and it
is also surjective since by the choice of h, wh+1 	= qr−1. It is also weight-preserving
since the edges in p until the vertex (wh, h) all have weight 1. Since gd(pq) = 1 the
lemma follows.

Theorem 12. There exists an algorithm which computes the border vectors in

time O(n
3(r−1)
r+1 ).

Proof. According to Lemma 11 it is sufficient to compute g(Pw) for w ∈ Σr−1.
The main difficulty in this computation is that the paths of Pw are defined by a
constraint which forces the second vertex to be different from qr−1. The solution we
propose codes this constraint directly in the graph, which we will augment by one
vertex for this purpose. Then we compute the total path weight from i to j for all
vertices i, j. To do this, we will adapt a standard algorithm which constructs the
regular expression associated to a finite state automaton.

Let G′l = (V ′, E′, g′), where V ′ = V ∪ {sqr−2} for a letter s 	∈ Σ,
E′ = E ∪ {(sqr−2, qr−2y) : y ∈ Σ\{q}},

and g′(e) = g(e) for all edges e ∈ E and g′((sqr−2, qr−2y)) = g((qr−1, qr−2y)). This
graph is illustrated in Figure 4. For every w ∈ Σr−1, let P ′w be the set of all paths in
G′l from sqr−2 to w. Clearly there is a weight-preserving bijection between P ′w and
Pw.

The border vectors have only finite components; nevertheless, for their computa-
tion we have to extend the nonnegative real numbers with∞. Let R∗ be this set. We
define the following computation rules with respect to ∞:

∞+ c = c+∞ =∞,
for every c ∈ R∗,

∞ · c = c · ∞ =∞ ·∞ =∞,
for every real number c > 0,

∞ · 0 =∞ · 0 = 0,
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and ∞0 = 1. We also define c∗ for every c ∈ R∗ as
∑∞
e′=0 c

e′ , that is,

c∗ =
{

1/(1− c) if 0 ≤ c < 1,
∞ otherwise.

Let {v1, v2, . . . , v|V ′|} be an arbitrary enumeration of the vertices of G′l. For 1 ≤ i, j ≤
|V ′| and for 0 ≤ k ≤ |V ′|, we define the path sets Pk(i, j) as the set of paths which
start in vi, end in vj , and all the other vertices in the path have indices less than or
equal to k. Let Wk(i, j) denote g(Pk(i, j)). Then we claim that Wk(i, j) satisfies the
following recursion for 1 ≤ i, j ≤ |V ′| and 1 ≤ k ≤ |V ′| :

W0(i, j) =

{
g′((vi, vj)) if (vi, vj) ∈ E′,
0 otherwise,

Wk(i, j) =Wk−1(i, j) +Wk−1(i, k) · (Wk−1(k, k))
∗ ·Wk−1(k, j).

We prove our claim by induction on k. In P0(i, j) the only path is the edge
between vi and vj if this edge exists.

Assume that this equation is true for k−1. We note that for every path of Pk(i, j)
there exists a unique integer e such that vertex vk appears exactly e times the path.
Thus we can write

Pk(i, j) = Pk−1(i, j) ∪
∞⋃
e=1

Pk−1(i, k)⊗ Pk−1(k, k)⊗ · · · ⊗ Pk−1(k, k)︸ ︷︷ ︸
e−1

⊗Pk−1(k, j),

where the unions are disjoint and ⊗ is the path composition operator defined in
section 4. By induction hypothesis we have

Wk(i, j) =Wk−1(i, j) +

∞∑
e′=0

(
Wk−1(i, k) · (Wk−1(k, k))

e′ ·Wk−1(k, j)
)
,

which concludes the induction.
This proves the correction of the following algorithm: Let m = |V ′| = |Σ|r−1. Ini-

tializeW0. For k = 1, . . . ,m computeWk usingWk−1. Finally, output the border vec-

tor )l defined by )l(w) =Wm(sq
r−2, w) for w 	= qr−1 and )l(qr−1) =Wm(sq

r−2, qr−1)+1.
Proceed in similar fashion for )r. The complexity of the algorithm is O(|Σ|3(r−1)) =

O(n
3(r−1)
r+1 ).

6. Closed affine subspace. In this section we will give a polynomial algorithm
for the following problem.

Closed Affine Subspace
Input: Two vectors )l, )r ∈ Rm such that 〈)l|)r〉 = 1 and a set of linear

transformationsM = {Ma : a ∈ Σ} in Rm, where m = |Σ|r−1.

Question: Is H�r +)l closed for )l underM, i.e., for all b ∈ Σ∗ do we
have Mb

)l ∈ H�r +)l?
We set t = |Σ|. For the simplicity of notation, let H = H�r + )l and let Ei =

Mi({)l}). Since H = [H], we have Ei ⊆ H if and only if [Ei] ⊆ H. Therefore we have
to decide if [

⋃∞
i=0Ei] ⊆ H. Dimension arguments imply the existence of a fixpoint, a

set Ej , such that [Ej ] = [
⋃∞
i=0Ei]. Moreover, we need only to keep track of a basis

of [Ei], that is, a set Bi of linearly independent vectors, with [Bi] = [Ei].

Theorem 13. There exists an algorithm which decides if H is closed for )l under

M in time O(n
3r−2
r+1 ).

Proof. We claim that this is realized by the following algorithm:
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B0 := {)l}
i := 1
while [Bi] 	= [Bi ∪M(Bi)]

Bi+1 := a basis of [Bi ∪M(Bi)]
i := i+ 1

B := Bi
if B ⊆ H accept
else reject

At every iteration dim([Bi]) increases, and therefore the algorithm terminates in
at most m− 1 iterations. We prove that it is correct.

We show [Bi] = [Ei] for every i ≥ 0 by induction. The statement holds by
definition for i = 0. Suppose [Ei] = [Bi] for some i. Since M contains only linear
operators, we have for any set S, [M(S)] = [M([S])]. Therefore [M(Ei)] = [M(Bi)]
which implies [Ei+1] = [Bi+1].

Since B is a fixpoint, that is, [B] = [B∪M(B)], this implies that [B] = [
⋃∞
i=0Ei]

and the correctness follows.

We now turn to the analysis of the complexity. We will build inductively the
basis so that for all i, Bi ⊆ Bi+1. At the ith iteration, to build Bi+1, initially we set
Bi+1 = Bi. Then we compute every vector inM(Bi\Bi−1) and add it to Bi+1 if it is
not in the affine subspace generated by Bi+1. At the end of the algorithm, these steps

were applied to all vectorsM)b forM ∈M and )b ∈ B, thus at most |M| · |B| = O(tm)

times. ComputingM)b takes O(m2) with standard matrix multiplication, and checking
affine independence also takes O(m2) with the algorithm described in the next section.

Thus the overall complexity is O(tm3). The theorem follows since t = n
1

r+1 and

m = n
r−1
r+1 .

7. Maintaining a basis. In this section we give a dynamic algorithm for the
following problem. We want to maintain a basis B of a d-dimensional linear subspace
in Rm such that the following requests for a given vector )u ∈ Rm can be treated
efficiently:

Membership query: “Is )u ∈ 〈B〉?”
Add to basis: Replace B by B ∪ {)u}.
We can define the problem for affine subspaces as well. Fortunately, the latter

can easily be reduced to the former: Let f : Rm → Rm+1 be the function which maps
a vector )u to )u′ with u′i = ui for i = 1, . . . ,m and u′m+1 = 1. Then every vector )v
satisfies )v ∈ [B] if and only if f()v) ∈ 〈f(B)〉.

A solution to this problem requires a tricky data structure to encode the basis.
The naive way would be to represent B by a matrix such that its column vectors are
exactly those of B and to apply the Gaussian elimination algorithm (see, for example,
[11]) to check whether )u ∈ 〈B〉. This would require O(md2) time steps.

Transforming the matrix in an upper triangular form is the bottleneck of this
approach. The representation we choose for B will improve this complexity.

Theorem 14. There is a dynamic algorithm for maintaining a basis of a d-
dimensional subspace in Rm which treats each request in time O(m(m− d)).

Proof. We represent a nonempty basis B by the couple (T,B), where T ∈ Rm×m

is an orthogonal matrix and 〈T (B)〉 = Rd × {0}m−d. The empty basis is represented
by (I, ∅), where I is the identity matrix.

Since T (〈B〉) = 〈T (B)〉, )u ∈ 〈B〉 if and only if T)u ∈ Rd×{0}m−d. Thus verifying
)u ∈ 〈B〉 is reduced to checking if the last m−d components of T)u are all 0 which can
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be done in time O(m(m− d)).
Suppose )u 	∈ 〈B〉. We will show that there is an orthogonal matrix M affecting

only components from d+ 1 to m which satisfies (MT)u)d+1 	= 0 and (MT)u)i = 0 for
i = d+2, . . . ,m. Thus 〈MT (B)〉 = 〈T (B)〉 and 〈MT (B∪{)u})〉 = Rd+1×{0}m−(d+1).
Therefore (MT,B ∪ {)u}) represents B ∪ {)u}.

We define M as the composition of two operators M1 and M2 we describe now.
By hypothesis )u 	∈ 〈B〉; therefore there exists an index k ∈ {d+ 1, . . . ,m} such that
(T)u)k 	= 0. Define M1 to be the permutation matrix which exchanges k and d+ 1.

Let )u′ = M1T)u. Note that )u′d+1 	= 0. Then for an arbitrary vector )v we define
(M2)v)i = )vi for i = 1, . . . , d+1 and (M2)v)i = )vi − )vd+1)u

′
i/)u
′
d+1 for i = d+2, . . . ,m.

Clearly M1 and M2 are orthogonal linear operators, and since

M2)u
′ = (u′1, u

′
2, . . . , u

′
d+1, 0, . . . , 0)

M satisfies the required property. We can compute M2M1T in time O(m(m − d)),
which concludes the proof.

8. Putting it all together. We are now able to prove Theorem 1, that is,
to give an algorithm to decide if a given LQCA is unitary. Using Theorem 10 to
solve this problem we have to compute the associated border vectors and decide the
corresponding Closed Affine Subspace problem. According to Theorem 12 the

border vectors can be computed in time O(n
3(r−1)
r+1 ), and due to Theorem 13 the last

problem can be solved in time O(n
3r−2
r+1 ), which concludes the proof.

9. Conclusion. A not necessarily simple LQCA can be transformed into a sim-
ple one with the same time evolution operator. Let the original neighborhood be
N = (a1, . . . , ar). The size of the new neighborhood will be s = ar − a1 + 1. If we
define the expansion factor of an LQCA as e = (s + 1)/(r + 1), then the algorithm

works in the general case in time O(ne
3r−1
r+1 ) = O(n3e).

In the case of space-periodic configurations, van Dam [17] has shown that LQCAs
can be efficiently simulated by QTMs. Watrous [18] gave an equivalent result for
partitioned LQCAs. This question still remains open for the model of this paper.
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Abstract. A bisection of a graph with n vertices is a partition of its vertices into two sets,
each of size n/2. The bisection cost is the number of edges connecting the two sets. It is known
that finding a bisection of minimum cost is NP-hard. We present an algorithm that finds a bisection
whose cost is within ratio of O(log2 n) from the minimum. For graphs excluding any fixed graph as a
minor (e.g., planar graphs) we obtain an improved approximation ratio of O(logn). The previously
known approximation ratio for bisection was roughly
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1. Introduction. Let G(V,E) be an undirected graph with n vertices and m
edges, where n is even. For a subset S of the vertices (with S �= ∅, V ), the cut (S, V \S)
is the set of all edges in G with one endpoint in S and one endpoint in V \ S; these
edges are said to be cut by (S, V \ S). The cost of a cut is the number of edges in it.

A cut (S, V \S) is called a bisection of G if its two sides, S and V \S, are each of
size n/2. We denote the minimum cost of a bisection of G by b. Minimum bisection is
the problem of computing b for an input graph G. This problem is NP-hard (see [7]),
and we address the problem of approximating it.

An algorithm is said to approximate a minimization problem within ratio f ≥ 1
if it runs in polynomial time and outputs a solution whose cost is at most f times
the cost of the optimal solution. The problem is said to have a polynomial time
approximation scheme (PTAS) if for every fixed f > 1 there is an algorithm with
approximation ratio f .

1.1. Previous work. Leighton and Rao [10, 11] showed how to approximate
within ratio O(log n) minimum-quotient cuts, which we shall call min-ratio cuts. In
these cuts, one wishes to minimize the cut ratio (also called edge expansion or flux)
c/|S|, where c is the number of edges cut and |S| is the cardinality of the smaller of
the two vertex sets.

A β-balanced cut is a cut that partitions the graph into two parts, each of size at
most βn. Leighton and Rao [10] used the approximate min-ratio cuts to find a 2/3-
balanced cut (also called edge separator) with at most O(b log n) edges; see also [11, 14].
Note that such a 2/3-balanced cut does not provide an O(log n) approximation for
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the value of b. For example, when the graph consists of three disjoint cliques of equal
size, an optimal 2/3-balanced cut has no edges, whereas b = Ω(n2).

A straightforward approach for obtaining an exact bisection is to first find an
almost balanced cut (e.g., using approximate min-ratio cuts) and then move a few low
degree vertices from one side to the other. Using this approach one can approximate
bisection within a ratio of Õ(

√
m/b) (we use Õ(f) to denote O(f · polylog n)); see,

e.g., [11, Footnote 10] and [6]. This is a dramatic improvement over the naive ratio of
O(m/b) (achieved by arbitrarily picking n/2 vertices) but might still be larger than
n.

In terms of n, the best approximation ratio previously known is Õ(
√

n), due
to [6]. Their approach follows, in part, a divide and conquer paradigm. Two of their
main tools are (i) approximate min-ratio cuts, which are used to recursively break the
graph, and (ii) dynamic programming, which is used to combine certain possible parts
into an exact bisection. The current work also uses a divide and conquer approach
but in a more sophisticated way.

Additional related work includes the following. In [13], Saran and Vazirani give an
algorithm that approximates bisection within a ratio of n/2. In [1], Arora, Karger, and
Karpinski show that bisection has a PTAS for everywhere-dense graphs, i.e., graphs
with minimum degree Ω(n). In [8], Garg, Saran, and Vazirani give an approximation
ratio of 2 for the problem of finding a 2/3-balanced cut of minimum cost in a planar
graph. Their result extends to a β-balanced cut, for any β ≥ 2/3, but does not extend
to a bisection, which is a 1/2-balanced cut. In [4], Bui and Jones show that for any
fixed ε > 0, it is NP-hard to approximate the minimum bisection within an additive
term of n2−ε. In terms of approximation ratio, however, there is no known hardness
of approximation result which excludes the possibility that bisection has a PTAS.

1.2. Our results. Our main result is an algorithm for approximating the mini-
mum bisection within a polylogarithmic ratio.

Theorem 1.1. A bisection of cost within ratio of O(log2 n) of the minimum can
be computed in polynomial time.

In section 2 we give an overview of the algorithm. On a high level, the algorithm
follows a divide and conquer approach. The input graph is recursively divided into
parts, using a new cut notion which we call an amortized cut, and then the parts are
combined into a bisection using dynamic programming.

In section 4 we describe our algorithm for approximating bisection, based on a
subroutine for finding an amortized cut. If the subroutine is guaranteed to find a
ρ-amortized cut in a graph, the algorithm computes a bisection whose cost is within
a ratio of 1 + O(ρ log n) of the minimum.

In section 3 we devise an algorithm for finding an O(log n)-amortized cut in a
general graph. By using this algorithm as a subroutine in the 1 + O(ρ log n) ap-
proximation algorithm for bisection, we are guaranteed that ρ = O(log n), proving
Theorem 1.1. The subroutine uses a τ -approximate min-ratio cut in order to find an
O(τ)-amortized cut. The best known approximation algorithms for min-ratio cut in
general graphs, due to Leighton and Rao [10, 11] and due to [2, 12], have approxima-
tion ratio τ = O(log n).

In certain graph families, there is a better approximation ratio τ for the min-ratio
cut problem. If these graph families are closed under taking induced subgraphs, then
we can approximate bisection within an improved ratio of O(τ log n). For example, it is
shown in [9] that in graphs excluding any fixed graph as a minor (e.g., bounded-genus
graphs) min-ratio cut can be approximated within a constant ratio, i.e., τ = O(1).
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Theorem 1.2. In graphs excluding any fixed graph as a minor (e.g., planar
graphs), a bisection of cost within a ratio of O(log n) of the minimum can be computed
in polynomial time.

In section 5 we show that our results extend to several natural generalizations
of the bisection problem. These extensions include, for example, bisection of graphs
with arbitrary nonnegative edge costs and graph partitioning into three parts of equal
size.

1.3. Conventions and notation. We will often denote the two sides of a (not
necessarily optimal) bisection as white W and black B. A graph may have several dif-
ferent bisections of minimum cost. For the analysis, let us fix one of them (arbitrarily)
and call it the fixed optimal bisection (W ∗, B∗).

For V1, V2, two disjoint subsets of vertices in a graph, let e(V1, V2) denote the
number of edges with one endpoint in V1 and the other endpoint in V2. Subsets
V1, V2 ⊂ V are called a partition of V if they are nonempty, disjoint, and their union
is equal to V . In our context, V is the vertex set of a graph, and then a partition
V = V1 ∪ V2 is equivalent to the cut (V1, V2).

A subset of vertices S ⊂ V with 0 < |S| < |V | corresponds to a cut (S, S) in
the graph, where S = V \ S. We denote by r(S) the ratio of this cut, i.e., r(S) =

e(S,S)

min{|S|,|S|} , and by r′(S) the ratio of this cut towards S, i.e., r′(S) = e(S,S)
|S| . We

call S a part of the graph, referring either to the set of vertices S or to the subgraph
induced on S, depending on the context.

2. Overview and techniques. Our approximation algorithm for minimum bi-
section has three stages, as outlined below.

Stage 1: Decomposition. This stage consists of a sequence of divide steps. The
input to a divide step is a part of the input graph G, i.e., a vertex set and the subgraph
induced on it, and the output is a partition of the vertex set into two nonempty subsets,
giving two new parts of the graph. These divide steps are applied on the input graph
G recursively until it is decomposed into individual vertices.

The output of the whole decomposition stage is a binary tree T that we call the
decomposition tree. Each node i of the tree contains a part Vi obtained in a divide
step, as follows. The root of the tree contains the input graph G, the leaves of the
tree contain individual vertices of G, and the two direct descendants of a node i are
the two subparts obtained in the divide step of its part Vi.

To complete the description of the decomposition stage, we need to explain how
a divide step is performed. This is done using a new notion called an amortized cut,
which we define later in this section. We devise an algorithm for finding amortized
cuts in section 3. The decomposition stage is described in more detail in section 4.1.

Stage 2: Labeling. Consider a labeling of the decomposition tree T , which labels
each (nonleaf) tree node as either white or black. Fixing a parameter 1/2 < α < 1,
we say that a labeling is α-consistent with respect to a white-black bisection (W,B)
of the input graph if every part Vi (at a tree node i) satisfies that |W ∩ Vi| ≤ α|Vi| if
the label of node i is white and that |B ∩ Vi| ≤ α|Vi| if the label of node i is black.

The desired outcome of the labeling stage is a labeling which is α-consistent
with the fixed optimal bisection (W ∗, B∗), called in short an opt-consistent labeling.
However, an optimal bisection is not known to the algorithm; so instead of finding
an opt-consistent labeling, this stage produces a family of labelings such that at least
one member of the family is opt-consistent. The description of how this is done is
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deferred to section 4.2. For the purpose of this overview, it will be convenient to think
of the labeling stage as if it produces only one labeling, which is opt-consistent.

Stage 3: Combining. Given a decomposition tree T and an arbitrary (not neces-
sarily opt-consistent) labeling of it, the combining stage assigns to each vertex v of
the input graph G a white charge and a black charge. The two charges are simple
to compute based on the labels along the path from the root of T to the leaf that
contains the vertex v.

The charge of a bisection (W,B) of the input graph G (with respect to the la-
beling) is defined as the sum of the white charges of the vertices of W and the black
charges of the vertices of B. The functions white charge and black charge have the
property that for every bisection, charge is an upper bound on cost (regardless of the
labeling).

If the charge is defined with respect to an opt-consistent labeling of T , then our
notion of amortized cut used in the decomposition stage guarantees, in addition, that
the charge of the fixed optimal bisection is within a polylogarithmic factor of its cost
b. Hence, using the opt-consistent labeling produced by the labeling stage ensures
that the input graph G contains a bisection whose charge is within polylogarithmic
ratio of b.

Finding a bisection of minimum charge in G is relatively straightforward. Asso-
ciate with each vertex a net-charge, which is its white charge minus its black charge,
and pick the n/2 vertices with smallest net-charge to form one side, W , leaving the
remaining n/2 vertices in another side, B. The bisection (W,B) that we find has
minimum charge, and its cost is thus within a polylogarithmic factor of b, the cost of
the minimum bisection.

It is interesting to note that finding a minimum cost bisection is an optimization
problem with a quadratic objective function (minimizing the number of edges, where
edges are pairs of vertices). Finding a minimum charge bisection (given the decom-
position tree and an opt-consistent labeling) is an optimization problem with a linear
objective function (sum of net-charges over individual vertices). Hence, in a sense, our
algorithm performs a linearization of a quadratic function and loses a polylogarithmic
factor in the process.

The above presentation of the combining stage was oversimplified. The output of
the labeling stage is not one labeling that is opt-consistent, but rather a large family
of labelings, such that at least one of them is opt-consistent. Moreover, this family
has exponential cardinality; so we cannot try the above net-charge approach on each
labeling separately. Instead, we exploit the structure of this family of labelings and
use dynamic programming to compute a labeling from the family and a bisection
such that the charge of this bisection with respect to this labeling is minimum over
all labeling-bisection pairs. Details appear in section 4.4.

In the rest of the overview we shall introduce and discuss the notion of amortized
cut, which is of central importance in bounding the ratio between the charge and
the cost of the fixed optimal bisection. To motivate this new notion we present our
algorithm as a divide and conquer algorithm. We then suggest a kind of cut that is
desirable for the algorithm’s divide step and call this cut notion an amortized cut.

Divide and conquer approach. A possible divide and conquer approach for
a graph problem is to divide the input graph G into two parts (using a cut), solve a
subproblem for each part, and then combine the solutions of the two subproblems into
a solution for G. This approach can be applied recursively, and then the input graph
G is recursively divided into smaller and smaller parts, where each part is associated
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with a subproblem. Note that the divide step cut is a tool of this approach and is not
intended to be a solution to the subproblem.

In our context, the graph problem is minimum bisection, and we apply this divide
and conquer approach for the more general problem of cutting away an arbitrary
number of vertices that is given as part of the input. (Bisection is the special case
where the given number is n/2.) Similarly, the subproblem of each part requires to cut
away (from that part) an arbitrary number of vertices that is given in the subproblem.
Note that minimum bisection is a cut problem, and therefore in addition to the divide
step cuts we have here also solution cuts (later called combined cuts). Note that the
solution cut of a part need not be the same as the divide step cut of this part.

Our three stage algorithm outlined above follows this divide and conquer ap-
proach. The task of breaking the input graph into smaller and smaller parts is
performed by the decomposition stage, whose decomposition tree T represents the
recursive structure of the divide steps.

For such a divide and conquer approach to be successful, it is desirable that (i)
each of the two subproblems can be solved separately and (ii) the solutions of the
two subproblems can be combined while incurring a relatively small additional cost.
Below we provide an overview of how our algorithms handle these issues.

Consider the problem of cutting away k vertices from a part U ⊆ V of the input
graph. The corresponding divide step uses a cut (U1, U2) of U to break this problem
into the two subproblems of cutting away k1 vertices from U1 and of cutting away k2

vertices from U2, with k = k1 +k2. (For the sake of exposition assume that k1, k2 can
be guessed.) Let us assume that the subproblem associated with each subpart Ui is
solved separately (by recursion) and the solution obtained for it is a cut (Ci, Fi) with
|Ci| = ki (see also Figure 2.1). The two solution cuts are then combined into a cut of U
that separates k = k1 +k2 vertices, namely (C1∪C2, F1∪F2). Let Cut(U ′, k′) denote
the cost of the cut of U ′ that separates k′ vertices and is found by the algorithm.
Then the cost of the combined cut is given by

Cut(U, k) = Cut(U1, k1) + Cut(U2, k2) + e(C1, F2) + e(C2, F1).(2.1)

Previous accounting method. The approach of [6] is based on a straightfor-
ward upper bound on the cost (2.1) of the combined cut. The additional cost incurred
by the divide step, i.e., e(C1, F2) + e(C2, F1), is at most the cost of all the edges cut
by the divide step, i.e., e(U1, U2), yielding the upper bound

Cut(U, k) ≤ Cut(U1, k1) + Cut(U2, k2) + e(U1, U2).(2.2)

We remark that a bound similar to (2.2) is used in divide and conquer algorithms
for many other graph problems, such as minimum cut linear arrangement (a.k.a.
cutwidth); see, e.g., [11].

The divide steps of [6] use an approximate min-ratio cut to break each part U .
This cut appears to be suitable for the bound (2.2) because it minimizes the cost of
the cut (U1, U2), and at the same time tries to cut the part U into parts of roughly
equal size, so as to minimize the depth of the recursion.

It is particularly instructive to evaluate the quality of our upper bound in the case
where the computed cut (C1∪C2, F1∪F2) is just the cut induced on U by the optimal
bisection (W ∗, B∗). Intuitively, we analyze the case where the algorithm happens to
find the optimal bisection. In fact, we will later use dynamic programming to find a
bisection for which the upper bound is minimized; so such an analysis bounds from
above the cost of the output bisection.
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Fig. 2.1. The divide and conquer paradigm.

There are cases where the upper bound (2.2) is tight (i.e., holds with equality).
Indeed, the cuts within each Ui are computed independently of each other, and so it
might happen that all the edges between the two parts U1, U2 end up in the combined
cut. However, this bound is insensitive to cases where only a few of the edges that
are cut in the divide step end up in the combined cut, leading to a relatively poor
approximation ratio.

New accounting method. We introduce a more sophisticated way of bounding
the cost of the combined cut. Since F1 ⊆ U1 and F2 ⊆ U2 we can bound the cost of
the combined cut by

Cut(U, k) ≤ Cut(U1, k1) + Cut(U2, k2) + e(C1, U2) + e(C2, U1).(2.3)

Unlike the actual cost (2.1), the upper bound (2.3) can be used in a divide and
conquer approach, as follows. Let us call e(C1, U2)+e(C2, U1) the charge of the divide
step of U . This charge can be distributed into a charge e(C1, U2) of the part U1 and
a charge e(C2, U1) of the part U2. The charge of a part Ui consists of the edges going
from Ci to the other part U3−i and thus depends on the cut (Ci, Fi) chosen in the
part Ui but not on the cut chosen in the other part U3−i. We obtain two separate
subproblems (as in each part Ui we want to find a cut (Ci, Fi) for which the sum of
the cost of this cut and the charge to this part is minimal), enabling a recursive divide
and conquer approach. In contrast, the terms e(C1, F2) and e(C2, F1) of the actual
cost of the combined cut depend on the cuts chosen in both parts and do not allow
us to break the problem into two separate subproblems.

The new accounting method makes a distinction between the two sides C and F
of the combined cut. Unlike, e.g., in (2.2), these two sides have different roles in the
upper bound (2.3), and we will choose in a certain way which side is referred to as
C (and which as F ). Since we wish to minimize the charge, it makes sense to choose
the smaller of the two sides to be C. In our analysis we have a somewhat relaxed
condition, requiring that |C| ≤ α|U |, for a fixed 1/2 < α < 1. The task of identifying
a side C as required above in each divide step (i.e., each node of the decomposition
tree) is performed by the labeling stage, as explained in section 4.2.

The charge of a bisection is the upper bound that is obtained by applying the
upper bound (2.3) recursively; i.e., it is the sum of the charges of all the divide steps.
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In section 4.3 we discuss this notion in more detail, and in section 4.4 we show that
its current formulation is equivalent to the one from Stage 3 of the algorithm outline
(where the identification of a side C at each divide step corresponds to labeling of
the decomposition tree T ). From the current formulation it is straightforward that
the charge of a bisection is always an upper bound on its cost (regardless of the
identification of C at each divide step, i.e., the tree labeling).

We call the vertices of C = C1 ∪C2 charged and the vertices of F = F1 ∪ F2 free.
The edges in the part U can then be classified as charged-charged, charged-free, or
free-free, according to their two endpoints.

Desired divide step. Rather than find a bisection of minimum cost, our ap-
proximation algorithm looks for a bisection of minimum charge. Our desired divide
step is therefore one that guarantees that for the fixed optimal bisection, charge can
be used to approximate cost. By the labeling stage, it suffices to refer here to charge
with respect to an opt-consistent labeling; so from now on we assume that |C| ≤ α|U |
at each divide step.

Consider the charge of the fixed optimal bisection and recall that it is the sum
of the charges of all the divide steps. The charge of a divide step of a part U is
e(C1, U2) + e(C2, U1) and can be written also as e(C1, F2) + e(C2, F1) + 2e(C1, C2),
i.e., the cost of the charged-free edges that the divide step cuts and twice the cost of
the charged-charged edges that it cuts. Observe that a charged-free edge is always
an edge of the fixed optimal bisection (and vice versa) and that each edge is cut
exactly once in the decomposition stage. Hence, all the charged-free edges cut in all
the divide steps are exactly all the edges of the fixed optimal bisection. So for the
fixed optimal bisection, the difference between charge and cost is twice the cost of all
the charged-charged edges cut in all the divide steps.

It is therefore desired that the divide step cuts relatively few charged-charged
edges, where relative here is, with respect to b, the cost of the fixed optimal bisection.
Since b is the total cost of the charged-free edges that are cut in all the divide steps,
we seek an amortization scheme that amortizes the total cost of all charged-charged
edges cut against the total cost of all charged-free edges cut. The partition of vertices
to charged and free is not known to the divide step, and we therefore require that the
amortization scheme holds for every possible partition of vertices to charged and free.

A simple amortization scheme can consider each divide step separately and amor-
tize the cost of the charged-charged edges cut in a divide step against the cost of the
charged-free edges cut in the same divide step. Suppose that in every divide step
the amortized cost in this method is at most ρ; i.e., at every part U we have that
e(C1, C2) ≤ ρ[e(C1, F2)+e(C2, F1)]. Then the total cost of charged-charged edges cut
in all divide steps is clearly at most ρb, and the charge of the fixed optimal bisection
is at most (1 + 2ρ)b.

The problem with this simple amortization scheme is that in order to guarantee
that the scheme holds for all possible partitions of vertices to charged and free, ρ might
be required to be at least n, a value that is too high for our intended application. For
example, consider a graph that consists of two cliques of size n/2 connected by an
edge e. If the divide step breaks any of the cliques, then letting this clique be C and
the other clique be F , the amortization cost will be at least n. Otherwise, the divide
step consists of the edge e and then, letting C consist of the two endpoints of e, the
amortization cost will be infinite.

We employ a more complicated amortization scheme that allows a small amor-
tization cost ρ but introduces an additional logarithmic factor. The reason for the
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logarithmic factor is that this scheme amortizes against the same edge more than
once (but, in a sense, not too many times). Another complication is that this scheme
actually has two amortization methods, and it uses at each divide step the one that
is better (for that divide step).

Amortized cut. We amortize the cost of the charged-charged edges cut in a
divide step against the cost of the charged-free edges in the part being divided, i.e. in
the divide step of a part U we amortize e(C1, C2) against e(C,F ). The edges that
we amortize against are not cut in this divide step, and hence an edge may receive
an amortized cost in many divide steps. However, our amortization scheme described
below will guarantee that the total cost amortized against a single edge is at most
O(ρ · log n) for a suitable ρ. Since the edges that we amortize against are charged-free
edges and hence edges of the fixed optimal bisection, it would follow that the total
cost of the charged-charged edges cut in all the divide steps is at most O(ρ log n) · b,
and so the charge of the fixed optimal bisection is (1 + O(ρ log n)) · b.

For motivation, consider the case where the divide steps recursion has depth
O(log n), e.g., when all the divide steps are roughly balanced. In this case, an edge
can receive an amortized cost in at most O(log n) divide steps. Suppose that in
every divide step the amortized cost is at most ρ; i.e., in every part U we have that
e(C1, C2) ≤ ρ · e(C,F ). Then the total cost amortized against a single edge is at most
O(ρ log n).

We do not require that the divide steps are balanced but rather scale the amorti-
zation cost at a part U according to the imbalance of its divide step. Out of the several
possible scaling factors we will use only the following two, where we assume, without
loss of generality, that |U1| ≤ |U2|. The first scaling factor is e(C1, F1)/e(C,F ), and
its corresponding amortization method requires that

e(C1, C2) ≤ ρ · e(C1, F1)

e(C,F )
· e(C,F ).(2.4)

The second scaling factor is |C1|/|C|, and its corresponding amortization method
requires that

e(C1, C2) ≤ ρ · |C1|
|C| · e(C,F ).(2.5)

Alternative formulations. The first amortization method (2.4) can also be written
as e(C1, C2) ≤ ρ ·e(C1, F1). A convenient interpretation of this formulation is that we
amortize against the charged-free edges inside U1, the smaller side of the divide step
cut (rather than inside U , the part being divided), and the amortized cost is required
to be at most ρ.

The second amortization method (2.5) can be written also as e(C1, C2) ≤ ρ ·
r′(C) · |C1|, where r′(C) = e(C,F )/|C|. (See section 1.3 for the difference between
r′(C) and r(C).) A convenient interpretation of this formulation is that we amortize
against the vertices in C1, the charged vertices inside the smaller side of the divide
step cut, and the amortized cost is required to be at most ρ · r′(C).

Total amortized cost. The total cost amortized in the first method (2.4) is at most
O(ρ log n) · b. Indeed, let us use the alternative formulation in which the amortization
is only against edges inside U1, the smaller side of the divide step cut. An edge can
be inside U1 in at most log n divide steps (since the size of the part it is contained in
reduces at each such divide step by a factor of 2). Hence the total cost amortized in
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this method against a single edge (of the fixed optimal bisection) is at most O(ρ log n),
and the claim follows.

The total cost amortized in the second method (2.5) is also at most O(ρ log n) · b.
Indeed, we show in section 4.3 that the total cost amortized in this method against a
single edge (of the fixed optimal bisection) is at most O(ρ log n) (essentially by careful
summation of the relevant terms of the form |C1|/|C|), and the claim follows.

Our amortization scheme. Our amortization scheme chooses at each divide step
the scaling factor that is better for this divide step, and so it suffices to have that at
each part U at least one of (2.4) and (2.5) holds. It follows from the above discussion
(see section 4.3 for a full proof) that the total cost amortized in both methods together
is at most O(ρ log n) · b.

We can now formally define our desired divide step according to the (alternative
formulations of) the two amortization methods described above. We call this cut an
amortized cut.

Definition. Let (U1, U2) be a cut with |U1| ≤ |U2| in a graph G′(U,E′), and
let U = C ∪ F be a partition of the graph vertices U to charged vertices C and free
vertices F . Let us denote Ci = Ui ∩C and Fi = Ui ∩C for i = 1, 2, as in Figure 2.1.
Let

ρe =
e(C1, C2)

e(C1, F1)
and ρv =

e(C1, C2)

|C1| · r′(C)
,(2.6)

where r′(C) = e(C,F )/|C|. We call ρe the amortized cost for the edges, and ρv the
amortized cost for the vertices. (Note that ρe, ρv depend on C,F .)

The amortized cost of the cut (U1, U2) is the maximum of min{ρe, ρv}, where the
maximum is taken over all partitions U = C ∪ F with 0 < |C| ≤ α|U | for a fixed
1
2 ≤ α < 1. We say that the cut (U1, U2) is ρ-amortized if its amortized cost is at
most ρ.

In order for us to correctly handle cases where there is no cost to amortize against,
we use the convention that 0

0 is defined to be 0 and that t
0 for t > 0 is defined to be

∞. In particular, we may extend (2.6) to the case where C = ∅ and then ρe, ρv are
defined to be 0.

Convenient characterizations. A convenient characterization of an amortized cut
is given in the following proposition, whose proof is straightforward. (We will use this
characterization in section 4.)

Proposition 2.1. A cut (U1, U2) with |U1| ≤ |U2| is ρ-amortized if and only if
for every C ⊂ U with |C| ≤ α|U | and F = U \ C,

e(C1, C2) ≤ ρ ·max
{
e(C1, F1),

|C1|
|C| · e(C,F )

}
,

where Ci = Ui ∩ C and Fi = Ui ∩ C for i = 1, 2.

The restriction |C| ≤ α|U | implies that the two terms r(C) = e(C,F )
min{|C|,|F |} and

r′(C) = e(C,F )
|C| differ by no more than a constant factor. Indeed, min{|C|, |F |} =

Θ(|C|) and hence r(C) = e(C,F )
min{|C|,|F |} = e(C,F )

Θ(|C|) = Θ(r′(C)).

We can therefore characterize the amortized cost of a cut (up to constant factors)
in terms of r(C) rather than r′(C). (We will use this characterization in section 3.)



POLYLOGARITHMIC APPROXIMATION OF MINIMUM BISECTION 1099

Proposition 2.2. A cut (U1, U2) with |U1| ≤ |U2| is O(ρ)-amortized if for every
partition U = C ∪ F with 0 < |C| ≤ α|U |,

min

{
e(C1, C2)

e(C1, F1)
,

e(C1, C2)

|C1| · r(C)

}
≤ ρ,(2.7)

where Ci = Ui ∩ C and Fi = Ui ∩ C for i = 1, 2.

Remarks. Observe that without the restriction |C| ≤ α|U |, the amortized cost ρ
might be required to be Ω(|U |), a value that is too high for our intended application.
For example, consider a clique on n vertices and a cut (U1, U2) in it with |U1| ≤ |U2|.
Let one vertex of U2 be the only free vertex and the rest of the vertices be charged.
The number of charged-charged edges cut is |U1| · Θ(n). There are no charged-free
edges in U1; so the amortized cost for the edges is ρe = ∞. The number of charged
vertices in the smaller side is |U1| and r′(C) = n−1

n−1 = 1; so the amortized cost for the

vertices is ρv = |U1|Θ(n)
|U1|·1 = Θ(n). Therefore, the amortized cost of any cut would be

ρ = Ω(n).

In contrast, we show that the restriction |C| ≤ α|U | allows us to obtain relatively
small values of ρ. Namely, there always exists a cut whose amortized cost is ρ = O(1),
and a cut whose amortized cost is O(log |U |) can be computed efficiently. We remark
that our constructions are stronger than those required by Proposition 2.2, as they
satisfy (2.7) with no restriction on |C|. (The point is that we use r(C) rather than
r′(C), which makes a significant difference when |C| � |F |, as in the above clique
example.)

Note that the amortized cost ρ is not an approximation ratio. On the one hand,
it is not clear from the definition that every graph has an O(1)-amortized cut. On the
other hand, the amortized cost of a cut may be smaller than 1, as demonstrated by
a graph that consists of two cliques of size n/2 connected by an edge. The cut that
separates the two cliques can be seen to have amortized cost O(1/n).

3. Finding an amortized cut. In this section we devise an algorithm for find-
ing O(log n)-amortized cuts in general graphs and O(1)-amortized cuts in graphs
excluding any fixed minor (e.g., planar graphs). The input graph for this algorithm
is denoted by G (though it may be just a part of the input graph for bisection). We
assume that G is connected, as otherwise we can separate a connected component
while cutting no edges at all.

Section 3.1 shows that every optimal min-ratio cut is an O(1)-amortized cut. It
follows that in every graph there exists an O(1)-amortized cut. An optimal min-ratio
cut is NP-hard to find in general graphs, and we thus consider approximate min-ratio
cuts.

Section 3.2 demonstrates an approximate min-ratio cut which would be a poor
divide step for our accounting method. In particular, its amortized cost is high,
showing that the arguments of section 3.1 do not immediately extend from optimal
min-ratio cuts to approximate ones.

Section 3.3 presents an algorithm that uses a τ -approximate min-ratio cut in order
to find an O(τ)-amortized cut. Known algorithms for the min-ratio cut problem in
general graphs [11, 2, 12] have approximation ratio τ = O(log n), and we can thus find
an O(log n)-amortized cut. For certain graph families a better approximation ratio
is possible. For example, in graphs excluding any fixed minor, a ratio of τ = O(1) is
known due to [9], and we can thus find an O(1)-amortized cut.
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3.1. Min-ratio cuts are O(1)-amortized. We give an O(1) upper bound on
the amortized cost of optimal min-ratio cuts. The proof is based on the character-
ization given in Proposition 2.2 for an amortized cut. We remark that our proof
satisfies (2.7) with no restriction on |C|.

Lemma 3.1. An optimal min-ratio cut in a graph is O(1)-amortized.
Proof. Let (V1, V2) be an optimal min-ratio cut in a graph G and assume, without

loss of generality, that |V1| ≤ |V2|. Let V = C ∪ F be an arbitrary partition of the
graph vertices to charged vertices C and free vertices F , with 0 < |C| < |V |, and
denote Ci = Vi ∩C and Fi = Vi ∩F for i = 1, 2 (see also Figure 3.1). We show below
that

min

{
e(C1, C2)

e(C1, F1)
,

e(C1, C2)

|C1| · r(C)

}
≤ 2,(3.1)

and then by Proposition 2.2 we will have that (V1, V2) is O(1)-amortized, which proves
the lemma. Note that we can assume that |C1| > 0, as otherwise there is nothing to
prove.

F

C1

F2

F1

C2

C

V1

V2

Fig. 3.1. The amortized cost of an optimal min-ratio cut (V1, V2).

One easy case is when e(C1,C2)
e(C1,F1)

(i.e., the amortized cost for the edges ρe) is at

most 2, which clearly implies (3.1).

Another easy case is when e(C1,C2)
|C1| ≤ 2r(V1). Since (V1, V2) is an optimal min-

ratio cut, we also have that r(V1) ≤ r(C). We obtain that e(C1,C2)
|C1|·r(C) ≤ 2 r(V1)

r(C) ≤ 2, and

therefore (3.1) holds.
We next prove that one of the two easy cases above must hold, as otherwise we

must have that r(F1) < r(V1), in contradiction with (V1, V2) being an optimal min-

ratio cut. Indeed, assume that e(C1, C2)/e(C1, F1) > 2 and e(C1,C2)
|C1| > 2r(V1). Since

r(V1) = e(V1,V2)
|V1| is the average degree from V1 to V2, it can be represented as the

following convex combination of the average degree from C1 to V2 and the average
degree from F1 to V2, namely

r(V1) =
|F1|
|V1| ·

e(F1, V2)

|F1| +
|C1|
|V1| ·

e(C1, V2)

|C1| .

Since r(F1) = e(F1,V2)+e(F1,C1)
|F1| (note that |F1| ≤ |V1| ≤ 1

2 |V |), we can represent r(V1)

also as

r(V1) =
|F1|
|V1| · r(F1) +

|C1|
|V1| ·

[
e(C1, V2)− e(F1, C1)

|C1|
]
.
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By the above two assumptions (that exclude the easy cases) we have that

e(C1, V2)− e(F1, C1)

|C1| ≥ e(C1, C2)− e(F1, C1)

|C1| ≥
1
2e(C1, C2)

|C1| > r(V1).

The last two inequalities imply that

r(V1) >
|F1|
|V1| · r(F1) +

|C1|
|V1| · r(V1).

We obtained that some convex combination of r(F1) and r(V1) is smaller than r(V1),
and we can therefore conclude that r(F1) < r(V1). This contradicts the fact that
(V1, V2) is an optimal min-ratio cut and completes the proof of Lemma 3.1.

The converse of Lemma 3.1 is not true, and an O(1)-amortized cut can be an
Ω(n)-approximate min-ratio cut, as follows from the next proposition with t = O(1).

Proposition 3.2. Fix a constant 1/2 < α < 1 for the definition of an amortized
cut. Then for every t = o(n), there is an O(1/t)-amortized cut which is an Ω(n/t)-
approximate min-ratio cut.

Proof. Consider a graph on n vertices, for a sufficiently large n, that consists of
three cliques as follows. V1 is a clique on t vertices, V2 is a clique on αn vertices, and
V3 is a clique on the remaining Ω(n) vertices. In addition, the graph contains one
edge connecting V1 to V2 and one edge connecting V2 to V3.

The cut (V1, V2 ∪V3) has amortized cost O(1/t). Indeed, let C ∪F be a partition
of the vertices with |C| ≤ αn. We may assume that C contains both endpoints of the
edge between V1 and V2, as otherwise the cut contains no charged-charged edges and
its amortized cost is 0. So we have that the cost of the charged-charged edges cut is
1 and that both V1 and V2 contain at least one charged vertex. If V1 contains also at
least one free vertex, then the number of charged-free edges in V1 is at least t− 1 and

hence ρe = e(C1,C2)
e(C1,F1)

≤ 1/(t− 1). Otherwise, we have C1 = V1; since there are at most

αn charged vertices, and at least one of them is in V1, we have that V2 contains also

free vertices and thus e(C,F ) ≥ Ω(n); it follows that ρv = e(C1,C2)
e(C,F ) · |C||C1| ≤ O(1/t).

The cut (V1, V2 ∪ V3) is an Ω(n/t)-approximate min-ratio cut. Indeed, the ratio
of this cut is r(V1) = 1/t, while the cut (V3, V1 ∪ V2) is an optimal min-ratio cut and
has ratio r(V3) = O(1/n).

The next corollary follows from Lemma 3.1.
Corollary 3.3. In every graph there exists an O(1)-amortized cut.
Corollary 3.3 is optimal up to constant factors, and there are graphs for which

any cut has amortized cost Ω(1). For example, consider a clique on n vertices. Given
a cut (V1, V2) with |V1| ≤ |V2|, let α be the constant in the amortized cut definition
and take (α − 1/2)n vertices of V2 and all of V1 to be the charged vertices. It can
be seen that ρe =∞ and ρv = Θ(1), and so the amortized cost of the cut (V1, V2) is
Ω(1), as claimed.

3.2. Approximate min-ratio cuts might be poor amortized cuts. We
demonstrate that an approximate min-ratio cut of a graph might be a poor divide
step and, in particular, a poor amortized cut. Consider, for example, the following
graph G on 2n+2

√
εn vertices for a fixed 0 < ε < 1 (see also Figure 3.2). The vertex

set of the graph is F1 ∪F2 ∪C1 ∪C2, where each of F1, F2 are of size n, each of C1, C2

are of size
√

εn, and each of the four subsets forms a clique. These four cliques are
connected as follows. Between F1 and F2 there are n edges that form a matching (i.e.,
have no common endpoint). Between C1 and C2 there are all possible εn edges; thus
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F C

n

2
√
εn

εn

2
√
εn

n

n

F2

F1

C2

C1

√
εn

√
εn

Fig. 3.2. A poor divide step by an approximate min-ratio cut.

C1 ∪C2 forms a clique. There are also 2
√

εn edges between Fi and Ci (for i = 1, 2) so
that their endpoints at Fi are distinct and each vertex of Ci is an endpoint of exactly
two of these edges.

Let C = C1 ∪C2 be the charged vertices and F = F1 ∪F2 the free vertices. Such
a partition to charged and free may reflect the “right” cut of 2

√
εn vertices from the

graph G (if, e.g., the input graph for bisection consists of this graph G and a clique
on 2n− 2

√
εn vertices).

Consider a divide step based on the cut (F1 ∪C1, F2 ∪C2), whose ratio is nearly
optimal. Indeed, an optimal min-ratio cut in this graph is (F1, C1 ∪ F2 ∪ C2) and
its ratio is 1 + 2

√
ε/
√

n. The cut (F1 ∪ C1, F2 ∪ C2) has a slightly higher ratio of
(1 + ε)(1− o(1)), and so it is a 1 + ε approximate min-ratio cut.

Observe that the cut (F1 ∪C1, F2 ∪C2) is a poor divide step. It cuts εn charged-
charged edges while the total number of charged-free edges in G (and the bisection
cost in the input graph) is only 4

√
εn. According to the new accounting method, such

a divide step does not give an approximation ratio better than Ω(
√

εn).

The observation that the cut (F1∪C1, F2∪C2) is a poor divide step is supported by
its high amortized cost. The amortized cost for the edges is ρe = εn/2

√
εn =

√
εn/2.

The ratio of the cut (C,F ) is r(C) = r′(C) = 2; so the amortized cost for the vertices
is ρv = εn/(

√
εnr′(C)) =

√
εn/2. We conclude that a 1 + o(1) approximate min-ratio

cut might have amortized cost ρ ≥ min{ρe, ρv} =
√

εn/2.

3.3. Finding O(τ )-amortized cut. We present an algorithm that finds an
O(τ)-amortized cut, given a subroutine for computing a τ -approximate min-ratio cut.
The algorithm is motivated by the O(1) upper bound on the amortized cost of a min-
ratio cut shown in section 3.1. In particular, we examine what additional properties
are required in order to extend the analysis of Lemma 3.1 from optimal min-ratio cuts
to approximate ones.

The proof of Lemma 3.1 uses twice the fact that (V1, V2) is an optimal min-ratio

cut. In the first usage we had that e(C1,C2)
|C1|·r(C) ≤ 2 r(V1)

r(C) ≤ 2, which extends to the case

where (V1, V2) is an approximate min-ratio cut with the approximation ratio carried
over to the amortized cost; i.e., if (V1, V2) is a τ -approximate min-ratio cut, then we

have e(C1,C2)
|C1|·r(C) ≤ 2 r(V1)

r(C) ≤ 2τ .

The second time we used the fact that (V1, V2) is an optimal min-ratio cut was to
say that r(F1) < r(V1) cannot hold and gives a contradiction. In general, this usage
does not extend to an approximate min-ratio cut, as demonstrated by the example
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in section 3.2. However, the proof does extend to an approximate min-ratio cut if we
have the additional property that the ratio of V1 is minimal over all its subsets F1;
i.e., r(V1) ≤ r(F1) for all F1 ⊂ V1. We therefore obtain that the proof of Lemma 3.1
extends to approximate min-ratio cuts as follows.

Lemma 3.4. Let (V1, V2) be a τ -approximate min-ratio cut in a graph, with
|V1| ≤ |V2|. If r(V1) ≤ r(F1) for every F1 ⊂ V1, then (V1, V2) is an O(τ)-amortized
cut.

Note that the proof of Lemma 3.4 is not symmetric with respect to the two
amortization methods. It guarantees that either e(C1, C2)/e(C1, F1) ≤ 2 (i.e., the

amortized cost for the edges ρe is at most 2) or e(C1,C2)
|C1|·r(C) ≤ 2τ (i.e., the amortized

cost for the vertices ρv is O(τ)). In contrast, in the proof of Lemma 3.1 for optimal
min-ratio both amortization costs are O(1).

The amortized cut algorithm. We use Lemma 3.4 to devise an algorithm that
finds an O(τ)-amortized cut based on a τ -approximate min-ratio cut. The algorithm,
described in Figure 3.3, starts with a τ -approximate min-ratio cut (V1, V2) and then
“fixes” it so that it would also be “minimal” with respect to containment, as required
by Lemma 3.4. It then follows that the output cut is O(τ)-amortized.

In order to “fix” the cut (V1, V2), the algorithm uses minimum (s, t)-cuts in a
related graph G′, which is defined in step 2. The related graph G′ contains edges of
the input graph G, as well as new edges. The edges from G have unit capacity, while
the capacity of the new edges is some parameter p > 0. Step 3 then finds the optimal
value of p with respect to the minimum (s, t)-cut. Before discussing implementation
issues of step 3, let us analyze the algorithm’s correctness.

Algorithm FindAmortized.
1. Find in the input graph G = (V,E) a τ approximate min-ratio cut

(V1, V2) with |V1| ≤ |V2|.
2. Create a related graph G′:

– Merge all vertices of V2 into a single vertex t, removing self-loops
at t, and keeping all edges to V1, including parallel edges.
– Add a new vertex s which is connected to each vertex of V1 by
an edge whose capacity (weight) is a parameter p > 0.

3. Let S denote the vertices of V1 which are on the same side with s
in a minimum (s, t)-cut of G′.
– Find (e.g., by binary search) the minimum p > 0 for which S �= ∅.
(Possibly, S = V1).

4. Output the cut (S, V \ S) of the input graph.

Fig. 3.3. Algorithm for amortized cuts.

Lemma 3.5. The cut (S, V \ S) output by algorithm FindAmortized is a τ -
approximate min-ratio cut. In addition, every nonempty subset of V1 has ratio at
least as large as S, i.e., r(S) = min{r(S′) : ∅ �= S′ ⊆ V1}.

Proof. Consider an arbitrary value p and an arbitrary (s, t)-cut in the related
graph G′ with the corresponding set S ⊂ V1 (see Figure 3.4). The cut consists of (i)
edges between s and V1 \S (each of capacity p), (ii) edges between S and V1 \S (these
are edges from the input graph G), and (iii) edges between S and t (these are the
edges between S and V2 in the input graph G). The capacity of this (s, t)-cut is thus

cap(S) = p · |V1 \ S|+ e(S, V \ S),
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t

V1V1 \ S
S

1

s

V2

V2

p

1

Fig. 3.4. An (s, t)-cut in the related graph G′.

where, as usual, e(·, ·) denotes the number of corresponding edges in the input graph
G. In the special case of the empty set S = ∅, the capacity of the (s, t)-cut is

cap(∅) = p · |V1|.

Fixing the value of p, let us compare the capacity of the cut defined by the empty
set ∅ with that of an arbitrary set S �= ∅, i.e., cap(∅) vs. cap(S). The empty set ∅
yields a smaller capacity whenever

p · |V1| < p · |V1 \ S|+ e(S, V \ S)

�
p <

e(S, V \ S)

|S| = r(S),

where r(S) is the ratio of the cut (S, V \ S) in the input graph G. (Note that
|S| ≤ |V1| ≤ 1

2 |V | and that r(S) > 0 if G is connected.)
We claim that the value of p found at step 3 is essentially p∗ = min{r(S) : ∅ �=

S ⊆ V1}. Indeed, when p < p∗, a minimum (s, t)-cut in G′ corresponds to S = ∅,
and, when p > p∗, a minimum (s, t)-cut yields a set S �= ∅. When p = p∗, a minimum
(s, t)-cut can be obtained either by S = ∅ or by (one or more) S �= ∅ with r(S) = p∗.

When p = p∗ + ε for a very small ε > 0, only the sets S �= ∅ with r(S) = p∗ give
smaller capacity than the empty set, and thus a minimum (s, t)-cut is obtained by one
of these sets S. By the definition of p∗, this set ∅ �= S ⊂ V1 has minimal ratio r(S)
over all nonempty subsets of V1, i.e., r(S) = min{r(S′) : ∅ �= S′ ⊆ V1}, as claimed.
Furthermore, since S = V1 is included in this range, we get that r(S) ≤ r(V1) and
hence (S, V \S) is a τ -approximate min-ratio cut, finishing the proof. We remark that
a slightly modified algorithm can guarantee in addition that r(S) < r(S′) for every
S′ ⊂ S with S′ �= ∅, S. Details are omitted.

Theorem 3.6. Given a subroutine for computing a τ -approximate min-ratio cut,
algorithm FindAmortized finds an O(τ)-amortized cut.

Proof. Lemma 3.5 guarantees that the cut found by the algorithm satisfies the re-
quirements of Lemma 3.4, from which it follows that the cut is O(τ)-
amortized.

We now address the issue of implementing step 3. Observe that p∗ is the maximum
value p for which the empty set ∅ gives a minimum (s, t)-cut. Since, by definition, p∗

is the ratio r(S) of a set S, it has only n3 possible values, which can be exhaustively
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searched. Alternatively, p∗ can be found in O(log n) iterations of binary search, since
as an exact multiple of 1/|S| it is bounded between 0 and n, and the difference between
any two of its possible values is more than 1/n2.

Once we find p∗, we need to find a set S �= ∅ that gives a minimum (s, t)-cut for p∗.
We can either guess a vertex of V1 and merge it with s before computing the minimum
(s, t)-cut for p∗ or, alternatively, compute a minimum (s, t)-cut for p = p∗ + ε with,
e.g., ε = 1/n2.

4. The bisection algorithm. In this section we describe our approximation al-
gorithm for bisection and prove the following theorem. (See section 2 for the definition
of an amortized cut.)

Theorem 4.1. Given a subroutine that finds a ρ-amortized cut, a bisection within
a ratio of 1 + O(ρ log n) of the minimum can be found in polynomial time.

4.1. Decomposition stage. The decomposition stage recursively divides the
input graph G = (V,E) into smaller and smaller parts using a ρ-amortized cut sub-
routine (e.g., the one devised in section 3). Each part is further divided unless it
consists of a single vertex.

The decomposition stage builds a rooted binary tree T , called the decomposition
tree, which corresponds to the recursive decomposition of the input graph G in a
natural way, as follows. (Throughout, we call the vertices of T nodes to avoid confusion
with the vertices of the input graph G.) Each tree node i contains a part Vi ⊆ V
that was found during the recursive decomposition. The root node of T contains V ,
i.e., the whole input graph G. Let us denote the two children of a nonleaf node i
by L(i) and R(i). Then their two parts VL(i), VR(i) are the result of dividing Vi; i.e.,
the ρ-amortized cut found in Vi is (VL(i), VR(i)). A leaf of the tree T contains a part
that consists of a single vertex of G. Therefore T contains exactly n leaves and n− 1
nonleaf nodes.

4.2. Labeling stage. Recall the following definitions from section 2. A labeling
of the decomposition tree T labels each nonleaf node of the tree as either white or
black. Fixing a parameter 1/2 < α < 1, we say that a labeling is α-consistent
with respect to a white-black bisection (W,B) of G if every tree node i satisfies the
following: If the label of node i is white, then |W ∩ Vi| ≤ α|Vi|, and if the label of
node i is black, then |B ∩ Vi| ≤ α|Vi| (where Vi is the part contained in node i). A
labeling is called opt-consistent if it is α-consistent with the fixed optimal bisection
(W ∗, B∗).

The labeling stage produces a family F of labelings. The cardinality of F is
exponential in n; so rather than listing its members explicitly, the labeling stage
produces an implicit representation of F . The actual work of the labeling stage is to
mark certain nodes of T , and these nodes implicitly define the family F , as described
below.

The labeling stage marks some of the nodes of T in a process that goes from
the root of T towards its leaves, as follows. The root of T is always marked, and
any other node i in the tree is marked in this process if its closest marked ancestor j
satisfies |Vi| ≤ 1

2α |Vj |. (As before, Vi and Vj are the parts contained in the nodes i
and j, respectively.) Note that the constant α is chosen so that 1

2 < α < 1, implying
1
2 < 1

2α < 1.

A labeling of T is said to be derived from the marked nodes if the label of every
unmarked node is the same as the label of its closest marked ancestor. (There is no
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restriction on the labels of the marked nodes.) Note that in this case the labels of the
marked nodes uniquely define the labels of all the internal tree nodes.

The family F produced by the labeling stage consists of all the labelings that can
be derived from the marked nodes. Since each of the Ω(n) marked nodes can be labeled
arbitrarily by one of two colors, the resulting family of labelings has exponentially
large cardinality, and we cannot explicitly list all the family members. Instead, the
algorithm implicitly represents this family F by identifying which are the marked
nodes.

Lemma 4.2. The family of labelings F contains at least one opt-consistent label-
ing.

Proof. Let the white-black cut (W,B) be the fixed optimal bisection. Consider
the labeling that is derived from the marked nodes, with the label of each marked
node i being the color in minority among the vertices of Vi.

This labeling is clearly in the family F , and we claim that it is also opt-consistent.
Indeed, the label of a marked node i is by definition the minority color in Vi. The
label of an unmarked node i is the same as the label of its closest marked ancestor
j. Suppose, without loss of generality, that this label (of i and j) is white. Then at
most half the vertices of Vj are white, i.e., |W ∩ Vj | ≤ 1

2 |Vj |. Observe that Vi ⊂ Vj
and |Vi| > 1

2α |Vj | and hence |W ∩Vi| ≤ |W ∩Vj | ≤ 1
2 |Vj | < α|Vi|. Hence, this labeling

of F is opt-consistent.

4.3. The charge of a bisection. We now formally define the charge of a bi-
section (W,B) with respect to the decomposition tree T and a labeling of it. The
reference to T will later be omitted, as we always refer to the tree computed in the
decomposition stage.

Definition. Let (W,B) be a bisection of the input graph and assume we are
given a decomposition tree T and a labeling of it. For each (nonleaf) node i of T , if i
is labeled white, then we let (see Figure 4.1) Ci = W ∩ Vi and Fi = B ∩ Vi, and if i is
labeled black, then we let Ci = B ∩ Vi and Fi = W ∩ Vi. We obtain a cut (Ci, Fi) of
the part Vi, and say that Ci is charged and Fi is free. The charge of the divide step
of a (nonleaf) node i is defined as

e(Ci ∩ VL(i), VR(i)) + e(Ci ∩ VR(i), VL(i)).

The charge of the bisection (W,B) is defined as the sum of all the divide steps charges,
i.e.,

∑
i∈T

e(Ci ∩ VL(i), VR(i)) + e(Ci ∩ VR(i), VL(i)).

(These charges are defined with respect to T and a labeling of it.)
Bisection charge vs. cost. In certain conditions, a bisection charge can ap-

proximate its cost. As shown below, the charge of a bisection upper bounds its cost,
and the gap between them is not too large if the charge is taken with respect to an α-
consistent labeling (as in the case of the fixed optimal bisection and an opt-consistent
labeling).

Lemma 4.3. The charge of a bisection (W,B) with respect to any labeling is at
least as large as its cost.

Proof. As we have seen in section 2, the true cost of the (W,B) edges cut in a
divide step i is e(Ci ∩ VL(i), Fi ∩ VR(i)) + e(Ci ∩ VR(i), Fi ∩ VL(i)) and is therefore not
larger than the charge of this step. The proof follows by summing over all divide steps,
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Divide

Step

Divide

Step

Divide

Step

Divide

Fi = B ∩ Vi

. . .

Ci = W ∩ Vi

. . .

VR(i)

VL(i)

VL(L(i)) VL(R(i))

. . . . . .

FL(i)=W∩VL(i)

VR(L(i)) VR(R(i))

. . . . . .

VR(i)

CR(i)=W∩VR(i)FR(i)=B∩VR(i)CL(i)=B∩VL(i)

Vi

VL(i)

Fig. 4.1. The charge of a bisection (W,B) throughout the decomposition tree.

since the decomposition stage eventually divides the graph into individual vertices,
and so every edge of the bisection (W,B) is cut at some divide step.

Lemma 4.4. The charge of a bisection (W,B) with respect to a labeling that is
α-consistent with it is at most e(W,B) · (1 + O(ρ log n)).

Proof. Consider a bisection (W,B) and a labeling of T that is α-consistent with
it. As we have seen in section 2 and in Lemma 4.3 the charge of a divide step is
larger than the true cost of the (W,B) edges cut in that step by the cost of the
charged-charged edges cut in that divide step. Summing over the divide steps we
get that the charge of (W,B), the fixed optimal bisection, is larger than its cost by
2
∑
i e(Ci ∩ VL(i), Ci ∩ VR(i)), where i ranges over all (nonleaf) nodes i in T . We use

the shorter notation CL = Ci ∩ VL(i) and CR = Ci ∩ VR(i), where i is clear from the
context.

To upper bound 2
∑
i e(CL, CR), observe that each part Vi is divided using a ρ-

amortized cut and that the α-consistent labeling guarantees that |Ci| ≤ α|Vi| for all
nodes i; so we can use the amortization scheme of section 2. Namely, let us assume,
without loss of generality, that the decomposition stage places in the left child of a
node i the smaller of the two subparts of Vi; i.e., |VL(i)| ≤ |VR(i)| for every nonleaf
node i. Then by Proposition 2.1 we can upper bound

e(CL, CR) ≤ ρ ·max
{
e(CL, FL) , |CL|

|Ci| · e(Ci, Fi)
}
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and obtain

2
∑
i

e(CL, CR) ≤ 2ρ ·
{∑

i

e(CL, FL) +
∑
i

|CL|
|Ci| · e(Ci, Fi)

}
.(4.1)

Therefore, to complete the proof of Lemma 4.4 it suffices to upper bound the sums
in the curly brackets (i.e., the total cost amortized in each of the two methods) by
e(W,B) ·O(log n).

Consider first
∑
i e(CL, FL). The edges that contribute to this sum are charged-

free edges and hence edges of the bisection (W,B). An edge in the cut (CL, FL) must
be inside VL(i), the smaller side of the cut of Vi, and any single edge can be inside VL(i)

in at most log n divide steps i throughout the tree T . Hence,
∑
i e(CL, FL) consists

of at most log n times the cost of every edge of the bisection (W,B), and therefore
this sum is at most e(W,B) · log n.

Next consider
∑
i
|CL|
|Ci| · e(Ci, Fi) and recall our convention that 0

0 is defined to

be 0. The edges of e(Ci, Fi) contribute to the sum their cost scaled by a factor of
|CL|
|Ci| . Each edge of e(Ci, Fi) is a charged-free edge and hence an edge of the bisection

(W,B). However, an edge of the bisection (W,B) belongs to e(Ci, Fi) if and only if
this edge is inside Vi. The nodes i for which this edge is inside Vi are all on a path from
the root to a leaf of the decomposition tree T , and therefore the total contribution of

this edge is at most its cost scaled by the sum of |CL|
|Ci| over that path in T .

We claim that the sum of |CL|
|Ci| over any path from the root to a leaf is bounded

by O(log n). It follows from this claim that
∑
i
|CL|
|Ci| · e(Ci, Fi) can be described as the

cost of every edge of the bisection (W,B) scaled by at most O(log n), and therefore
this sum is at most e(W,B) ·O(log n).

To prove the claim, consider an arbitrary path from the root to a leaf and denote
the path nodes by 1, 2, . . . , p + 1. At each node i the charged side (i.e., Ci) may be
either W or B, depending on the label of the node; so denoting wj = |W ∩ Vj | and
bj = |B ∩ Vj |, we have that |CL|

|Ci| is either
wL(i)

wi
or

bL(i)

bi
and clearly at most their sum.

Hence,

p∑
i=1

|CL|
|Ci| ≤

p∑
i=1

wL(i)

wi
+

p∑
i=1

bL(i)

bi
.

First consider
∑p

1
wL(i)

wi
, and observe that wi is a nonincreasing sequence, since,

in the tree, node i is a parent of node i + 1. If node i + 1 is a left child (of its parent
node i), then wL(i) = wi+1 and hence

wL(i)

wi
= wi+1

wi
≤ 1. The number of such nodes

i is at most log n, since the path from the root to a leaf can contain at most logn
left children i. (Recall that |VL(i)| ≤ |VR(i)|.) The contribution of all such nodes i to∑p

1
wL(i)

wi
is therefore at most log n.

If node i + 1 is a right child (of its parent i), then wL(i) = wi − wi+1, and

the contribution of all such nodes i is at most
∑p

1
wi−wi+1

wi
. Clearly, wi−wi+1

wi
≤

1
wi

+ · · · + 1
wi+1+1 and hence the contribution of all such nodes i to

∑p
1
wL(i)

wi
is at

most
∑p

1
wi−wi+1

wi
≤ 1

w1
+ · · · + 1

2 + 1 = H(w1) ≤ H(n), where H(k) =
∑k

1
1
j is the

kth harmonic number.
We conclude that

∑p
1
wL(i)

wi
≤ log n + H(n) ≤ O(log n). Similarly,

∑p
1
bL(i)

bi
=

O(log n), and together we get that
∑p

1
|CL|
|Ci| ≤ O(log n), proving the claim and the

lemma.
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Corollary 4.5. The charge of the fixed optimal bisection (W ∗, B∗) with respect
to an opt-consistent labeling is at most b(1 + O(ρ log n)).

Distributing charge to vertices. It will be convenient (algorithmically) to
distribute the charge of a bisection (W,B) (with respect to T and a labeling) to the
vertices of the input graph, as follows. For each vertex v ∈ Vi let the cross-degree of v
at node i, denoted crossi(v), be the cost of the edges that are incident at v and are cut
in divide step i. We define the charge of a vertex v ∈ V as the sum of the cross-degree
of v at all nodes i for which v belongs to the charged side, i.e.,

∑
i:v∈Ci

crossi(v). The
next lemma proves that distributing the charge of a bisection to the graph vertices is
indeed correct.

Lemma 4.6. The charge of a bisection (W,B) is the sum of the charges of all
vertices in G.

Proof. The charge of a divide step of node i is equal to the sum of the cross-degrees
at node i of all vertices v ∈ Vi, i.e.,

e(Ci ∩ VL(i), VR(i)) + e(Ci ∩ VR(i), VL(i)) =
∑
v∈Ci

crossi(v) .

Summing over all nodes i in the tree T , the left-hand side is, by definition, the bisection
charge, and the right-hand side is the sum of the charges of all vertices in G. The
proof follows.

Distributing the charge to the vertices of G is important algorithmically. The
charge of a vertex depends on (and can be easily computed from) the side of this vertex
in the bisection (W,B), the decomposition tree T , and the labeling of T , but it does
not depend on the side of the cut (W,B) that other vertices of the graph belong to.
It follows that the charge of a bisection (W,B), with respect to a given decomposition
tree T and a labeling of it, depends linearly on the placement of vertices into W and
B. This formulation of charge will be exploited by (the dynamic programming in) the
combining stage.

4.4. Combining stage. The combining stage computes a bisection of the input
graph G and a labeling of the decomposition tree T such that the bisection charge with
respect to the labeling is at most b · (1 +O(ρ log n)). It then follows from Lemma 4.3
that the cost of the computed bisection is at most b · (1 + O(ρ log n)), as desired.

First consider the case where an opt-consistent labeling is known. Then it suffices
to compute a bisection of G whose charge with respect to this opt-consistent labeling is
minimal because Corollary 4.5 guarantees that the charge of the computed bisection
is at most b · (1 + O(ρ log n)). Below we describe a simple procedure for finding a
bisection of G with minimal charge with respect to a given labeling.

However, we do not know how to efficiently find an opt-consistent labeling, and
therefore we go over all the labelings in the family F . Specifically, using a more
complicated procedure described below the combining stage finds a bisection of G and
a labeling from F such that the charge of the bisection with respect to the labeling
is minimal over all such bisection-labeling pairs. Lemma 4.2 guarantees that at least
one of these labelings is opt-consistent, in which case Corollary 4.5 applies. Hence,
the bisection-labeling pair computed by this procedure satisfies that the charge of the
bisection with respect to the labeling is indeed at most b · (1 + O(ρ log n)).

Minimizing charge over a given labeling. Finding a bisection of minimum
charge with respect to a given labeling is relatively straightforward. By Lemma 4.6,
the charge of a bisection (W,B) is the sum of the vertex charges. Since the decompo-
sition tree T and the labeling are fixed, the charge of a vertex depends only on its side
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in the bisection (W,B). We can therefore compute for each vertex v what its charge
is when it belongs to W , called the white charge of v, and what its charge is when it
belongs to B, called the black charge of v. (Note that summing the white charge and
the black charge of a vertex gives the degree of that vertex in G.)

The charge of a bisection (W,B) is then the sum of the white charges of W
and the black charges of B. To find a bisection (W,B) with minimum charge with
respect to the given labeling, we can thus compute for each vertex its net-charge
(white charge minus black charge) and take W to be the n/2 vertices with smallest
net-charge. (This algorithm for the case where a labeling is given was used in the
algorithm outline in section 2, where we assumed that the labeling stage produces an
opt-consistent labeling.)

Minimizing charge over the family F . The combining stage uses dynamic
programming to find a bisection and a labeling from the family F so that the charge of
the bisection with respect to this labeling is minimum over all such bisection-labeling
pairs.

The dynamic programming table Q has entries of the form Q(i, k, g), where i is
a node of the decomposition tree T , k is an integer between 0 and |Vi|, and g is a
guess list that contains the labels of the marked ancestors of node i. Throughout, i
is considered an ancestor of itself.

An entry Q(i, k, g) in the table contains the optimal solution to the following
problem: Choose k vertices of Vi and a labeling from F that agrees with g so that
when these k vertices are placed in the side W and the remaining vertices of Vi are
placed in the side B, the sum of the charges of all the vertices of Vi with respect to
the chosen labeling is minimal over all such choices. Note that when we consider only
labelings from the family F that agree with g, the labels of all the ancestors of i are
uniquely defined from g, while the marked descendants of i can have arbitrary labels.

For a leaf node i, the table entry Q(i, k, g) can be computed directly, as follows.
Since i is a leaf node, the part Vi consists of a single vertex, say v, and k can be either
0 or 1. If k = 0, then v is necessarily in B, and if k = 1, then v is necessarily in W .
The guess list g gives the labels of all the nodes on the path from the leaf i to the
root and hence all the labels that can possibly affect the charge of v. Since k and
g uniquely define all the data that the charge of v depends on, Q(i, k, g) is just the
charge of v and can be computed directly as

∑
j crossj(v), where j ranges over all

ancestors of i whose label (according to g) agrees with the side of v (as follows from
k).

For a nonleaf node i, the table entry Q(i, k, g) can be efficiently computed from
table entries of its children nodes L(i), R(i). Indeed, choosing k vertices from Vi is
equivalent to choosing j vertices from one child part VL(i) and k− j vertices from the
other child part VR(i); so we need to add up two entries, each corresponding to one
child node. The optimal value of j is not known, but it can be exhaustively searched.
The guess list g can be extended into lists gL, gR for the children nodes in possibly
more than one way. Therefore,

Q(i, k, g) = min
0≤j≤k

min
gL,gR

{Q(L(i), j, gL) + Q(R(i), k − j, gR)},

where gL, gR range over all possible extensions of g, as described below. If a child
node L(i) is a marked node, then there are two possible ways to extend the list g
into a list gL (by adding a label for VL(i)), and the optimum Q(i, k, g) is achieved by
taking the one which is better. If a child node L(i) is not a marked node, then the
only extension is gL = g because i and L(i) have the same marked ancestors. The
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possible extensions of the child node R(i) are similar. It follows that each table entry
of a nonleaf node i can be computed from table entries of its children L(i), R(i) in
time O(|Vi|) = O(n).

To fill all the table entries, start from the entries that correspond to leaf nodes i
and go upwards on the decomposition tree T . In particular, the entries Q(iroot, n/2, g)
will be computed for the root node iroot. At the root node, the guess list g contains the
label of the root and thus has only two possible values. (In fact, the two entries must
be the same due to symmetry.) The combining stage outputs ming Q(iroot, n/2, g),
which, by definition, is the minimum charge of all bisections of the input graph with
respect to any labelings from F , as desired. A bisection that achieves this minimum
charge can also be computed. Simply go over the table entries in the reverse order of
computation and recover at each entry the values of j, gL, gR that gave the optimum.
Alternatively, associate with each entry Q(i, k, g) a set of k vertices of Vi which is
optimal for it and its corresponding labels.

Lemma 4.7. The combining stage finds in polynomial time a bisection of the
input graph G and a labeling from the family F so that the charge of the bisection
with respect to the labeling is minimal over all such bisection-labeling pairs.

Proof. The above discussion shows that the algorithm correctly computes every
entry Q(i, k, g), and a bisection-labeling pair as desired.

The size of the table Q is polynomial in n. Indeed, there are only O(n) tree
nodes i. For each tree node i, the range of k contains O(|Vi|) = O(n) possible values.
In addition, at each tree node i the guess list g contains labels of at most O(log n)
ancestor nodes, and thus g assumes polynomially many values. The polynomial bound
on the size of the table Q follows.

An entry for a leaf node i is computed efficiently. An entry for a nonleaf node is
efficiently computed from previously computed entries. By the upper bound on the
table size we conclude that all the table entries are computed in polynomial time, and
in particular Q(iroot, n/2, g).

Corollary 4.8. The combining stage finds bisection of the input graph (and
a labeling of T ) such that bisection charge (with respect to the labeling) is at most
b(1 + O(ρ log n)).

Proof. By Lemma 4.7 and Corollary 4.5 there exists a bisection of G and a
labeling of F such that the bisection charge with respect to the labeling is at most
b(1 + O(ρ log n)). The proof then follows by applying Lemma 4.2.

This corollary completes the proof of Theorem 4.1, since by Lemma 4.3 the charge
of a bisection is an upper bound on its actual cost.

5. Extensions. Our results extend to several variants (and generalizations) of
the minimum bisection problem, including the case of edges with arbitrary nonnega-
tive costs (section 5.1), the case of vertices with polynomially bounded nonnegative
integer weights (section 5.2), the variant that requires, in addition, to separate a
given pair of vertices s and t (section 5.3), the case of cutting away from the graph
an arbitrary number of vertices (instead of n/2) that is given as part of the input
(section 5.4), the case of cutting the input graph into a fixed number of equal-size
parts (section 5.5), and the case of finding a 2/3-balanced cut whose cost is small
relative to the minimum bisection cost b (section 5.6).

In what follows, the basic bisection problem refers to the minimum bisection prob-
lem that was defined in section 1. In contrast, the extended bisection problems refer
to the variants of the problem specified above. We discuss each extended problem
separately, but it is straightforward to combine together several extensions (e.g., to
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allow both edge costs and vertex weights as described above and require that the total
weight of the vertices cut away is a number k that is given in the input).

We consider two approaches for extending our approximation algorithm from
the basic bisection problem to an extended problem. One approach is to reduce the
extended problem to the basic one. Another approach is to modify the algorithm that
we devised for the basic bisection problem so that it handles also the extended variant.
As we discuss below, each approach has its own advantages and so it is valuable to
show both approaches for each extended problem. We indeed show that for almost
all the extended problems specified above both approaches can be applied, although
for a few problems we provide only a modified algorithm.

A major advantage of the reduction approach is that it is self contained and not
restricted to the particular algorithm that we devise; so future improvement in the
approximation ratio for the basic problem may lead to an immediate improvement
also for the extended problem. Most of our reductions transform an approximation
ratio f(n) for the basic problem into an approximation ratio f(nO(1)) for the extended
problem (because they increase the number of vertices n by a polynomial), and so
for the current approximation ratio f(n), which is polylogarithmic, these reductions
increase the approximation ratio by at most a constant factor. The techniques used
in our reductions are similar to those devised in [4, 3] for the (different) purpose of
proving NP-hardness results.

The advantages of the algorithm modification approach are that it preserves as-
pects that are specific to our algorithm, such as an improved O(log n) approximation
ratio for planar graphs, and that it is usually more efficient (and therefore practical)
than the reduction approach. A drawback of the algorithm modification approach is
that it requires going again through the algorithm’s analysis. In particular, we might
be required to verify that the approximate min-ratio cut algorithm (that we use as
a black-box) can be extended accordingly. However, the necessary changes in the
algorithm and its proof are usually straightforward.

5.1. Edge costs. Suppose that the edges of the input graph G have arbitrary
nonnegative costs, and that the cost of a bisection is the total cost (i.e., sum of the
costs) of its edges, and we wish to find a bisection of G of (approximately) minimum
cost.

Reduction. We reduce the extended problem of bisection with edge costs (de-
scribed above) to the basic bisection problem, as follows. Given a graph G with edge
costs as an input, we first guess the most costly edge in a minimum cost bisection
of G, by exhaustively trying all O(n2) edges in the input graph. By scaling all edge
costs, we can assume, without loss of generality, that the cost of the guessed edge is
n2. It follows that the cost b of the optimum bisection is at least n2 but smaller than
n4. We then round down all edge costs to their closest integer, which can decrease the
cost of any bisection by at most

(
n
2

) ≤ b/2 and therefore by a factor of at most 2. We
next change to n5 every edge cost that is larger than n5, which does not affect the cost
of nearly optimal bisections (i.e., whose original cost was within a ratio of roughly n
from the minimum). Finally, we replace each vertex of the graph by a clique of size
n5 and each edge (u, v) of cost t by t unit cost edges placed arbitrarily between the
clique of u and the clique of v. (Since t < n10 we can do that with no parallel edges.)

The bisection of minimum cost b in G corresponds to a bisection of cost Θ(b)
in the resulting graph. Hence, applying our algorithm for the basic problem on the
resulting graph (which has n6 vertices) yields a bisection whose cost is O(b(log n6)2) =
O(b log2 n). This bisection cannot split any of the cliques that we created, as otherwise
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its cost will be at least n5−1� b log2 n, and it therefore must correspond to a bisection
of G, whose cost is roughly the same, namely O(b log2 n), as required.

Modified algorithm. We modify our algorithm for the basic bisection problem
so that it handles the extended problem with edge costs, as follows. Rather than
considering the number of edges we always consider their cost; e.g., e(V1, V2) denotes
the sum of the costs of the edges with one endpoint in V1 and one endpoint in V2. The
corresponding changes in our algorithm and analysis are straightforward. Note that
the amortized cut algorithm (see Figure 3.3) requires (in step 1) a subroutine that
computes an approximate min-ratio cut with respect to the edge costs, but known
algorithms (e.g., due to [11]) provide this subroutine. Note also this algorithm’s binary
search (step 3) takes O(M log n) iterations, where M is the number of bits used to
represent an edge cost, and so the running time is polynomial in the input size. The
resulting approximation ratio is the same as for the basic problem, i.e., O(log2 n).

5.2. Polynomial vertex weights. Suppose that the vertices of the input graph
G have nonnegative integer weights that are bounded by a polynomial nc (where n
is the number of vertices in G), and let a bisection be a cut that separates half of
the total weight (i.e., the sum of the weights) of the vertices of V . We wish to find a
bisection of G of (approximately) minimum cost. Note that if the weights are allowed
to be exponential in n, finding any bisection of the graph is equivalent to the partition
(or subset-sum) problem and therefore NP-hard.

Reduction. We reduce the extended problem of bisection with vertex weights
(described above) to the basic bisection problem, as follows. Given a graph G with
vertex weights as an input, we replace each vertex of cost w in G by a clique of
max{1, w · n3} unit weight vertices and replace each edge (u, v) in G by one edge
placed arbitrarily between the clique of u and the clique of v. In addition, for each
vertex of weight 0 in G we place in the graph a new isolated vertex of unit weight.

A bisection of minimum cost b in G corresponds to a bisection of the same cost
b in the resulting graph. Hence, applying our algorithm for the basic problem on
the resulting graph (which has at most nc+4 vertices) yields a bisection whose cost is
O(b(c + 4)2 log2 n). This bisection cannot split any of the cliques that we created, as
otherwise its cost will be at least n3−1� b · (c+4)2 log2 n. Furthermore, the vertices
of the created cliques of size at least n3 must be partitioned evenly by this bisection,
as otherwise their partition deviates from an even one by at least n3 (these clique
sizes are multiples of n3) which is much more than the total number of remaining
vertices, 2n2. (Recall that we added isolated vertices for vertices of weight 0 in G.)
The computed bisection of the resulting graph therefore corresponds to a bisection of
G, whose cost is the same, namely O(b(c + 3)2 log2 n), as required.

Modified algorithm. We modify our algorithm for the basic bisection problem so
that it handles the extended problem with vertex weights, as follows. Rather than
considering the number of vertices in a part we always consider their total weight;
e.g., r(S) denotes the cost of the cut (S, V \ S) divided by the minimum between the
weight of S and the weight of V \S. The corresponding changes in our algorithm and
analysis are straightforward. Note that the amortized cut algorithm (see Figure 3.3)
requires (in step 1) a subroutine that computes an approximate min-ratio cut with
respect to the vertex weights, but known algorithms (e.g., due to [11]) provide this
subroutine. Note also that in this algorithm’s related graph G′ (step 2) the capacity
of an edge between a vertex v ∈ V1 and the new vertex s is p times the weight of v1.
The resulting approximation ratio is the same as for the basic problem, i.e., O(log2 n).
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5.3. Separating two vertices from each other (s−t cut). Suppose that the
input graph G contains two special vertices, s and t, and we wish to find a bisection
that separates s from t and has minimum cost. (Note that the converse restriction,
namely that s, t will not be separated, is equivalent to merging them into one vertex
of weight 2 and therefore follows from section 5.2.)

Reduction. We reduce the extended problem of a bisection that separates s from
t to the extended problem of bisection with vertex weights (described in section 5.2),
as follows. Given an input graph G with special vertices s, t as above, we let the
vertices s, t have weights n and let all other vertices of G have weight 1. The total
weight of s and t together is 2n, while the total weight of all other vertices is n − 2
(and thus smaller); so every bisection of the resulting graph must separate s from
t. It follows that every bisection of the resulting graph corresponds to a bisection of
G that separates s from t and has the same cost, and vice versa. We can therefore
find a bisection of G that separates s from t and its cost is within O(log2 n) from the
minimum.

Modified algorithm. We modify our algorithm for the basic bisection problem
so that it handles the extended problem of a bisection that separates s from t, as
follows. We change the dynamic programming table Q of the combining stage so
that every entry Q(i, k, g) contains two solutions (if they exist); one solution with
the k chosen vertices containing s but not t and the other solution with the k chosen
vertices not containing any of s and t. Computing the table entries is straightforward,
and the output of the algorithm is ming Q(iroot, n/2, g), where the minimum is taken
only over solutions that contain s and not t. The necessary changes in our analysis
are straightforward. The resulting approximation ratio is the same as for the basic
problem, i.e., O(log2 n).

5.4. Cutting an arbitrary given number of vertices. Suppose that the
input consists of a graph G and a number k, and we wish to find a minimum cost cut
that separates exactly k vertices.

Reduction. We reduce the problem of cutting away a given number k of vertices
to the problem of bisection with vertex weights (described in section 5.2), as follows.
Given an input graph G and a number k (assume, without loss of generality, that
k ≤ n/2), we let the vertices of G have weight 1 and add to the graph an isolated vertex
of weight n − 2k. It is clear that every bisection of the resulting graph corresponds
to a cut of G that separates k vertices and has the same cost, and vice versa. We
can therefore find a cut of G that separates k vertices and its cost is within O(log2 n)
from the minimum.

Modified algorithm. We modify our algorithm for the basic bisection problem
so that it handles the extended problem of cutting a given number of vertices, as
follows. The only change in the algorithm is in the combining stage, that now outputs
ming Q(iroot, k, g), where Q is the dynamic programming table (see section 4.4). The
necessary changes in our analysis are straightforward. The resulting approximation
ratio is the same as for the basic problem, i.e., O(log2 n).

5.5. Cutting into a fixed number of parts. Suppose that we wish to find a
cut that separates the input graph G into a fixed number p of parts of equal size.

We do not know of a reduction from this extended problem to the basic bisection
problem. A recursive bisection approach has a poor performance in general, although
it may be useful in some special cases and if some requirements are relaxed; see [15]
and the references therein.
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Modified algorithm. We modify our algorithm for the basic bisection problem so
that it handles the problem of cutting the graph into p parts of equal size, as follows.
The cost of a cut that partitions V into p parts V 1, . . . , V p is

∑
j<l

e(V j , V l) =
1

2

∑
j

e(V j , V \ V j).

Therefore, by scaling the value of every possible solution by a factor of 2 (which clearly
does not affect any approximation ratio issues), we obtain that the objective function
of the extended problem has the convenient form

∑
j e(V j , V \ V j). Observe that

each cut (V j , V \ V j) corresponds to separating V j from the other parts, which are
grouped into one part V \ V j . Thus, each summand e(V j , V \ V j) in the objective
function is similar to the basic bisection problem (with the minor exception that the
two sides are not of the equal sizes). Below we describe the modifications to the three
stages of the algorithm, which works simultaneously on all p cuts (V j , V \ V j). Its
analysis is based on applying the new accounting method of section 2 separately to
each of these p cuts.

The decomposition stage computes a decomposition tree T exactly as in the algo-
rithm for the basic problem (see section 4.1). Observe that the amortized cut notion
does not depend on the cut that we seek, and so the obtained decomposition (and its
tree T ) can be used for all cuts (V j , V \ V j).

We extend the notion of a labeling of the decomposition tree, as follows. An
extended labeling of T assigns to every tree node a vector of p “basic” labels, one
label for each cut (V j , V \V j). An extended labeling corresponds to deciding at each
tree node i and for each j, which of V j and V \ V j is considered charged (and which
is considered free) in the part Vi. Note that an extended labeling can be viewed as a
vector, whose coordinate j forms a basic labeling for (V j , V \ V j).

The labeling stage marks some nodes of the tree T exactly as in the algorithm
for the basic problem (see section 4.2). This stage implicitly defines a family F that
consists of all extended labelings in which every unmarked node has the same label as
its closest marked ancestor. (There is no restriction on the labels of the marked nodes.)
It is straightforward that F contains at least one extended labeling for which every
coordinate j (forms a basic labeling that) is α-consistent with the cut (V j , V \V j). We
can restrict the number of possible labels at the marked (and hence also unmarked)
nodes from 2p to p + 1 values, as follows. Similar to the proof of Lemma 4.2 it is
sufficient for our purposes that F contains the labeling where V j is considered free
at a marked node i if more than half the vertices of the part Vi are from V j . At any
part Vi, the latter can happen for at most one value of j, and so it suffices to consider
only labelings where at most one V j is free.

We extend the notion of a charge of a vertex, as follows. The extended charge of
a vertex v with respect to an extended labeling is the sum of the basic charges of v
with respect to each of the p coordinates of this extended labeling.

The combining stage uses dynamic programming on a table Q, whose entries are
of the form Q(i, k, g), as follows. i is a tree node. k = (k1, . . . , kp), where kj is the
desired size of the jth part and

∑
j kj = |Vi|. g = (g1, . . . , gp), where gj is a guess

list that contains the jth label of every marked ancestor of i. An entry Q(i, k, g)
contains the optimal solution to the following problem: Choose a partition of Vi into
subsets with sizes according to k, and choose a labeling from F that agrees with
g so that the sum of the extended charges of all the vertices of Vi with respect to
the chosen labeling is minimal over all such choices. Note that this problem requires
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some correlation between p cuts, and therefore Q(i, k, g) is generally not equal to∑
j Q(i, kj , gj) (where Q is the basic table).

The rules for computing the entries of the table Q are a straightforward extension
of those for the table Q (see section 4.4). The algorithm computes all the table entries
and then outputs ming Q(iroot, k, g), where k = (n/p, . . . , n/p).

The running time of this modified algorithm is polynomial in n (for fixed p).
Indeed, the decomposition stage and the labeling stage are exactly as in the algorithm
for the basic bisection problem; so let us consider the dynamic programming table
Q of the combining stage. The number of tree nodes i is O(n), and the range of k
contains at most np possible values. The vector g contains one of p+1 possible values
for each of the O(log n) marked ancestors (of the relevant tree node i); so g assumes
one of nO(log p) values. It follows that the size of the table Q is np+O(log p). Each
table entry is computed efficiently from previously computed entries, and hence the
combining stage takes polynomial time.

To analyze the approximation ratio, let V 1, . . . , V p be the optimal partition of the
input graph into p parts of equal size. Recall that the extended charge of a vertex is the
sum of its basic charges with respect to each cut (V j , V \ V j), and we can therefore
apply the analysis of the basic algorithm for each cut (V j , V \ V j) separately. It
follows that the output value is guaranteed to be at most O(log2 n) ·∑j e(V j , V \V j).

Furthermore, one can obtain from the table Q a cut (into p parts of equal size) whose
cost is at most (half) this value, i.e., within a ratio of O(log2 n) from the minimum.

5.6. Bicriteria approximation and balanced cuts. Suppose that we wish
to find a 2/3-balanced cut (recall that a cut is called β-balanced if it partitions the
graph into two parts, each of size at most βn) whose cost is guaranteed to be small
relative to the minimum cost b of a bisection (i.e., a 1/2-balanced cut). Here, the
minimum bisection problem is relaxed in two respects, as the solution cut is allowed
to have cost larger than b and also to deviate from the cardinality constraints (for
its two sides). Algorithms for such problems are sometimes referred to as bicriteria
approximation and sometimes as pseudoapproximation.

Known bicriteria approximation algorithms find a 2/3-balanced cut whose cost is
at most O(b log n). Leighton and Rao [10, 11] show how an algorithm that finds a τ
approximate min-ratio cut can be used to find a 2/3-balanced cut of cost O(bτ); the
approximation ratio τ = O(log n) that they achieve is the best currently known; see
also [14]. Even et al. [5] devise a different algorithm that also finds a 2/3-balanced
cut of cost O(b log n).

We show below that amortized cuts can be used to obtain also bicriteria approxi-
mation algorithms (in addition to approximation algorithms) for minimum bisection.
In fact, our algorithm is similar to the one of [10, 11], except that we use amortized
cuts instead of approximate min-ratio cuts.

Lemma 5.1. An algorithm that finds a ρ-amortized cut can be used to find a
2/3-balanced cut of cost b(1 + O(ρ)).

Proof. Given an input graph G(V,E) on n vertices, use the algorithm that finds
a ρ-amortized cut, as follows. Repeatedly find (in the graph) a ρ-amortized cut and
remove (from the graph) the smaller of its two sides until the graph contains no more
than 2n/3 vertices. Denoting by S the set of vertices that remain in the graph after
the last iteration, output the cut (S, V \ S).

It is straightforward to see that n/3 < |S| ≤ 2n/3, and hence the output cut
(S, V \ S) is a 2/3-balanced cut. We prove below that the total cost of all edges cut
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by the amortized cuts (throughout the iterations) is at most b(1 + O(ρ)). It would
then follow immediately that e(S, V \ S) ≤ b(1 + O(ρ)), as required.

We now upper bound the total cost of all edges cut in the amortized cuts. Let
(W,B) be a fixed optimal bisection of cost b and call the vertices of W white and the
vertices of B black. The total cost of white-black edges cut is clearly at most b. We
show below that the total cost of all white-white edges cut is O(bρ). By the symmetry
between W and B, we will then have a similar upper bound on the total cost of the
black-black edges cut and obtain the desired upper bound of b(1+O(ρ)) on the total
cost of all edges cut.

To show that the total cost of white-white edges cut in the amortized cuts is O(bρ),
we consider the white vertices W as charged in all the amortized cuts, and then white-
white edges are charged-charged edges. The algorithm applies a ρ-amortized cut in
parts of G that contain at least 2n/3 vertices. At least n/2−n/3 = n/6 of the vertices
in such a part are black, while at most n/2 of them are white, and hence at most 3/4
of the vertices in this part are considered charged. Taking a constant α ≥ 3/4 in the
definition of an amortized cut, we have that the cost of the charged-charged edges cut
can be amortized in one of two amortization methods (see section 2).

In one amortization method the cost of the charged-charged edges cut is amortized
against charged-free edges in the smaller side of the cut, with amortized cost at most
ρ. Observe that an edge can be in the smaller side of the amortized cut (the side that
is removed) in at most one iteration; so the total cost amortized in this method (in
all the iterations) against one charged-free edge is at most ρ. Hence, the total cost
amortized in this method (in all the iterations) is at most bρ.

In the other amortization method the cost of the charged-charged edges cut is
amortized against charged-free edges in the part being divided, with amortized cost
at most ρ|C1|/|C|, where C denotes the charged vertices in the part being divided
and C1 denotes the charged vertices in the smaller side of the cut. The total cost
amortized in this method (in all the iterations) against one charged-free edge is then
upper bounded by ρ times the sum of |C1|/|C| over all iterations. Recall that the
charged vertices are the white vertices, and so |C| ≥ n/6 in all amortized cuts (i.e.,
iterations). Furthermore, each vertex is in the smaller side of the cut (the side that is
removed) in at most one iteration, and so the sum of |C1| over all iterations is at most
n/2. It follows that the total cost amortized in this method (in all the iterations)
against one charged-free edge is at most 3ρ, and hence the total cost amortized in this
method is at most b · 3ρ.

We conclude that the total cost of all charged-charged (i.e., white-white) edges
cut in all the iterations is at most b · 4ρ. As described above, this proves that the
total cost of all edges cut in all the iterations is at most b(1 + 8ρ) = b(1 +O(ρ)), and
the lemma follows.

We remark that a 2/3-balanced cut of cost b(1+O(ρ)) can be found also by mod-
ifying the algorithm we devised for the basic bisection problem so that its combining
stage outputs ming,n/3≤k≤n/2 Q(iroot, k, g) (and its corresponding cut). Indeed, the
proof of Lemma 5.1 shows a 2/3-balanced cut whose charge (with respect to a certain
labeling in F) is at most b(1 + O(ρ)). Details are omitted.

Concluding remarks. Designing an algorithm that finds a cut of amortized cost
better than O(log n) remains an important open question. An efficient algorithm
that accomplishes that will not only improve the approximation ratio for minimum
bisection (by Theorem 4.1), but also the bicriteria approximation ratio for minimum
bisection (by Lemma 5.1), which will lead, in turn, to improved approximation ratios
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for many other problems; see [11, section 3].
Finding a cut whose amortized cost is better than O(log n) is, in a sense, no

harder (and possibly easier) than approximating min-ratio cuts within a ratio better
than O(log n), as the former problem is reducible (by Theorem 3.6) to the latter.
Furthermore, an O(1)-amortized cut always exists (by Corollary 3.3), and we know
of no hardness result for the problem of finding such a cut.

Acknowledgments. We thank Kobbi Nissim for his part in bootstrapping this
research and the anonymous referees for comments that improved the presentation.
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Abstract. We give an abstract account of resource-bounded reducibilities as exemplified by
the polynomially time- or logarithmically space-bounded reducibilities of Turing, truth-table, and
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1. Introduction.

1.1. Overview and related work. Resource-bounded reducibilities such as
the standard time- or space-bounded reducibilities are usually defined as appropriate
restrictions of Turing reducibility; i.e., a set A is reducible to a set B iff there is some
index e with A = Φe(B) such that e and B satisfy certain conditions. (Here Φe de-
notes the partial recursive functional computed by the eth oracle Turing machine Me.)
Standard examples for such conditions are given by restrictions on the way Me might
access its oracle, such as for reducibilities of many-one type, and by bounds on the
amount of time, space, or other resources Me might use. In most cases such restric-
tions can be conveniently expressed by specifying a set E of admissible indices as in
Definition 1.

Definition 1. A binary relation ≤r on 2ω is a bounded reducibility iff there
is a recursive set E that contains only indices of total recursive functionals such that
for all sets A and B

A ≤r B iff ∃e ∈ E A = Φe(B).(1)

The concept of bounded reducibility indeed comprises most of the resource-
bounded reducibilities that can be found in the literature, including the usual time- or
space-bounded reducibilities. The notation bounded reducibility apparently has been
introduced by Book, Lutz, and Wagner [8], while the concept has been used before
by several authors.
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When investigating the structures induced on the class REC of recursive sets by
the various bounded reducibilities [2, 25], one typically asks whether such a structure is
dense or whether it contains minimal pairs. Recall that the structure is dense iff every
proper interval contains a set different from the interval’s endpoints and, assuming
that ≤r is a partial preordering with least element, that the structure (REC,≤r)
contains a minimal pair if there are two incomparable recursive sets such that every
set that is reducible to both sets is a least set.

Early results obtained for the structures (REC,≤PT) and (REC,≤Pm) evolving
from the polynomially time-bounded Turing and many-one reducibility,1 respectively,
are the density of the structures and the existence of minimal pairs, both due to
Ladner [13]. Subsequently, Machtey [16] constructed a minimal pair of sets com-
putable in exponential time, and Landweber, Lipton, and Robertson [15] further
improved on this: actually any recursive set strictly above ∅ bounds a minimal pair.
In what follows these results were extended, and the presentation of their proofs was
substantially improved by several authors, including Mehlhorn [17, 18], Chew and
Machtey [11], Balcázar and Dı́az [3], and Schöning [30, 31]. Then Ambos-Spies [1]
showed a general embedding theorem that comprises several preceding results as spe-
cial cases: if ≤r is equal to ≤PT , to ≤Pm, or to one of several variants of polynomially
time-bounded truth table reducibility ≤Ptt, then

(2)

every countable distributive lattice can be embedded (as a lattice)
into any proper interval of (REC,≤r) with least or greatest element
preserved.

From (2) we obtain, for example, Ladner’s density result by embedding the three-
element total ordering into a given proper interval, and the existence of minimal pairs
below a recursive set B that is strictly above ∅ follows by embedding the four-element
Boolean algebra below B with least element preserved.

Ladner [13] already pointed out that his results go through for rather general
types of time- or space-bounded reducibilities. Subsequently, also the stronger results
mentioned were transferred to bounded reducibilities that are not defined in terms of
deterministic polynomial time.

(i) Serna [32] proves that (REC,≤NC1
) is dense and possesses minimal pairs

below any set strictly above ∅.
(ii) Copestake [12] demonstrates for polynomially time-bounded nondetermin-

istic reducibility of Turing type that the corresponding structure induced on the re-
cursive sets is dense and possesses minimal pairs.

(iii) Vollmer [34] extends the results on lattice embeddings due to Ambos-Spies
to the reducibility ≤log

m .
The fact that several bounded reducibilities bear similar structural properties and,
what is more, that the same proof techniques apply in the different cases suggest
that to some extent nontrivial structural properties of bounded reducibilities might
be developed within an abstract or axiomatic approach to bounded reducibilities. In
general, however, even for a reflexive and transitive bounded reducibility the structure
induced on the recursive sets will not be dense; see Example 7 below. This indicates
that there is no hope for deriving interesting structural results about bounded re-
ducibilities without adding further conditions or axioms that, for example, provide,

1We introduce the specific reducibilities used as examples by informal descriptions. Full defini-
tions can be found in the textbooks by Balcázar, Dı́az, and Gabarró [4, 5] and by Odifreddi [24, 25].
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intuitively speaking, a minimal amount of computational power that can be used in
reducing one set to another.

We will pursue an abstract approach to resource-bounded reducibilities that is
based on the concept of standard reducibility introduced in Definition 17 below. As
the main technical result we show in section 4 that the mentioned result on lattice
embedding extends to all standard reducibilities.

Archetypal examples of standard reducibilities on 2ω are polynomially time-
bounded Turing reducibility ≤PT and logarithmically space-bounded many-one re-
ducibility ≤log

m . On the other hand, some bounded reducibilities that arise from more
restricted models of computations are not standard reducibilities. For examples of
such reducibilities see the discussion subsequent to the introduction of the concept of
standard reducibility in Definition 17.

Axiomatic approaches to structural properties of bounded reducibilities have been
presented previously by, among others, Basu [6], Mehlhorn [17, 18], Mueller [23], and
Schmidt [29]. Our generalized approach is closely related to the work of the latter
three authors, while Basu’s axiom system is designed to be used in connection with
reducibilities between functions and is too general if applied to reducibilities between
sets. In particular, the work of Mehlhorn has been most influential to our approach
via his concept of delayed simulation. Mehlhorn proves from a set of axioms, which
apparently in several respects is more restrictive than ours, that the recursive sets
form a dense structure, and he states that in fact every countable partial ordering can
be embedded into every proper interval of the recursive sets.

Within the axiomatic approach based on the concept of standard reducibility,
one cannot derive only the result on lattice embeddings shown below but also results
on minimal and exact pairs or on distributivity and decidability of the structure
induced on the recursive sets [19, 20]. In the context of separations by random oracles,
almost classes, and bounded error probabilistic classes, results can be derived from
assumptions that are more general than the ones used to define standard reducibilities;
see Book, Lutz, and Wagner [8], Book, Vollmer, and Wagner [9], Merkle and Wang
[22], and Regan and Royer [27].

1.2. Notation. The notation introduced in the following is mostly standard.
For notation not explained here or below in the text, see Balcázar, Dı́az, and Gabarró
[4, 5], Odifreddi [24, 25], and Soare [33].

Natural numbers and strings. We identify the set ω = {0, 1, . . . } of natural num-
bers and the set {λ, 0, 1, 00, 01, . . . } of (finite, binary) strings via the unique order
isomorphism that takes the standard ordering on ω to the length-lexicographical or-
dering on strings, and we denote both orderings by the symbol ≤. We extend the
identification in the canonical way to the powerset 2ω of ω and the powerset of the
set of all strings. Recall that resource-bounded reducibilities are usually defined in
terms of Turing machine models where strings are used as inputs and for querying
the oracle, and consequently these reducibilities are binary relations between sets of
strings; by the above identification, we will view such reducibilities as binary relations
on 2ω. We refer to subsets of ω and 2ω by the terms sets and classes, respectively.
We denote sets by uppercase letters A,B, . . . , and classes by uppercase calligraphic
letters A,B, . . . .

Functions and functionals are meant to be total, if not explicitly attributed as
being partial. We denote the class of functions from ω to ω by ωω. We identify subsets
of ω with their characteristic functions; i.e., we view 2ω as a subclass of ωω.
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Reducibilities. The symbol ≤r denotes any binary relation between sets of natural
numbers, which is meant as reducibility. We will define the usual concepts arising in
connection with reducibilities such as the lower and upper ≤r-cone,

≤r (A) := {X : X ≤r A} and ≥r(A) := {X : A ≤r X},
respectively, of a set A. Frequently, we will use the term r-cone in place of ≤r-cone,
and we will proceed similarly for other terms and reducibilities.

Two sets A and B are r-equivalent, A≡rB for short, iff their upper and lower
r-cones coincide, respectively. Hence two sets are r-equivalent iff, intuitively speaking,
they can be substituted for each other salva veritate in all contexts involving only the
relation ≤r. Two sets A and B are r-interreducible, A=rB for short, iff A is
reducible to B and vice versa. For a reflexive relation ≤r, any pair of equivalent sets
is also interreducible, and, likewise, for a transitive relation, interreducibility implies
equivalence. As a consequence, interreducibility and equivalence coincide for partial
preorderings, i.e., for relations that are reflexive and transitive.

Partial recursive functions and functionals. Unless we explicitly refer to some
other domain, say, to ωω, functionals are functions from 2ω to 2ω. We denote func-
tionals by uppercase Greek letters Γ,∆, . . . . We identify a functional Γ with a function
from 2ω ⊗ ω to {0, 1} via the equation

Γ(X,x) = (Γ(X))(x).

We use the notation Mi in order to refer to the ith Turing machine in the standard
enumeration of all Turing machines of some given type, and we assume that it is
always understood from the context which type of Turing machine is meant, that is,
for example, whether we consider Turing machines with or without oracle access. We
refer to the partial recursive function or functional computed by Turing machine Mi

by
ϕi in the case of {0, 1}-valued Turing machines without oracle access,
φi in the case of ω-valued Turing machines without oracle access,
Φi in the case of {0, 1}-valued oracle Turing machines.

We refer to the class of recursive sets and functions by REC and FREC, respectively.
We assume that there is some recursive function s that translates indices with respect
to the enumeration ϕ0, ϕ1, . . . into indices with respect to the enumeration φ0, φ1, . . . ,
that is, such that for all e in ω holds ϕe = φs(e).

Partial characteristic functions. Lowercase Greek letters α, β, γ, . . . denote par-
tial characteristic functions, i.e., (total) functions from some subset I of ω
to {0, 1}. The domain of a partial characteristic function α is denoted by dom(α);
i.e., for example, dom(α) is equal to ω iff α is a set. A partial characteristic function
is finite iff its domain is finite. The partial characteristic functions are partially or-
dered by the relation � where α � β iff the graph of α is contained in the graph of β
(i.e., iff the domain of α is contained in the domain of β and α agrees there with β).

For a partial characteristic function α and a set I, we denote by α|I the restric-
tion of α to I, that is, the uniquely determined partial characteristic function γ � α
with domain I ∩dom(α). In particular, A|I is the partial characteristic function with
domain I that agrees there with the set A.

Definition by cases and patching. For partial characteristic functions α, β, and
for a set M , we let

〈α, β〉M (x) :=

{
α(x), x ∈ M ,
β(x), x /∈ M ;

(3)
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that is, the partial characteristic function 〈α, β〉M agrees with α on dom(α)∩M , with β
on dom(β) ∩ M , and is undefined otherwise. We denote the partial characteristic
function

〈α, β〉 := 〈α, β〉ω\dom(β)

as β-patch of α; i.e., for example, 〈A, β〉 is the unique set that agrees with β for all
arguments in dom(β) and with A otherwise.

Joins. We define the join of two sets A and B by

A⊕B(x) :=





0 if x = λ,
A(y) if x = 0y,
B(y) if x = 1y.

Lattices. A partial ordering (p.o.) is a pair of a set U and a binary relation ≤ on
U that is reflexive, transitive, and antisymmetric. A p.o. (U,≤) is a lattice iff for
every pair a and b of elements in U there exists a least upper bound (l.u.b.) and a
greatest lower bound (g.l.b.) of a and b in U . A lattice L is distributive iff for all a,
b, and c in L we have a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Closure under finite variation. A set A is a finite variation of a set B, A =∗ B
for short, iff A and B differ at most at finitely many places. A subclass A of 2ω is
closed under finite variation (c.f.v.) iff for every set A in A, all finite variations
of A are in A, too. A binary relation ≤r on 2ω is c.f.v. iff for all sets A, the lower and
the upper r-cone of A are both c.f.v.

We let 〈., .〉 : ω2 → ω be the standard effective and effectively invertible pairing
function from ω⊗ω onto ω [33]. A subclass A of 2ω is recursively presentable iff
either A is empty or there is a recursive set E such that A coincides with the “rows”
of E; i.e., A = {A0, A1, . . . } where Ai = {x : 〈x, i〉 in E}.

2. Standard reducibilities.

2.1. Faithful relations. In order to be able to mimic the usual proof techniques
employed in connection with resource-bounded reducibilities, we will require that
standard reducibilities are bounded reducibilities that are sort of “faithful” to the
information contained in their set arguments and, intuitively speaking, can use a
nontrivial amount of computational power in reducing one set to another. In the
remainder of this section, we introduce notation related to the concept of faithfulness,
and in the following sections we develop concepts related to computational power.

In the case of a transitive relation ≤r, the concept of faithfulness is equivalent to
the natural conditions that ≤r is reflexive, that ∅ and ω are r-reducible to all sets,
and that the join of two sets is a l.u.b. for them (see Proposition 4). However, as
we want to comprise reducibilities that are not necessarily transitive, we use a more
involved definition of faithfulness stated in Definition 3.

Definition 2. Let ≤r be a binary relation on 2ω, let A and B be sets, and let A
be a subclass of 2ω.

(i) The relation ≤r is locally transitive at A and B iff A is not r-reducible
to B or we have for all sets X and Y

X ≤r A implies X ≤r B,(4)

B ≤r Y implies A ≤r Y.(5)
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(ii) A set U is a locally transitive upper bound for (the elements of) A
iff U is an upper bound for A and for all sets A in A, the relation ≤r is locally
transitive at A and U . Likewise, U is a locally transitive l.u.b. for A iff U is
a l.u.b. for A and for all sets A in A the relation ≤r is locally transitive at A and U .

A transitive relation is locally transitive at every pair of sets; hence for a transitive
relation the standard and the locally transitive variant of the concept of upper bound
coincide, and a similar remark holds for l.u.b.’s.

Definition 3. A binary relation ≤r on 2ω is faithful iff for all sets A, B,
and X, first, the set A⊕B is a locally transitive l.u.b. for A and B in (2ω,≤r) and,
second,

X ≤r A⊕B implies X ≤r B ⊕A,(6)

X ≤r A⊕ ∅ implies X ≤r A,(7)

X ≤r A⊕ ω implies X ≤r A.(8)

Most resource-bounded reducibilities that can be found in the literature are faith-
ful. There are nontransitive faithful reducibilities such as ≤k−tt for every fixed k ≥ 2.
The following proposition shows that faithful relations are reflexive and for them ∅
and ω are reducible to all other sets.

Proposition 4. Let ≤r be a faithful relation on 2ω.
(i) For all sets A, the sets ∅, ω, and A are r-reducible to A.
(ii) For all sets A and B, the set A⊕B is a l.u.b. for A and B in (2ω,≤r).

Conversely, if the relation ≤r is transitive and satisfies both of these conditions,
then ≤r is faithful.

Proof. For a faithful relation ≤r, condition (i) is immediate; so it remains to
show (ii). Now, given a set A, then the sets A and ∅ are both r-reducible to A ⊕ ∅;
hence by (7) both sets are also r-reducible to A. Likewise, by (8) we obtain ω ≤r A.
Conversely, assume that the relation ≤r is transitive and satisfies (i) and (ii) . By
transitivity and (ii) it is immediate that the join operator provides locally transitive
l.u.b.’s for every pair of sets. Furthermore, we obtain (6), (7), and (8) by transitivity
of ≤r and because by assumption on the join operator we have

A⊕B ≤r B ⊕A, A⊕ ∅ ≤r A, and A⊕ ω ≤r A.

Proposition 5. Let ≤r be a faithful relation on 2ω and let A and B be sets.
(i) ≥r(A⊕B) = ≥r(A) ∩ ≥r(B).
(ii) A⊕B ≡r B ⊕A.
(iii) A ≡r A⊕ ∅ ≡r A⊕ ω.
Proof. For a faithful relation ≤r, the join of two sets is a locally transitive l.u.b.

for the sets joined. Thus, concerning (i), the inclusion from left to right is immediate
from the definition of locally transitive upper bound, and the reverse inclusion follows
by definition of l.u.b. Using (i), we then infer that the two sets denoted by the join
expressions on both sides of the equation in (ii) have identical upper cones, while for
the lower cones this is immediate from (6). Concerning (iii), it is sufficient to show
that the lower (respectively, upper) cones of A, A ⊕ ∅, and A ⊕ ω are identical. We
show this for the first two sets and omit the almost identical considerations for the
third set. By (i), the upper cone of A ⊕ ∅ is equal to the intersection of the upper
cones of A and ∅; hence it is equal to the upper cone of A. On the other hand, by
(7) the lower cone of A⊕∅ is contained in ≤r (A), and the reverse containment holds
because A⊕ ∅ is a locally transitive upper bound for A.
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Remark 6. Fix an arbitrary faithful relation ≤r. Then the fact A ≤r B implies
that B and A ⊕ B are r-interreducible but in general does not imply that these two
sets are r-equivalent. In fact, the second implication holds iff ≤r is transitive.

For a proof, observe that B is always reducible to A ⊕ B, while in case A ≤r B,
the l.u.b. A ⊕ B of A and B must be reducible to their upper bound B. Thus the
sets B and A⊕B are interreducible and, by the discussion in section 1.2, are thus in
fact equivalent in case ≤r is indeed transitive. Conversely, assume that B and A⊕B
are always equivalent if A is reducible to B. Then for given sets A, B, and Y such
that A ≤r B ≤r Y , we infer that A ⊕ B is reducible to Y and hence, because the
former set is a locally transitive upper bound for A, A is also reducible to Y . As a
consequence, the relation ≤r is transitive.

In Example 7, we construct a faithful bounded reducibility that is in addition
transitive and c.f.v. but where the corresponding structure induced on the recursive
sets is not dense. The example shows that in order to be able to derive the density of
the recursive sets within our axiomatic framework, we have to add further assumptions
on the reducibilities under consideration.

Example 7. Given a set A and a string w, for the scope of this example let A<w>

be equal to the set {x : wx ∈ A} and call a set A β-reducible to a set B, for short,
A≤βB iff for some n in ω there is a mapping

r : {0, 1}n → {0, 1}∗(9)

such that for all strings w of length n,

A<w> is a finite variation of ∅, ω, B<r(w)>, or B<r(w)>.(10)

So β-reducibility is of a rather restricted one-question truth-table type. For each
string w of length n and for almost all places wx that extend w, the same one-place
evaluation function (constant 0 or 1, identity, or negation) is applied to the answer
received on querying the oracle at place r(w)x. We omit the routine proof that β-
reducibility is a faithful bounded reducibility that is transitive and c.f.v. Next we argue
that the set

T := {1k : k ∈ ω}

is minimal in (2ω,≤β); hence, in particular, the structure (REC,≤β) is not dense.

By definition, the set T is minimal if it is not a least set, and every set A that
is β-reducible to T either is a least set or T is β-reducible to A. First, the set T is
not β-reducible to ∅. Given a function r that witnesses that some set X is β-reducible
to ∅ where r is defined on strings of length n, then the set X contains either almost
all or only finitely many strings of the form 1ny. Second, assume A≤βT for a set A,
and let this fact be witnessed by a function r as in (9) that is defined on strings of
length n. If there is some string w of length n where r(w) is in T and the evaluation
function is nonconstant, then, by choice of T , A<w> is some finite variation of either
the set T or of its complement, depending on the evaluation function being identity
or negation. So in this case, T is β-reducible to A. On the other hand, if for all
strings w of length n the evaluation function is constant or r(w) is not in T , then A
is β-reducible to ∅. Hence for every set A that is β-reducible to T , we have either
T≤βA or A≤β∅.
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2.2. Delayed simulations and delayed patching. In this section, we de-
scribe an abstract account of the ability of resource-bounded oracle Turing machines
to overwrite or “patch” their oracle according to the results of resource-bounded sub-
computations. This account is based on the concept of delayed patching. By patching
a functional we refer to evaluating the functional not with respect to its set argu-
ment B but with respect to a patched version 〈B, σ〉 of B. Furthermore, the attribute
delayed refers to the fact that the patching is done with respect to arbitrary effec-
tive enumerations α0, α1, . . . of finite partial characteristic functions where, however,
in general the ith partial characteristic function will not be used while computing
the value Γ(B, i), but delayed, that is, for number arguments larger than i. Note
again that this kind of delayed access to effectively given information is common in
connection with resource-bounded oracle Turing machines. Given an effective enumer-
ation α0, α1, . . . as above, a resource-bounded oracle Turing machine can eventually
compute and access αi for arbitrarily large values of i; however, intuitively speaking,
the Turing machine has to wait until its number input and hence its resource-bounds
become large enough. The ability to perform such delayed computations is modelled
by the concepts delayed simulation and simulation class introduced in Definition 8.

Definition 8. Let h, s, and l be (not necessarily recursive) functions from ω
to ω.

(i) The function s is many-one reducible to h via l iff for all x in ω, we
have s(x) = h(l(x)).

(ii) The function s is a delayed simulation of the function h iff s is many-one
reducible to h via some nondecreasing function l with range ω.

(iii) A subclass F of ωω is a functional simulation class iff there is a re-
cursive function sim from ω to ω where for all e in ω

– φsim(e) is a function in F ;
– if φe is total and φe(0) is equal to 0, then φsim(e) is a delayed simulation of φe.

(iv) A subclass S of 2ω is a simulation class iff there is a recursive func-
tion sim such that ϕsim(e) is a set in S for all e in ω and in addition ϕsim(e) is a
delayed simulation of ϕe whenever ϕe is a set that does not contain 0.
(That is, S is a simulation class if it satisfies the definition of functional simulation
class with ωω and φ0, φ1, . . . replaced by 2ω and ϕ0, ϕ1, . . . .)

The concept delayed simulation was introduced by Mehlhorn [18, Axiom 6]. The
relation between Mehlhorn’s axiomatic approach and our own one in terms of standard
reducibilities is discussed in Remark 20 below.

In the definition of the concept simulation class (and likewise for functional sim-
ulation classes) it is indeed reasonable to require that the function sim yields delayed
simulations only in case ϕe(0) = 0. Remark 9 shows that there cannot be a recursive
function sim where ϕsim(e) is total for all e in ω and is a delayed simulation of ϕe for
all sets ϕe.

Remark 9. Recall from recursion theory that the sets A0 and A1 defined by

Ai := {e ∈ ω : ϕe(e) = i}, i = 0, 1,

are recursively inseparable; that is, there is no recursive set D such that A0 is contained
in D and A1 is contained in D. For a proof, it suffices to observe that any such set D
must differ from every recursive set ϕe at place e. Now, by the smn-theorem, there is
a recursive function g such that for all e, x, and y in ω we have

ϕg(e,x)(y) = ϕe(x).
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However, if we assume that there is a recursive function sim such that ϕsim(e) is a
set for all e in ω and is a delayed simulation of ϕe for all sets ϕe, then we obtain a
contradiction because the set

D := {e ∈ ω : ϕsim(g(e,e))(0) = 0}
is recursive and separates A0 from A1 by definition of g.

Example 10 shows that the class of functions computable in polynomial time is a
functional simulation class.

Example 10. For every e in ω, there is some Turing machine Msim(e) that
operates as follows.

Given an input of length n, the Turing machine Msim(e) tries to com-
pute successively the values φe(0), φe(1), . . . by simulating the corre-
sponding computations of Me. The simulating machine Msim(e) runs
for a total of n steps and then outputs the last successfully computed
value or, if even φe(0) could not be computed, the value 0.

By definition of sim(e), it should be clear that the function sim can be chosen to be
recursive and that for every e in ω,

the Turing machine Msim(e) is total and runs in polynomial time and
φsim(e) is a delayed simulation of φe whenever φe is total and φe(0)
is equal to 0.

In connection with the latter property, we can safely assume that the simulation of Me

for a single number argument requires at least one step and that consequently the
simulating computation cannot skip function values of ϕe in the sense that, for ex-
ample, the function φe has value 1 at some place x and has value 0 everywhere else,
but φsim(e) is the constant function with value 0.

Remark 11. The concept of simulation class introduced in Definition 8 is robust
under various changes of its definition. For example, we obtain the same concept
if we do not require ϕsim(e) to be a delayed simulation of ϕe for all e where ϕe is
a set that does not contain 0, but just for all such e where ϕe is finite or cofinite.
Likewise, we can equivalently define the concept of simulation classes if we replace in
its definition the concept of delayed simulations by a variant where the range of the
witnessing reduction l as in Definition 8 need not be equal to ω, i.e., where the range
of l is unbounded but might have gaps. For proofs and for further discussion we refer
to Merkle [20, section 3.6].

Let σ0, σ1, . . . be an appropriate effective enumeration of all partial characteristic
functions where by convention we let σ0 be equal to the empty string. Recall from the
introduction that 〈A,α〉, the α-patch of A, is the set that agrees with α on dom(α)
and agrees with A otherwise.

Definition 12.
(i) Given a functional Γ and a function g : ω → ω, the g-patch of Γ is the

functional Γ⊗ g defined by

(Γ⊗ g)(A, x) := Γ(〈A, σg(x)〉, x).
(ii) Let R be a class of functionals and let F be a subclass of ωω. Then the

class of F-patches of R is

R⊗F := {Γ⊗ g : Γ ∈ R and g ∈ F}.
(iii) A class R of functionals is closed under delayed patching iff there is a

functional simulation class F where R⊗F is contained in R.



1128 WOLFGANG MERKLE

Proposition 13, which has some interest in its own, is used in Example 14 in order
to show that the standard enumeration of polynomially time-bounded oracle Turing
machines yields a reduction cover for the reducibility ≤PT that is closed under delayed
patching.

Proposition 13. Let the recursive function b from ω to ω be nondecreasing and
unbounded and let F be a functional simulation class. Then the class

{f ∈ F : f(x) ≤ b(x) for all x ∈ ω}(11)

is again a functional simulation class.
Proof. The idea of the proof is quite simple. Given some recursive function h in

class F , we construct a recursive delayed simulation g of h where g(x) ≤ b(x) holds
for all x in ω. Then for any delayed simulation f of g, where this fact is witnessed by
some nondecreasing function l with range ω, we have for all x in ω

f(x) = g(l(x)) ≤ b(l(x)) ≤ b(x).

The relations hold, from left to right, by choice of l, because g is bounded by b, and
finally because b is nondecreasing and by l(x) ≤ x. Thus in order to show that the
class defined in (11) is a functional simulation class, we map a recursive function not
just to a delayed simulation h in F , but in addition we construct a recursive delayed
simulation g of h that is bounded by b, and then we pick a delayed simulation f
of g in F . An index for such a function g can be obtained effectively from an index
for h; i.e., there is a recursive function r that maps any index for a function h in F
to an index of a delayed simulation g of h as above. Then, given a function sim
that witnesses that F is a functional simulation class, by the preceding discussion the
function

sim′ := sim ◦ r ◦ sim

witnesses that the class defined in (11) is a functional simulation class.
Formally, given some function h in F , we define a corresponding function g as

above by g(x):=h(l(x)) where l(0) is equal to 0 and for all x we let

l(x+ 1) :=

{
l(x) + 1 in case h(l(x) + 1) ≤ b(x+ 1),
l(x) otherwise.

Example 14. We fix an effective enumeration of polynomially time-bounded
oracle Turing machines where machine 〈e, j〉 in the enumeration corresponds to Tur-
ing machine Me in the standard enumeration of Turing machines with an additional
restriction on the running time that is given by polynomial j in some appropriate enu-
meration of all polynomials. Then the class RPT of all functionals computed by some
oracle Turing machine in this enumeration is an effective reduction cover for ≤PT .
Now, first, adding polynomially time-bounded subcomputations to a polynomially time-
bounded oracle Turing machine will not put us outside of the class RPT , and, second,
the class FP of functions computable in polynomial is a functional simulation class
according to Example 10. However, this does not imply directly that the standard
reduction cover RPT is closed under delayed patching because given some function g
that is computable in polynomial time, the corresponding function values might be so
large that for more reasonable effective enumerations of the finite partial character-
istic functions it will be impossible to access the values of the partial characteristic
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function σg(x) in time polynomially bounded in the length of x. Thus if we patch a
functional Γ in RPT by some function g computable in polynomial time, then in general
the new functional Γ ⊗ g will not be computable in polynomial time unless we choose
an effective enumeration σ0, σ1, . . . of the finite partial characteristic functions where
the coding is rather inefficient.

In order to handle this problem, let b be a nondecreasing and unbounded recursive
function that grows so slowly that for all x and for all j ≤ b(x), we can in time |x| an-
swer all relevant questions about the domain and the values of σj. Then by Example 10
and Proposition 13, the class

FP≤b:={g ∈ FP : g(x) ≤ b(x) for all x ∈ ω}

is a functional simulation class. Furthermore, by our choice of b, the reduction
cover RPT is closed under patching with functions in FP≤b. More precisely, for any
functional Γ computed by a polynomially time-bounded oracle Turing machine M and
for any function g in FP≤b, the following oracle Turing machine M ′computes Γ⊗ g.

M ′ works essentially as M but every query state of M is replaced
by a sequence of new states corresponding to a subcomputation that
takes care of the g-patching. In the subcomputation, first, the value
of g(x) for the current number input x is computed and, second, it is
checked whether the value y written currently on the oracle tape is in
the domain of σg(x). This check can be done in polynomial time by
definition of b and by choice of g in FP≤b. After this subcomputation,
the execution of M ′ resumes as follows. In case y is not in the domain
of σg(x), then the next state is determined in exactly the same way
as for M by the value of the oracle at place y while, otherwise, the
value σg(x)(y) is used in place of the actual value of the oracle in
order to determine the next state.

In connection with the description of the oracle Turing machine M ′ recall that once an
oracle Turing machine enters a query state, the next state is determined by the value
of the oracle for the number currently written on the oracle tape. Observe further that
for Turing machine models with write-only access to the oracle tape, we have to keep
a copy of the current oracle question on some work tape in order to be able to check
whether the current query is in the domain of the patch we want to apply.

2.3. Definition by Oracle-dependent cases and effective reduction cov-
ers.

Definition 15.
(i) A tt-condition is a subclass T of 2ω such that for some finite set I and

for all sets A, membership of A in T depends only on the restriction of A to I.
(ii) Let T be a tt-condition and let Γ0 and Γ1 be functionals. The T -mix of Γ0

and Γ1 is the functional 〈Γ0,Γ1〉T defined by

〈Γ0,Γ1〉T (A) :=

{
Γ0(A) if A ∈ T ,
Γ1(A) if A /∈ T .

(12)

(iii) For a tt-condition T , we denote the transition from two functionals to their
T -mix as definition by oracle-dependent cases with respect to T .

(iv) A class R of functionals is closed under definition by oracle-depen-
dent cases iff for every tt-condition T the T -mix of two functionals in R is again
in R.
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Definition 16. A list ∆0,∆1, . . . of functionals is an effective enumeration
of a set R of functionals iff there is a recursive function e such that ∆i = Φe(i) for
all i and the set R coincides with {∆0,∆1, . . . }.

A set R of functionals is an effective reduction cover for a binary rela-
tion ≤r on 2ω iff R has some effective enumeration and for all sets A and B, A ≤r B
iff A = Γ(B) for some functional Γ in R.

For any class R that has an effective enumeration, by the padding lemma this fact
is always witnessed by a function e that is strictly monotonous and hence has recursive
range. Using the latter observation, it is immediate from Definitions 1 and 16 that a
binary relation on 2ω is a bounded reducibility iff it has some effective reduction cover.
For standard reducibilities as introduced in Definition 17, we require in addition that
there is an effective reduction cover that satisfies certain closure properties.

Definition 17. A binary relation ≤r on 2ω is a standard reducibility iff

(i) the relation ≤r is faithful and c.f.v.;
(ii) there is some effective reduction cover for ≤r that is closed under delayed

patching and under definition by oracle-dependent cases.

In the definition of standard reducibilities we can drop the condition that the
relation is c.f.v. because this follows already from the remaining requirements. We
omit the simple but lengthy proof and refer to Merkle [20, Proposition 35].

Example 18. Standard reducibilities comprise not only the usual polynomially
time- or logarithmically space-bounded reducibilities of many-one and Turing type but
also less common reducibilities such as the honest variant ≤Ph-T of ≤PT , the reducibil-
ity ≤NC1

defined in terms of circuits, as well as the nontransitive relations ≤Pk−tt for
any fixed k ≥ 2 [20].

Examples of bounded reducibilities that are not standard reducibilities are given
by Turing reducibility confined to constant space or by the reducibility ≤P1 , i.e., the
variant of polynomially time-bounded many-one reducibility where the reduction func-
tions are required to be one-to-one. For a proof, recall that the latter reducibility is
not c.f.v. and observe that for the former reducibility the class of admissible cases is
not a simulation class.

Remark 19. Given an effective reduction cover R for a bounded reducibility ≤r,
the closure of R under definition by oracle-dependent cases is again an effective re-
duction cover for ≤r. This follows from the simple observation that for each tt-
condition T , the T -mix 〈Γ0,Γ1〉T of two functionals in R is again a recursive func-
tional and maps every set B to Γ0(B) or to Γ1(B), i.e., to a set that by assumption
is reducible to B.

As a consequence, a bounded reducibility always has an effective reduction cover
that is closed under definition by oracle-dependent cases. The point in requiring the
existence of such a reduction cover in the definition of standard reducibility is that
this reduction cover at the same time is required to be closed under delayed patching.
When working with such reduction covers, we are able to mimic switching between
functionals according to oracle-independent subcomputations, as is done with the gap
language technique. If we first put two functionals together via a definition by cases
with respect to some tt-condition, then afterwards, by finitely patching the set argument
of the new compound functional at all the places the selecting tt-condition depends on,
we can alternate between the two initial functionals; for details of this construction
see the proof of Proposition 39.

In Remark 20, we briefly discuss the relation of Mehlhorn’s axiomatic approach
to our own one in terms of the concept of standard reducibility. For a more detailed
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account we refer to Merkle [20, section 3.7].
Remark 20. Mehlhorn’s axiom system [18] apparently is meant to be applied

to bounded reducibilities of Turing type. In accordance with this intended range of
application, his axioms do not just involve delayed simulations of recursive sets but of
all sets that can be computed relative to the given oracle. Furthermore, every lower
cone is required to be closed under definition by number-dependent cases with respect
to all sets in this lower cone. As a consequence, Mehlhorn’s axiom system is satisfied
for the usual reducibilities of Turing type but not for standard reducibilities such as
many-one or bounded truth-table reducibility restricted to polynomial time [20].

On the other hand, the definition of standard reducibility involves a condition on
delayed patching, which has no counterpart in Mehlhorn’s axiom system. The rationale
for adding such a condition is that we aim at embedding distributive lattices, not just
partial orderings. In connection with embeddings of lattices, the condition on delayed
patching is then used for constructing pairs of sets with a specific g.l.b. Embeddings of
partial orderings can indeed be obtained from assumptions that are more general than
the concept of standard reducibility; see Corollary 53 below.

3. Three lemmas on standard reducibilities.

3.1. Gap languages and generalized use. In this section we will show three
lemmas that will then be used in section 4 in the proof of our main result about
lattice embeddings for standard reducibilities. Embeddings of partial orderings and
of lattices have been constructed before for several specific bounded reducibilities and
in corresponding proofs the use of gap languages has become a standard technique [1,
4, 30, 31].

Definition 21. A set is a gap language iff the set and its complement are
both infinite.

A gap language A can be conceived as a partition of ω into infinitely many finite
blocks, where each block corresponds to a maximal set of consecutive natural numbers
that either all are in A or all are in the complement of A. Indeed we will use gap
languages almost exclusively as a convenient tool to specify such partitions. We will
number the blocks of a gap language G in the natural way, and we will assign to
each x in ω the number of its block with respect to G. These concepts are formally
introduced in Definition 22. For further use, however, they are defined for arbitrary
partial characteristic functions and not just for gap languages. Intuitively speaking,
given a partial characteristic function α where x is the least place such that α(x)
is undefined, then the blocks of α are defined in the natural way up to but not
including x, and these are all blocks of α.

Definition 22. Let α : ω → {0, 1} be a partial characteristic function. For all x
in ω such that α(y) is defined for all y ≤ x, we let

bn(α, x) := |{y ∈ ω : y < x & α(y) �= α(y + 1)}| ,
and we let bn(α, x) be undefined for all other x. We call bn(α, x) the block number
of x with respect to α.

For all j in ω, we let block j of α be equal to the set {x ∈ ω : bn(α, x) = j},
and we say block j of α exists iff block j of α is nonempty.

The blocks of a partial characteristic function α are “numbered” by the func-
tion bn(α, .), starting with block 0. Obviously, the function bn(α, .) is total iff α is
total, and α has infinitely many blocks iff α is a gap language.

Definition 23. Let A and B be gap languages. Then B is a gap cover for A
iff every block of B contains some block of A.
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It is immediate from Definition 23 that the gap cover relation is transitive; that
is, if B is a gap cover for A and so is C for B, then C is also a gap cover for A.

The values of a recursive functional Γ can be computed by an oracle Turing
machine that on input x and oracle A can read only a finite part of A before it
outputs Γ(A, x). Consequently, there is a finite set I such that Γ(A, x) is equal
to Γ(B, x) for all B that agree with A on I. By the theorem of Trakhtenbrot and
Nerode [24, Proposition III.3.2], the set I can in fact be chosen independently of A;
i.e., for all x there is a finite set I such that

X|I = Y |I implies Γ(X,x) = Γ(Y, x) for all sets X,Y.(13)

The class of sets I that satisfy (13) are closed under intersection and thus in particular
there is a least such set, which obviously is uniquely determined and finite [20, 22].

Definition 24. Let Γ be a recursive functional. For every natural number x, we
call the least set I that satisfies (13) the generalized use of Γ at x, and we denote
this set by u(Γ, x).

Remark 25. There is an effective procedure that on inputs x and e eventually
outputs u(Φe, x) whenever Φe(X,x) is defined for all oracles X (and that otherwise
might fail to terminate). The proof of the theorem of Trakhtenbrot and Nerode shows
that in the given situation a finite set I as in (13) can be obtained effectively. In order
to determine u(Φe, x) it then suffices to search through all subsets of I.

In principle, all the material presented in what follows could be formulated in
terms of the standard concept of use for oracle Turing machines, where for given
oracle Turing machine, input, and oracle the use contains exactly the numbers at
which the oracle Turing machine queries its oracle. However, we consider it to be
convenient to work with the generalized use because the latter is determined just
by the functional and does not require to specify a specific oracle Turing machine
computing the functional. In fact, the concept of generalized use extends canonically
to arbitrary continuous, not necessarily recursive functionals [20, 22].

3.2. The diagonalization lemma. Suppose that we are given an effective re-
duction cover {∆0,∆1, . . . } for a bounded reducibility ≤r. Then a set E is r-reducible
to a set F iff there is some functional ∆j where E is equal to ∆j(F ). As a conse-
quence, we can construct sets E and F where E is not reducible to F by diagonalizing
against all functionals ∆j ; that is, it is sufficient to ensure that for all j in ω there is
some xj in ω such that we have

E(xj) �= ∆j(F, xj).(14)

Now the generalized use of the functionals ∆j is always finite and thus for any given j
we can enforce (14) by specifying E(xj) and a finite part of F ; that is, we are led to
a finite extension construction. Before we employ such a construction in the proof of
Lemma 28, we introduce some notation.

Definition 26. Let G be a gap language and let k ≥ 1 be a natural number.
Then two n-tuples (X1, . . . , Xk) and (Y1 . . . , Yk) of sets are G-similar, written

(X1, . . . , Xk) �G (Y1, . . . , Yk)

iff there are infinitely many blocks I of G such that for all i = 1, . . . , k, the sets Xi

and Yi agree on I. Two sets are G-similar iff the corresponding 1-tuples are G-
similar.
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For further use, we state the following easy fact, which is immediate from the
definitions of the concepts involved.

Remark 27. If two tuples of sets are G-similar for some gap language G, then
they are also H-similar for every gap cover H of G.

Lemma 28 (diagonalization lemma). Let ≤r be a bounded reducibility such
that ≤r is c.f.v. and let E and F be recursive sets where E �≤rF . Then there is a
recursive gap language G such that we have for all sets E′ and F ′

(E,F ) �G (E′, F ′) implies E′ �≤rF ′.

The diagonalization lemma and its proof are similar to Schöning’s uniform di-
agonalization theorem [4, 30]. We will use the diagonalization lemma in connection
with results about partial order embeddings in order to ensure that the constructed
embeddings preserve nonorder. More precisely, given sets E and F where E is not
reducible to F , then by the diagonalization lemma in order to construct a set E′ that
is not reducible to F ′ it is sufficient to ensure that E′ and F ′ agree with E and F ,
respectively, on some set that contains infinitely many blocks of the gap language G
obtained from the diagonalization lemma.

Proof of Lemma 28. We construct in stages a gap language G as required in the
lemma. We write Is for block s of G and during stage s we specify which numbers
are in Is. This then determines G by letting G(0) be equal to 0.

Let ∆0,∆1, . . . be an effective enumeration of an effective reduction cover for ≤r.
At stage 0, we let I0 = {0}. At stage s > 0, for all j ≤ s and for all pairs α
and β of finite partial characteristic functions with domain equal to the union of the
blocks I0, . . . , Is−1, we let zα,β,j be the least number that satisfies

〈E,α〉(zα,β,j) �= ∆j(〈F, β〉, zα,β,j).(15)

There is indeed such a number as 〈E,α〉 = ∆j(〈F, β〉) would imply E ≤r F by ≤r
being c.f.v. Furthermore, the least such number can be found effectively in α, β,
and j because the ∆j are uniformly recursive. Next we choose Is so large that for all
such α, β, and j we have

{zα,β,j} ∪ u(∆j , zα,β,j) ⊆ I0 ∪ · · · ∪ Is.(16)

In order to show that the gap language G has the required properties, assume for a
proof by contradiction that there are sets E′ and F ′ where, first, (E′, F ′) and (E,F )
are G-similar, and, second, the set E′ is r-reducible to F ′, say via functional ∆k.
Choose some s ≥ k where E′ and F ′ agree with E and F , respectively, on block s
of G. Let α and β be the restrictions of E′ and F ′, respectively, to the union of the
blocks I0, . . . , Is−1. Now the witness zα,β,k for 〈E,α〉 �= ∆k(〈F, β〉) we found during
stage s of the construction of G witnesses E′ �= ∆k(F

′) due to (16) and because
by assumption 〈E,α〉 and 〈F, β〉 agree with E′ and F ′, respectively, on the union
of I0, . . . , Is.

3.3. The window lemma. We show now that for standard reducibilities every
reduction to a recursive set is witnessed by a functional that on increasing number
inputs ignores larger and larger initial parts of its set argument. In the corresponding
proof we exploit that standard reducibilities possess reduction covers that are closed
under delayed patching, and we apply a special form of delayed patching where we do
not patch according to an arbitrary effective sequence of finite partial characteristic
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functions but with increasingly long initial segments of the characteristic function of
some fixed recursive set.

Definition 29. A function m : ω2 → ω is a modulus of oracle simula-
tion iff m is recursive and for all e in ω the sequence σm(e,0), σm(e,1), . . . converges
monotonously to ϕe (i.e., σm(e,i) � σm(e,i+1) for all i and the domain of ϕe is equal
to the union of the domains of σm(e,0), σm(e,1), . . . ).

A reduction cover is closed under oracle simulation iff there is a modulus
of oracle simulation m such that R is closed under patching with the functions m(e, .)
(i.e., for all Γ in R and all e in ω, the functional Γ⊗m(e, .) is in R).

Example 30. For all e and i in ω, let m(e, i) be the least index such that σm(e,i)

is equal to the restriction of ϕe to the set {j < i : ϕe,|i|(j) ↓}, where ϕe,s(i) denotes the
s-step approximation to ϕe(i). We leave it to the reader to show that the function m
is recursive and is indeed a modulus of oracle simulation.

Lemma 31. Let F be a functional simulation class. Then there is a modulus of
oracle simulation m such that for all e in ω the function m(e, .) is in F .

Proof. Let the function sim witness that F is a functional simulation class and
fix an arbitrary modulus of oracle simulation m (for example, the one defined in
Example 30). We can assume m(e, 0) = 0 because by our convention σ0 is the empty
partial characteristic function λ; hence, for all e, the condition on the convergence of
the sequence σm(e,0), σm(e,1), . . . in Definition 29 remains valid if we change m(e, 0)
into 0.

By the smn-theorem, fix a recursive function g such that for all e and x, φg(e)(x)
is equal to m(e, x). Then the function m′ defined by

m′(e, x) = φsim(g(e))(x)

is recursive, and m′ is in fact a modulus of oracle simulation because for each e the
function m′(e, .) is a delayed simulation of m(e, .). Intuitively speaking, m′ yields
a simulation of ϕe that is basically the same but might be “slower” than the one
provided by m.

Proposition 32. If a reduction cover is closed under delayed patching, then it
is also closed under oracle simulation. In particular, every standard reducibility has
an effective reduction cover that is closed under oracle simulation.

Proof. The first assertion follows easily from Lemma 31 and the definition of the
two closure conditions involved. The second assertion is then immediate because by
definition every standard reducibility has an effective reduction cover that is closed
under delayed patching.

Given a class C and an effective reduction cover R for a bounded reducibility, we
will use the expression “every reduction to a set in C is witnessed by some functional
in R such that . . . ” to express that for every C in C and every set X that is reducible
to C, there is a functional ∆ in R that has the properties under consideration such
that X is equal to ∆(C). Furthermore, given a gap language G and some x in ω we
let

Nb(x,G) := {y ∈ ω : bn(G, x)− 1 ≤ bn(G, y) ≤ bn(G, x) + 1};
that is, Nb(x,G) consists of the block of x with respect to G and of the adjacent block
to the left and to the right, respectively.

Lemma 33 (window lemma). Let R be an effective reduction cover for some
bounded reducibility such that R is closed under delayed patching. Let the class C be
recursively presentable.
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Then there is a recursive gap language G such that every reduction to a set in C
is witnessed by a functional ∆ in R such that for all but finitely many x in ω,

u(∆, x) ⊆ Nb(x,G).

Proof. We fix some effective enumeration ∆0,∆1, . . . of R.
Claim 1. There is a recursive function h such that for all i and for almost all

places x we have

max u(∆i, x) ≤ h(x).

Proof. The set u(∆i, x) is always finite and can be computed from i and x; hence
it is sufficient to let h(x) be equal to the maximal number in the union of the sets
u(∆0, x),u(∆1, x), . . . ,u(∆x, x).

Claim 2. There is an recursive function b that is nondecreasing and unbounded
such that every reduction to a set C in C is witnessed by some ∆ in R where the
generalized use of ∆ is almost everywhere bounded from below by b; i.e., we have for
almost all x,

b(x) ≤ minu(∆, x).

Proof. Let r be a recursive function such that C is equal to {ϕr(i) : i ∈ ω}. By
Proposition 32, we can fix a modulus of oracle simulation m that witnesses that R is
closed under oracle simulation. Then we let for all i and x in ω,

v(i, x) := max
y≤x

[{0, . . . , y} ⊆ dom(σm(r(i),x))
]
.

The function v is recursive because m and r are recursive. Furthermore, for every
fixed i, the function v(i, .) is nondecreasing and unbounded because ϕr(i) is total;
hence the domains of the partial characteristic functions σm(r(i),x) converge nonde-
creasingly to ω as x goes to infinity. Next, we let

b(x+ 1) :=

{
b(x) + 1 in case b(x) + 1 ≤ v(i, x) for all i ≤ b(x),
b(x) otherwise.

The function b is by definition nondecreasing, and it is unbounded because the func-
tions v(i, .) are unbounded. Then given a set C = ϕr(i) in C and a set that is reducible
to C, we fix a witnessing functional ∆ in R. The functional

∆′ := ∆⊗m(r(i), .),

i.e., the m(r(i), .)-patch of ∆, is in R by choice of the modulus m. The functionals ∆
and ∆′ agree on the set C because the patches σm(r(i),x) agree with C on their entire
domain; i.e., we have for all x

∆′(C, x) = [∆⊗m(r(i), .)](C, x) = ∆(〈C, σm(r(i),x)〉, x) = ∆(C, x).

Furthermore, by definition of b, for almost all x the numbers less than or equal to b(x)
are all contained in the domain of σm(r(i),x) and hence are not in the generalized
use u(∆′, x).

By Claims 1 and 2, we obtain recursive functions h and b, where b is nondecreasing
and unbounded and such that every reduction to some set in C is witnessed by some
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functional ∆ in R where for almost all places x the generalized use u(∆, x) is a subset
of the possibly empty interval between b(x) and h(x). Thus it is sufficient to construct
a gap language G such that for all x the interval between b(x) and h(x) is contained
in Nb(x,G). The blocks of G are defined inductively, where block 0 of G is equal
to {0}. In the induction step, let Us be the union of the previously defined blocks 0
through s of G and let ms be the least number not contained in Us such that

max Us < b(ms) and max {h(y) : y in Us} ≤ ms.

Then let block s+ 1 of G be equal to {0, . . . ,ms} − Us.
Remark 34. In the conclusion of Lemma 33 we can replace G by any gap cover

of G. This is true simply because for any gap cover M of G and for any x the
set Nb(x,G) is contained in Nb(x,M).

For a proof, fix x and assume that x is in block i of G and in block j of M . Then
block j − 1 of M cannot contain block i of G because the latter contains x, which is
in block j of M . Thus, by M being a gap cover for G, block j − 1 of M must contain
some block k of G where k ≤ i− 1. But then, obviously, the union of the consecutive
blocks j − 1 and j of M contains block i − 1 of G. The assertion now follows by a
symmetric argument that shows that blocks j and j+1 of M contain block i+1 of G.

3.4. Admissible cases and the coding lemma. Recall from the introduction
that a functional can alternatively be described as a unary function from 2ω to 2ω or
as a binary function from 2ω ⊗ ω to {0, 1}. The latter characterization suggests two
ways of how two functionals might be combined into a new functional via a definition
by cases. The case condition can depend on the set argument or on the number
argument. In Definition 15, we have introduced a notion of definition by oracle-
dependent cases, where two functionals are mixed according to a tt-condition on
their set argument. We introduce now a notion of definition by number-depen-
dent cases where the case condition depends on the number argument. Given two
functionals ∆0 and ∆1 and a set M , the functional ∆ obtained via definition by
number-dependent cases according to M is defined by

∆(X) := 〈∆0(X),∆1(X)〉M ;(17)

i.e., ∆(X,x) is equal to the set ∆0(X,x) if x is in M and is equal to the set ∆1(X,x)
otherwise. We will be interested in the class of all sets M such that when applying
definition by number-dependent cases according to M to a given effective reduction
cover, then using the functionals obtained this way we can just reduce the same pairs
of sets as before. Remark 35 gives equivalent characterizations of this class.

Remark 35. Let ≤r be a binary relation on 2ω. For the moment, call a func-
tional Γ an r-reduction iff for all sets X the set Γ(X) is r-reducible to X. Then for
any set M , the following conditions are equivalent.

(i) All lower r-cones are closed under definition by number-dependent cases
with respect to M (i.e., if the sets A and B are both reducible to X, then so is the

set 〈A,B〉M ).
(ii) For any r-reductions ∆0 and ∆1, the functional ∆ defined in (17) is again

an r-reduction.
(iii) For any functionals ∆0 and ∆1 in some fixed effective reduction cover for ≤r,

the functional ∆ defined in (17) is again an r-reduction.
First, we show that (i) implies (ii). Fix any set M that satisfies (i), let ∆0 and ∆1

be arbitrary r-reductions and let ∆ be defined as in (17). By assumption, for any set X
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the sets ∆0(X) and ∆1(X) are r-reducible to X; hence so is ∆(X). Now the set X
has been chosen arbitrarily; thus ∆ is an r-reduction. The implication from (ii) to (iii)
is immediate because all functionals in an effective reduction cover for ≤r must be r-
reductions. It remains to show that (iii) implies (i). Fix any set M such that (iii) is
satisfied for some reduction cover for ≤r. Given sets A and B that are both reducible
to some set X, choose witnessing functionals ∆0 and ∆1 from this reduction cover.
Then the functional ∆ defined in (17) is an r-reduction. By construction, ∆(X)

is equal to 〈A,B〉M ; hence the latter set is reducible to X. As a consequence, M
satisfies (i).

Definition 36. For a binary relation on 2ω, Lr denotes the class of least
sets, i.e, Lr = {A : A ≤r B for all sets B}, and Mr denotes the class of admis-
sible cases, which is defined by

Mr := {M : for all sets A,B,X,

[A ≤r X and B ≤r X implies 〈A,B〉M ≤r X]}.

For the bounded reducibility ≤PT it is easy to see that the class of least sets LPT
and the class of admissible cases MP

T are both equal to P; hence, in particular, for the
relation ≤PT the class of admissible cases is closed under the set theoretical operations
union, intersection, and complement. Proposition 37 shows that the latter assertion
holds for all standard reducibilities and that Mr is always included in Lr. Example 38
shows that this inclusion is strict for faithful relations in general.

Proposition 37. Let ≤r be a faithful relation on 2ω.
(i) Mr is a subset of Lr.
(ii) Mr contains ∅ and is closed under the set theoretical operations union,

intersection, and complement. Equivalently, (Mr,⊆) is a subalgebra of (2ω,⊆).
Proof. For a proof of the first assertion, recall that for a faithful relation ≤r the

sets ∅ and ω are reducible to all other sets; hence by definition of Mr we have for all
sets A and for all sets M in Mr

M = 〈ω, ∅〉M ≤r A.
The second assertion follows from the definition of Mr and because we have for all
sets A, B, M , M0, and M1

〈A,B〉∅ = B, 〈A,B〉M = 〈B,A〉M , 〈A,B〉M0∩M1 = 〈〈A,B〉M0 , B〉M1

,

where the equations, from left to right, show that Mr contains ∅ and is closed under
complement and intersection. Closure under union then follows by De Morgan’s
laws.

Example 38. A set is called non-self-dual iff it is not ≤Pm-reducible to its
complement. Ladner, Lynch, and Selman [14] have shown that there are recursive
non-self-dual sets. Choose such a set N and let

A≤νB :⇔ A≤Pm(B ⊕N),(18)

where N denotes the complement of N . Then the relation ≤ν is faithful and the class
of least sets Lν is exactly the lower ≤Pm-cone of N . Hence, in particular, Lν is not
closed under complement, because it contains N , but cannot contain the set N due
to N being non-self-dual. Consequently, by Proposition 37, Mν is strictly contained
in Lν .
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Proposition 39. For a standard reducibility ≤r, the class Mr is a simulation
class.

Proof. We choose an effective reduction cover R for the standard reducibility ≤r
that is closed under definition by oracle-dependent cases and under delayed patching.
Let the latter closure property be witnessed by some functional simulation class F ;
that is, R⊗ F is contained in R. Furthermore, we pick i and j such that the finite
partial characteristic functions σi and σj are incompatible; that is, there is some y
in ω where σi and σj are both defined and disagree. In particular, by our convention
that σ0 is the empty string, i and j differ from 0. For every set L, we let

fL(x) :=





0 if x = 0,
i if x �= 0 and L(x) = 0,
j otherwise;

that is, basically we replace in the characteristic function of L all values 0 with i and
all values 1 with j. Furthermore, we let fL(0) be equal to 0 in order to ensure that
for recursive L we can effectively obtain a delayed simulation sL of fL in F . We let

ML = {y ∈ ω : sL(y) = j}.

We leave it to the reader to check that, first, the set ML thus defined is a delayed
simulation of L for all sets L where L(0) = 0 holds and that, second, the definition
of ML can be made effective in the sense that there is a recursive function sim where
for all sets L = ϕe the set ML is equal to ϕsim(e). Then, in order to show that Mr is
a simulation class, it is sufficient to show that for every recursive set L, the set ML

is in fact in Mr. We assume that A0, A1, and B are sets where A0 and A1 are both
r-reducible to B. The standard reducibility ≤r is c.f.v. and consequently A0 and A1

are reducible to 〈B, σi〉 and 〈B, σj〉, respectively. Let the two latter facts be witnessed
by functionals Γ0 and Γ1 in R, respectively, and consider the functional

Γ := 〈Γ0,Γ1〉{X:σiX},

obtained from Γ0 and Γ1 via definition by oracle-dependent cases; i.e., in particular,
Γ is again in R. Moreover, as σi and σj have been chosen to be incompatible, Γ
reduces A0 to 〈B, σi〉 and A1 to 〈B, σj〉. We obtain

〈A0, A1〉ML = 〈Γ(〈B, σi〉),Γ(〈B, σj〉)〉ML =∗ [Γ⊗ sL](B) ≤r B.(19)

Hence, by ≤r being c.f.v., the set 〈A0, A1〉ML is reducible to B; and it follows that ML

is in Mr. The relations in (19) hold by definition of Γ and of ML and because Γ⊗sL is
an r-reduction due to the closure properties of R. Note that in (19) we cannot replace
equality up to finite variation by equality because in general the delayed simulation
sL of fL yields the value fL(0) = 0 on a finite initial segment of the natural
numbers.

By Propositions 37 and 39, for every standard reducibility the corresponding class
of admissible cases satisfies the conditions on M in the assumption of Lemma 40.

Lemma 40 (coding lemma). Let M be a simulation class that contains all finite
sets and where the structure (M,⊆) is a subalgebra of (2ω,⊆). Let A0, A1, . . . be a
sequence of uniformly recursive sets and let G be a gap language. Then there are
sets R0, R1, . . . in M and a gap language M in M where

• the set M is a gap cover for G;
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• for all i and s in ω and for all x in block s of M we have Ri(x) = Ai(s).
We postpone the proof of the coding lemma to section 5. The point of the coding

lemma is that it yields delayed simulations Ri of the sets Ai that are “synchronized”
via the gap language M ; that is, for all i and s the set Ri is constant on block s
of M and has the value Ai(s) there. The sets Ri in the coding lemma are uniformly
recursive because the sets Ai are uniformly recursive and due to the second condition
in the conclusion of the coding lemma.

4. Lattice embeddings.

4.1. The countable atomless Boolean algebra. In the proof of our main
result on lattice embeddings we exploit a property of the countable atomless Boolean
algebra stated in Fact 42. The corresponding technique was used before in connec-
tion with lattice embeddings for polynomially time-bounded reducibilities by Ambos-
Spies [1]; see there for references to results about Boolean algebras.

Definition 41. An element of a Boolean algebra is an atom iff there is exactly
one element (i.e., the least element 0) strictly below it. A Boolean algebra is atomless
iff it does not contain atoms.

The theory of the atomless Boolean algebra is ω-categorical; i.e., all countable
atomless Boolean algebras are the same up to isomorphism and accordingly in what
follows we will speak of the countable atomless Boolean algebra.

Fact 42. Every countable distributive lattice can be embedded (as a lattice) into
the countable atomless Boolean algebra with least and greatest element preserved.

By Fact 42 and because lattice embeddings compose, it suffices to embed the
countable atomless Boolean algebra into a structure in order to show that indeed
every countable distributive lattices can be so embedded. When constructing such
embeddings we will exploit Fact 44, which gives a representation of the countable
atomless Boolean algebra by the equivalence classes induced by the finite variation
relation on the class P of sets computable in polynomial time.

Definition 43. For every subclass C of 2ω, let C∗:={[A] : A in C}, where [A]
denotes the equivalence class {X : X =∗ A} of A in 2ω with respect to the finite
variation relation. Furthermore, let ≤∗ denote the p.o. induced by the relation ⊆∗;
i.e., [A] ≤∗ [B] iff A ⊆∗ B.

Fact 44. The structure (P∗,≤∗) is the atomless Boolean algebra.
Fact 44 has been shown by Ambos-Spies [1], using Breidbart’s splitting theo-

rem [10]. Fact 44 can be generalized to the assertion that for the class Mr of admis-
sible cases of a standard reducibility, the structure (Mr

∗,≤∗) is always the countable
atomless Boolean algebra [20].

4.2. Lattice embeddings. Theorem 45 states our main technical result on lat-
tice embeddings for standard reducibilities. Recall that the concept of standard re-
ducibility comprises not just the reducibilities listed in Example 18 but also many
other resource-bounded reducibilities that appear in the literature and observe that
Theorem 45 and its corollaries can be applied to all such reducibilities.

Theorem 45. Let ≤r be a standard reducibility and let A and B be recursive
sets where A<rB. Then any countable distributive lattice can be embedded (as a lat-
tice) into the interval between A and B of (REC,≤r) with least or greatest element
preserved.

In addition, given recursively presentable classes E0 and E1 that are both c.f.v. and
where E0 does not contain A⊕∅ and E1 does not contain A⊕B, then the range of the
embedding can be chosen to be disjoint from the union of E0 and E1, except that in
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case we want to preserve the least element, the latter might be mapped to an element
of E1, and likewise for the greatest element and E0.

The proof of Theorem 45 follows the lines of the corresponding result for poly-
nomially time-bounded reducibilities due to Ambos-Spies [1]. Similarly to the case of
polynomially time-bounded reducibilities, we obtain as special cases of Theorem 45
several structural properties of standard reducibilities. We briefly discuss these results
before proving the theorem. Another result, which can be derived from the proof of
the theorem, is stated below as Corollary 53.

Corollary 46. Let ≤r be a transitive standard reducibility.

(i) Every recursive set is the g.l.b. of a pair of recursive sets.
(ii) Every recursive set not in Lr is the l.u.b. of a pair of recursive sets.
(iii) Every recursive set not in Lr bounds a minimal pair (i.e., there are two sets

that are both reducible to the given set and such that the intersection of their lower
cones coincides with the class Lr of least sets).

(iv) Let A and B be recursive sets where A<rB. Then every recursively pre-
sentable antichain in the open interval between A and B is not maximal with this
property.

Proof. The first assertion is immediate by embedding the diamond (i.e., the four-
element Boolean algebra) above the given set with least element preserved. Likewise,
the second and third assertion follow by embedding the diamond into the interval
between ∅ and the given set with greatest and least element preserved, respectively.
In connection with the third assertion observe that for a transitive relation ≤r, first,
the lower cone of a greatest lower bound of two sets is equal to the intersection of the
lower cones of these two sets and, second, the lower cone of a least set is just the class
of least sets.

In order to show the last assertion, let {C0, C1, . . .} be a recursively representable
antichain where A<rCi<rB for all i in ω. In order to extend the antichain by a single
set in the open interval between A and B, it suffices to embed the three-element chain
between A and B according to Theorem 45 while avoiding the recursively presentable
classes

E0 :=
⋃
i∈ω

{X : Ci ≤r X ≤r B} and E1 :=
⋃
i∈ω

{X : X ≤r Ci}.

Proof of Theorem 45. We first construct an embedding into the given interval that
preserves the least element and then indicate the minor changes necessary in the sym-
metric case where we want to preserve the greatest element. By the discussion follow-
ing Fact 42, it suffices to embed the countable atomless Boolean algebra as required.
In order to do so, we specify a partial order embedding of the structure (P∗,≤∗) that
preserves least upper bounds. We can then argue that the restriction of this mapping
to some appropriate sublattice (D∗,≤∗) of (P∗,≤∗) is in fact a lattice embedding, i.e.,
preserves also greatest lower bounds. This then finishes the proof because (D∗,≤∗) is
chosen such that it is the countable atomless Boolean algebra.

We fix effective enumerations D0, D1, . . . of P and ∆0,∆1, . . . of an effective
reduction cover R of ≤r that witnesses that ≤r is a standard reducibility. While
defining the embedding, we first construct sets R0, R1, . . . in Mr and define a mapping

Π : Di )→ H(Ri) where H(X) := 〈A⊕B,A⊕ ∅〉X .(20)

Then we let Π′ be a function from P∗ to P such that Π′([Di]) is always a set in [Di]
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and we let

Π′′ := Π ◦Π′.

The function Π′′ works by first mapping an equivalence class in P∗ to one of its
elements and then applying the function Π; hence, in particular, Π′′ is well defined.
Moreover, Claim 1 shows that the range of Π and thus also the range of Π′′ is indeed
contained in the interval between A and B.

Claim 1. For every set R in Mr, we have A ≤r H(R) ≤r B.
Proof. By Proposition 5, the set A⊕∅ is r-equivalent to A and is hence reducible

to B. Moreover, by faithfulness of ≤r, the set A⊕B is a l.u.b. for A and B and is hence
reducible to the upper bound B of these sets. As a consequence and by definition
of Mr, H(R) is reducible to B for every set R in Mr. Furthermore, by definition of
the join operator, any set of the form H(X) can be written in the form A⊕ Z for an
appropriate set Z; hence A is reducible to H(X) by faithfulness of ≤r.

Claim 2. The set A⊕B is not r-reducible to A⊕ ∅.
Proof. Assuming otherwise, A ⊕ B was reducible to A by Proposition 5. But

then contrary to assumption, B was also reducible to A because A ⊕ B is a locally
transitive l.u.b. for B due to faithfulness of ≤r.

In order to define the sets Ri that we have used while defining Π, we construct
three recursive gap languages, G1 through G3. First, we apply the diagonalization
lemma to the sets A ⊕ ∅ and A ⊕ B in order to obtain a gap language G1 such that
for all sets X and Y

(X,Y ) �G1 (A⊕B,A⊕ ∅) implies X �≤rY.(21)

Second, we apply the window lemma to the recursively presentable class

C := {H(X) : X ≤r ∅}(22)

in order to obtain a gap a gap language G2 such that every reduction to a set in C is
witnessed by a functional ∆ in R where for all x,

u(∆, x) ⊆ Nb(x,G2);(23)

i.e., the generalized use of ∆ at x is always contained in the neighborhood Nb(x,G2)
of x.

Third, we choose a recursive gap language G3 such that, first, every set that
is G3-similar to A⊕ ∅ is not contained in E0 and, second, every set that is G3-similar
to A⊕ B is not contained in E1. In order to do so, we choose block k of G3 so large
that both A⊕ ∅ and A⊕ B disagree on this block with the first k sets in E0 and E1,
respectively.

By the discussion preceding the coding lemma, the class Mr of admissible cases
of the standard reducibility ≤r satisfies the conditions on the class M in the assump-
tion of the coding lemma. By applying the coding lemma to Mr, to the enumera-
tion D0, D1, . . . of the class P, and to a recursive gap cover G of G1 through G3, we
obtain sets R0, R1, . . . in Mr and a set M in Mr that is a gap cover of G and hence
also of G1 through G3.

Claim 3. For all i and j, Di ⊆∗ Dj iff Ri ⊆∗ Rj.
Proof. Claim 3 is immediate by choice of the sets R1, R2, . . . and by the second

condition in the conclusion of Lemma 40.
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Claim 4. For all i, the set Π(Di) is a finite variation of Π′′([Di]) and thus, in
particular, the two sets are r-equivalent.

Proof. Let j be the index such thatDj is equal to Π′([Di]). Then, in particular,Dj

is a finite variation of Di and, by Claim 3, Rj is a finite variation of Ri. Now Claim 4
follows by the definitions of Π and Π′′.

In the following claims, the sets in the image of Π′′ figure in such a way that
the truth values of the assertions under consideration are not changed by replacing
these sets with r-equivalent sets. Thus by Claim 3 in the corresponding proofs we can
replace the images under Π′′ with the corresponding images under Π.

Claim 5. The function Π′′ respects ordering.
Proof. Assume [Di] ≤∗ [Dj ], i.e., Di ⊆∗ Dj and, by Claim 3, Ri ⊆∗ Rj . By the

definition of Π, the set Π(Dj) agrees with A⊕B on all places x in Rj and hence for
almost all places x in Ri. We obtain

Π(Di) = 〈A⊕B,A⊕ ∅〉Ri =∗ 〈Π(Dj), A⊕ ∅〉Ri ≤r Π(Dj),(24)

where the relations hold, from left to right, by definition of Π, by the preceding
discussion, and finally because Ri is in Mr and because by Claim 1 the set A and
hence by Proposition 5 also the set A ⊕ ∅ is reducible to Π(Dj). Due to ≤r being
c.f.v., it is immediate from (24) that Π(Di) is reducible to Π(Dj).

Claim 6. The function Π′′ respects nonordering.
Proof. Assume [Di]�≤∗[Dj ], i.e., Di �⊆∗ Dj and, by Claim 3, Ri �⊆∗ Rj . Then there

are infinitely many numbers and—because by construction the sets Ri and Rj are
constant on the blocks of M—in fact there are infinitely many blocks of M where Ri
is equal to 1, while Rj is equal to 0. By definition of Π, on each such block of M ,
Π(Di) agrees with A⊕B and Π(Dj) agrees with A⊕ ∅; hence we have

(A⊕B,A⊕ ∅) �M (Π(Di),Π(Dj)).(25)

By construction, M is a gap cover for the gap language G1 obtained from applying
the diagonalization lemma. Thus, by Remark 27, assertion (25) remains valid with M
replaced by G1 and Π(Di) is not reducible to Π(Dj) because of (21).

Claim 7. The function Π′′ respects l.u.b.’s.
Proof. The l.u.b. of [Di] and [Dj ] in (D∗,≤∗) is [Di ∪Dj ]. By Claim 5, the set

Π(Di ∪Dj) is an upper bound for Π(Di) and Π(Dj). So it remains to show that if
the two latter sets are both reducible to some set Y , then so is Π(Di∪Dj). The latter
follows from

Π(Di ∪Dj) = 〈A⊕B,A⊕ ∅〉Ri∪Rj = 〈A⊕B, 〈A⊕B,A⊕ ∅〉Rj 〉Ri

= 〈A⊕B,Π(Dj)〉Ri = 〈Π(Di),Π(Dj)〉Ri ≤r Y,

where the relations hold by the definition of Π and the choice of the sets Rk, by
the properties of definition by number-dependent cases, by definition of Π(Dj), be-
cause Π(Di) agrees with A⊕B on all numbers in Ri, and finally by assumption on Y
and because Ri is in Mr.

Up until now we have seen that Π′′ is a partial order embedding that preserves
l.u.b.’s. We will now show that the restriction of Π′′ to the class

D := {{3 · x : x ∈ D} : D ∈ P}
also preserves g.l.b’s. It is easy to see that D is a recursively presentable subclass
of P and that (D∗,≤∗) is isomorphic to (P∗,≤∗). By the latter assertion and Fact 44,
(D∗,≤∗) is the countable atomless Boolean algebra.
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Claim 8. The restriction of the function Π′′ to the subclass D∗ of P∗ respects
g.l.b.’s (with respect to the structure (D∗,≤∗)).

Proof. We fix sets Di and Dj in D. The g.l.b. of [Di] and [Dj ] in (D∗,≤∗)
is [Di∩Dj ] and so we have to show that Π(Di∩Dj) is the g.l.b. of Π(Di) and Π(Dj).
By Claim 5, Π(Di ∩ Dj) is a lower bound for the two latter sets. So it remains to
show that if a set X is reducible to both of Π(Di) and Π(Dj), then X is also reducible
to Π(Di ∩Dj).

By Proposition 37, Mr is contained in the class Lr of least sets, which in turn
is contained in the lower cone of ∅. Thus for every R in Mr, the set H(R) is in the
class C defined in (22); i.e., in particular, the range of Π is contained in C. Now G2

has been obtained by applying the window lemma to the class C and R; i.e., every
reduction to a set in the range of Π is witnessed by a functional in R such that its
generalized use at place x is always contained in Nb(x,G2) and hence, by Remark 34,
is always contained in Nb(x,M). As a consequence, the assumed reductions from X
imply that there are functionals ∆k and ∆l in R with

X = ∆k(Π(Di)) = ∆l(Π(Dj))

such that for all places x we have

u(∆k, x) ⊆ Nb(x,M) and u(∆l, x) ⊆ Nb(x,M).(26)

For every m in ω, let N(m) be equal to the set {m− 1,m,m+ 1} \ {−1} and let

I := {m ∈ ω : Di and Di ∩Dj agree on N(m)},
L := {x ∈ ω : x is in block m of M for some m in I}.

Then given x in L, we infer from the definition of Π that the sets Π(Di) and Π(Di∩Dj)
agree on Nb(x,M); hence by assumption on ∆k we obtain that

x ∈ L implies ∆k(Π(Di ∩Dj), x) = ∆k(Π(Di), x) = X(x).(27)

On the other hand, given x not in L, where we assume that x is in block m of M ,
then Di and Di ∩Dj differ on N(m); i.e., there must be some number in N(m) that
is in Di but is not in Dj . However, the two latter sets contain only multiples of
three, while for any m the set N(m) contains exactly one multiple of three; hence the
intersection of N(m) with Dj is empty. Thus, the sets Π(Dj) and Π(Di ∩Dj) have
an empty intersection with Nb(x,M) and similar to (27) we infer

x /∈ L implies ∆l(Π(Di ∩Dj), x) = ∆l(Π(Dj), x) = X(x).(28)

From (27) and (28) we then obtain

X = 〈∆k(Π(Di ∩Dj)),∆l(Π(Di ∩Dj))〉L .

This finishes the proof of Claim 8 because by definition I is in P; i.e., I is equal to
some set Dt; hence the set L is equal to Rt and is in Mr.

It remains to show the assertions on avoiding the classes E0 and E1 and on pre-
serving the least or the greatest element. The former assertion follows easily from
the definition of Π because G has been chosen as a gap cover of G3 and because all
equivalence classes in D∗ that are strictly above the least equivalence class contain
only sets that are infinite and coinfinite. Furthermore, the embedding Π preserves



1144 WOLFGANG MERKLE

the least element because it maps the least equivalence class in D∗, which contains
all finite sets, to a set that is r-equivalent to A⊕∅, where by Proposition 5 the latter
set is r-equivalent to A, which is a least set of the interval between A and B. On the
other hand, if we want to construct an embedding that preserves the greatest element,
it suffices to replace in the construction the class D with the class

{{3 · x : x ∈ D} ∪ {3 · x+ 1 : x ∈ ω} ∪ {3 · x+ 2 : x ∈ ω} : D ∈ P},

i.e., to arrange that, intuitively speaking, the noncoding gaps of the sets in the image
of the constructed embedding are filled with A⊕B instead of A⊕∅. Then the greatest
equivalence class, which contains exactly the cofinite sets, is mapped to a set that is
r-equivalent to A⊕B. However, A⊕B is a locally transitive upper bound for B and
thus any set that is reducible to B is also reducible to A⊕ B; hence the latter set is
a greatest set in the interval bounded by A and B.

4.3. Lattice embeddings for bounded reducibilities on ωω. The concept
of standard reducibility extends canonically to binary relations on ωω. However,
the concepts used in the definition of standard reducibilities have to be adjusted as
follows.

(i) Effective reduction covers are defined with respect to the standard enumer-
ation of partial recursive functionals from ωω to ωω.

(ii) In the definition of faithfulness, we consider arbitrary constant functions
instead of just ∅ and ω; that is, for example, we require that for all functions f and
for all constant functions g the lower cone of f ⊕ g is contained in the lower cone of f .

(iii) A tt-condition can again be defined to be a subclass of ωω where mem-
bership in the class depends only on the function values at a fixed finite set of
places. However, when defining the concept of closure under definition by oracle-
dependent cases, we consider only tt-conditions that can be generated from classes
of the form {g : g(i) = j} with i and j in ω by finitely many applications of union,
intersection, and complement. Observe that it is not reasonable to require that clo-
sure under definition by oracle-dependent cases holds with respect to all tt-conditions
because for any set X the class of all functions g where g(0) is in X is a tt-condition.

(iv) In the definition of delayed patching the enumeration of finite partial char-
acteristic functions is replaced by an appropriate effective enumeration of all partial
functions from ω to ω with finite domain.

Using these adjusted concepts, the concept standard reducibility on ωω can be
introduced by literally the same formulation as in Definition 17; i.e., we require that
the relation under consideration is faithful and c.f.v. and has an effective reduction
cover that is closed under delayed patching and under definition by oracle-dependent
cases. An example for a standard reducibility on ωω is given by the reducibility
introduced by Mehlhorn [18] via his class of basic feasible functionals.

Theorem 45 on lattice embeddings for standard reducibilities on 2ω extends to
standard reducibilities on ωω.

Theorem 47. Let ≤r be a standard reducibility on ωω and let f and g be recursive
functions where f<rg. Then any countable distributive lattice can be embedded (as a
lattice) into the interval between f and g of (REC,≤r) with least or greatest element
preserved.

In addition, given recursively presentable subclasses E0 and E1 of ωω that are c.f.v.
and where E0 does not contain f ⊕ ∅ and E1 does not contain f ⊕ g, the range of the
embedding can be chosen to be disjoint from the union of E0 and E1, except that in
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case we want to preserve the minimum, the minimal element might be mapped to an
element of E1, and likewise for the maximum and E0.

We omit the proof of Theorem 47, which is essentially the same as for Theorem 45
except that we have to take into account that in general the “use” of a recursive
functional on ωω is unbounded. (Consider, for example, the functional Γ defined by
Γ(f, x) := f(f(x)).) In order to handle this problem, we relativize the concept of
generalized use to an appropriate effectively compact subclass of ωω, i.e., to a class C
that can be written in the form

C =
⊗
i in ω

Ci,(29)

where each set Ci is finite and a list of its elements can be computed from i. Defining
the generalized use uC(∆, x) with respect to such an effectively given class C similarly
as before, we obtain in particular that for every f in C, the value Γ(f, x) is determined
by the restriction of f to the finite set uC(Γ, x). Furthermore, the following variants
of the diagonalization lemma and the window lemma that are relativized to some
effectively compact subclass of ωω can be shown as before.

Lemma 48 (diagonalization lemma for reducibilities on ωω). Let ≤r be a bounded
reducibility on ωω that is c.f.v., let e and f be recursive functions where e�≤rf , and let C
be some effectively compact subclass of ωω. Then there is a recursive gap language G
such that we have for all functions e′ and f ′ in C

(e, f) �G (e′, f ′) implies e′ �≤rf ′.

Lemma 49 (window lemma for reducibilities on ωω). Let R be a reduction
cover for a reducibility on ωω and let the class C0 be recursively presentable such
that C0 is contained in some effectively compact class C. Then there is a recursive
gap language G such that every reduction to a function in C0 is witnessed by a reduc-
tion ∆ ∈ R, where uC(∆, x) is always contained in Nb(x,G).

Lemmas 48 and 49 can be shown in exactly the same way as the original claims.
The remainder of the proof of Theorem 45 then goes through by applying the adapted
lemmas to the effectively compact class

C :=
⊗
i∈ω

{[f ⊕ ∅](i), [f ⊕ g](i)},

where f and g are the functions that bound the given interval. The class C contains
all functions obtained from f ⊕ ∅ and f ⊕ g via definition by cases with sets in Mr,
and thus C contains all functions in the range of the embedding Π.

4.4. Embeddings of partial orderings and decidability. In the following,
we consider results on bounded reducibilities that are related to Theorem 45 on lat-
tice embeddings for standard reducibilities but can be derived from more general
assumptions. The first result of this type is Theorem 50, which amounts to an exten-
sion of Schöning’s uniform diagonalization theorem [30] from a setting of polynomial
time-bounds to arbitrary simulation classes. The content of Theorem 50 is roughly the
same as Schmidt’s Theorem 3.1 [29]; however, we formulate the result in our terms and
consider only lower cones instead of arbitrary classes (see also Remark 54 below). In
connection with Theorem 50, recall that a nonempty class C is recursively presentable
if there is a recursive set E such that C = {C0, C1, . . . , } where Cj = {x : 〈x, j〉 in E}.
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Theorem 50 (Schmidt [29]). Let ≤r be a bounded reducibility such that Mr is
a simulation class. Then for any set A the lower r-cone of A cannot be the disjoint
union of two nonempty recursively presentable classes that are c.f.v.

Proof. Fix any set A and for a proof by contradiction assume that its lower r-cone
is the disjoint union of two nonempty recursively presentable classes C0 and C1 that
are c.f.v. For i = 0, 1, let the recursive set Ei witness that Ci is recursively presentable;
i.e., Ci = {Ci0, Ci1, . . . , } where Cij = {x : 〈x, j〉 in Ei}. By assumption, we can choose
sets D0 and D1 in the lower r-cone of A such that Di is in C1−i but not in Ci.

We construct a recursive gap language G in stages s = 0, 1, . . . , where during
stage s block s of G is defined. This then determines G by letting G(0) be equal to 0.
The first block I0 just contains 0. Then, given the first s blocks I0, . . . , Is−1, the finite
block Is is chosen so large that every set that agrees on Is with D0 disagrees on Is
with C0

0 through C0
s and, likewise, every set that agrees on Is with D1 disagrees there

with C1
0 through C1

s . Such a block Is exists (and can indeed be found effectively)
because C0 and C1 are c.f.v.; hence Di differs from each set in Ci at infinitely many
places. We omit the details of the argument, which is similar to the one used in
the proof of Lemma 28. Next, according to Lemma 59, we choose in the simulation
class Mr a gap cover M for G. Then by construction and contrary to our assumption,
the set

〈D0, D1〉M

is in the lower r-cone of A but is neither contained in C0 nor in C1.
Corollary 51. Let ≤r be a bounded reducibility that is faithful and c.f.v. and

where the class Mr of admissible cases is a simulation class. Then the structure
(REC,≤r) is dense.

Proof. Fix recursive sets A and B where A<rB and consider the classes

C0 := {X : X ≤r A} C1 := {X : X ≤r B and B ≤r X ⊕A}.
By definition, the two classes are contained in the lower r-cone of B and by assumption
on ≤r they are c.f.v. and recursively presentable. Thus by Theorem 50, the union of
the two classes is strictly contained in the lower r-cone of B. However, for any set X
that is r-reducible to B but is not in C0 or C1, the set X ⊕A is contained in the open
interval bounded by A and B.

Remark 52. Let ≤r be a bounded reducibility that satisfies the assumption of
Theorem 50 and let {∆0,∆1, . . . } be an effective reduction cover for ≤r. Consider
two recursive sets A and B where A is r-reducible to B, but not vice versa, and let D
be the nonempty class of all sets that are r-reducible to B but not to A. Then the
class D cannot be recursively presentable. Otherwise, D and the lower r-cone of A
were both recursively presentable and c.f.v., while the lower r-cone of B is the disjoint
union of these two classes; i.e., we would obtain a contradiction to Theorem 50.

By standard methods that involve the arithmetization of the computation of a
Turing machine, we can construct an arithmetical formula δ in one free variable
such that δ(e) is true in the standard model of the natural numbers iff ∆e(B) is
in D. Then there cannot be an effective formal system in which we can derive the
formula δ(e) exactly for the indices e such that δ(e) is true in the standard model. For
a proof, observe that if there were such a formal system, then the set D of all such
indices would be recursively enumerable and as a consequence, the class D, which is
equal to {∆e(B) : e ∈ D}, would be recursively presentable. In a context of bounded
reducibilities, results of this type have been obtained, among others, by Schöning [30]
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and Regan [26]. In a context of NP optimization problems similar results are given
by Merkle [21] (unfortunately without mentioning the closely related and much earlier
results of Schöning, Regan, and others, while just referring to the related work of
Schmidt [29]).

A strengthening of Corollary 51 to embeddings of partial orderings into intervals
of the recursive sets can be obtained as a corollary to the proof of Theorem 45.
A corresponding assertion has been stated by Mehlhorn [18] for reducibilities that
satisfy his set of axioms.

Corollary 53. Let ≤r be a faithful bounded reducibility that is c.f.v. and such
that Mr is a simulation class. Then every countable partial ordering can be embedded
into every proper interval of the structure (REC,≤r).

Proof. It is known that every countable partial ordering can be embedded (as a
partial ordering) into the countable atomless Boolean algebra. Furthermore, the proof
of Theorem 45 shows that the assumption of Corollary 53 is sufficient for constructing
partial order embeddings of the countable atomless Boolean algebra (indeed, of any
countable distributive lattice) into any proper interval bounded by two recursive sets.
So we are done because embeddings of partial orderings compose.

Remark 54. The axiomatic approach of Schmidt [29] is based on the concept
recursive gap closure, where a subclass M of 2ω is recursively gap closed iff for
every recursive gap language G there is a set M in M such that the set M , as well
as its complement, contain infinitely many blocks of G. (This formulation slightly
deviates from the original definition, where only gap languages are considered for
which strings of the same length are always in the same block.)

Every simulation class S is recursively gap closed. For a proof, observe that given
a recursive gap language G, then by Lemma 59 there is some gap cover M for G in S,
and in particular M and its complement contain infinitely many blocks of G. On the
other hand, there are recursively gap closed classes that are not simulation classes
and that in fact do not even contain delayed simulations of all gap languages. For
example, consider the subclass D of the recursive sets where for each set in the class
there are infinitely many x where x is in the set, but x−1 and x+1 are not. Then for
every set in D, its characteristic function contains infinitely often the “pattern” 010.
Hence the class D, for example, contains neither a delayed simulation of the empty set
nor of the recursive gap language that has the characteristic sequence 011011011 . . . .

Schmidt demonstrates for several complexity classes that they are gap closed.
From her proofs it is immediate that these classes are in fact simulation classes. In
particular, we obtain that the class of sets simultaneously computable in linear time
and logarithmic space is a simulation class. Note in this connection that Regan [26]
shows that even slightly more restrictive resource-bounds are sufficient for performing
Ladner-style delayed diagonalization constructions.

Remark 55. Regan and Vollmer [28] show results on partial order embeddings
for various reducibilities of many-one type that run in logarithmic time. Typically,
for given reduction function f and input x, within this time-bound just a single bit
of f(x) has to be computed. Hence in general for any unbounded function l, no matter
how slow l grows, it will take more than logarithmic time to compute the complete
value f(x) even for inputs x with f(x) ≤ l(x) . This indicates that such reducibilities
will not allow patching of the oracle as required with standard reducibilities and that
accordingly Theorem 45 on embeddings of countable distributive lattices does not apply.
Yet, depending on the details of its definition, a reducibility restricted to logarithmic
time will usually satisfy the assumption used to derive the results of this section.
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5. Proving the coding lemma. In this section we give the still missing proof
of the coding lemma, which we have stated as Lemma 40. In its proof we use the
recursion theorem in a form described in Remark 56.

Remark 56. If we specify a procedure that computes uniformly effectively in
a given index e a partial function γe, then, by the smn-theorem, there is a recursive
function g where ϕg(e) is equal to γe for all e in ω. According to the recursion theorem,
there is some index e0, referred to as fixed point of g, where

ϕe0 = ϕg(e0) = γe0 .

In case we can ensure certain properties of the constructed partial function γe under
the assumption that the given index e is an index for γe, we succeed in constructing
a partial function with these properties because for the fixed point e0 our assumption
will be true.

In recursion theory, the following, more convenient form of this technique is widely
used. Instead of viewing the index e as an argument, we assume that already during
the definition of some partial recursive function γ we can use an index for γ, i.e., an
index e with γ = ϕe. As Soare [33, p. 38] points out, in the definition of γ we must
not rely on any specific assumptions on e; i.e., while we are just interested in the
cases where the number e used in our construction is indeed an index for the function
under construction, in order to render the construction valid we have to ensure that
the constructed partial function γ is in fact partial recursive in e.

Subsequently, we will apply this technique by giving an effective procedure that
enumerates the graph of a partial function γ, while using in the construction an index
for γ. In order to address the problem mentioned in the last paragraph, we apply the
following convention.

In case the partial function γ is eventually defined during the construction
at a place x, then γ(x) is equal to the value that is assigned first; otherwise,
γ(x) is undefined.

It should be clear that by this convention there is always some recursive function g such
that for all e, ϕg(e) is equal to the function γ that we specify under the possibly wrong
assumption that e is an index for the function under construction. For example, we
can choose a function g that assigns to e, intuitively speaking, a Turing machine Mg(e)

that computes γ(x) by simulating the construction of γ on the given index e until x
enters the domain of γ. Then, if for some specific index e, the construction of γ “gets
stuck”, this simply means that the domain of γ = ϕg(e) is finite and contains only the
places that have been assigned values so far.

Remark 58 shows that in a simulation class we are not only able to find effec-
tively delayed simulations of recursive sets but in fact we can find so—appropriately
defined—delayed simulations of arbitrary partial recursive functions from ω to {0, 1}.

Definition 57. A set S is a delayed simulation of a partial characteristic func-
tion α iff there is a nondecreasing function l from ω to ω where for all x in ω we
have S(x) = α(l(x)) and where the range of l is {z ∈ ω : α(y) is defined for all y ≤ z}.

Remark 58. For every simulation class S there is a recursive function sim
from ω to ω such that for all e in ω, first, ϕsim(e) is in S and, second, ϕsim(e) is
a delayed simulation of ϕe in case ϕe(0) is equal to 0. In fact, this is essentially
the definition of simulation class except that now we require the second condition on
delayed simulations for all e and not just for e where ϕe is a set.

For a proof, recall from Example 10 that the class of functions computable in poly-
nomial time is a functional simulation class. Thus the class P of sets computable in
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polynomial time is a simulation class. Let sim0 be a witnessing function for the latter
fact that corresponds to the type of simulation described in Example 10. Then sim0

witnesses that the assertion we want to prove holds for S = P. As a consequence,
if sim1 witnesses that S is a simulation class, then the function sim:=sim1 ◦ sim0 has
the required properties. More precisely, given some index e in ω, then ϕsim1(sim0(e)) is
obviously in S. Furthermore, if function l0 witnesses that ϕsim0(e) is a delayed sim-
ulation of ϕe, and l1 witnesses that ϕsim1(sim0(e)) is a delayed simulation of ϕsim0(e),
then l0 ◦ l1 witnesses that ϕsim(e) is a delayed simulation of ϕe.

Before we prove the coding lemma, we consider the simpler assertion stated in
Lemma 59 in order to demonstrate the techniques used. The notation and the sub-
routines used in the proof of Lemma 59 then are partially reused in the more involved
proof of the coding lemma.

Lemma 59. Let S be a simulation class and let G be a recursive gap language.
Then S contains a gap cover of G.

Proof. Figure 1 shows an effective procedure that enumerates the graph of some
partial characteristic function γ. By Remark 56, we can assume that an index e for
the function under construction is already available during the construction; that is,
we have γ = ϕe, and the specification of γ might depend on e.

Now S is a simulation class; hence we can choose a recursive function sim ac-
cording to Remark 58; i.e., in particular, for all e in ω with ϕe(0) = 0, ϕsim(e) is a
delayed simulation of ϕe in S . Therefore, by letting γ(0) = 0, during the construction
of γ we do not only have available some index e for γ but also the delayed simula-
tion M :=ϕsim(e) of γ in S. In the verification of the construction we then show that
the set M in fact is a gap cover for G.

We first give an outline of the construction and sketch the ideas on which its
verification is based. The course of values of γ is rather simple. If γ is defined at
all at some place s, then it is equal to ω ⊕ ∅; that is, γ(s) is 0 in case s is even,
and γ(s) is 1, otherwise. The actual load of the construction is to decide successively
for s = 1, 2, . . . whether γ(s) is to be defined or not. Thus, during the construction γ
can always be written as

γ :=(ω ⊕ ∅)|{0, . . . , s},(30)

where s:=maxdom(γ) is in block s of γ . (Recall that we start counting blocks with
number zero.) In a situation where (30) holds, informally we denote block s of M as
the open block of the construction. Now, by choice of sim and by definition of M , the
set M = ϕsim(e) is a delayed simulation of γ = ϕe, and consequently at any point of
the construction we have the following properties of the open block

(i) The open block exists because if γ has at least s blocks, then so does its
delayed simulation M .

(ii) The open block is finite iff ϕe is defined at place s+ 1.

The construction is based on the following idea: in the situation of (30) we refrain
from defining γ at place s+1 unless we can verify that the open block contains some
block of G. As a consequence the open block indeed contains some block of G. In
case γ indeed remained undefined at place s+1, then the open block would be infinite
but would not contain a block of the gap language G, which is a plain contradiction.
So, intuitively speaking, if we add block s + 1 of γ only after verifying that block s
of M is large enough, then block s of M indeed is large enough. Next we give a formal
proof of Lemma 59 by proving a series of claims.
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Claim 1. On entering stage s of the construction we have γ :=(ω ⊕ ∅)|{0, . . . , s}.
Proof. Recall that the course of values of ω⊕∅ is 01010 . . . . Claim 1 now follows

by an easy induction argument that exploits the definitions of the construction and
of the procedure close the open block.

Claim 2. If the procedure cover some block of G is called during stage s of the
construction, then the procedure terminates and block s of M contains some block
of G.

Proof. Let the procedure be called during some stage s of the construction. By
Claim 1, on entering the procedure we have s = maxdom(γ) and γ has exactly s
blocks. Thus the delayed simulation M has at least s blocks, and on start of the
procedure z and y are set equal to the minimal element of block s of M , and the
while loop is entered. During the iterations of the while loop, the set {z, . . . , y} is
always contained in block s of M , and consequently, by the condition in the head of
the while loop, if the while loop is eventually left, then block s of M must contain some
block of G. Now, assume for a contradiction that the while loop is never left and that
consequently γ will remain undefined at place s + 1 for the rest of the construction.
Then the delayed simulation M of γ has exactly s blocks, and M(y) = M(y+1) holds
for all places y that are greater than the minimal element z in block s of M . So y goes
to infinity, and the condition in the head of the while loop eventually becomes false
because all blocks of the gap language G are finite. Hence the while loop is eventually
left, contrary to our assumption.

Claim 3. M is a gap cover for G.
Proof. By inspection of the construction and from Claim 2 we infer that the

construction passes through all stages s = 0, 1, . . . . Thus Claim 1 shows that the
delayed simulation M of γ has infinitely many blocks, and Claim 2 implies that each
block of M contains some block of G; that is, M is a gap cover for G.

Next we give the proof of the coding lemma, which has been already stated as
Lemma 40. The proof of the coding lemma relies on the same idea as the proof of
Lemma 59 but is combinatorially more involved.

Lemma 60 (coding lemma). Let A0, A1, . . . be a sequence of uniformly recursive
sets and let G be a recursive gap language. Let M be a simulation class that contains
all finite sets and where the structure (M,⊆) is a subalgebra of (2ω,⊆). Then there
are sets R0, R1, . . . in M and a gap language M in M such that

• the set M is a gap cover for G;
• for all i and s in ω and for all x in block s of M , it holds Ri(x) = Ai(s).

Proof. For a given gap language M , we call the blocks with numbers 0, 2, 4, . . .
even blocks of M and, likewise, the remaining blocks of M are called odd. It is
sufficient to show that given M, G, and A0, A1, . . . as in the assumption of the
coding lemma, there is a gap language M in M and sets S1, S2, . . . in M where, first,
M is a gap cover for G and, second,

(i) for all x in an odd block s of M and for all i in ω, we have S2i+1(x) = Ai(s);
(ii) for all x in an even block s of M and for all i in ω, we have S2i+2(x) = Ai(s);

that is, for every i, the set S2i+2 is constant on each even block of M and attains
on these blocks the values Ai(0), Ai(2), Ai(4), . . . , respectively, and a similar remark
holds for the sets S2i+1 and the odd blocks of M . Given sets M and S1, S2, . . . as
above, we let

Ri := (S2i+1 ∩M) ∪ (S2i+2 ∩M),

where, due to M being closed under complement, we can assume M(0) = 0; i.e., M
is the union of its odd blocks. By choice of the sets Sk, the sets Ri satisfy the
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The Construction

Initially, we let γ(0):=0

Stage s of the construction

cover some block of G;
close the open block;

The Subroutines

close the open block
m:=maxdom(γ)
γ(m+ 1):=1− γ(m)

cover some block of G
z:=min{i ∈ ω : bn(M, i) = maxdom(γ)}
y:=z
while {z, . . . , y} does not contain some block of G

if M(y) = M(y + 1) then y:=y + 1

Fig. 1. The construction of the set M from the cover lemma.

second condition required in the coding lemma. Furthermore, the sets Ri are in M,
because M and the set Sk are, and because M is a subalgebra of (2ω,⊆). Note that
it is actually sufficient to show that there are sets Sk that satisfy condition (i) and
(ii) for almost all x because by assumption the subalgebra M contains all finite sets
and is hence c.f.v.

We denote by γj row j of a partial characteristic function γ; that is, γj denotes
the partial characteristic function that maps x to γ(〈x, j〉). We let r be a recursive
function such that for all e the number r(e, j) is an index for row j of ϕe, and we
assume that M is a simulation class via a function sim; i.e., ϕsim(e) is a delayed
simulation of ϕe whenever ϕe(0) is equal to 0.

Similar to the proof of the cover lemma, we give an effective enumeration of the
graph of a partial characteristic function γ where according to Remark 56 we can
use an index e with γ = ϕe during the specification of γ. In the construction of this
enumeration, we will refer by γ to the finite partial characteristic function of which the
graph has already been enumerated, and likewise we will refer by γj to row j of this
intermediate partial characteristic function. For the index e given to the construction,
we let

Sk := ϕsim(r(e,k)) and M := S0 = ϕsim(r(e,0));

that is, for all k ≥ 0 the set Sk, which we informally denote as row k, is a delayed
simulation of row k of ϕe. Note that thus for any given index e the meaning of M
and Sk is fixed ahead of the construction. In the verification of the construction we
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The Construction

6 Initially, the partial functions γj all have empty domain

Stage s of the construction

initialize row(s)
for all k ∈ {1, . . . , s} where exactly one of k and s is odd

if A[k div 2](s− 1) �= A[k div 2](s+ 1), then
compare(0,k)
close block(k)
compare(k,0)

cover some block of G
close block(0)

Fig. 2. The construction of the sets M and Sk.

can then assume that the index e used in the construction is indeed an index for
the function γ constructed in order to show that the sets M and S1, S2, . . . have the
required properties.

The construction is shown in Figures 2 and 3. Before we formally verify the
construction, we give an informal description of stage s of the construction. Like in the
verification of Lemma 59, at any stage of the construction, denote block max dom(γk)
as the open block of Sk. We assume that s is even, while the considerations for
the symmetric case where s is odd are essentially the same. During stage s, first
row s is initialized, and then we consider all rows k ≤ s where k is odd. We have
to ensure that for all such k the sets Sk do not have a block-change in an odd block
of M . Furthermore, if we let i be equal to k div 2, then in case Ai(s − 1) differs
from Ai(s+ 1), the set Sk must have exactly one block-change within block s of M ,
while in case Ai(s− 1) is equal to Ai(s+1), the set Sk must not have a block-change
within block s of M . In the latter case, we leave γk untouched, and otherwise we
enforce the necessary block change by first forcing the open block of Sk to extend
beyond the minimum of the open block of M , then closing the open block of Sk,
and then extending the open block of M beyond the minimum of the (new) open
block of Sk. These extensions are handled by the procedure compare, where by an
invocation compare(k,l) we force the open block of Sl to contain an element that is
greater or equal to the least element in the open block of Sk. Finally, we ensure that
the open block of M contains some block of G and close the open block of M .

Claim 1. Every call to close the open block and to cover some block of G during
the construction results in a terminating computation.

Proof. The assertion is immediate in the case of the former procedure, while
in the case of cover some block of G the argument is basically the same as for the
corresponding claim in the proof of Lemma 59.

In the remainder of the proof, we will use the following notation: a set I extends
beyond the minimum of a set J iff we have min J ≤ x for some x in I.

Claim 2. Assume that on a call compare(k,l) during the construction we have

mk := maxdom(γk) and ml := maxdom(γl).
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Some subroutines

6 The following two routines are the same as in Figure 1
6 with γ replaced by γj and γ0, respectively

close the open block(j)
m:=maxdom(γj)
γj(m+ 1):=1− γj(m)

cover some block of G
z:=min{i ∈ ω : bn(M, i) = maxdom(γ0)}
y:=z
while {z, . . . , y} does not contain some block of G

if M(y) = M(y + 1), then y:=y + 1

initialize row(k)
γk(0):=0
if A[k div 2](s) = 1, then γk(1):=1
compare(k,0)

compare(k,l)
y:=min{i ∈ ω : bn(Sl, i) = maxdom(γl)}
z:=min{i ∈ ω : bn(Sk, i) = maxdom(γk)}
while y �≤ z

if Sl(y) = Sl(y + 1), then y:=y + 1

Fig. 3. Some subroutines used in the construction of the sets M and Si.

Then this call results in a terminating computation, and block ml of Sl extends beyond
the minimum of block mk of Sk.

Proof. Similar to the case of the procedure cover some block of G we obtain that
on entering compare, y and z are indeed set to the minimal elements in the open
blocks of row k and l, respectively. Obviously, if the while loop is eventually left, then
block ml of Sl extends beyond the minimum of block mk of Sk. Now, assuming that
the while loop is never left, we infer that γ and a fortiori row l of γ will never be
altered afterwards, and, consequently, the open block of row l is infinite and y goes
to infinity; that is, the while loop is eventually left, contrary to our assumption.

Claim 3. The construction passes through infinitely many stages.
Proof. The proof is immediate by the construction and Claims 1 and 2.
Claim 4. The set M is a gap cover for G.
Proof. Similar to the proof of Claim 3 in the proof of Lemma 59 where γ is

replaced with γ0.
We say that block-change n of a set C occurs within some set I iff the set C has at

least n+1 blocks and the maximum of block n of C and the minimum of block n+1
are both in I.

Claim 5. Let C and D be sets and let I be some block of D. If block n of C
extends beyond the minimum of I and I in turn extends beyond the minimum of
block n+ 1 of C, then block-change n of C occurs within I.
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Proof. The claim is immediate by the definition of the concepts involved.

Claim 6. For all k, s, and n in ω where 0 < k ≤ s, the number n+ 1 enters the
domain of γk during stage s iff block-change n of Sk occurs in block s of M .

Proof. We show first that if n + 1 enters the domain of γk during stage s ≥ k,
then block-change n of Sk occurs in block s of M . In case n + 1 enters the domain
of γk during stage s, this is due to a call close the open block(k) in the body of the
if statement. So this call is preceded by a call compare(0,k), and is followed by a
call compare(k,0) where on both calls max dom(γ0) is equal to s, and maxdom(γk) is
equal to n and n+1 on the first and on the second call, respectively. Then, if we let I
be equal to block s of M , we obtain by Claim 4 that block n of Sk extends beyond the
minimum of I and that in turn I extends beyond the minimum of block n+ 1 of Sk.
Hence by Claim 5, the block-change n of Sk occurs in I. Conversely, if n+1 does not
enter the domain of γk, then for Sk block-change n does not exist, and if n+1 enters
the domain of γk during some stage s0 different from s, then by the above argument
block-change n of Sk occurs in block s0 of M and not in block s.

Claim 7. For every k, each block of M contains at most one block-change of Sk.

Proof. The proof is immediate from Claim 5 and the construction because at each
stage at most one element enters the domain of any γk.

Claim 8. For all k, s in ω where k ≤ s and for i := k div 2, the set Sk has a
block-change in block s of M iff exactly one of k and s is odd and Ai(s − 1) differs
from Ai(s+ 1).

Proof. It is obvious from the construction that any element enters the domain
of γk during stage s ≥ k iff exactly one of k and s is odd and Ai(s − 1) differs
from Ai(s+ 1). So the assertion follows by Claim 6.

Claim 9. For every i in ω,

for almost all x in an odd block s of M we have S2i+1(x) = Ai(s);
for almost all x in an even block s of M we have S2i+2(x) = Ai(s).

Proof. We show the assertion for the odd blocks and leave the similar proof for
the even blocks to the reader. Let k = 2i+ 1 for some i ≥ 0 and consider stage k of
the construction. During the procedure initialize row, row k of γ is changed such that
γk(max dom(γk)) is equal to Ai(s), and due to the call of the procedure compare and
Claim 2 it follows that block s of M extends beyond the minimum of the open block
of Sk. Now, the assertion follows by an easy induction argument because for each odd
block s = 2j + 1 > k we have by Claim 8 that either Ai(s − 1) is equal to Ai(s + 1)
and there occurs no block-change of Sk within the blocks s − 1, s, and s + 1 of M ,
or Ai(s − 1) and Ai(s + 1) differ and there occurs exactly one block-change of Sk
within block s of M , but none within the blocks s− 1 and s+ 1.
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Abstract. Termination of string rewriting is known undecidable. Termination of string rewriting
with only one rule is neither known decidable nor known undecidable. This paper presents a decision
procedure for rules u→ v such that some letter b from u occurs as often or less often in v. We call
such rules “grid” rules. By far most rules are grid rules. Grid rules cover all rules which terminate
by a total division order. Thus total division orders are shown to be irrelevant for the termination
problem of one-rule string rewriting.

Key words. semi-Thue system, string rewriting system, one-rule, termination, grid rule, total
division order

AMS subject classifications. 06F05, 16S15, 20M05, 68Q42

PII. S009753979833297X

1. Introduction and related work. String rewriting systems (SRSs) are a
widely used model for computation and reasoning in finitely generated monoids. SRSs
can simulate Turing machines, so many interesting properties such as confluence, local
confluence, termination, and decidability of the word problem are undecidable. An
intriguing question is which restricted classes of SRSs still have Turing power and
which do not.

SRSs that comprise of only one rule have decidable local confluence and conflu-
ence problems [7, 16]. We are interested in the open problem of whether termination,
too, is decidable for one-rule SRSs. It is reasonable to expect that the study of this
problem will have a major impact on termination of arbitrary SRSs.

The slightly more extended class of one-rule left-linear, nonoverlapping term
rewriting systems has an undecidable termination problem [2]. String rewriting with
three rules also suffices for an undecidable termination problem [10]. In contrast one-
rule string rewriting looks too simple. As McNaughton [12] put it, “We seem to be
able to decide whether any such system is uniformly terminating.”

Kurth [7] started a systematic exploration of the termination problem for one-rule
SRSs. He gave a number of criteria for termination and for the existence of looping
reductions of lengths 1 or 2 (and of length 3 in [8]), and implemented a sieve that,
from a lexicographic enumeration of all canonical representatives of one-rule SRSs,
passes only those that satisfy none of his criteria.

Kurth arrived at a characterization of termination for all (100207 representatives
of) length increasing SRSs u → v, |v| ≤ 6. He had to solve by hand 32 systems that
passed his sieve. By the variety and difficulty of the proofs he was led to conjecture
that termination is undecidable for one-rule SRSs.

Shikishima-Tsuji, Katsura, and Kobayashi [15] reduce the termination problem of
confluent one-rule SRSs to the termination problem of nonoverlapping one-rule SRSs.
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McNaughton [11] conjectures that nonoverlapping one-rule SRSs have a decidable
termination problem.

McNaughton [11] gives a powerful decidable property, called “left barren,” that
entails termination of nonoverlapping SRSs. McNaughton [12], moreover, proves that
“well-behaved” SRSs have a decidable termination problem, not only in the one-
rule case. This class contains terminating SRSs as well as looping ones. Kobayashi,
Katsura, and Shikishima-Tsuji [6] introduce a wider class of “gentle” rules but do not
offer a decidability result for this class.

Zantema and Geser [17, 18] characterized termination for systems of the form
0p1q → 1r0s. Sénizergues [14] showed that termination is decidable for the class
{0p1q → v | p, q ≥ 1, v ∈ {0, 1}∗}. For the same class, Kobayashi, Katsura, and
Shikishima-Tsuji [6] added a complete characterization.

In this paper we contribute a decidability result for a wide class of rules.
Definition 1.1. A string rewriting rule u→ v is called a grid rule if some letter

b from u occurs in v as often or less often.
The case “less often” is trivial; “as often” is the interesting case. We obtain as

the main result of this paper the following characterization.
Theorem 1.2. Every nonterminating grid rule has a loop of length 1 or 2.
By Kurth’s characterizations (see Theorems 4.2 and 4.3), the existence of a loop of

length 1 or 2 is decidable, whence termination of grid rules is decidable. It can even be
shown that there is a linear-time decision procedure. Moreover, it is possible to extract
an exponential upper bound on reduction lengths from the proof of Theorem 1.2. The
interested reader may find proofs of these two claims in the technical report [3].

The class of grid rules is indeed a wide class, not only for its trivial part. It
contains all rules that terminate by a total division order (Theorem 6.3). Total di-
vision orders are a widely used method for termination proofs in string rewriting.
For instance, the recursive path order on strings [9] or the Knuth–Bendix order on
strings [5] are total division orders. In spite of an enormous research effort, the space
of total division orders is largely unexplored. Our results show that total division
orders are irrelevant for the termination problem of one-rule SRSs.

The main part of the paper provides a proof of Theorem 1.2. After the prelim-
inaries (section 2) we derive termination criteria of ascending strength. In section 3
we show that u→ v terminates unless u and v have certain shapes. Particularly, we
identify two strings, x0 and xn, on which the termination behavior crucially depends.
In section 4 we give proofs for the remaining hard cases and finish the proof of The-
orem 1.2. Section 5 gives an impression of the distribution of grid rules for the case
|v| = 7. In section 6 we state and prove Theorem 6.3.

2. Preliminaries. A string is a sequence of letters from a given alphabet. Vari-
ables ranging over letters will be denoted by a, b, c, d; variables ranging over strings
by z, y, x, etc., and indexed variants thereof.

We denote the empty string by ε; the concatenation of strings s and t by st; the
length of a string s by |s|; the number of occurrences of a letter b in s by #b(s).

Let u → v be a one-rule SRS over alphabet Σ. The induced reduction relation
→ is defined by the following: u′ → v′ if there are strings s, t such that u′ = sut and
v′ = svt.

s is called a factor of t if t = xsy for some strings x, y; a prefix if t = sy for some
string y; a suffix if t = xs for some string x. A prefix or suffix s of t is called proper if
s �= t. A string s is said to have the self-overlap t if t �= ε, s �= t, and there are strings
x, y such that s = xt = ty.
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Let→∗ denote the reflexive-transitive closure of→; i.e., s→∗ t denotes that there
is a reduction from s to t. Then u→ v is called confluent if for every forking pair of
reductions, w0 →∗ w1 and w0 →∗ w2, there is a joining pair of reductions, w1 →∗ w3

and w2 →∗ w3. By a result of Wrathall [16], confluence of length increasing one-rule
SRSs is characterized by the property that all self-overlaps of u are also self-overlaps of
v. This is the case, particularly, if u→ v is nonoverlapping ; i.e., u has no self-overlap.

The SRS u → v is called terminating if there is no infinite reduction sequence
u1 → u2 → · · · . Conveniently, termination is proven by giving a well-founded order
> on strings such that sut > svt holds for all strings s, t.

An order > on Σ induces a lexicographic order >lex on Σ∗ by the following:
s = a0a1 · · · an >lex b0b1 · · · bn = t if (i) t is a proper prefix of s or (ii) there is
0 ≤ i ≤ min{m,n} such that ai > bi and aj = bj for all 0 ≤ j < i. It is known that
for a well-founded order > its lexicographic order >lex is well founded on strings of
bounded length.

Every string s admits a unique decomposition, s = s0bs1b . . . bsn, where b does not
occur in si, 0 ≤ i ≤ n. The tuple representation, T (s), of a string s is the sequence
of strings (s0, s1, . . . , sn) if s = s0bs1b . . . bsn is the decomposition of s. For f , a
function from strings to a set D, the tuple representation through f is the sequence
Tf (s) = (f(s0), f(s1), . . . , f(sn)) of elements of D.

Our class of SRSs is particularly amenable to tuple representations (through any
f) for proving termination by a lexicographic order because the tuples Tf (sut) and
Tf (svt) have the same length.

3. The simple cases. Throughout the paper let u → v be a string rewriting
rule, and let Σ denote the least alphabet containing all letters of uv. Let b ∈ Σ
be a letter such that #b(u) > 0 and #b(u) ≥ #b(v); i.e., u → v is a grid rule. If
#b(u) > #b(v), then u→ v terminates (see, e.g., [7, Kriterium A]). This is the trivial
case. Henceforth let #b(u) = #b(v) = n for some n > 0. Then u and v are uniquely
decomposed as

u = u0bu1 · · · bun,
v = v0bv1 · · · bvn

for some ui, vi ∈ (Σ \ {b})∗, 0 ≤ i ≤ n. In this section we are going to show that
u→ v terminates unless the ui and vi have a particular shape.

Lemma 3.1. If u0 is not a suffix of v0, then u→ v terminates.

By duality w.r.t. reversal of strings, one obtains at once the following: If un is
not a prefix of vn, then u→ v terminates.

acba→ accbac terminates by Lemma 3.1 because ac is not a suffix of acc. Likewise,
acbcbcbac → acabacbcbac terminates by Lemma 3.1 because ac is not a suffix of aca.
Note that in these examples the left-hand side of the rule is a subsequence of the right-
hand side of the rule. This shows that termination cannot be proven by a division
order (see also section 6).

Proof. Let sut → svt be an arbitrary reduction step by the rule u → v. Let s′

be the longest suffix of s that does not contain the letter b, and let t′ be the longest
prefix of t that does not contain the letter b. Distinguish cases whether |u0| > |v0| or
not.
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Case |u0| > |v0|. Form the b-tuple representation through f(w) = |w|. Since
|s′u0| > |s′v0|, one gets

Tf (sut) = ( . . . , |s′u0|, |u1|, . . . , |un−1|, |unt′|, . . . )
> lex( . . . , |s′v0|, |v1|, . . . , |vn−1|, |vnt′|, . . . ) = Tf (svt),

where the leftmost and the rightmost dots indicate the same left and right con-
texts.

Case |u0| ≤ |v0|. Form the b-tuple representation through

f(w) =

{
1 if w has suffix u0,

0 else.

By premise, then f(s′u0) = 1 and f(s′v0) = 0. Now

Tf (sut) = ( . . . , 1, f(u1), . . . , f(un−1), f(unt
′), . . . )

> lex( . . . , 0, f(v1), . . . , f(vn−1), f(vnt
′), . . . ) = Tf (svt).

Henceforth let us exclude the case where Lemma 3.1 or its dual apply. In other
words we will assume that v0 = x0u0 and vn = unxn for some strings x0, xn. That is,

u = u0bu1 . . . bun−1bun,(3.1)

v = x0u0bv1 . . . bvn−1bunxn(3.2)

for some x0, xn, u0, . . . , un, v1, . . . , vn−1 ∈ (Σ \ {b})∗.
Now if ui = vi for all 1 ≤ i ≤ n− 1, then u is a factor of v. Particularly for n = 1

one gets v = x0u0bu1x1 which contains u = u0bu1 as a factor; this already proves the
case n = 1 of Theorem 1.2. If u is not a factor of v, then n ≥ 2.

In the following lemma we use the regular expression yx∗0u0 to denote the set of
strings {yxp0u0 | p ≥ 0}.

Lemma 3.2. If for some 1 ≤ i ≤ n− 1 there is no string y such that ui �= vi and
ui, vi ∈ yx∗0u0, then u→ v terminates.

In abba→ aabaabaa the factor u1 = ε has not the suffix u0 = a and v1 = aa �= u1.
In bab → aabaaba, one gets u0 = ε, and so u1 = a = yu0 with y = a. Here
v1 = aa /∈ a(aa)∗ε = yx∗0u0. Both SRSs are instances of Lemma 3.2, one per case of
the proof below.

Again, by duality one gets termination if, for some 1 ≤ i ≤ n − 1, there is no
string z such that one has ui �= vi and ui, vi ∈ unx∗nz.

Proof. Let i be minimal. We distinguish cases whether or not ui has suffix u0.
Case 1. ui has no suffix u0. Then form the b-tuple representation through

f(w) =

{
1 if w = ui,

0 else.

Note that f(w) = 0 holds for all strings w that have suffix u0. Particularly, f(s
′u0) =

0 = f(s′x0u0). By minimality of i one gets f(uj) = f(vj) for all 1 ≤ j ≤ i− 1, either
because uj = vj or because both uj and vj have suffix u0. So

Tf (sut) = ( . . . , 0, f(u1), . . . , f(ui−1), 1, f(ui+1), . . . , f(unt
′), . . . )

> lex( . . . , 0, f(v1), . . . , f(vi−1), 0, f(vi+1), . . . , f(unxnt
′), . . . ) = Tf (svt).
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Case 2. If ui has suffix u0, then there is y such that ui ∈ yx∗0u0. Let y be shortest:
y has no suffix x0. By premise, now vi /∈ yx∗0u0. Form a b-tuple representation through

f(w) =

{
1 if w ∈ yx∗0u0,

0 else.

Let s′ denote the longest suffix of s that does not contain b, and let t′ denote the
longest prefix of t that does not contain b. If s′ ∈ yx∗0, then f(s′u0) = 1 = f(s′x0u0),
or else f(s′u0) = 0 = f(s′x0u0). By minimality of i, for all 1 ≤ j ≤ i − 1 either
uj = vj , and so f(uj) = f(vj), or there is a string y′ that has no suffix x0 such that
uj , vj ∈ y′x∗0u0. If y

′ = y, then f(uj) = 1 = f(vj), or else f(uj) = 0 = f(vj). Then

Tf (sut)

= ( . . . , f(s′u0), f(u1), . . . , f(ui−1), 1, f(ui+1), . . . , f(un−1), f(unt
′), . . . )

> lex( . . . , f(s
′x0u0), f(v1), . . . , f(vi−1), 0, f(vi+1), . . . , f(vn−1), f(unxnt

′), . . . )
= Tf (svt).

One can draw a few consequences of Lemma 3.2 that are useful during section 4.
Lemma 3.3. If x0 = ε and u is not a factor of v, then u→ v terminates.
Proof. If x0 = ε and ui, vi ∈ yx∗0u0 for some string y, then ui = yu0 = vi. So let

x0 = ε and ui �= vi for some 1 ≤ i ≤ n−1. Then there is no y such that ui, vi ∈ yx∗0u0.
Lemma 3.2 entails the claim.

Lemma 3.4. If |ui| = |vi| and ui �= vi for some 1 ≤ i ≤ n − 1, then u → v
terminates.

Proof. If x0 = ε, then the claim follows by Lemma 3.3, so let x0 �= ε. If |ui| = |vi|,
ui = yxp0u0, vi = yxp

′
0 u0, then p = p′ and hence ui = vi. So let for some 1 ≤ i ≤ n− 1

both |ui| = |vi| and ui �= vi. Then there is no y such that ui, vi ∈ yx∗0u0. By
Lemma 3.2 the claim follows.

Lemma 3.5. Let x0 �= ε. Define the equivalence relation ∼ on Σ∗ by s ∼ t if

|s| ≡ |t| mod |x0|.
If ui �∼ vi for some 1 ≤ i ≤ n− 1, then u→ v terminates.

Proof. If ui = yxp0u0, vi = yxp
′

0 u0 for some y, then |ui| − |vi| = (p− p′)|x0|. So if
|ui| − |vi| is not an integer multiple of |x0|, then ui �= vi and there is no y such that
ui, vi ∈ yx∗0u0. Lemma 3.2 then implies the claim.

This finishes the conclusions drawn from Lemma 3.2. Let us now cover two further
simple cases.

Lemma 3.6. Let ∆ = |x0uxn| − |v|. If |x0| ≥ |xn| and ∆ > |x0|, then u → v
terminates or u = v.

Proof. By Lemma 3.5 u → v terminates if for some 1 ≤ i ≤ n − 1, |ui| − |vi| is
not an integer multiple of |x0|. So let |ui| − |vi| be an integer multiple of |x0| for all
1 ≤ i ≤ n − 1. Then ∆ =

∑
1≤i≤n−1(|ui| − |vi|) must be an integer multiple of |x0|.

By premise, then ∆ ≥ 2|x0|. So
|u| − |v| = ∆− |x0| − |xn| ≥ |x0| − |xn| ≥ 0;

hence the rule is terminating unless u = v (see, e.g., [13]).
Lemma 3.7. If |u| < |v| for some 1 ≤ � ≤ n − 1 and |uj | = |vj | for all

1 ≤ j ≤ �− 1, then u→ v terminates.
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By duality u → v terminates, too, if |u| < |v| for some 1 ≤ � ≤ n − 1 and
|uj | = |vj | for all �+ 1 ≤ j ≤ n− 1.

The two SRSs bbab → abbaaabaa and babaab → abaaabbaa are not confluent as
the self-overlap b of u is not a self-overlap of v. The two SRSs terminate by Lemma 3.7.

Proof. Form the b-tuple representation through

f(w) =

{
1 if |w| ≤ |u|,
0 else.

To prove Tf (sut) >lex Tf (svt) let s
′ be the longest suffix of s that does not contain

b, and let t′ denote the longest prefix of t that does not contain b. By definition of f
one gets f(s′u0) ≥ f(s′x0u0) and f(uj) = f(vj) for all 1 ≤ j ≤ �− 1; hence

Tf (sut)

= ( . . . , f(s′u0), f(u1), . . . , f(u−1), 1, f(u+1), . . . , f(un−1), f(unt
′), . . . )

> lex( . . . , f(s
′x0u0), f(v1), . . . , f(v−1), 0, f(v+1), . . . , f(vn−1), f(unxnt

′), . . . )
= Tf (svt).

By Lemma 3.4, u not a factor of v and |u| = |v| for all 1 ≤ � ≤ n − 1 implies
termination. Together with Lemma 3.7 this yields the following.

Lemma 3.8. Let u not be a factor of v. Then u → v terminates unless there is
1 ≤ � ≤ n− 1 such that |u| > |v| and |uj | = |vj | for all 1 ≤ j ≤ �− 1.

4. The hard cases. Throughout this section let (3.1) and (3.2) hold.
Let maxu = max{|ui| | 1 ≤ i ≤ n − 1}. Call a string w that contains no b and

such that |w| > maxu a wall. Intuitively, a wall separates rewrite steps; the factor
bu1bu2 . . . bun−1b of u never overlaps with a wall. The only overlaps u can form with
a wall are u0 and un. Application of u→ v then can only increase the wall by x0, xn,
respectively.

Let us call a string bw0bw1 . . . bwN−1bwNb,N ≥ 2 a basin if w0 and wN are walls
and w1, . . . , wN−1 are no walls and w1bw2 . . . bwN−1 �= v1bv2 . . . bvn−1. Let u not be
a factor of v. Then basins are the only locations where rewrite steps may still take
place. Particularly, u is not a factor of any string bw′bv1 . . . bvv−1bw

′′b, where w′, w′′

are walls since u is not a factor of v, and so bu1bu2 . . . bun−1b �= bv1bv2 . . . bvn−1b. The
only way to increase by a rewrite step the number of basins is to turn a nonwall into
a wall.

We are going to distinguish the cases |x0| > |xn| and |x0| = |xn|. For these two
cases we have only two complicated termination proofs to offer.

Lemma 4.1. If |x0| > |xn| and u is not a factor of v then u→ v terminates.
By duality u → v also terminates if |xn| > |x0| and u is not a factor of v.

The system babaab → aababba is an example where Lemma 4.1 applies. The system
abaab→ aabbaa for which Kurth gave an ad hoc proof [7, p. 127], is an example where
the dual of Lemma 4.1 applies. Both systems are not confluent.

Proof. First let us state a few properties that we will use during the proof.
Since Lemma 3.3 handles the case |x0| = 0, we may assume |x0| > 0. Lemma 3.5

leaves the case where

ui ∼ vi for all 1 ≤ i ≤ n− 1.(4.1)

By premise and the dual of Lemma 3.3 we have |x0| > |xn| > 0, and hence

xn �∼ 0.(4.2)
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By Lemma 3.8 we need to prove termination only in the case where there is some
1 ≤ � ≤ n− 1 such that

|u| > |v| and |uj | = |vj | for all 1 ≤ j ≤ �− 1.(4.3)

Obviously � is unique. Let ∆ = |x0uxn| − |v|. By Lemma 3.6, termination is proven
if ∆ > |x0|. So assume

∆ ≤ |x0|.(4.4)

If there is an infinite reduction, w1 → w2 → . . . , and p, p′ are arbitrary strings,
then pw1p

′ → pw2p
′ → · · · is an infinite reduction as well. One may choose p and p′

such that pw1p
′ has prefix bw′ and suffix w′′b, where w′, w′′ are walls. This property

is preserved by reduction steps.
We prove the claim by showing a strict decrease from sut to svt, where sut→ svt

is a reduction step and s starts with bw′ and t ends with w′′b and w′, w′′ are walls.
Let s′ and t′ denote the longest suffix of s and the longest prefix of t, respectively,
that contains no letter b.

We apply five termination functions lexicographically to prove termination. More
precisely, we construct f1, . . . , f5 such that

(f1(sut), . . . , f5(sut)) >lex (f1(svt), . . . , f5(svt)).

Termination function f1. The termination function f1 yields the number
of nonwalls: f1(bw0bw1 . . . bwm−1bwmb) =

∑
0≤i≤m g1(wi), where the wi contain no

letter b and where g1 is defined by

g1(w) =

{
1 if |w| ≤ maxu,

0 else.

One gets that f1(sut) ≥ f1(svt):

f1(sut)− f1(svt) = f1(bs
′ut′b)− f1(bs

′vt′b)
= g1(s

′u0)− g1(s
′x0u0)︸ ︷︷ ︸

≥0

+ f1(bu1bu2 . . . bun−1b)︸ ︷︷ ︸
=n−1

− f1(bv1bv2 . . . bvn−1b)︸ ︷︷ ︸
≤n−1

+ g1(unt
′)− g1(unxnt

′)︸ ︷︷ ︸
≥0

≥ 0.

If one of the |vi|, 1 ≤ i ≤ n−1, is greater than maxu, then f1(bv1bv2 . . . bvn−1b) < n−1
and hence f1(sut) > f1(svt). In this case we have already proved termination. This
leaves the case where

|vi| ≤ maxu for all 1 ≤ i ≤ n− 1.(4.5)

If a wall is created, i.e., g1(s
′u0) > g1(s

′x0u0) or g1(unt
′) > g1(unxnt

′), then again
f1(sut) > f1(svt) and termination is already proven. So henceforth one may assume
that the number of walls is not changed during a rewrite step:

g1(s
′u0) = g1(s

′x0u0),(4.6)

g1(unt
′) = g1(unxnt

′).(4.7)
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We are going to distinguish four cases:

|s′u0| > maxu, |s′x0u0| > maxu, |unt′| > maxu, |unxnt′| > maxu,(4.8)

|s′u0| > maxu, |s′x0u0| > maxu, |unt′| ≤ maxu, |unxnt′| ≤ maxu,(4.9)

|s′u0| ≤ maxu, |s′x0u0| ≤ maxu, |unt′| > maxu, |unxnt′| > maxu,(4.10)

|s′u0| ≤ maxu, |s′x0u0| ≤ maxu, |unt′| ≤ maxu, |unxnt′| ≤ maxu .(4.11)

As explained in detail below, the termination functions f2, f3, f4, and f5 take care of
the cases (4.8), (4.9), (4.10), and (4.11), respectively.

Termination function f2. The termination function f2 assigns to a string w
its number of basins. A basin cannot be created during a rewrite step that preserves
f1. A basin is destroyed in case (4.8): f2(sut)−f2(svt) = 1 because bs′ut′b is a basin,
whereas bs′vt′b is not. Hence termination is proven for case (4.8), and the termination
proof of cases (4.9), (4.10), and (4.11) is postponed.

Termination function f3. Based on premises (4.3) and (4.1) the auxiliary
function g3 is defined as follows:

g3(bw0bw1 . . . bwn−1bwnb)

=





2 if |w| = |u| and wn �∼ un−,
1 if |w| ≤ |u|, w ∼ u, and wn ∼ un−,
0 else.

Next, let the set W (w) of strings be defined by

W (w) = {bw0bw1 . . . bwn−1bwnb | w0, . . . , wn ∈ (Σ \ {b})∗,
|w0| > maxu, |w1|, . . . , |wn| ≤ maxu}.

Observe that by definition two strings w′, w′′ ∈W (w), w′ �= w′′ have the only overlap
b. Now the termination function f3 is defined by

f3(w) =
∑

w′∈W (w)

g3(w
′).

We are going to prove that f3(sut) > f3(svt) in case (4.9) and f3(sut) ≥ f3(svt) in
cases (4.10) and (4.11).

Case (4.9). |s′u0| > maxu and |unt′| ≤ maxu and so

f3(sut)− f3(svt) = g3(bs
′ut′b)− g3(bs

′vt′b)

=

{
2 if unt

′ �∼ un−,
1 else

−
{
1 if unxnt

′ ∼ un−,
0 else

=





2− 1 if unxnt
′ ∼ un−,

1− 0 if unt
′ ∼ un−

2− 0 else.

≥ 1,

The case 1 − 1 cannot occur since unxnt
′ �∼ unt

′ by (4.2). Thus termination of
case (4.9) is proven.

In the remaining cases (4.10) and (4.11), where |s′u0| ≤ maxu, we have to prove
f3(sut) ≥ f3(svt). Let s = bs1bs2 . . . bsm−1bs

′, m ≥ 1, s1, . . . , sm−1, s
′ ∈ (Σ \ {b})∗,
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and let D be the least positive integer such that |sm−D| > maxu. (D is well defined,
for |s1| > maxu is presupposed.) Let w = bw0bw1 . . . bwnb denote the unique string
that begins and ends with b, contains b exactly n + 2 times, and such that sut has
prefix bs1bs2 . . . bsm−D−1w. Likewise, let w′ = bw′0bw

′
1 . . . bw

′
nb denote the unique

string that begins and ends with b, contains b exactly n+ 2 times, and such that svt
has prefix bs1bs2 . . . bsm−D−1w

′.
There are walls neither in bs′u0bu1 . . . bun−1b nor in bs′x0u0bv1 . . . bvn−1b by

premises |s′u0| ≤ maxu, (4.5), and (4.6); so one gets

f3(sut)− f3(svt) = g3(w)− g3(w
′).(4.12)

We are going to prove that g3(w)− g3(w
′) ≥ 0.

The string w is a prefix of the string

bsm−D . . . bsm−1b︸ ︷︷ ︸
1

s′u0b↑
2

u1 . . . bun−−1b︸ ︷︷ ︸
3

un−b↑
4

un−+1 . . . bun−1b︸ ︷︷ ︸
5

unt
′b.

The string w may end in any of the domains 1, . . . , 5. By premise, it must not end at
unt
′b. Accordingly we perform a case analysis on n.
Case 1. n < D. Then w = sm−D+ = w′ and wn = sm−D+n = w′n and so

g3(w) = g3(w
′).

Case 2. n = D. Then w = sm−D+ = w′, wn = s′u0, and w′n = s′x0u0 and so
g3(w) = g3(w

′) by s′u0 ∼ s′x0u0.
Case 3. D < n < D+n−� or, equivalently, � < D < n. Then w = sm−D+ = w′,

wn = un−D, w′n = vn−D; hence wn ∼ w′n by (4.1) which implies that g3(w) = g3(w
′).

Case 4. n = D + n − � or, equivalently, D = �. Then w = s′u0, w
′
 = s′x0u0,

wn = un−, and w′n = vn−. Note that g3(w) �= 2 and g3(w
′) �= 2 by wn ∼ un− ∼ w′n.

Hence g3(w) ≥ g3(w
′) by |w| ≤ |w′| and by w ∼ w′.

Case 5. D+n− � < n ≤ D+n− 1 or, equivalently, 1 ≤ D < �. Then w = u−D,
w′ = v−D, wn = un−D, and w′n = vn−D. From |w| = |w′| by (4.3) and wn ∼ w′n we
infer g3(w) = g3(w

′).
Summarizing this case analysis, we have shown g3(w) ≥ g3(w

′), and so f3(sut) ≥
f3(svt) by (4.12), in the remaining cases (4.10) and (4.11). These cases are again
postponed.

Termination function f4. The termination function f4 is defined by

f4(bw0bw1 . . . bwm−1bwmb) =
∑

0≤i≤m
g4(wi),

where wi ∈ (Σ \ {b})∗ for all 0 ≤ i ≤ m, and g4 is defined by

g4(w) =

{
maxu−|w| if |w| ≤ maxu,

0 else.

Recall that ∆ = |x0uxn| − |v| ≤ |x0| by premise (4.4).
Case (4.11). Here |s′x0u0| ≤ maxu and |unxnt′| ≤ maxu, so f4(sut) > f4(svt):

f4(sut)− f4(svt)

= g4(s
′u0)− g4(s

′x0u0)︸ ︷︷ ︸
=|x0|

− ∆︸︷︷︸
≤|x0|

+ g4(unt
′)− g4(unxnt

′)︸ ︷︷ ︸
=|xn|

≥ |xn| > 0.
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Case (4.10). |s′x0u0| ≤ maxu and |unt′| > maxu hold and so

f4(sut)− f4(svt) = g4(s
′u0)− g4(s

′x0u0)︸ ︷︷ ︸
=|x0|

− ∆︸︷︷︸
≤|x0|

+ g4(unt
′)− g4(unxnt

′)︸ ︷︷ ︸
=0

≥ 0.

Because the decrease in case (4.10) need not be strict we need a fifth termination
function f5.

Termination function f5. f5(w) counts the factors in w of the form

bw0u0bu1 . . . bun−1bunwnb,

where unwn is a wall. We have f5(sut)− f5(svt) = 1 for the remaining case (4.10) by
the fact that ui �= vi for some 1 ≤ i ≤ n− 1.

We conclude that (f1(sut), . . . , f5(sut)) >lex (f1(svt), . . . , f5(svt)) for every step
sut→ svt. Hence u→ v terminates.

At last, there is the case |x0| = |xn|. Here we show that u→ v terminates unless
it admits a loop of lengths 1 or 2. A loop is a reduction sequence where the start
string reappears as a factor in the final string. Kurth characterized the existence of
loops of lengths 1 and 2 for arbitrary one-rule SRSs.

Theorem 4.2 (Kurth [7, p. 139]). A string rewriting rule u → v admits a loop
of length 1 if and only if u is a factor of v.

Theorem 4.3 (Kurth [7, p. 142]). If u is not a factor of v, then the following
two propositions are equivalent:

1. u→ v has a loop of length 2;
2. there are strings g, h, k such that u = gh, v = hk, and ggh is a factor of hkk.

The case where a grid rule u → v admits a loop of length 2 really exists, as
witnessed by the SRS abaab→ aababa. It has the following loop of length 2:

abaabab→ aababaab→ aabaababa.

To apply Kurth’s characterization, choose g = ab, h = aab, k = aba. Then ggh =
ab ab aab, which is a factor of hkk = aab aba aba.

As a surprising fact, neither loops of other lengths nor infinite nonlooping reduc-
tions are essential to grid rules: It suffices to exclude loops of lengths 1 and 2 to ensure
termination.

Lemma 4.4. If |x0| = |xn| and u→ v does not terminate, then u→ v has a loop
of length 1 or 2.

Proof. Let us exclude loops of length 1.
Suppose that u→ v is nonterminating; i.e., there is an infinite reduction sequence.

First we proceed as in the proof of Lemma 4.1. The termination functions f1, f2, and
f4 as defined in the proof of Lemma 4.1 are applied lexicographically so as to show
that an infinite reduction exists where the values of f1, f2, and f4 remain constant.
(Termination function f3 yields no progress in the case |x0| = |xn| because the crucial
property (4.2) fails to hold.) We have to show that f4(sut) ≥ f4(svt) in case (4.9);
this is the dual to case (4.10). We refer to Lemma 4.1 for details. From such an
infinite reduction we are going to extract a loop of length 2.

The infinite reduction sequence must finally contain steps of sort case (4.9) or
case (4.10) exclusively, as these are the only steps that may keep f1, . . . , f4 constant.
Because f1 is finally constant, the number of basins is bounded. By the pigeonhole
principle, infinitely many steps of the infinite reduction sequence take place in one
basin. Steps of sort case (4.9) take place with u0 overlapping the left wall of the
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basin; steps of sort case (4.10) take place with un overlapping the right wall of the
basin. Each step strictly increases the thickness of its assigned wall. As soon as a
wall is as thick as |un|+ |u0|, rewrite steps at opposite sides of the wall can be done
independently because redexes will no longer overlap. So an infinite reduction can be
extracted that starts from a single basin. If two steps of the same sort follow each
other, then vi = ui holds for all 1 ≤ i ≤ n− 1, a contradiction. Hence the steps of the
two kinds must alternate. By the same argument they must also overlap. However,
with that we have the required loop of length 2.

Theorem 1.2 now follows immediately from Lemma 3.1 and its dual and Lem-
mas 4.1 and 4.4.

5. A glimpse of practice. A few figures may illustrate the distribution of grid
rules u → v for |v| = 7. They are obtained using the author’s reimplementation
of Kurth’s sieve. There are 3,151,054 length increasing rule representatives in total.
They divide into 3,145,038 grid rules and 6,016 nongrid rules. As much as 3,004
nongrid rules have loops of length 1 and 57 have loops of length 2 but not of length 1.
Among the grid rules 2,736,925 rules satisfy #b(u) > #b(v) for some letter b; 7,118
rules have loops of length 1; 400,007 rules satisfy Lemma 3.1 or 3.3 or their duals; 964
rules satisfy one of Lemmas 3.2, 3.6, 3.7, or 4.1, or their duals; and the following 16
rules are proper, terminating instances of Lemma 4.4 or its dual:

abaabb→ aababba abbaab→ aabbaba baabb→ aabbbaa

baaabb→ abaabba baabab→ abaabba baabab→ abababa

baabbb→ ababbba bababb→ ababbba babbab→ ababbba

bababb→ abbabba babbbb→ abbbbba bbabbb→ abbbbba

bbcabc→ abbcbca bcabbc→ abcbbca babccb→ abbccba

bacbb→ acbbbac

Finally, the following 8 rules admit loops of length 2:

abaaab→ aabaaba baaab→ aababaa abaaba→ aababaa

baaaab→ abaaaba babbab→ abbabba bbaabb→ abbabba

bcaabc→ abcabca bcacb→ acbcbca

6. Total division orders. A division order [4] is an order > on strings over an
alphabet Σ such that

• s > t if s is a factor of t;
• if s > t, then usv > utv for all u, v ∈ Σ∗.

If s > t or t > s or s = t for all s, t ∈ Σ∗, then > is called total. Termination of a SRS
R is usually shown by constructing a total division order > such that u > v for each
rule u→ v of R. We say that in this case R is ordered by the total division order >.

Total division orders and grid rules are closely related by the following result of
Cohen and Scott.

Definition 6.1 (dominates, rational [1]). A string u ∈ Σ∗ is said to dominate
v ∈ Σ∗ if #b(u) > #b(v) for all b ∈ Σ. An order > ⊆ Σ∗ × Σ∗ is called rational if
u > v holds for all u, v ∈ Σ such that u dominates v.

Theorem 6.2 (Cohen and Scott [1]). Every total division order on strings is
rational.

Theorem 6.3. Every string rewriting rule that can be ordered by a total division
order is a grid rule.
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Proof. Assume that u→ v is not a grid rule. Then v dominates u, and so v > u
for every total division order > by Theorem 6.2. If > orders u→ v, then v > u > v,
a contradiction to irreflexivity of >.

In effect, this means that total division orders are irrelevant for the termination
problem of one-rule SRSs. Note, however, that Theorem 6.3 does not imply decid-
ability whether a rule can be ordered by a total division order.

7. Conclusion. Termination of SRSs is an undecidable property. Whether ter-
mination is undecidable even for one-rule SRSs stays an exciting open problem. This
paper solves this problem partially: Termination is decidable for the class of u → v,
where some letter from u occurs in v as often or less often. We call such rules grid
rules.

All rules that can be ordered by a total division order are grid rules (Theorem 6.3),
so a termination sieve can dispose of all total division orders. Even better: the only
interesting rules left are the nongrid rules. These can be enumerated directly, and
their number grows far slower than the total number of length increasing rules. Thus
the sieve becomes faster and finer and gives access to larger and more interesting
rules.

Acknowledgments. The idea to pursue this work was triggered by Kurth’s “Cri-
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Abstract. We study effectively given positive reals (more specifically, computably enumerable
reals) under a measure of relative randomness introduced by Solovay [manuscript, IBM Thomas J.
Watson Research Center, Yorktown Heights, NY, 1975] and studied by Calude, Hertling, Khous-
sainov, and Wang [Theoret. Comput. Sci., 255 (2001), pp. 125–149], Calude [Theoret. Comput. Sci.,
271 (2002), pp. 3–14], Kučera and Slaman [SIAM J. Comput., 31 (2002), pp. 199–211], and Downey,
Hirschfeldt, and LaForte [Mathematical Foundations of Computer Science 2001, Springer-Verlag,
Berlin, 2001, pp. 316–327], among others. This measure is called domination or Solovay reducibility
and is defined by saying that α dominates β if there are a constant c and a partial computable
function ϕ such that for all positive rationals q < α we have ϕ(q)↓< β and β−ϕ(q) � c(α− q). The
intuition is that an approximating sequence for α generates one for β whose rate of convergence is
not much slower than that of the original sequence. It is not hard to show that if α dominates β,
then the initial segment complexity of α is at least that of β.

In this paper we are concerned with structural properties of the degree structure generated by
Solovay reducibility. We answer a natural question in this area of investigation by proving the density
of the Solovay degrees. We also provide a new characterization of the random computably enumerable
reals in terms of splittings in the Solovay degrees. Specifically, we show that the Solovay degrees of
computably enumerable reals are dense, that any incomplete Solovay degree splits over any lesser
degree, and that the join of any two incomplete Solovay degrees is incomplete, so that the complete
Solovay degree does not split at all. The methodology is of some technical interest, since it includes
a priority argument in which the injuries are themselves controlled by randomness considerations.

Key words. randomness, computably enumerable reals, algorithmic information theory, Kol-
mogorov complexity, Solovay reducibility
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1. Introduction. In this paper we are concerned with effectively generated reals
in the interval (0, 1] and their relative randomness. In what follows, real and rational
will mean positive real and positive rational, respectively. It will be convenient to
work modulo 1, that is, identifying n+ α and α for any n ∈ ω and α ∈ (0, 1], and we
do this below without further comment.

Our basic objects are reals that are limits of computable increasing sequences
of rationals. We call such reals computably enumerable (c.e.), but they have also
been called recursively enumerable, left computable (by Ambos-Spies, Weihrauch, and
Zheng [1]), and left semicomputable. If, in addition to the existence of a computable
increasing sequence q0, q1, . . . of rationals with limit α, there is a total computable
function f such that α − qf(n) < 2−n for all n ∈ ω, then α is called computable.
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These and related concepts have been widely studied. In addition to the papers and
books mentioned elsewhere in this introduction, we may cite, among others, early
work of Rice [26], Lachlan [21], Soare [28], and Cĕıtin [8] and more recent papers by
Ko [17, 18], Calude, Coles, Hertling, and Khoussainov [5], Ho [16], and Downey and
LaForte [14].

A computer M is self-delimiting if, for each binary string σ, M(σ)↓ implies that
M(σ′) ↑ for all σ′ properly extending σ. It is universal if for each self-delimiting
computer N there is a constant c such that, for each binary string σ, if N(σ)↓, then
M(τ)↓= N(σ) for some τ with |τ | � |σ|+ c.

Fix a self-delimiting universal computer M . We can define Chaitin’s number
Ω = ΩM via

Ω =
∑

M(σ)↓
2−|σ|.

The properties of Ω relevant to this paper are independent of the choice of M . A c.e.
real is an Ω-number if it is ΩM for some self-delimiting universal computer M .

The c.e. real Ω is random in the canonical Martin-Löf sense. Recall that aMartin-
Löf test is a uniformly c.e. sequence {Ve : e > 0} of c.e. subsets of {0, 1}∗ such that
for all e > 0,

µ(Ve{0, 1}ω) � 2−e,

where µ denotes the usual product measure on {0, 1}ω. The string σ ∈ {0, 1}ω and
the real 0.σ are random or, more precisely, 1-random if σ /∈ ⋂e>0 Ve{0, 1}ω for every
Martin-Löf test {Ve : e > 0}.

An alternate characterization of the random reals can be given via the notion
of a Solovay test. We give a somewhat nonstandard definition of this notion, which
will be useful below. A Solovay test is a c.e. multiset {Ii : i ∈ ω} of intervals with
rational endpoints such that

∑
i∈ω |Ii| <∞, where |I| is the length of the interval I.

As Solovay [32] showed, a real α is random if and only if {i ∈ ω : α ∈ Ii} is finite for
every Solovay test {Ii : i ∈ ω}.

Many authors have studied Ω and its properties, notably Chaitin [10, 11, 12] and
Martin-Löf [25]. In the very long and widely circulated manuscript [32] (a fragment of
which appeared in [33]), Solovay carefully investigated relationships between Martin-
Löf-Chaitin prefix-free complexity, Kolmogorov complexity, and properties of random
languages and reals. See Chaitin [10] for an account of some of the results in this
manuscript.

Solovay discovered that several important properties of Ω (whose definition is
model-dependent) are shared by another class of reals he called Ω-like, whose definition
is model-independent. To define this class, he introduced the following reducibility
relation among c.e. reals, called domination or Solovay reducibility.

Definition 1.1. Let α and β be c.e. reals. We say that α dominates β, and
write β �S α, if there are a constant c and a partial computable function ϕ : Q → Q

such that for each rational q < α we have ϕ(q)↓< β and

β − ϕ(q) � c(α− q).
We write β <S α if β �S α and α �S β, and we write α ≡S β if α �S β and β �S α.

The notation �dom has sometimes been used instead of �S.
The prefix-free complexity H(τ) of a binary string τ is the length of the shortest

binary string σ such that M(σ) ↓= τ , where M is a fixed self-delimiting universal
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computer. (The choice of M does not affect the prefix-free complexity, up to a con-
stant additive factor.) Most of the statements about H(τ) made below also hold for
the standard Kolmogorov complexity K(τ). For more on the definitions and basic
properties of H(τ) and K(τ), see Chaitin [12], Calude [3], and Li and Vitanyi [24].
Among the many works dealing with these and related topics, and in addition to those
mentioned elsewhere in this paper, we may cite Solomonoff [30, 31], Kolmogorov [19],
Levin [22, 23], Schnorr [27], and the expository article by Calude and Chaitin [4].

As shown by Schnorr (see Chaitin [9]), a real α is random if and only if there is a
constant c such that H(α � n) > n−c for all n ∈ ω. (We identify a real α ∈ (0, 1] with
the infinite binary string σ such that α = 0.σ. The fact that certain reals have two
different dyadic expansions need not concern us here, since all such reals are rational.)
Solovay reducibility is naturally associated with randomness because of the following
fact, whose proof we sketch for completeness.

Theorem 1.2 (Solovay [32]). Let β �S α be c.e. reals. There is a constant k
such that H(β � n) � H(α � n) + k for all n ∈ ω.

Proof sketch. We first sketch the proof of the following lemma, implicit in [32]
and noted by Calude, Hertling, Khoussainov, and Wang [6].

Lemma 1.3. Let c ∈ ω. There is a constant k such that for all n � 1 and all
binary strings σ, τ of length n with |0.σ − 0.τ | < c2−n, we have |H(τ)−H(σ)| � k.

The proof of the lemma is relatively simple. We can easily write a program P
that, for each sufficiently long σ, generates the 2c+1 binary strings τ ′ of length n with
|0.σ − 0.τ ′| < c2−n. For any binary strings σ, τ of length n with |0.σ − 0.τ | < c2−n,
in order to compute τ it suffices to know a program for σ and the position of τ on the
list generated by P on input σ.

Turning to the proof of the theorem, let ϕ and c be as in Definition 1.1. Let αn =
0.(α � n). Since αn is rational and α− αn < 2−(n+1), we have β − ϕ(αn) < c2−(n+1).
Thus, by the lemma, there is a constant k such that H(β � n) � H(ϕ(αn)) + k for all
n � 1, which implies that H(β � n) � H(α � n) + k.

Solovay observed that Ω dominates all c.e. reals, and Theorem 1.2 implies that if
a c.e. real dominates all c.e. reals then it must be random. This led Solovay to define
a c.e. real to be Ω-like if it dominates all c.e. reals. The point is that the definition of
Ω-like seems quite model-independent (in the sense that it does not require a choice
of self-delimiting universal computer), as opposed to the model-dependent definition
of Ω. However, Calude, Hertling, Khoussainov, and Wang [6] showed that the two
notions coincide.

Theorem 1.4 (Calude, Hertling, Khoussainov, and Wang [6]). A c.e. real is
Ω-like if and only if it is an Ω-number.

This circle of ideas was completed recently by Kučera and Slaman [20], who proved
the converse to the fact that Ω-like reals are random.

Theorem 1.5 (Kučera and Slaman [20]). A c.e. real is random if and only if it
is Ω-like.

It is natural to seek to understand the c.e. reals under Solovay reducibility. A
useful characterization of this reducibility is given by the following lemma, which we
prove in the next section.

Lemma 1.6. Let α and β be c.e. reals. The following are equivalent.
1. β �S α.
2. For some computable sequence of rationals a0, a1, . . . such that

α =
∑
n∈ω

an
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there are a constant c and a computable sequence of rationals ε0, ε1, . . . < c such that

β =
∑
n∈ω

εnan.

3. For every computable sequence of rationals a0, a1, . . . such that α =
∑
n∈ω an

there are a constant c and a computable sequence of rationals ε0, ε1, . . . < c such that
β =

∑
n∈ω εnan.

Phrased another way, Lemma 1.6 says that the c.e. reals dominated by a given
c.e. real α essentially correspond to splittings of α under arithmetic addition.

Corollary 1.7. Let β �S α be c.e. reals. There are a c.e. real γ and a rational
c such that cα = β + γ.

Proof. Let a0, a1, . . . be a computable sequence of rationals such that α =∑
n∈ω an. Let c ∈ Q and ε0, ε1, . . . < c be as in Lemma 1.6. Define γ =

∑
n∈ω(c −

εn)an. Since each εn is less than c, the real γ is c.e., and of course β + γ = cα.
Solovay reducibility has a number of other beautiful interactions with arithmetic,

as we now discuss.
The relation �S is reflexive and transitive, and hence ≡S is an equivalence relation

on the c.e. reals. Thus we can define the Solovay degree [α] of a c.e. real α as its ≡S

equivalence class. (When we mention Solovay degrees below, we always mean Solovay
degrees of c.e. reals.) The Solovay degrees form an upper semilattice, with the join of
[α] and [β] being [α+β]=[αβ], a fact observed by Solovay and others, such as Calude,
Hertling, Khoussainov, and Wang [6]. (⊕ is definitely not a join operation here.) We
note the following slight improvement of this result. Recall that an upper semilattice
U is distributive if for all a0, a1, b ∈ U with b � a0 ∨ a1 there exist b0, b1 ∈ U such
that b0 ∨ b1 = b and bi � ai for i = 0, 1.

Lemma 1.8. The Solovay degrees of c.e. reals form a distributive upper semilattice
with [α] ∨ [β] = [α+ β] = [αβ].

Proof. Suppose that β �S α0 + α1. Let a
0
0, a

0
1, . . . and a

1
0, a

1
1, . . . be computable

sequences of rationals such that αi =
∑
n∈ω a

i
n for i = 0, 1. By Lemma 1.6, there

are a constant c and a computable sequence of rationals ε0, ε1, . . . < c such that
β =

∑
n∈ω εn(a

0
n + a

1
n). Let βi =

∑
n∈ω εna

i
n. Then β = β0 + β1 and, again by

Lemma 1.6, βi �S αi for i = 0, 1. This establishes distributivity.
To see that the join in the Solovay degrees is given by addition, we again apply

Lemma 1.6. Certainly, for any c.e. reals β0 and β1 we have βi �S β0 + β1 for i = 0, 1,
and hence [β0 + β1] �S [β0], [β1]. Conversely, suppose that β0, β1 � α. Let a0, a1, . . .
be a computable sequence of rationals such that α =

∑
n∈ω an. For each i = 0, 1

there are a constant ci and a computable sequence of rationals ε
i
0, ε

i
1, . . . < ci such

that βi =
∑
n∈ω ε

i
nan. Thus β0 + β1 =

∑
n∈ω(ε

0
n + ε

1
n)an. Since each ε

0
n + ε

1
n is less

than c0 + c1, a final application of Lemma 1.6 shows that β0 + β1 �S α.
The proof that the join in the Solovay degrees is also given by multiplication is a

similar application of Lemma 1.6.
There is a least Solovay degree, the degree of the computable reals, as well as

a greatest one, the degree of Ω. For proofs of these facts and more on c.e. reals
and Solovay reducibility, see, for instance, Chaitin [10, 11, 12], Calude, Hertling,
Khoussainov, and Wang [6], Calude and Nies [7], Calude [2], Kučera and Slaman [20],
and Downey, Hirschfeldt, and LaForte [15].

Despite the many attractive features of the Solovay degrees, their structure is
largely unknown. Downey, Hirschfeldt, and LaForte (to be submitted) have shown
that this structure is very complicated by proving that it has an undecidable first-order
theory.
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One question addressed in the present paper is whether the structure of the Solo-
vay degrees is dense. Indeed, up to now, it was not known even whether there is a
minimal Solovay degree. That is, intuitively, if a c.e. real α is not computable, must
there be a c.e. real that is also not computable, yet is strictly less random than α? In
the process of understanding a degree structure, the question of density has always
played a key role and has been one of the first to be addressed. For instance, the
Sacks Density Theorem (see [29]) was one of the earliest and most important results
in the study of the c.e. Turing degrees.

In this paper, we show that the Solovay degrees of c.e. reals are dense. To do this
we divide the proof into two parts. We prove that if α <S Ω, then there is a c.e. real
γ with α <S γ <S Ω, and we also prove that every incomplete Solovay degree splits
over each lesser degree.

The nonuniform nature of the argument is essential given the techniques we use,
since, in the splitting case, we have a priority construction in which the control of
the injuries is directly tied to the enumeration of Ω. The fact that if a c.e. real α
is Solovay-incomplete, then Ω must grow more slowly than α is what allows us to
succeed. (We will discuss this more fully in section 3.) This unusual technique is
of some technical interest and clearly cannot be applied to proving upwards density,
since in that case the top degree is the degree of Ω itself. To prove upwards density,
we use a different technique, taking advantage of the fact that, however we construct
a c.e. real, it is automatically dominated by Ω.

In light of these results, and further motivated by the general question of how
randomness can be produced, it is natural to ask whether the complete Solovay degree
can be split, or in other words, whether there exist nonrandom c.e. reals α and β such
that α+β is random. We give a negative answer to this question, thus characterizing
the random c.e. reals as those c.e. reals that cannot be written as the sum of two c.e.
reals of lesser Solovay degrees.

We remark that there are (non-c.e.) nonrandom reals whose sum is random; the
following is an example of this phenomenon. Define the real α by letting α(n) = 0 if n
is even and α(n) = Ω(n) otherwise. (Here we identify a real with its dyadic expansion
as above.) Define the real β by letting β(n) = 0 if n is odd and β(n) = Ω(n) otherwise.
Now α and β are clearly nonrandom, but α+ β = Ω is random.

Before turning to the details of the paper, we point out that there are other
reducibilities one can study in this context. Downey [13] and Downey, Hirschfeldt, and
LaForte [15] introduced two such reducibilities, sw-reducibility and rH-reducibility,
and showed, among other things, that the results of this paper also hold for rH-
reducibility. The proofs are essentially the same as those in this paper. Ultimately,
the basic reducibility we seek to understand is H-reducibility, where σ �H τ if H(σ �
n) � H(τ � n)+O(1). Not much is known about this directly, but it is again possible
to adapt the methods of this paper to prove the analogous results for H-reducibility.

2. Preliminaries. The following lemma, implicit in [32] and proved in [15],
provides an alternate characterization of Solovay reducibility, which is the one that
we will use below.

Lemma 2.1. Let α and β be c.e. reals, and let α0, α1, . . . and β0, β1, . . . be
computable increasing sequences of rationals converging to α and β, respectively. Then
β �S α if and only if there are a constant d and a total computable function f such
that for all n ∈ ω,

β − βf(n) < d(α− αn).
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Whenever we mention a c.e. real α, we assume that we have chosen a computable
increasing sequence α0, α1, . . . converging to α. The previous lemma guarantees that,
in determining whether one c.e. real dominates another, the particular choice of such
sequences is irrelevant. For convenience of notation, we adopt the convention that,
for any c.e. real α mentioned below, the expression αs − αs−1 is equal to α0 when
s = 0.

We will also make use of two more lemmas, the first of which has Lemma 1.6 as
a corollary.

Lemma 2.2. Let β �S α be c.e. reals and let α0, α1, . . . be a computable increasing
sequence of rationals converging to α. There is a computable increasing sequence
β̂0, β̂1, . . . of rationals converging to β such that for some constant c and all s ∈ ω,

β̂s − β̂s−1 < c(αs − αs−1).

Proof. Fix a computable increasing sequence β0, β1, . . . of rationals converging to
β, let d and f be as in Lemma 2.1, and let c > d be such that βf(0) < cα0. We may

assume without loss of generality that f is increasing. Define β̂0 = βf(0).
There must be an s0 > 0 for which βf(s0) − βf(0) < d(αs0 − α0), since otherwise

we would have

β − βf(0) = lims βf(s) − βf(0) � lims d(αs − α0) = d(α− α0),

contradicting our choice of d and f . It is now easy to define β̂1, . . . , β̂s0 so that

β̂0 < · · · < β̂s0 = βf(s0) and β̂s − β̂s−1 � d(αs − αs−1) < c(αs − αs−1) for all s � s0.
For example, if we let µ be the minimum value of d(αs − αs−1) for s � s0 and let t

be least such that β̂0 + d(αt − α0) < βf(s0) − 2−tµ, then we can define

β̂s+1 =





β̂s + d(αs+1 − αs) if s+ 1 < t,

βf(s0) − 2−(s+1)µ if t � s+ 1 < s0,

βf(s0) if s+ 1 = s0.

We can repeat the procedure in the previous paragraph with s0 in place of 0
to obtain an s1 > s0 and β̂s0+1, . . . , β̂s1 such that β̂s0 < · · · < β̂s1 = βf(s1) and

β̂s − β̂s−1 < c(αs − αs−1) for all s0 < s � s1.
Proceeding by recursion in this way, we define a computable increasing sequence

β̂0, β̂1, . . . of rationals with the desired properties.
We are now in a position to prove Lemma 1.6.
Lemma 1.6. Let α and β be c.e. reals. The following are equivalent.
1. β �S α.
2. For some computable sequence of rationals a0, a1, . . . such that

α =
∑
n∈ω

an,

there are a constant c and a computable sequence of rationals ε0, ε1, . . . < c such that

β =
∑
n∈ω

εnan.

3. For every computable sequence of rationals a0, a1, . . . such that α =
∑
n∈ω an

there are a constant c and a computable sequence of rationals ε0, ε1, . . . < c such that
β =

∑
n∈ω εnan.
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Proof. It is easy to see that 3⇒ 2⇒ 1. We prove that 1⇒ 3.
Suppose that β �S α. Given a computable sequence of rationals a0, a1, . . . such

that α =
∑
n∈ω an, let αn =

∑
i�n ai and apply Lemma 2.2 to obtain c and β̂0, β̂1, . . .

as in that lemma. Define εn = (β̂n−β̂n−1)a
−1
n . Now

∑
n∈ω εnan =

∑
n∈ω β̂n−β̂n−1 =

β, and for all n ∈ ω,
εn = (β̂n − β̂n−1)a

−1
n = (β̂n − β̂n−1)(αn − αn−1)

−1 < c.

We finish this section with a simple lemma which will be quite useful below.
Lemma 2.3. Let α �S β be c.e. reals. The following hold for all total computable

functions f and all k ∈ ω.
1. For each n ∈ ω there is an s ∈ ω such that either
(i) αt − αf(n) < k(βt − βn) for all t > s, or
(ii) αt − αf(n) > k(βt − βn) for all t > s.
2. There are infinitely many n ∈ ω for which there is an s ∈ ω such that

αt − αf(n) > k(βt − βn) for all t > s.
Proof. If there are infinitely many t ∈ ω such that αt − αf(n) � k(βt − βn) and

infinitely many t ∈ ω such that αt − αf(n) � k(βt − βn), then
α− αf(n) = limt αt − αf(n) = limt k(βt − βn) = k(β − βn),

which implies that α ≡S β.
If there are infinitely many t ∈ ω such that αt − αf(n) � k(βt − βn), then

α− αf(n) = limt αt − αf(n) � limt k(βt − βn) = k(β − βn).
So if this happens for all but finitely many n, then α �S β. (The finitely many n
for which α− αf(n) > k(β − βn) can be brought into line by increasing the constant
k.)

3. Main results. We now proceed with the proofs of our main results. We begin
by showing that every incomplete Solovay degree can be split over any lesser Solovay
degree.

Theorem 3.1. Let γ <S α <S Ω be c.e. reals. There are c.e. reals β0 and β1

such that γ <S β
i <S α for i = 0, 1 and β0 + β1 = α.

Proof. We want to build β0 and β1 so that γ �S β
i �S α for i = 0, 1, β

0+β1 = α,
and the following requirement is satisfied for each e, k ∈ ω and i < 2:

Ri,e,k : Φe total ⇒ ∃n(α− αΦe(n) � k(βi − βin)).
By Lemma 2.2 and the fact that γ/c ≡S γ for any rational c, we may assume without
loss of generality that 2(γs−γs−1) � αs−αs−1 for each s ∈ ω. (Recall our convention
that µ0 − µ−1 = µ0 for any c.e. real µ.)

In the absence of requirements of the form R1−i,e,k, it is easy to satisfy simulta-
neously all requirements of the form Ri,e,k: for each s ∈ ω, simply let βis = γs and
β1−i
s = αs − γs. In the presence of requirements of the form R1−i,e,k, however, we
cannot afford to be quite so cavalier in our treatment of β1−i; enough of α has to be
kept out of β1−i to guarantee that β1−i does not dominate α.

Most of the essential features of our construction are already present in the case
of two requirements Ri,e,k and R1−i,e′,k′ , which we now discuss. We assume that
Ri,e,k has priority over R1−i,e′,k′ and that both Φe and Φe′ are total. We will think
of the βj as being built by adding amounts to them in stages. Thus βjs will be the
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total amount added to βj by the end of stage s. At each stage s we begin by adding
γs − γs−1 to the current value of each β

j ; in the limit, this ensures that βj �S γ.

We will say that Ri,e,k is satisfied through n at stage s if Φe(n)[s] ↓ and αs −
αΦe(n) > k(β

i
s−βin). The strategy for Ri,e,k is to act whenever either it is not currently

satisfied or the least number through which it is satisfied changes. Whenever this
happens, Ri,e,k initializes R1−i,e′,k′ , which means that the amount of α − 2γ that
R1−i,e′,k′ is allowed to funnel into βi is reduced. More specifically, once R1−i,e′,k′ has
been initialized for the mth time, the total amount that it is thenceforth allowed to
put into βi is reduced to 2−m.

The above strategy guarantees that if R1−i,e′,k′ is initialized infinitely often, then
the amount put into βi by R1−i,e′,k′ (which in this case is all that is put into βi except
for the coding of γ) adds up to a computable real. In other words, βi ≡S γ <S α. But
it is not hard to argue, with the help of Lemma 2.3, that this means that there is a
stage s after which Ri,e,k is always satisfied and the least number through which it
is satisfied does not change. So we conclude that R1−i,e′,k′ is initialized only finitely
often, and that Ri,e,k is eventually permanently satisfied.

This leaves us with the problem of designing a strategy for R1−i,e′,k′ that respects
the strategy for Ri,e,k. The problem is one of timing. To simplify notation, let
α̂ = α− 2γ and α̂s = αs − 2γs. Since R1−i,e′,k′ is initialized only finitely often, there
is a certain amount 2−m that it is allowed to put into βi after the last time it is
initialized. Thus if R1−i,e′,k′ waits until a stage s such that α̂ − α̂s < 2−m, adding
nothing to βi until such a stage is reached, then from that point on it can put all of
α̂ − α̂s into βi, which of course guarantees its success. The problem is that, in the
general construction, a strategy working with a quota 2−m cannot effectively find an s
such that α̂− α̂s < 2−m. If it uses up its quota too soon, it may find itself unsatisfied
and unable to do anything about it.

The key to solving this problem (and the reason for the hypothesis that α <S Ω)
is the observation that, since the sequence Ω0,Ω1, . . . converges much more slowly
than the sequence α̂0, α̂1, . . . , Ω can be used to modulate the amount that R1−i,e′,k′
puts into βi. More specifically, at a stage s, if R1−i,e′,k′ ’s current quota is 2−m, then
it puts into βi as much of α̂s − α̂s−1 as possible, subject to the constraint that the
total amount put into βi by R1−i,e′,k′ since the last stage before stage s at which
R1−i,e′,k′ was initialized must not exceed 2−mΩs. As we will see below, the fact that
Ω >S α implies that there is a stage v after which R1−i,e′,k′ is allowed to put in all of
α̂− α̂v into βi.

In general, at a given stage s there will be several requirements, each with a
certain amount that it wants (and is allowed) to direct into one of the βj . We will
work backwards, starting with the weakest priority requirement that we are currently
considering. This requirement will be allowed to direct as much of α̂s − α̂s−1 as it
wants (subject to its current quota, of course). If any of α̂s − α̂s−1 is left then the
next weakest priority strategy will be allowed to act, and so on up the line.

We now proceed with the full construction. We say that Ri,e,k has stronger
priority than Ri′,e′,k′ if 2〈e, k〉+ i < 2〈e′, k′〉+ i′.

We say that Ri,e,k is satisfied through n at stage s if

Φe(n)[s]↓ ∧ αs − αΦe(n) > k(β
i
s − βin).

Let ni,e,ks be the least n through which Ri,e,k is satisfied at stage s, if such an n exists,
and let ni,e,ks =∞ otherwise.
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A stage s is e-expansionary if

max{n | ∀m � n(Φe(m)[s]↓)} > max{n | ∀m � n(Φe(n)[s− 1]↓)}.
Let q be the last e-expansionary stage before stage s (or let q = 0 if there have been
none). We say that Ri,e,k requires attention at stage s if s is an e-expansionary stage

and there is an r ∈ [q, s) such that either ni,e,kr =∞ or ni,e,kr �= ni,e,kr−1 .
If Ri,e,k requires attention at stage s, then we say that each requirement of weaker

priority than Ri,e,k is initialized at stage s.
Each requirement Ri,e,k has associated with it a c.e. real τ

i,e,k, which records the
amount put into β1−i for the sake of Ri,e,k.

We decide how to distribute δ = αs − αs−1 between β
0 and β1 at stage s as

follows.
1. Let j = s and ε = 2(γs − γs−1), and add γs − γs−1 to the current value of

each βi.
2. Let i < 2 and e, k ∈ ω be such that 2〈e, k〉 + i = j. Let m be the number

of times Ri,e,k has been initialized and let t be the last stage at which Ri,e,k was
initialized. Let

ζ = min(δ − ε, 2−(j+m)Ωs − (τ i,e,ks−1 − τ i,e,kt )).

(It is not hard to check that ζ is nonnegative.) Add ζ to ε and to the current values
of τ i,e,k and β1−i.

3. If ε = δ or j = 0, then add δ−ε to the current value of β0 and end the stage.
Otherwise, decrease j by one and go to step 2.

This completes the construction. Clearly, γ �S β
i �S α for i = 0, 1 and β

0+β1 =
α.

We now show by induction that each requirement initializes requirements of
weaker priority only finitely often and is eventually satisfied. Assume by induction
that Ri,e,k is initialized only finitely often. Let j = 2〈e, k〉 + i, let m be the number
of times Ri,e,k is initialized, and let t be the last stage at which Ri,e,k is initialized.
If Φe is not total then Ri,e,k is vacuously satisfied and eventually stops initializing
requirements of weaker priority, so we may assume that Φe is total. It suffices to
prove the following statements, which are clearly equivalent and imply that Ri,e,k is
satisfied:

1. lims n
i,e,k
s exists and is finite;

2. Ri,e,k eventually stops requiring attention.
Assume for a contradiction that Ri,e,k requires attention infinitely often. Since

Ω �S α, part 2 of Lemma 2.3 implies that there are v > u > t such that for all w > v
we have 2−(j+m)(Ωw−Ωu) > αw−αu. Furthermore, by the way the amount ζ added to
τ i,e,k at a given stage is defined in step 2 of the construction, τ i,e,ku −τ i,e,kt � 2−(j+m)Ωu
and τ i,e,kw−1 − τ i,e,ku � αw−1 − αu. Thus for all w > v,

αw − αw−1 = αw − αu − (αw−1 − αu)
< 2−(j+m)(Ωw − Ωu)− (αw−1 − αu) = 2−(j+m)Ωw − (2−(j+m)Ωu + αw−1 − αu)
� 2−(j+m)Ωw − (τ i,e,ku − τ i,e,kt + τ i,e,kw−1 − τ i,e,ku ) = 2−(j+m)Ωw − (τ i,e,kw−1 − τ i,e,kt ).

From this we conclude that, after stage v, the reverse recursion performed at each
stage never gets past j, and hence everything put into βi after stage v is put in either
to code γ or for the sake of requirements of weaker priority than Ri,e,k.
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Let τ be the sum of all τ1−i,e′,k′ such thatR1−i,e′,k′ has weaker priority thanRi,e,k.
Let sl > t be the lth stage at which Ri,e,k requires attention. If R1−i,e′,k′ is the (p+1)st
requirement on the priority list and p > j, then τ1−i,e′,k′−τ1−i,e′,k′

sl
� 2−(p+l)Ω. Thus

τ − τsl �
∑
p∈ω

2−(p+l)Ω = 2−lΩ � 2−l,

and hence τ is computable.
Putting together the results of the previous two paragraphs, we see that βi �S γ.

Since α �S γ, this means that α �S β
i. It now follows from Lemma 2.3 that there is

an n ∈ ω such that Ri,e,k is eventually permanently satisfied through n, and such that
Ri,e,k is eventually never satisfied through any n

′ < n. Thus lims ni,e,ks exists and is
finite, and hence Ri,e,k is satisfied and eventually stops requiring attention.

We now show that the Solovay degrees are upwards dense, which together with
the previous result implies that they are dense.

Theorem 3.2. Let γ <S Ω be a c.e. real. There is a c.e. real β such that
γ <S β <S Ω.

Proof. We want to build β �S γ to satisfy the following requirements for each
e, k ∈ ω:

Re,k : Φe total ⇒ ∃n(β − βΦe(n) � k(γ − γn))
and

Se,k : Φe total ⇒ ∃n(Ω− ΩΦe(n) � k(β − βn)).
As in the previous proof, the analysis of an appropriate two-strategy case will be

enough to outline the essentials of the full construction. Let us consider the strategies
Se,k and Re′,k′ , the former having priority over the latter. We assume that both Φe
and Φe′ are total.

The strategy for Se,k is basically to make β look like γ. At each point of the
construction, Re′,k′ has a certain fraction of Ω that it is allowed to put into β. (This
is in addition to the coding of γ into β, of course.) We will say that Se,k is satisfied
through n at stage s if Φe(n)[s]↓ and Ωs−ΩΦe(n) > k(βs−βn). Whenever either it is
not currently satisfied or the least number through which it is satisfied changes, Se,k
initializes Re′,k′ , which means that the fraction of Ω that Re′,k′ is allowed to put into
β is reduced.

As in the previous proof, if Se,k is not eventually permanently satisfied through
some n, then the amount put into β by Re′,k′ is computable, and hence β ≡S γ. But,
as before, this implies that there is a stage after which Se,k is permanently satisfied
through some n and never again satisfied through any n′ < n. Once this stage has
been reached, Re′,k′ is free to code a fixed fraction of Ω into β, and hence it too
succeeds.

We now proceed with the full construction. We say that a requirement Xe,k has
stronger priority than a requirement Ye′,k′ if either 〈e, k〉 < 〈e′, k′〉 or 〈e, k〉 = 〈e′, k′〉,
X = R, and Y = S.

We say that Re,k is satisfied through n at stage s if Φe(n)[s]↓ and
βs − βΦe(n) > k(γs − γn).

We say that Se,k is satisfied through n at stage s if Φe(n)[s]↓ and
Ωs − ΩΦe(n) > k(βs − βn).
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For a requirement Xe,k, let n
Xe,k
s be the least n through which Xe,k is satisfied at

stage s, if such an n exists, and let n
Xe,k
s =∞ otherwise.

As before, a stage s is e-expansionary if

max{n | ∀m � n(Φe(m)[s]↓)} > max{n | ∀m � n(Φe(n)[s− 1]↓)}.
Let Xe,k be a requirement and let q be the last e-expansionary stage before stage s
(or let q = 0 if there have been none). We say that Xe,k requires attention at stage s

if s is an e-expansionary stage and there is an r ∈ [q, s) such that either nXe,k
r = ∞

or n
Xe,k
r �= nXe,k

r−1 .
At stage s, proceed as follows. First add γs − γs−1 to the current value of β. If

no requirement requires attention at stage s, then end the stage. Otherwise, let Xe,k
be the strongest priority requirement requiring attention at stage s. We say that Xe,k
acts at stage s. If X = S, then initialize all weaker priority requirements and end the
stage. If X = R, then let j = 〈e, k〉 and let m be the number of times that Re,k has
been initialized. If s is the first stage at which Re,k acts after the last time it was
initialized, then let t be the last stage at which Re,k was initialized (or let t = 0 if
Re,k has never been initialized), and otherwise let t be the last stage at which Re,k
acted. Add 2−(j+m)(Ωs − Ωt) to the current value of β and end the stage.

This completes the construction. Since β is bounded by γ+
∑
i�0 2

−iΩ = γ+2Ω,
it is a well-defined c.e. real. Furthermore, γ �S β.

We now show by induction that each requirement initializes requirements of
weaker priority only finitely often and is eventually satisfied. Assume by induction
that there is a stage u such that no requirement of stronger priority than Xe,k re-
quires attention after stage u. If Φe is not total, then Xe,k is vacuously satisfied and
eventually stops requiring attention, so we may assume that Φe is total. It suffices to
prove the following statements, which are clearly equivalent and imply that Xe,k is
satisfied:

1. lims n
Xe,k
s exists and is finite;

2. Xe,k eventually stops requiring attention;
3. Xe,k acts only finitely often.
First suppose that X = R. Let j = 〈e, k〉 and let m be the number of times that

Re,k is initialized. (Since Re,k is not initialized at any stage after stage u, this number
is finite.) Suppose that Re,k acts infinitely often. Then the total amount added to β
for the sake of Re,k after any stage v > u is greater than or equal to 2

−(j+m)(Ω−Ωv),
and hence β ≡S 2

−(j+m)Ω ≡S Ω �S γ. It now follows from Lemma 2.3 that there is
an n ∈ ω such that Re,k is eventually permanently satisfied through n, and such that
Re,k is eventually never satisfied through n

′ < n. Thus lims n
Re,k
s exists and is finite,

and hence Re,k is satisfied and eventually stops requiring attention.
Now suppose that X = S and Se,k acts infinitely often. If v > u is the mth

stage at which Se,k acts then the total amount added to β after stage v for purposes
other than coding γ is bounded by

∑
i�0 2

−(i+m)Ω < 2−m+1. This means that β ≡S

γ �S Ω. It now follows from Lemma 2.3 that there is an n ∈ ω such that Se,k
is eventually permanently satisfied through n, and such that Se,k is eventually never

satisfied through n′ < n. Thus lims n
Se,k
s exists and is finite, and hence Se,k is satisfied

and eventually stops requiring attention.
Combining Theorems 3.1 and 3.2, we have the following result.
Theorem 3.3. The Solovay degrees of c.e. reals are dense.
We finish by showing that the hypothesis that α <S Ω in the statement of Theo-

rem 3.1 is necessary. This fact will follow easily from a stronger result which shows
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that, despite the upwards density of the Solovay degrees, there is a sense in which the
complete Solovay degree is very much above all other Solovay degrees. We begin with
a lemma giving a sufficient condition for domination.

Lemma 3.4. Let α and β be c.e. reals and let α0, α1, . . . and β0, β1, . . . be com-
putable increasing sequences of rationals converging to α and β, respectively. Let f be
an increasing total computable function and let k > 0 be a natural number. If there
are infinitely many s ∈ ω such that k(α − αs) > β − βf(s), but only finitely many
s ∈ ω such that k(αt − αs) > βf(t) − βf(s) for all t > s, then β �S α.

Proof. By taking βf(0), βf(1), . . . instead of β0, β1, . . . as an approximating se-
quence for β, we may assume that f is the identity.

By hypothesis, there is an r ∈ ω such that for all s > r there is a t > s with
k(αt−αs) � βt−βs. Furthermore, there is an s0 > r such that k(α−αs0) > β−βs0 .
Given si, let si+1 be the least number greater than si such that k(αsi+1 − αsi) �
βsi+1

− βsi .
Assuming by induction that k(α− αsi) > β − βsi , we have

k(α− αsi+1) = k(α− αsi)− k(αsi+1
− αsi) > β − βsi − (βsi+1

− βsi) = β − βsi+1
.

Thus s0 < s1 < · · · is a computable sequence such that k(α − αsi) > β − βsi for all
i ∈ ω.

Now define the computable function g by letting g(n) be the least si that is greater
than or equal to n. Then β − βg(n) < k(α − αg(n)) � k(α − αn) for all n ∈ ω, and
hence β �S α.

Theorem 3.5. Let α and β be c.e. reals and let α0, α1, . . . and β0, β1, . . . be
computable increasing sequences of rationals converging to α and β, respectively. Let
f be an increasing total computable function and let k > 0 be a natural number. If β
is random and there are infinitely many s ∈ ω such that k(α− αs) > β − βf(s), then
α is random.

Proof. As in Lemma 3.4, we may assume that f is the identity. If α is rational
then we can replace it with a nonrational computable real α′ such that α′−α′s � α−αs
for all s ∈ ω, so we may assume that α is not rational.

We assume that α is nonrandom and there are infinitely many s ∈ ω such that
k(α−αs) > β − βs, and we show that β is nonrandom. The idea is to take a Solovay
test A = {Ii : i ∈ ω} such that α ∈ Ii for infinitely many i ∈ ω and use it to build a
Solovay test B = {Ji : i ∈ ω} such that β ∈ Ji for infinitely many i ∈ ω.

Let

U = {s ∈ ω | k(α− αs) > β − βs}.
Except in the trivial case in which β ≡S α, Lemma 2.3 guarantees that U is ∆

0
2. Thus

a first attempt at building B could be to run the following procedure for all i ∈ ω in
parallel. Look for the least t such that there is an s < t with s ∈ U [t] and αs ∈ Ii.
If there is more than one number s with this property then choose the least among
such numbers. Begin to add the intervals

[βs, βs + k(αs+1 − αs)], [βs + k(αs+1 − αs), βs + k(αs+2 − αs)], . . .(∗)
to B, continuing to do so as long as s remains in U and the approximation of α
remains in Ii. If the approximation of α leaves Ii, then end the procedure. If s leaves
U , say at stage u, then repeat the procedure (only considering t � u, of course).

If α ∈ Ii, then the variable s in the above procedure eventually assumes a value in
U . For this value, k(α−αs) > β−βs, from which it follows that k(αu−αs) > β−βs
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for some u > s, and hence that β ∈ [βs, βs + k(αu − αs)]. So β must be in one of the
intervals (∗) added to B by the above procedure.

Since α is in infinitely many of the Ii, running the above procedure for all i ∈ ω
guarantees that β is in infinitely many of the intervals in B. The problem is that
we also need the sum of the lengths of the intervals in B to be finite, and the above
procedure gives no control over this sum, since it could easily be the case that we start
working with some s, see it leave U at some stage t (at which point we have already
added to B intervals whose lengths add up to αt−1 − αs), and then find that the
next s with which we have to work is much smaller than t. Since this could happen
many times for each i ∈ ω, we would have no bound on the sum of the lengths of the
intervals in B.

This problem would be solved if we had an infinite computable subset T of U .
For each Ii, we could look for an s ∈ T such that αs ∈ Ii, and then begin to add the
intervals (∗) to B, continuing to do so as long as the approximation of α remained
in Ii. (Of course, in this easy setting, we could also simply add the single interval
[βs, βs + k |Ii|] to B.) It is not hard to check that this would guarantee that if α ∈ Ii
then β is in one of the intervals added to B, while also ensuring that the sum of the
lengths of these intervals is less than or equal to k |Ii|. Following this procedure for
all i ∈ ω would give us the desired Solovay test B. Unless β �S α, however, there is
no infinite computable T ⊆ U , so we use Lemma 3.4 to obtain the next best thing.

Let

S = {s ∈ ω | ∀t > s(k(αt − αs) > βt − βs)}.

If β �S α then β is nonrandom, so, by Lemma 3.4, we may assume that S is infinite.
Note that k(α−αs) � β − βs for all s ∈ S. In fact, we may assume that k(α−αs) >
β − βs for all s ∈ S, since if k(α − αs) = β − βs, then kα and β differ by a rational
amount, and hence β is nonrandom.

The set S is co-c.e. by definition, but it has an additional useful property. Let

S[t] = {s ∈ ω | ∀u ∈ (s, t](k(αu − αs) > βu − βs)}.

If s ∈ S[t− 1]− S[t], then no u ∈ (s, t) is in S, since for any such u we have

k(αt − αu) = k(αt − αs)− k(αu − αs) � βt − βs − (βu − βs) = βt − βu.

In other words, if s leaves S at stage t then so do all numbers in (s, t).
To construct B, we run the following procedure Pi for all i ∈ ω in parallel. Note

that B is a multiset, so we are allowed to add more than one copy of a given interval
to B.

1. Look for an s ∈ ω such that αs ∈ Ii.
2. Let t = s+ 1. If αt /∈ Ii, then terminate the procedure.
3. If s /∈ S[t], then let s = t and go to step 2. Otherwise, add the interval

[βs + k(αt−1 − αs), βs + k(αt − αs)]

to B, increase t by one, and repeat step 3.
This concludes the construction of B. We now show that the sum of the lengths

of the intervals in B is finite and that β is in infinitely many of the intervals in B.
For each i ∈ ω, let Bi be the set of intervals added to B by Pi and let li be the

sum of the lengths of the intervals in Bi. If Pi never leaves step 1, then Bi = ∅. If
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Pi eventually terminates then li � k(αt − αs) for some s, t ∈ ω such that αs, αt ∈ Ii,
and hence li � k |Ii|. If Pi reaches step 3 and never terminates, then α ∈ Ii and
li � k(α−αs) for some s ∈ ω such that αs ∈ Ii, and hence again li � k |Ii|. Thus the
sum of the lengths of the intervals in B is less than or equal to k

∑
i∈ω |Ii| <∞.

To show that β is in infinitely many of the intervals in B, it is enough to show
that, for each i ∈ ω, if α ∈ Ii then β is in one of the intervals in Bi.

Fix i ∈ ω such that α ∈ Ii. Since α is not rational, αu ∈ Ii for all sufficiently large
u ∈ ω, so Pi must eventually reach step 3. By the properties of S discussed above,
the variable s in the procedure Pi eventually assumes a value in S. For this value,
k(α − αs) > β − βs, from which it follows that k(αu − αs) > β − βs for some u > s,
and hence that β ∈ [βs, βs + k(αu −αs)]. So β must be in one of the intervals (∗), all
of which are in Bi.

Corollary 3.6. If α0 and α1 are c.e. reals such that α0+α1 is random then at
least one of α0 and α1 is random.

Proof. Let β = α0+α1. For each s ∈ ω, either 3(α0−α0
s) > β−βs or 3(α1−α1

s) >
β−βs, so for some i < 2 there are infinitely many s ∈ ω such that 3(αi−αis) > β−βs.
By Theorem 3.5, αi is random.

Combining Theorem 3.1 and Corollary 3.6, we have the following results, the
second of which also depends on Theorem 1.5.

Theorem 3.7. A c.e. real γ is random if and only if it cannot be written as α+β
for c.e. reals α, β <S γ.

Theorem 3.8. Let d be a Solovay degree of c.e. reals. The following are equiva-
lent:

1. d is incomplete.
2. d splits.
3. d splits over any lesser Solovay degree.
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Abstract. We study space complexity in the framework of propositional proofs. We consider a
natural model analogous to Turing machines with a read-only input tape and such popular proposi-
tional proof systems as resolution, polynomial calculus, and Frege systems. We propose two different
space measures, corresponding to the maximal number of bits, and clauses/monomials that need to be
kept in the memory simultaneously. We prove a number of lower and upper bounds in these models,
as well as some structural results concerning the clause space for resolution and Frege systems.
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1. Introduction. Complexity of propositional proofs plays as important a role
in the theory of feasible proofs as the role played by the complexity of Boolean circuits
in the theory of efficient computations. It is also well recognized that there exists a
very productive cross-fertilization of techniques between the two fields. Partly because
of this similarity, most of the research in the proof-complexity area concentrated on
complexity measures related to size, which is the most interesting measure in the
circuit complexity framework. In other words, the main effort in proof complexity
was invested in investigating the amount of time (or at least time-like resources)
taken by proofs; we recommend the excellent recent survey [BP98] for further reading
on this subject.

During the workshop “Complexity Lower Bounds” held at the Fields Institute in
Toronto in 1998, A. Haken raised the question of whether something intelligent can
be said about the amount of space taken by propositional proofs. Quite surprisingly,
it turned out that this very natural question had been virtually untouched in the
past. Apparently, the only early paper devoted to the space of proofs is [Koz77], but
it dealt only with equational theories involving no propositional connectives.

Recently, Esteban and Toran [ET99] proposed a convenient definition of space
complexity for resolution which measures the number of clauses to be kept simulta-
neously in the memory to infer the tautology.1 This model is analogous to a Turing
machine computation, with a special read-only input tape from which the axioms can
be downloaded to the working memory when needed and erased from the working
memory as many times as necessary. They showed some upper and lower bounds for
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1Throughout this paper, all propositional systems will prove that φ is a tautology by actually
proving that its negation, ¬φ, is unsatisfiable.
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clause space (see section 3) and noticed the connection between the clause complexity
for resolution and the pebbling game on the graph of a derivation.

Our goals in this paper are to generalize the natural notion of space complexity
to other propositional proof systems and complexity measures and to research its
properties. The first question arising is how to measure the memory content at any
given moment of time for a specified proof system. Recall (see, e.g., [Kra95]) that
the most customary measures for size complexity of propositional proofs are the bit
size and the number of lines. Of these two, the bit size is by far more important, and
can be defined analogously, and naturally, in the context of space complexity. The
only simplification we allowed ourselves is in fact customary for the size complexity as
well. Namely, instead of the bit space we consider the variable space (Definition 3.3)
which is the overall number of occurrences of variables. This changes the complexity
only by at most a logarithmic factor but makes things substantially cleaner.

It turns out that the line complexity is less adequate a measure for space com-
plexity than it is a size measure. The reason is quite simple: if the language of the
proof system is sufficiently strong and allows unbounded fan-in AND gates, then one
gets only trivial results. Specifically, we can prove everything that is provable with
just O(1) memory cells, one of them containing a big AND of all formulae derived at
previous steps.

One notable proof system that is not closed under the AND operation is resolution,
in which case lines are just clauses. In the current paper we in particular show that
the clause complexity, as opposed to the line complexity, makes perfect sense even
for rather strong systems and can be considered as its natural replacement in space-
complexity studies.

It turns out that all tautologies can be proven within polynomial space for any
“reasonable” space measure. Specifically, every disjunctive normal form tautology in
n variables already has a resolution proof with the clause space (n + 1) [ET99], and
this upper bound trivially holds for stronger proof systems. This in itself implies a
quadratic upper bound on the variable space, but for the case of Frege systems we are
able to improve it to a linear upper bound in the number of variables (Theorem 6.3).

These upper bounds determine the range of parameters in which the whole story
develops. We ask which tautologies indeed require that much space and which can be
proved within, say, (quasi)logarithmic space resources. We propose some lower bound
techniques that in many cases allow us to answer this question for specific tautologies,
proof systems, and space measures. It is worth noting that all these techniques are
purely semantic in nature and thus can be applied to stronger semantic versions of the
proof systems in question (see definitions in section 3.2). Let us also point out that
it is not quite clear to which extent semantic versions of propositional proof systems
are actually stronger than ordinary ones in the context of space complexity. On the
contrary, we show for our weakest proof system (resolution) and for our strongest one
(Frege system) that the space complexity differs from its semantic analogue by at
most a constant multiplicative factor (Theorem 3.7, Corollary 6.6).

For many good reasons, bounded fan-in conjunctive normal forms (CNFs) (like
Tseitin’s tautologies) are always preferred in proving lower bounds or separation re-
sults. For tautologies from this class (and in the clause space model) we were able to
prove strong lower bounds only for resolution (Theorem 3.18, Corollary 3.27.)2

Finally, we prove one lower bound in the variable space model that does not
follow from our clause space bounds. Our argument applies in parallel to both

2Corollary 3.27 was also independently proved in [Tor99].
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resolution and polynomial calculus (abbreviated throughout the paper by PC), and
this situation is already familiar from the proof size complexity. For example, [CEI96]
proved that every resolution proof of size S can be transformed into a PC proof of
degree O(

√
n logS), and [IPS97] used essentially the same argument for showing that

every PC proof of size S can be also transformed into another PC proof of degree
O(
√
n logS). For that reason we find it very instructive to introduce a natural min-

imal common extension of resolution and PC called polynomial calculus augmented
with resolution (PCR) that is at least as efficient as resolution in terms of proof size
and space. The above-cited results [CEI96, IPS97] can then be considered as specifi-
cations of one general theorem about PCR which says that the degree of every size
S PCR proof can be reduced to O(

√
n logS). Our quadratic lower bounds for the

variable space are also very naturally formulated and proved in terms of this new
system (Theorem 5.1).

1.1. Summary of results. We introduce the clause space and variable space
measures for resolution and PC. The clause space of a proof is the maximal number
of clauses/monomials that need to be kept in the memory during the verification of a
proof, and the variable space is the maximal number of overall symbols that need to
be kept during such a verification.

We prove tight lower bounds for resolution clause space for a variety of formulas
that includes the pigeonhole principle, counting principles, and several other inter-
esting cases. This is done by proving a general lower bound that applies to all these
cases. Via a different technique, we present a lower bound for the graph-based Tseitin
tautologies that is linear in the number of variables appearing in this formula, and
hence optimal.

For PC we prove nearly optimal (up to a small multiplicative constant) lower
bounds for wide tautologies that include the pigeonhole principle. For this proof we
use more complicated techniques than those used for the case of resolution. We show
that these techniques are needed by proving that, for some cases, PC is strictly more
efficient than resolution.

Using our clause space lower bounds for resolution and PC, we derive nearly
optimal (up to a small multiplicative constant) lower bounds for the variable space of
wide tautologies, such as the pigeonhole principle.

Finally, we prove linear, and hence optimal, upper bounds on the variable space
of Frege proofs for any tautology.

1.2. Paper organization. Following several general definitions (section 2) we
define the resolution clause space measure and prove lower bounds for it in section 3.
In section 4 we define PC and its extension to multivalued logic and prove our clause
space lower bounds for this system. The variable space lower bounds for resolution and
PC appear in section 5. Finally, we present optimal upper bounds for Frege variable
space in section 6 and conclude with some interesting open problems (section 7).

2. General definitions. Let x be a Boolean variable, i.e., a variable that ranges
over the set {0, 1}. Throughout this paper we shall identify 1 with True and 0 with
False. A literal of x is either x (denoted sometimes as x1) or x̄ (denoted sometimes
as x0). A clause is a disjunction of literals. We write xε ∈ C iff the clause C contains
the literal xε. A CNF formula is a set of clauses.

For any Boolean function f : {0, 1}n → {0, 1}, V ars(f) will denote its set of
variables. An assignment to f is a mapping α : V ars(f) → {0, 1}. A restriction
is a mapping ρ : V ars(f) → {0, 1, �}. We denote by |ρ| the number of assigned
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variables, |ρ| = |ρ−1({0, 1})|. We say that a restriction ρ′ extends ρ iff they coincide
on ρ−1({0, 1}).

The restriction of f by ρ, denoted f |ρ, is the Boolean function obtained from f
by setting the value of each x ∈ ρ−1({0, 1}) to ρ(x) and leaving each x ∈ ρ−1(�) as a
variable.

We say that an assignment α satisfies f if f(α) = 1. For Boolean functions
f1, . . . , fk, g we say that f1, . . . , fk semantically imply g, f1, . . . , fk |= g if every as-

signment to V
def
= V ars(f1)∪ · · · ∪V ars(fk)∪V ars(g) satisfying f1, . . . , fk satisfies g

as well (i.e., for all α ∈ {0, 1}V (f1(α) = · · · = fk(α) = 1⇒ g(α) = 1)). For F ,G, two
sets of functions, we say that F implies G (F |= G) if, for all g ∈ G, F |= g.

Notation. Throughout this paper, a, b will denote Boolean constants, x, y, z will
denote Boolean variables; f, g, h will denote functions; ϕ,ψ will denote formulas;
A,B,C,D will denote clauses; α, β will denote assignments; and ρ will denote re-
strictions. Calligraphic letters A,M,N , T will denote sets of formulas. For n, a

nonnegative integer, let [n]
def
= {1, 2, . . . , n}. For M, a set, we denote by |M| its

cardinality.

3. Resolution clause space. In this section we prove lower bounds for reso-
lution clause space for a number of principles which include various modifications of
the pigeonhole principle, counting principles, and the principle GTn. (The latter was
used in the recent work of [BG99] to produce a tautology with large minimal proof
width and polynomially bounded proof size.) These results follow from a general
lower bound for semiwide tautologies, also introduced in this section (Theorem 3.13).
We also show how to transform any semiwide tautology (and, in particular, any of
the above mentioned examples) to an equivalent 3-CNF form while preserving clause
space hardness (Theorem 3.18).

We will start by giving definitions of the resolution clause space, proceed to show
the equivalence of semantic and syntactic resolution, and then prove the lower bounds.

Notation. Throughout section 3 we do not distinguish between a clause C and
the Boolean function computed by it.

3.1. Resolution clause space—definitions. Recall that a CNF formula is a
set of clauses. The resolution rule is the following derivation rule.

Resolution rule. Derive A ∨ B from {A ∨ x,B ∨ x}, where A,B are any clauses
and x is any variable.

Let T = {C1, C2, . . . , Cm} be a CNF formula over n variables. A resolution proof
(or derivation) of a clause E from T is a sequence of clauses π = {D1, D2 . . . , Ds}
such that the last clause is E and each Di is either some initial clause Cj ∈ T or is
derived from previous clauses using the resolution rule. A resolution refutation of T
is a resolution derivation of the empty clause, 0 from T . Notice that by the definition
of the resolution rule, all lines in a resolution proof must be clauses. Notice that every
refutation gives rise to a labeled directed acyclic graph, called the refutation DAG.
Each node in this graph is labeled by a clause of the proof. The sources are labeled
by C ∈ T , the single sink by 0, and each node in the middle is connected to the two
clauses that were used to derive it.

The definition of the resolution clause space was first given in [ET99]. We recast
it here in slightly different terms (so that it will be easier for us to generalize this
definition for stronger proof systems in the forthcoming sections).

Suppose we are given a resolution proof from T and wish to verify it using a
minimal amount of memory. The proof π, as well as the CNF T , are written on a
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read-only memory tape. We keep in our working memory a subset of the clauses in
the proof (starting with the empty set), and at each time step we either add a clause
C ∈ T to our memory, or apply a single resolution derivation to two clauses in the
memory, and add the resulting clause to it, or remove an unnecessary clause from the
memory. The clause space of the proof π is the maximal number of clauses we need
to keep at some time during the verification of the proof. Of course, there are many
ways to verify a single proof (e.g., we may keep all clauses in the proof, in which case
the space will be |π|), and we naturally define the space to be the minimal one over
all possible verifications of π. Finally, the resolution clause space of T is the minimal
space of a refutation π of T (if such a refutation exists, and ∞ otherwise).

We now present a formal definition of the clause space that captures our intuition
and will be easy to work with rigorously. We start with a different definition of a
resolution proof that exposes the clause space naturally. Comparing this definition
with our previous one, we see they are equivalent in size, up to a polynomial factor.

Definition 3.1 (syntactical resolution derivation). A configuration is a set of
clauses. A proof π from a CNF T is a sequence of configurations M0, . . . ,Ms such
that M0 = ∅ and, for all t ∈ [s], Mt is obtained from Mt−1 by one of the following
rules:

Axiom Download. Mt :=Mt−1 ∪ C for some clause C ∈ T ;
Memory erasing. Mt :=Mt−1 −M′ for some M′ ⊆Mt−1;
Inference. Mt := Mt−1 ∪ C, for some C obtained by a single

application of the resolution rule to two clauses in Mt−1.
We use the notation M ❀ M′ to mean that M′ is the immediate successor of M
in a derivation. If Ms = {0} (the empty clause), then the derivation is called a
refutation of T .

Definition 3.2 (clause space). The clause space of a set of configurations π =
{M0, . . . ,Ms} is

CSpace(π)
def
= max{|Mi| : i ∈ [s]}.

The resolution clause space of a CNF T is

CSpace(T ) def
= min{CSpace(π)},

where the minimum is taken over all refutations of T , and is defined to be ∞ if no
such refutation exists (i.e., T is satisfiable).

Although we will prove variable space lower bounds only in section 5 (and in
this section concentrate on clause space lower bounds), we nonetheless present its
definition now (for the sake of coherence).

Definition 3.3 (variable space). The variable space of a configuration M is∑
C∈M |C|, where |C| is the number of literals in C. The variable space of a set of

configurations π = {M0, . . . ,Ms} is

V SpaceR(π)
def
= max

{ ∑
C∈Mi

|C| : i ∈ [s]
}
.

The resolution variable space of a CNF T is

V SpaceR(T ) def
= min{V SpaceR(π)},
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where the minimum is taken over all refutations π of T , and is defined to be ∞ if no
such refutation exists (i.e., T is satisfiable).

As we already mentioned, the research of clause space in resolution was started by
Esteban and Toran in [ET99]. They in particular defined the following tautologies3

CTn and showed hardness of their proof in terms of clause space.
Definition 3.4 (COMPLETE-TREE tautologies). CTn is the following set of

axioms:

{xε11 ∨ xε22 ∨ · · · ∨ xεnn | 'ε ∈ {0, 1}n } .

They also gave an upper bound for any tautology T over n variables. (We state
it in our language.)

Theorem 3.5 (see [ET99]). If T is a contradictory set of clauses over n vari-
ables, then CSpace(T ) ≤ n+ 1.

This bound is tight for the principle CTn.
CTn contains an exponential number of axioms. In this section we define the class

of semiwide tautologies of polynomial size which are hard to refute for resolution
in terms of clause space. This class contains such popular principles as PHPmn ,
onto− PHPmn , Countp, GTn. We also show via a slightly different approach the
space hardness of Tseitin tautologies for expander graphs.

3.2. Equivalence of syntactic and semantic resolution. All our lower
bounds in this paper will work for semantical proof systems, which are stronger
versions of the regular proof systems. In this subsection we define semantical res-
olution and then prove that, with respect to clause space, syntactical and semantical
derivations are equivalent, up to a constant factor.

We start by pointing out that the inference rule of Definition 3.1 is sound ; i.e.,
if Mt was derived from Mt−1 by an application of this rule, then Mt−1 |= Mt.
The semantical resolution proof system replaces this rule by the following stronger
semantical inference rule.

Semantical Inference. Mt := Mt−1 ∪ C for some C such that
Mt−1 |= C.

The definition of proof space in semantical resolution is analogous to that of the
syntactical resolution system. Denote by CSpacesem(T ) the clause space of refuting
T in semantical resolution.

The semantical inference rule generalizes the inference rule, and hence any syn-
tactical resolution derivation is also a semantical one. Notice that when it comes to
size, semantical resolution is much stronger than syntactical resolution because once
Mt is unsatisfiable, we can derive 0 in a single step. We will now prove that with
respect to space, there is no big difference between the two, and they are equivalent
up to a constant factor.

A CNF formula is minimal unsatisfiable if it is unsatisfiable and removing any
clause from it will make it satisfiable. We will need a very useful theorem, due to
Tarsi [Tar], which originally appeared in [AL86].

Theorem 3.6 (Tarsi’s theorem). If T is a minimal unsatisfiable CNF formula
on n variables and m clauses, then m > n.

Proof. Consider the following bipartite graph on T × V ars(T ): a clause C is
connected to a variable x iff x appears in C (either as a positive or negative literal).

3Throughout the paper we assume that all tautologies are represented in the negated form of a
contradictory CNF T .
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Clearly, there is no matching from T to V ars(T ) in this graph because the formula
is unsatisfiable. Hence, by Hall’s theorem, there must be some set S ⊂ T such that
|N(S)| < |S|. Let S be such a set of maximal size. By the maximality of S, for any
V ⊆ T − S we have |N(V )−N(S)| ≥ |V |. Thus there is a matching from T − S into
V ars(T )−N(S). By the minimal unsatisfiability of T , if S �= T , then S is satisfiable,
and T −S is satisfiable by its matching into V ars(T )−N(S). Thus we conclude that
S = T and hence m = |S| = |T | > |N(S)| = |V ars(T )| = n.

The main theorem of this subsection is the following.
Theorem 3.7. For any unsatisfiable CNF T ,

CSpacesem(T ) ≤ CSpace(T ) ≤ 2 · CSpacesem(T ).
Proof. The first inequality is trivial because a syntactical resolution derivation is

also a legitimate semantical one. Let π be a semantical refutation of T with clause
space s. We wish to show that T has a clause space 2s syntactical refutation. The
only difference between the two systems is in the inference rule, so we focus on this
rule. Suppose Mt+1 was inferred from Mt by the semantic inference rule (Mt+1 :=
Mt ∪ {C},Mt |= C), where |Mt|, |Mt+1| ≤ s.

Let ρ be the unique minimal size restriction on the variables of C such that C|ρ =
0. Now we use the soundness of the step to claim that Mt|ρ must be unsatisfiable.
Mt|ρ contains a minimal unsatisfiable subformulaM′, which, by Tarsi’s theorem, has
at most s− 1 variables. By Theorem 3.5, the contradictory set of clausesM′ can be
refuted in space s. It is an easy exercise to adjust this proof and derive C from Mt

with the same clause space s.
We need a space of s cells for saving Mt. Additionally, we use s cells to derive

C ∈Mt+1 fromMt.

3.3. Lower bounds for semiwide tautologies. We are ready to prove our
lower bounds for the clause space of semantical resolution proofs. The main idea is
the following. Consider a derivation that keeps at most k clauses in the memory. We
shall show that for some classes of tautologies (called semiwide; see Definition 3.10)
we can inductively construct restrictions of maximal size k that satisfy the memory
content. Thus, there can be no space k refutation because the empty clause cannot
be satisfied.

Although this proof technique is very simple, we will use similar ideas when
proving lower bounds for stronger proof systems. Also, these results will be useful for
proving lower bounds for the variable space complexity. For this reason we present
our proof method in a somewhat fancy style.

The main idea of our lower bounds is to come up with some set of memory-
configurations A ( “A” stands for “admissible”) such that

• it does not contain contradictory configurations;
• any memory-configuration achievable in small memory is the semantical corol-
lary of some configuration from A.

Notice that we do not require A to contain all the formulas which can be derived
using small space. We require only that, for any such formula ϕ, there exists a memory
configurationM∈ A implying ϕ.

In all our cases these “dominating” memory-configurations will be CNF’s of a
very simple nature, namely, sets of disjoint clauses:

M∈ A ⇒M =




∨
j∈Ji

x
εj
j | 1 ≤ i ≤ k



 ,
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where Ji ∩ Ji′ = ∅ for different i, i′. Moreover, in this section we will be interested
only in the following partial case of this definition naturally corresponding to ordinary
restrictions.

Definition 3.8 (proper 1-CNF’s). M is called a proper 1-CNF if it is a set of
pairwise distinct literals, i.e.,

M = {xε1j1 , xε2j2 , . . . , xεkjk},

and ji1 �= ji2 for different i1, i2.
The heart of our lower bounds for clause space for resolution is the following

(trivial) locality lemma which informally claims that small 1-CNF’s are enough to
imply any small space consequence of the axioms. Later on we shall present an
analogous locality lemma, Lemma 4.14, for PC, which will be less trivial.

Lemma 3.9 (locality lemma for resolution). Let M be a proper 1-CNF. Suppose
that M1 is the semantical resolution corollary of M (i.e.,M1 is a set of clauses and
M |=M1); let |M1| = s. Then there exists M−1

1 ⊆ M such that M−1
1 |=M1 and

|M−1
1 | ≤ s.
Proof. SupposeM1 = {C1, C2, . . . , Cs}. For any clause Ci which is the semantical

corollary ofM there exists some xεiji ∈M∩Ci. ThusM1 is the semantical corollary

of the configurationM−1
1 = {xε1j1 , xε2j2 , . . . , xεsjs}.

A contradictory set of clauses is called n-wide if all its axioms have width (= the
number of literals) ≥ n. [ET99] proved that every n-wide tautology has clause space
> n. In section 4.4 we shall prove PC lower bounds for these tautologies. In the
case of the weaker resolution system, we can prove lower bounds for a bigger class of
semiwide tautologies.

Definition 3.10 (semiwide tautologies). Suppose that T is a contradictory set
of clauses which is divided into two groups: T = P .∪ R, where P is satisfiable.

For M, a proper 1-CNF, we say that M is P-consistent iff P ∪M is consistent.
Equivalently,M is P-consistent iff it can be extended to a proper 1-CNF which implies
all axioms of P (∃M′ ⊇M (M′ |= P)).

Finally, T is n-semiwide iff there exists a partition T = P .∪ R such that P is
satisfiable and for every axiom C ∈ R, for every P-consistent proper 1-CNF M with
|M| < n, it can be extended to a P-consistent proper 1-CNF M′ ⊇ M such that
M′ |= C.

Before we show that n-semiwide tautologies demand clause space at least n + 1
to be refuted, we give several natural examples.

It is obvious that every n-wide tautology is also n-semiwide: we let P = ∅,
and if we fix the values of n − 1 variables by a proper 1-CNF M, any clause C =
xε11 ∨xε22 ∨· · ·∨xεNN with N ≥ n can be satisfied by fixing some unassigned variable (i.e.,
the variable which is not contained inM) xj . In particular, the COMPLETE-TREE
tautology CTn is n-semiwide.

Another example is the pigeonhole principle with m pigeons and n holes PHPmn
which states that there is no 1-1 map from [m] to [n], as long as m > n. The
propositional formulation of this principle has received much consideration in proof
complexity and is one of the major test cases for comparing different proof systems.
In particular, our (n + 1) lower bound on the clause space of refuting PHPmn was
independently proved in [Tor99].

We discuss here only the onto-version of this principle which constrains 1-1 maps
to be onto. One can easily extend our arguments to other PHP-like principles and
Countp.
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Definition 3.11 (onto-pigeonhole principle). Onto− PHPmn is the union of the
following four groups of axioms:

(i) Pi
def
=
∨

1≤j≤n xij (i ∈ [m]);
(ii) Hj

def
=
∨

1≤i≤n xij (j ∈ [n]);
(iii) Qi1,i2;j

def
= x̄i1j ∨ x̄i2j (i1, i2 ∈ [m], i1 �= i2; j ∈ [n]);

(iv) Qi;j1,j2
def
= x̄ij1 ∨ x̄ij2 (i ∈ [m]; j1, j2 ∈ [n], j1 �= j2).

One can see that onto− PHPmn is n-semiwide by taking the partition P .∪ R with
P = {Qi1,i2;j | i1, i2, j } ∪ {Qi;j1,j2 | i, j1, j2 } and R = {Pi | i} ∪ {Hj | j }. The proper
1-CNFM is P-consistent iff it does not put either two pigeons in the same hole (i.e.,
contains the literals xi1j , xi2j) or one pigeon in two different holes (i.e., contains the
literals xij1 , xij2), in other words iff positive literals in M form a partial matching.
Now if n− 1 variables are fixed, then when we take the axiom Pi we can put the ith
pigeon in some unassigned hole (that is, to add the corresponding positive literal).
Dually, if we take the axiom Hj we can put some unassigned pigeon in the jth hole.
Thus we can always satisfy an axiom from R with some extended P-consistent proper
1-CNF.

Another principle, GTn, states that in every transitive directed graph which does
not contain cycles of size two, there must exist a source node with no incoming edges.
This principle, formulated in [Kri85], was shown to have a proof of polynomial size
[Sta96]. Recently, [BG99] used this principle to produce a tautology of polynomial
proof size and large minimal proof width.

Quite surprisingly, this very same principle also shows that large clause space
complexity does not imply large proof size.

Definition 3.12. GTn is the following contradictory set of axioms over n(n−1)
variables xij (i, j ∈ [n], i �= j) consisting of three groups:

(i) Tijk
def
= (xij ∧ xjk)→ xik (i, j, k ∈ [n], i �= j �= k);

(ii) Cij
def
= x̄ij ∨ x̄ji (i, j ∈ [n], i �= j);

(iii) Sj
def
=
∨
k �=j xkj (j ∈ [n]).

The first group of axioms says that the graph is transitive. The second group
states that there are no cycles of size two. The axiom Sj says that j is not the source
node. Clearly, this set of axioms is contradictory. To see that it is n

2 -semiwide take

the partition T = P .∪ R, where P consists of the axioms of the first and second
groups. Then the proper 1-CNF M is P-consistent iff it does not contain a cycle
of positive literals (i.e., chains like xi1i2 , xi2i3 , . . . , xiki1) and it does not contain a
chain xi1i2 , xi2i3 , . . . , xik−1ik together with the literal x̄i1ik . Now suppose that M is
P-consistent and assigns not more than n

2 − 1 variables and we are to extend it to
satisfy some axiom Sj ∈ R. We can choose the index k �= j such that no variables
xki, xik, i ∈ [n] are contained inM and letM′ =M∪{xkj}. Thus GTn is n2 -semiwide.

In the next theorem, which is the main result of this section, we show that semi-
wide tautologies are hard for resolution in terms of clause space. The intuition of the
proof is simple: we show inductively that a configuration of k < n clauses can be
satisfied by a restriction that sets ≤ k variables.

Theorem 3.13. For any n-semiwide tautology T ,

CSpacesem(T ) > n.

Proof. Fix the partition T = P .∪ R in accordance with Definition 3.10.
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Definition 3.14 (admissible configurations for T ). We call M admissible iff
M is a P-consistent proper 1-CNF and |M| ≤ n.

Consider the set A of all admissible configurations. We claim that the following
holds: for each configuration M, derivable in space ≤ n, there exists a configuration
M−1 ∈ A such thatM−1 |=M and |M−1| ≤ |M|. This is obviously enough to prove
the theorem since A does not contain contradictory configurations.

We prove it by induction. The basis is trivial: in the beginning of the derivation
the memory contains an empty set. To check the induction step suppose thatMt ❀

Mt+1 and that there existsM−1
t ∈ A such thatM−1

t |=Mt, |M−1
t | ≤ |Mt|.

Let us consider the three cases corresponding to the possible derivation steps:
axiom download, semantic inference step, and memory erasing.

Axiom download (Mt+1 :=Mt ∪ {C}, C ∈ T ). In this case |Mt| ≤
n − 1 (since there is free space for the new axiom). Thus
|M−1

t | ≤ n−1; hence it can be extended to P-consistent proper
1-CNFM−1

t+1 which satisfies C. (If C ∈ R this follows from the
definition of semiwide tautology, and if C ∈ P it is obvious.)
Since C is a clause we can satisfy it by fixing just one variable.
Thus we can assume without loss of generality (w.l.o.g.) that
|M−1

t+1| ≤ |M−1
t |+ 1.

Clearly, M−1
t+1 ∈ A and M−1

t+1 |= Mt+1. Also, |M−1
t+1| ≤

|M−1
t |+ 1 ≤ |Mt|+ 1 = |Mt+1|.

Semantical inference (Mt+1 :=Mt ∪ {C}, Mt |= C). In this case
M−1

t |=Mt+1. By the locality lemma, Lemma 3.9, there exists
M−1

t+1 ⊆M−1
t such thatM−1

t+1 |=Mt+1 and |M−1
t+1| ≤ |Mt+1|.

Memory erasing (Mt+1 :=Mt −M′ ⊆Mt). This is analogous to the
case of inference step.

Theorem 3.13 follows.
So far we have strongly used the existence of axioms of width n to show that a

given tautology is semiwide and thus prove a lower bound of n on the clause space. We
now go one step further to show that we can transform any semiwide tautology to the
following 3-CNF version which requires essentially the same space as the “standard”
version.

Definition 3.15 (strong nondeterministic extensions). For C('x) a clause, a
strong nondeterministic extension of C is any Boolean function f('x, 'y) such that

• if C('α) = 0, then f('α, 'y) ≡ 0;

• if xεj ∈ C, then there exists an assignment 'β to 'y such that setting xj to ε
and 'y to 'β fixes f to 1. Formally,

f
[
ε/xj , 'β/'y

]
≡ 1.

Example 3.16. One standard strong nondeterministic extension of a clause C =
x1∨x2∨ · · ·∨xn is the function represented by the following 3-CNF family over n+2
clauses and 2n+ 1 variables:

{ȳ0} ∪ {yj−1 ∨ xj ∨ ȳj | 1 ≤ j ≤ n} ∪ {yn}.
Definition 3.17 (extended version of T ). An extended version of the tautology

T , denoted T̃ , is derived by replacing every axiom Ci with some CNF set of clauses
ECi representing a strong nondeterministic extension of Ci such that distinct ECi use
distinct extension variables 'yi = 〈yi1, yi2, . . . , yiki〉.
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Theorem 3.18. If T is n-semiwide, and T̃ is some extended version of it, then

CSpacesem(T̃ ) > n.
Proof. As in the proof of Theorem 3.13, we are going to define the set of admissible

configurations A. After that the proof will be very similar to that of Theorem 3.13.
Let, as before, the partition T = P .∪ R be chosen according to Definition 3.10. For
every clause Ci ∈ T and every xεj ∈ Ci we rigidly fix once and for all an arbitrary
assignment 'βij to the variables 'yi such that the restriction which sends xj to ε and

sends 'yi to 'βij forces to 1 all clauses from ECi.
Definition 3.19 (admissible configurations for T̃ ). We call a proper 1-CNF

M admissible for T̃ iff there exists a T -admissible configuration M̂ (in ordinary
variables 'x) such that

• for every original variable xεj ∈M, we also have xεj ∈ M̂;
• if M contains at least one auxiliary variable from 'yi, then there exists x

ε
j ∈

M̂ such that the values of all auxiliary variables in 'yi belonging to M are
consistent with 'βij.

Consider the set A of all configurations admissible for T̃ . We claim that the
following holds: for each configurationM derivable in space n, there exists a config-
urationM−1 ∈ A such thatM−1 |=M and |M−1| ≤ |M|. This is obviously enough
to prove the theorem since A does not contain contradictory configurations.

We prove it by induction. The basis, inference step, and memory erasing can be
handled with the help of the locality lemma, Lemma 3.9, as in Theorem 3.13.

Consider the axiom download. Let Mt+1 ← Mt ∪ {C}, C ∈ ECi. By the

induction hypothesis there exist configurationsM−1
t ,M̂−1

t with properties described
in Definition 3.19 and such thatM−1

t |=Mt and |M−1
t | ≤ |Mt|.

Case 1. M−1
t already contains some auxiliary variable from ECi.

Then we have already assigned in M̂−1
t some variable xj with x

ε
j ∈ Ci to ε such

that the values of all auxiliary variables 'yi in M−1
t are consistent with 'βij . Either

xεj ∈ C or y
βij�

i� ∈ C for some 5 ≤ ki. In the first case we let M−1
t+1

def
= M−1

t ∪ {xεj},
and in the second case we letM−1

t+1
def
= M−1

t ∪ {yβij�

i� }. Also put M̂−1
t+1

def
= M̂−1

t .

Case 2. M−1
t does not contain any auxiliary variables from ECi.

W.l.o.g. we can assume that |M̂−1
t | ≤ |M−1

t | (simply leave in M̂−1
t only those xεj

which are really used for fulfilling the two conditions in Definition 3.19). Since M̂−1
t

is T -admissible and |M̂−1
t | ≤ |M−1

t | ≤ |Mt| < n, arguing as in the proof of Theorem
3.13, we can find some xεj ∈ Ci such that M̂−1

t ∪ {xεj} is still T -admissible. Arguing
as in Case 1 above, we can extendM−1

t with either xεj itself or with some y
βij�

i� to get

M−1
t+1 withM−1

t+1 |= C.
Theorem 3.18 follows.

3.4. Tseitin tautologies. A Tseitin tautology is an unsatisfiable CNF captur-
ing the basic combinatorial principle that, for every graph, the sum of degrees of all
vertices is even. These tautologies were originally used by Tseitin [Tse68] to present
the first superpolynomial lower bounds on proof size for a certain restricted form of
resolution (regular resolution).

The main theorem in this subsection is Theorem 3.24 that presents a linear lower
bound on the clause space of Tseitin formulas. This result was independently obtained
in [Tor99].
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Definition 3.20 (Tseitin formulas). Fix G, a finite connected graph, with
|V (G)| = n. σ : V (G)→ {0, 1} is said to have odd-weight if Σv∈V (G)σ(v) ≡ 1 (mod
2). Denote by dG(v) the degree of v in G. Fix σ an odd-weight function. Assign

a distinct variable xe to each edge e ∈ E(G). For v ∈ V (G) define PARITYv,σ def
=

(
⊕

e	v xe ≡ σ(v)(mod 2)). The Tseitin formula of G and σ is

T (G, σ)
def
=

∧

v∈V (G)

PARITYv,σ.

If the maximal degree of G is constant, then the initial size and width of T (G, σ)
are small as well.

Lemma 3.21. If d is the maximal degree of G, then T (G, σ) is a d-CNF with at
most n · 2d−1 clauses and at most nd/2 variables.

We shall need the following lemma from [Urq95].
Lemma 3.22 (see [Urq95]). If G is connected, then T (G, σ) is contradictory iff

σ is an odd-weight function. Moreover, for any v ∈ V (G) there is an assignment
satisfying all axioms from {PARITYu,σ | u �= v }.

The space lower bound on Tseitin formulas will be directly connected to the
following notion of expansion.

Definition 3.23 (connectivity expansion). For G, a connected graph on n ver-
tices, let c(G) be the minimal number of edges that one must remove from G in order
to obtain a graph in which all connected components have size ≤ n/2.

Theorem 3.24. For G a graph of maximal degree d,

CSpacesem(T (G, σ)) > c(G)− d.
Proof. Our invariant will be a specially tailored sequence of restrictions, defined

hereby.
Definition 3.25 (admissible configurations for T (G, σ)). Suppose that M is a

proper 1-CNF with |M| < c(G). Let E(M) ⊆ E(G) be the subset of edges corre-
sponding to the variables of M. Then G \ E(M) (the graph G after removing the
edges E(M)) has a uniquely defined maximal connected component Vmax(M) with
|Vmax(M)| > n/2.

We call the proper 1-CNF M with |M| < c(G) admissible for T (G, σ) if there
exists a proper 1-CNF M′ such that M′ ⊇ M and M′ |= PARITYv,σ for any v �∈
Vmax(M). (In other words, M is consistent with {PARITYv,σ | v �∈ Vmax(M)}.)

Remark. It is important to notice the following monotonicity property : if M is
admissible and M′ ⊆ M, then Vmax(M′) ⊇ Vmax(M) and M′ is admissible, too.
That is exactly what we need the condition |M| < c(G) for.

Lemma 3.26. Suppose that M is admissible for T (G, σ). Then for any v0 ∈
Vmax(M) there exists a proper 1-CNF M′ ⊇ M such that for all v �= v0 M′ |=
PARITYv,σ. (In other words we can extend the assignment M to satisfy all axioms
except that of v0.)

Proof. Let us consider the restriction ρ which corresponds toM (ρ(xe) = ε iff x
ε
e ∈

M). If we apply this restriction to the tautology T (G, σ) it will be partitioned to the
independent formulas: T i =

∧
v∈Vi

PARITYv,σ′ for different connected components
Vi of the graph (G \ E(M)), where

σ′(v) def
= σ(v)⊕

⊕
e�v

ρ(xe)�=∗

ρ(xe).
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Vmax(M) is the component with maximal size. By the definition of admissible con-
figurations, all T i are satisfiable for Vi �= Vmax(M). By Lemma 3.22 there exists an
assignment to the edges in Vmax(M) which satisfies all axioms except PARITYv0,σ′ .
The lemma follows.

Now let us finish the proof of Theorem 3.24. Let A be the set of configurations
admissible for T (G, σ). As usual we claim that for each configuration M, derivable
in space c(G) − d, there exists a configuration M−1 ∈ A such that M−1 |= M and
|M−1| ≤ |M|. We prove it by induction. The basis, inference step, and memory
erasing can be handled with the help of the locality lemma, Lemma 3.9, just as in
Theorems 3.13 and 3.18.

Consider the axiom download. Let Mt+1 := Mt ∪ {C}, C ∈ PARITYv,σ for
some vertex v. The proof splits into two cases.

Case 1. v �∈ Vmax(M−1
t ). SinceM−1

t is admissible, there existsM′
t ⊇M−1

t such
that for all v �∈ Vmax(M−1

t ), M′
t |= PARITYv,σ (and in particular M′

t |= C). Let
xεe ∈M′

t be a literal which forces C to true (i.e., xεe ∈ C). LetM−1
t+1 =M−1

t ∪ {xεe}.
It is clear that Vmax(M−1

t+1) = Vmax(M−1
t ) (since e ) v) andM−1

t+1 ∈ A.

Case 2. v ∈ Vmax(M−1
t ). Let us add to E(M−1

t ) all the edges adjacent to
v: E′ = E(M−1

t ) ∪ E(v). By the induction hypothesis, |M−1
t | ≤ c(G) − d − 1

(there is one free memory cell for axiom download); hence |E′| < c(G). Let V ′max be
the maximal connected component in G \ E′. By our remark on the monotonicity,
V ′max ⊆ Vmax(M−1

t ). Fix any v0 ∈ V ′max and let M′ be the proper extension of M−1
t

from Lemma 3.26 such that for all u �= v0 M′ |= PARITYu,σ. Let x
ε
e ∈ M′ be a

literal which forces C to true (i.e., xεe ∈ C). LetM−1
t+1 =M−1

t ∪{xεe}. It is clear that
Vmax(M−1

t+1) ⊇ V ′max ) v0; henceM−1
t+1 ∈ A.

Theorem 3.24 follows.

If G is an expander, then the clause space of refuting T (G, σ) is linear in the input
size, and we get the following.

Corollary 3.27. There exist arbitrarily large unsatisfiable 3-CNF formulas T
with

CSpacesem(T ) = Ω(|T |).

Proof. Let G be a 3-regular expander with expansion ε > 0 (i.e., for all (V ′ ⊂
V )(|V ′| ≤ n/2 ⇒ |E(G) ∩ (V ′ × (V \ V ′))| ≥ ε|V ′|)). Let σ be an odd-weight
function on V (G). Let T = T (G, σ). By Lemma 3.21, T is an unsatisfiable 3-CNF
formula with O(|V |) clauses and variables. On the other hand, it is easy to verify
that c(G) = Ω(|V |).

4. Clause space in PC. In this section we give definitions of the clause space
in the stronger proof system called polynomial calculus (PC). We then show that the
proof techniques of the previous section are not good enough for PC by proving an
upper bound of 2

3n+O(1) on the clause space of CTn. Finally, we generalize our proof
systems to multivalued logic, since our lower bounds will be presented more naturally
in this setting. The lower bound itself appears in the next section.

4.1. PC. In PC we work within a fixed field F. A line in a PC derivation is
a polynomial over F, represented as a sum of monomials.4 With every polynomial

4Since all our results apply to any field F, we do not mention it in our future definitions and
statements and simply assume F is some fixed field.
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P (x1, . . . , xn) we associate the Boolean function ||P ||, called the interpretation of P ,
which is the characteristic function of the set of its roots in {0, 1}n, i.e.,

||P ||(α) = 1 iff P (α) = 0.

For P a set of polynomials, ||P|| def
= {||P || : P ∈ P}.

Notation. Throughout this section we sometimes identify a polynomial P with
its interpretation ||P || as a Boolean function, and it will be clear from the context
which of the two we mean. In particular, for P a set of polynomials, and M a set
of Boolean functions, we will use the notation M |= P, (P |= M, resp.) to denote
M |= ||P|| (||P|| |=M, resp.).

The natural representation of the clause
∨n
i=1 xi as a polynomial is by

∏n
i=1(1−

xi). Notice that this polynomial has 2n monomials, and, since we will define the
clause space of a polynomial to be the number of monomials appearing in it, this
representation makes PC much weaker than resolution. For this reason we use an
augmented version of PC that is strictly stronger than resolution, with respect to
space as well as size. We denote this augmented system by PCR (polynomial calculus
augmented with resolution). In this system, we introduce a distinct variable for every
literal and add some axioms forcing xi and x̄i to have distinct values in {0, 1}. Thus,
a line in PCR is a polynomial over the variable set x1, x̄1, x2, x̄2, . . ., and the following
inference rules are used:

Default Axioms. x(1 − x) for all variables x (forcing {0, 1} solu-
tions), and x + x̄ = 1 for all pairs of distinct variables x, x̄
(forcing x to be the negation of x̄).

Scalar Addition. Derive αP1 + βP2 from P1, P2, for α, β scalars
in F, and for P1, P2 any polynomials over F.

Variable Multiplication. Derive x·P from P , for x any variable,
and for P any polynomial over F.

A PCR derivation of a polynomial Q from a set of polynomials P = {P1, . . . , Pm}
is a sequence of configurations π = {M0,M1, . . . ,Ms}, where M0 = ∅, Ms = {Q},
and, for 1 ≤ t ≤ s,Mt must be one of the following:

Axiom download. Mt :=Mt−1∪{P} for some axiom P ∈ P or some
default axiom P .

Memory erasing. Mt :=Mt−1 −M′ for some subset of polynomials
M′ ⊆Mt−1.

Inference. Mt :=Mt−1∪{P} for P inferred from some subsetM′ ⊆
Mt−1 by a single application of scalar addition or variable mul-
tiplication rules.

Just like in resolution, our lower bounds will apply to the semantical version of
PC. In this system, we replace the inference step of the above definition with the
following semantical inference step:

Semantical inference. Mt :=Mt−1∪{P} for P such that ||Mt−1|| |=
||P ||.

The clause and variable space of a PCR derivation are the natural analogues of
the same measures in resolution. Namely, a configuration is a set of polynomials, and
its clause space is the number of distinct monomials that appear in the polynomials.
(Notice that a certain monomial may appear in several polynomials, but we count
it only once.) The variable space of a configuration is the sum of degrees of these
distinct monomials.
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A refutation of P is a derivation of the polynomial 1 from P. The clause space
of a derivation is the maximal clause space of a configuration in it, and the clause
space of P, denotedMSpace(P), is the minimal clause space of a refutation of P, if it
exists, and ∞ otherwise. (We use the letter M , for monomial space, to distinguish it
from resolution clause space.) The variable space of P, denoted V SpacePCR(P), and
the semantical clause space of a PCR proof, denotedMSpacesem(P), are analogously
defined.

Remark. A polynomial is a linear combination of clauses. It is worth noting that
the clause space lower bounds of section 4.4 apply to any sound calculus that uses
lines that are arbitrary Boolean functions of clauses. (The linearity, however, will be
important in section 5 for the variable space lower bounds.) The strongest such system
is functional calculus (FC), which has as lines any Boolean function over clauses and
has the single semantical inference rule that allows us to derive any function g from
M whenever M |= g. A definition of this system and its clause space appear in the
appendix.

We end this section by noting that PCR is at least as efficient as resolution with
respect to variable and clause space. The proof of the following lemma follows from
the fact that PCR can efficiently simulate a resolution derivation.

Lemma 4.1. For T , a contradictory set of clauses, and P, its natural formulation
as a set of polynomials,

• MSpace(P) ≤ CSpace(T ) +O(1);
• V SpacePCR(P) ≤ 2 · V SpaceR(T ).

4.2. PCR upper bounds for CTn. We now show that MSpace(CTn) is sub-
stantially smaller than CSpacesem(CTn). This result shows the necessity of using
more complicated techniques than those in section 3 to prove PCR lower bounds.
(Recall that CSpacesem(CTn) = n.)

Theorem 4.2. MSpace(CTn) ≤ 2n/3 + 6.
Proof.
Definition 4.3. We say that a PCR proof π has k temporary memory cells if

whenever the transition Mt−1 ❀ Mt is an axiom download, then MSpace(Mt−1) ≤
MSpace(π)− k. (Informally, distinct monomials appearing in the current configura-
tion Mt are stored in distinct “memory cells.” The definition says that whenever we
start downloading an axiom, there exist at least k (out of MSpace(π)) free memory
cells.)

We prove by induction the following claim saying that if we can refute CTn in
small space, we can also refute CT �·n in small space.

Claim 4.4 (amplification). If there exists a PCR refutation π of CTn with

MSpace(π) ≤ s+ k
such that π has k temporary cells, then for all integers 5 ≥ 1

MSpace(CT �·n) ≤ 5 · s+ k.
Moreover, the corresponding refutation also has k temporary memory cells.

Proof. The proof is by induction on 5 ≥ 1. For the induction step, suppose π�
is a refutation of CT �·n with MSpace(π�) ≤ 5 · s + k which has k temporary cells.
We shall use π� to refute CT (�+1)·n. We have only to show how to derive an axiom
A ∈ CT �·n from CT (�+1)·n using small memory because, if we can derive any axiom
of CT �·n in small space, we can use π� directly, replacing each axiom download in π�
with our small space derivation.
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Suppose the tth step of π� is an axiom download of A ∈ CT �·n. A =
∨�n
j=1 x

εj
j for

some 'ε = {ε1, . . . , ε�n} ∈ {0, 1}�n. By the induction hypothesis,MSpace(Mt−1) ≤ 5·s
because Mt−1 has k empty memory cells. We use these empty memory cells and
additional s memory cells to derive A from all axioms B ∈ CT (�+1)·n that agree with
A on all variables of A (i.e., B = A∨∨(�+1)n

j=�n+1 x
εj
j for some ε�n+1, . . . , ε(�+1)n ∈ {0, 1}).

The total memory of the new proof is MSpace(CT �·n) + s. It also has k temporary
memory cells, since it downloads axioms only during the emulation of the proof of
CTn.

To prove Theorem 4.2 it is sufficient to produce a PCR refutation of CT 3 with
clause space six and four temporary memory cells (s = 2, k = 4). At the beginning
of this refutation we infer the configuration {x1, x2} in the obvious way. After that
the proof proceeds as follows (we omit straightforward intermediate transitions):

(
x1

x2

)
❀




x1

x2

Axiom: x̄1x̄2x3


 ❀




x1

x2

x̄2x3


 ❀



x1

x2

x3




❀




1− x̄1

1− x̄2

1− x̄3


 ❀




1− x̄1

x̄1 − x̄1x̄2

x̄1x̄2 − x̄1x̄2x̄3


 ❀

(
1− x̄1x̄2x̄3

)

❀

(
1− x̄1x̄2x̄3

Axiom: x̄1x̄2x̄3

)
❀
(
1
)
.

All the configurations explicitly displayed here have at most four clauses. Two more
temporary clauses are needed to keep intermediate polynomials.

Remark. For the stronger system FC, we get better upper bounds than those
of the previous theorem (namely, CTn can be refuted in clause space n/2 + 2). For
a definition of this proof system, and a proof of this and related results, see the
appendix.

4.3. PCR over multivalued logic. In this subsection we extend our proof
systems to work with multivalued variables. The motivation is the usual one: in
many cases, the multivalued logic is a natural vista to view lower bounds for the
Boolean case which is our true interest. For example, [RWY97] used R-way (read-
once) branching programs to formulate and prove some partial results about the
resolution (size) complexity of the weak (i.e., when m * n) pigeonhole principle
PHPmn . Crucial to their results are two dual interpretations of PHP

m
n in terms of

multivalued logic; here we are interested only in one of them, the Column Model. In
this model, the pigeonhole principle has the following form: suppose x1, . . . , xn are
variables of m-valued logic, where m > n (“xj = i” has the intended meaning “the
ith pigeon sits in the jth hole”). Then there exists i ∈ [m] which is not in the set
{x1, . . . , xn}.

In the proofs of our remaining lower bounds, it will be also very convenient to
treat PHPmn in this way. In particular, this will allow us to formulate our bounds in
terms of a simple, uniform, and concise criterion fulfilled by both CTn and PHP

m
n

(Definition 4.12 below).
We need to generalize some previous definitions.
Definition 4.5. Let us fix some finite domain D. Instead of Boolean variables,

we use multivalued variables xj ranging over the domain D. A multivalued Boolean
function f(x1, . . . , xn) is a mapping from Dn to {0, 1}, where, as before, we identify
1 with True and 0 with False. The notions of a (multivalued) satisfying assignment
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a ∈ Dn and semantical implication f1, . . . , fk |= g are generalized to the case of
multivalued logic straightforwardly.

Thus, the only remaining thing we still need to define is the set of allowable lines.
Definition 4.6 (multivalued clauses). Suppose that D is some finite domain. A

multivalued literal is the formal expression xπj , where π is some nonconstant function
π : D → {0, 1}.

A multivalued clause is a disjunction of multivalued literals corresponding to dis-
tinct variables

C = xπ1
j1
∨ xπ2

j2
∨ · · · ∨ xπw

jw
, k �= l→ jk �= jl,

with the straightforward interpretation ||C||(α) def
= π1(αj1) ∨ · · · ∨ πw(αjw).

The width of a multivalued clause is the number of multivalued literals in it.
Definition 4.7. Denote by xij the multivalued literal x

χi

j , where χi is the char-
acteristic function of i (χi(i

′) = 1 iff i′ = i).
We are ready to define multivalued semantical resolution and PCR.
Definition 4.8 (multivalued resolution). Multivalued semantical resolution over

domain D is the system analogous to semantical resolution which works with multi-
valued clauses instead of usual ones.

The clause and variable complexity are analogous to that of semantical resolution.
Denote by CSpacesemD (T ) the clause space of refuting T in semantical resolution over
domain D.

Definition 4.9 (multivalued PCR). Suppose that F is a field. Multivalued
semantical PCR over domain D is the semantical system which keeps in memory
polynomials over F with literals xπj for all possible j, π as their variables. As in the
Boolean case, the interpretation is given by the characteristic function of the set of
roots:

||P ||(α1, . . . , αn) = 1 iff P [π(αj)/x
π
j ] = 0

in the field F. The clause and variable complexity are analogous to that of seman-
tical PCR. Denote by MSpacesemD (P) the clause space of refuting P in semantical
resolution over domain D.

We conclude this subsection with one possible translation from multivalued sys-
tems to ordinary ones. This straightforward translation preserves the variable and
clause space lower bounds.

Definition 4.10. Suppose that P is some multivalued proof system over domain
D; T is a contradictory set of axioms. Replace each multivalued variable xj with the
tuple x1j , x2j , . . . , xmj, where m = |D|. The intuitive meaning of xij is “xj = i,” i.e.,
the same as of the multivalued literal xij.

Let us denote by PRD(T ) the following set of axioms over Boolean variables xij:
• x̄i1j ∨ x̄i2j for i1 �= i2;
• φ

[∨
i∈π−1(1) xij/x

π
j

]
for all φ ∈ T .

It is clear that each refutation of PRD(T ) can be transformed into the refutation
of T without increase in either variables or clauses. Thus we have the following trivial
proposition which shows how to use multivalued systems for proving Boolean lower
bounds.

Proposition 4.11. For T , a contradictory set of multivalued clauses over do-
main D,

CSpacesemD (T ) ≤ CSpace(PRD(T )).
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For P, a contradictory set of polynomials over domain D,

MSpacesemD (P) ≤MSpace(PRD(P)).

4.4. Wide tautologies and lower bounds for PCR. In this section we define
a natural class of wide tautologies which turn out to be hard for PCR in terms of
clause complexity. In section 5 we will also show that wide tautologies are hard for
PCR (and hence for resolution as well) in terms of variable complexity. The previous
upper bound on the clause space of CTn (Theorem 4.2) shows that selecting one
variable per clause in the memory, and using this variable to satisfy our clause, will
not work for PCR. Surprisingly, we show that selecting two variables per clause does
the job.

Definition 4.12 (multivalued wide tautology). A family of multivalued clauses
T over multivalued variables x1, . . . , xn is wide iff every clause in it has maximal
possible width n.

One obvious example of a (Boolean) wide family is CTn. The second example,
and our main motivation, is PHPmn . Namely, suppose that |D| = m > n, and let

T def
=
{
xi1 ∨ xi2 ∨ · · · ∨ xin | i ∈ [m]

}
. Then PRD(T ) = PHPmn . By Proposition 4.11,

lower bounds for the space complexity of this multivalued version imply lower bounds
for the space complexity of the ordinary (Boolean) pigeonhole principle.

Now we show that wide tautologies are hard. The heart of our lower bounds for
PCR is the locality lemma, Lemma 4.14.

Definition 4.13 (proper 2-CNF’s). M is called a proper 2-CNF iff

M =
{
x
i11
j11
∨ xi21

j21
, x

i12
j12
∨ xi22

j22
, . . . , x

i1k
j1
k

∨ xi2k
j2
k

}
,

where j11 , j
2
1 , j

1
2 , . . . , j

2
k are pairwise distinct indices and i

1
1, . . . , i

2
k ∈ [m] (not neces-

sarily distinct). (In other words, the proper 2-CNF says that for every 5 ∈ [k] either
xj1

�
= i1� or xj2� = i

2
� .)

Lemma 4.14 (locality lemma for PCR). Let M be a proper 2-CNF, and let M1

be a set of polynomials such that M |=M1. Then there exists a proper 2-CNF M−1
1

such that M−1
1 |=M1 and |M−1

1 | ≤ 2 ·MSpacesemD (M1).
Remark. Notice thatM−1

1 is not necessarily a proper subformula ofM.
Proof. In our proof we will use the following corollary of Hall’s matching theorem.
Lemma 4.15 (Hall’s theorem). For a family of sets V1, . . . , Vk (not necessarily

distinct), if for all index sets I ⊆ [k]

∣∣∣∣∣
⋃
i∈I
Vi

∣∣∣∣∣ ≥ |I|,

then the family V1, . . . , Vk has a system of distinct representatives. That is, there
exist vi ∈ Vi such that {v1, . . . , vk} are pairwise distinct.

Corollary 4.16. For a family of sets V1, . . . , Vk, if for all index sets I ⊆ [k]

∣∣∣∣∣
⋃
i∈I
Vi

∣∣∣∣∣ ≥ 2 · |I|,

then we can assign to each Vi two distinct representatives vi1, vi2 ∈ Vi such that all
2k elements v11, v12, . . . , vk1, vk2 are pairwise distinct.
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Proof. Just apply Hall’s matching theorem to the system

V1, V1, V2, V2, . . . , Vk, Vk.

Now let us prove Lemma 4.14. Note that ||M1|| = g(C1, . . . , Cs), where s =
MSpacesemD (M1), C1, . . . , Cs are multivalued clauses, and g is some Boolean function.
Let us gradually construct the required proper 2-CNF M−1

1 . Suppose w.l.o.g. that
M = {x0

1,1 ∨ x0
1,2, x

0
2,1 ∨ x0

2,2, . . . , x
0
k,1 ∨ x0

k,2}.
For a clause C denote by V (C) ⊆ [k] the index set of those axioms x0

j,1 ∨ x0
j,2

of M for which C contains at least one variable xj,1, xj,2. (Formally, V (C)
def
={

j
∣∣ ∃ε ∈ {1, 2} ∃π(xπj,ε ∈ C)

}
.) For Γ ⊆ [s], let us denote Γ̄ = [s] \ Γ, V (Γ) =⋃

γ∈Γ V (Cγ). Let Γ be any maximal subset Γ ⊆ [s] with the property

|V (Γ)| ≤ 2 · |Γ|.
Then for any I ⊆ Γ̄,

|V (I) \ V (Γ)| > 2 · |I|.
(Otherwise we could add the set I to Γ, contradicting the maximality of Γ.) Hence,
by Corollary 4.16, for any clause Cγ with γ ∈ Γ̄, we can choose two unique repre-
sentative indices j1, j2 ∈ V (Cγ) such that j1, j2 �∈ V (Γ). Let xrep1(Cγ), xrep2(Cγ) be
two corresponding representative variables from Cγ which lie in the intersection with
axioms numbers j1, j2 of M. Denote by satε(Cγ) the value of xrepε(Cγ) which forces
Cγ to True. Such a value must exist because Cγ is a clause in which x

π
repε(Cγ) appears

for some nonconstant π (see Definition 4.6).
Let

M−1
1 =

{
x0
j,1 ∨ x0

j,2 | j ∈ V (Γ)
} ∪

{
x
sat1(Cγ)

rep1(Cγ) ∨ x
sat2(Cγ)

rep2(Cγ)

∣∣ γ ∈ Γ̄
}
.

Clearly,M−1
1 is a proper 2-CNF. Let us estimate the size ofM−1

1 :

|M−1
1 | = |V (Γ)|+ |Γ̄| ≤ 2 · |Γ|+ |Γ̄| ≤ 2 · s.

Claim 4.17. M−1
1 |=M1.

Proof. We need to show that every assignment α satisfyingM−1
1 satisfies g(C1, C2,

. . . , Cs) as well. Suppose that α satisfies all the clauses of M−1
1 . Notice that for all

γ ∈ Γ̄ Cγ(α) = 1. (Since α satisfies M−1
1 , it satisfies x

sat1(Cγ)

rep1(Cγ) ∨ x
sat2(Cγ)

rep2(Cγ), and every

one of these representative variables from Cγ forces Cγ to True.)
We are going to show that α can be changed in such a way that it will still

preserve the value of all clauses C1, . . . , Cs (and, hence, of g) but at the same time
will satisfyM. For an axiom x0

j,1 ∨ x0
j,2 ofM either j ∈ V (Γ) (in this case the axiom

is satisfied since it also appears in M−1
1 ) or we can choose the variable xj,ε which

is not a representative variable of any clause Cγ with γ ∈ Γ̄. (Notice that different
clauses cannot have representatives from the same axiom.) In the latter case we just
set xj,ε to zero. This does not change the values of clauses C1, . . . , Cs, but the axioms
ofM get satisfied.

Thus we can get the new assignment α′ which satisfiesM and such that Ci(α) =
Ci(α

′) for all i. Since ||M|| |= g(C1, . . . , Cs), we have

g(C1(α), . . . , Cs(α)) = g(C1(α
′), . . . , Cs(α′)) = 1.
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Lemma 4.14 follows.

We are now ready to prove our main theorem.

Theorem 4.18. For any wide tautology T over n variables with domain D,
MSpacesemD (T ) ≥ n

4 .

Remark. The same lower bound, with the same proof, applies to the much stronger
FC, in which each line is an arbitrary Boolean function and all derivations rule are
purely semantical. For a definition of this system and related results see the appendix.

Proof. The proof is quite analogous to the proof of Theorem 3.13. Let us denote
by A the set of all proper 2-CNF’s of size ≤ n

2 . As in the previous cases we claim that
for any configurationM, achievable in space n

4 , there exists a configurationM−1 ∈ A

such that |M−1| ≤ 2 ·MSpacesemD (M) andM−1 |=M. We prove it by induction.

The inference step can be treated with the help of the locality lemma, Lemma
4.14. Namely, if Mt |= Mt+1, first take M−1

t as M−1
t+1, and then shrink it to the

required size 2 ·MSpacesemD (Mt+1) by applying Lemma 4.14.

The axiom download is also straightforward. Suppose that Mt+1 ← Mt ∪
{C}, C ∈ T . Take M−1

t and choose two literals xπ1
j1
, xπ2

j2
∈ C such that xj1 and

xj2 are not contained inM−1
t . Such a pair of literals must exist because C has width

n and |Mt| < n/4, and hence |M−1
t | ≤ n/2. Then letM−1

t+1 =M−1
t ∪ {xi1j1 ∨ xi2j2} for

i1, i2 satisfying π1(i1) = π2(i2) = 1.

Theorem 4.18 follows.

Corollary 4.19. MSpacesem(CTn) ≥MSpacesemD (CTn) ≥ n/4.
As said previously, a lower bound on multivalued logic is also a lower bound on

two-valued Boolean logic, and thus we get the following.

Corollary 4.20. For all m > n,

MSpacesem(PHPmn ) ≥MSpacesemD (PHPmn ) ≥ n/4.

5. Variable complexity for PCR. The variable space is a very natural space
measure as it is tightly connected to the bit space, which is the actual number of
bits needed to write down a memory configuration. If each variable index is written
in binary notation, then the bit space is linear in logn times the variable space. As
follows from Theorem 3.5, every (Boolean) proof system which simulates resolution
has variable space upper bounded by n2. In this section we show that any PCR proof
(over an arbitrary field) of any wide tautology requires variable space Ω(n2). This
bound is tight for both CTn and PHP

m
n .

Theorem 5.1. For any wide tautology T over n variables with domain D and
any ground field F, V SpacesemPCR(T ) = Ω(n2).

To understand the intuition of the proof, and to see how heavily it depends on
our previous clause space lower bounds, we prove first the following (easy) special
case of our theorem.

Lemma 5.2. V SpacesemR (CTn) ≥ 1
4n

2.

Proof. By Theorem 3.13, CSpacesem(CTn) > n. Let π = {M0, . . . ,Ms} be
a semantical resolution refutation of CTn, and let t be the first time there is some
clause C ∈ Mt of width +n/2,. Such a t must exist because, by the definition of the
resolution rule, the width of a clause may decrease by at most 1 in every step, all
axioms have width n, and the empty clause has width 0. Let ρ be the minimal size
restriction that sets C to 0. |ρ| = |C| = +n/2,, and it is easy to see that CTn|ρ is
simply CT �n/2�, and π|ρ is a legitimate proof of it. Applying Theorem 3.13 once again,
CSpacesem(CT �n/2�) > -n/2., meaning there is some t′ < t such that |Mt′ | > -n/2..
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By the definition of t, all clauses ofMt′ have width larger than +n/2,, and the lemma
is proved.

Proof of Theorem 5.1. First we need to define some notation. A term xπ1
j1
· . . . ·xπd

jd
is multilinear if all j1, . . . , jd are pairwise distinct. A multilinear monomial is an
expression a · t, where a ∈ F ∗ and t is a multilinear term. Finally, a multilinear
polynomial is a sum of multilinear monomials. Since we are interested only in the

semantical version of PCR, and because of the identity xπj ·xπ
′
j = x

(ππ′)
j , we will assume

w.l.o.g. that all our multivalued terms, monomials, and polynomials are multilinear.
Also, throughout the proof of Theorem 5.1 all the terms, monomials, and polynomials
are multivalued; thus we omit this word, too. For a term t, let Supp(t) be the set of all

j for which xπj appears in t for some π. For a polynomial P , Supp(P )
def
=
⋃
t∈P Supp(t).

There is a natural correspondence between subsets of the set of terms of a poly-
nomial P and its subpolynomials; thus we sometimes write t ∈ P when the term t is
contained in P , and P1 ⊆ P which means that P1 is a subpolynomial of P . |P | is the
number of terms in P .

For ρ : {x1, . . . , xn} → D∪{∗} a restriction and P a polynomial, ρ(P ) is the poly-
nomial produced after the substitution of the literals xπj , j ∈ ρ−1(D) with π(ρ(xj))
and cancellation of terms. Notice that there can be many different polynomials cor-
responding to the same multivalued function f : Dn → {0, 1}. We say that such
polynomials are semantically equivalent and write P1 ∼ P2. For example, x ∼ 1 − x̄
in case of Boolean PCR.

Our proof will consist of several stages. The heart of it will be the following
construction based on Hall’s theorem. (We already used a similar idea in proving
Theorem 4.18.)

Lemma 5.3 (matching lemma). Suppose that P is a polynomial and t is some
term (not necessarily from P ). Then there exists a subpolynomial Γ ⊆ P and a
restriction ρ such that ρ does not assign the variables of Supp(t) ∪ Supp(Γ) and ρ
maps all terms of P \ Γ to zero. (Thus, in particular, ρ(t) = t and ρ(P ) = Γ.)
Moreover, |Supp(t) ∪ Supp(Γ)|+ |ρ| ≤ |P |+ deg t.

Proof. Let Γ be any maximal subpolynomial of P with the property

|Supp(t) ∪ Supp(Γ)| ≤ |Γ|+ deg t.
Denote V = Supp(t) ∪ Supp(Γ). Then for any subset of terms S ⊆ P \ Γ, |Supp(S) \
V | > |S|. (Otherwise we could add S to Γ and Γ would not be maximal.) Thus by
Hall’s theorem there exists a matching

µ : [terms of P \ Γ]→ Supp(P ) \ V
which gives each term from P \Γ its unique representative from Supp(P )\V . Now we
define the restriction ρ as follows. It maps these unique representatives to the values
which force the corresponding terms to 0. Thus ρ does not touch the variables from
V and |Supp(t) ∪ Supp(Γ)|+ |ρ| ≤ deg t+ |Γ|+ |P \ Γ| = deg t+ |P |.

Now let us prove Theorem 5.1. Suppose that we have some PCR refutation
{M0,M1, . . . ,Ms} of T . W.l.o.g. we can assume that all polynomials in the memory
do not contain nonzero subpolynomials semantically equivalent to zero. (There is
no sense in keeping such subpolynomials.) Let us fix the first moment q when some
polynomial from Mq contains a (multilinear!) term with degree less than or equal
to n

2 . Let t be any such term which has the smallest possible degree (in particular,
deg t ≤ n

2 ), and let P ∈ Mq be any polynomial which contains t. Our proof splits
into two cases.
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Case 1. deg t ≥ n
4 .

In this case we can assume that |P | ≤ n
8 since otherwise V S(P ) is already greater

than n2

32 (recall that t is the smallest degree monomial fromMq), and we are done.
Lemma 5.4. Suppose that P is a polynomial with no subpolynomials semantically

equivalent to zero and that t is a term of P . Then there exists a restriction ρ which
forces P to a nonzero constant c from F ∗ and assigns at most |ρ| ≤ deg t + |P |
variables.

Proof. We apply our matching lemma, Lemma 5.3, to the polynomial P and the
term t. We get the subpolynomial Γ and the restriction ρ which kills all the monomials
from P \ Γ.

Notice that Γ �= ∅ since it must contain t. Thus by our assumption, Γ �∼ 0, and
we can choose an assignment α to Supp(Γ) which maps it to some constant c ∈ F ∗.
Let us extend our restriction ρ to the restriction ρ′ by α (this is possible because ρ
and α assign to disjoint sets of variables). Then ρ′(P ) = c and |ρ′| ≤ |ρ|+ |Supp(Γ)| ≤
|P |+ deg t.

The rest of Case 1 is simple. Hitting the first (q + 1) lines of the original
refutation with the restriction ρ from Lemma 5.4, we get a new valid refutation
{ρ(M0), ρ(M1), . . . , ρ(Mq)} of the principle ρ(T ) (since c ∈ ρ(Mq) and c �= 0).

Notice that since |ρ| ≤ deg t+ |P | we have |ρ| ≤ 5n
8 , so ρ(T ) is a wide tautology

over ≥ 3n
8 variables. Thus by Theorem 4.18 there exists j < q such that ρ(Mj) (and,

hence, Mj) contains at least
3n
32 monomials. Each monomial of Mj had degree >

n
2

before applying ρ′; therefore V S(Mj) ≥ 3n2

64 .
Case 2. deg t ≤ n

4 .
Definition 5.5. We say that a polynomial P is d-minimal iff it does not contain

a nonzero subpolynomial semantically equivalent to a polynomial of degree ≤ d.
Since t ∈ P , P is not n

4 -minimal. Let us represent P = P0 + P1, where P1 is
n
4 -minimal and P0 ∼ P ′0 with degP ′0 ≤ n

4 . (We can construct such a representation
by consecutively moving subpolynomials semantically equivalent to polynomials of
degree ≤ n

4 from P1 to P0.)
P does not contain nonzero subpolynomials semantically equivalent to zero; in

particular, P0 �∼ 0. However, there still can be several nonzero polynomials P ′0 ∼ P0

with degP ′0 ≤ n
4 . Let P ′0 be the polynomial of the smallest degree semantically

equivalent to P0. If there are several such polynomials we choose arbitrarily one with
the smallest number of monomials of highest degree. Let s be some maximal-degree
term of P ′0.

Now let us apply our matching lemma, Lemma 5.3, to the polynomial P1 and the
term s. It will yield Γ ⊆ P1 and the restriction ρ which kills the terms from P1 \ Γ.

All terms in P1 are of degree ≥ n
4 ; therefore, similarly to Case 1, we can assume

that |P1| ≤ n
8 . Hence, |Supp(s) ∪ Supp(Γ)|+ |ρ| ≤ deg s+ |P1| ≤ 3n

8 .
Now we use the fact that Mq is the first configuration when a term t of degree

≤ n
2 appears. It is clear that the step Mq−1 ❀ Mq is a semantical inference. (It

cannot be an axiom download because all axioms have degree n). Notice that all
terms of polynomials from Mq−1 have degree greater than n

2 . Assume also that

CS(Mq−1) ≤ n
8 . (Otherwise V S(Mq−1) ≥ n2

16 .) Now we are going to arrive at a
contradiction from all these assumptions.

First we claim that ρ can be extended to a restriction ρ1 that does not assign
the variables in |Supp(s)∪ Supp(Γ)| and kills (= sets to zero) all the terms ofMq−1.
To see this notice that ρ has assigned |ρ| variables, and we should keep unassigned
|Supp(s)∪Supp(Γ)| variables; their sum is |ρ|+|Supp(s)∪Supp(Γ)| ≤ |P1|+deg s ≤ 3n

8 ,
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and we need to kill at most n
8 terms inMq−1 of degree ≥ n/2 each. We consecutively

kill terms t ∈Mq−1 by choosing a free unassigned variable from Supp(t) \ (Supp(s)∪
Supp(Γ) ∪ ρ−1(D)).

SinceMq−1 |= P we have ρ1(P ) ∼ 0. Thus ρ1(P0 +P1) ∼ 0 and ρ1(P
′
0 +P1) ∼ 0

and ρ1(P
′
0) + Γ ∼ 0 (because ρ(P1 − Γ) = 0, and ρ1 does not touch variables from

Supp(Γ)). Since deg(ρ1(P
′
0)) ≤ deg(P ′0) ≤ n/4 and P1 is n/4-minimal, Γ should in

fact be identically zero.
We proved that ρ1(P

′
0) ∼ 0. Let d = deg s = deg(P ′0). Notice that every term of

degree d in ρ1(P
′
0) is also contained in P

′
0 (because a restriction either decreases the

degree of a term, or kills it, or does not change it at all). Additionally, ρ1(P
′
0) contains

s because ρ1(s) = s. Thus we get a polynomial P
′′
0 = P ′0− ρ1(P ′0) such that P ′′0 ∼ P0,

deg(P ′′0 ) ≤ d, and P ′′0 contains fewer terms of degree d than P ′0. This contradicts our
choice of P ′0 as the polynomial of smallest degree with smallest number of monomials
of highest degree. Thus this situation cannot take place. Theorem 5.1 follows.

As direct corollaries, we obtain the following tight bounds.
Corollary 5.6. V SpaceR(CTn) ≥ V SpacesemPCR(CTn) ≥ Ω(n2).
Corollary 5.7. V SpaceR(PHP

m
n ) ≥ V SpacesemPCR(PHP

m
n ) ≥ Ω(n2).

6. Upper bounds for Frege systems. In this section we show that the variable
space complexity of CTn is upper bounded by O(n) for Frege systems. It will imply
several nice corollaries and in particular the equivalence of semantical and syntactical
versions for Frege proofs. We start by defining Frege proof systems and the variable
space measure for them.

Definition 6.1 (Frege proof systems). A Frege proof system works with arbi-
trary propositional formulas. A line in a derivation is an arbitrary formula ϕ over
some complete basis. Every inference rule is specified by a scheme

A1, . . . , Ak
B

,

where Ai, B are propositional formulas, and altogether there are only finitely many of
them. A formula ψ is derived from formulas ϕ1, . . . , ϕk using this inference rule if
there is a set of substitutions σ of formulas for the variables appearing in the scheme
such that ϕi = A

σ
i for i = 1, . . . , k and ψ = Bσ. We use the notation ϕ1, . . . , ϕk 1 ψ

to denote that ψ was derived from ϕ1, . . . , ϕk using a single rule.
The notions of a Frege proof (derivation) and refutation are analogous to those

of resolution and PC. The notion of a semantical Frege proof is the natural extension
of semantical systems to Frege. Finally, we give the definition of variable space of a
Frege proof.

Definition 6.2 (Frege variable space). For M, a configuration, the variable

space ofM is V SpaceF (M)
def
=
∑

φ∈M V SpaceF (φ), where V SpaceF (φ) is the num-
ber of occurrences of variables in φ. The Frege variable space of a set of configurations
π = {M0, . . . ,Ms} is

V SpaceF (π)
def
= max{V SpaceF (Mi) : i ∈ [s]},

and the Frege variable space of a CNF T is

V SpaceF (T ) def
= min{V SpaceF (π)},

where the minimum is taken over all Frege refutations π of T .
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To prove our main result we essentially use the compact rule of representing
information analogous to Horner’s scheme for quick evaluation of the polynomial P
at a given point x:

P (x) = a0 + x · (a1 + x · (a2 + · · ·)).
Let us begin with the case when the language of our Frege system F consists of the
standard connectives ¬,∧,∨,→ and the constant 0. (At the end of the section we
will show how to modify our proofs to embrace the case of Frege systems in other
languages.) It is easy to see that the standard simulation of one Frege system by
another Frege system in the same language [CR79] also preserves variable space up
to a constant multiplicative factor. Therefore, in the following theorem (which is our
main result about variable space for Frege) we can unambiguously use the notation
V SpaceF (T ), and we can assume in its proof that F contains any prescribed finite
set of sound inference rules.

Theorem 6.3. V SpaceF (CTn) = O(n).
Proof. We describe an algorithm for refuting CTn. Let us call a proof k-linear

if every line in the proof is derived from k axioms and at most one line that is not
an axiom. A k-linear proof gives rise to a proof DAG that looks like a line, and
hence the name. Clearly, if every formula in a k-linear proof has small variable space,
then so does the whole proof. We shall present a 2-linear proof of CTn such that all
intermediate lines have O(n) variable space.

To this end we define the sequence of read-once formulas ϕ0, . . . , ϕ2(n−1)−1 such
that ϕ0 = (x1 ∨ x2 ∨ · · · ∨ xn) and ϕ2(n−1)−1 = (x1 ∧ x2 ∧ · · · ∧ xn) and show how to
infer ϕt+1 from ϕt within O(n) variable space using only two initial clauses from CTn.
The line ϕt encodes in linear space the following claim: Any satisfying assignment for
CTn, when viewed as a number in binary representation, must be greater than 2 · t.

Fix 0 ≤ t < 2n−1, and let a1a2 . . . an−1 be its binary representation. We let

ϕt
def
= x1 ∗1 (x2 ∗2 (x3 ∗3 (. . . (xn−1 ∗n−1 xn)))),

where ∗i = ∧ if ai = 1 and ∗i = ∨ if ai = 0. Notice that, indeed, any assignment
satisfying ϕt, when viewed as a binary number, must have value greater than 2 · t.
Notice that all assignments in {0, 1}n that satisfy ϕt satisfy ϕt+1 as well, except for
the two assignments that are the binary representation of the numbers 2t + 1 and
2t + 2. Thus, since ϕt “almost” implies ϕt+1, we have room for hope that we can
derive the latter from the former in small space. We now show that this is indeed the
case.

In order to show how to infer ϕt+1 from ϕt and the initial axioms we need to
define one more intermediate formula ψt. Let 0 ≤ m < n be the largest index such
that am = 0 (thus, t = a1a2 . . . am−1011 . . . 1), and let

ψt
def
= x1 ∗1 (x2 ∗2 (x3 ∗3 (. . . (xm−1 ∗m−1 xm)))).

In other words, ψt is obtained from ϕt by cutting off the maximal suffix consisting
entirely of ∧s and encodes that “the satisfying assignment for CTn must be greater
than 2t+ 1.”

Define two clauses corresponding to the binary representations of the numbers
2t+ 1, 2t+ 2, respectively.

At = x
a1
1 ∨ xa2

2 ∨ · · · ∨ xam−1

m−1 ∨ xm ∨ x̄m+1 ∨ · · · ∨ x̄n
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and

Bt = x
a1
1 ∨ xa2

2 ∨ · · · ∨ xam−1

m−1 ∨ x̄m ∨ xm+1 ∨ · · · ∨ xn.
It is obvious from the semantics of ϕt, ψt described above that {ϕt, At} |= ψt and
{ψt, Bt} |= ϕt+1. The question is how to produce compact syntactic inferences.

As we noticed before, we can assume w.l.o.g. that F contains any prescribed
finite set of inference rules, and in particular we can assume that F contains modus
ponens. Therefore, it is sufficient to produce inferences of the tautological formulas
(ϕt ∧At)→ ψt and (ψt ∧Bt)→ ϕt+1 that use O(n) variable space. We will consider
only the first formula; the second proof is analogous.

For 1 ≤ 5 ≤ n, let ϕ(�)
t , A

(�)
t , ψ

(�)
t be the suffixes of ϕt, At, ψt, respectively, that are

obtained by crossing out the variables x1, . . . , x�−1. (And we let ψ
(�)
t

def
= ⊥ if 5 > m.)

We are going to infer (in linear variable space) all the formulas (ϕ
(�)
t ∧ A(�)

t ) → ψ
(�)
t

by induction on 5 = n, n− 1, . . . , 1.
In the base case 5 = n we have ϕ

(n)
t = xn, A

(n)
t = x̄n, and we get a substitutional

instance of the axiom (A ∧ Ā→ B).

In order to infer (ϕ
(�)
t ∧A(�)

t )→ ψ
(�)
t from (ϕ

(�+1)
t ∧A(�+1)

t )→ ψ
(�+1)
t , we use the

rule

A ∧B → C

(D ∨A) ∧ (D ∨B)→ (D ∨ C)
if a� = 0 and the rule

A ∧B → C

(D ∧A) ∧ (D̄ ∨B)→ (D ∧ C)
if a� = 1.

We showed how to make the transition from ϕt to ϕt+1. At the end we get
ϕ2(n−1)−1 = x1 ∧ x2 ∧ · · · ∧ xn, which together with x̄1 ∨ x̄2 ∨ · · · ∨ x̄n implies a
contradiction. Theorem 6.3 is proved.

Corollary 6.4. Any tautological formula ϕ can be inferred from the empty set
of axioms T = ∅ in variable space O(V SpaceF (ϕ)).

Proof. W.l.o.g. assume that {x1, . . . , xn} is the complete list of variables ap-
pearing in ϕ. By induction on the logical complexity of a formula ψ (not necessar-
ily tautological) we produce, for any ε ∈ {0, 1}n, an inference of xε11 ∨ xε22 ∨ · · · ∨
xεnn ∨ ψψ(ε̄1,...,ε̄n)(x1, . . . , xn) (where, naturally, ψ

1 def
= ψ and ψ0 def

= ψ̄) that has vari-
able space O(V SpaceF (ψ)). Since ϕ is a tautology, this in particular gives, for any
ε ∈ {0, 1}n, an inference of xε11 ∨ xε22 ∨ · · · ∨ xεnn ∨ ϕ(x1, . . . , xn) with variable space
O(V SpaceF (ϕ)). Now we have only to modify the proof of CTn from Theorem
6.3 by replacing every formula ψ in it with (ψ ∨ ϕ) and modifying inference rules
accordingly.

Corollary 6.5. For any tautology T over n variables

V SpaceF (T ) = O
(
n+max

ϕ∈T
V SpaceF (ϕ)

)
.

Proof. The proof is similar to the proof of Corollary 6.4. Namely, for every
ε ∈ {0, 1}n we can find ϕε ∈ T such that ϕε → (xε11 ∨ xε22 ∨ · · · ∨ xεnn ) is a tautology.
When we need the axiom xε11 ∨ xε22 ∨ · · · ∨ xεnn from CTn, we download this ϕε, infer
ϕε → (xε11 ∨ xε22 ∨ . . . ∨ xεnn ), and apply modus ponens.
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Let V SpacesemF (T ) denote the semantical Frege variable space of refuting T .
Corollary 6.6. Semantic and syntactic versions of Frege systems are equivalent

in the following variable space model:

V SpacesemF (T ) ≤ V SpaceF (T ) ≤ O(V SpacesemF (T )).

Proof. As in the proof of Theorem 3.7, we show how to emulate the semantic
inference π by a syntactic one. The only difference between semantical and syntactical
versions is in the inference step. Assume that {ϕ1, ϕ2, . . . , ϕk} 1 ψ. Then we can
produce the syntactic proof of the tautology ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕk → ψ according to
Corollary 6.4 and repeatedly apply modus ponens.

At the end we briefly discuss how to generalize these results to the case of Frege
systems F in arbitrary complete language L. The problem with the general translation
is that the sizes of the resulting formulas may grow very rapidly. However, at least it
is not a problem with the logical constant 0: it can be trivially replaced with x ∧ x̄.

Quite fortunately, the specific language that consists of the remaining connectives
{¬,∧,∨,→} is known to be the weakest in the sense that it can be modeled in any
other complete language with only linear blow-up in the variable space. More exactly,
the following holds.

Lemma 6.7 (Reckhow [Rec76]). If F is a Frege system over any complete
language L, then there are L-formulas NOT(x, z), AND(x, y, z), OR(x, y, z), and
IMP(x, y, z) such that

(1) NOT(x, z) contains one occurrence of x, and AND(x, y, z), OR(x, y, z), and
IMP(x, y, z) contain exactly one occurrence of each of x and y;

(2) the four formulas represent the Boolean functions ¬x, (x ∧ y), (x ∨ y), and
(x → y); in particular, the truth values of the formulas are independent of the truth
value of z.

Thus we can rewrite the proof of Theorem 6.3 and its corollaries almost literally,
replacing our standard connectives with NOT(x, z), AND(x, y, z), OR(x, y, z), and
IMP(x, y, z).

7. Open questions. We conclude this paper with a short list of interesting open
questions:

1. Is there any way to capture the notion of propositional space complexity in
the uniform framework of first-order theories of bounded arithmetic?

2. Find an unsatisfiable CNF T in n variables such that V SpaceR(T ) ≥ ω(n)
and T has only polynomially many clauses. (CTn has exponentially many
clauses, and the bound in Corollary 5.7 is linear only in the overall number
of variables mn.) We conjecture that V SpaceR(T (G, σ)) ≥ Ω(n2) if G is a
3-regular expander graph and even that

V SpacePCR(T (G, σ)) ≥ Ω(n2)

when char(F ) �= 2.
3. Are there any other interesting fragments of Frege systems, not contained in
PCR, for which the notion of variable space makes sense (perhaps cutting
planes, depth 2 Frege, etc.)? Can one prove nontrivial lower bounds for these
systems?

4. Can we prove the analogue of Theorem 3.7 for variable space? What can
be said about the relation between the syntactical and semantical versions of
other proof systems with respect to either clause or variable space?
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5. Is it possible to prove superconstant clause space lower bounds for PCR-proofs
of any bounded fan-in tautology or of Countp? Once more, we conjecture that
Corollary 3.27 can be extended to PCR over any field with char(F ) �= 2.

6. (See [ET99].) Is it possible to find some strong connection between the clause
complexity of a tautology and its minimal proof width for resolution?

Appendix. The purely semantical system called FC works with arbitrary Boolean
functions, regardless of their syntactical representation complexity. In fact our space
complexity for FC defined below will simply minimize over all such representations.
Although this system is not natural, the clause space lower bound for the polynomial
calculus applies to it as well, and it is a useful tool for proving lower bounds when an
abstraction from particulars of a given syntactical system is desirable and instructive.

The line of an FC derivation is an arbitrary Boolean function. The single inference
rule is the semantical one, i.e., derive g from f1, f2, . . . , fk whenever f1, f2, . . . , fk |= g.
The definitions of derivations and refutations are analogous to those of resolution and
PC.

When defining the clause space for FC, we must overcome the following problem.
A line in FC is an arbitrary Boolean function f . Clearly, f can be represented by
many circuits over some complete Boolean basis, each with a different amount of
clauses. The natural way to solve this problem is to define the clause space to be the
minimal number of clauses in any such representation.

Definition 7.1 (clause space for FC). For M a set of Boolean functions over
x1, . . . , xn, the clause space of M in FC, denoted FCSpace(M), is the minimal
s such that we can choose s clauses with the property that every f ∈ M can be
represented as a Boolean function over the chosen clauses. Formally,

FCSpace(M)
def
= min {s | ∃(C1(x1, . . . , xn), C2(x1, . . . , xn), . . . ,

Cs(x1, . . . , xn)) for all (f(x1, . . . , xn) ∈M)∃g(y1, . . . , ys)
(f ≡ g(C1, . . . , Cs))} ,

where Ci are clauses, and g runs over arbitrary Boolean functions in s variables.

We can also define multivalued FC over the domain D in a natural way.

Definition 7.2 (multivalued FC). FC over the domain D (FC(D)) is the purely
semantical system which keeps in memory arbitrary functions f(x1, . . . , xn) : D

n →
{0, 1}. The inference rule is the semantical one.

The clause space measure FCSpaceD(M) of a set of such functions M is the
minimal s such that we can choose s multivalued clauses with the property that ev-
ery f ∈ M can be represented as an (ordinary!) Boolean function over the chosen
multivalued clauses.

We now prove our main theorems for FC. The first is a better upper bound on
clause space of CTn, which is proved using the method of Theorem 4.2.

Theorem 7.3. FCSpace(CTn) ≤ n/2 + 2.
Proof. By Claim 4.4 (that applies to FC just as well), we need analyze only the

base case and show that FCSpace(CT 2) ≤ 2 (s = k = 1):

(
Axiom: x1 ∨ x2

Axiom: x1 ∨ x̄2

)
❀
(
x1

)
❀

(
x1

Axiom: x̄1 ∨ x2

)

❀
( ¬(x̄1 ∨ x̄2)

)
❀

( ¬(x̄1 ∨ x̄2)
Axiom: x̄1 ∨ x̄2

)
❀
( ⊥ )

.
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Although FC is much stronger than PCR, it turns out that Theorem 4.18 applies
equally well to the FC.

Theorem 7.4. For any wide tautology T over n variables with domain D,
FCSpace(T ) ≥ n

4 .
Proof. The proof is identical to the proof of Theorem 4.18. (Notice that in the

proof of Lemma 4.14 we used the fact s = MSpacesemD (M1) only to write down the
representation ||M1|| = g(C1, . . . , Cs) for an unspecified Boolean function g, and this
transition works perfectly well in the context of FC).

Acknowledgment. We are grateful to Jan Kraj́ıček for several useful remarks.
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Abstract. We investigate the enumerative geometry aspects of algorithmic line problems when
the admissible bodies are balls or polytopes. For this purpose, we study the common tangent
lines/transversals to k balls of arbitrary radii and 4− k lines in R3. In particular, we compute tight
upper bounds for the maximum number of real common tangents/transversals in these cases. Our
results extend the results of Macdonald, Pach, and Theobald who investigated common tangents to
four unit balls in R3 [Discrete Comput. Geom., 26 (2001), pp. 1–17].
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1. Introduction. Algorithmic questions involving lines in R3 belong to the fun-
damental problems in computational geometry [36, 26], computer graphics [28], and
robotics [33]. As an initial reference example from computational geometry, consider
the problem of determining which bodies of a given scene cannot be seen from any
viewpoint outside of the scene. From the geometric point of view, this leads to the
problem of determining the common tangents to four given bodies in R3 (cf. section 2).
Other algorithmic tasks leading to the same geometric core problem include com-
puting smallest enclosing cylinders [32], computing geometric permutations/stabbing
lines [27, 2], controlling a laser beam in manufacturing [26], or solving placement
problems in geometric modeling [10, 17].

If the bodies are polytopes, the common tangents are common transversals of
edges [27]; so, in fact, the main geometric task is to compute the common transver-
sals to four given lines in R3. This geometric problem has been well known for many
years (see, e.g., [16]). In particular, if a configuration has only finitely many com-
mon transversals, then this number is bounded by 2; and it is well known how to
characterize the configurations with infinitely many common transversals.

On the other hand, the following theorem in [21] shows that this situation com-
pletely changes if the bodies under investigation are unit balls (see also [35, 23]).

Proposition 1. Four unit balls in R3 have at most 12 common tangent lines
unless their centers are located on the same line. Furthermore, there exists a config-
uration with 12 tangents; i.e., the upper bound is tight.

Essentially, this means that algebraically this tangent problem is of degree 12.
Note that due to this high degree, proving the characterization of the configurations
with infinitely many common tangents is a highly nontrivial task.

However, concerning the class of tangent problems to four given bodies, Propo-
sition 1 solves only one particular case. In the present paper, we develop techniques
to analyze a substantially larger class of variants. In particular, we aim at filling the
gaps between the two extreme situations mentioned before by considering common
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Table 1
Summary of results and references of known results. For the case of four balls of general radii

we are able to provide a formulation with Bézout bound 12 (which improves the results from [17]
substantially; see section 4).

Upper bound # Real solutions of Characterization of
# solutions our construction degenerate instances

4 lines 2 (well known) 2 (well known) yes (well known)
3 lines, 1 ball 4 4 yes
2 lines, 2 balls 8 8 –
1 line, 3 balls 12 12 –
4 unit balls 12 [21] 12 [21] yes [21]
4 balls 12 ([17]) 12 [21] –

tangents/transversals to k balls and 4 − k lines, k ∈ {0, . . . , 4}. For convenience of
notation, we consider a transversal of a line as a tangent to the line. Our investiga-
tions do not only clarify the exact growth in algebraic degree from 2 to 12 but also
provide effective means to tackle these questions when the symmetry (in the sense
of identical bodies) is lost. From the algorithmic point of view, these problems of
common tangents immediately arise in the mentioned applications when the class of
admissible bodies in the scene consists of both balls and polytopes (see section 2).

As the main contribution of this paper, we compute tight upper bounds for the
number of common tangents to k balls and 4−k lines in the finite case, k ∈ {0, . . . , 4}.
Here, tightness refers to the following (quite strong) sense of real algebraic geometry
(cf. [34]): On the one hand, for each k we bound the number of solutions by algebraic
methods, say, by some number m. Then, on the other hand, we provide a construction
which indeed leads to m solutions in real space R3 (which would not be possible if any
polynomial formulation contained some complex solutions or solutions at infinity).

The general difficulty of proving tight bounds of this kind may be seen by the fol-
lowing two aspects. For the classical enumerative geometry problem of conics tangent
to five given conics (dating back to Steiner in 1847) the existence problem of 3264
real solutions had not been solved until a few years ago (see [30] and [14, sect. 7.2]).
Furthermore, as pointed out in [34], there are nearly no criteria or general techniques
for tackling these type of questions. For these reasons, it is even more remarkable
that in all (!) of the situations there exists a construction matching the upper bound.

Table 1 summarizes our results and provides references of known results. It shows
the upper bounds for the number of solutions and the matching numbers of real
solutions in our constructions. The last column shows that only in a few cases are we
able to explicitly characterize the configurations with an infinite number of common
tangents. Namely, besides the already existing results for four lines and four unit
balls, we add the characterization for three lines and one ball. In the entries with a
“–” we cannot give such a characterization and will discuss this issue at the end of
the paper.

Let us point out that the proofs of these results are of quite different flavors. For
k ∈ {1, 2}, the upper bounds immediately follow from Bézout’s theorem. Whereas for
k = 1 it is easy to give a construction matching this bound, the construction for k = 2
is quite involved. In particular, for k = 2 we apply tools from algebraic geometry
and computer algebra (e.g., standard bases) to prove correctness of the construction.
However, proving the tight upper bound for three balls and one line is completely
different. Here, the Bézout bound in our formulation will be 16 instead of 12. In
order to find a better bound for the number of real solutions, we have to analyze the
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underlying algebraic geometry of the problem in detail. Finally, in the proof for four
balls of general radii we use elementary geometry to find a formulation with Bézout
bound 12. Altogether, we think that this variety of techniques can serve to provide
many ideas when tackling related problems.

This paper is structured as follows. In section 2, we establish the connection
between the algorithmic problems and the geometric tangent problems. Then, after
providing some algebraic background on Plücker coordinates in section 3, we prove
the necessary results for Table 1 in section 4. We conclude the paper with a short
discussion of the remaining open questions.

2. Motivation and algorithmic background. The problem under investi-
gation represents the algebraic core problem within several algorithmic applications
mentioned in the introduction. Exemplarily, we describe two of them.

Partial visibility. Consider the following problem from ray-tracing with moving
viewpoints. Here, we want to compute information on the viewpoint positions where
the visibility topology of the scene changes. As a special case, this includes tackling
the following core problem of partial visibility.

A set B ⊂ Rn (say, n ∈ {2, 3}) is called a (convex) body if it is bounded, closed,
convex, and contains an inner point. Now we consider a scene consisting of a set B
of (not necessarily disjoint) bodies from a specific class X in Rn. (X might be the
set of all balls or the set of all polytopes.) A body B ∈ B is called partially visible
from a viewpoint v if there exists a line segment connecting v and B not intersecting
with the interior of any other body in B. A body B ∈ B is called partially visible if
B can be seen from some viewpoint “outside” of the scene, i.e., if there exists a ray
starting at B not intersecting with the interior of any other body in B. We call such
a ray a visibility ray for B. Bodies which are not partially visible can be immediately
removed from the scene, which reduces the complexity of the visualization process.
In case of dense crystals whose atoms are visualized as sufficiently large balls, the
reduction in complexity may be quite substantial.

In the two-dimensional case, checking partial visibility of a body B can be reduced
to a finite number of geometric problems as follows (cf. the treatment of stabbing lines
in [12]). Without loss of generality let |B| ≥ 2. If there exists a visibility ray for B,
then we can continuously transform (i.e., translate and rotate) the visibility ray until
we reach a situation where the underlying line is tangent to at least two of the bodies.
(One of them might be B itself.) Hence, it suffices to compute the set of all common
tangent lines to a pair of bodies in B and check whether one of these lines contains a
visibility ray. For any pair of bodies, the number of common tangent lines is at most
four (which is a very special case of the results in [6, 19] on the number of common
supporting hyperplanes in general dimension).

In the three-dimensional case we can essentially proceed analogously. Since a
line in R3 has four degrees of freedom, the core problem is to compute the common
tangents to four bodies in R3 (cf. [27, 2]). However, in the three-dimensional case,
there are also some special cases where we can transform a visibility ray only to a
situation with two or three bodies, or where a configuration with four bodies has an
infinite number of common tangents.

For a polytope P , any tangent to P intersects an edge of P . Hence, if X con-
tains balls and polytopes, we have to compute common tangents/transversals to k
lines and 4 − k balls, 0 ≤ k ≤ 4. An algorithmic treatment of the situations with
infinitely many common tangents (depending on the class X of bodies) requires an a
priori characterization of the configurations with infinitely many common tangents.
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In contrast to some other problems in computational geometry, characterizing these
situations cannot be neglected (say, by applying perturbation techniques [11]), since
the large algebraic degree involved makes it highly nontrivial to guarantee a correct
perturbation.

Envelopes. Let B be a collection of n convex bodies in R3. A line l is called a
line transversal of B if it intersects every member of B. The set of line transversals of
B can be represented as the region enclosed between an upper and a lower envelope
as follows (see [7, 1, 2]). These representations are important in the design of data
structures supporting ray shooting queries (i.e., seeking the first body, if any, met by
a query ray) [1].

If we exclude lines parallel to the yz-plane, a line l in R3 can be uniquely rep-
resented by its projections on the xy- and xz-planes: y = σ1x + σ2, z = σ3x + σ4.
Hence, a line can be represented by the quadruple (σ1, σ2, σ3, σ4) ∈ R4.

Let B be a convex body in R3. For fixed σ1, σ2, σ3, the set of lines (σ1, σ2, σ3, σ4)
that intersect B is obtained by translating a line in the z-direction between two
extreme values, (σ1, σ2, σ3, φ

−
B(σ1, σ2, σ3)) and (σ1, σ2, σ3, φ

+
B(σ1, σ2, σ3)), which rep-

resent lines tangent to B from below and from above, respectively. Hence, the set of
line transversals to B can be represented as

{(σ1, σ2, σ3, σ4) : max
B∈B

φ−B(σ1, σ2, σ3) ≤ σ4 ≤ min
B∈B

φ+
B(σ1, σ2, σ3),

which is a region enclosed between a lower envelope and an upper envelope in R4.
If the elements of B are balls or polytopes, then the set of line transversals defines
a semialgebraic set in R4 (see [2]). Assuming general position, the vertices (= zero-
dimensional faces) of the boundary of this region correspond to lines which are tangent
to four of the bodies in B. Similar to the first scenario, any implementation of this
basic step has to cope with the enumerative questions treated in the present paper.

The role of an algebraic oracle. In both of these algorithmic scenarios, the
problem is reduced to the core problem of finding the common tangents/transversals
to k lines and 4− k balls. In literature, core problems of this type are considered to
be problems of constant description complexity (see, e.g., [2]). Often, it is assumed
that one has access to an algebraic oracle computing the necessary tangents, and
the algorithm is formulated in terms of that oracle. From this point of view, our
analysis can be seen as the necessary mathematical investigations on how to build
this algebraic oracle.

In particular, any implementation of this algebraic oracle or any interface to
a black box subroutine establishing that oracle has to cope with the enumerative
questions. From the viewpoint of data structures it is always useful and sometimes
even necessary to know a good (i.e., tight) upper bound on the number of these tangent
lines. From the viewpoint of program verification, knowing a tight upper bound on the
number of tangent lines offers the possibility of strong and valuable consistency checks
within a program (in particular with regard to the necessary numerical subroutines;
cf. section 5). Finally, from the viewpoint of efficiency, understanding the geometry of
the basic problem helps to find the right polynomial formulations for the underlying
numerical algorithms.

3. Plücker coordinates. In several of the proofs, we use the well-known Plücker
coordinates of lines in projective space P3 (see, e.g., [16, 8]). Let x = (x0, x1, x2, x3)

T ,
y = (y0, y1, y2, y3)

T ∈ P3 be two different points on a line l. Then l can be represented
(of course not uniquely) by the 4× 2-matrix L whose two columns are x and y. The
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Plücker vector p = (p01, p02, p03, p12, p13, p23)
T ∈ P5 of the line is defined by the

determinants of the 2 × 2-submatrices of L, i.e., pij = xiyj − xjyi. It is well known
that the set of vectors in P5 satisfying the Plücker relation

p01p23 − p02p13 + p03p12 = 0(1)

is in one-to-one correspondence with the set of lines in P3. A line l intersects with a
line l′ in P3 if and only if their Plücker vectors p and p′ satisfy

p01p
′
23 − p02p

′
13 + p03p

′
12 + p12p

′
03 − p13p

′
02 + p23p

′
01 = 0.(2)

In order to characterize lines tangent to balls we consider tangent lines to arbitrary
quadrics in P3. Throughout the presentation, we will identify a quadric surface in P3

with its symmetric 4× 4-representation matrix. For example, the sphere with radius
r and center (c1, c2, c3)

T ∈ R3, in P3 described by (x1− c1x0)
2 + (x2− c2x0)

2 + (x3−
c3x0)

2 = r2x2
0, is identified with the matrix




c21 + c22 + c23 − r2 −c1 −c2 −c3
−c1 1 0 0
−c2 0 1 0
−c3 0 0 1


 .

Lemma 2. Let L be a 4× 2-matrix representing the line l ⊂ P3. l is tangent to a
quadric Q in P3 if and only if the 2× 2-matrix LTQL is singular.

Proof. If we denote the two columns of L by x and y, then the line l consists of
all points

{
z = (z0, z1, z2, z3)

T : z = λx+ µy, (λ, µ)T ∈ R2 \ {(0, 0)T }} .

By definition, l is tangent toQ if and only if this line intersects the quadric exactly once
(namely, with multiplicity 2) or if it is contained in the quadric. The homogeneous
quadratic equation

(λx+ µy)TQ(λx+ µy) = 0

can be made affine by setting µ = 1. Since the discriminant of this affine quadratic
equation in λ is

(2xTQy)2 − 4(xTQx)(yTQy) = −4 det(LTQL),

the statement follows immediately.
In order to transfer this condition to Plücker coordinates, we introduce the oper-

ator

∧2 : Rm,n → R(
m
2 ),(

n
2)

(cf. [35]). The row and column indices of the resulting matrix are subsets of car-
dinality 2 of {1, . . . ,m} and {1, . . . , n}, respectively. For I ⊂ {1, . . . ,m} and J ⊂
{1, . . . , n}, with |I| = |J | = 2,

(∧2A)I,J := detA[I,J],

where A[I,J] denotes the 2 × 2-submatrix of the given matrix A with row indices I
and column indices J . Let l be a line in P3 and L be a 4 × 2-matrix representing l.
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By interpreting the 6× 1-matrix ∧2L as a vector in P5, we observe ∧2L = pl, where
pl is the Plücker vector of l.

Lemma 3. A line l ⊂ P3 is tangent to a quadric Q if and only if the Plücker
vector pl of l satisfies

pTl (∧2Q)pl = 0.(3)

Proof. Let L be a 4 × 2-matrix whose two columns contain different points of l.
The Cauchy–Binet formula from multilinear algebra (see, e.g., [22]) implies

det(LTQL) = (∧2LT )(∧2Q)(∧2L)

= (∧2L)T (∧2Q)(∧2L).

Now the claim follows from Lemma 2.
For a sphere with radius r and center (c1, c2, c3)

T ∈ R3 the quadratic form
pTl (∧2Q)pl results in




p01

p02

p03

p12

p13

p23




T 


c22 + c23 − r2 −c1c2 −c1c3 c2 c3 0
−c1c2 c21 + c23 − r2 −c2c3 −c1 0 c3
−c1c3 −c2c3 c21 + c22 − r2 0 −c1 −c2
c2 −c1 0 1 0 0
c3 0 −c1 0 1 0
0 c3 −c2 0 0 1







p01

p02

p03

p12

p13

p23




.(4)

4. Proofs and constructions. We show the following theorem.
Theorem 4. Given 4− k lines and k balls in R3, 0 ≤ k ≤ 4. If there exist only

finitely many common tangent lines to these four bodies, then the number of these
tangents is bounded by





2 if k = 0,

4 if k = 1,

8 if k = 2,

12 if k ∈ {3, 4}.
These bounds are tight; i.e., for each k there exists a configuration where the number
of different real tangent lines matches the stated number. The bounds are tight even
if the balls are unit balls.

For brevity, we denote the maximum numbers of tangent lines in the five situations
by Nk, k ∈ {0, . . . , 4}. Before proving the statements in the following lemmas, let us
recall the following version of Bézout’s theorem (see, e.g., [8, p. 91]).

Theorem 5 (Bézout). Let f1, . . . , fn be homogeneous polynomials in x0, . . . , xn
of degrees d1, . . . , dn > 0. If f1, . . . , fn have a finite number of common zeros in
projective n-space Pn, then the number of zeros (counted with multiplicity) is bounded
by d1·d2 · · · dn.

Note that the upper bounds N0 ≤ 2, N1 ≤ 4, N2 ≤ 8 immediately follow from
Bézout’s theorem. Namely, since the common tangent lines to three lines and one
ball can be formulated by three linear equations of the form (2), one equation of
the form (3) as well as the Plücker relation (1) in the six homogeneous variables
p01, . . . , p23, we obtain N1 ≤ 4. Analogously, we obtain N0 ≤ 2, N2 ≤ 8.

Further, note that the common transversals to four given lines in three-dimensional
space are a well-studied problem in enumerative geometry, and it is well known that
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0

l1

l2

l3

Fig. 1. The figure shows a configuration with three lines l1, l2, l3, and one ball of radius 11/10,
leading to four common tangent lines. The two tangent lines in the x1x2-plane are drawn in light
grey, whereas the two tangent lines in the x2x3-plane are drawn in dark grey.

the upper bound of 2 can actually be achieved in real space R3 (see, e.g., [16]); hence
N0 = 2. The number of common transversals is finite if and only if the Plücker vectors
of the four given lines are linearly independent.

In the following, let B(c, r) denote the (closed) ball with center c and radius r.
Lemma 6. N1 = 4.
Proof. Since N1 ≤ 4, it suffices to give a construction with three lines and one

ball, leading to four common tangents. Let l1 be the x1-axis, l2 be the x2-axis,
and l3 be parallel to the x3-axis and passing through (0, 2, 0)T (see Figure 1); hence
l1 ∩ l2 = {(0, 0, 0)T } and l2 ∩ l3 = {(0, 2, 0)T }.

Each line intersecting the three lines l1, l2, and l3 is located in the x1x2-plane (in
which case it passes through (0, 2, 0)T ) or is located in the x2x3-plane (in which case
it passes through the origin). For 1 < r <

√
2 the ball B((1, 1, 1)T , r) intersects both

the x1x2-plane and the x2x3-plane but does not intersect with any of the lines l1, l2,
l3. Hence, since there are two tangents to the ball passing through the origin and
lying in the x1x2-plane, and since there are two tangents to the ball passing through
(0, 2, 0)T and lying in the x1x3-plane, there are four common tangents altogether.
Figure 1 shows a configuration with 1 < r = 11/10 <

√
2. We remark that by

appropriate scaling, the ball can be transformed into a unit ball. Furthermore, by
slightly perturbing the configuration, the lines can be made pairwise skew.

To complete the entries for three lines and one ball in Table 1, it remains to
characterize the configurations with infinitely many common tangent lines. If the
three lines are not pairwise skew, then all common tangent lines lie in the same plane
or pass through a point of intersection. Since the resulting characterization can be
easily established, we can assume that the three lines are pairwise skew.

It is well known that the common transversals of three pairwise skew lines de-
fine a hyperboloid (see, e.g., [31, 3]). By applying a translation and a rotation, the
hyperboloid can be transformed into

x2
1

a2
+

x2
2

b2
− x2

3

c2
= 1 with a, b, c > 0.(5)

This transformation changes the center of the ball into some new center (p1, p2, p3)
T ∈

R3. Now the characterization of infinitely many common tangent lines is given by the
following lemma.
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Lemma 7. Let l1, l2, l3 be three pairwise skew lines whose common transversals
generate a hyperboloid of the form (5), and let B4 be a ball with center (p1, p2, p3)

T

and radius r > 0. Then there exist infinitely many common tangents to l1, l2, l3, B4 if
and only if p1 = p2 = 0, a = b, and in the x1x3-plane the circle x2

1 + (x3 − p3)
2 = r2

is a tangent circle to both branches of the hyperbola x2
1/a

2 − x2
3/c

2 = 1.
Proof. The hyperboloid (5) can be parametrized by one of the two sets of gener-

ating lines. In particular, this hyperboloid is generated by the set of lines
{
(x1, x2, 0)

T + λ

(
− a

bc
x2,

b

ac
x1, 1

)T
: λ ∈ R

}
,(6)

where
x2

1

a2
+

x2
2

b2
= 1(7)

(see, e.g., [18]). In order to characterize those lines which are tangent to the ball,
we can apply Lemma 3 to the lines (6) and obtain a polynomial equation in x1, x2

of degree at most 4. After bringing the terms of even degree in x1 to the left side
and the terms of odd degree in x1 to the right side, squaring the equation yields a
new equation in which every term is of even degree in x1. Now we can use (7) to
eliminate x2 and obtain a polynomial equation of degree at most 8 in x1. Since a
univariate polynomial with infinitely many common zeros is the zero polynomial, this
polynomial formulation in a single variable implies that if the hyperboloid contains
infinitely many tangent lines to the ball, then all lines in the parametrization are
tangent lines to the ball.

Since the intersection of the hyperboloid with any plane parallel to the x1x2-axis
is symmetric with respect to the origin, a necessary condition for infinitely many
common tangents is p1 = p2 = 0. In this situation, a configuration with infinitely
many common tangents further implies a = b. Hence, since p1 = p2 = 0 and a = b,
both the hyperboloid and the ball are rotational symmetric with respect to the x3-
axis, and it suffices to consider the section through the x1x3-plane. In this section, the
circle x2

1 +(x3− p3)
2 = r2 must be a tangent circle to both branches of the hyperbola

x2
1/a

2 − x2
3/c

2 = 1.
If, conversely, p1 = p2 = 0, a = b, and in the x1x3-plane the circle x2

1+(x3−p3)
2 =

r2 is a tangent circle to the hyperbola x2
1/a

2−x2
3/c

2 = 1, then the rotational symmetry
implies that every line in the hyperboloid x2

1/a
2 +x2

2/b
2−x2

3/c
2 = 1 is tangent to the

ball B4. Hence, there are infinitely many common tangents.
Lemma 8. N2 = 8.
Proof. Since N2 ≤ 8, it suffices to give a construction with two lines and two

balls of the same radius, leading to eight common tangent lines. We start from the
following configuration with six different common tangent lines. The two balls are
symmetrically located on the x1-axis: c3 = (γ, 0, 0)T , c4 = (−γ, 0, 0)T ; the radius r
will be specified below. The lines l1 and l2 are chosen in a plane x2 = β for some
β > 0 such that the lines intersect in (0, β, 0)T . Hence, every common transversal of
the two lines either lies in the plane x2 = β or passes through the point (0, β, 0)T . If
the two balls intersect with each other, and β < r, and (0, β, 0)T is not contained in
the union of the balls B(c3, r), B(c4, r), then there are exactly six different common
tangents (see Figure 2): two tangents pass through (0, β, 0)T and lie in the plane
x1 = 0; two tangents lie in the plane x2 = β and are parallel to the x1-axis; and
two tangents lie in the plane x2 = β and pass through (0, β, 0)T . For the following
considerations it is quite useful to have a succinct description of the last two tangents
and also to work with integer coefficients for β, γ, and r. In particular, we will force
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x

l1

l2

Fig. 2. The figure shows a construction with two lines and two balls, leading to six different
tangent lines. The two tangents lying in the plane x2 = β and passing through (0, β, 0)T are drawn
in light grey. The other four tangents are drawn in dark grey.

the two tangents in the plane x2 = β and passing through (0, β, 0)T to be of the form
(0, β, 0)T +λ(1, 0,±1)T . In order to obtain these tangents, β, γ, and r have to satisfy
β2 + γ2/2 = r2 and r > γ. An appropriate choice is β = 7, γ = 8, and r = 9, so that
the tangents of the last type are

t1 :=
{
(0, 7, 0)T + λ(1, 0, 1)T : λ ∈ R

}
and t2 :=

{
(0, 7, 0)T + λ(1, 0,−1)T : λ ∈ R

}
.

Now the key observation is that these two tangents have multiplicity 2. In order
to prove this we consider the system of Plücker equations stemming from (2) and (4).
Independent of the specific choice of lines l1, l2 with the above properties, the common
transversals of l1 and l2 are given by the common zeros of the two linear, homogeneous
polynomials

f1 = −7p03 + p23,

f2 = 7p01 + p12.

The quadratic equations resulting from the balls B(c3, r) and B(c4, r) are

f3 = −81p2
01 − 17p2

02 − 17p2
03 − 16p02p12 + p2

12 − 16p03p13 + p2
13 + p2

23,

f4 = −81p2
01 − 17p2

02 − 17p2
03 + 16p02p12 + p2

12 + 16p03p13 + p2
13 + p2

23.

Furthermore, let f5 = p01p23 − p02p13 + p03p12 be the polynomial of the Plücker
relation (1).

The tangent t1 has Plücker coordinate (1, 0, 1,−7, 0, 7)T . In order to compute the
multiplicity of this tangent, we follow the method and the notation in [9, sect. 4.4].
First we pass to an affine version of the polynomials by adding the polynomial f6 =
p01 − 1; this forces p01 = 1 in any common zero of the system. Then we move the
point t1 to the origin by applying the linear variable transformation

(p01, p02, p03, p12, p13, p23)
T = (q01, q02, q03, q12, q13, q23)

T + (1, 0, 1,−7, 0, 7)T .
The local intersection multiplicity µ can be computed as the vector space dimension
of the quotient ring

µ = dimRl/Il,
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where Rl := C[q01, . . . , q23]〈q01,...,q23〉 is the local ring whose elements are the rational
functions in q01, . . . , q23 with nonvanishing denominator at 0. Il is the ideal defined
by f1, . . . , f6 in the local ring Rl.

In order to compute µ, we use the fact that in case of finite dimension

dimRl/Il = dimRl/〈LT(Il)〉,
where 〈LT(Il)〉 denotes the ideal generated by the leading terms of Il (see, e.g., [9,
Chap. 4, Cor. 4.5]). This dimension can be easily extracted from a standard basis of
Il. (For the convenience of the reader, a short review of standard bases can be found
in the appendix.) Since by our choice of β, γ, and r all coefficients are integers, we
can apply a computer algebra package (e.g., Singular [15]) to compute a standard
basis {h1, . . . , h6} of the ideal Il with respect to antigraded reverse lexicographical
order:

h1 = q01,

h2 = 112q02 + 34q03 + 14q12 − 16q13,

h3 = 14q03 + q12,

h4 = q12,

h5 = 64q23,

h6 = 112q2
13.

Hence, the leading monomials of h1, . . . , h6 with respect to antigraded reverse lex-
icographical order are q01, q02, q03, q12, q23, q2

13. The desired multiplicity µ is the
cardinality of the set of cosets {1 + Il, q13 + Il}, which implies µ = 2. By symmetry,
the tangent t2 has multiplicity 2 as well.

Now we choose one particular configuration of the presented class, namely the one
with l1 := t1 and l2 := t2. By perturbing this configuration, the two double tangent
lines will split into four different tangent lines: first, we slightly increase the x2-
coordinate of the line l2 so that the resulting line l′2 becomes (0, β′, 0)T +λ(1, 0,−1)T
for some β′ > β. In this process, the double tangent t1 splits into two tangents ta1 and
tb1 intersecting l1 and l′2 in different orders; i.e., one of the tangents ta1 , t

b
1 touches l1,

l2, B3, and B4 in the order (B3, l1, l2, B4) and one of them in the order (B3, l2, l1, B4).
However, the tangent t2 is still a double zero of the system of polynomials, since the
parallel lines t2 and l′2 intersect in the plane at infinity of P3.

Similarly, we can make the double tangent t2 split into two tangents by slightly
decreasing the x2-coordinate of the line l1; denote the resulting line by l′1. Figure 3
shows the configuration for l′1 passing through the points (0, 6.5, 0)T , (2, 6.5, 2)T and
l′2 passing through the points (0, 7.5, 0)T , (2, 7.5,−2)T .

For N3 the situation is more involved. The Bézout bound gives 16, but, in fact,
the number of real common tangents is bounded by 12. Our proof is based on some
algebraic-geometric investigations of the common tangents to four unit balls by Mac-
donald [20]. By appropriately applying these considerations to the situation with
three balls and one line, it will turn out that there are always two solutions at in-
finity with multiplicity at least 2. For the general background on the algebraic and
geometric concepts used in the subsequent proofs, easily accessible introductions can
be found in [25, 29].

We start with the following observation in [35]. The sphere with center (c1, c2, c3)
T ∈

R3 and radius r has the homogeneous equation in P3

(x1 − c1x0)
2 + (x2 − c2x0)

2 + (x3 − c3x0)
2 = r2x2

0.
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x

Fig. 3. Construction with two lines and two balls, leading to eight common tangent lines.

In the plane at infinity x0 = 0, this gives the equation

x2
1 + x2

2 + x2
3 = 0,

which is independent of the center and the radius. Let ω denote this conic section in
the plane at infinity. Later in the proof, we will work in the space of lines in P3. In
that situation, we will have to consider those tangents through any point z ∈ ω in the
plane at infinity rather than z itself. For this reason, we provide a characterization of
these tangents.

Lemma 9. Let z = (0, ζ1, ζ2, ζ3)
T ∈ ω. The tangent to the conic ω at z which lies

in the plane at infinity has Plücker coordinate

(p01, p02, p03, p12, p13, p23)
T = (0, 0, 0, ζ3,−ζ2, ζ1)T .

In particular, the tangent contains the points (0,−ζ2, ζ1, 0)T , (0, ζ3, 0,−ζ1)T , and
(0, 0,−ζ3, ζ2)T .

Proof. Since ζ0 = 0 we can compute in projective plane P2; so let z = (ζ1, ζ2, ζ3)
T .

The conic section

xTAx = 0 with A =




1 0 0
0 1 0
0 0 1




is regular in z with tangent {y = (y1, y2, y3)
T ∈ P2 : zTAy = 0}. In particular,

(−ζ2, ζ1, 0)T , (ζ3, 0,−ζ1)T , (0,−ζ3, ζ2)T , and z itself lie on this tangent. Now any
two of these points can be used to compute the Plücker coordinate of the tangent
line.

Consider a configuration with a line l1 and three spheres Q2, Q3, and Q4 in R3.
The idea for proving the solutions at infinity is to transfer the geometry of ω to the
space of lines in P3. More precisely, let t be a tangent to ω at z in the plane at infinity.
Since the quadrics ∧2Q2,∧2Q3,∧2Q4 ∈ P5 characterize the tangents to Q2, Q3, Q4,
the Plücker vector pt of t is contained in ∧2Q2, ∧2Q3, and ∧2Q4. Let Ω denote the
quadric in P5 defined by the Plücker equation (1). Since t is a line in P3, t is also
contained in Ω. We will show that the tangent hyperplanes to the quadrics ∧2Q2,
∧2Q3, ∧2Q4, Ω at pt contain a common subspace of dimension 2. In connection with
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the linear form defined by the transversals of the line l1, this will prove the multiplicity
of at least 2.

Let us investigate the spheres Q2, Q3, Q4 first. For i ∈ {2, 3, 4}, we are looking for
lines whose Plücker vectors lie in the tangent hyperplane of ∧2Qi at pt. The geometric
concept behind this relation is polarity. Recall that the polar plane of a point a ∈ Pn

with respect to an arbitrary quadric Q is defined by

{y ∈ Pn : aTQy = 0}.

If a ∈ Q, then the polar hyperplane is a tangent hyperplane. The polar line of a line
l ∈ P3 is defined by

{y ∈ P3 : aTQy = 0 for all a ∈ l}.

The following lemma establishes a connection between the tangent hyperplanes to
∧2Q and the concept of polarity for a quadric Q.

Lemma 10. Let t be a tangent line to a quadric Q ⊂ P3, and let the point a ∈ P3

be contained in the polar line of t. Then, for any line l containing a, the Plücker vector
pl of l is contained in the tangent hyperplane to ∧2Q at pt, i.e., pTt (∧2Q)pl = 0.

Proof. Let T be a representation of t by a 4× 2-matrix as described in section 3.
Further, let b be a point on l with b �= a, and let L = (a, b) be a representation of l by
a 4 × 2-matrix. Since a is contained in the polar line of t, we have TTQa = (0, 0)T .
Hence, by reasoning as in Lemma 3, we can conclude

pTt (∧2Q)pl = det(TTQL) = 0.

In particular, the following version of a well-known relationship (see, e.g., [25])
shows that the precondition of Lemma 10 is satisfied if a = t ∩Q.

Lemma 11. If t is tangent to a quadric Q at some point a, then a is contained
in the polar line of t.

Proof. Let y �= a be a point on t. Since t lies on the polar plane (namely, the
tangent plane) of a with respect to Q, we have aTQy = 0. Since also aTQa = 0, a
lies on the polar line of t with respect to Q.

Finally, we are ready to prove the upper bound for N3.

Lemma 12. N3 ≤ 12.

Proof. Let L1 be the hyperplane (2) in P5 characterizing the transversals of the
line l1; that is, any point on L1 which satisfies the Plücker relation is the Plücker
coordinate of a transversal to l1. Let ∧2Q2,∧2Q3,∧2Q4 be the quadrics (4) char-
acterizing the tangents to the three balls. Further, let z = (0, ζ1, ζ2, ζ3)

T ∈ ω, and
let π ⊂ Ω ⊂ P5 be the set of Plücker vectors whose corresponding lines in P3 pass
through z. π can be written as the image of the projective mapping h : P3 → Ω ⊂ P5,

h(y0, y1, y2, y3) = ∧2




0 y0

ζ1 y1

ζ2 y2

ζ3 y3


 .

Since h is linear, it follows that π is a two-dimensional plane in P5 with π ⊂ Ω.

Let t be the tangent to ω at z in the plane at infinity. By Lemmas 11 and 10, π
is contained in the tangent hyperplane to ∧2Qi at pt, 2 ≤ i ≤ 4.
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In order to show that π is also contained in the tangent hyperplane to Ω at pt, let
y be a point different from z, and let l be a line through z and y. Then, by Lemma 9,
the Plücker vectors pt and pl satisfy

pTt Ωpl = (0, 0, 0, ζ3,−ζ2, ζ1) · 1
2




0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0



·




−ζ1y0

−ζ2y0

−ζ3y0

ζ1y2 − ζ2y1

ζ1y3 − ζ3y1

ζ2y3 − ζ3y2




= −1
2
y0(ζ

2
1 + ζ2

2 + ζ2
3 )

= 0 .

Hence, the four tangent hyperplanes of ∧2Q2, ∧2Q3, ∧2Q4, Ω at pt contain a
common subspace of dimension at least 2. By Lemma 9, the tangents to the conic ω
lie on a conic ω, namely on

p2
12 + p2

13 + p2
23 = 0,

in the two-dimensional subspace of P5 given by p01 = p02 = p03 = 0. The restriction
of the hyperplane L1 to the subspace p01 = p02 = p03 = 0 defines a one-dimensional
subspace L1. Since L1 is one-dimensional, it intersects with ω at two points b1, b2 ∈ P5

in the plane p01 = p02 = p03 = 0. Further, since b1 and b2 satisfy the Plücker relation,
they are Plücker vectors of some tangents t1 and t2 to ω. Altogether, the five tangent
hyperplanes of ∧2Q2, ∧2Q3, ∧2Q4, Ω, L1 at b1 and b2 contain a common subspace
of dimension at least 1. Hence, the tangent hyperplanes are not independent, which
implies that the multiplicity of intersection in b1 and b2 is at least 2 (see, e.g., [24,
p. 115]).

In order to show thatN3 = 12 it remains to give a construction with one line l1 and
three balls B2, B3, B4 of the same radius r, leading to 12 common tangents. Let l1 be
the x3-axis, and let the centers c2, c3, c4 of the balls constitute an equilateral triangle
with edge length 1 in the x1x2-plane, say c2 = (

√
3/3, 0, 0)T , c3 = (−√3/6, 1/2, 0)T ,

c4 = (−√3/6,−1/2, 0)T (see Figure 4). For 1/2 < r <
√
3/3, the balls are non-

disjoint, and none of them contains the origin.
Let t be a line which intersects l1, and let H be the plane containing t and l1.

The three cuts H ∩ B1, H ∩ B2, and H ∩ B3 are discs (maybe degenerated to single
points or empty sets). Unless H is equidistant to two of the centers, one of these discs
is strictly contained in one of the other two. Hence, any common tangent to the line
and the three balls lies in one of the three planes which contain the x3-axis and which
are equidistant to two of the centers.

For example, one of these planes is the x1x3-plane, which is equidistant to c2
and c3. The section through this plane contains two disjoint discs: one representing
the (identical) intersections of the plane with B2 and B3, and the second one because
of B1. These two discs are separated by the line l1. Hence, in this plane there are
four common tangents. Altogether, since there are three planes of this kind, we have
12 common tangents.

Finally, it remains to analyze the common tangents to four balls (with arbitrary
radii) in R3. Of course, this problem can also be formulated in Plücker coordinates.
However, since the solutions of these equations have a common component at infinity
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l1

Fig. 4. Construction with one line and three balls, leading to 12 tangents.

[35], we prefer to compute the number of tangents by an elementary approach. Re-
cently, in [17] the common tangents to four balls have been formulated by polynomial
equations with Bézout number 24. We improve this result by giving a polynomial
formulation with Bézout number 12; this is optimal by Proposition 1.

The idea for obtaining the system with Bézout bound 12 is to generalize the
approach for unit balls in [21]. Note that in the proof we will always refer to the
generic case. For this reason—in contrast to Proposition 1—the proof does not provide
a precise characterization of the cases with infinitely many common tangent lines.

Lemma 13. N4 ≤ 12.
Proof. Let c1, . . . , c4 be affinely independent, and, without loss of generality, let

r4 be the smallest of the radii. We consider functions ρi : [0, r4]→ R with ρi(0) = 0,
ρi(r4) = ri. Let ρ4(t) = t, while ρi(t) for 1 ≤ i ≤ 3 will be specified below. First we
describe the set of lines which are tangent to the balls B(ci, ρi(t)) for t > 0.

A line l will be specified by its homogeneous direction vector s = (s1, s2, s3)
T and

its closest point p to the origin.
The line l has distance ρi(t) from some point ci if and only if the line l−p (which

passes through the origin) has distance ρi(t) from ci − p, i.e., if and only if

((ci − p)× s)2 = ρ2
i (t)s

2.

Introducing the moment vector m := p× s and applying Lagrange’s identity gives

(ci × s)2 − 2〈ci, p〉s2 +m2 − ρ2
i (t)s

2 = 0.(8)

Choosing c4 to be at the origin and subtracting (8) for index 4 from this equation for
index i ∈ {1, 2, 3} yields linear equations in p:

〈ci, p〉 = 1

2s2
(ci × s)2 − 1

2
(ρ2
i (t)− t2), 1 ≤ i ≤ 3.(9)

Setting M := (c1, c2, c3)
T , we obtain the vector equation

p =
1

2s2
M−1




(c1 × s)2

(c2 × s)2

(c3 × s)2


− 1

2
M−1




ρ2
1(t)− t2

ρ2
2(t)− t2

ρ2
3(t)− t2


 .(10)
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Now the key idea is that if we choose parametrizations ρi(t) with ρ2
i (t)− t2 = Ci for

some constants Ci ∈ R, 1 ≤ i ≤ 3, then the vector p is uniquely determined by the
direction vector s. Furthermore, the conditions ρi(r4) = ri imply Ci = r2

i − r2
4; hence,

ρ2
i (t) = t2 + (r2

i − r2
4). By Cramer’s rule,

M−1 =
1

6V
(c2 × c3, c3 × c1, c1 × c2),

where V := det(c1, c2, c3)/6 denotes the oriented volume of the tetrahedron c1c2c3c4.
By introducing the normal vectors

n1 := (c2 × c3)/2, n2 := (c3 × c1)/2, n3 := (c1 × c2)/2,

and substituting (10) into 〈p, s〉 = 0, we can eliminate p and obtain a homogeneous
cubic condition for the direction vector s:

3∑
i=1

(
(ci × s)2 + s2(r2

i − r2
4)
) 〈ni, s〉 = 0.

Any solution s of this equation is the direction vector of a line with distances ρi(t) from
the four centers for some parameter t. Substituting the radius condition ||p|| = r4

into (10) gives an equation of degree 4. Since ρi(r4) = ri, 1 ≤ i ≤ 4, any common
solution of the cubic and the quartic equation gives a common tangent to the four
balls B(ci, ri). By Bézout’s theorem, the formulation of the tangent problem by a
cubic and a quartic equation implies N4 ≤ 12.

5. Conclusion and open questions. We have investigated the enumerative
geometry questions for the common tangents to four bodies in R3 when the bodies
are balls or polytopes. These results reflect the algebraic complexity inherent in
the mentioned applications. In other words, whenever we want to focus on exact
computations for the visibility or envelope problems described in section 2, we have
to cope with solving systems of polynomial equations of the stated degrees.

The main open problem is to complete the characterization of the degenerate
instances in Table 1. For example, in the case of four balls with arbitrary radii there
are some obvious situations with infinitely many common tangent lines: whenever the
four centers are collinear and the four balls are inscribed in the same hyperboloid H.
We conjecture that there does not exist any configuration with four balls of arbitrary
radii, noncollinear centers, and infinitely many common tangent lines. However, we
were not able to prove this.

From the practical point of view, actually computing the numerical values of the
solutions (which has, e.g., been done in finding the constructions given in this pa-
per) requires either multidimensional numerical methods such as homotopy methods
or combinations of symbolic techniques with univariate polynomial solvers. (For an
introduction into all these techniques see [9].) Since generally these techniques are
still computationally expensive, it is important to apply the most appropriate poly-
nomial formulations of the concrete problems. From this point of view, our results
provide optimal formulations. Finally, let us mention that there are many research
efforts in improving the efficiency of the two mentioned numerical polynomial solving
techniques. In particular, for recent improvements and the state of the art of the first
technique see [37], and with regard to the second technique see [4, 5, 13].
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Appendix: Standard bases. We review the definitions of a standard basis,
starting from Gröbner basis theory (see [9]). The theory of Gröbner bases provides
computational methods to find “nice” generators for an ideal I in a polynomial ring
C[x1, . . . , xn]. The theory of standard bases extends this theory for ideals in local rings.
More precisely, let Rl := C[x1, . . . , xn]〈x1,...,xn〉 be the set of rational functions f/g in
x1, . . . , xn with g(0, . . . , 0) �= 0. Rl defines a local ring; i.e., it contains exactly one
maximal ideal. Since the algebraic-geometric definitions of intersection multiplicities
are related to the concept of local rings, standard bases provide a powerful tool to
effectively compute intersection multiplicities.

From the various possible term orders, we restrict ourselves to considering the
antigraded reverse lexicographical order (arevlex). For α, β ∈ Nn0 , we have xα >arevlex

xβ if and only if

n∑
i=1

αi <

n∑
i=1

βi

or

n∑
i=1

αi =

n∑
i=1

βi and xα >revlex xβ ,

where >revlex denotes the reverse lexicographical order of Gröbner basis theory. For
any polynomial f , the leading term of f , denoted LT(f), is the maximal term of f
with regard to the arevlex-order.

For an ideal I in Rl, the set of leading terms of I, abbreviated LT(I), is the set
of leading terms of elements of I.

A standard basis of I is a set {g1, . . . , gt} ⊂ I such that 〈LT(I)〉 = 〈LT(g1), . . . ,
LT(gt)〉. Given a set of polynomial generators of I, a standard basis of I can be
effectively computed by variants of the Buchberger algorithm.

Acknowledgments. The author would like to thank Abhi Dattasharma for his
useful comments and the anonymous referees for their suggestions and for pointing
out the issue of envelopes.

REFERENCES

[1] P.K. Agarwal, B. Aronov, and M. Sharir, Computing envelopes in four dimensions with
applications, SIAM J. Comput., 26 (1997), pp. 1714–1732.

[2] P.K. Agarwal, B. Aronov, and M Sharir, Line transversals of balls and smallest enclosing
cylinders in three dimensions, Discrete Comput. Geom., 21 (1999), pp. 373–388.

[3] A. Beutelspacher and U. Rosenbaum, Projective Geometry: From Foundations to Applica-
tions, Cambridge University Press, Cambridge, UK, 1998.

[4] D.A. Bini, Numerical computation of polynomial zeros by means of Aberth’s method, Numer.
Algorithms, 13 (1996), pp. 179–200.

[5] D.A. Bini and G. Fiorentino, Design, analysis, and implementation of a multiprecision
polynomial rootfinder, Numer. Algorithms, 23 (2000), pp. 127–173.

[6] S.E. Cappell, J.E. Goodman, J. Pach, R. Pollack, M. Sharir, and R. Wenger, Common
tangents and common transversals, Adv. Math., 106 (1994), pp. 198–215.

[7] B. Chazelle, H. Edelsbrunner, L.J. Guibas, M. Sharir, and J. Stolfi, Lines in space:
Combinatorics and algorithms, Algorithmica, 15 (1996), pp. 428–447.

[8] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms, 2nd ed., Springer-
Verlag, New York, 1996.

[9] D. Cox, J. Little, and D. O’Shea, Using Algebraic Geometry, Grad. Texts Math. 185,
Springer-Verlag, New York, 1998.



1228 THORSTEN THEOBALD

[10] C. Durand, Symbolic and Numerical Techniques for Constraint Solving, Ph.D. thesis, Purdue
University, West Lafayette, IN, 1998.
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QUANTUM CIRCUITS THAT CAN BE SIMULATED CLASSICALLY
IN POLYNOMIAL TIME∗
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Abstract. A model of quantum computation based on unitary matrix operations was introduced
by Feynman and Deutsch. It has been asked whether the power of this model exceeds that of
classical Turing machines. We show here that a significant class of these quantum computations
can be simulated classically in polynomial time. In particular we show that two-bit operations
characterized by 4×4 matrices in which the sixteen entries obey a set of five polynomial relations can
be composed according to certain rules to yield a class of circuits that can be simulated classically in
polynomial time. This contrasts with the known universality of two-bit operations and demonstrates
that efficient quantum computation of restricted classes is reconcilable with the Polynomial Time
Turing Hypothesis. The techniques introduced bring the quantum computational model within the
realm of algebraic complexity theory. In a manner consistent with one view of quantum physics, the
wave function is simulated deterministically, and randomization arises only in the course of making
measurements. The results generalize the quantum model in that they do not require the matrices
to be unitary. In a different direction these techniques also yield deterministic polynomial time
algorithms for the decision and parity problems for certain classes of read-twice Boolean formulae.
All our results are based on the use of gates that are defined in terms of their graph matching
properties.

Key words. quantum computation, Turing Hypothesis, matchgates, polynomial time simulation
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1. Background. The now classical theory of computational complexity is based
on the computational model proposed by Turing [33] augmented in two ways: On the
one hand, random operations are often allowed in addition to the originally proposed
deterministic ones [24]. On the other hand, the number of computational steps is
restricted to be at most polynomial in the input length, which allows such striking
phenomena as NP-completeness to be expressed [10]. Taken together, the resulting
theory has provided strong circumstantial evidence for the robustness of the resulting
model [16]. The following statement is a variant of how this robustness is sometimes
expressed and might be called the Polynomial Time Turing Hypothesis:

Any physical computing device can be simulated by a randomizing
Turing machine that, as the input instances vary, takes a number
of steps that grows as at most some fixed polynomial in the quantity
T + S + E, where T, S, and E are the time, space, and energy used
by the computing device.

While no generally accepted counterexample is known, this hypothesis has, and
can be expected to continue to, come under repeated challenge. The fundamental
sources of challenge are functions that arise in accepted laws of physics but which are
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not known to be polynomial time computable classically. Such a challenge has been
recognized since the late 1970s for the matrix permanent (i.e., the determinant with all
positive signs). On the one hand, the wave function for indistinguishable bosons can
be expressed as a permanent (e.g., [29]). On the other hand, this function is known to
be #P -complete [34], or, in other words, as hard as counting the number of solutions
of NP-complete problems and therefore at least as hard as the decision question for
NP-complete problems. An approach to resolving this particular challenge is proposed
by Troyansky and Tishby [32]. The second such source, the one that has received the
most attention and is the subject of this paper, is the class of functions that can be
computed as compositions of fixed size unitary operations and first discussed in detail
by Deutsch [12]. A third source of challenge is the Jones polynomial, as discussed by
Freedman [19].

Each of these sources poses a challenge in implying that among the following three
statements at least one must be true: (a) the Polynomial Time Turing Hypothesis is
false, (b) some physical reason excludes the possibility of a physical device evaluat-
ing appropriate instances of the function, or (c) the supposed hard function can be
computed classically in polynomial time by a yet undiscovered algorithm. Identifying
the statement or statements in such a list that are true would clearly add to our
knowledge and offers a valid scientific goal. This paper is concerned with an instance
of (c).

The unitary matrix model can be traced to Benioff [2], who observed that classical
binary Boolean operations could be formulated as fixed size unitary matrix transfor-
mations. Subsequently, Feynman [17] and Deutsch [12] suggested that unitary trans-
formations as realized by quantum devices offer a model of computation that may
violate the Polynomial Time Turing Hypothesis and asked whether it did. Bernstein
and Vazirani [3] showed how uniformity over all input sizes could be incorporated
in the quantum computation model and hence that quantum polynomial time class
BQP could be defined. While it is not generally believed that this class contains all
of #P or even NP, Shor [30] was able to show that two particular problems, namely
integer factorization and discrete logarithms, which are not known to be polynomial
time computable, do lie in BQP.

In this model of quantum computation a gate operating on k Boolean bits is
represented as a 2k × 2k unitary matrix. A unitary matrix U is any matrix with
complex number entries such that UU∗t = I, where I is the identity matrix, U∗ is
the complex conjugate of U , and U∗t is the transpose of U∗. We note, however,
that our constructions are all based on general matrix properties in which unitarity
plays no essential part, and, in that sense, our treatment generalizes the quantum
computational model (cf. [18]).

Some basic results on this quantum computational model can be found in [12,
13, 14, 15, 27]. Most notably, it is known that there exist two-bit gates which, in
conjunction with arbitrary one-bit gates, can approximate arbitrary unitary matrices.
On the other hand, it is easy to see that circuits composed of one-bit gates alone can
be simulated deterministically in polynomial time since it is possible to follow the
evolution of each bit independently. A more interesting class, where only a discrete
set of gates is allowed but following the evolution of a small set of basis operators is
sufficient, is attributed to Knill [20].

Our approach can be viewed as a branch of algebraic complexity theory [7, 8,
31, 34] in which computation gates are simulated by graph matching properties. In
[34, 35] this approach is developed in the context of the matrix permanent. In the
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current paper we use encodings by matrix functions that, in contrast, are known to be
polynomial time computable. In particular we use the following three functions: the
Pfaffian, the decision problem for matchings, and the parity problem for matchings.

2. Pfaffians. Here we shall describe some standard graph-theoretic notions and
their relation to the Pfaffian of a matrix. In the subsequent section we shall introduce
a more general notion, that of a Pfaffian Sum. In later sections we shall go on
to show that certain quantum circuits can be represented as graphs in such a way
that the Pfaffian Sum of the adjacency matrix of the graph corresponds to the basic
computational properties of the corresponding circuit. Further, the probability of the
circuit evolving from one state to another will be expressible as a Pfaffian Sum.

A weighted undirected graph, or simply a graph, G is a triple (V,E,W ), where
V is a set of vertices each represented by a distinct positive integer, E is a set of
edges or unordered pairs (i, j) of the vertices i, j ∈ V , and W is the set of weights,
each weight w(i, j) corresponding to the edge (i, j) ∈ E. For example, V = {1, 2, 3},
E = {(1, 2), (2, 3), (1, 3)}, w(1, 2) = w(2, 3) = w(1, 3) = 2 is the complete graph on
three vertices in which every edge has weight 2.

An n×nmatrix C is skew-symmetric if for all i, j (1 ≤ i, j ≤ n) C(i, j) = −C(j, i).
The matrix of the graph G = (V,E,W ) where V = {1, 2, . . . , n} is the n × n matrix
M(G) where the (i, j) entry M(G)(i, j) is defined to equal

(i) w(i, j) if i < j,
(ii) −w(i, j) if i > j, and
(iii) 0 otherwise.

In the more general case that V = {k1, k2, . . . , kn} where k1 < k2 < · · · < kn,
weight w(ki, kj) replaces w(i, j) in (i) and (ii) in this definition. For brevity we shall
abbreviate M(G) by G whenever it is clear that a matrix is intended.

The Pfaffian of an n × n skew-symmetric matrix C is defined to be zero if n is
odd, one if n = 0, and if n is even with n = 2k and k > 0 then it is defined as

Pf(C) =
∑
π

επw(i1, i2)w(i3, i4) . . . w(i2k−1, i2k),

where
(i) π = [i1, i2, i3, . . . , i2k] is a permutation on [1, 2, . . . , n],
(ii) summation is over all such permutations π where further

i1 < i2, i3 < i4, · · · , i2k−1 < i2k, and
i1 < i3 < i5 < · · · < i2k−1, and

(iii) επ ∈ {−1, 1} is the sign of the permutation; i.e., it is −1 or +1 according to
whether the number of transpositions or swaps of pairs of distinct elements
ij , ik needed to reorder π to the identity permutation is odd or even. (An
equivalent definition in this context is that it is the sign or parity of the
number of overlapping pairs, where a pair of edges (i2r−1, i2r), (i2s−1, i2s) is
overlapping iff i2r−1 < i2s−1 < i2r < i2s or i2s−1 < i2r−1 < i2s < i2r. Note
that it is implicit here that i2r−1 < i2r and i2s−1 < i2s.)

A matching E∗ ⊆ E of G is a set of edges such that if (i, j), (r, s) are distinct
edges in E∗, then i, j, r, s are all distinct vertices. In a graph with an even number
2k of nodes a matching E∗ is perfect if it contains k edges. (In other words every
i ∈ V is an endpoint of, or is saturated by, some edge in E∗.)

We shall use the following graph-theoretic interpretation of the Pfaffian: If C
is the matrix of the graph G, then there is a one-on-one correspondence between
monomials in the Pfaffian and perfect matchings in G. The monomial w(i1, i2)
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w(i3, i4) . . . w(i2k−1, i2k) in Pf(G) corresponds to the perfect matching {(i1, i2), (i3, i4),
. . . , (i2k−1, i2k)} in G. The coefficient επ of this monomial is the parity of the number
of overlapping pairs of edges, in the sense defined above.

The following fact, due to Cayley [9] (see also [5, Theorem 9.5.2]) relates the
Pfaffian to the determinant.

Theorem 1. For any skew-symmetric matrix C

Det (C) = (Pf (C))2.

It is known that for matrices with elements from any field the complexity of computing
the determinant is to within a constant multiplicative factor the same as that of
matrix multiplication [31]. Further, for n×n matrices this cost is known to be upper
bounded by O(nα), where α < 2.38 [11]. It follows that the square of the Pfaffian
is polynomial time computable, and for complex matrices so is the square of the
modulus |Pf(C)|2 = |(Pf(C))2|. Efficient parallel algorithms for these functions also
follow from similar results for the determinant [4].

For an n × n matrix C we call a set A = {i1, i2, . . . , ir} ⊆ {1, 2, . . . , n} an index
set. Further, we denote by C[i1, i2, . . . , ir] or C[A] the (n−r)×(n−r) matrix obtained
by deleting the ijth row and column from C for all the r values of j (1 ≤ j ≤ r).

The following fact is useful for proving negative results about how the Pfaffians
of different submatrices of a matrix constrain each other.

Theorem 2. For any skew-symmetric n× n matrix C and any distinct i < j <
k < l ∈ {1, 2, . . . , n}

Pf(C)Pf(C[i, j, k, l])−Pf(C[i, j])Pf(C[k, l])
+Pf(C[i, k])Pf(C[j, l])− Pf(C[i, l])Pf(C[j, k]) = 0

and

−Pf(C[j, k, l])Pf(C[i]) + Pf(C[i, k, l])Pf(C[j])
− Pf(C[i, j, l])Pf(C[k]) + Pf(C[i, j, k])Pf(C[l]) = 0.

Proof. These can be derived from the Grassmann–Plücker identity for Pfaffians
[36].

3. Pfaffian Sums. We start by defining the notion of a Pfaffian Sum, which
expresses the Pfaffian summed over exponentially many minors of a matrix. In graph-
theoretic terms the Pfaffian Sum generalizes the Pfaffian in that it has terms not
only for the perfect matchings but for matchings of all sizes. This generalization
is necessary where we wish to simulate the more general quantum gates. The main
result in this section is that the Pfaffian Sum can be expressed in terms of the standard
Pfaffian, and its square is therefore also computable in polynomial time.

Definition. The Pfaffian Sum of an n× n skew-symmetric matrix C is a poly-
nomial over indeterminates λ1 . . . λn such that

PfS(C) =
∑
A

(∏
i∈A
λi

)
Pf(C[A]).

Summation here is over the various 2n principal minors obtained from C by deleting
some subset A of the indices, including the empty set. In this paper we shall need
only the instances in which each λi is fixed to be 0 or 1. The i for which λi = 0
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can be thought of as the unomittable indices and those with λi = 1 as the omittable
indices. Then for this (0, 1)-case the Pfaffian Sum is simply the sum of the Pf(C[A])
over those A that contain only omittable indices. This is the only case that we shall
use.

We note that one can similarly define a Determinant Sum

DetS(C) =
∑
A

(∏
i∈A
λi

)
Det (C[A]).

It is easy to verify that for any matrix C

DetS(C) = Det (C +∆),

where ∆(i, j) = 0 if i 
= j, and ∆(i, i) = λi for every i. Thus a summed determinant
is as easy to compute as a single determinant. We shall now show that the same holds
for the Pfaffian. We define the n× n matrix Λ(n) as follows:

Λ(n)(i, j) =





(−1)j−i+1λiλj if i < j,
(−1)i−jλiλj if i > j,
0 if i = j.

Also for an n× n matrix C we define C+ to be the (n+ 1)× (n+ 1) matrix of which
the first n rows and columns equal C itself, and the (n+1)st row and column entries
are all zero.

Pfaffian Sum Theorem. For an n× n skew-symmetric matrix C

PfS(C) =

{
Pf(C + Λ(n)) if n is even,
Pf(C+ + Λ(n+1)) with λn+1 set to 1, if n is odd.

Lieb [25] gave a proof for the instance of this relationship in which the λi are
equal for all i, and n is even. One can derive our result from that instance. We shall,
however, give a direct proof of this fact that makes the associated combinatorial
structures more explicit.

Lemma 1. If matrix C ′ is obtained from skew-symmetric matrix C by first inter-
changing the elements of rows i and j, and then interchanging the elements of columns
i and j, then Pf(C) = −Pf(C ′).

Proof. The specified matrix operation clearly leaves the determinant function
unchanged. By Theorem 1 it follows that the operation either leaves the Pfaffian
invariant or multiplies it by −1. Assume without loss of generality that i < j. Then
each monomial in Pf(C) that contains C(i, j) as a factor will have an identical mono-
mial in Pf(C ′) except that the latter will contain C ′(i, j), where C ′(i, j) = −C ′(j, i) =
−C(i, j). Therefore at least some terms in Pf(C) and Pf(C ′) have opposite signs, and
it follows that they all must have opposite signs.

Lemma 2. If skew-symmetric matrices C, C ′ are identical except that for some
i ∈ {1, 2, . . . , n} for all j C(i, j) = −C ′(i, j) and C(j, i) = −C ′(j, i), then Pf(C) =
−Pf(C ′).

Proof. The monomials of Pf(C), Pf(C ′) can be paired so that they are identical
except that they contain one factor C(k, i) or C ′(k, i), respectively, or one factor of
C(i, k) or C ′(i, k), respectively, for some k. In either case the two factors will have
opposite signs by assumption, and hence so will the monomials.
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Lemma 3. Let Λ(n) be the n × n skew-symmetric matrix defined above with n
even. Then

Pf(Λ(n)) = λ1 . . . λn.

Proof. We prove this by induction on even values of n. Clearly Pf(Λ(2)) = λ1λ2.
Now assume that the result holds for some even n−2. Consider the monomials in the
expansion for Λ(n). In all the monomials that contain the element Λ(n)(n − 1, n) =
λn−1λn the complementary factors clearly sum to Λ(n−2), which by induction equals
λ1 . . . λn−2. It is therefore sufficient to observe that all the other monomials in Λ(n)

cancel in pairs: Any such other monomial contains a product Λ(n) (i, n− 1)Λ(n)(j, n)
and has a companion monomial that is identical except that this product is replaced
by Λ(n)(i, n)Λ(n)(j, n− 1), which is equal in value but gives rise to the opposite sign
because of the extra transposition (n− 1, n).

Proof of theorem. First we assume that n is even. For some fixed A ⊆ {1, . . . , n}
consider the monomial set N of Pf(C +Λ(n)) that involve λ elements in all rows and
columns indexed by A, and involve C elements in the remaining rows and columns.
We claim that the monomials in N sum to

Pf(C[A])Pf(Λ(A)),(1)

where Λ(A) is the Λ|A| matrix in which for each λi there has been substituted the
indeterminate λj , where j is the ith smallest element of A. By applying Lemma 3 to
the second term here and summing over all choices of A, the theorem then follows.

To establish this claim we consider a sequence of σ transpositions or swaps on
the indices (i.e., row and column numbers) of the original matrix that results in the
indices A migrating to n− |A|+ 1, n− |A|+ 2, . . . , n, and an accompanying process
of sign changes to the elements described below. We claim that the following hold for
every A:

(a) The sequence of transpositions and sign changes to the elements causes all
monomials in N to remain unchanged in sign in the Pfaffian.

(b) The matrix that is the outcome of the process has the C entries in the first
n− |A| rows/columns and these contribute a multiplicand of Pf(C([A]) (with
positive sign) to the sum of N .

(c) The matrix that is the outcome of the process has the λ entries in the last
|A| rows/columns and these contribute a multiplicand of Pf(Λ(A)) to the sum
of N .

The conjunction of these three claims clearly implies that the quantity (1) above
equals the original sum of N as needed.

For (a) we note that by Lemma 1 the number of sign changes to the Pfaffian,
and hence the monomials in N , caused by σ transpositions is (−1)σ, and we shall
observe below that the effect of the sign changes to be specified to the elements is a
compensatory (−1)σ factor. Claim (b) is true by the definition of Pf(C[A]). With
regard to (c) we first observe that while the elements Λ(n)(i, j) and hence Λ(A)(i, j)
alternate in sign as j varies and i is fixed, this is not necessarily the case for the
pattern of the λ entries that contribute to N in the matrix before the transpositions.
For example, entries in adjacent columns after the transpositions will have the same
sign if the indices of the columns before the transpositions differ by an even number.
It will be useful to consider the particular sequence of transpositions where the largest
indices in A are moved up to fill the positions n, n− 1, . . . , n− |A|+ 1, in this order,
and each one is moved by a succession of (i, i+1) transpositions. Clearly the number
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of such transpositions has the same parity as the number of indices that need to be
moved by an odd number of such neighbor transpositions. However, the indices j
that need an odd number of such transpositions to reach their destination are exactly
those for which the signs of the entries are different from those of the entries of Λ(n)

in the destination row/column. What we consider, therefore, is the process in which
for just these indices we will change the sign of all the entries in that row and column
in the course of moving it. The effect of these sign changes to the elements in a row
and column is, by Lemma 2, to change the sign of the Pfaffian. We conclude that
this process of transpositions and sign changes would result in the λi entries having
moved to the |A| highest indices, forming a Λ(A) matrix there, as required for claim
(c), and that the effect of the sign changes on the monomial set N in the Pfaffian is
a compensatory (−1)σ factor as required for claim (a).

Now we consider the case that n is odd. Since n+ 1 is now even it is clear from
the previous analysis that Pf(C++Λ(n+1)) will again equal the Pfaffian Sum, but now
summation can be restricted to those A that contain n since otherwise the Pf(C+[A])
contribution vanishes. Hence this Pfaffian sum is equal to that of the original C if
λn+1 is set to 1.

4. Matchgates. We shall simulate each quantum or other gate by what we call
a matchgate.

A matchgate Γ is a quadruple (G,X, Y, T ), where G is a graph (V,E,W ), X ⊆ V
is a set of input vertices, Y ⊆ V is a set of output vertices, and T ⊆ V is a set of
omittable vertices such that (i) X, Y , and T are all disjoint, and (ii) for all i ∈ T , if
j ∈ X, then j < i and if j ∈ Y , then j > i.

The matchings we consider will be those that saturate all the unomittable nodes,
i.e., V −T , and also some, possibly empty, subset of T . Whenever we refer to the Pfaf-
fian Sum of a matchgate fragment, such as G′ below, we shall assume the substitutions
λi = 1 if i ∈ T and λi = 0 otherwise.

We call X∪Y the external nodes. For Z ⊆ X∪Y we define the character χ(Γ , Z)
of Γ with respect to Z to be the product

µ(Γ , Z)PfS(G′),

where (a) G′ = (V − Z,E′,W ′), where further E′ is the restriction of E to edges
with both endpoints in V −Z, and W ′ is the corresponding restriction of W , and (b)
the modifier µ(Γ , Z) ∈ {−1, 1} counts the parity of the number of overlaps between
matching edges in E′ and external edges. The external edges are the edges that link
each matchgate to the rest of the circuit. We consider there to exist one external edge
from each node in X ∩ Z and from each node in Y ∩ Z. The other endpoint of each
of the former is some node of lower index than any in V and of each of the latter is
some node of index higher than any in V . Figure 1 gives an illustrative example.

The character χ(Γ , Z), therefore, takes into account overlaps between the internal
edges of matchgate Γ and the external edges that link its external nodes to the rest
of the circuit. The significance of condition (ii) in the definition of matchgates is
that it guarantees that the modifier µ(Γ , Z) is always well defined: for any fixed Z
the external edges that arise are uniquely defined, but it has to be guaranteed that
the parity of the overlap of any one such external edge with every matching of E′

that saturates all the unomittable nodes is the same. Condition (ii) achieves this by
not allowing an omittable node in the gate to be numbered intermediate between the
endpoints of an external edge. (That case might produce different overlap parity for
the given external edge and the various internal matchings depending on whether the
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Fig. 1. Illustration of a matchgate Γ with inputs X = {1, 2} and outputs Y = {5, 6}, with the
external nodes Z = {2, 5} matched. The character χ(Γ , Z) is the product of the modifier µ(Γ , Z) and
of the Pfaffian Sum of the matchgate after nodes Z have been removed. Now µ(Γ , Z) = 1 since the
externally matched edges (i.e., those from nodes 2 and 5) overlap exactly twice with the internally
matched edges, whether the edges {1, 3} and {4, 6} as shown in this example, or any alternative
ones, such as {1, 6}, {3, 4}.

omittable node was in the matching.) To verify this note that if for i ∈ X ∩ Z there
are r nodes j < i where j ∈ V −Z, then the parity of the overlap of the external edge
from i with the internal edges is the parity of r.

We define the character matrix χ(Γ ) of Γ = (G,X, Y, T ) as a 2|X| × 2|Y | matrix
where the rows represent the subsets of the inputs X, and the columns the subsets
of the outputs Y , and the entries the corresponding values of χ(Γ , Z) for the various
choices of Z. Matchgates with |X| = |Y | = k can then be regarded as square matrix
transformations defined by the character matrix. For example, k = 1 corresponds
to one-bit 2 × 2 matrix transformations and k = 2 corresponds to two-bit 4 × 4
transformations. In all cases we need to specify a correspondence between subsets of
X and the rows of the matrix and another correspondence between subsets of Y and
the columns of the matrix. We insist that there is the following consistency between
the row and column orderings. We assume that there is a bijection f that maps the
elements of X to elements of Y such that if the ith row corresponds to subset X ′ of
X and the ith column to subset Y ′ of Y , then Y ′ is the image of X ′ under f . The
character matrix χ(Γ ) is therefore defined as a matrix of the elements χ(Γ , Z) with
some such consistent row/column ordering.

The character matrix defines a linear transformation from linear combinations
of the 2|X| components x ∈ {0, 1}|X| to linear combinations of the 2|Y | components
y ∈ {0, 1}|Y |. The character matrix can also be thought of as determining the non-

deterministic steps allowed by a matchgate. If vector x ∈ {0, 1}|X| is specified for
the bits of X, then for each possible y ∈ {0, 1}|Y | the corresponding element in the

2||| × 2|Y | character matrix gives the value to be associated with nondeterministic
output y for input x. The overall computations of the circuits composed of these
matchgates are like counting Turing machines [34] or quantum computations [3, 13]
in that values may be multiplied over the steps of individual nondeterministic com-
putation branches and then added over all possible branches to obtain the numerical
value of the computation.
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First we shall show that all one-bit or 2× 2 matrix transformations can be simu-
lated by matchgates.

Proposition 1. For any field F and any 2×2 matrix B of elements from F there
exists a four node matchgate Γ with weights drawn from F such that χ(Γ ) = B.

Proof. Consider the matchgate (G,X, Y, T ), where G is the complete graph on
nodes V = {1, 2, 3, 4}, X = {1}, Y = {4}, T = {2}, and W is as variously specified
below.

We shall identify row 1 of the matrix with ∅ and row 2 with {1}. Similarly we
identify column 1 with ∅ and column 2 with {4}. Let us abbreviate B(1, 1) = a,
B(1, 2) = b, B(2, 1) = c, and B(2, 2) = d. Now it is immediate from the definitions
that the modifier is always 1 since in this case external edges cannot overlap with
internal ones. The character is simply the (0,1)-Pfaffian Sum for the gate with the
external nodes corresponding to the variables set to 1 removed and with T as the
omittable nodes. In particular,

χ(Γ , ∅) = w(2, 3)w(1, 4)− w(1, 3)w(2, 4) + w(1, 2)w(3, 4),
χ(Γ , {1}) = w(3, 4),
χ(Γ , {4}) = w(1, 3), and
χ(Γ , {1, 4}) = w(2, 3).

Each of these statements can be verified by inspection. For example, in the second of
these, since one of the four nodes, namely node 1, is matched externally, and there is
one omittable node, namely 2, in the matchgate, the only matching is the one that
involves the remaining two nodes, namely {3, 4}.

First suppose that at least one of b, c, or d is nonzero. Then by fixing w(1, 3) = b,
w(3, 4) = c, w(2, 3) = d, and setting the remaining weights so that −bw(2, 4) +
cw(1, 2) + dw(1, 4) = a, the four components of B can be set to the arbitrary values
a, b, c, and d as desired.

In the special case that b = c = d = 0 we consider the same matchgate but
make T = ∅. Then setting w(2, 3) = 0 ensures that b = c = d = 0. The expression
for χ(Γ , ∅) is unchanged and therefore by setting the remaining weights one can set
B(1, 1) to the arbitrary value of a.

To model two-bit or 4 × 4 matrices we consider two-bit matchgates, i.e., where
|X| = 2, |Y | = 2. The characters of these can be viewed as above, with the rows
representing subsets of X and the columns subsets of Y .

Proposition 2. For any field F and any 4 × 4 matrix B of elements from F
where all the off diagonal elements are zero and B(1, 1)B(4, 4) = B(2, 2)B(3, 3) there
exists a matchgate Γ with weights drawn from F such that χ(Γ ) = B.

Proof. Consider V = {1, 2, 3, 4, 5, 6}, X = {1, 2}, Y = {5, 6}, and T = ∅. The
rows of the matrices have ordering ∅, {1}, {2}, {1, 2}, and the columns have ordering
∅, {6}, {5}, {5, 6}.

First suppose that B(4, 4) 
= 0. Then let the only nonzero weights be w(1, 6) =
B(3, 3)/B(4, 4), w(2, 5) = B(2, 2)/B(4, 4), and w(3, 4) = B(4, 4). It can be verified
that this matchgate has the required character.

If B(4, 4) = 0, then we have various special cases: (a) w(1, 6), w(2, 3), w(4, 5) 
= 0
solves the case B(1, 1) 
= 0, B(2, 2) 
= 0, B(3, 3) = 0, B(4, 4) = 0. (b) w(2, 5),
w(1, 3), w(4, 6) 
= 0 solves the case B(1, 1) 
= 0, B(2, 2) = 0, B(3, 3) 
= 0, B(4, 4) = 0.
(c) w(2, 3), w(4, 5) 
= 0 solves the case B(1, 1) = 0, B(2, 2) 
= 0, B(3, 3) = 0, B(4, 4) =
0. (d) w(1, 3), w(4, 6) 
= 0 solves the case B(1, 1) = 0, B(2, 2) = 0, B(3, 3) 
= 0,
B(4, 4) = 0. To solve the remaining case of B(1, 1) 
= 0, B(2, 2) = 0, B(3, 3) = 0,
B(4, 4) = 0 we can consider the eight node matchgate with X = {1, 2}, Y = {7, 8},
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and nonzero edges w(1, 3), w(2, 4), w(5, 7), and w(6, 8).

We now turn to more general 4× 4 matrices.

Proposition 3. For any field F and any 4×4 matrix B of elements from F sat-
isfying the nine equations B(1, 2) = B(1, 3) = B(2, 1) = B(2, 4) = B(3, 1) = B(3, 4) =
B(4, 2) = B(4, 3) = 0, and B(1, 1)B(4, 4) − B(2, 2)B(3, 3) = B(1, 4)B(4, 1) −
B(2, 3)B(3, 2), there exists a matchgate Γ with weights drawn from F such that
χ(Γ ) = B, provided B(4, 4) 
= 0.

Proof. Consider V = {1, 2, 3, 4, 5, 6}, X = {1, 2}, Y = {5, 6}, T = ∅, and
row/column ordering as in Proposition 2. We let t = 1/B(4, 4) and consider the follow-
ing set of nonzero weights: w(1, 6) = tB(3, 3), w(2, 5) = tB(2, 2), w(1, 2) = tB(1, 4),
w(5, 6) = tB(4, 1), w(1, 5) = −tB(3, 2), w(2, 6) = −tB(2, 3), w(3, 4) = B(4, 4).

Now consider the following set of what we call the matchgate identities for 4× 4
character matrices:

B(1, 1)B(4, 4)−B(2, 2)B(3, 3)−B(1, 4)B(4, 1) +B(2, 3)B(3, 2) = 0
B(2, 1)B(4, 4)−B(2, 2)B(4, 3)−B(4, 1)B(2, 4) +B(2, 3)B(4, 2) = 0
B(3, 1)B(4, 4) +B(3, 3)B(4, 2)−B(4, 1)B(3, 4)−B(3, 2)B(4, 3) = 0
B(1, 3)B(4, 4) +B(3, 3)B(2, 4)−B(1, 4)B(4, 3)−B(2, 3)B(3, 4) = 0
B(1, 2)B(4, 4)−B(2, 2)B(3, 4)−B(1, 4)B(4, 2) +B(3, 2)B(2, 4) = 0

Proposition 4. For any field F and any set of values of the 11 entries of the
4× 4 matrix B other than R = {B(1, 1), B(1, 2), B(1, 3), B(2, 1), B(3, 1)} such that
B(4, 4) 
= 0, there exists a matchgate Γ with weights drawn from F such that χ(Γ )
equals B in the 11 entries other than R, and in each of the R entries χ(Γ ) equals
various polynomials in terms of these other 11 entries and 1/B(4, 4). In particular,
B = χ(Γ ) satisfies the five matchgate identities.

Proof. Consider the matchgate of Proposition 3 but modify it by making T = {4}
and adding four more nonzero edge weights: w(1, 3) = −B(3, 4), w(2, 3) = B(2, 4),
w(3, 5) = B(4, 2), w(3, 6) = −B(4, 3). This is illustrated in Figure 2.

By inspection, for any Z ⊆ X ∪ Y one can write down χ(Γ , Z): If | Z | is even,
then all the matchings that contribute to χ(Γ , Z) saturate the omittable node 4 and
do so necessarily with edge {3, 4}. Hence this case reverts back to Proposition 3
since the newly added edges are all incident to node 3 and can, therefore, play no
part. Hence in the corresponding eight positions in B we can regard seven as being
arbitrary, and the eighth, namely B(1, 1), as being constrained by the first matchgate
relation in terms of the other seven exactly, as in Proposition 3, since B[4, 4] 
= 0.

We now consider the eight entries of χ(Γ , Z), where |Z| is odd. By inspecting
Figure 1 and recalling the definition of χ(Γ , Z) we obtain immediately that

χ(Γ , {2, 5, 6}) = B(3, 4),
χ(Γ , {1, 5, 6}) = B(2, 4),
χ(Γ , {1, 2, 6}) = B(4, 2),
χ(Γ , {1, 2, 5}) = B(4, 3),
χ(Γ , {1}) = tB(2, 2)B(4, 3) + tB(4, 1)B(2, 4)− tB(2, 3)B(4, 2),
χ(Γ , {2}) = −tB(3, 3)B(4, 2) + tB(4, 1)B(3, 4) + tB(3, 2)B(4, 3),
χ(Γ , {5}) = −tB(3, 3)B(2, 4) + tB(1, 4)B(4, 3) + tB(2, 3)B(3, 4),
χ(Γ , {6}) = tB(2, 2)B(3, 4) + tB(1, 4)B(4, 2)− tB(3, 2)B(2, 4).
The first equality states simply that the arbitrary chosen value B(3, 4) is in fact

the value of the character χ(Γ , {2, 5, 6}) for the given matchgate, exactly as desired.
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Fig. 2. A matchgate with inputs {1, 2} and outputs {5, 6}, designed to have character that
equals the given matrix B in 11 of the 16 entries, as required by Proposition 4. The quantity t
denotes 1/B(4, 4).

The same holds for B(2, 4), B(4, 2), and B(4, 3). Hence, in addition to the seven
entries in the character that we said could be fixed arbitrarily, here are a further four.

The last four statements describe the remaining four entries of the character in
terms of the 11 arbitrarily fixed, and of B(4, 4), which, as we saw, is constrained by
the first matchgate identity. These four statements assert nothing other than that if
B(2, 1), B(3, 1), B(1, 3), and B(1, 2) do equal the corresponding character entries of
the specified matchgate, then these quantities obey the last four matchgate identities,
respectively.

A related question is to characterize the subclass of the feasible character matri-
ces that are also unitary. For matrices in which the only nonzero entries are those
appearing in the first matchgate identity this is easy. We note that in that case re-
stricting the matrix to rows/columns {1, 4} imposes a unitary constraint on the four
remaining elements, as does the restriction to rows/columns {2, 3}. However, unitary
2× 2 matrices can be written as [5]

eiα
[
e−iβ/2 0
0 eiβ/2

] [
cos γ/2 − sin γ/2
sin γ/2 cos γ/2

] [
e−iδ/2 0
0 eiδ/2

]
,(2)

where α, β, γ, δ are real valued. In other words the 2 × 2 matrix with elements
B(1, 1), B(4, 1), B(1, 4), B(4, 4) can be written in this form with appropriate α1, β2, γ1,
δ1, as can the 2 × 2 with elements B(2, 2), B(2, 3), B(3, 2), B(3, 3) for appropriate
α2, β2, γ2, δ2. However, the first matchgate identity is equivalent to saying that the
difference of the determinants of these two 2 × 2 matrices is zero. However, the de-
terminant of the expression (2) is eiα. It follows that, except for the restriction that
eiα1−eiα2 = 0, and B(4,4) 
= 0, the space of matchgate character matrices is spanned
as the values of α1, β1, γ1, δ1, α2, β2, γ2, and δ2 range over the reals.
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Theorem 3. Given any matchgate Γ there exists another matchgate Γ ′ that has
the same character as Γ and has an even number of nodes, exactly one of which is
omittable.

Proof. Suppose Γ = (G,X, Y, T ), where G = (V,E). We can assume that
| V | is odd, since otherwise we can add an omittable node with no incident edges.
Suppose X = {i1, . . . , ir} and Y = {j1, . . . , js}. Then Γ ′ = (G′, X ′, Y ′, T ′), where
G′ = (V ′, E′) and | V ′ |=| V | +1 is obtained as follows via a graph G′′:

(i) G′′ is isomorphic to G except that it has an extra omittable node with index
j1 with no incident edges. The nodes 1, . . . , j1 − 1 in G′′ correspond to the
same indices in G, while nodes j1 +1, . . . , | V | +1 correspond to j1, . . . , | V |
in G, respectively.

(ii) G′ is the graph whose matrix is the sum of the matrix of G′′ plus Λ(n) as
defined in the Pfaffian Sum theorem, where n =| V ′| = |V |+ 1. Here λi = 1
iff i is omittable in Γ or if i = j1, and otherwise λi = 0.

(iii) Γ ′ = (G′, X ′, Y ′, T ′), where X ′ = {i1, . . . , ir}, Y ′ = {j1 + 1, . . . , js + 1}, and
T ′ = {j1}.

Now for any Z ⊆ X ∪Y there is a Z ′ ⊆ X ′∪Y ′ for the corresponding set of nodes
in G′. The theorem asserts for all such corresponding pairs Z,Z ′ that

µ(Γ , Z)PfS(G− Z) = µ(Γ ′, Z ′)PfS(G′ − Z ′).
Now µ(Γ , Z) = µ(Γ ′, Z ′) clearly. Also it is immediate that PfS(G−Z) = PfS(G′′−Z ′)
since the only difference between G−Z and G′′−Z ′ is that the latter graph contains
an additional omittable node with no incident edges. It, therefore, remains to verify
that PfS(G′′ − Z ′) = PfS(G′ − Z ′). Now | V ′ − Z ′ | is either even or odd, and
we claim that in either case the necessary equality is an instance of the Pfaffian
Sum theorem. The important observation is that all the omittable nodes in G′′ have
indices k in the range ir < k ≤ j1. Hence we can think of G′ − Z ′ as being obtained
from G′′ − Z ′ by the addition of a Λ matrix for the indices ir + 1, ir + 2, . . . , j1, the
entries being zero where any row or column is outside this range. It follows that
independent of the choice of Z ′ we can appeal directly to the Pfaffian Sum theorem
to verify the equality that PfS(G′′ − Z ′) = PfS(G′ − Z ′): In the case that | Z ′ |, and
hence | G′′ − Z ′ | also, is even the claim follows by the first case of the Pfaffian Sum
theorem, since then PfS(G′′ − Z ′) = Pf(G′ − Z ′) = PfS(G′ − Z ′). Where | Z ′ |, and
hence | G′′−Z ′ | also, is odd we note that the contributions to PfS(G′′−Z ′) all have
node j1 omitted (since it has no incident edges). Now since the added Λ matrix has
nonzero entries for (k, l) only where k, l ≤ j1 the effect of adding Λ to G′′−Z ′−{j1}
is, again by the first case of the Pfaffian Sum theorem, to make PfS(G′′ − Z ′) equal
Pf(G′ − Z ′ − {j1}) = PfS(G′ − Z ′).

The following is proved in [36] and shows that Proposition 4 is essentially optimal.
The only gap is that Proposition 4 assumes that B[4, 4] 
= 0.

Theorem 4. Suppose that for a matchgate Γ with inputs X = {i, j} and outputs
{k, l} with i < j < k < l,B is the character matrix for row ordering φ, {i}, {j}, {i, j}
and column ordering φ, {l}, {k}, {k, l}. Then B obeys the five matchgate identities.

We conclude this section by observing that there is an alternative approach to
designing matchgates with desired characters. In this approach one considers matrices
that differ from the identity by a multiple of an infinitesimal quantity ε. Such matrices
have been used to investigate universal quantum gates [14, 15]. In particular, we define
the class {Jαβ | 1 ≤ α, β ≤ 4} of 4× 4 matrices with {0, 1} entries as follows:

Jαβ(i, j) = δiαδjβ , 1 ≤ α, β, i, j ≤ 4,
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where δrs = 1 iff r = s, and δrs = 0 otherwise. Clearly each Jαβ has a unit entry at
(α, β) and a zero entry elsewhere.

We now define three vector spaces of 4 × 4 matrices where the ai are complex
numbers:

X1: a1J11 + a2J22 + a3J33 + (a2 + a3 − a1)J44.
X2: J + a4J23 + a5J32 + a6J14 + a7J41, where J ∈ X1.
X3: J + a8(J21 + J43) + a9(J12 + J34) + a10(J31 − J42) + a11(J13 − J24), where

J ∈ X2.
Proposition 5. There is a set of 11 matchgates whose characters are I + εBi

for i = 1, 2, . . . , 11, where B1, . . . , B11 span X3.
Proof. We enumerate 11 matrices Bi for i = 1, 2, . . . , 11 that span the space X3.

In each case we show how to construct a matchgate with character I + εBi, where ε
is an infinitesimal indeterminate. In our listing we first describe the matrix Bi such
that the character of the matchgate is I + εBi, and then list all the nonzero weights
in the matchgate.

The first six all have V = {1, 2, 3, 4}, X = {1, 2}, Y = {3, 4}, and T = ∅. The
rows of the matrices have ordering ∅, {1}, {2}, {1, 2}, and the columns have ordering
∅, {4}, {3}, {3, 4}.

(i) J11 + J22: w(1, 4) = 1, w(2, 3) = 1 + ε.
(ii) J11 + J33: w(1, 4) = 1 + ε, w(2, 3) = 1.
(iii) J11 + J22 + J32: w(1, 4) = 1, w(2, 3) = 1 + ε, w(1, 3) = −ε.
(iv) J11 + J22 + J23: w(1, 4) = 1, w(2, 3) = 1 + ε, w(2, 4) = −ε.
(v) J11 + J22 + J14: w(1, 4) = 1, w(2, 3) = 1 + ε, w(1, 2) = −ε.
(vi) J11 + J22 + J41: w(1, 4) = 1, w(2, 3) = 1 + ε, w(3, 4) = −ε.
The seventh matchgate has V = {1, 2, 3, 4, 5, 6}, X = {1, 2}, Y = {5, 6}, and

T = ∅. The rows of the matrices have ordering ∅, {1}, {2}, {1, 2}, and the columns
have ordering ∅, {6}, {5}, {5, 6}.

(vii) J11 + J22 + J33 + J44: w(1, 6) = 1, w(2, 5) = 1, w(3, 4) = ε.
The last four matchgates are defined as the seventh except now T = {4}:

(viii) J21 + J43: w(1, 6) = w(2, 5) = w(3, 4) = 1, w(3, 6) = −ε.
(ix) J12 + J34: w(1, 6) = w(2, 5) = w(3, 4) = 1, w(1, 3) = −ε.
(x) J31 − J42: w(1, 6) = w(2, 5) = w(3, 4) = 1, w(3, 5) = −ε.
(xi) J13 − J24: w(1, 6) = w(2, 5) = w(3, 4) = 1, w(2, 3) = −ε.
It is easily verified that in each case the matchgate described has character I+εJ ,

where J is the claimed matrix. Further, it is clear that these 11 matrices span the
11-dimensional space X3.

5. Matchcircuits. We now discuss how matchgates can be combined in large
numbers to form circuits. In the first instance the global properties of circuits that we
seek are of the same nature as those of individual gates: we define input and output
nodes for a circuit and wish to establish the character matrix of the circuit from
the character matrices of the constituents and the particulars of how the gates are
connected together. These latter particulars need special attention if the characters
of the constituents are to be composed so that no untoward sign effects arise. The
only difference between a matchgate and a matchcircuit is that modifiers are assumed
to be +1 for the latter since we do not consider a circuit to be externally connected.

One important purpose of combining matchgates is to derive matchgates with
new characters. A most basic operation is that of putting two two-bit gates in se-
quence, as illustrated in Figure 3. We shall assume that for G1 and G2 the ordering
in the character matrix is φ, {1}, {2}, {1, 2} for the inputs and φ, {6}, {5}, {5, 6} for
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Fig. 3. A composition of two six node matchgates, G1 and G2, that forms a 12 node matchgate
G. The original labeling {1, 2, 5, 6} of the external nodes of G1, G2, as well as the new labeling
{1, 2, 11, 12} of the external nodes of G are shown. In the composition all the 12 nodes are renum-
bered {1, . . . , 12} from left to right in the diagram.

the outputs. For G we assume these orderings to be the same for the inputs and
φ, {12}, {11}, {11, 12} for the outputs.

The important point now is that if gate G is formed from constituent gate G1

appended by gate G2 as shown, and if the character matrices of G1 and G2 are B1

and B2, respectively, then the character matrix of G will be B = B1B2 where matrix
multiplication is implied. To see this consider, for example, the entry B(2, 3) which
corresponds to input {1} and output {11} of the composite gate G. In the matrix
product B = B1B2 the corresponding value is

B1(2, 1)B2(1, 3) +B1(2, 2)B2(2, 3) +B1(2, 3)B2(3, 3) +B1(2, 4)B2(4, 3).

It is easy to verify that the four terms correspond, respectively, to sets of matchings
in G that (i) contain neither edge e1 nor edge e2, (ii) have e1 but not e2, (iii) have
e2 but not e1, and (iv) have both e1 and e2. In the Pfaffian expression for G these
terms all have positive signs since the potential overlap between e1 and e2 is always
even, and their overlap with the internal edges of G1 and G2 are already accounted
for in the characters of G1 and G2 through the modifier.

In this way if, for example, B1 and B2 are I + εJ1 and I + εJ2, then their
composition will have character I + (J1 + J2)ε + O(ε

2). Clearly if we also have a
matchgate for I + εJ1, then we can obtain one for I + aεJ1, where a is any complex
number by replacing ε in the matchgate weights by aε. It follows that if we have
matchgates for a set of infinitesimals, such as the 11 in Proposition 5, then we can
construct a matchgate for any linear combination of the infinitesimals, up to a O(ε2)
term.

It also follows that if we set ε = 1/n, then if we compose n copies of the gate for
I + εJ = eεJ +O(ε2), then we obtain a gate for eJ +O(1/n), as can be seen from the
relation

(eA/n +O(1/n2))n = eA +O(1/n)

which holds for all matrices A that are independent of n. Note that eA is defined here
as the power series 1+A+A2/2!+ . . .. This n-fold composition or iteration offers an
alternative approach to constructing matchgates with desired characters.
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Fig. 4. An example of a circuit composed of gates G1, G2, and G3 acting on bits {x3, x6},
{x3, x4} and {x1, x2}, respectively. In this example e3 and e5 are external edges, e2 is a parallel
edge, e1 and e4 are connecting edges, and the internal edges within G1, G2, and G3 are not shown.
The nodes in the overall circuit are numbered so as to be increasing from left to right. The input
and output node sets X,Y are the leftmost and rightmost six nodes, respectively.

More generally let Γ1, . . . ,Γm be a set of matchgates Γi = (Gi, Xi, Yi, Ti), where
Gi = (Vi, Ei,Wi) and |Xi| = |Yi|. A matchcircuit Γ = (G,X, Y, T ) with G =
(V,E,W ) is a composition of Γ1, . . . ,Γm that can be obtained in the following way:
(1) The Γi are first reordered as necessary. (2) Each external node of Γi has one
external edge. An output node of Γi can be linked to an input node of Γj if i < j,
via a linking chain of an odd number of edges all of weight 1, and in that case that
output node and that input node are considered as members of a set D. (3) Nodes in
Xi or Yi that are not in D are the endpoints of linking chains of odd length, the other
endpoints of which are considered as the members of X or Y , the input and output
nodes of the circuit, respectively. An odd length chain between a node in X and a
node in Y represents a bit on which the circuit does not act. (4) T is the union of the
Ti. (5) The node set is now renumbered as necessary so that for each i all the nodes
in Vi are contiguous in V (i.e., if j, k are nodes originating from Vi, and j < l < k for
some node l in V , then l originates from a node in Vi and is not a node on a linking
chain or from a different Vi), the nodes X have smaller indices than any other node,
and Y have larger indices.

Figure 4 shows an example of a matchcircuit with |X| = |Y | = 6 and with three
matchgates. When we construct a matchcircuit from matchgates we have in mind the
construction shown. Note that if n = |X| = |Y |, then for each gate 2n new nodes are
introduced with a relative numbering implied by the left to right ordering shown.

Matchcircuit Theorem. If matchcircuit Γ is a composition of matchgates
Γ1, . . . ,Γm, then

PfS(G) =
∑
S

εS
∏

1≤i≤m
PfS(Gi − Si),

where (1) S is a mapping that determines for each node in D whether it is to be
matched by an edge internal or external to the matchgate from which it originated,
(2) Si is the set of external nodes in Γi that are assigned by S to be matched by an
external edge, and (3) εS ∈ {−1, 1} (and depends on the choice of S and on the nature
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of the composition Γ).
Proof. The different choices of the assignment S partition the matchings of G. In

order to establish the theorem it suffices to show that the matchings of G that respect
S contribute to PfS(G) a term

∏
1≤i≤m

PfS(Gi − Si)(3)

up to a multiplicative factor of 1 or −1.
It is clear that for any sets U1 ⊆ T1, U2 ⊆ T2, . . . , Um ⊆ Tm, and U = U1 ∪

U2 ∪ · · · ∪ Um each matching in PfS(G) that omits U corresponds one to one to the
union of matchings from Γ1, . . . ,Γm that omit U1, . . . , Um, respectively. Hence the
monomials in PfS(G) that are consistent with S are identical to the monomials in (3)
above. It remains therefore only to establish that either all the corresponding pairs
of monomials have equal signs (and hence εS = 1) or they all have unequal signs (and
hence εS = −1).

For all the matchings in G that are consistent with a single S the external edges
(and other chain edges) matched are identical. Hence the matchings for the fixed S
differ only as far as the edges that are entirely internal to the various Γi separately.
Within any one such Γi the signs of the various terms in PfS(Gi − Si) are whatever
they are. When they form subterms of PfS(G) their signs are not affected relative to
each other. This is because for any two edges from distinct gates, say edge (u, v) of
Ei and (w, x) of Ej , either u < v < w < x or w < x < u < v and therefore there is no
overlap in either case. It follows that the contributions from the various PfS(Gi−Si)
simply multiply together.

It remains to observe that the external and other linking edges generate no over-
lap. This is because the overlap between the external edges and those within gates
is, as previously observed, fixed by virtue of condition (ii) in the definition of match-
gates. The overlap among the external edges and linking chain edges is clearly fixed
also since there is just one matching being considered for these. It remains to observe
that the fixed matching in the linking edges that are not external (i.e., not directly
incident to a gate) have no overlap with internal gate edges by virtue of condition
(5) in the definition of matchcircuits that imposes an adequate constraint on their
numbering.

We shall think of a matchcircuit as acting on a sequence of bits x1, . . . , xn and of
a k-bit matchgate as acting on a subset of these n bits. We say that a matchcircuit
is in standard description if when the character matrix of a gate is described to be B
it is the case that any one diagonal element of B refers to exactly the same subset
of {x1, . . . , xn} for the inputs as for the outputs. Thus if, for example, B(2, 2) refers
to an input subset of {1} and an output subset of {6}, as in Proposition 2, then a
standard description would insist that output 6 of this gate be the same xi bit as
input 1 of this gate. Clearly, a circuit not in standard description can be put into
standard description at the expense only of reordering the outputs (and renaming the
bits operated on inside the circuit.)

The following Main theorem gives some general conditions that are sufficient to
guarantee that the above Matchcircuit theorem can be applied with εS = 1 in all cases.
This in turn ensures that when the matchgates are composed into a matchcircuit, the
character matrix of the circuit is the matrix product of the character matrices of the
individual gates when these are regarded as acting on all n bits. This follows from
the argument used earlier in the section to show that the composition of the two
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Fig. 5. The matching for the matchcircuit shown in Figure 4 when G1, G2, and G3 are realizing
mappings J22, J41, and J34, respectively. The matched edges outside of G1, G2, and G3 are shown
in bold. In this instance the circuit realizes the mapping (0, 1, 1, 1, 1, 0) → (1, 1, 0, 0, 1, 0), where an
entry is 1 or 0 according to whether the node in X or Y corresponding to it is saturated by an edge
in the matching.

matchgates shown in Figure 3 corresponds to the multiplication of their character
matrices.

Main Theorem. For any matchcircuit composed of two-bit matchgates any entry
in its character matrix can be expressed as a Pfaffian Sum of the circuit with the
corresponding external nodes removed if the circuit when described in standard form
is composed of (a) matchgates with any character B such that B(i, j) = 0 for all
i, j such that i 
= j, (b) matchgates operating on any two bits with indices differing
by one (e.g., xi, xi+1) that have character B in which the only nonzero entries are
among B(1, 1), B(2, 2), B(3, 3), B(4, 4), B(1, 4), B(4, 1), B(2, 3), B(3, 2), and (c)
any matchgate operating on bits x1 and x2.

Proof. Figure 4 shows a circuit with three gates G1, G2, and G3. They illustrate
the cases (a), (b), and (c), respectively, since G2 acts on adjacent gates x3, x4, and G3

acts on the end bits x1, x2. Also shown is a systematic way of adding chains of edges
to join gate outputs to gate inputs so that in the composition the Pfaffians multiply
and add with positive sign.

Figure 5 illustrates the following specific nondeterministic branch of a computa-
tion of the above circuit: The input is (x1, x2, x3, x4, x5, x6) = (0, 1, 1, 1, 1, 0). Before
the composition all of the gates G1, G2, and G3 have external node sets {1, 2, 7, 8},
row ordering ∅, {1}, {2}, {1, 2}, and column ordering ∅, {8}, {7}, {7, 8}. In the illus-
tration gate G1 is realizing the identity mapping from input x3 = 1, x6 = 0 to output
x3 = 1, x6 = 0. It is placed in the circuit so that input 1 and output 8 of the gate act
on bit x3, and input 2 and output 7 act on bit x6. It can be thought of, therefore,
as internally realizing the character entry (2, 2) or the mapping J22. Similarly gate
G2 realizes mapping J41 and is placed in the circuit so that input 1 and output 8
of the gate act on bit x3, and input 2 and output 7 act on bit x4. Gate G3 realizes
mapping J34 and is placed in the circuit so that input 1 and output 8 of the gate act
on bit x1, and input 2 and output 7 act on bit x2. By saying here that the various
gates realize various mappings we are in fact specifying a particular choice of S in
the statement of the Matchcircuit theorem. Equivalently we are specifying particular
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subsets of matchings in all the gates.

What we need to show is that for any such choice of S that corresponds to nonzero
character entries for all the gates, whether of types (a), (b), or (c) in the statement
of the Main theorem, the value of εS in the Matchcircuit theorem is always +1. To
see this we classify the edges in the circuit into categories: ones that are internal to a
gate, ones that are external edges (those that connect the external nodes of a gate to
the outside, e.g., e3, e5 in Figure 4), those that are parallel to gates (e.g., e2), which
are defined to be those above or below the gates in Figure 4, and connecting edges
(e.g., e1, e4), which are sets of n edges that connect the external/parallel edges of
one gate to the external/parallel edges of another. Clearly there are three sources of
overlapping edges that might affect εS : overlap between internal and external edges,
overlap between external/parallel edges and connecting edges, and overlap among the
external/parallel edges involved in the same gate. The first source is already taken
into account in the definition of the character of a matchgate. The second contributes
+1 since any particular connecting edge (e.g., e4) forces the external/parallel edges
at its two ends (e2, e3) to be either both matched or neither matched, and hence the
overlaps of these latter edges with any connecting edge (e.g., e1) above the connecting
edge (e4) in question will occur in pairs and hence cancel.

The remaining case is that of overlaps among the external/parallel edges of the
same gate, and these can be only between an edge externally connected to a gate
(e.g., e5) and a parallel edge above it (e.g., e2). In case (c) since the gate acts on x1,
x2, there are no parallel edges above the gate, and hence there is no contribution to
εS . In case (b) since the gate has an even number of external edges that are in the
matching and their overlaps are with parallel edges above, these contributions will be
in even pairs and will also cancel. Finally, in case (a) matched external edges will
occur in pairs with the same xi (e.g., for gate G1 in Figure 5; such a pair occurs for
x3 and not for x6). Overlaps with the parallel edges above will therefore again occur
in pairs and cancel.

With regard to the details of the construction for composing matchgates that
Figure 3 illustrates, the reader can verify that there is much redundancy. All the
nodes other than matchgate nodes or the circuit input and output nodes can be
eliminated.

We note that if we take into account the matchgate identities, then case (a) can
be simulated by case (b) and is technically redundant in the above theorem. To see
this note that a case (a) matrix is a diagonal matrix with some (a, b, c, bc/a) on the
diagonal. This can be simulated by two diagonal one-bit gates, the first with diagonal
(a, b) acting on the first bit, and the second with diagonal (1, c/a) acting on the second
bit. Each of these one-bit gates can then be viewed as a two-bit gate that ignores
the other bit and is feasible for a matchgate. Hence a case (a) two-qubit gate acting
on bits i, j can be replaced by two one-bit gates acting on bits i, i + 1 and j, j + 1,
respectively.

We call Ω the class of matchcircuits defined in the above theorem and limited to
the classes of matchgates that can be constructed. In particular the gates that can be
used in unrestricted ways include those of Proposition 2. Those that can be applied
to neighboring bits include those of Proposition 3. Those that can be applied to the
end bits x1, x2 include those of Proposition 4.

Now consider a member M of this class Ω. For any input variable xi or output
variable yj that is to be fixed to have value 0 we delete this input/output node and the
edges incident to it. This forces the circuit to have value 0 for this variable since the
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corresponding X∪Y node will not be saturated. If we wish to set the variable to 1 we
retain the corresponding nodes and edges. (This {0, 1} interpretation of the variable
values is the complement of that considered for the character, but this is an inessential
technicality.) For x ∈ {0, 1}n, y ∈ {0, 1}n we define Mx,y to be the matchcircuit M
with these modifications. In the case that the matchgates are unitary, we can regard
the circuit as a quantum matchcircuit.

Corollary 1. For a quantum matchcircuit M ∈ Ω started in state x the proba-
bility that it terminates in state y is |PfS(Mx,y)|2.

A critical aspect of our theory, which we have not mentioned and which goes
beyond the standard quantum computational model, is that it is capable of simulating
in polynomial time nondeterministic summation over the inputs of the simulated
circuit evaluations in addition to the nondeterministic branches. Thus if x∗, y∗ assign
subsets of the inputs and outputs fixed values, we first excise the external nodes that
are so fixed to have value 0 and retain those fixed as 1. We then apply to the resulting
matchcircuit M the various transformations described in the following.

Theorem 5. For any matchcircuit M ∈ Ω, if x∗, y∗ are partial assignments to
the inputs and outputs, then each of the three quantities


∑
x,y

PfS(Mx,y)




2

,
∑
x,y

| PfS(Mx,y) |2, and
∑
x,y

(PfS(Mx,y))
2,

where summation is over all x and y that agree with x∗ and y∗, respectively, can be
evaluated in time polynomial in the size of M.

Proof. For the first quantity we define the nondeterministic input and output
nodes in M as omittable nodes in the matchcircuit and appeal to the Pfaffian Sum
theorem.

For the second quantity we construct for M its complex conjugate matchcircuit
M∗ which is identical toM except that corresponding weights are complex conjugates
of each other, and the node indices are from a disjoint interval of, say, higher numbers,
and in reverse order. For each nondeterministic input or output node we join the
corresponding nodes of M and M∗ by an edge of weight one. We claim that the
Pfaffian of the result is the desired quantity. This follows from the observation that
each subset of the joining edges that is matched represents a distinct truth assignment
to the nondeterministic nodes, and its contribution to the Pfaffian will be the product
of some PfS(Mx,y) and its complex conjugate. The only technical issue that needs to
be verified is that the contribution of the newly added edges to the parity of the sign
is +1 for all choices of x and y. To see this we note that the edges between the outputs
clearly interact with each other with even parity and with the copies of M and M∗

totally symmetrically. Similarly the edges between the inputs, which now span the
whole circuit, also interact with each other and with the edges between the outputs
with even parity. Also, they interact with the edges that touch the input nodes of M
and M∗ symmetrically and with all other edges of M,M∗ with even parity. Figure 6
illustrates this construction.

The third quantity is computed in the same way as the second except that instead
of M∗ we simply use a second copy of M .

This result, clearly, has applications broader than the quantum computation
model, since it is not restricted to unitary matrices. We note, however, that if we
do restrict ourselves to the quantum model, or any other model with a similar prob-
abilistic interpretation, then our computational mechanisms may be compared with
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Fig. 6. At the top we illustrate a 20-node matchcircuit M on 3 qubits that realizes the com-
position of a transformation C1 on x1, x2, followed by C2 on x2, x3. The 0-1 interpretation of the
character matrix of M is the complement of that of the gates but could be made the same if each
input and output of M were extended by a further edge. At the bottom the diagram illustrates how
a copy of M is composed with a copy of its complex conjugate with reverse numbering in order to
realize the second part of Theorem 5. In this example the Pfaffian(Sum) of the adjacency matrix
will equal Σ|PfS(Mx,y)|2 with x summed over all values such that x2 = 0, and y summed over all
values with y1 = 1 and y2 = 0, and hence in the quantum interpretation will equal the probability
that such evolutions occur.

aspects of quantum physics. In particular, the second part of the above theorem
can be seen as a deterministic process that computes the exact probability associ-
ated with a particular set of evolutions between quantum states. The result to follow
builds on this by showing that in randomized polynomial time one can generate an
output state according to the probability distribution that the quantum mechanical
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interpretation of a quantum matchcircuit specifies. This is precisely equivalent to the
idea of performing a measurement in quantum mechanics.

Measurement Theorem. For any quantum matchcircuit M ∈ Ω if x is a total
assignment to the inputs, and y∗ a partial assignment to the outputs, then there is a
randomized procedure that runs in time polynomial in the size of M and generates an
output y consistent with y∗ with probability

|PfS(Mx,y)|2/
∑
|PfS(Mx,z)|2,

where summation in the denominator is over all z consistent with y∗.
Proof. We proceed in the manner described in [23] for generating a random

combinatorial structure when we can count their number. The procedure has m
stages if there are m nondeterministic variables. In each stage we consider one such
variable yi and fix its value as follows: We evaluate for yi = 0, and separately for
yi = 1, the quantity

∑
|PfS(Mx,y)|2,

where the summation is over the y variables that have not been fixed yet. Each of
the two evaluations is a call of the procedure in the second part of Theorem 5. If we
obtain the values p0 and p1 for these two calls, then with probability p0/(p0 + p1)
we fix yi = 0 and with probability p1/(p0 + p1) we fix yi = 1. It is clear that the
procedure has the desired result.

In conclusion we note that we can generalize the Measurement theorem to sum
nondeterministically over unspecified inputs also. There is an obvious restriction,
however, on how the various nondeterministic choices can be correlated. If they are
all independent, then nothing special needs to be done. Otherwise one option is to
relate pairs of them by joining such a pair by an edge or a chain of two edges, and
this corresponds to the read-twice circuits discussed below. Controlling the overlaps
of the added edges becomes problematic in general, however. The next section takes
this route under circumstances when these overlaps do not matter.

6. Matchnets. We shall compose matchgates now in a different way. For quan-
tum computation we needed to be careful in constructing matchcircuits so that the
effects of the constituent matchgates simply add, without any uncontrollable sign
effects. Thus our simulation of quantum computation was limited by (a) what indi-
vidual matchgates could achieve and by (b) the constrained composition rules that
were adopted to maintain control of the signs. In the two applications in this section
we shall be limited by (a) alone. In the first application we shall be detecting the
existence of solutions and in the second the parity of the number of solutions.

For our current purposes we shall consider matchgates with empty output node
sets Y . For simulating i-argument Boolean functions we shall use matchgates with
i input variables X. In this section the sign of the character of each gate will be
immaterial, and hence consideration of the modifier in the definition of a matchgate
is redundant.

In this section we define algorithms for read-twice Boolean formulae. These are
formulae that are conjunctions of expressions such that each variable influences at
most two of the expressions. To describe the individual expressions we consider the
following classification of Boolean functions:
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0-argument functions: B01 = {1, 0}
1-argument functions: B11 = {x}
2-argument functions: B21 = {xy, x+ y, x⊕ y = 1, x⊕ y = 0}
3-argument functions: B31 ∪B32 ∪B33, where

B31 = {xyz, x(y = z), x′yz + xy′z + xyz′, x(y + z),
x⊕ y ⊕ z = 1, xy + yz + zx,
x+ (y = z), xy + (y = z)},

B32 = {x+ y + z,¬(xyz + x′y′z′)}, and
B33 = {xyz + x′y′z′, xyz + x′y′, xy + y′z,
x+ yz, z = x+ y, x′y′z′ + xy + yz + zx}.

Altogether there are 23 Boolean functions listed here. It is easily verified that any
Boolean function of three or fewer variables is identical to one of these 23 functions
once x, y, and z have been replaced by appropriate instances of the three variables
or of their negation. For example, the OR gate z = x + y in B33 can be interpreted
as z′ = x′ + y′ which is equivalent to the AND gate z = xy, which is therefore not
listed separately. However, xyz + x′y′z′ and ¬(xyz + x′y′z′), for example, are not
equivalent in this sense. We note that only the last 16 functions, those in B31 ∪
B32 ∪ B33, depend on all three of their arguments, and that the first seven, namely
those in B01∪B11∪B21, can all be obtained by appropriately fixing some inputs of
some member of B31. Hence our claims about algorithms for B31 apply equally to
B01 ∪B11 ∪B21 ∪B31.

Let us therefore first consider the eight 3-argument functions in the set B31. In
each case we shall describe a matchgate whose character, as described by a vector of
length 8, specifies the Boolean function at the eight possible input values. A further
special property of these gates is that the character entries are always 0 or 1 and (a)
whenever it is 0 the gate has no matchings, and (b) whenever it is 1 then it has exactly
one matching. In other words in the corresponding Pfaffian there is either zero or one
nonvanishing monomial. Also in all nine cases V = {1, 2, 3, 4}, X = {1, 2, 3}, Y = ∅,
and, where not otherwise stated, T = {4}. It remains only to specify the nonzero
edge weight set in each case. We shall specify the actual function realized using x, y,
z to represent inputs 1, 2, 3, respectively. We use the same numbering convention as
before. Thus Z = {1, 3} ⊆ X will give the character matrix element corresponding to
x = 1, y = 0, z = 1. Also, we denote the negation of a variable x by x′.

xyz: All weights zero.

(x = y)z: w(1, 2) = 1.

(x+ y)z: w(1, 4) = 1, w(2, 4) = 1.

x+ (y = z): w(1, 4) = 1, w(2, 4) = 1, w(3, 4) = 1, w(2, 3) = 1.

xy + (y = z): w(1, 4) = 1, w(3, 4) = 1, w(2, 3) = 1.

xy + yz + zx: w(1, 4) = 1, w(2, 4) = 1, w(3, 4) = 1.

x⊕ y ⊕ z = 1: w(1, 2) = 1, w(2, 3) = 1, w(3, 1) = 1.

xyz′ + xy′z + x′yz: w(1, 4) = 1, w(2, 4) = 1, w(3, 4) = 1, T = ∅.
Let us next consider the two 3-argument functions in the set B32. The setup is

exactly as for the B31 gates above with the one exception that whenever the Boolean
function takes the value 1 there may now be more than one matching in the matchgate
and this number is even (though the corresponding Pfaffian is in fact nonzero—a
property which is not exploited.) The two functions here are disjunction and not-
all-equals. We note that it is enough to implement functions to within negations of
the inputs: One can unnegate an input by adding a single edge to the old input and
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declaring the new endpoint the new input. This may change the modifier, but that
is not relevant for this section.) In order to retain four node constructions we shall
describe gates where x and z are negated in the disjunction and y in the not-all-equals:

x′ + y + z′: w(1, 2) = 1, w(1, 3) = 1, w(1, 4) = 1, w(2, 3) = 1, w(3, 4) = 1.

¬(xy′z + x′yz′): w(1, 2) = 1, w(1, 4) = 1, w(2, 3) = 1, w(3, 4) = 1.

A matchnet is a set of matchgates with no output nodes where pairs of input
nodes from different matchgates may be joined (a) by a single edge of weight 1 if
the input nodes are to have the same value or (b) by a chain of two edges both
of weight 1 if the input nodes are to have opposite values. We can then define the
matchnet of a read-twice Boolean formula as follows: if the formula is a conjunction of
a number of 3-argument Boolean expressions, then the matchnet is simply the union
of matchgates, one for each such expression, in addition to single edges or chains of
length two to constrain pairs of variables in the expressions to have equal or unequal
values, as required.

More formally a matchnet is a matchcircuit having no input or output nodes,
and composed of matchgates with no outputs, where condition (1) in the definition
of matchcircuits is redundant, and conditions (2) and (3) are replaced by the above
condition, that inputs of different matchgates may be linked by edge chains of length
one or two.

The following theorem results using standard algorithms for finding matchings
and for computing determinants.

Theorem 6. If F is a read-twice formula consisting of gates from B01 ∪ B11 ∪
B21 ∪ B31 ∪ B32, then the matchnet of F has a matching iff F is satisfiable. If F is
a read-twice formula F consisting of gates from B01 ∪ B11 ∪ B21 ∪ B31, then the
matchnet of F has an odd number of matchings iff F has an odd number of satisfying
assignments. The existence of a solution for the formula in the first case and the parity
of the number of solutions in the second case can both be computed in deterministic
time polynomial in the size of F.

A variety of special cases of these results were previously known and some related
problems are known to be NP-hard. One strength of the result above is that a broad
variety of gates can be treated together. Some trivial special cases include restricting
the gates to two argument functions or to parity functions. A more interesting case
that was previously known was read-twice formulae consisting only of x+ y+ z gates
(from B32), for which it was known that satisfiability is polynomial time solvable [28,
p. 207]. For that case it was further known that counting the number of solutions
is #P-complete [6], although the parity problem for it is apparently open. The con-
struction in [22] for read-twice formulae (of the form of conjunctions of disjunctions of
conjunctions) implies that the existence problem for read-twice formulae constructed
from z = x+ y functions is NP-complete. Also one can deduce that the correspond-
ing counting problem is #P-complete and, using [37], that the corresponding parity
problem is NP-hard via randomized reduction.

Theorem 7. None of the six functions in B33 has a matchgate where either the
parity of the number of matchings or the existence of matchings defines the required
function. Neither of the functions in B32 has a matchgate where the parity of the
number of matchings defines the required function.

Proof. Assume to the contrary that such matchgates exist and, without loss
of generality, that they have an odd number n of nodes. If n is even one can add
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an omittable node having no incident edges. Assume that the input node set is
X = {1, 2, 3} and that Y = ∅.

Construct the matrix P = B+ + Λ(n+1) exactly as in the second part of the
Pfaffian Sum theorem. Let i = 1, j = 2, k = 3, l = n + 1 in Theorem 2 and use the
abbreviation P (a, b, c, d) to denote the Pfaffian of P with rows/columns 1, 2, 3, n+ 1
removed according to whether a, b, c, d equal 1. Then Theorem 2 implies

P (0, 0, 0, 0)P (1, 1, 1, 1) − P (1, 1, 0, 0)P (0, 0, 1, 1)
= P (1, 0, 0, 1)P (0, 1, 1, 0) − P (1, 0, 1, 0)P (0, 1, 0, 1).

Since in each term d = a⊕ b⊕ c, the last argument is indeed redundant, and we can
abbreviate P (a, b, c, d) with P (a, b, c) to get

P (0, 0, 0)P (1, 1, 1) − P (1, 1, 0)P (0, 0, 1)
= P (1, 0, 0)P (0, 1, 1) − P (1, 0, 1)P (0, 1, 0).(4)

The main observation now is that P (a, b, c) is nothing other than the component
of the character (up to a factor of +1) of the gate where the inputs set to 1 are
removed from the gate. This is because renaming the nodes and then applying the
Pfaffian Sum theorem would give exactly the same matrix as P with the corresponding
rows/columns removed.

It follows, for example, that the all-equal function xyz+x′y′z′ cannot be realized
since it would require the first of the four terms in (4) to be nonzero and the rest zero.
This holds clearly if the Pfaffian equals the parity. Equally it precludes the possibility
that matchings exist for just the desired subsets of inputs because in that case we
could place random values on the edges of the matchgate and the Pfaffians would
have forbidden zero and nonzero patterns for some such random values. Note that
when considering existence rather than parity, instead of appealing to the Pfaffian Sum
theorem to eliminate omittable nodes, we simply connect these nodes as a complete
subgraph.

This same argument can be applied also to the remaining five functions in B33:
x′y′z′ + xyz, z = x + y, x + yz, xy + y′z, and xyz + x′y′. A similar argument holds
for the B32 functions for the case of parity.

We observe finally that numerous open problems remain regarding read-twice
formulae composed of gates from the 23 gates that we enumerated. In particular the
complexity of determining the existence, the parity, and the number of the solutions
each remains unresolved for several cases.

7. Conclusion. The exact power of matchgate techniques for deriving polyno-
mial time classical algorithms remains to be resolved. Are there indirect methods not
yet identified for mapping richer classes computations into matchgates? Can our par-
ticular class of polynomially simulatable circuits be extended by allowing in addition
arbitrary use of one-bit gates? Do circuits based on k-bit matchgates for k > 2 have
greater power for encoding computations?

We have defined a class of quantum computations for which the outcome can be
predicted by linear algebra computations in polynomial time by classical computers.
While the standard quantum mechanical formulation is linear also, it is linear in
exponentially more dimensions than is ours. This brings new focus to the question
of whether scalable quantum devices are restricted to those that are polynomial time
simulatable classically, as nonquantum devices are believed to be.



QUANTUM CIRCUITS 1253

REFERENCES

[1] A. Barenco, A universal two-bit gate for quantum computation, Proc. Roy. Soc. London Ser.
A, 449 (1995), pp. 679–683.

[2] P. A. Benioff, Quantum mechanical Hamiltonian models of discrete processes that erase their
own histories: Application to Turing machines, Internat. J. Theoret. Phys., 21 (1982),
pp. 177–201.

[3] E. Bernstein and U. Vazirani, Quantum complexity theory, SIAM J. Comput., 26 (1997),
pp. 1411–1473.

[4] A. Borodin, S. A. Cook, and N. J. Pippenger, Parallel computation for well-endowed rings
and space bounded probabilistic machines, Inform. and Control, 58 (1983), pp. 113–136.

[5] R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge University Press,
Cambridge, UK, 1991.

[6] R. Bubley and M. Dyer, Graph orientations with no sink and an approximation for a hard
case of #SAT, in Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete
Algorithms, ACM, New York, 1997, pp. 248–257.

[7] P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic Complexity Theory, Springer-
Verlag, Berlin, 1996.

[8] P. Bürgisser, Completeness and Reduction in Algebraic Complexity Theory, Springer-Verlag,
Berlin, 2000.

[9] A. Cayley, Sur les determinants gauches, Crelle’s J., 38 (1847), pp. 93–96.
[10] S. A. Cook, The complexity of theorem proving procedures, in Proceedings of the 3rd ACM

Symposium on Theory of Computing, ACM, New York, 1971, pp. 151–158.
[11] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, J.

Symbolic Comput., 9 (1990), pp. 251–280.
[12] D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum com-

puter, Proc. Roy. Soc. London Ser. A, 400 (1985), pp. 97–117.
[13] D. Deutsch, Quantum computational networks, Proc. Roy. Soc. London Ser. A, 425 (1989),

pp. 73–90.
[14] D. Deutsch, A. Barenco, and A. Ekert, Universality of quantum computation, Proc. Roy.

Soc. London Ser. A, 449 (1995), pp. 669–677.
[15] D. P. DiVincenzo, Two-bit gates are universal for quantum computation, Phys. Rev. A (3),

51 (1995), pp. 1015–1022.
[16] P. van Emde Boas, Machine models and simulations, in Handbook of Theoretical Computer

Science, Vol. A, J. van Leeuwen, ed., Elsevier, Amsterdam, 1990, pp. 1–61.
[17] R. P. Feynman, Simulating physics with computers, Internat. J. Theoret. Phys., 21 (1982),

pp. 467–488.
[18] L. Fortnow and J. Rogers, Complexity limitations on quantum computation, J. Comput.

System Sci., 59 (1999), pp. 240–252.
[19] M. Freedman, N/NP, and the quantum field computer, Proc. Natl. Acad. Sci. USA, 95 (1998),

pp. 98–101.
[20] D. Gottesman, The Heisenberg Representation of Quantum Computers, quant-ph/9807006,

1998.
[21] L. K. Grover, Fast quantum mechanical algorithm for database search, in Proceedings of the

28th ACM Symposim on Theory of Computing, ACM, New York, 1996, pp. 212–218.
[22] H. B. Hunt III and R. E. Stearns, The complexity of very simple Boolean formulas with

applications, SIAM J. Comput., 19 (1990), pp. 44–70.
[23] M. R. Jerrum, L. G. Valiant, and V. V. Vazirani, Random generation of combinatorial

structures from a uniform distribution, Theoret. Comput. Sci., 46 (1986), pp. 169–188.
[24] K. de Leeuw, E. F. Moore, C. E. Shannon, and N. Shapiro, Computability by probabilistic

machines, in Automata Studies, C. E. Shannon and J. McCarthy, eds., Princeton University
Press, Princeton, NJ, 1956, pp. 183–212.

[25] E. H. Lieb, A theorem on Pfaffians, J. Combinatorial Theory, 5 (1968), pp. 313–319.
[26] K. Murota, Matrices and Matroids for Systems Analysis, Springer-Verlag, Berlin, 2000.
[27] M. A. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge

University Press, Cambridge, UK, 2000.
[28] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.
[29] R.W. Robinett, Quantum Mechanics, Oxford University Press, New York, 1997.
[30] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a

quantum computer, SIAM J. Comput., 26 (1997), pp. 1484–1509.
[31] V. Strassen, Gaussian elimination is not optimal, Numer. Math., 13 (1968), pp. 354–356.
[32] L. Troyansky and N. Tishby, Permanent uncertainty: On the quantum evaluation of the



1254 LESLIE G. VALIANT

determinant and permanent of a matrix, Proc. Phys. Comp., 96 (1996).
[33] A. M. Turing, On computable numbers, with an application to the Entscheidungsproblem,

Proc. Lond. Math. Soc. Ser. 2, 42 (1936), pp. 230–265.
[34] L. G. Valiant, The complexity of computing the permanent, Theoret. Comput. Sci., 8 (1979),

pp. 189–201.
[35] L. G. Valiant, Completeness classes in algebra, in Proceedings of the 11th ACM Symposium

on Theory of Computing, ACM, New York, 1979, pp. 249–261.
[36] L. G. Valiant, Expressiveness of matchgates, Theoret. Comput. Sci., to appear.
[37] L. G. Valiant and V. V. Vazirani, NP is as easy as detecting single solutions, Theoret.

Comput. Sci., 47 (1986), pp. 85–93.
[38] A. C.-C. Yao, Quantum circuit complexity, in Proceedings of the 34th Symposium on Founda-

tions of Computer Science, IEEE Computer Society, Los Alamitos, CA, 1993, pp. 352–360.



FINDING DOUBLE EULER TRAILS OF PLANAR GRAPHS IN
LINEAR TIME∗
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Abstract. This paper answers an open question in the design of complimentary metal-oxide
semiconductor VLSI circuits. The question asks whether a polynomial-time algorithm can decide if
a given planar graph has a plane embedding E such that E has an Euler trail P = e1e2 . . . em and its
dual graph has an Euler trail P ∗ = e∗1e

∗
2 . . . e

∗
m, where e∗i is the dual edge of ei for i = 1, 2, . . . ,m.

This paper answers this question in the affirmative by presenting a linear-time algorithm.

Key words. planar graph, dual graph, Euler trail
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1. Introduction. Throughout this paper, a graph may have multiple edges but
never has loops. A graph G is planar if it can be drawn on the plane so that the edges
intersect only at their end vertices. Such a drawing is called an embedding of G. A
plane graph is a planar graph with a fixed embedding. A two-terminal graph 1 (TTG)
G = (V,E) is a plane graph with a pair (s, t) of specified vertices on the outer face
such that adding the edge {s, t} to G yields a biconnected plane graph [4, 6]. We call
s the source of G and t the sink of G. We also call s and t the poles of G and the
other vertices the nonpoles of G. As in previous studies, we visualize G in such a way
that s is at the South Pole while t is at the North Pole.

The poles of G divide the boundary of the outer face into two paths, which are
called the west side and the east side of G, respectively. In the dual graph G∗ =
(V ∗, E∗) of G, there are two dual vertices s∗ and t∗ corresponding to the outer face
of G. The dual edges incident to s∗ (respectively, t∗) in G∗ correspond to the edges
on the west (respectively, east) side of G. Figure 1.1(2) shows a TTG G and its dual
G∗. G∗ is a TTG with source s∗ and sink t∗ [12].

In complimentary metal-oxide semiconductor (CMOS) technology, the basic lay-
out of a circuit C of transistors on a VLSI chip uses two rows of transistors: A row of
pMOS transistors is laid out next to a row of nMOS transistors [13]. The circuit C
can be represented by a pair of TTGs: The p-transistors are represented by G, where
each edge of G represents a p-transistor. The n-transistors are represented by the
dual graph G∗ of G, where each edge of G∗ represents an n-transistor. In Figure 1.1,
(1) shows a circuit implementing the Boolean function z = ē ∧ (ā ∨ b̄) ∧ (c̄ ∨ d̄), and
(2) shows the corresponding TTGs G and G∗.
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1Previously called planar st-graphs and treated as digraphs just for convenience.
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Fig. 1.1. (1) A circuit C implementing z = ē ∧ (ā ∨ b̄) ∧ (c̄ ∨ d̄). (2) The corresponding TTGs
G and G∗. (3) A layout of C.

1.1. Double Euler trails and optimal layouts. A trail P in G is a sequence
e1e2 . . . ek of distinct and oriented edges of G such that, for each i ∈ {1, . . . , k − 1},
the ending vertex of ei and the starting vertex of ei+1 are the same. Possibly, P has
repeated vertices. An Euler trail is a trail that visits each edge of G exactly once. For
each edge e of G, let e∗ be the dual edge of e in G∗. If the sequence P ∗ = e∗1e

∗
2 . . . e

∗
k

is also a trail in G∗, we call P a double trail 2 in G and call P ∗ the dual trail of P .
If P is a double trail and traverses every edge of G exactly once, we call P a double
Euler trail (DET) in G.

For each edge e in G, the p-transistor represented by e has the same input as the
n-transistor represented by e∗; hence, in the layout, the two transistors are required
to be laid out vertically aligned (to facilitate input line connection) [13]. Transistors
which are physically adjacent and have common diffusion regions may be collapsed.
Otherwise, a vertical gap must be inserted between the diffusion region of the two
transistors. Two transistors corresponding to two consecutive edges on a double trail
can be laid out physically adjacent without vertical gap [13]. Figure 1.1(3) shows a
layout of C using this approach. Note that the sequence eab is a double trail of G.
So, in the layout, no vertical gaps are needed between the transistors e, a, b. This is
also true for transistors c, d because of the double trail cd. However, since the edges b
and c are incident in G but not in G∗, there is a vertical gap between the transistors
b and c in the layout. In Figure 1.2, (1) shows a logically equivalent circuit and (2)
shows the corresponding TTGs G and G∗. Since abecd is a DET of G, the transistors
can be laid out in this order with no vertical gap, as seen in Figure 1.2(3).

1.2. Problem definitions. The circuits in Figures 1.1(1) and 1.2(1) are logi-
cally equivalent. Thus, the TTGs G in Figures 1.1(2) and 1.2(2) should be viewed
as different embeddings of each other. That is, to obtain a different embedding of
a TTG, we may not only horizontally flip blocks of the TTG as one does tradition-
ally but also vertically flip blocks of the TTG. We postpone the precise definition of
“different embeddings” until the end of section 2. For convenience, we regard G as a
different embedding of itself.

2Previously called “dual trail.” We reserve the term “dual trail” exclusively to refer to a trail in
G∗.
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Fig. 1.2. (1) A circuit C logically equivalent to the circuit in Figure 1.1(1). (2) The corre-
sponding TTGs G and G∗. (3) A layout of C using the DET abecd.

As seen from Figures 1.1 and 1.2, even if G has no DET, a different embedding
of G may have one. A valid embedding of G is a different embedding of G that has
a DET. A double-trail cover (DTC) Q of G is a set of edge-disjoint double trails in
G such that each edge of G appears in a trail in Q. The size of Q is the number
of double trails in it. Q is a minimum DTC of G if the size of Q is minimized over
all DTCs of G. A different embedding of G with a minimum DTC leads to a layout
with the minimum number of vertical gaps (hence the minimum chip area). We are
interested in the following problems:

DET-F problem. Given a TTG G, decide whether G has a DET.

DET-V problem. Given a TTG G, decide whether G has a valid embedding.

DTC-F problem. Given a TTG G, find a minimum DTC of G.

DTC-V problem. Given a TTG G, find a different embedding G of G and a mini-
mum DTC Q of G such that the size of Q is minimized over all different embeddings
of G.

1.3. Previous work and our result. The layout method described above was
first introduced by Uehara and VanCleemput [13]. Most previous studies in this area
are concerned with series-parallel (SP) graphs, a much restricted subclass of TTGs.
This is partially because the problems above for general TTGs are more difficult
to solve. A heuristic algorithm for solving the DTC-V problem for SP graphs was
given in [13]. Lengauer and Müller [7] developed linear-time algorithms for finding a
minimum trail cover (not DTC) for SP graphs. Nair, Buss, and Reif [10] presented
polynomial-time algorithms for solving the DTC-F problem and the DTC-V problem
both for a restricted class of embedded SP graphs. Maziasz and Hayes [8, 9] gave
a linear-time algorithm for solving the DTC-F problem for SP graphs and a worst-
case exponential-time algorithm for the DTC-V problem for SP graphs. Linear-time
algorithms for solving the DET-V problem for SP graphs were given in [5]. These
algorithms are based on dynamic programming and are complicated. Whether the
DTC-V problem for SP graphs can be solved in polynomial time is still open.

For general TTGs, a linear-time algorithm for solving the DET-F problem was
given in [1]. The DTC-F problem is NP-hard [14, 15], which implies that the DTC-V
problem for TTGs is also NP-hard. Whether the DET-V problem for general TTGs
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can be solved in polynomial time is posed as an open question in [1].
Here, we answer this question in the affirmative by presenting a linear-time al-

gorithm for the DET-V problem. Our algorithm is based on careful analysis of the
structures of DTCs of TTGs. In more details, we first find out the types of those
DTCs that are the intersection of a DET of a TTG G and a subgraph of G. We
then define two operations for composing such DTCs of edge-disjoint subgraphs into
a single such DTC of a larger subgraph. We further prove that the two operations
have nice properties based on which a linear-time algorithm can be designed. The
main data structure we use is the SPQR-decomposition tree of a TTG [3].

1.4. Organization of this paper. Section 2 describes the SPQR decomposition
of a TTG. Section 3 shows several useful properties of different embeddings of a TTG.
Section 4 discusses the special case of the DET-V problem where neither the input
TTG nor its dual graph has an odd-degree vertex. Section 5 gives a polynomial-time
algorithm for the DET-V problem. Section 6 refines this algorithm to a linear-time
algorithm.

2. SPQR decomposition. Throughout this paper, for a TTG G, G∗ denotes
the dual graph of G, s(G) denotes the source of G, t(G) denotes the sink of G, and
|G| denotes the total number of vertices and edges in G. For an unordered list L, we
write L = 〈a1, . . . , ak〉, where a1 through ak are the elements of L. For an ordered list
L, we write L = (a1, . . . , ak), where a1, . . . , ak are the elements of L and are ordered
in this order.

In the rest of this section, fix a TTGG. A cut vertex ofG is a vertex whose removal
disconnects G. G is biconnected if it has no cut vertex. A biconnected component of
G is a maximal subgraph of G with no cut vertex. A split pair of G is either a pair of
adjacent vertices or a pair of vertices whose removal disconnects G′, where G′ is the
graph obtained from G by adding the edge {s(G), t(G)}. A split component of a split
pair 〈u, v〉 is either an edge {u, v} or a maximal subgraph H of G such that H is a
TTG with poles u and v and 〈u, v〉 is not a split pair of H. A split pair 〈u, v〉 of G is
maximal if there is no other split pair 〈w1, w2〉 in G such that 〈u, v〉 is contained in a
split component of 〈w1, w2〉.

The decomposition tree T of G describes a recursive decomposition of G with
respect to its split pairs [2, 3]. T is a rooted ordered tree whose nodes are of four
types: S, P, Q, and R. Each node µ of T has an associated TTG, called the skeleton
of µ and denoted by Sk(µ). Also, it is associated with an edge in the skeleton of the
parent χ of µ, called the virtual edge of µ in Sk(χ). T is recursively defined as follows.

Trivial case. G consists of a single edge {s(G), t(G)}. Then, T consists of a single
Q-node whose skeleton is G itself.

Series case. G is not biconnected. Let c1, . . . , ck−1 (k ≥ 2) be the cut vertices of
G. Since G is a TTG, each ci ∈ {c1, . . . , ck−1} is contained in exactly two biconnected
components Gi and Gi+1 of G such that s(G) is in G1 and t(G) is in Gk. The root of
T is an S-node µ. Sk(µ) is a path e1, . . . , ek, where the edge ei = {ci−1, ci}, c0 = s(G),
and ck = t(G).

Parallel case. s(G) and t(G) constitute a split pair of G with split components
G1, . . . , Gk (k ≥ 2). Then, the root of T is a P-node µ. Sk(µ) consists of k parallel
edges between s(G) and t(G), denoted by e1, . . . , ek.

Rigid case. None of the above cases applies. Let 〈s1, t1〉, . . . , 〈sk, tk〉 (k ≥ 1) be
the maximal split pairs of G. For i = 1, . . . , k, let Gi be the union of all the split
components of 〈si, ti〉. The root of T is an R-node µ. Sk(µ) is obtained from G by
replacing each subgraph Gi with an edge ei = {si, ti}. Note that adding the edge
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{s(G), t(G)} to Sk(µ) yields a triconnected graph. By this, Sk(µ) has no different
embedding other than itself [11].

In the last three cases, µ has children ν1, . . . , νk (in this order) such that νi is the
root of the decomposition tree of graph Gi for all i ∈ {1, . . . , k}. The virtual edge of
node νi is the edge ei in Sk(µ). Gi is called the pertinent graph of νi and is denoted by
Pt(νi). Note that G is the pertinent graph of the root of T . Figure 2.1 illustrates the
decomposition tree of a TTG G. The skeletons of the nodes µ and ν are also shown.
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Fig. 2.1. (1) A TTG G. (2) Its decomposition tree T .

By the definition of T , no child of an S-node is an S-node and no child of a P-node
is a P-node.

Lemma 2.1 (see [3]). T has O(|G|) nodes. Also, the total number of edges of the
skeletons stored at the nodes of T is O(|G|).

The dual decomposition tree of T is the decomposition tree of the dual graph of
G.

Lemma 2.2. The dual decomposition tree of T can be obtained from T by ex-
changing the roles of the S-nodes and the P-nodes and further changing the skeleton
of each node to the dual graph of the skeleton.

Proof. The proof is obvious.
A different embedding of G is obtained from G by a sequence of operations from

the following set [7, 8, 9, 10, 13]:
• horizontally flipping the skeleton of an R-node around its poles;
• permuting the children of a P-node;
• vertically flipping the skeleton of an R-node, which is equivalent to horizon-
tally flipping the dual skeleton around its poles;
• permuting the children of an S-node, which is equivalent to permuting the
children of the dual P-node.

Note that if G is a different embedding of a TTG G, the circuits represented by
G and G are logically equivalent. Also note that the commonly known definition of
“different embeddings” allows only the first two operations [2, 3]. Hence, the meaning
of the phrase “different embedding” used here is different from its commonly known
meaning.

3. Properties of embeddings and double trails. Throughout this paper,
a list is ordered unless stated explicitly otherwise. An unordered list is actually a
multiset. So, for two unordered lists L1 = 〈a1, . . . , ak〉 and L2 = 〈b1, . . . , b�〉, we write
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L1 ∪ L2 for the unordered list 〈a1, . . . , ak, b1, . . . , b�〉. For an ordered (respectively,
unordered) list L and a set S, let L− S denote the ordered (respectively, unordered)
list obtained from L by deleting all appearances of each x ∈ S.

The following fact is well known.

Fact 1. For a connected graph G, the following two statements hold:

• G has a closed Euler trail if and only if it has no odd-degree vertex; in this
case G is called Eulerian.
• G has an open Euler trail if and only if it contains exactly two odd-degree
vertices, which are the first and the last vertex of the trail.

In the rest of this section, fix a TTG G. Let T be the decomposition tree of G.
A block of G is either the pertinent graph of a node in T or the union of the pertinent
graphs of some consecutive children of a P- or S-node in T . A proper block of G is a
block B such that G �= B. Let B = Pt(µ), where µ is a node of T . For every child ν
of µ in T , we call Pt(ν) a child block of B.

The following properties of double trails are clear. They play very important roles
in our algorithm.

Noncrossing property. Let Q be a double trail of G. Let e′ and e′′ be two
consecutive edges in Q. Then, e′ and e′′ appear consecutively around v in G, where
v is the ending vertex of e′ in Q.

Let B be a block of G. Let e1 (e2, respectively) be the edge in B incident to
s(B) that is on the west (east, respectively) side of B. (If there is only one edge in
B incident to s(B) then e1 = e2.) Let e3 (e4, respectively) be the edge in B incident
to t(B) that is on the west (east, respectively) side of B. (If there is only one edge in
B incident to t(B), then e3 = e4.) We call e1, e2, e3, e4 the access edges of B. Each
access edge ei is incident to a pole of B and its dual edge e∗i is incident to a pole of
B∗; only access edges of B satisfy this property.

Access-edge property. Let Q be any double trail of G. Let e′, e′′ be two
consecutive edges in Q such that e′ is in B and e′′ is not in B. Then, e′ must be an
access edge of B.

Lemma 3.1 (see [1]). Let e = {u, v} be an edge in G and e∗ = {F1, F2} its dual
edge. Let Q be a maximal double trail in G starting with e. If the direction of e in Q
and the direction of e∗ in the dual trail Q∗ are given, then Q is uniquely determined
and can be traced out in O(|Q|) time.

Proof (sketch). Suppose that Q traverses e from u to v while Q∗ traverses e∗ from
F1 to F2. Then, the successor of e in Q must be the edge incident to v and on the face
F2 of G. Repeating this argument, we can uniquely trace out all edges of Q.

The degree parity of a vertex in G is 0 if its degree is even and is 1 otherwise.

Fact 2. If G is Eulerian, then so is every different embedding of G.

Proof. Let µ be a node of T , and B = Pt(µ). Clearly, no vertex gets a different
degree after B is horizontally flipped. Similarly, when µ is a P-node, no vertex gets a
different degree after the children of µ are permuted.

Suppose that µ is an R-node. After B is vertically flipped, only the poles s(B)
and t(B) may get a different degree in the resulting embedding. Let mB be the
number of edges in B. For each vertex v in B, let dB(v) be the degree of v in B.
Thus, 2mB = dB(s(B)) + dB(t(B)) +

∑
v �=s(B),t(B) dB(v). Since dB(v) is even for all

v �∈ {s(B), t(B)}, dB(s(B)) and dB(t(B)) must have the same parity. Thus, vertically
flipping B creates no odd-degree vertex.

Next, suppose µ is an S-node. Let B1, . . . , Bk be the child blocks of B. Since no
Bi contains an odd-degree nonpole, the two poles s(Bi) and t(Bi) must have the same
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degree parity within Bi (as proved in the last paragraph). Suppose that dB1
(s(B1))

is even. Then, dB1(t(B1)) must be even. Since t(B1) = s(B2) and dB(t(B1)) =
dB1(t(B1))+dB2(s(B2)) is even, dB2(s(B2)) must be even. Continuing this argument,
we can see that all s(Bi) and t(Bi) must have even degree within Bi. By this,
permuting the children of µ creates no odd-degree vertex. Similarly, if dB1(s(B1)) is
odd, then all s(Bi) and t(Bi) must have odd degree within Bi. Thus, permuting the
children of µ creates no odd-degree vertex.

For a trail P in G and a proper block B of G, the intersection of P and B,
denoted by P ∩ B, is the list (Q1, Q2, . . . , Qk), where Q1 is the first (maximal)
subtrail of P in B, Q2 is the second (maximal) subtrail of P in B, . . . , and Qk is
the last (maximal) subtrail of P in B. An ordered DTC (ODTC) of G is a list
(P1, . . . , P�) such that {P1, . . . , P�} is a DTC of G. For an ODTC P = (P1, . . . , P�) of
G and a proper block B of G, the intersection of P and B, denoted by P ∩B, is the
list (Q1,1, . . . , Q1,k1

, . . . , Q�,1, . . . , Q�,k�
), where (Qi,1, . . . , Qi,ki

) is the intersection of
Pi and B for all i ∈ {1, . . . , $}. Clearly, P ∩B is an ODTC of B.

Let ϕG : V → {1, 2, 3} be the function that maps s(G) to 1, maps t(G) to 2, and
maps each nonpole of G to 3. The starting pair (respectively, ending pair) of a double
trail P in G is the pair (ϕG(u), ϕG∗(x)), where u is the starting (respectively, ending)
vertex of P and x is the starting (respectively, ending) vertex of the dual trail of P .
The extreme quadruple of a double trail P in G is the quadruple (p1, p2, p3, p4), where
(p1, p2) is the starting pair of P and (p3, p4) is the ending pair of P . The σ-extreme
list of an ODTC (P1, . . . , Pk) is the list (q1, . . . , qk), where qi is the extreme quadruple
of Pi for all i ∈ {1, . . . , k}. The π-extreme list of an ODTC (P1, . . . , Pk) is the list
(p1, q2, . . . , qk), where p1 is the ending pair of P1 and qi is the extreme quadruple
of Pi for all i ∈ {2, . . . , k}. The δ-extreme list of an ODTC (P1, . . . , Pk) is the list
(p1, q2, . . . , qk−1, pk), where p1 is the ending pair of P1, pk is the starting pair of Pk,
and qi is the extreme quadruple of Pi for all i ∈ {2, . . . , k − 1}.

Lemma 3.2. Let B be a block of G. Let P = (P1, . . . , P�) be an ODTC of G.
Let D be a TTG, and let Q = (Q1, . . . , Qk) be an ODTC of D. Let H be the TTG
obtained from G by replacing B with D. Then, the following three statements hold:

1. Suppose that (1) the σ-extreme list of Q equals that of P ∩B and (2) no trail
in P starts or ends with an edge of B. Then, H has an ODTC P ′ whose
σ-extreme list equals that of P.

2. Suppose that (1) the π-extreme list of Q equals that of P∩B and (2) P1 starts
with an edge of B while no trail in P − {P1} starts or ends with an edge of
B. Then, H has an ODTC P ′ whose π-extreme list equals that of P.

3. Suppose that (1) the δ-extreme list of Q equals that of P∩B and (2) P1 starts
with an edge of B and P� ends with an edge of B while no trail in P−{P1, P�}
starts or ends with an edge of B. Then, H has an ODTC P ′ whose δ-extreme
list equals that of P.

Proof. For each Pi ∈ P, if Pi ∩B is empty, then let P ′i = Pi; otherwise, let P
′
i be

the trail obtained from Pi by replacing each Sj ∈ Pi ∩B with Qj , where Sj is the jth
trail in P ∩B. Then, P ′ = (P ′1, . . . , P ′�) is the required ODTC of H.

4. The case where G and G∗ are Eulerian. Throughout this section, fix an
Eulerian TTG G whose dual graph is also Eulerian. Let T be the decomposition tree
of G. By Fact 2, each different embedding G of G and its dual G∗ are still Eulerian.
So, each DET P of a valid embedding of G must start and end at the same vertex,
and so does the dual trail of P .
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4.1. Types of DTCs of proper blocks. Suppose thatG has a valid embedding
G and P is a DET of G. Fix a proper block B of G. Since P starts and ends at the
same vertex and so does the dual trail of P , we may assume that the starting edge
of P is not in B. Then, each double trail in P ∩B must start and end at poles of B.
Let P ∩B = (P1, . . . , Pk). For each i ∈ {1, . . . , k}, let P ∗i be the dual trail of Pi.

Lemma 4.1.

1. If k ≥ 2, then each Pi ∈ {P1, . . . , Pk} uses two distinct access edges of B.
Consequently, k ≤ 2.

2. If Pi starts and ends at the same pole of B, then P
∗
i must start and end at

different poles of B∗.
3. If k = 2 and P1 starts and ends at different poles of B, then P

∗
1 must start

and end at the same pole of B∗.
Proof. Let e1 and e2 be the two access edges that are incident to s(B) and on the

west side and the east side of B, respectively. Let e3 and e4 be the two access edges
that are incident to t(B) and on the west side and the east side of B, respectively.
We prove the three statements separately as follows.

Statement 1. Suppose k ≥ 2. Consider an arbitrary Pi ∈ {P1, . . . , Pk}. Let e
(respectively, e′) be the starting (respectively, ending) edge of Pi. Since the starting
edge of P is not in B, e ∈ {e1, . . . , e4} by the access-edge property. Even if e′ is the
ending edge of P , since P is an Euler trail, e′ must be incident to the starting edge
of P which is not in B by our assumption. So, e′ ∈ {e1, . . . , e4}. Thus, we are done
if e �= e′. Towards a contradiction, assume e = e′. Then, e = {s(B), t(B)} is the
unique edge of Pi. In turn, {s(B∗), t(B∗)} is the unique edge of P ∗i . It follows that B
consists of a single edge, contradicting the assumption that k ≥ 2. Therefore, e �= e′
and Pi uses two distinct access edges of B. Since B has at most four access edges
(namely e1 through e4), k ≤ 2.

Statement 2. Without loss of generality, suppose that Pi starts and ends at s(B).
Then, e1 �= e2. By the access-edge property, we can assume that Pi starts with e1
and ends with e2. Hence, P

∗
i starts at the west side and ends at the east side of B.

(See Figure 4.1(1).)

Statement 3. Suppose that k = 2 and P1 starts and ends at different poles of B.
Then, by statement 1, e1 through e4 are distinct edges. Without loss of generality,
assume that P1 starts with e1. Towards a contradiction, suppose that P1 ends with e4.
Then, P2 starts with e2 and ends with e3. Since B is a plane graph, P1 and P2 must
cross each other somewhere inside B. However, this is impossible by the noncrossing
property. Hence, P1 ends with e3; in turn P

∗
1 starts and ends at the west side of B.

(See Figure 4.1(2).)

Based on Lemma 4.1, P ∩B can be only of the following five possible types:
• Type σ1. k = 1; P1 starts at one pole and ends at the other pole, and so does
P ∗1 .
• Type σ2. k = 1; P1 starts at one pole and ends at the same pole while P

∗
1

starts at one pole and ends at the other pole.
• Type σ3. k = 1; P1 starts at one pole and ends at the other pole while P

∗
1

starts at one pole and ends at the same pole.
• Type σ4. k = 2; P1 starts at one pole u and ends at u while P2 starts at the
other pole v and ends at v; P ∗1 starts at one pole and ends at the other pole,
and so does P ∗2 .

• Type σ5. k = 2; P1 starts at one pole and ends at the other pole, and so does
P2; P

∗
1 starts at one pole x and ends at x while P

∗
2 starts at the other pole y
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Fig. 4.2. Representative graphs for σ-types.

and ends at y.
Define Σ = {σ1, . . . , σ5}. Each σi is called a σ-type. For a TTG H, let Kσ(H) denote
the set of all σi ∈ Σ such that a different embedding of H has a Type-σi ODTC. We
call each member of Kσ(H) a σ-type of H. For each σi ∈ Σ, a representative graph
R(σi) is shown in Figure 4.2 in which the solid lines denote the edges in the trail P1

and the dual trail P ∗1 , while the light lines denote the edges in the trail P2 and the
dual trail P ∗2 . Note that σi is the unique σ-type of R(σi) for all i ∈ {1, . . . , 5}.

4.2. Composing DTCs. Let H1 and H2 be two vertex-disjoint TTGs. The
series composition of H1 and H2, denoted by H1 . H2, is the TTG obtained from
H1 and H2 by identifying t(H1) with s(H2), s(H

∗
1 ) with s(H

∗
2 ), and t(H

∗
1 ) with

t(H∗2 ). The parallel composition of H1 and H2, denoted by H1 � H2, is the TTG
obtained from H1 and H2 by identifying s(H1) with s(H2), t(H1) with t(H2), and
t(H∗1 ) with s(H

∗
2 ). For an integer k ≥ 3 and k vertex-disjoint TTGs H1, . . . , Hk, let

H1 . H2 . · · · . Hk = (· · · ((H1 . H2) . H3) . · · ·Hk−1) . Hk and H1 �H2 � · · · �Hk =
(· · · ((H1 �H2)�H3)� · · ·Hk−1)�Hk. We call H1 . · · ·.Hk (respectively, H1 � · · · �Hk)
the series (respectively, parallel) composition of H1 through Hk.

Define two binary operators . and � over Σ as in Tables 4.1 and 4.2; each empty
entry in Table 4.1 (respectively, 4.2) indicates that the . (respectively, �) operator is
undefined for that entry.

Lemma 4.2. Both . and � are commutative and associative operators over Σ.
Proof. One can use Tables 4.1 and 4.2 to verify.
Lemma 4.3. Let H be a TTG. Then, the following two statements hold:
1. Suppose H = H1 . H2, where Kσ(H1) = {σi} and Kσ(H2) = {σj}. Then,
Kσ(H) = {σi . σj} if σi . σj is defined, while Kσ(H) = ∅ otherwise.
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2. Suppose H = H1 � H2, where Kσ(H1) = {σi} and Kσ(H2) = {σj}. Then,
Kσ(H) = {σi � σj} if σi � σj is defined, while Kσ(H) = ∅ otherwise.

Proof. By statement 1 in Lemma 3.2, it suffices to verify that for every σi, σj ∈ Σ,
Kσ(R(σi).R(σj)) = {σi .σj} and Kσ(R(σi)�R(σj)) = {σi �σj}. For the verification,
it is helpful to note that for each σi ∈ Σ, R(σi) remains unchanged after a horizontal
or vertical flipping. We show only one example for each of the . and the � operators.
The other cases can be verified similarly.

Table 4.1
Operator � over Σ.

σ1 σ2 σ3 σ4 σ5

σ1 σ3 σ1
σ2 σ4 σ2
σ3 σ1 σ3
σ4 σ4
σ5 σ2 σ4 σ5

Table 4.2
Operator � over Σ.

σ1 σ2 σ3 σ4 σ5

σ1 σ2 σ1
σ2 σ1 σ2
σ3 σ5 σ3
σ4 σ3 σ4 σ5
σ5 σ5

Consider the graph R(σ1), with poles u and v, and the graph R(σ3) with poles
v and w. Let x and y be the west side and the east side of their series composition
H ′ = R(σ1) . R(σ3). (See Figure 4.3(1).) The only DTC of H

′ consists of a single
double trail P1 which starts at u, passing through v and ends at w, while the dual
trail P ∗1 starts at x, travels to y, to x, and to y again. This is a Type-σ1 DTC. So
Kσ(R(σ1) . R(σ3)) = {σ1} = {σ1 . σ3} as to be shown.

Consider the graph R(σ4) with poles u, v, the west side x and the east side
y; and the graph R(σ5) with poles u, v, the west side y and the east side z. (See
Figure 4.3(2).) Let H ′′ = R(σ4) � R(σ5). The only DTC of H ′′ consists of two
double trails P1 and P2 as shown in Figure 4.3(2). This is a Type-σ5 DTC. So
Kσ(R(σ4) �R(σ5)) = {σ5} = {σ4 � σ5}.

Let µ be a node in T and B = Pt(µ). For convenience, we also use Kσ(µ) to
denote Kσ(B).

Lemma 4.4. Let µ be a nonroot node of T and B = Pt(µ). Then, |Kσ(B)| ≤
1. Moreover, Kσ(Pt(ν)) for all descendants ν (including µ itself) of µ in T can be
computed in O(|B|) time.

Proof. The proof is by induction. In case µ is a leaf node of T , the lemma
trivially holds because Kσ(B) = {σ1}. Suppose that µ is a nonleaf node of T . Let
ν1, . . . , νk be the children of µ in T . Let Bi = Pt(νi) for all i ∈ {1, . . . , k}. By the
inductive hypothesis, |Kσ(Bi)| ≤ 1. If Kσ(Bi) = ∅ for some i ∈ {1, . . . , k}, then clearly
Kσ(B) = ∅. So, suppose that each Kσ(Bi) consists of a unique σji ∈ Σ. Consider the
following three cases:

Case 1. µ is an R-node. Then, Sk(µ) has no different embedding other than itself.
Let H be the TTG obtained from Sk(µ) by replacing the virtual edge of νi in Sk(µ)
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with R(σji) for all i ∈ {1, . . . , k}. Since Kσ(Bi) = Kσ(R(σji)) for all i ∈ {1, . . . , k},
by repeatedly applying statement 1 in Lemma 3.2, we have Kσ(µ) = Kσ(H). Kσ(H)
can be computed as follows.

Let P1 be the maximal double trail in H which starts at s(H) and whose dual
trail P ∗1 starts at s(H

∗). Let M be the set of all edges of H not traversed by P1. In
case M = ∅, we check if {P1} is a DTC of H of a σ-type; if it is, then Kσ(µ) consists
of this σ-type, while Kσ(µ) = ∅ otherwise. Suppose M �= ∅. If M contains no access
edge of H, then Kσ(µ) = ∅. Otherwise, let e ∈ M be an access edge of H. We find
the maximal double trail P2 in H such that e and e∗ are, respectively, the starting
edge of P2 and its dual trail P

∗
2 . If {P1, P2} is a DTC of H of a σ-type, then Kσ(µ)

consists of this σ-type, while Kσ(µ) = ∅ otherwise.
Case 2. µ is an S-node. Then, each different embedding B of B can be written

as B1′ . · · · . Bk′ , where (1′, 2′, . . . , k′) is a permutation of (1, 2, . . . , k) and Bi′ is
a different embedding of Bi′ for all i ∈ {1, . . . , k}. By Lemma 4.3, if (· · · ((σj1′ .
σj2′ ) . σj3′ ) . · · ·) . σjk′ is undefined, then Kσ(B) = ∅; otherwise, by Lemma 4.2,
Kσ(B) = {(· · · ((σj1 . σj2) . σj3) . · · ·) . σjk}. Thus, |Kσ(B)| ≤ 1.

Case 3. µ is a P-node. It is similar to Case 2.

4.3. The algorithm. We process the nodes of T in post-order. When processing
a nonroot node µ of T , we compute Kσ(µ) as in the proof of Lemma 4.4. Let µ be
the root of T . Let ν1, . . . , νk be the children of µ in T . For each i ∈ {1, . . . , k}, let
Bi = Pt(νi). If Kσ(Bi) = ∅ for some i ∈ {1, . . . , k}, then G has no valid embedding
and we stop immediately. So, suppose that Kσ(B1) = {σj1}, . . . ,Kσ(Bk) = {σjk}.
We distinguish three cases as follows.

• Case 1. µ is an R-node. Then, Sk(µ) has no different embedding other than
itself. As in Case 1 in the proof of Lemma 4.4, we construct a TTG H from
Sk(µ). By the same argument as in Case 1 in the proof of Lemma 4.4, G has
a DET if and only if H has a DET.
To test if H has a DET, we pick an arbitrary edge e in H and fix a direction
as the starting point. The dual edge e∗ can be directed in two ways. Once
the direction of e∗ is fixed, we can uniquely trace the dual trail by Lemma
3.1.
More specifically, let e be the edge incident to s(B) whose dual edge e∗ is
incident to s(H∗). Let x be the endpoint of e∗ other than s(H∗). Let P
(respectively, Q) be the maximal double trail in H which starts at s(H) and
whose dual trail starts at s(H∗) (respectively, x). By Lemma 3.1, P and Q
can be found in O(|Sk(µ)|) time. By statement 1 in Lemma 3.2, if either P
or Q is a DET in H, then G has a DET. If neither P nor Q is a DET in H,
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then H has no DET, and hence G has no DET either.
• Case 2. µ is an S-node. First we prove the following claim.
Claim. For a TTG H = H1 . H2 with |Kσ(H1)| ≤ 1 and |Kσ(H2)| ≤ 1, H
has a valid embedding if and only if Kσ(H1) = Kσ(H2) = {σ2}.
To see the “if” part of the claim, it suffices to observe that a series composition
of two copies of R(σ2) has a valid embedding. To see the “only if” part,
suppose that H has a DET P . Then, P is obtained by concatenating the
double trail(s) in the DTC of H1 and the double trail(s) in the DTC of H2.
This can be done only in the following two possible ways.
(a) The DTC of H1 consists of a single double trail P1 starting and ending at
the same pole of H1, and the DTC of H2 consists of a single double trail P2

starting and ending at the same pole of H2. That is, Kσ(H1) = Kσ(H2) =
{σ2}. In this case, if H is obtained by identifying the common pole where
both P1 and P2 start and end, we indeed get a DET of H.
(b) The DTC of H1 consists of a single double trail P1 starting and ending
at the same pole of H1, and the DTC of H2 consists of two double trails P2

and P3, each starting and ending at the different poles of H2. (In this case,
by concatenating P2, P1, P3 in this order, we get a closed Euler trail P of
H.) That is, Kσ(H1) = {σ2} and Kσ(H2) = {σ5}. In this case, however, the
dual trail P ∗ of P starts at one pole of the dual graph H∗ and ends at the
other pole of H∗. (This can be verified by using the representative graphs
in Figure 4.2.) Hence, P ∗ is not a closed Euler trail of H∗. So, this case is
impossible. This completes the proof of the claim.
Observe that for each nonempty proper subset {1′, . . . , h′} of {1, . . . , k}, B1′ .
· · · . Bh′ has at most one σ-type. This follows from Lemmas 4.2 and 4.3.
By the claim and this observation, G has a valid embedding if and only if
{1, . . . , k} can be partitioned into two sets {1′, . . . , h′}, {1′′, . . . , g′′} such that
σ2 is the σ-type of both B1′ . · · · . Bh′ and B1′′ . · · · . Bg′′ . By Table 4.1,
such a partition is possible if and only if (1) σ2 is the σ-type of exactly two
of B1, . . . , Bk and (2) σ5 is the σ-type of all the rest.
• Case 3. µ is a P-node. It suffices to modify the argument in Case 2 by
replacing each symbol “.” with “�,” “σ2” with “σ3,” and “σ5” with “σ4.”

By Lemmas 2.1 and 4.4, the time needed to process the entire tree T is O(|G|).
Thus, we have the following.

Theorem 4.5. Given an Eulerian TTG G whose dual graph is also Eulerian, it
takes O(|G|) time to decide if G has a valid embedding.

5. An O(|G|3)-time algorithm. Throughout the rest of this paper, let G be
a TTG, and let T be its decomposition tree. The reverse of a trail e1e2 . . . ek in G
is the trail ekek−1 . . . e1. Section 5.1 investigates how a DET of G can intersect a
block of G. Section 5.2 (respectively, 5.3) shows how a DET P can intersect the series
(respectively, parallel) composition of two or more blocks of G, given the way that P
intersects the blocks. Section 5.4 describes the algorithm for deciding the existence
of a DET.

5.1. Types of DTCs of proper blocks. Suppose thatG has a valid embedding
G and P is a DET of G. Let es and et be the starting and the ending edge of
P , respectively. Fix a proper block B of G. Let P ∩ B = (P1, . . . , Pk). For each
i ∈ {1, . . . , k}, let P ∗i be the dual trail of Pi.

Case 1. Neither es nor et is in B. Then, as discussed in section 4.1, P ∩ B can
only be of a σ-type.
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Case 2. Exactly one of es and et is in B. If es is in B, let Qi = Pi for all
i ∈ {1, . . . , k}; otherwise, let Qi be the reverse of Pk−i+1 for all i ∈ {1, . . . , k}. Let
Q∗i be the dual trail of Qi for each i ∈ {1, . . . , k}.

Without loss of generality, suppose that Q1 starts with es and ends with an access
edge of B that is incident to a pole u of B. Similarly to the proof of statement 1 in
Lemma 4.1, we can show that each Qi ∈ {Q2, . . . , Qk} must use exactly two access
edges of B. Since B has at most four access edges, k must be either 1 or 2. If k = 2,
the trail Q2 or its reverse either starts with an access edge incident to u and ends
with an access edge incident to the other pole v of B, or it starts and ends with the
two access edges incident to v. Based on these observations, the ODTC (Q1, . . . , Qk)
can only be of the following possible types:

• Type π1. k = 1; Q1 ends at a pole; Q
∗
1 ends at a pole.

• Type π2. k = 2; Q1 ends at a pole, and Q2 starts at a pole and ends at the
other pole; Q∗1 ends at a pole, and Q

∗
2 starts at a pole and ends at the other

pole.
• Type π3. k = 2; Q1 ends at a pole, and Q2 starts at a pole and ends at the
other pole; Q∗1 ends at a pole x, and Q

∗
2 starts at the other pole y and ends

at y.
• Type π4. k = 2; Q1 ends at a pole u, and Q2 starts at the other pole v and
ends at v; Q∗1 ends at a pole, and Q

∗
2 starts at a pole and ends at the other

pole.

Note that, for each type πi, the trail Q1 is required to end at a pole and starts with
the edge es. However, the edge es might be either incident to a pole or not incident
to a pole.

Define Π = {π1, . . . , π4}. We call the elements of Π π-types. For a TTG H,
let Kπ(H) denote the set of all πi ∈ Π such that a different embedding of H has a
Type-πi DTC. We call each member of Kπ(H) a π-type of H. For each πi ∈ Π, a
representative graph R(πi) is shown in Figure 5.1. Note that for all i ∈ {1, . . . , 4}, πi
is the unique π-type of R(πi).

Case 3. Both es and et are in B. Then, k > 1 or else B could not have been a
proper block of G. Without loss of generality, suppose that P1 starts with es and Pk

ends with et. Each of P1 and Pk uses at least one access edge of B. Similarly to the
proof of statement 1 in Lemma 4.1, we can show that each Pi ∈ {P2, . . . , Pk−1} must
use exactly two access edges of B. Thus, k must be either 2 or 3. By considering
which access edges are used by which Pi, it can be seen that P ∩ B can be only one
of the following possible types:

• Type δ1. k = 2; P1 ends at a pole, and P2 starts at the same pole; P
∗
1 ends

at a pole, and P ∗2 starts at the other pole.
• Type δ2. k = 2; P1 ends at a pole, and P2 starts at the other pole; P

∗
1 ends

at a pole, and P ∗2 starts at the same pole.
• Type δ3. k = 2; P1 ends at a pole, and P2 starts at the other pole; P

∗
1 ends

at a pole, and P ∗2 starts at the other pole.
• Type δ4. k = 3; P1 ends at a pole u, P2 starts at the other pole v and ends
at v, and P3 starts at u; P

∗
1 ends at a pole x, P

∗
2 starts at x and ends at the

other pole y, and P ∗3 starts at y.
• Type δ5. k = 3; P1 ends at a pole u, P2 starts at u and ends at the other pole
v, and P3 starts at v; P

∗
1 ends at a pole x, P

∗
2 starts at the other pole y and

ends at y, and P ∗3 starts at x.
• Type δ6. k = 3; P1 ends at a pole u, P2 starts at a pole and ends at the other
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Fig. 5.1. Representative graphs for π-types.

pole, and P3 starts at the pole v �= u; P ∗1 ends at a pole x, P ∗2 starts at a pole
and ends at the other pole, and P ∗3 starts at the pole y �= x.

Note that for each type δi, the trail P1 is required to end at a pole and starts with
the edge es. However, es might be either incident to a pole or not incident to a pole.
The trail P2 in the types δ1, δ2, δ3 (the trail P3 in the types δ4, δ5, δ6, respectively) is
required to start at a pole and ends with the edge et. However, et might be either
incident to a pole or not incident to a pole.

Define ∆ = {δ1, . . . , δ6}. We note that when B = G, P ∩ B must be of the
following type:

• Type δ0. k = 1.
We call the elements of ∆ ∪ {δ0} δ-types. For a TTG H, let Kδ(H) denote the

set of all δi ∈ ∆∪ {δ0} such that a different embedding of H has a Type-δi DTC. We
call each member of Kδ(H) a δ-type of H. For each δi ∈ ∆, a representative graph
R(δi) is shown in Figure 5.2. Note that for all i ∈ {1, . . . , 6}, δi is the unique δ-type
of R(δi).

Define Γ = Σ∪Π∪∆. Let H be a representative graph in Figures 5.1 and 5.2. If
Q1 and Q2 are two DTCs of H such that Q2 can be obtained from Q1 by reversing
the direction of exactly one double trail on which neither es nor et appears, then we
view Q1 and Q2 as the same DTC. A DTC Q of H is valid if Q is of a σ-, π-, or
δ-type. From the figures, we can see that H has a unique valid DTC. Thus, if H is
a graph in Figure 5.1, then we think that es and its dual edge have been oriented by
the valid DTC of H. Similarly, if H is a graph in Figure 5.2, then we think that es
and et and their dual edges have been oriented by the valid DTC of H.

5.2. Series composition of DTCs. This subsection shows how to compute
the π- or δ-types of a series composition of two or more TTGs H1, . . . , Hk, when the
σ-, π-, or δ-types of H1 through Hk are given. This is needed by our algorithm to
process the S-nodes of T . Let Γ1 = Σ1 ∪ Π1 ∪ ∆1 and Γ2 = Σ2 ∪ Π2 ∪ ∆2 be two
subsets of Γ, where for i = 1, 2, Σi ⊆ Σ, Πi ⊆ Π, and ∆i ⊆ ∆. Define

Γ1 . Γ2 = (∪σi∈Σ1,σj∈Σ2Kσ(R(σi) . R(σj))) ∪ (∪σi∈Σ1,πj∈Π2Kπ(R(σi) . R(πj)))

∪ (∪πi∈Π1,σj∈Σ2
Kπ(R(πi) . R(σj))) ∪ (∪σi∈Σ1,δj∈∆2

Kδ(R(σi) . R(δj)))

∪ (∪δi∈∆1,σj∈Σ2Kδ(R(δi) . R(σj))) ∪ (∪πi∈Π1,πj∈Π2Kδ(R(πi) . R(πj))).

If Γ1 = ∅ or Γ2 = ∅, then Γ1 . Γ2 = ∅.
Recall that, by the definition, Kσ(H) is the set of σi ∈ Σ such that a different

embedding of H has a type-σi ODTC. In the case H = H1 .H2, if we switch H1 and
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H2, the graph H2.H1 is a different embedding of H, and hence the σ-types of H1.H2

and H2 . H1 both belong to Kσ(H). This remark is also true for Kπ(H) and Kδ(H).
Thus, the operator . defined on Γ1 and Γ2 is trivially commutative by its definition.
For later reference, we state this in the following lemma.

Lemma 5.1. If Γ1 and Γ2 are two subsets of Γ, then Γ1 . Γ2 = Γ2 . Γ1.

For each σi ∈ Σ and each δj ∈ ∆, the (i, j)-entry of Table 5.1 contains all
δk ∈ {σi} . {δj}. For each πi ∈ Π and each σj ∈ Σ, the (i, j)-entry of Table 5.2
contains all πk ∈ {πi} . {σj}. For each πi ∈ Π and each πj ∈ Π, the (i, j)-entry of
Table 5.3 contains all δk ∈ {πi} . {πj}. These tables can be verified by inspecting the
representative graphs in Figures 4.2, 5.1, and 5.2. As examples, we verify one entry
from each of Tables 5.1, 5.2, and 5.3. They are shown in Figure 5.3. In each case,
two representative graphs are composed in series by identifying the common pole v.
The type of the resulting graph is shown in the figure.

Suppose that H = H1 . H2 . · · · . Hk and that Kσ(Hi), Kπ(Hi), and Kδ(Hi)
have already been computed for all i ∈ {1, . . . , k}. Our goal is to calculate Kσ(H),
Kπ(H), and Kδ(H) for the series composition H. Kσ(H) can be computed as in
section 4.2. By definition, Kπ(H) contains all the π-types of all different embeddings
of H. Essentially, this means that the computation of Kπ(H) requires the evaluation
of all expressions consisting of one operand from some Kπ(Hi) and one operand from
each of Kσ(H1), . . . ,Kσ(Hi−1),Kσ(Hi+1), . . . ,Kσ(Hk) connected by the operator ..
Although the operator . is commutative, it is not associative. This makes the calcu-
lation of Kπ(H) very complex. The calculation of Kδ(H) is even more complex. The
rest of this subsection discusses how to perform these calculations.

A .-expression E, its value, and its operand multisetOp(E) are defined inductively
as follows. Each γ ∈ Γ is a .-expression, its value is {γ}, and its operand multiset is
〈γ〉. Each (possibly empty) Γ1 ⊆ Γ is a .-expression, its value is Γ1, and its operand
multiset is 〈Γ1〉. If E1 and E2 are .-expressions, then (E1 . E2) is a .-expression, its
operand multiset is Op(E1)∪Op(E2), and its value is (Γ1 .Γ2), where Γ1 and Γ2 are
the value of E1 and E2, respectively.

We identify a .-expression with its value. For a list (X1, . . . , Xk) of elements or
subsets of Γ, let X1.X2.· · ·.Xk denote the .-expression (· · · ((X1.X2).X3).· · ·Xk).
For a subset Γ1 of Γ and a list L = (σi1 , . . . , σik) of σ-types, let Γ1 . [L]� denote the
.-expression Γ1 . σi1 . · · · . σik if k ≥ 1; and denote Γ1 otherwise. For a σi ∈ Σ and a
nonnegative integer k, let σki denote the list of k σi’s.
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Table 5.1
{σi} � {δj}.

δ1 δ2 δ3 δ4 δ5 δ6

σ1 δ3 δ2
σ2 δ0, δ4 δ1 δ1
σ3 δ2 δ3
σ4 δ4 δ4
σ5 δ1 δ4 δ5 δ6

Table 5.2
{πi} � {σj}.

σ1 σ2 σ3 σ4 σ5

π1 π1 π4 π1
π2 π3 π1 π2 π4 π2
π3 π2 π1 π3 π4 π3
π4 π4 π4 π4

Table 5.3
{πi} � {πj}.

π1 π2 π3 π4

π1 δ0, δ2, δ3 δ1 δ1
π2 δ1 δ3, δ5 δ2, δ6 δ2, δ3, δ4
π3 δ1 δ2, δ6 δ3, δ5 δ2, δ3, δ4
π4 δ2, δ3, δ4 δ2, δ3, δ4

The parse tree TE of a .-expression E is defined inductively as follows. If |Op(E)| =
1, then TE consists of a single node labeled with the unique element of Op(E). If
E = (E1 . E2), then TE is obtained from the parse tree TE1

of E1 and the parse tree
TE2

of E2 by introducing a new node r and letting the roots of TE1
and TE2

be the
children of r.

For convenience, each node v in a parse tree TE is viewed as an ancestor of v itself
in TE .

Lemma 5.2. Suppose ∆1 ⊆ ∆. Let L = (σi1 , . . . , σiq ) be a list of σ-types. Then,
the following two statements hold:

1. For every .-expression E with Op(E) = 〈σi1 , . . . , σiq ,∆1〉, if σ2 is not in L,
then E ⊆ ∆1 . [L]�; otherwise, E ⊆ ∆1 . [L− {σ5}]�.

2. Let U be the union of the values of all .-expressions E with Op(E) = 〈σi1 , . . . ,
σiq ,∆1〉. If σ2 is not in L, then U = ∆1.[L]�; otherwise, U = ∆1.[L−{σ5}]�.

Proof. We prove the two statements separately as follows.
Statement 1. First, we claim that if σi and σj are (possibly the same) elements

of Σ with {σi, σj} �= {σ2, σ5}, then ∆1 . (σi . σj) ⊆ ∆1 . σi . σj = ∆1 . σj . σi. One
may verify this claim using Tables 4.1 and 5.1, under the assumption that |∆1| = 1.
This claim then holds for every ∆1 ⊆ ∆.

Second, we claim that (∆1.σ5.σ2)∪(∆1.σ2.σ5) ⊆ ∆1.(σ5.σ2) = ∆1.σ2. One
may verify this claim using Tables 4.1 and 5.1, under the assumption that |∆1| = 1.
This claim then holds for every ∆1 ⊆ ∆.

Third, we claim that for every nonempty list L of σ-types and every permutation
L′ of L, if σ2 is not in L, then ∆1 . [L

′]� ⊆ ∆1 . [L]�; otherwise, ∆1 . [L
′]� ⊆

∆1 . [L − {σ5}]�. This is shown by induction on the number q of elements of L as
follows. The claim trivially holds when q = 1. Let q ≥ 2 and L = (σi1 , . . . , σiq )
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be a list of σ-types. Let L′ = (σj1 , . . . , σjq ) be a permutation of L. If σ5 or σ2

does not occur in L, then, by the first claim, ∆1 . [L
′]� ⊆ ∆1 . [L]�. So, suppose

that both σ5 and σ2 occur in L. Consider a sublist (σjk , σjk+1
, . . . , σj�) of L

′ such
that {σjk , σj�} = {σ5, σ2} and {σ5, σ2} ∩ {σjk+1

, . . . , σj�−1
} = ∅. By the first claim,

∆1 . [L
′]� = ∆1 . σj1 . · · · . σjk . σj� . σjk+1

. · · · . σj�−1
. σj�+1

. · · · . σjq . This together
with the second claim implies that ∆1 . [L

′]� ⊆ ∆1 . σj1 . · · · . σjk−1
. σ2 . σjk+1

. · · · .
σj�−1

. σj�+1
. · · · . σjq . Now, the third claim follows from the inductive hypothesis.

Let L and E be as described in the lemma. Let TE be the parse tree of E,
and let v be the leaf node labeled with ∆1. Let v, u1, . . . , um be the path from v
to the root of TE . For each i ∈ {1, . . . ,m}, let Ei be the .-expression whose parse
tree is the subtree of TE rooted at the child of ui that is not an ancestor of v. Then,
E = ∆1.E1.· · ·.Em. Define E

′
1 = σj1 .· · ·.σja , where 〈σj1 , . . . , σja〉 equals Op(E1) if

σ2 is not in Op(E1), while it equals Op(E1)−{σ5} otherwise. Define E′2 = σk1.· · ·.σkb
,

. . . , E′m = σ�1 . · · · . σ�c similarly. Since operator . is commutative and associative
over Σ (by Lemma 4.2) and σ5.σ2 = σ2, we have Ei = E

′
i for all i ∈ {1, . . . ,m}. Thus,

E = ∆1.E
′
1.· · ·.E′m. By Table 4.1, if two elements σg and σh of Σ satisfy σg.σh = σ2,

then σ2 ∈ {σg, σh}; similarly, if two elements σg and σh of Σ satisfy σg .σh = σ5, then
σg = σh = σ5. By this fact, for every i ∈ {1, . . . ,m}, if σ2 (respectively, σ5) is not in
Op(E′i), then σ2 (respectively, σ5) does not result when we evaluate E

′
i from left to

right. Thus, by the first claim, E ⊆ ∆1.σj1 . · · ·.σja .σk1 . · · ·.σkb
. · · ·.σ�1 . · · ·.σ�c .

Now, by the third claim, statement 1 holds.
Statement 2. First suppose that σ2 is not in L. Then, by statement 1, U ⊆

∆1 . [L]�. On the other hand, ∆1 . [L]� ⊆ U because ∆1 . [L]� is a .-expression whose
operand multiset is 〈σi1 , . . . , σiq ,∆1〉. So, U = ∆1 . [L]�.

Next, suppose that σ2 is in L. Then, by statement 1, U ⊆ ∆1 . [L − {σ5}]�.
On the other hand, we can modify the .-expression ∆1 . [L − {σ5}]� by replacing
one appearance of σ2 with (σ2 . σ5 . · · · . σ5) in which σ5 appears as many times
as in L. The resulting .-expression has the same value as ∆1 . [L − {σ5}]�, since
σ2 . σ5 = σ2, and is a .-expression whose operand multiset is 〈σi1 , . . . , σiq ,∆1〉. So,
∆1 . [L− {σ5}]� ⊆ U . This completes the proof of statement 2.

Lemma 5.2 still holds after replacing each appearance of “∆” in it with “Π,” as
stated in the following.

Lemma 5.3. Suppose Π1 ⊆ Π. Let L = (σi1 , . . . , σiq ) be a list of σ-types. Then,
the following two statements hold:

1. For every .-expression E with Op(E) = 〈σi1 , . . . , σiq ,Π1〉, if σ2 is not in L,
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then E ⊆ Π1 . [L]�; otherwise, E ⊆ Π1 . [L− {σ5}]�.
2. Let U be the union of the values of all .-expressions E with Op(E) = 〈σi1 , . . . ,
σiq ,Π1〉. If σ2 is not in L, then U = Π1.[L]�; otherwise, U = Π1.[L−{σ5}]�.

Proof. It suffices to modify the proof of Lemma 5.2 by replacing each appearance
of “∆” with “Π” and “Table 5.1” with “Table 5.2.”

Lemma 5.4. Suppose that Π1 ⊆ Π and Π2 ⊆ Π. Then, for every σ ∈ {σ1, σ3, σ4},
Π1 .Π2 . σ = Π2 .Π1 . σ ⊆ Π1 . σ .Π2 = Π1 . (σ .Π2) = Π1 . (Π2 . σ).

Proof. One may verify the lemma using Tables 5.1, 5.2, and 5.3, under the
assumption that |Π1| = |Π2| = 1. This then implies the lemma for every Π1 ⊆ Π and
every Π2 ⊆ Π.

Lemma 5.5. Suppose that Π1 ⊆ Π and Π2 ⊆ Π. Let L = (σi1 , . . . , σiq ) be a list of
σ-types. Let q2 and q5 be the number of appearances of σ2 and σ5 in L, respectively.
Let L′ = L− {σ2, σ5}. Then, the following two statements hold:

1. For every .-expression E with Op(E) = 〈σi1 , . . . , σiq ,Π1,Π2〉, if q2 ≥ 7,
then E = ∅; otherwise, E ⊆ ∪(a,b,c,d,h,k)(Π1 . [L

′]� . [σa2 ]� . [σ
b
5]�) . (Π2 .

[σc2]� . [σ
d
5 ]�) . [σ

h
2 ]� . [σ

k
5 ]�, where (a, b, c, d, h, k) ranges over all sextuples of

nonnegative integers such that (1) a + c + h = q2; (2) b ≤ 1, d ≤ 1, k ≤ 1,
and b + d + k ≤ q5; (3) if a ≥ 1, then b = 0; (4) if c ≥ 1, then d = 0; (5) if
h ≥ 1, then k = 0; and (6) if q2 = 0, then b+ d+ k ≥ min{1, q5}.

2. Let U be the union of the values of all .-expressions E with Op(E) = 〈σi1 , . . . ,
σiq ,Π1,Π2〉. If q2 ≥ 7, then U = ∅; otherwise, U = ∪(a,b,c,d,h,k)(Π1 . [L

′]� .
[σa2 ]�.[σ

b
5]�).(Π2.[σ

c
2]�.[σ

d
5 ]�).[σ

h
2 ]�.[σ

k
5 ]�, where (a, b, c, d, h, k) ranges over

all sextuples of nonnegative integers that satisfy the conditions (1) through (6)
in statement 1.

Proof. We prove the two statements separately as follows.

Statement 1. Let TE be the parse tree of E, v1 be the leaf node of TE labeled with
Π1, v2 be the leaf node of TE labeled with Π2, and w be the lowest common ancestor
of v1 and v2 in TE . Let v1, u1, . . . , u�, w be the path from v1 to w in TE . Similarly, let
v2, u�+1, . . . , up, w be the path from v2 to w in TE . Let w, up+1, . . . , ur be the path
from w to the root of TE . For each i ∈ {1, . . . , r}, let Ei be the .-expression whose
parse tree is the subtree of TE rooted at the child of ui that is neither an ancestor of v1
nor an ancestor of v2. Then, E = (Π1.E1.· · ·.E�).(Π2.E�+1.· · ·.Ep).Ep+1.· · ·.Er.
Suppose that ∪1≤x≤�Op(Ex) = 〈σj1 , . . . , σjf 〉, ∪�+1≤x≤pOp(Ex) = 〈σjf+1

, . . . , σjg 〉,
and ∪p+1≤x≤rOp(Ex) = 〈σjg+1 , . . . , σjq 〉. Let L1 be the list (σj1 , . . . , σjf ), L2 be the
list (σjf+1

, . . . , σjg ), and L3 be the list (σjg+1 , . . . , σjq ). If σ2 is not in L1, then let
L′1 = L1; otherwise, let L

′
1 = L1−{σ5}. Similarly, L′2 and L′3 are defined from L2 and

L3, respectively. Then, by statement 1 in Lemma 5.2 and statement 1 in Lemma 5.3,
E ⊆ (Π1 . [L

′
1]�) . (Π2 . [L

′
2]�) . [L

′
3]� = (Π1 . [L

′
1]�) . (Π2 . [L

′
2]�) . [L

′
3 − {σ2, σ5}]� .

[L′3 − {σ1, σ3, σ4}]�. In turn, by Lemma 5.4, E ⊆ (Π1 . [L
′
1]� . [L

′
3 − {σ2, σ5}]�) .

(Π2 . [L
′
2]�) . [L

′
3−{σ1, σ3, σ4}]�. So, by statement 1 in Lemma 5.3, E ⊆ (Π1 . [L

′
1]� .

[L′3 − {σ2, σ5}]�) . (Π2 . [L
′
2 − {σ1, σ3, σ4}]� . [L′2 − {σ2, σ5}]�) . [L′3 − {σ1, σ3, σ4}]�.

In turn, by Lemma 5.4, E ⊆ (Π1 . [L
′
1]� . [L

′
3 − {σ2, σ5}]� . [L′2 − {σ2, σ5}]�) . (Π2 .

[L′2 − {σ1, σ3, σ4}]�) . [L′3 − {σ1, σ3, σ4}]�. Moreover, by statement 1 in Lemma 5.3,
E ⊆ (Π1.[L

′
1−{σ2, σ5}]�.[L′3−{σ2, σ5}]�.[L′2−{σ2, σ5}]�.[L′1−{σ1, σ3, σ4}]�).(Π2.

[L′2−{σ1, σ3, σ4}]�).[L′3−{σ1, σ3, σ4}]�. Note that Op([L′]�) = Op([L′1−{σ2, σ5}]�)∪
Op([L′3 − {σ2, σ5}]�) ∪ Op([L′2 − {σ2, σ5}]�). Thus, by statement 1 in Lemma 5.3,
E ⊆ (Π1 . [L

′]� . [L′1−{σ1, σ3, σ4}]�) . (Π2 . [L
′
2−{σ1, σ3, σ4}]�) . [L′3−{σ1, σ3, σ4}]�.

Let a (respectively, c and h) be the number of appearances of σ2 in L
′
1 (respec-

tively, in L′2 and L
′
3). Let b (respectively, d and k) be the smaller of 1 and the number
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of appearances of σ5 in L
′
1 (respectively, L

′
2 and L

′
3). By the definition of L

′
1, L
′
2, L
′
3,

the sextuple (a, b, c, d, h, k) satisfies the conditions (1) through (6) in the lemma.
Note that for every π ∈ Π and every δ ∈ ∆, π.σ2 .σ2 .σ2 = ∅, δ .σ2 .σ2 .σ2 = ∅.

If q2 ≥ 7, then at least one of a, c, h is ≥ 3 and hence E = ∅. Otherwise, since
π . σ5 . σ5 = π . σ5 and δ . σ5 . σ5 = δ . σ5 for every π ∈ Π and every δ ∈ ∆,
E ⊆ (Π1 . [L

′]� . [σa2 ]� . [σ
b
5]�) . (Π2 . [σ

c
2]� . [σ

d
5 ]�) . [σ

h
2 ]� . [σ

k
5 ]�. This completes the

proof of statement 1.
Statement 2. If q2 ≥ 7, then U = ∅ by statement 1. Next, suppose that q2 ≤ 6.

Then, by statement 1, U ⊆ ∪(a,b,c,d,h,k)(Π1 . [L
′]� . [σa2 ]� . [σ

b
5]�) . (Π2 . [σ

c
2]� . [σ

d
5 ]�) .

[σh2 ]� . [σ
k
5 ]�, where (a, b, c, d, h, k) ranges over all sextuples of nonnegative integers

that satisfy the conditions (1) through (6) in statement 1. On the other hand, if
q2 = q5 = 0, then for each sextuple (a, b, c, d, h, k) satisfying the conditions (1) through
(6) in statement 1, (Π1 . [L

′]� . [σa2 ]� . [σ
b
5]�) . (Π2 . [σ

c
2]� . [σ

d
5 ]�) . [σ

h
2 ]� . [σ

k
5 ]� is a

.-expression whose operand multiset is 〈σi1 , . . . , σiq ,Π1,Π2〉; and so (Π1.[L
′]�.[σa2 ]�.

[σb5]�).(Π2 . [σ
c
2]� . [σ

d
5 ]�). [σ

h
2 ]� . [σ

k
5 ]� ⊆ U . If q2 ≥ 1 or q5 ≥ 1, then for each sextuple

(a, b, c, d, h, k) satisfying the conditions (1) through (6) in statement 1, we can modify
the .-expression (Π1 . [L

′]� . [σa2 ]� . [σ
b
5]�) . (Π2 . [σ

c
2]� . [σ

d
5 ]�) . [σ

h
2 ]� . [σ

k
5 ]� either

(i) by replacing one appearance of σ2 with (σ2 . σ5 . · · · . σ5) in which σ5 appears
q5 − (b + d + k) times or (ii) by replacing one appearance of σ5 with (σ5 . · · · . σ5)
in which σ5 appears q5 − (b + d + k) + 1 times. The resulting .-expression has the
same value as (Π1 . [L

′]� . [σa2 ]� . [σ
b
5]�) . (Π2 . [σ

c
2]� . [σ

d
5 ]�) . [σ

h
2 ]� . [σ

k
5 ]�, since

σ2 . σ5 = σ2 and σ5 . σ5 = σ5, and is a .-expression whose operand multiset is
〈σi1 , . . . , σiq ,Π1,Π2〉. So, (Π1 . [L

′]� . [σa2 ]� . [σ
b
5]�). (Π2 . [σ

c
2]� . [σ

d
5 ]�). [σ

h
2 ]� . [σ

k
5 ]� ⊆

U . Consequently, ∪(a,b,c,d,h,k)(Π1 . [L
′]� . [σa2 ]� . [σ

b
5]�) . (Π2 . [σ

c
2]� . [σ

d
5 ]�) . [σ

h
2 ]� .

[σk5 ]� ⊆ U , where (a, b, c, d, h, k) ranges over all sextuples of nonnegative integers that
satisfy the conditions (1) through (6) in statement 1. This completes the proof of
statement 2.

5.3. Parallel composition of DTCs. Let Γ1 = Σ1 ∪ Π1 ∪∆1 and Γ2 = Σ2 ∪
Π2 ∪∆2 be two subsets of Γ, where for i = 1, 2, Σi ⊆ Σ, Πi ⊆ Π, and ∆i ⊆ ∆. Define

Γ1 � Γ2 = (∪σi∈Σ1,σj∈Σ2Kσ(R(σi) �R(σj))) ∪ (∪σi∈Σ1,πj∈Π2
Kπ(R(σi) �R(πj)))

∪ (∪πi∈Π1,σj∈Σ2
Kπ(R(πi) �R(σj))) ∪ (∪σi∈Σ1,δj∈∆2

Kδ(R(σi) �R(δj)))
∪ (∪δi∈∆1,σj∈Σ2

Kδ(R(δi) �R(σj))) ∪ (∪πi∈Π1,πj∈Π2
Kδ(R(πi) �R(πj))).

If Γ1 = ∅ or Γ2 = ∅, then Γ1 � Γ2 = ∅.
As in the paragraph right before Lemma 5.1, we can argue that the operator �

is commutative by its definition. For later reference, we state this in the following
lemma.

Lemma 5.6. If Γ1 and Γ2 are two subsets of Γ, then Γ1 � Γ2 = Γ2 � Γ1.
For each σi ∈ Σ and each δj ∈ ∆, the (i, j)-entry of Table 5.4 contains all

δk ∈ {σi} � {δj}. For each πi ∈ Π and each σj ∈ Σ, the (i, j)-entry of Table 5.5
contains all πk ∈ {πi} � {σj}. For each πi ∈ Π and each πj ∈ Π, the (i, j)-entry of
Table 5.6 contains all δk ∈ {πi} � {πj}. These tables can be verified by inspecting the
graphs in Figures 4.2, 5.1, and 5.2. As examples, we verify one entry from each of the
Tables 5.4, 5.5 and 5.6. They are shown in Figure 5.4. In each case, two representative
graphs are composed in parallel by identifying their common poles. The type of the
resulting graph is shown in the figure.

By modifying the four paragraphs right before Lemma 5.2 by replacing each letter
“.” with “�,” we can define a �-expression E, its value, etc. Moreover, we can prove
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Table 5.4
{σi} � {δj}.

δ1 δ2 δ3 δ4 δ5 δ6

σ1 δ3 δ1
σ2 δ1 δ3
σ3 δ0, δ5 δ2 δ2
σ4 δ2 δ4 δ5 δ6
σ5 δ5 δ5

Table 5.5
{πi} � {σj}.

σ1 σ2 σ3 σ4 σ5

π1 π1 π1 π3
π2 π4 π2 π1 π2 π3
π3 π3 π3 π3
π4 π2 π4 π1 π4 π3

Table 5.6
{πi} � {πj}.

π1 π2 π3 π4

π1 δ0, δ1, δ3 δ2 δ2
π2 δ2 δ3, δ4 δ1, δ3, δ5 δ1, δ6
π3 δ1, δ3, δ5 δ1, δ3, δ5
π4 δ2 δ1, δ6 δ1, δ3, δ5 δ3, δ4

the following four lemmas, just via modifying the proofs of Lemmas 5.2 through 5.5
by replacing each appearance of “σ2,” “σ3,” “σ4,” “σ5,” “.,” “q2,” “q5,” “Table 5.1,”
“Table 5.2,” and “Table 5.3” in them with “σ3,” “σ2,” “σ5,” “σ4,” “�,” “q3,” “q4,”
“Table 5.4,” “Table 5.5,” and “Table 5.6,” respectively. We state these corresponding
lemmas as follows.

Lemma 5.7. Suppose ∆1 ⊆ ∆. Let L = (σi1 , . . . , σiq ) be a list of σ-types. Then,
the following two statements hold:

1. For every �-expression E with Op(E) = 〈σi1 , . . . , σiq ,∆1〉, if σ3 is not in L,
then E ⊆ ∆1 � [L]�; otherwise, E ⊆ ∆1 � [L− {σ4}]�.

2. Let U be the union of the values of all �-expressions E with Op(E) = 〈σi1 , . . . ,
σiq ,∆1〉. If σ3 is not in L, then U = ∆1�[L]�; otherwise, U = ∆1�[L−{σ4}]�.

Lemma 5.8. Suppose Π1 ⊆ Π. Let L = (σi1 , . . . , σiq ) be a list of σ-types. Then,
the following two statements hold:

1. For every �-expression E with Op(E) = 〈σi1 , . . . , σiq ,Π1〉, if σ3 is not in L,
then E ⊆ Π1 � [L]�; otherwise, E ⊆ Π1 � [L− {σ4}]�.

2. Let U be the union of the values of all �-expressions E with Op(E) = 〈σi1 , . . . ,
σiq ,Π1〉. If σ3 is not in L, then U = Π1�[L]�; otherwise, U = Π1�[L−{σ4}]�.

Lemma 5.9. Suppose that Π1 ⊆ Π and Π2 ⊆ Π. Then, for every σ ∈ {σ1, σ2, σ5},
Π1 �Π2 � σ = Π2 �Π1 � σ ⊆ Π1 � σ �Π2 = Π1 � (σ �Π2) = Π1 � (Π2 � σ).

Lemma 5.10. Suppose that Π1 ⊆ Π and Π2 ⊆ Π. Let L = (σi1 , . . . , σiq ) be a list
of σ-types. Let q3 and q4 be the number of appearances of σ3 and σ4 in L, respectively.
Let L′ = L− {σ3, σ4}. Then, the following two statements hold:

1. For every �-expression E with Op(E) = 〈σi1 , . . . , σiq ,Π1,Π2〉, if q3 ≥ 7,
then E = ∅; otherwise, E ⊆ ∪(a,b,c,d,h,k)(Π1 � [L′]� � [σa3 ]� � [σb4]�) � (Π2 �
[σc3]� � [σd4 ]�) � [σh3 ]� � [σk4 ]�, where (a, b, c, d, h, k) ranges over all sextuples of
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Fig. 5.4. (1) σ3 � δ4 = δ2; (2) π2 � σ4 = π2; (3) π2 � π4 = δ1; (4) π2 � π4 = δ6.

nonnegative integers such that (1) a + c + h = q3; (2) b ≤ 1, d ≤ 1, k ≤ 1,
and b + d + k ≤ q4; (3) if a ≥ 1, then b = 0; (4) if c ≥ 1, then d = 0; (5) if
h ≥ 1, then k = 0; and (6) if q3 = 0, then b+ d+ k ≥ min{1, q4}.

2. Let U be the union of the values of all �-expressions E with Op(E) = 〈σi1 , . . . ,
σiq ,Π1,Π2〉. If q3 ≥ 7, then U = ∅; otherwise, U = ∪(a,b,c,d,h,k)(Π1 � [L′]� �
[σa3 ]��[σb4]�)�(Π2�[σc3]��[σd4 ]�)�[σh3 ]��[σk4 ]�, where (a, b, c, d, h, k) ranges over
all sextuples of nonnegative integers that satisfy the conditions (1) through (6)
in statement 1.

5.4. An O(|G|3)-time algorithm. Let es and et be a pair of distinct edges of
G. We want to decide whether G has a valid embedding that has a DET starting
with es and ending with et. To do this, we process the nodes of T in post-order. For
each node µ of T such that neither es nor et is in Pt(µ), we compute Kσ(Pt(µ)) as in
section 4.3; we may assume that |Kσ(Pt(µ))| = 1 since otherwise no valid embedding
of G has a DET starting with es and ending with et. For each Q-node µ such that
Pt(µ) consists of es only or et only, we set Kπ(Pt(µ)) = {π1}.

Consider the processing of a non-Q-node µ such that es or et is in Pt(µ). Let
ν1, . . . , νr be the children of µ in T . Let B = Pt(µ). For each i ∈ {1, . . . , r}, let
Bi = Pt(νi), and ei be the virtual edge of νi in Sk(µ).

• Case 1. B contains both es and et but no child of B does. Without loss of
generality, we may assume that B1 contains es and B2 contains et. Then,
none of B3, . . . , Br contains es or et. Let Π1 = Kπ(B1) and Π2 = Kπ(B2).
For each j ∈ {3, . . . , r}, let Kσ(Bj) = {σ�j}. Let L be the list (σ�3 , . . . , σ�r ).

– Case 1.1. µ is an R-node. Then, Sk(µ) has no different embedding other
than itself. Based on statements 1 and 2 in Lemma 3.2, we compute
Kδ(B) as follows. We initialize Kδ(B) = ∅. After this, for each quadru-
ple D = (πi1 , πi2 , G1, G2) such that πi1 ∈ Kπ(B1), πi2 ∈ Kπ(B2), and
G1 (respectively, G2) is obtained from R(πi1) (respectively, R(πi2)) by
horizontally and/or vertically flipping it, we first construct a TTG HD

from Sk(µ) by replacing e1 with G1, e2 with G2, and ej with R(σ�j )
for all j ∈ {3, . . . , r}. We then obtain the maximal double trail P1 in
HD such that (1) es and its dual edge e

∗
s are, respectively, the starting

edge of P1 and its dual trail P
∗
1 and (2) the direction of es in P1 and

that of e∗s in P
∗
1 are the same as oriented by the unique valid DTC of

G1. Similarly, we obtain the maximal double trail P2 in HD such that
(1) et and its dual edge e

∗
t are, respectively, the starting edge of P2 and

its dual trail P ∗2 and (2) the direction of et in P2 and that of e
∗
t in P

∗
2

are the same as oriented by the unique valid DTC of G2. Let P
′
2 be the
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reverse of P2. Let M be the set of all edges of HD traversed by neither
P1 nor P2. SupposeM = ∅. If P1 and P

′
2 are distinct, we check if P1 and

P ′2 form a DTC of HD of a δ-type. If P1 and P
′
2 are the same, we check

if P1 forms a DTC of HD of a δ-type. In both cases, if the condition is
true, we add this δ-type to Kδ(B).
Suppose that M �= ∅ and P1 and P2 are edge-disjoint. We try to find
an access edge e ∈M such that e is incident to a pole u of HD and the
dual edge e∗ of e is incident to a pole x of H∗D. If such e exists, then
we obtain the maximal double trail P3 in HD such that (1) e and e∗

are, respectively, the starting edge of P3 and its dual trail P
∗
3 and (2) u

and x are, respectively, the starting vertex of P3 and P
∗
3 . Note that the

other endpoint of e (respectively, e∗) is not a pole of HD (respectively,
H∗D). If {P1, P

′
2, P3} is a DTC of HD of a δ-type, we add this δ-type to

Kδ(B). Similarly, if {P1, P
′
2, P

′
3} is a DTC of HD of a δ-type, we add

this δ-type to Kδ(B), where P
′
3 is the reverse of P3.

– Case 1.2. µ is an S-node. Let q2 and q5 be the number of appearances
of σ2 and σ5 in L, respectively. Let L

′ = L− {σ2, σ5}. By statement 2
in Lemma 5.5 and statements 1 and 2 in Lemma 3.2, if q2 ≥ 7, then
Kδ(B) = ∅; otherwise, Kδ(B) = ∪(a,b,c,d,h,k)(Π1 . [L

′]� . [σa2 ]� . [σ
b
5]�) .

(Π2 . [σ
c
2]� . [σ

d
5 ]�) . [σ

h
2 ]� . [σ

k
5 ]�, where (a, b, c, d, h, k) ranges over all

sextuples of nonnegative integers that satisfy the conditions (1) through
(6) in statement 1 in Lemma 5.5.

– Case 1.3. µ is a P-node. Let q3 and q4 be the number of appearances
of σ3 and σ4 in L, respectively. Let L

′ = L− {σ3, σ4}. By statement 2
in Lemma 5.10 and statements 1 and 2 in Lemma 3.2, if q3 ≥ 7, then
Kδ(B) = ∅; otherwise, Kδ(B) = ∪(a,b,c,d,h,k)(Π1 � [L′]� � [σa3 ]� � [σb4]�) �
(Π2 � [σc3]� � [σd4 ]�) � [σh3 ]� � [σk4 ]�, where (a, b, c, d, h, k) ranges over all
sextuples of nonnegative integers that satisfy the conditions (1) through
(6) in statement 1 in Lemma 5.10.

• Case 2. B contains both es and et and so does one child block of B. Without
loss of generality, we can assume that B1 contains both es and et. Then,
none of B2,. . . , Br contains es or et. Let ∆1 = Kδ(B1) − {δ0}. For each
j ∈ {2, . . . , r}, let Kσ(Bj) = {σ�j}. Let L be the list (σ�2 , . . . , σ�r ).

– Case 2.1. µ is an R-node. Then, based on statements 1 and 3 in
Lemma 3.2, we compute Kδ(B) as follows. We initialize Kδ(B) = ∅.
After this, for each pair D = (δi, G1) such that δi ∈ ∆1 and G1 is ob-
tained from R(δi) by horizontally and/or vertically flipping it, we first
construct a TTG HD from Sk(µ) by replacing e1 with G1 and ej with
R(σ�j ) for all j ∈ {2, . . . , r}. Similarly to Case 1.1, we then check if HD

has a δ-type DTC; if it has, we add the δ-type of the DTC into Kδ(B).
– Case 2.2. µ is an S-node. Then, by statement 2 in Lemma 5.2 and
statements 1 and 3 in Lemma 3.2, if σ2 is not in L, then Kδ(B) =
∆1 . [L]�; otherwise, Kδ(B) = ∆1 . [L− {σ5}]�.

– Case 2.3. µ is a P-node. Then, by statement 2 in Lemma 5.7 and
statements 1 and 3 in Lemma 3.2, if σ3 is not in L, then Kδ(B) =
∆1 � [L]�; otherwise, Kδ(B) = ∆1 � [L− {σ4}]�.

• Case 3. B contains one of es and et. We assume that B contains es; the other
case is similar. Without loss of generality, we can assume that B1 contains
es. Then, none of B2, . . . , Br contains es or et. Let Π1 = Kπ(B1). For each
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j ∈ {2, . . . , r}, let Kσ(Bj) = {σ�j}. Let L be the list (σ�2 , . . . , σ�r ).
– Case 3.1. µ is an R-node. Then, based on statements 1 and 2 in
Lemma 3.2, we compute Kπ(B) as follows. We initialize Kπ(B) = ∅.
After this, for each pair D = (πi, G1) such that πi ∈ Π1 and G1 is ob-
tained from R(πi) by horizontally and/or vertically flipping it, we first
construct a TTG HD from Sk(µ) by replacing e1 with G1 and ej with
R(σ�j ) for all j ∈ {2, . . . , r}. Similarly to Case 1.1, we then check if HD

has a π-type DTC; if it has, we add the π-type of the DTC into Kπ(B).
– Case 3.2. µ is an S-node. Then, by statement 2 in Lemma 5.3 and
statements 1 and 2 in Lemma 3.2, if σ2 is not in L, then Kπ(B) =
Π1 . [L]�; otherwise, Kπ(B) = Π1 . [L− {σ5}]�.

– Case 3.3. µ is a P-node. Then, by statement 2 in Lemma 5.8 and
statements 1 and 2 in Lemma 3.2, if σ3 is not in L, then Kπ(B) =
Π1 � [L]�; otherwise, Kπ(B) = Π1 � [L− {σ4}]�.

By the above discussions, it takes O(|Sk(µ)|) time to process µ. Thus, by Lemma
2.1, the time needed to compute Kδ(G) is O(|G|). Note that G has a DET starting
with es and ending with et if and only if δ0 ∈ Kδ(G). Thus, by trying all pairs (es, et)
of edges of G, we can decide in O(|G|3) time whether G has a DET.

Theorem 5.11. Given a TTG G, it takes O(|G|3) time to decide if G has a valid
embedding.

6. An O(|G|)-time algorithm. This section refines the algorithm in section
5.4. The basic idea is that we do not specify the starting and the ending edges in ad-
vance. Rather, we try to discover them when processing T in post-order. Throughout
this section, we assume that G∗ is not Eulerian; the case where G is not Eulerian is
similar. Let T ∗ be the dual decomposition tree of T .

First, we need some definitions and lemmas. Recall that the degree parity of
a vertex in G is 0 if its degree is even and is 1 otherwise. The pole-parity multiset
MG of G consists of the degree parities of the poles of G. The pole-status of G is
the pair (MG,MG∗), where MG and MG∗ are the pole-parity multiset of G and G∗,
respectively.

G is E-good if it is Eulerian. G is O-good if its odd-degree vertices are just its
poles. G is good if it is either E- or O-good. G is bad if it has at least one odd-degree
nonpole.

A node µ of T is E-good (respectively, O-good, good, or bad) if all different em-
beddings of Pt(µ) are E-good (respectively, O-good, good, or bad).

Lemma 6.1. Let µ be a node of T . Let B = Pt(µ). Then, exactly one of
the following (1) through (3) holds: (1) µ is E-good; (2) µ is O-good; (3) µ is bad.
Moreover, for all descendants ν (including µ itself) of µ in T , it takes O(|B|) total
time to (a) decide whether ν is E-good, O-good, or bad, and (b) compute the pole-parity
multiset of Pt(ν) when ν is good.

Proof. The proof is by induction. In case µ is a leaf node of T , B is a single edge;
hence, µ is O-good.

Next, suppose that µ is a nonleaf node. Let ν1, . . . , νq be the children of µ in T .
For each i ∈ {1, . . . , q}, let Bi = Pt(νi) and ei be the virtual edge of νi in Sk(µ). If
some child of µ is bad, then µ must be bad. So, assume that no child of µ is bad.
By the inductive hypothesis, each child of µ is either E- or O-good. Let B be an
(arbitrary) different embedding of B. For each i ∈ {1, . . . , q}, let Bi be the child block
of B that is a different embedding of Bi. For the purpose of deciding whether B is
E-good, O-good, or bad, we may assume that Bi = Bi for all i ∈ {1, . . . , q} because
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Bi is E-good (respectively, O-good) if and only if Bi is too.

Case 1. µ is a P-node. Then, B can be obtained from B by permuting the children
of µ. Permuting the children of µ does not change the degree parity of any vertex
in B. Thus, if an odd (respectively, even) number of children of µ is O-good, µ is
O-good (respectively, E-good).

Case 2. µ is an S-node. Then, B can be obtained from B by permuting the
children of µ. When every child of µ is E-good, permuting the children of µ does
not change the degree parity of any vertex in B, and hence B is E-good and so is
µ. Similarly, when every child of µ is O-good, µ is O-good. So, suppose that µ has
both E-good children and O-good children. Then, some E-good Bi must be next to
an O-good Bj in B. The common pole of Bi and Bj in B has odd degree. Thus, B is
bad and so is µ.

Case 3. µ is an R-node. Then, Sk(µ) has no different embedding other than itself.
B is obtained from Sk(µ) by replacing ei with Bi for all i ∈ {1, . . . , q}. Note that the
edges of Sk(µ) are just e1, . . . , eq. For all i ∈ {1, . . . , q}, we mark ei if νi is O-good. If
some nonpole in Sk(µ) is incident to an odd number of marked edges, then µ is bad.
Otherwise, if a pole of Sk(µ) is incident to an odd number of marked edges, then µ is
O-good; otherwise, µ is E-good.

Next we describe the implementation of this procedure. Let Tµ be the subtree
of T rooted at the node µ. We perform a post-order computation on Tµ. Each leaf
node ν is an O-good node, and both poles of Pt(ν) have odd parity. For each internal
node ν in Tµ, whether ν is E-good, O-good, or bad, the pole-parity multiset of Pt(ν)
can be determined as in the three cases above, in at most O(|Sk(ν))| time. Thus, the
total time needed is O(|B|) by Lemma 2.1.

By Lemma 2.2, each node of T is also a node of the dual decomposition tree T ∗

of T . A node µ of T ∗ is E-good (respectively, O-good, good, or bad) if all different
embeddings of the dual graph of Pt(µ) are E-good (respectively, O-good, good, or
bad). Lemma 6.1 still holds after changing T to T ∗, Pt(µ) to its dual graph, and
Pt(ν) to its dual graph.

Let µ be a node of T and B = Pt(µ). µ is doubly good if for every different
embedding B of B, neither B nor B∗ has an odd-degree nonpole. µ is doubly bad if
for every different embedding B of B, B or B∗ has at least one odd-degree nonpole.
By Lemma 6.1, µ is either doubly good or doubly bad. µ is critical if (1) all children
of µ are doubly good and (2) µ is doubly bad or is the root of T .

Lemma 6.2. If G has a valid embedding, then either one or two nodes of T are
critical.

Proof. Note that each leaf node of T is doubly good. Thus, at least one node
of T is critical. If the root of T is critical, then all nodes of T except the root must
be doubly good and the root is the unique critical node. Otherwise, let µ1, . . . , µk
be the critical nodes in T and Bi = Pt(µi). By the definition of critical nodes, none
of µ1, . . . , µk can be an ancestor of another. Thus, no two of B1, . . . , Bk share an
edge. On the other hand, for each i ∈ {1, . . . , k}, either Bi or B

∗
i has an odd-degree

nonpole; any DET of G must start or end with an edge in Bi. Therefore, if k ≥ 3, G
cannot have a DET.

Lemma 6.3. Let µ be a doubly bad node of T , and let B = Pt(µ). Then, all
different embeddings B of B such that B has a π-type DTC have the same pole-status
p, which can be computed as follows:

1. If µ is an E-good node of T , then p = (〈0, 0〉, 〈0, 1〉).
2. If µ is an O-good node of T , then p = (〈1, 1〉, 〈0, 1〉).



DOUBLE EULER TRAILS OF PLANAR GRAPHS 1279

3. If µ is an E-good node of T ∗, then p = (〈0, 1〉, 〈0, 0〉).
4. If µ is an O-good node of T ∗, then p = (〈0, 1〉, 〈1, 1〉).
5. If µ is a bad node of both T and T ∗, then p = (〈0, 1〉, 〈0, 1〉).
Proof. Suppose that a different embedding B of B has a π-type DTC. Then, both

B and B∗ have at most one odd-degree nonpole (see Figure 5.1). Indeed, at least one
of B and B∗ has exactly one odd-degree nonpole because µ is doubly bad. If µ is a
bad node of T , then the pole-parity multiset of B is 〈0, 1〉. On the other hand, by
Lemma 6.1, if µ is an E-good (respectively, O-good) node of T , then the pole-parity
multiset of B is 〈0, 0〉 (respectively, 〈1, 1〉). Similarly, by checking whether µ is a good
node of T ∗, we can decide the pole-parity multiset of B∗.

Let B = Pt(µ), where µ is a nonroot node of T . A π- or δ-type γ of B is useful
if some valid embedding G of G has a DET P such that P ∩ B is of Type γ, where B
is the block of G that is a different embedding of B.

Even for a doubly good node µ, the block B = Pt(µ) might contain the starting
edge es and/or the ending edge et of a DET of a valid embedding of G (when es
and/or et is incident to a pole of B). Thus, a σ-type of B might actually be a π- or
δ-type. In the following, we investigate which σ-type can be mapped to which π- or
δ-type. The mapping from σ-types to π-types is specified by the following function:
f : {1, . . . , 5} → {1, . . . , 4}, where f(1) = f(2) = f(3) = 1, f(4) = 4, and f(5) = 3.

Lemma 6.4. Let µ be a doubly good nonroot node of T . Let B = Pt(µ). Suppose
that πj is a useful π-type of B. Then, Kσ(B) = {σi} for some σi ∈ Σ, and πj = πf(i).

Proof. Suppose that a DET P of a valid embedding G of G starts with an edge
es of B but ends with an edge not in B, where B is the block of G that is a different
embedding of B. Let P ∗ be the dual trail of P . Since µ is doubly good, neither B nor
B∗ has an odd-degree nonpole. Moreover, since G∗ is not Eulerian, P ∗ must start at
an odd-degree vertex of B∗ by Facts 1 and 2. Thus, P ∗ starts at a pole of B∗. On
the other hand, P starts at a pole of B. This is because of the following: (1) If G is
Eulerian, P starts and ends at the same vertex of B. Since es is in B and the ending
edge et is not in B, their common end vertex must be a pole of B. (2) If G is not
Eulerian, P starts at an odd-degree vertex of B by Facts 1 and 2. By these facts,
P ∩ B is of a σ-type; this type is unique by Lemma 4.4. Let σi be this type.

To determine the π-type of P ∩ B, we first note that if P ∩ B is of Type σ1, σ2,
or σ3, then P ∩ B consists of a single trail and hence can be only of Type π1. Thus,
π1 = πf(i) for i = 1, 2, 3. Now, suppose that P ∩B is of Type σ4. Then, P ∩B consists
of two double trails P1 and P2, where P1 starts with es. Moreover, P1 starts and ends
at the same pole of B, and so does P2; the dual trail P

∗
1 of P1 starts and ends at

different poles of B∗, and so does the dual trail P ∗2 of P2. Thus, P ∩ B is of Type π4.
On the other hand, P ∩ B is not of Type π1 because P ∩ B consists of two double
trails; P ∩ B is not of Type π2 or π3 either because P2 starts and ends at the same
pole of B. Therefore, π4 = πf(4). Similarly, we can verify that π3 = πf(5).

The mapping from σ-types to δ-types is specified by the following function:
g : {1, 2, 3, 5} → {1, . . . , 4}, where g(1) = 2, g(2) = 4, g(3) = 3, and g(5) = 1.

Lemma 6.5. Suppose that G is Eulerian. Let µ be a doubly good nonroot node of
T . Let B = Pt(µ). Suppose that δj is a useful δ-type of B. Then, the following two
statements hold:

1. If µ is not an S-node, then Kσ(B) = {σ5} and δj = δg(5).
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2. If µ is an S-node, then Kσ(B) = {σi} for some σi ∈ {σ1, σ2, σ3} and δj =
δg(i).

Proof. Suppose that a DET P of a valid embedding G of G starts with an edge
es of B and ends with an edge et of B, where B is the block of G that is a different
embedding of B. Let P ∗ be the dual trail of P . Since G is Eulerian but G∗ is not, P
starts and ends at the same vertex of B (say, v) while P ∗ starts and ends at different
vertices of B∗, by Facts 1 and 2. Both es and et are incident to v.

Case 1. v is a pole of B. Then, since µ is doubly good, P ∗ starts at one pole of
B∗ and ends at the other pole. Thus, P ∩ B is of a σ-type. Moreover, since B �= G,
P ∩ B contains more than one trail (otherwise, the single trail in P ∩ B would be
the entire DET P ). Hence, P ∩ B is of Type σ4 or σ5. Indeed, it is not of Type σ4

because P starts and ends at the same vertex. Thus, P ∩ B is of Type σ5 and hence
consists of two double trails P1 and P2, where P1 starts with es and P2 ends with et.
To determine the δ-type of P ∩ B, we note that P1 starts at v and ends at the other
pole u of B while P2 starts at u and ends at v. Moreover, since P ∩ B = (P1, P2) is
of Type σ5, the dual trail P

∗
1 of P1 starts and ends at the same pole x of B∗ while

the dual trail P ∗2 of P2 starts and ends at the other pole y of B∗. Thus, P ∩ B is of
Type δ1. On the other hand, P ∩B is not of Type δ4, δ5 or δ6 because P ∩B consists of
only two double trails. Moreover, P ∩ B is not of Type δ2 because the ending pole of
P ∗1 is different from the starting pole of P

∗
2 . Similarly, P ∩B is not of Type δ3 because

the ending pole of P1 is the same as the starting pole of P2. Therefore, δ1 = δg(5).

Case 2. v is not a pole of B. Then, since P ∗ starts at one pole of B∗ and ends
at the other pole, one of es and et is on the west side of B and the other is on the
east side. Thus, v is a cut vertex of B and µ is an S-node. Let B1 (respectively,
B2) be the block of B whose source (respectively, sink) is that of B and whose sink
(respectively, source) is v. Then, B = B1 . B2. Since B∗ is good, neither B∗1 nor B∗2
has an odd-degree nonpole. We assume that es is on the west side of B1; the other
cases are similar.

Case 2.1. B1 contains et. Then, et is on the east side of B1. Moreover, P
∗ starts

at the source of B∗1 and ends at the sink of B∗1 , by Facts 1 and 2. As in Case 1, we can
prove that P ∩ B1 is of Type σ5 and hence consists of two double trails P1 and P3,
where P1 starts with es and P3 ends with et. On the other hand, P ∩ B2 must start
at the sink of B2 and can leave B2 only at its sink; so, P ∩B2 consists of a single trail
P2 and is of Type σ2. Consequently, P ∩ B is of Type σ5 . σ2 = σ2 by Table 4.1. To
determine the δ-type of P ∩B, we note that P1 starts at v and ends at the other pole
u of B1 while P3 starts at u and ends at v. Moreover, P2 starts at the pole w �= v of
B2 and ends at w. Since u, v, w are three distinct vertices of B, no two of the trails P1

through P3 can be concatenated into a single trail in P ∩ B. So, P ∩ B = (P1, P2, P3)
because P1 starts with es and P3 ends with et. In turn, P ∩ B is of Type δ4. On the
other hand, P ∩ B is not of Type δ1, δ2, or δ3 because P ∩ B consists of three trails;
P ∩ B is not of Type δ5 or δ6 because P2 starts and ends at the same vertex of B.
Therefore, δ4 = δg(2).

Case 2.2. B1 does not contain et. Then, et is on the east side of B2. Moreover,
by Facts 1 and 2, P ∗ starts at the source of B∗1 and ends at the sink of B∗2 . By this
and the fact that P starts and ends at the common pole v of B1 and B2, P ∩ B1

must start at v and cannot reenter B1 after leaving it, while P ∩B2 must start at the
sink of B2 and cannot leave B2 after entering it. Consequently, P ∩ B1 consists of a
single double trail P1, and P ∩ B2 consists of a single double trail P2 too. So, both
P ∩ B1 and P ∩ B2 are of Type π1. In turn, P ∩ B = (P1, P2) is of Type δ2 or δ3 by
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Table 5.3; P ∩ B cannot be of Type δ0 or else B could not have been a proper block
of G. Moreover, each of P1 and P2 starts and ends at different vertices; so each of
P ∩ B1 and P ∩ B2 is of Type σ1 or σ3.

Suppose that one of P ∩B1 and P ∩B2 is of Type σ1 and the other is of Type σ3.
We assume that P ∩ B1 is of Type σ1 and P ∩ B2 is of Type σ3; the other case is
similar. Then, the unique σ-type of B is σ1 . σ3 = σ1 by Table 4.1. Note that the
starting vertex of P ∗ (which is also the starting vertex of the dual trail P ∗1 of P1)
and the ending vertex of P ∗ (which is also the ending vertex of the dual trail P ∗2 of
P2) are different vertices in G

∗. Since P ∩ B1 = (P1) is of Type σ1, the starting and
the ending vertices of P ∗1 must be different. On the other hand, since P ∩ B2 = (P2)
is of Type σ3, the starting and the ending vertices of P

∗
2 must be the same. These

requirements together imply that the ending vertex of P ∗1 and the starting vertex of
P ∗2 must be the same pole of B∗. Therefore, the ODTC P ∩ B = (P1, P2) is not of
Type δ3 but is of Type δ2. So, δ2 = δg(1).

Suppose that both of P ∩ B1 and P ∩ B2 are of Type σ1 or both of them are of
Type σ3. Then, the unique σ-type of B is σ3 by Table 4.1. Similarly to the above
case where P ∩ B1 and P ∩ B2 are of different σ-types, we can prove that the ending
vertex of the dual trail P ∗1 of P1 and the starting vertex of the dual trail P

∗
2 of P2

must be different poles of B∗. Hence, the ODTC P ∩ B = (P1, P2) is not of Type δ2
but is of Type δ3. So, δ3 = δg(3).

Lemma 6.6. Suppose that G is not Eulerian. Let µ be a doubly good nonroot
node of T . Let B = Pt(µ). Suppose that δj is a useful δ-type of B. Then, Kσ(B)
equals {σ4} or {σ5} and δj = δ3.

Proof. Suppose that a DET P of a valid embedding G of G starts with an edge
es of B and ends with an edge et of B, where B is the block of G that is a different
embedding of B. Let P ∗ be the dual trail of P . Since B is a proper block of G, P ∩B
consists of at least two trails P1 and P2, where P1 starts with es and P2 ends with et.
Since µ is doubly good, neither B nor B∗ has an odd-degree nonpole. By Facts 1 and
2, P starts at a pole of B and ends at the other pole of B, and P ∗ starts at a pole
of B∗ and ends at the other pole of B∗. So, both es and et are access edges of B. In
turn, each of P1 and P2 uses exactly two access edges of B. Since B has at most four
access edges, P1 and P2 are the only two trails in P ∩B. Therefore, P ∩B = (P1, P2)
is of Type σ4 or σ5. Let P

∗
1 and P

∗
2 be the dual trail of P1 and P2, respectively.

Case 1. P ∩B is of Type σ4. Then, P1 starts at a pole u of B and ends at u while
P ∗1 starts at a pole x of B∗ and ends at the other pole y of B∗. Because neither G nor
G∗ is Eulerian, P2 starts at the other pole v of B and ends at v while P ∗2 starts at x
and ends at y. Thus, P ∩ B is of Type δ3.

Case 2. P ∩ B is of Type σ5. Then, P1 starts at a pole u of B and ends at the
other pole v of B while P ∗1 starts at a pole x of B∗ and ends at x. Because neither G
nor G∗ is Eulerian, P2 starts at u and ends at v while P

∗
2 starts at the other pole y of

B∗ and ends at y. Thus, P ∩ B is of Type δ3.
Let µ be a node of T , and let ν be a child of µ in T . A σ-, π-, or δ-type γ1 of

Pt(µ) is consistent with a σ-, π-, or δ-type γ2 of Pt(ν) if a different embedding H of
Pt(µ) has a Type-γ1 DTC Q such that Q∩B is a Type-γ2 DTC of B, where B is the
block of H that is a different embedding of Pt(ν).

To describe the improved algorithm concisely, we abuse the notation to use Kπ(B)
(respectively, Kδ(B)) to mean its arbitrary subset that contains all useful π-types
(respectively, δ-types) of a block B of G.

The algorithm works as follows. First, for all nodes µ of T , we determine if µ is a
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good node of T and compute the pole-parity multiset of Pt(µ) if so; we also determine
if µ is a good node of T ∗ and compute the pole-parity multiset of the dual graph of
Pt(µ) if so. By Lemma 6.1, this takes O(|G|) time in total. Then, we find the critical
nodes of T based on Lemma 6.1. If T has more than two critical nodes, then we stop
immediately since G has no valid embedding by Lemma 6.2. So, suppose that T has
one or two critical nodes. For all doubly good nonroot nodes µ of T , we compute
Kσ(µ) as in section 4.3. After this, we distinguish two cases as follows.

• Case 1. T has two critical nodes, say µ and µ′. Let B = Pt(µ) and B′ =
Pt(µ′). Then, µ is not an ancestor of µ′ and vice versa. Thus, both µ and µ′

are doubly bad, and every DET of a valid embedding of G starts with an edge
of one of B and B′ and ends with an edge of the other. We need to compute
Kπ(B) and Kπ(B

′). After knowing Kπ(B) and Kπ(B
′), we are done by calling

the algorithm in section 5.4 to compute Kδ(G). We describe the computation
of Kπ(B) below. Kπ(B

′) is computed similarly. Let ν1, . . . , νq be the children
of µ in T . For each i ∈ {1, . . . , q}, let ei be the virtual edge of νi in Sk(µ).
If |Kσ(νi)| = 0 for some i ∈ {1, . . . , q}, then Kπ(B) = ∅ by Lemma 6.4. So,
suppose Kσ(νi) consists of a unique σki

∈ Σ for all i ∈ {1, . . . , q}.
– Case 1.1. µ is an R-node. Let H = Sk(µ). By an extreme vertex of H,
we mean a pole of H or a nonpole v of H such that for an odd number of
edges ei incident to v in H, νi is an O-good node of T . Similarly, by an
extreme face of H, we mean the west or east side of H or an inner face F
of H such that for an odd number of edges ei on the boundary of F , νi is
an O-good node of T ∗. If H has more than three extreme vertices, then
it has at least two odd-degree nonpoles, x and y. In every DET P of G,
each of x and y must be either the starting vertex or the ending vertex.
However, we allow only one of the starting and the ending vertices of P
to be in H. Hence, G has no DET in this case. Similarly, if H has more
than three extreme faces, then G has no valid embedding. Let W be the
set of all children νi of µ such that ei is incident to an extreme vertex of
H and is also on an extreme face of H. Since µ is an R-node, for each
(extreme) vertex v of H and each (extreme) face F of H, at most two
edges incident to v are on F ; so, a very rough estimate shows |W | ≤ 18.
Moreover, every DET of a valid embedding of G either starts or ends
with an edge of Pt(νi) for some νi ∈ W . Thus, for each νi ∈ W , we set
Kπ(Pt(νi)) = {πf(ki)} and then compute the set Πi of all π-types of B
consistent with Type πf(ki) of Pt(νi) as in Case 3.1 in section 5.4. By
Lemma 6.4 and statements 1 and 2 in Lemma 3.2, ∪νi∈WΠi is Kπ(B).

– Case 1.2. µ is an S-node (respectively, P-node). For each j ∈ {1, . . . , 5},
let Ij = {i ∈ {1, . . . , q} | σki = σj}. For each j ∈ {1, . . . , 5} such that
Ij �= ∅, we select an arbitrary i ∈ Ij , set Kπ(Pt(νi)) = {πf(ki)}, and
compute the set Πj of all π-types of B consistent with Type πf(ki) of
Pt(νi) as in Case 3.2 (respectively, 3.3) in section 5.4. By Lemma 6.4
and statements 1 and 2 in Lemma 3.2, ∪1≤j≤5,Ij �=∅Πj is Kπ(B).

• Case 2. T has exactly one critical node, say µ. Let B = Pt(µ). If µ is the root
of T , we need to compute Kδ(B); otherwise, we need to compute Kπ(B) and
Kδ(B). The former case is easier, and here we consider only the latter case.
So, we assume that µ is not the root. Then, µ is doubly bad. Let ν1, . . . , νq be
the children of µ in T . For each i ∈ {1, . . . , q}, let ei be the virtual edge of νi
in Sk(µ). If Kσ(νi) = ∅ for some i ∈ {1, . . . , q}, then Kπ(B) = Kδ(B) = ∅ by
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Lemmas 6.4, 6.5, and 6.6. So, suppose Kσ(νi) = {σki
} for all i ∈ {1, . . . , q}.

For each j ∈ {1, . . . , 5}, let Ij = {i ∈ {1, . . . , q} | σki = σj}. For each
j ∈ {1, 2, 3}, let I ′j = {i ∈ Ij | νi is an S-node}. Let I ′5 = {i ∈ I5 | νi is not
an S-node}.

– Case 2.1. µ is an R-node. Kπ(B) can be computed as in Case 1.1. We
next explain the computation of Kδ(B). Let H = Sk(µ). As in Case 1.1,
we define extreme vertices and extreme faces of H. If H has more than
four extreme vertices, then it has at least three odd-degree nonpoles and
each of them must be the starting or the ending vertex of any DET of
G. Hence, G has no DET in this case. Similarly, if H has more than
four extreme faces, then G has no valid embedding. If G is not Eulerian,
we define a set W of children of µ as in Case 1.1; otherwise, let W be
the set of all children νi of µ such that (1) ei is on an extreme face of H
and (2) at least one endpoint of ei is on two extreme faces of H. Since µ
is an R-node, for each pair of (extreme) faces of H, at most two vertices
can appear on both of them; so, a very rough estimate shows |W | ≤ 96.
Moreover, every DET of a valid embedding of G that starts and ends
both with edges of B must start with an edge of Pt(νi) and end with
an edge of Pt(νj) for some νi, νj ∈W (possibly νi = νj). Thus, for each
νi ∈ W and each νj ∈ W with νi �= νj , we set Kπ(Pt(νi)) = {πf(ki)}
and Kπ(Pt(νj)) = {πf(kj)}, and further compute the set ∆i,j of all δ-
types of B consistent with both Type πf(ki) of Pt(νi) and Type πf(kj)

of Pt(νj), as in Case 1.1 in section 5.4. Moreover, for each νi ∈ W , we
compute a set ∆i as follows. In case G is not Eulerian, if σki ∈ {σ4, σ5},
then we set Kδ(Pt(νi)) = {δ3}, and set ∆i to be the set of all δ-types
of B consistent with Type δ3 of Pt(νi), as in Case 2.1 in section 5.4;
otherwise, we set ∆i = ∅. In case G is Eulerian, if either (1) νi is not
an S-node and σki = σ5 or (2) νi is an S-node and σki ∈ {σ1, σ2, σ3},
then we set Kδ(Pt(νi)) = {δg(ki)}, and set ∆i to be the set of all δ-types
of B consistent with Type δg(ki) of Pt(νi), as in Case 2.1 in section 5.4;
otherwise, we set ∆i = ∅. By Lemmas 3.2, 6.4, 6.5, and 6.6, the union
of the computed sets ∆i,j and ∆i is Kδ(B).

– Case 2.2. µ is an S-node (respectively, P-node). Kπ(B) can be computed
as in Case 1.2. We next explain the computation of Kδ(B). For each
j ∈ {1, . . . , 5} with |Ij | ≥ 2, we arbitrarily select two distinct i, i′ ∈ Ij ,
set Kπ(Pt(νi)) = {πf(ki)} and Kπ(Pt(νi′)) = {πf(ki′ )}, and compute the
set ∆j of all δ-types of B consistent with both Type πf(ki) of Pt(νi) and
Type πf(ki′ ) of Pt(νi′), as in Case 1.2 (respectively, 1.3) in section 5.4.
Also, for each pair of distinct j, j′ ∈ {1, . . . , 5} with Ij �= ∅ and Ij′ �= ∅,
we arbitrarily select one i ∈ Ij and one i′ ∈ Ij′ , set Kπ(Pt(νi)) = {πf(ki)}
and Kπ(Pt(νi′)) = {πf(ki′ )}, and compute the set ∆j,j′ of all δ-types
of B consistent with both Type πf(ki) of Pt(νi) and Type πf(ki′ ) of
Pt(νi′), as in Case 1.2 (respectively, 1.3) in section 5.4. Furthermore, in
case G is Eulerian, for each j ∈ {1, 2, 3, 5} with I ′j �= ∅, we arbitrarily
select one i ∈ I ′j , set Kδ(Pt(νi)) = {δg(ki)}, and compute the set ∆′j
of all δ-types of B consistent with Type δg(ki) of Pt(νi), as in Case
2.2 (respectively, 2.3) in section 5.4. On the other hand, in case G is
not Eulerian, for each j ∈ {4, 5} with Ij �= ∅, we arbitrarily select one
i ∈ Ij , set Kδ(Pt(νi)) = {δ3}, and compute the set ∆′j of all δ-types of
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B consistent with Type δ3 of Pt(νi), as in Case 2.2 (respectively, 2.3)
in section 5.4. By Lemmas 3.2, 6.4, and 6.5, the union of the computed
sets ∆j , ∆j,j′ , and ∆

′
j is Kδ(B).

After processing the unique critical node µ, we know Kπ(B) and Kδ(B).
Note that µ is doubly bad and Kσ(B) = ∅. We then proceed to processing
the parent χ of µ. Let Bχ = Pt(χ). Let µ1, . . . , µp be the children of χ,
where µ1 = µ. For each i ∈ {1, . . . , p}, let e′i be the virtual edge of µi
in Sk(χ). Since B or B∗ has an odd-degree nonpole, each DET of a valid
embedding of G must start and/or end with an edge of B. So, for each i ∈
{2, . . . , p}, if Kσ(Pt(µi)) = ∅, then Kπ(Pt(µi)) = ∅ too, and hence G has no
valid embedding. Thus, we may assume each Kσ(Pt(µi)) consists of a unique
σ�i ∈ Σ. Kπ(Bχ) can be computed from Kπ(B), Kσ(Pt(µ2)), . . . ,Kσ(Pt(µp)),
as in Case 3 in section 5.4. To compute Kδ(Bχ), we first compute the set
∆0 of all δ-types of Bχ consistent with a δ-type in Kδ(B), as in Case 2 in
section 5.4. After this, for each πh ∈ Kπ(B), we compute a set ∆h as follows.

– Case 2.3. χ is an R-node. We use Lemma 6.3 to compute the unique
pole-status S of the different embeddings of B that have a π-type DTC.
Let H = Sk(χ). Let v1 and v2 be the endpoints of e

′
1. Let F1 and F2

be the endpoints of the dual edge of e′1. For each list L = (a1, a2, b1, b2)
such that S = (〈a1, a2〉, 〈b1, b2〉), we compute a set ∆L as follows. For
each vertex v �∈ {v1, v2} of H, we define v to be an extreme vertex of H
as in Case 1.1. Similarly, for each vertex F �∈ {F1, F2} of H∗, we define
F to be an extreme face of H as in Case 1.1. For each j ∈ {1, 2}, we say
that vj is an extreme vertex of H if (1) vj is a pole of H, or (2) aj = 0
and an odd number of edges e′i �= e′1 incident to vj satisfy that µi is an
O-good node of T , or (3) aj = 1 and an even number of edges e

′
i �= e′1

incident to vj satisfy that µi is an O-good node of T . Similarly, for each
j ∈ {1, 2}, we say that Fj is an extreme face of H if (1) Fj is a pole
of H∗, or (2) bj = 0 and an odd number of edges e′i �= e′1 on Fj satisfy
that µi is an O-good node of T

∗, or (3) bj = 1 and an even number
of edges e′i �= e′1 on Fj satisfy that µi is an O-good node of T

∗. As in
Case 2.1, H has at most four extreme vertices and at most four extreme
faces, unless G has no valid embedding. As in Case 2.1, we define a set
W of children µi of χ. Let W

′ = W − {µ}. For each µi ∈ W ′, we set
Kπ(Pt(µi)) = {πf(�i)}, and then compute the set ∆′i of all δ-types of Bχ

consistent with both Type πh of Pt(µ) and Type πf(�i) of Pt(µi), as in
Case 1.1 in section 5.4. Let ∆L = ∪µi∈W ′∆′i. Let ∆h be the union of
the computed sets ∆L.

– Case 2.4. χ is an S-node (respectively, P-node). For each j ∈ {1, . . . , 5},
let I ′′j = {i ∈ {2, . . . , p} | σ�i = σj}. For each j ∈ {1, . . . , 5} with
|I ′′j | ≥ 1, we arbitrarily select one i ∈ I ′′j , set Kπ(Pt(µi)) = {πf(�i)}, and
compute the set ∆′j of all δ-types of Bχ consistent with both Type πh
of Pt(µ) and Type πf(�i) of Pt(µi), as in Case 1.2 (respectively, 1.3) in
section 5.4. Let ∆h be the union of the computed sets ∆

′
j .

By Lemmas 3.2, 6.4, 6.5, 6.6, and 6.3, Kδ(Bχ) = ∆0 ∪ (∪πh∈Kπ(B)∆h). This
completes the processing of χ; each ancestor of χ is processed in the same
way. Once we finish processing the root of T , we have Kδ(G); G has a valid
embedding if and only if δ0 ∈ Kδ(G).
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Obviously, processing each node µ of T takes O(|Sk(µ)|) time. Thus, we have the
following.

Theorem 6.7. Given a TTG G whose dual graph is not Eulerian, it takes O(|G|)
time to decide if G has a valid embedding.

Acknowledgment. The authors would like to thank the referee for suggestions
that considerably improved the readability of this paper.
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Abstract. This paper presents a self-contained study of wait-free solvable tasks. A new nec-
essary condition for wait-free solvability, based on a restricted set of executions, is proved. This set
of executions induces a very simple-to-understand structure, which is used to prove tight bounds
for k-set consensus and renaming. The framework is based on topology, but uses only elementary
combinatorics, and, in contrast to previous works, does not rely on algebraic or geometric arguments.

Key words. distributed systems, shared memory systems, atomic read/write registers, combi-
natorial topology, wait-free solvable tasks, consensus, set consensus, renaming

AMS subject classifications. 68Q10, 68Q22, 68Q25, 68R05, 68R10

PII. S0097539797330689

1. Introduction. This paper studies the tasks that can be solved by a wait-
free protocol in a shared-memory asynchronous system, consisting of n+ 1 processes
that communicate by reading and writing atomic shared registers. We assume that
processes are completely asynchronous and run at completely arbitrary speeds. Pro-
cesses start with inputs and, after performing some protocol, have to decide on some
outputs. A task specifies the sets of outputs that are allowable for each assignment of
inputs to processes. A protocol is wait-free if a process decides on an output after a
finite number of its own events, regardless of the behavior of other processes. A task
is wait-free solvable if there is a wait-free protocol solving it.

The study of wait-free solvable tasks is central to the theory of distributed com-
puting. Early research studied specific tasks and showed them to be solvable (e.g.,
approximate agreement [13], 2n-renaming [2], k-set consensus with at most k− 1 fail-
ures [11]) or unsolvable (e.g., consensus [15], n+1-renaming [2]). In 1988, a necessary
and sufficient condition for the solvability of a task in the presence of a single process
failure was presented [6]. In 1993, a significant advancement was made in the under-
standing of wait-free solvability [7, 22, 25], yielding new impossibility results for k-set
consensus ([7, 22, 25], and later [10, 19, 20]) and renaming [20, 22], as well as a nec-
essary and sufficient condition for wait-free solvability [22, 23] (which is undecidable
[16, 21]).

Of particular interest is the use of topological notions to investigate the problem,
suggested in [22, 25] and implicit in [7]. Yet, much of this development remained
inaccessible to many researchers, since it relied on algebraic and geometric tools of
topology. Furthermore, different topology techniques were used in each of these works,
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for example, a direct, combinatorial application of Sperner’s lemma in [7], a more
involved form of Brouwer fixed point theorem in [25], and a combination of continuous
and algebraic tools of simplicial approximation and Mayer–Vietoris sequences in [22].

In this paper, we study wait-free solvable tasks, starting from first principles. We
introduce a new necessary condition for wait-free solvability and use it to prove the
impossibility of solving k-set consensus and renaming. Our approach borrows critical
ideas from previous works in this area, especially [7, 8, 20, 22, 23, 25], and integrates
them into a unified framework. Our goal was to deepen the understanding of the wait-
free solvability problem, in particular to learn which tools of topology are needed to
investigate this problem.

1.1. Our contributions. We develop a formal model that captures wait-free
solvability in terms of combinatorial mathematics, inspired by topology. To explain
our model, here is a rough description of key notions from combinatorial topology.
(Precise definitions appear in section 4.1.)

A colored simplex is a set in which every element, called a vertex, is colored with
a different process id. A colored complex is a collection of colored simplexes which is
closed under containment. A mapping from the vertices of one colored complex to the
vertices of another is simplicial if it maps a simplex to a simplex; it is color preserving
if each vertex is mapped to a vertex with the same process id. Finally, a complex
whose largest simplex contains m vertices is a pseudomanifold if every simplex with
m− 1 vertices is contained in either one or two simplexes with m vertices.

Although these definitions do not require algebraic or geometric interpretations,
it is sometimes useful to have a topological intuition in mind. In topology a complex
is viewed as a discretization of a continuous space. For example, in three dimensions,
a pseudomanifold is obtained by “chopping” a surface into triangular pieces, where
each one corresponds to a simplex. If we chop it into smaller and smaller pieces, we
obtain closer approximations to the surface, and it is said that finer subdivisions are
obtained. A simplicial map is analogous to a continuous map, and in topology is
often interpreted as instructions of how to bend and fold one complex into another,
possibly stretching it but without tearing it apart.

The novel combinatorial concept we use is of a pseudomanifold being a divided
image of a simplex, having the same boundary as the simplex. A divided image
of a complex is obtained by taking a divided image of each one of its simplexes
and pasting them together. (An example appears in Figure 2.) A subdivision of
a complex preserves all the topological structure of the complex, while a divided
image preserves only some of its topological structure. (The divided image shown in
Figure 2 is actually a subdivision.) Our results show that the topological structure
that is preserved suffices to prove the set consensus impossibility, and if in addition
the divided image is orientable we can also prove the renaming impossibility. This
new necessary condition for wait-free solvability is our main result, Theorem 5.14.

Given a task, and a wait-free protocol solving it, we show that a subset of the
protocol’s executions, called immediate snapshot executions [7, 25], induces a divided
image of the input complex. The decisions made by the protocol induce a simplicial
map from this divided image to the output complex which must agree with the task
specification. A solution for the participating set task [8] is used to show that the
above property is also sufficient: If there is a simplicial map from the divided image
induced by immediate snapshots executions to the output complex, which agrees with
the task, then the task is wait-free solvable.

The divided image induced by immediate snapshot executions is shown to be
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orientable and connected. We show that an orientable chromatic divided image induces
an algebraic span [20].

Using the standard Sperner’s lemma, we show that k-set consensus is wait-free
solvable only if k > n. Using results of [20], we prove a combinatorial theorem about
the number of monochromatic simplexes in any binary coloring of an orientable and
connected divided image. This theorem is used to prove that M -renaming is wait-free
solvable only if M ≥ 2n. (Both bounds are tight; see [11] and [2], respectively.)

The main contribution of this paper, in our opinion, is in providing an alternative,
combinatorial framework in which further research related to distributed solvability
can be pursued. We believe our work is the first to provide an elementary, yet rig-
orous, treatment of this topic. From ideas that were developed in great generality
in algebraic topology, our framework distills the properties that are required for the
study of wait-free solvability, in particular properties that are sufficient to prove spe-
cific impossibility results. It does not require any previous topology background from
the reader.

1.2. Relation to other work. The combinatorial topology framework we de-
velop for wait-free solvability is related to the 1-failure model of Biran, Moran, and
Zaks [6]; while they use graphs and edges (sets of two vertices), we use complexes and
simplexes (sets of one or more vertices). Herlihy and Shavit also use simplexes [22, 23]
but often given a geometric interpretation and considered as subsets of Euclidean
space; in our work, we always consider combinatorial structures.

Divided images play a role similar to spans (both the geometric version used
in [19, 22, 23] and the algebraic version introduced in [20]). As discussed after Defini-
tion 4.1, divided images have weaker mathematical properties than geometric spans;
in particular, a divided image of a simplex may have “holes.” We prove that an
orientable divided image corresponds naturally to an algebraic span. It was shown
that geometric spans exist [22], but the proof requires a combination of algebraic
(homology theory) and geometric (subdivided simplexes) arguments.

The notion of immediate snapshot executions was introduced by Borowsky and
Gafni [7] and by Saks and Zaharoglou [25]. These works contain many of the ideas
needed to show that immediate snapshot executions induce a divided image. However,
they centered on properties of immediate snapshot executions needed to prove the
impossibility result for set consensus. For this result, it is not necessary to show
that they are connected and orientable or that they induce an algebraic span or our
simpler combinatorial notion of a divided image. No general conditions for wait-free
solvability were derived from them, and no general model, like the one developed here,
has appeared before.

The main difference between our necessary condition for wait-free solvability and
the one proved by Herlihy and Shavit [22] is that we construct a specific well-structured
divided image (induced by immediate snapshot executions), while they show that an
arbitrary span exists.

1.3. Organization. The rest of this paper is organized as follows. In section 2,
we describe the distributed computing model. In section 3, we define immediate
snapshot executions and study their properties. Section 4 starts with the topology
concepts used in the rest of the paper (section 4.1), and then we show how to model a
task and a distributed computing system (as described in section 2) with the combina-
torial topology concepts (sections 4.2 and 4.3). The condition for wait-free solvability
is developed in section 5. Additional mathematics is developed in section 6, and is
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later used in section 7, to prove impossibility of wait-free solutions for set consensus
and renaming. We conclude with a discussion in section 8.

2. Model of computation. Our model is standard and was used in many pa-
pers; we follow [1].

A system consists of n + 1 processes p0, . . . , pn. A process is a deterministic
state machine; each process has a (possibly infinite) set of local states, including
a subset called the initial states and a subset called the output states. Processes
communicate by means of a finite number of single-writer multireader atomic registers.
No assumption is made regarding the size of the registers, and therefore we may
assume that process pi has a single register, Ri, to which it can write its entire state.
Process pi has two atomic operations available to it:

• writei: pi writes a value v to Ri.
• readi(Rj): pi reads the register Rj and returns its value v.

A system configuration consists of the states of the processes and registers. For-
mally, a configuration C is a vector 〈s0, . . . , sn, v0, . . . , vn〉 where si is the local state
of process pi and vj is the value of the register Rj . Denote statei(C) = si. Each
register may attain values from some domain which includes a special “undefined”
value, ⊥. An initial configuration is a configuration in which every local state is an
initial state and all registers are set to ⊥.

We consider an interleaving model of concurrency, where executions are modeled
as sequences of events. An event is performed by a single process pi, which applies
either a writei operation or a readi(Rj) operation, but not both, performs some local
computation, and changes to its next local state. The next configuration is the result
of these modifications.

The state machine of each process pi models a local protocol , Pi, that determines
pi’s next event—Pi determines whether pi is to write or read, and (in case of a read)
which register Rj to read—as a function of pi’s local state. If pi reads Rj , then Pi
determines pi’s next state as a function of pi’s current state and the value v read from
Rj . If pi writes to Ri, then Pi determines pi’s next state as a function of pi’s current
state. We assume that all local protocols are identical; i.e., processes have the same
state machine, which do not depend on the process id. If the local protocol has to
depend on the id, then the id has to be encoded in the input (see the discussion below
in this section and in section 4.3).

A protocol is a collection P of local protocols P0, . . . ,Pn.
An event of pi is denoted below simply by pi’s index, i. An execution of a system

is a finite or infinite alternating sequence of configurations and events C0, j1, C1, . . . ,
Ck−1, jk, . . . , where C0 is an initial configuration and Ck is the result of applying the
event jk to Ck−1, for all k ≥ 1. The schedule of this execution is j1, . . . , jk, . . . .

Given an execution α = C0, j1, C1, . . . , and a process pi, the view of pi in α,
denoted α|i, is the sequence statei(C0), statei(C1), . . . .

To model decision tasks, we identify two special components of each process’s
state: an input and an output. It is assumed that initial states differ only in the value
of the input component; moreover, the input component never changes. If we want to
have a local protocol which depends on the process id, then the id has to be provided
explicitly as part of the input. The protocol cannot overwrite the output: The output
is initially ⊥; once a non-⊥ value is written to the output component of the state, it
never changes; when this happens, we say that the process decides. The output states
are the states with non-⊥ output value.

A view of process pi in a finite execution α is final if there is a configuration in α
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in which pi decides; since the output cannot be overwritten, it follows that pi’s output
is not ⊥ in some suffix of α. A final view is minimal if none of its prefixes is final.
A minimal final view is the prefix of pi’s view in α up to (and including) the first
configuration in which pi decides.

A task ∆ has a domain I of input values and a domain O of output values; ∆
specifies for each assignment of inputs to the processes on which outputs processes
can decide.

A protocol solves ∆ if any finite execution α can be extended to an execution α′ in
which all processes decide on values which are allowable for the inputs in α. Because
the outputs cannot be overwritten, if a process decides on a value in α, it must have
the same output in α′. This means that outputs already written by the processes can
be completed to outputs for all processes that are allowable for the inputs in α.

A protocol is wait-free if in any execution of the protocol a process either has a
finite number of events or it decides. This implies that if a process has an infinite
number of events, it must decide after a finite number of events.

We do not require processes to halt—they solve the decision task and decide by
writing to the output component; processes can continue to participate. We typically
consider the behavior of a process until it decides, and, therefore, the above distinction
does not matter.

For the rest of the paper, we consider full-information protocols, in which a
process remembers everything and writes everything it knows. Formally, we add a
history component to the input and output components described above. The history
component of pi consists of the sequence of operations executed so far by pi and their
results. Initially, the sequence is empty; after pi executes a writei operation, write
is appended to the sequence; after it executes a readi(Rj), returning the value v,
read[j, v] is appended. Clearly, a task is solvable if and only if it can be solved by
a full-information protocol; hence, there is no loss of generality in considering only
full-information protocols if efficiency issues are ignored.

Since we consider only deterministic protocols, the state of a process is uniquely
determined by its history component. In fact, the behavior of all full-information
protocols is very similar; protocols differ only in what value a process decides on and
when the process makes the decision. Thus, the decision value is a function of the
input component and the history component, and various protocols differ only in this
function.

We also assume, without loss of generality, that the local protocol of each process
pi is in standard form: pi proceeds in a sequence of steps; in each step pi writes its
entire state to Ri and then reads R0, . . . , Rn (in some fixed order); after reading, pi
determines whether to decide and on which value.

Below, we rely on the notion of executions that cannot be distinguished by a pro-
cess; this happens when the process has the same view in both executions. Formally,

two executions, α1 and α2, are indistinguishable to process pi, denoted α1
pi∼ α2, if

α1|pi = α2|pi. This notion of indistinguishability can be extended to sets of pro-

cesses in the natural manner: if P is a set of processes, then α1
P∼ α2 if and only

if α1
pi∼ α2 for every process pi ∈ P . Typically, we shall be interested in pairs of

executions which are indistinguishable to all processes, except one. If α1
P∼ α2, for

P = {p0, . . . , pi−1, pi+1, . . . , pn}, and α1|pi �= α2|pi, then we denote α1
¬pi∼ α2.

3. Immediate snapshot executions. We start by introducing immediate snap-
shot executions. In section 3.1, we prove their basic properties, and in section 3.2 these
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properties are extended to prove that immediate snapshot executions are connected
in a certain sense.

Consider a full-information protocol in standard form; we now restrict our at-
tention to a subset of the executions of this protocol. An immediate snapshot (in
short, IS) execution consists of a sequence of rounds. The kth round is specified
by a nonempty concurrency class of process ids, sk; sk specifies the active processes
that take a step in round k. First every process in sk performs a write operation
(in increasing order of ids), and then every process in sk reads all the registers, i.e.,
performs n+ 1 read operations (in some fixed order, say increasing order of ids). In-
tuitively, each round contains a concurrent write by every active process, followed by
a concurrent atomic snapshot by every active process.

We assume that the protocol is wait-free. Since a process decides within a finite
number of its own steps, we can restrict our attention to IS executions in which all
views are minimal final; that is, a process takes steps only until it decides. Specifically,
all IS executions are finite, and a process decides in its last active round.

Given a protocol and initial states for the processes (inputs), an IS execution, α,
is determined by the sequence of concurrency classes; thus, we abuse notation and
write α = s1, s2, . . . , sl. Sometimes, we view an IS execution as a concatenation of
two sequences of concurrency classes, and we write α = α1α2 if α1 = s1, s2, . . . , sr
and α2 = sr+1, sr+2, . . . , sl.

The number of steps of pi in α is the number of rounds in which it is active.
The total number of steps in α, denoted |α|, is the sum of the number of steps of all
processors.

IS executions capture the computational power of the model. If a full-information
protocol P solves a task ∆, it solves ∆ in the subset of IS executions. Conversely, a
protocol for the participating set task [8] can be used to simulate IS executions in a
full-information manner, implying the next lemma.

Lemma 3.1. Let ∆ be a task. There is a wait-free protocol which solves this task
if and only if there is a wait-free protocol which solves this task only in IS executions.

3.1. Basic properties of IS executions. Here, we consider the IS executions
of a given full-information protocol in standard form, with some fixed inputs. The first
property of the IS executions follows from the fact that the protocol is deterministic,
and the views are minimal final.

Lemma 3.2. If α and α′ are two distinct IS executions, then α is not a pre-
fix of α′.

Although they are very well-structured, IS executions still contain uncertainty,
since a process does not know exactly which processes are active in the last round.
That is, if pi is active in round k and observes some other process pj to be active (i.e.,
perform a write), pi does not know whether pj is active in round k − 1 or in round
k. Consider, for example, the executions in Figure 1. Only p0 distinguishes between
executions α1 and α2; p1 and p2 have the same views in both executions and cannot
distinguish between them. (Note that p0 distinguishes between α1 and α2, since in
α2, p0 reads the initial value in p2’s register, while in α1, p0 reads the first write of
p2.) In Lemma 3.4, we prove that this is the only uncertainty processes have in IS
executions of full-information protocols.

A process pj is unseen in an execution α, if there is a round k, such that pj /∈ sr
for every round r < k and sr = {pj} for every nonempty round r ≥ k. Intuitively,
no other process ever sees a step by pj , since pj ’s steps (if any) are taken after all
processes no longer take steps.
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Round number 1 2 3
p0 w r
p1 w r
p2 w r

Execution α1.

Round number 1 2 3
p0 w r
p1 w r
p2 w r

Execution α2.

Fig. 1. Executions α1 and α2 are indistinguishable to p1 and p2.

Lemma 3.3. If a process pj is unseen in an IS execution α, then there is no IS

execution α′ �= α such that α
¬pj∼ α′.

Proof. Assume process pj is unseen in α = s1, . . . , sr, but there exists an IS

execution α′ = s′1, . . . , s
′
l �= α such that α

¬pj∼ α′. Let k be the round such that
si = {pj} for every i ≥ k and pj /∈ si for every round y < k.

Let k0 be the first round in which α and α′ differ, that is, sk0 �= s′k0 . If
k0 > min{r, l}, then one execution is a prefix of the other, which is impossible by
Lemma 3.2; thus, k0 ≤ min{r, l}.

If k0 ≥ k, then sk0 = {pj} in α, while in α′, s′k0 must include some other process,
pi; however, pi also distinguishes between α and α′, which is a contradiction. If k0 < k,
then pj �∈ sk0 . Since no process in sk0 distinguishes between α and α′, then the same
processes must be in s′k0 , which contradicts the assumption that sk0 �= s′k0 .

If pj is not unseen in α, then it is seen; pj is seen in round k, if pj ∈ sk, and for
some r ≥ k, there is some process pi �= pj that is in sr. The last seen round of pj is
the largest k such that pj is seen in round sk; since IS executions are finite, the last
seen round is well-defined.

Let {pj}∗ be a finite (possibly empty) sequence of singleton concurrency classes,
each one being {pj}. Assume that pj is seen in an IS execution α = s1, . . . , sl.
The tail position of pj in α is the smallest value of r for which α can be written as
s1, . . . , sr, {pj}∗; {pj}∗ is the tail, which may be empty. In this case, sr �= {pj} and
sr′ = {pj} for every r′, r < r′ ≤ l.

Below, the notation {pj}∗ is used to denote the sequence of singleton concurrency
classes needed to have a minimal final view for pj ; the views of other processes do not
change. That is, we schedule pj again and again in a concurrency class by itself until
it decides.

Lemma 3.4. Let α = α1sk, sk+1, . . . , sl be an IS execution in which a process pj
is seen. If sk is the last seen round of pj in α with tail position t, then consider an
IS execution α′ of the following form:

(1) If sk = {pj}, then α′ = α1, sk ∪ sk+1, sk+2, sk+3, . . . , st, {pj}∗.
(2) If sk �= {pj}, then α′ = α1, {pj}, sk − {pj}, sk+1, sk+2, . . . , st, {pj}∗.
In both cases, α′

¬pj∼ α, and α′ is the only IS execution such that α′
¬pj∼ α.

Proof. Clearly, α′
¬pj∼ α, in both cases: pj distinguishes between both executions

and may take a different number of steps in the execution, but no other process does,
since pj cannot communicate with other processes. (Its steps afterwards are not seen.)
We now show that α′ is the only IS execution with this property.

First, notice that an IS execution α′′ which is different from α and α′ cannot be
a prefix or an extension of either one, by Lemma 3.2.

If sk �= {pj} (case (2)), then clearly there is another process pi ∈ sk. If sk = {pj}
(case (1)), then there is another process pi ∈ sk+1: sk+1 is not empty and does
not include pj . Moreover, if some sr, r > k, includes pj , then sr′ = {pj} for every
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nonempty round, with r′ ≥ r. (Otherwise, k is not the last seen round of pj .) In both

cases, for any IS execution α′′, which is neither α nor α′, α �pi∼ α′′, which proves the
uniqueness of α′.

In the similar execution, α′, we either add pj to the next concurrency class or
take pj into an earlier singleton concurrency class (by itself). Executions α1 and α2

in Figure 1 provide a simple example, where p0’s first step is either in a singleton class
(the first concurrency class in α2) or it is merged with the next class, with p2 (the
first concurrency class in α2).

The views of processes other than pj are the same in both executions, and they
take the same number of steps. Process pj distinguishes between the executions and
may take a different number of steps until it decides. However, pj distinguishes
between the executions only after its last seen round and may take a different number
of steps only in the tail.

3.2. Connectivity of IS executions. Recall that we are considering the IS
executions of a given full-information protocol in standard form, with some fixed
inputs.

The main theorem of this section is that any pair of IS executions with a common
prefix γ are “transitively indistinguishable.” Specifically, two IS executions α and
α′ are γ-similar, denoted α ≈γ α′, if there exist IS executions γβ0, . . . , γβr, and

processes, pi1 , . . . , pir , such that α = γβ0

¬pi1∼ γβ1 . . .
¬pir∼ γβr = α′. Note that γ-

similarity is an equivalence relation. Clearly it is reflexive and symmetric, and it is a
transitive property; that is, if α1 ≈γ α2 and α2 ≈γ α3, then α1 ≈γ α3. A restricted
case is when γ is empty, in which case the chain of indistinguishability need not have
a common prefix.

The main lemma used to prove this theorem extends Lemma 3.4 to any round,
not only the last seen round. We write α = α1 ·sk ·α2 when sk is the kth concurrency
class of α, where α1 contains k−1 concurrency classes and α2 is an arbitrary sequence
of concurrency classes.

Lemma 3.5. Consider an IS execution α = α1 ·sk ·α2, in which a process pi ∈ sk.
There is an IS execution α′ of the following form:

(1) If sk = {pi} and sk+1 is not empty with pi �∈ sk+1, then α′ = α1 · s′k · α′2,
where s′k = sk+1 ∪ {pi}.

(2) If pi ∈ sk and sk − {pi} �= ∅, then α′ = α1 · {pi} · s′′k+1 · α′′2 , where s′′k+1 =
sk − {pi}.

In both cases, α ≈α1 α′.
Before proving the lemma, we state two corollaries of it. The first corollary says

that we can flatten a concurrency class, replacing it with a sequence of singleton sets
with its processes. The result follows by repeatedly applying part (2) of Lemma 3.5
to all processes in sk.

Lemma 3.6. Consider an IS execution α = α1 · sk ·α2, where sk = {pi1 , . . . , pir}.
Then α ≈α1 α′, where α′ is an IS execution of the form α1 · {pi1} · · · {pir} · α′2.

Since a concurrency class does not specify the order in which processes appear,
the result allows us to reorder singleton concurrency classes. That is, we can take a
pair of singleton concurrency classes, {pi}, {pj} (i �= j), join it by Lemma 3.5(1) to
get {pj , pi}, and then use Lemma 3.5(2) to flatten it in reverse order to get {pj}, {pi}.
This implies the next lemma

Lemma 3.7. Consider an IS execution α = α1 · {pi} · {pj} · α2. Then α ≈α1 α′,
where α′ is an IS execution of the form α1 · {pj} · {pi} · α′2.
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Now, applying Lemmas 3.6 and 3.7 to all concurrency classes of α2, we can obtain
an IS execution with only singleton sets, in any desired order.

Lemma 3.8. Consider an IS execution α = α1α2. For any permutation i0, . . . , in
of 0, . . . , n, there is a unique IS execution α′ of the form α1 · {pi0}∗ · · · {pin}∗ such
that α ≈α1 α′.

The uniqueness of α′ follows from Lemma 3.2.
Proof of Lemma 3.5. Let L be the maximal number of steps taken in any IS

execution with the same input as α.1 We prove the lemma by reverse induction on
|α1 · sk|. The base case is when |α1 · sk| = L. In this case, α2 is empty and sk is the
last concurrency class; Lemma 3.4 can be applied to derive the lemma. (In fact, part
(1) is trivial.)

For the induction step, assume the lemma holds when |α1·sk| ≥ �+1. We prove the
lemma for |α1 ·sk| = �. Write α2 as a sequence of concurrency classes, sk+1, . . . , sk+m.
By the induction hypothesis, Lemma 3.8 can be applied to α1 · sk, . . . , sk+j , for every
j, 1 ≤ j ≤ m, since it has �+ 1 or more steps.

To prove part (1), apply Lemma 3.8 with prefix α1 · sk, sk+1 and move all sin-
gleton concurrency classes with pi to the end; we get an IS execution α′ = α1 ·
sk, sk+1 · {pi1}∗ · · · {pin}∗ · {pi}∗ such that α ≈α1·sk,sk+1

α′. Since pi is last seen in sk,
Lemma 3.4(1) can be applied to obtain the desired execution.

To prove part (2), apply Lemma 3.8 with prefix α1 · sk and move all single-
ton concurrency classes with pi to the end; we get an IS execution α′ = α1 · sk ·
{pi1}∗ · · · {pin}∗ · {pi}∗ such that α ≈α1·sk α′. Since pi is last seen in sk, Lemma
3.4 (2) can be applied to obtain the desired execution.

We can now state and prove the main result of this section.
Theorem 3.9. If α and α′ are IS executions of the same protocol with a common

prefix γ and the same inputs, then α ≈γ α′.
Proof. Denote α = γα2 and α′ = γα′2. Apply Lemma 3.8 to α2 to obtain an IS

execution with only singleton sets in which the processes appear in increasing order
of indices {p0}∗ · {p1}∗, . . . , {pn}∗. Similarly, apply Lemma 3.8 to α′2 to obtain an
IS execution with singleton sets in which the processes appear in the same order of
indices. That is,

γα2 ≈γ γ{p0}∗ · {p1}∗, . . . , {pn}∗ and γα′2 ≈γ γ{p0}∗ · {p1}∗, . . . , {pn}∗.

By the uniqueness condition of Lemma 3.8, these IS executions are equal, and hence
α ≈γ α′.

The theorem is proved completely within the domain of distributed computing.
We believe that the proof technique is interesting in itself; it resembles lower bounds
on the number of rounds necessary for solving consensus [14] or k-set consensus [12]
in the synchronous model. This theorem directly implies that there is no wait-free
protocol solving consensus.

4. Modeling tasks and protocols using topological structures. In this
section we model distributed tasks using combinatorial topology; this is an adaptation
of [22, 23] to our framework.

1The existence of L for a wait-free protocol follows from Konig’s lemma. Consider the tree of
executions of the protocol: the root is the initial configuration, and the children of a configuration
are the configurations obtained after executing a concurrency class; the leaves are configurations
with only minimal final views. Every node in the tree has finite degree, and there is no infinite path.
Therefore the tree is finite.
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4.1. Combinatorial topology preliminaries. We start with the basic topo-
logical concepts used in this paper. Previous papers in this area, e.g., [12, 19, 22, 23,
25], used geometric or algebraic interpretations of topological structures; in contrast,
our approach is purely combinatorial, abstracting ideas from [17, 24, 26].

4.1.1. Basic notions. The basis of our definitions is the notion of a complex.
A complex K is a collection of finite nonempty sets closed under containment; that
is, if σ is an element of K, then every nonempty subset of σ is an element of K. A
nonempty subset of σ is a face of σ. A face of σ is proper if it is not equal to σ. An
element of a complex is called a simplex. A complex K ′ is a subcomplex of a complex
K if K ′ ⊆ K.

The dimension of a simplex σ, dim(σ), is the number of its elements minus one. A
simplex of dimension m (with m+1 elements) is called an m-simplex. The dimension
of a complexK is the maximum dimension of its simplexes; we consider only complexes
of finite dimension. A complex of dimension m is called an m-complex. A superscript
notation is often used to denote the dimension of simplexes and complexes: σm is an
m-simplex and Km is an m-complex.

The vertex set of K is the union of its 0-simplexes; the 0-simplex {v} is identified
with v.

Consider two complexes K and L. A function f from the vertices of K to the
vertices of L is simplicial if, for every simplex {v0, . . . , vk} of K, {f(v0), . . . , f(vk)} is
a simplex of L; {f(v0), . . . , f(vk)} is treated as a set, since f need not be one-to-one
and may have repetitions. A simplicial map f can be extended to all simplexes of K:
f maps every simplex σ of K to a simplex f(σ) of L (perhaps of smaller dimension).
We extend f to a set S of simplexes of K, by defining f(S) to be the set of simplexes
f(σ) in L, where σ ranges over all simplexes of S. Clearly, if S is a subcomplex of K,
then f(S) is a subcomplex of L.

4.1.2. Divided images. An m-complex Km is full to dimension i, i ≤ m, if
every j-simplex, j ≤ i, of Km is contained in some i-simplex of Km.

Assume Km is full to dimension m. An (m− 1)-simplex of Km is external if it is
contained in exactly one m-simplex; otherwise, it is internal. The boundary complex
of Km, bound(Km), is the subcomplex with all the faces of the external simplexes of
Km; clearly, bound(Km) is full to dimension m − 1. Abusing notation, bound(σm)
denotes the (m− 1)-faces of a simplex σm.

A complex Km is an m-pseudomanifold if it is full to dimension m and every
(m− 1)-simplex is contained in either one or two m-simplexes.2 An m-manifold is an
m-pseudomanifold in which every (m − 1)-simplex is contained in two m-simplexes;
i.e., it has no external simplexes. For example, if K3 is the complex containing a
single 3-simplex σ3 and all its faces, then bound(K3) is a 2-manifold which looks like
a hollow tetrahedron.

Let τm−1 be an internal (m− 1)-simplex of an m-pseudomanifold, which is con-
tained in two m-simplexes, τm1 and τm2 . The link vertices of τm−1 are v1, the vertex
of τm1 not in τm−1, and v2, the vertex of τm2 not in τm−2.

The following combinatorial definition is used later (section 5.1) to cast the struc-
ture of a protocol in the topological framework. Very roughly, Lm will represent
the possible input configurations, Km the possible executions of a protocol, and
ψ(σ) ⊆ Km will be the executions starting with input configuration σ.

2In topology, pseudomanifolds are assumed to have additional properties, which we do not require
for our applications.
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σ1

σ2

ψ(σ2)

ψ(σ1)L2 K2

Fig. 2. K2 is a divided image of L2 under ψ.

Definition 4.1. Let Lm, Km be complexes and ψ a function that assigns to each
simplex of Lm a finite subcomplex of Km. The complex Km is a divided image of Lm

under ψ if
1. ψ(∅) = ∅,
2. for every τ ∈ Km there is a simplex σ ∈ Lm such that τ ∈ ψ(σ),
3. for every σ0 ∈ Lm, ψ(σ0) is a single vertex,
4. for every σ, σ′ ∈ Lm, ψ(σ ∩ σ′) = ψ(σ) ∩ ψ(σ′), and
5. for every σ ∈ Lm, ψ(σ) is a dim(σ)-pseudomanifold with ψ(bound(σ)) =
bound(ψ(σ)).

Km is a divided image of Lm if for some ψ, Km is a divided image of Lm under ψ.
Notice that in condition 5, bound(σ) is a set of simplexes, while ψ(bound(σ)) is

the complex which is the union of ψ(τ), over the simplexes τ ∈ bound(σ).
Intuitively, a divided image is obtained from Lm by replacing every simplex of

Lm with a pseudomanifold, making sure that they “fit together” (in the sense of
condition 4). In addition, condition 2 guarantees that ψ maps Lm “onto” Km; con-
dition 3 guarantees that ψ maps vertices of Lm to vertices of Km; finally, condition 5
guarantees that ψ preserves the dimension and the boundary of simplexes in Lm.

Figure 2 shows a divided image of a complex containing two simplexes. In the
figure, solid lines show the boundaries of σ1 and of σ2, and their image in K2 under ψ.

Remark. The concept of a divided image is reminiscent of the notion of acyclic
carrier3 used by Munkres to study subdivisions, a fundamental concept of algebraic
topology (cf. [24, 26]), as both associate subcomplexes of one complex to simplexes
of another. However, divided images, even if they are connected, are different from
subdivisions: For example, a 2-dimensional torus with a triangle removed from its
surface is a divided image of a 2-simplex, since its boundary is a 1-dimensional triangle;
yet, it is neither an acyclic carrier nor a subdivided simplex since it has “holes”
(nontrivial homology groups).

Let M(σm) be the complex consisting of a set σm with m+1 elements and all its
proper subsets; M(σm) is an m-pseudomanifold consisting of a single m-simplex and
all its faces.

The next lemma states some simple properties of divided images.
Lemma 4.2. Let Km be a divided image of Lm under ψ.
(1) For every σ, σ′ ∈ Lm, if σ′ ⊆ σ, then ψ(σ′) ⊆ ψ(σ).

3Not to be confused with the notion of carrier defined later.
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(2) For every pair of j-simplexes σj1, σ
j
2 ∈ Lm, if σj1 �= σj2, and σj1 ∩ σj2 �= ∅, then

ψ(σj1) ∩ ψ(σj2) is a pseudomanifold of dimension strictly smaller than j, i.e.,

dimension |σj1 ∩ σj2| − 1.
(3) For every i-simplex σi ∈ Lm, ψ(σi) is a divided image of M(σi) under

ψ|M(σi).
(4) A simplex τm−1 ∈ Km is external if and only if for some external simplex

σm−1 ∈ Lm, τm−1 ∈ ψ(σm−1).

Proof. (1) By Definition 4.1(4) if σ′ ⊆ σ, then ψ(σ′) = ψ(σ∩σ′) = ψ(σ)∩ψ(σ′) ⊆
ψ(σ).

(2) Let σi = σj1 ∩ σj2. Since σj1 �= σj2, and σj1 ∩ σj2 �= ∅, then 0 ≤ i < j.

By Definition 4.1(4), ψ(σi) = ψ(σj1) ∩ ψ(σj2). By Definition 4.1(5), ψ(σi) is an i-
pseudomanifold.

(3) It follows from (1) that ψ(σi) = Ki is a divided image of an i-simplex.

(4) A simplex τm−1 ∈ Km is external if and only if there is a unique τm containing
τm−1. By Definition 4.1(2), for some σj , τm ∈ ψ(σj). By Definition 4.1(5) j ≥ m.
Since Lm is an m-complex, and σj ∈ Lm, j = m. So τm−1 ∈ bound(ψ(σm)). By
Definition 4.1(5), this happens if and only if τm−1 ∈ ψ(bound(σm)), i.e., τm−1 ∈
ψ(σm−1), for some σm−1.

To prove that σm−1 is external, assume, by way of contradiction, that there
is another m-simplex, σm1 �= σm, such that σm−1 ⊆ σm1 . It follows from (1) that
τm−1 ∈ ψ(σm) ∩ ψ(σm1 ). Since τm ∈ ψ(σm), it cannot be that τm ∈ ψ(σm1 ) because
otherwise τm ∈ ψ(σm ∩ σm1 ), contradicting (2). However, since τm−1 is contained in
some m-simplex of ψ(σm1 ), it must be that such a simplex τm1 is different from τm, a
contradiction to the fact that τm−1 is external.

To prove the other direction, assume for some external simplex σm−1 ∈ Lm,
τm−1 ∈ ψ(σm−1). Thus, τm−1 ∈ ψ(bound(σm1 )) for some σm1 containing σm−1. By
Definition 4.1(5) τm−1 ∈ bound(ψ(σm1 )), so τm−1 is contained in a unique τm1 of
ψ(σm1 ). If τm−1 ∈ Km is not external there is another simplex τm2 containing τm−1.
As argued above, there is another simplex, σm2 , with τm2 ∈ ψ(σm2 ). Since τm−1 ∈ τm1 ∩
τm2 , τm−1 ∈ ψ(σm1 )∩ψ(σm2 ), and by Definition 4.1(4) we have that τm−1 ∈ ψ(σm1 ∩σm2 ).
Definition 4.1(5) implies that σm1 ∩σm2 is an (m− 1)-simplex, which is equal to σm−1,
by Definition 4.1(4), a contradiction to the fact that σm−1 is external.

Of particular importance for us is the case where Km is a divided image of
M(σm) under ψ. In this case, for any σ ∈ M(σm), σ ⊆ σm, and by Lemma 4.2(1),
ψ(σ) ⊆ ψ(σm). Thus, ∪σ∈M(σm)ψ(σ) = ψ(σm). On the other hand, by condition (2),
∪σ∈M(σm)ψ(σ) = Km, which proves the next lemma.

Lemma 4.3. ψ(σm) = Km.

The carrier of a simplex τ ∈ Km, denoted carr(τ), is the simplex σ ∈ Lm of
smallest dimension such that τ ∈ ψ(σ), that is, the “smallest” simplex in Lm which
is mapped to τ . By Definition 4.1(2), every simplex τ ∈ Km is in ψ(σ), for some
σ ∈ Lm, and by Lemma 4.2(2) it is unique. For example, in Figure 2, the carrier of
τ1 is σ1, while the carrier of τ2 is σ2.

4.1.3. Connectivity. For any j, 1 ≤ j ≤ m, the j-graph of Km consists of one
vertex for every j-simplex of Km, and there is an edge between two vertices if the
intersection of the two corresponding simplexes is a (j − 1)-simplex of Km. Km is j-
connected if its j-graph is connected. A j-path in Km is a sequence of j-simplexes such
that every two consecutive simplexes share a (j − 1)-face. Thus a j-path corresponds
to a path in the j-graph.
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Divided images need not be connected. For example, consider K2 from Figure 2,
take some disjoint 3-simplex σ3, and let K ′2 = K2 ∪ bound(σ3). Then K ′2 is a
divided image of L2 under ψ′, where ψ′(σ1) = ψ(σ1), ψ

′(σ2) = ψ(σ2)∪ bound(σ3). In
Appendix A, we prove that any divided image contains a connected divided image;
moreover, we later show that the specific divided images constructed in this paper are
connected.

4.1.4. Colorings. A complex K is colored by associating a value from some set,
called colors, with each of its vertices. A coloring is proper if different vertices in the
same simplex have different colors. A simplicial map f : K → L is color preserving if,
for every vertex v of K, f(v) has the same color as v. If a coloring is proper and f
is color preserving, then for any simplex {v0, . . . , vk} the vertices f(v0), . . . , f(vk) are
different; i.e., f(σ) has the same dimension as σ.

Let Km be a divided image of Lm. A simplicial map χ : Km → Lm is a Sperner
coloring if, for every v ∈ Km, χ(v) ∈ carr(v). Intuitively, the “colors” are the vertices
of Lm, and χ “folds” Km into Lm with the requirement that each vertex of Km goes
to a vertex of its carrier. This notion generalizes the usual Sperner coloring, where
Lm is an m-simplex with all its faces, and the vertices are the colors {0, 1, . . . ,m}.
That is, the vertices at the “corners” of Km are colored 0, 1, . . . ,m, and a vertex in
a boundary is colored with one of the colors of the “corners” of that boundary. The
main combinatorial definition we use is the following.

Definition 4.4. A complex Km is a chromatic divided image of Lm if it is a
divided image of Lm with a proper Sperner coloring χ.

4.2. Modeling tasks. Here we cast the notion of task (introduced in section 2)
in terms of combinatorial topology. Denote ids = {0, . . . , n}. For some domain of
values V , let P (V ) be the set of all pairs consisting of an id from ids and a value
from V .

For a domain of inputs I, an input complex, In, is a complex that includes n-
simplexes (i.e., subsets of n + 1 elements) of P (I) and all their faces such that the
vertices in an n-simplex have different id fields. For a domain of outputs O, an output
complex, On, is defined similarly over O. That is, if (i, val) is a vertex of In, then
val denotes an input for process pi, while if (i, val) is a vertex of On, then val is
an output for process pi. In and On are properly colored by the id fields and are
full to dimension n; each complex is also colored (not necessarily properly) by the
corresponding domain of values.

Using the combinatorial topology notions, a task is a triple 〈In,On,∆〉; In is
an input complex, On is an output complex, and ∆ maps each n-simplex of In to
a nonempty set of n-simplexes in On. We sometimes mention only ∆ when In and
On are clear from the context. The simplexes in ∆(σn) are the admissible output
simplexes for σn: If σn is an input simplex and τn ∈ ∆(σn), then τn can be output
when the system starts with input σn.

∆ can be extended to input simplexes of dimension smaller than n, since the
outputs of some processes in an execution can be completed to outputs for all processes
that are admissible for the inputs of the execution. Therefore, ∆ maps an input
simplex σ of dimension smaller than n to the faces of n-simplexes in ∆(σn) with the
same dimension and ids for all input simplexes σn that contain σ. Extended in this
manner, ∆(M(σn)) is a subcomplex of On.

Remark. There is another variant of wait-free solvability, where ∆ is explicitly
defined for input simplexes of dimension smaller than n. This can be captured in our
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model by adding as part of the input a bit that tells the process whether to participate
or not; nonparticipating processes output some default value.

4.3. Protocol complexes. For an execution α, the set {(0, α|0), . . . , (n, α|n)}
is denoted by views(α). The protocol complex Pn of a protocol P is the complex
whose n-simplexes are the sets of minimal final views(α), for every execution α of P,
and all their faces. Pn is colored with four colors—an id, an input, a view, and an
output value; the ids coloring is proper. Pn depends on the possible interleavings of
events (schedules) and on the transitions of processes and their local states.

Given an input n-simplex σ, the protocol complex for σ, Pn(σ), is the subcomplex
of Pn containing all n-simplexes corresponding to executions of P, where processes
start with inputs σ, and all their faces. Intuitively, τ ∈ Pn(σ) if and only if there is an
execution α with inputs σ such that the views of processes in τ are the same as in α.
It is possible that two executions, α and α′, satisfy the above condition for a simplex
of dimension n, but, in this case, α and α′ are indistinguishable to all processes. If τ
is a face of two n-simplexes, σ1 and σ2, corresponding to executions α1 and α2, and

τ contains a vertex with id pi, then α1
pi∼ α2.

Since P is deterministic and wait-free, every process writes an output after a finite
number of steps, implying that Pn(σ) is finite.
P implies a decision map δP : Pn → On specifying the output for each final view

of a process. If P solves ∆, then δP is simplicial, since δP(τ) is an output simplex, for
every τ ∈ Pn. Clearly, δP preserves the ids coloring and, for every input n-simplex
σ, δP(Pn(σ)) is a complex.

Figure 3 presents an example of a task for two processes, p and q. A vertex
of the input (output) complex contains an id and an input (output) value. A task
is defined by stating ∆: for input {(p, 1), (q, 0)} the output can be {(p, 1), (q, 0)}
or {(p, 1), (q, 1)}; for input {(p, 0), (q, 1)} the output can be {(p, 0), (q, 0)}; for in-
put {(p, 0), (q, 0)} the output can be {(p, 0), (q, 1)}, {(p, 2), (q, 1)}, {(p, 2), (q, 2)},
{(p, 0), (q, 2)}, or {(p, 0), (q, 1)}. The figure also includes a protocol complex (with
all executions, not only IS executions) that solves the task. Here a vertex is la-
beled with an id, then an input, and then the output. For input {(p, 1), (q, 0)}, each
process executes one read (of all the registers) and one write operation. For input
{(p, 0), (q, 0)}, p executes one write, then one read, and then one write, while q exe-
cutes one write and one read. For input {(p, 0), (q, 1)}, p executes one write, then one
read, and then one write, while q does not execute any operation. There are various
ways of assigning outputs to the processes so that the protocol solves the task.

The above definitions imply the following topological interpretation of the oper-
ational definition of a protocol solving a task (presented at the end of section 2).

Proposition 4.5. P solves 〈In,On,∆〉 if and only if δP(Pn(σ)) ⊆ ∆(M(σ))
for every n-simplex σ ∈ In. In this case, we say that δP agrees with ∆.

Since the protocol depends only on the inputs (see section 2), if two input n-
simplexes σ and σ′ have the same inputs, i.e., differ only by a permutation of the
ids, then Pn(σ) can be obtained from Pn(σ′) by applying the same permutation to
the ids. Therefore, the decision map must be anonymous; i.e., δP(Pn(σ)) determines
δP(Pn(σ′)).

5. A condition for wait-free solvability. We prove that the subcomplex in-
duced by IS executions is a chromatic divided image of the input complex; moreover,
this subcomplex is shown to be connected and orientable. This implies our main re-
sult, a necessary condition for tasks which are solvable by a wait-free protocol (The-
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Fig. 3. A protocol complex and a task for two processes, p and q.

orem 5.14). In section 7, we present two impossibility results which are implied by
this condition; the set consensus impossibility result follows from the divided image
property only, while the renaming impossibility also relies on orientability.

5.1. The ISE complex and divided images. The IS executions (ISE) com-
plex, En, is the subcomplex of the protocol complex containing all IS executions;
En(σn) is the subcomplex of all IS executions starting with an input simplex σn ∈ In.

Figure 4 contains an example of an ISE complex for a single input simplex (the
one on the left); each 2-simplex corresponds to an execution where each process is
active in exactly one round. There are simplexes that correspond to executions α1 and
α2 from Figure 1; indeed, the vertices that correspond to p1 and p2 are the same in
these simplexes; i.e., p1 and p2 have the same views. The 1-simplexes on the boundary
correspond to executions in which two processes take one step each and do not see the
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Fig. 4. The ISE complex, when each process takes at most one step.

third process; corner vertices correspond to “solo” executions where a process does
not see other processes. The 2-simplex in the center corresponds to the IS execution
consisting of one round, in which all three processes are active.

The protocol complex shown in Figure 3, including all executions, is not a divided
image of the input complex, since the subcomplex for the input simplex {(p, 0), (q, 0)}
is not a pseudomanifold. We now show that the ISE complex of a wait-free protocol,
using only read/write operations, is a chromatic divided image of the input complex;
we start with some definitions.

For a simplex σ of In, On, or En, ids(σ) is the set of ids appearing as the first
component of vertices in σ. For a simplex σ of In, inputs(σ) is σ. For a simplex σ of
En, inputs(σ) is the set of pairs of ids with inputs appearing in vertices of σ (taking
the input component from the state). For a simplex σ of En, views(σ) is the set of
views appearing in vertices of σ and observed(σ) is the set of ids of processes whose
operations appear in views(σ). If pi is not in observed(σ), then the views in σ are
the same as in an execution in which pi does not take a step; since a process always
“observes itself,” ids(σ) ⊆ observed(σ).

We define a function ψ that assigns a subcomplex of En to each input simplex
σ ∈ In; intuitively, ψ(σ) contains all the executions with input σ, in which only
processes in ids(σ) are observed taking steps.

Definition 5.1. For σ ∈ In, let ψ(σ) be the complex containing all simplexes
τ ∈ En, such that inputs(τ) = inputs(σ) and observed(τ) = ids(σ), and all their faces.

Clearly, ψ(σ) is full to dimension dim(σ). The next lemma is useful below.
Lemma 5.2. For any τ ∈ En and σ ∈ In, τ ∈ ψ(σ) if and only if inputs(τ) ⊆

inputs(σ) and observed(τ) ⊆ ids(σ).
Proof. Assume τ is in ψ(σ). If τ is of the same dimension as σ, then the claim

is immediate from the definition. So assume τ is a face of τ ′ which is of the same
dimension as σ. Thus, inputs(τ) ⊆ inputs(τ ′) and observed(τ) ⊆ observed(τ ′); the
definition of ψ implies that inputs(τ) ⊆ inputs(σ) and observed(τ) ⊆ ids(σ).

To prove the converse direction, assume inputs(τ) ⊆ inputs(σ) and observed(τ) ⊆
ids(σ). Since the protocol is wait-free, the processes in ids(σ) − ids(τ) (if there are
any) should be able to run on their own, after all processes in ids(τ) have obtained the
views in τ , and decide. This implies that there is an execution in which all processes
in ids(σ) − ids(τ) (if any) observe only processes in ids(σ), and processes in ids(τ)
have the same views as in τ . Let π be the simplex in En that corresponds to this
execution. Note that inputs(π) = inputs(σ) and observed(π) = ids(σ). Therefore,
π ∈ ψ(σ). Since τ is a face of π, the claim follows.
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We proceed to prove that Definition 4.4 holds, and hence that the conditions of
Definition 4.1 hold. Clearly, process ids are a proper Sperner coloring of En. Condition
1 is trivial.

Lemma 5.3. Condition 2 of Definition 4.1 holds.

Proof. Consider a simplex τ ∈ En. Let τn ∈ En be such that τ ⊆ τn. Then there
is a simplex σn ∈ In with inputs(τn) = inputs(σn). Since ids(τn) ⊆ observed(τn),
then observed(τn) = ids(σn) and τn ∈ ψ(σn). Since τ is a face of τn, τ ∈ ψ(σn).

Since the protocol is deterministic, we have the next lemma.

Lemma 5.4. Condition 3 of Definition 4.1 holds.

By Lemma 5.2, τ ∈ ψ(σ∩σ′) if and only if inputs(τ) ⊆ inputs(σ∩σ′) = inputs(σ)∩
inputs(σ′) and observed(τ) ⊆ ids(σ ∩ σ′) = ids(σ) ∩ ids(σ′). This happens if and only
if τ ∈ ψ(σ) ∩ ψ(σ′), implying the next lemma.

Lemma 5.5. Condition 4 of Definition 4.1 holds.

By Lemma 3.3, if a process pj is unseen in an execution, then there is no other
execution that differs only in pj ’s view. By Lemma 3.4, if pi is seen in an execu-
tion, then there is another execution that differs only in pj ’s view. This implies the
next lemma.

Lemma 5.6. Let τ i1 be an i-simplex of ψ(σi) corresponding to an IS execution α,
and j ∈ ids(τ i1). Process pj is unseen in α by processes with ids(σi), if and only if
there is no other i-simplex τ i2 ∈ ψ(σi), that differs only in the vertex colored with pj.

Since the boundary corresponds to executions in which some processes are unseen,
the above lemma can be used to prove that ψ preserves the boundary.

Lemma 5.7. For every simplex σi ∈ In, ψ(bound(σi)) = bound(ψ(σi)).

Proof. To prove that ψ(bound(σi)) ⊆ bound(ψ(σi)), consider τ ∈ ψ(bound(σi)).
Then τ ∈ ψ(σi−1) for some face σi−1 of σi. Since ψ(σi−1) is full to dimension i− 1,
there is some τ i−1 ∈ ψ(σi−1) such that τ ⊆ τ i−1. By the definition of ψ, τ i−1 ∈ ψ(σi).
Since ψ(σi) is full to dimension i, there is some τ i ∈ ψ(σi) such that τ i−1 ⊂ τ i. Since
τ i−1 ∈ ψ(σi−1), it follows that observed(τ i−1) = ids(σi−1). Let pj be the process id
in ids(σi) − ids(σi−1). Note that j �∈ observed(τ i−1); that is, no process sees a step
by pj in τ i−1. Furthermore, in τ i, pj sees only steps by processes in ids(σi). Since
the protocol is deterministic, there is only one possible view for pj . Namely, τ

i−1 is
contained in a single i-simplex τ i, and hence τ i−1 ∈ bound(ψ(σi)). Since τ is a face
of τ i−1 and ψ is closed under inclusion, τ ∈ bound(ψ(σi)).

To prove that ψ(bound(σi)) ⊇ bound(ψ(σi)), consider some τ ∈ bound(ψ(σi)).
Since bound(ψ(σi)) is full to dimension i− 1, τ is a face of some τ i−1 ∈ bound(ψ(σi)).
Since τ i−1 is external in ψ(σi), it is a face of a single τ i ∈ ψ(σi). Assume that ids(τ i)−
ids(τ i−1) = {pj}; then, by Lemma 5.6, pj is unseen in the execution corresponding
to τ i, and pj �∈ observed(τ i−1). Let σi−1 be the face of σi that does not include the
vertex whose id is pj ; clearly, observed(τ

i−1) = ids(σi−1). By the definition of ψ,
τ i−1 ∈ ψ(σi−1); thus, τ i−1 ∈ ψ(bound(σi)), implying that τ ∈ ψ(bound(σi)).

We have shown in Lemma 3.4 that the uncertainty about another process is
restricted to its last seen round, if it is seen. Thus, once we fix the views of all
processes but one, the remaining process may have only one of two views, which
translates into the next lemma.

Lemma 5.8. Let τ i1 be an i-simplex of ψ(σ), corresponding to an IS execution α,
such that ids(σ) = ids(τ i1) and j ∈ ids(τ i1). If pj is seen in α, then there is exactly one
other i-simplex τ i2 ∈ ψ(σ) that differs only in pj’s view.

Lemma 5.7 implies that if pj is seen in an IS execution α, then α corresponds to
an internal simplex. We now prove that an internal (i − 1)-simplex is contained in
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exactly two i-simplexes, showing that the ISE complex is a pseudomanifold.
Lemma 5.9. For every simplex σi ∈ In, ψ(σi) is an i-pseudomanifold.
Proof. As noted before, ψ(σi) is full to dimension i. We show that any simplex

τ i−1 ∈ ψ(σi) is contained in at most two i-simplexes. Let τ i ∈ ψ(σi) be such that τ i−1

is a face of τ i. Since τ i−1 and τ i are properly colored by the ids, ids(τ i)− ids(τ i−1) =
{j} for some process pj . Furthermore, any i-simplex of ψ(σi) containing τ i−1 has a
vertex colored with pj . Let α be the prefix of an execution with steps by processes in
ids(σi) corresponding to τ i; this prefix exists since observed(τ i) = ids(σi). There are
two cases.

Case 1. pj is unseen in α. Let σi−1 be the face of σi that does not include the
vertex whose id is pj ; then observed(τ

i−1) = ids(σi−1). Since pj does not see an id
not in ids(σi), its view is determined. Hence, τ i is unique.

Case 2. pj is seen in α. Let k be the last seen round of pj in α. Lemma 5.8
implies that there are only two possible views for pj which are compatible with the
views in τ i−1.

Lemmas 5.7 and 5.9 imply condition 5 of Definition 4.1. Therefore, En is a
chromatic divided image of In under ψ. If a protocol P solves a task ∆, then it solves
∆ in IS executions. Clearly, δP is a color-preserving (on process ids), anonymous
simplicial map from En to On that agrees with ∆. This implies the next theorem.

Theorem 5.10. Let 〈In,On,∆〉 be a task. If there is a wait-free protocol which
solves this task, then there is a chromatic divided image of In, Kn, and there is a
color-preserving (on ids), anonymous simplicial map δ from Kn to On that agrees
with ∆.

5.2. Connectivity of the ISE complex. Since the ISE complex is a divided
image of the input simplex, it contains a connected divided image of the input simplex
(see Appendix A). Translating Theorem 3.9 to combinatorial topology implies the
following, stronger property of the ISE complex—it is connected itself.

A divided image of a simplex σn under ψ is well connected if for every σi ∈M(σn),
if i ≥ 1, then ψ(σi) is i-connected, and if i ≥ 2, then bound(ψ(σi)) is (i−1)-connected.

Theorem 5.11. Let En be an ISE chromatic divided image of M(σn) under ψ
starting with input σn. Then En is well connected.

The theorem can be extended to show that if In is i-connected, then so is ψ(In).
The proof follows from the fact that if σi1 and σi2 are two simplexes of In with
σi−1 = σi1∩σi2, then ψ(σi1)∩ψ(σi2) contains an (i−1)-simplex, τ i−1, by Lemma 4.2(2).
Thus, there is an i-path from any i-simplex in ψ(σi1) to any simplex in ψ(σi2) going
through τ i−1. Transitivity implies the claim for i-simplexes of In connected by an
i-path.

5.3. Orientability of the ISE complex. Let Km be an m-pseudomanifold.
An orientation of a simplex is an equivalence class of orderings of its vertices, con-
sisting of one particular ordering and all even permutations of it. If the vertices are
colored with process ids, then the positive orientation is the one in which the vertices
are ordered with the ids from small to large, and the negative orientation is the one
where the two vertices with smallest ids are exchanged (each one with all its even
permutations). Let σ(i) be the face of σm in which the vertex with id i is removed;
e.g., σ(1) is the face with ids {0, 2, . . . ,m}. An orientation of an m-simplex σ induces
an orientation on each of its faces, σ(i), according to the sign of (−1)i. Consider
an m-simplex σ and its (m − 1)-face, σ(i). If σ is oriented positive, with its ids in
order, 〈0, 1, 2, . . . ,m〉, σ induces the orientation (−1)i to the face σ(i). On the other
hand, if σ is oriented negative, 〈1, 0, 2, . . . ,m〉 = −〈0, 1, 2, . . . ,m〉, and σ induces the
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Fig. 5. An oriented 2-pseudomanifold, with a coloring (in brackets).

orientation (−1)(−1)i to the face σ(i). For example, in Figure 5, τ1 is positively ori-
ented 〈v0, v1, v2〉, and the induced orientations are 〈v0, v1〉, 〈v1, v2〉, and 〈v2, v0〉; τ2
is negatively oriented 〈v2, v1, v3〉, and the induced orientations are 〈v1, v3〉, 〈v3, v2〉,
and 〈v2, v1〉.

Km is orientable if there is an orientation for each of its m-simplexes such that an
(m−1)-simplex contained in two m-simplexes gets opposite induced orientations from
each of the m-simplexes. Km together with such an orientation is an oriented pseu-
domanifold. For example, the complex in Figure 5 is an oriented 2-pseudomanifold.

An m-pseudomanifold is chromatic if it is properly colored with m + 1 colors.
The next simple lemma (e.g., [5]) shows that, for chromatic pseudomanifolds, the
previous (common) definition of orientability is equivalent to a simpler combinatorial
definition.

Lemma 5.12. A chromatic pseudomanifold Km is orientable if and only if its
m-simplexes can be partitioned into two disjoint classes such that if two m-simplexes
share an (m− 1)-face, then they belong to different classes.

Proof. Assume Km is orientable and partition its simplexes into two classes,
one containing the simplexes with positive orientations and the other containing the
simplexes with negative orientations. Since Km is orientable, if two m-simplexes τ1
and τ2 share an (m− 1)-face, then the shared face gets opposite induced orientations.
Since Km is chromatic, this implies that τ1 and τ2 have opposite orientations, and
they are in different classes.

To prove the converse direction, consider the partition of the simplexes of a chro-
matic pseudomanifold Km into two disjoint classes; orient the simplexes of the first
class in the positive direction and the simplexes of the second class in the negative
direction. Consider two m-simplexes σ1 and σ2 that share an (m − 1)-face, σ(i).
By assumption, σ1 and σ2 are in different classes; without loss of generality, σ1 is
oriented positive and σ2 is oriented negative, Since Km is chromatic, σ1 is oriented
〈0, 1, 2, . . . ,m〉 and σ2 is oriented 〈1, 0, 2, . . . ,m〉 = −〈0, 1, 2, . . . ,m〉. Hence, σ1 in-
duces the orientation (−1)i to the shared face σ(i), while σ2 induces the orientation
(−1)(−1)i; that is, they induce opposite orientations.

A chromatic divided image of M(σm) under ψ is orientable if ψ(σ) is orientable
for every σ ∈M(σm).

Theorem 5.13. Let En be an ISE chromatic divided image of M(σn) under ψ
starting with input σn. Then En is orientable.

Proof. Let σi be a face of σm; we explicitly partition the i-simplexes of ψ(σi) to
two disjoint classes. Consider an i-simplex τ ∈ ψ(σi) and the IS execution α corre-
sponding to τ . For any process pj that is seen in α, we can write α = s1, . . . , sr, {pj}∗,
where r is the tail position of pj in α. The tail {pj}∗ is nonempty for at most one
seen process pj . If the tail is not empty for some seen process pj , then r̂(σi) is pj ’s
tail position. Otherwise, then the tail position r is the same for all seen processes
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and is equal to the number of concurrency classes in α; in this case, r̂(σi) = r. The
simplex τ is in positive if r̂(τ) is even; otherwise, it is in negative.

Consider two i-simplexes, τ i1 and τ i2, sharing an (i−1)-face, τ i−1; the link vertices
of τ i−1 are colored with the same id, say pj . By Lemma 5.9 and its proof, without loss
of generality, pj is in the kth concurrency class of τ i1 and the kth concurrency class
of τ i2 is {pj}, where k is the last seen round of pj in τ i1. The views of all processes
but pj are the same in τ i1 and in τ i2; pj may have a tail with a different number
of steps in τ i1 and τ i2, but these are not counted in r̂(τ i1) and r̂(τ i2). Therefore, the
number of concurrency classes in τ i1 without its tail has the opposite parity of the
number of concurrency classes in τ i2 without its tail, and the simplexes are in different
classes.

Putting together Theorems 5.10, 5.11, and 5.13, we have our main result.
Theorem 5.14 (main characterization). Let 〈In,On,∆〉 be a task. If there is

a wait-free protocol which solves this task, then there is a well connected, orientable,
chromatic divided image of In, and there is a color-preserving (on ids), anonymous
simplicial map δ from it to On that agrees with ∆.

Herlihy and Rajsbaum [20] introduced algebraic spans as a tool for proving impos-
sibilities of renaming and set consensus using algebraic techniques. In Appendix B,
we show that an orientable chromatic divided image induces an algebraic span.

6. Counting simplexes. In this section we present two theorems about the
number of certain simplexes in a chromatic divided image. The first is the well-
known Sperner’s lemma, which will be applied in section 7.1 for the set consensus
impossibility. The second is a theorem about the number of monochromatic simplexes
in a binary coloring of a connected, orientable chromatic divided image; this theorem
is used in section 7.2 to show a lower bound on renaming.

Recall the definition of a Sperner’s coloring from section 4.1.4. The following
is a restatement of Sperner’s lemma in our notation; it holds for both oriented and
nonorientable divided images. It will be used to prove the set consensus impossibility
in section 7.1, and hence this result does not depend on orientability. It is a well-known
result, and the proof is a simple parity counting argument (e.g., [4]).

Theorem 6.1 (Sperner’s lemma). Consider a divided image Km of M(σm)
under ψ and a Sperner coloring χ : Km → M(σm). There is an odd number of
simplexes τ ∈ Km with χ(τ) = σm; in particular, at least one simplex goes to σm.

We proceed to the second result, which will be applied to prove the renaming
impossibility.

Let Km be an orientable, chromatic divided image of σm under ψ, with proper
coloring id. Assume in addition that Km has a binary coloring b, with colors {0, 1}.
Fix an orientation of Km and an induced orientation on its boundary.

Let #mono(Km) be the number of monochromatic m-simplexes of Km, counted
by orientation; i.e., an m-simplex with all its vertices colored by b with the same
color is counted as +1 if it is positively oriented; otherwise, it is counted as −1.
For example, consider a complex Km with two m-simplexes, as in Figure 5, with all
vertices colored 1. In this case, both simplexes are monochromatic; the count is 0,
since the simplexes have opposite orientations, and hence one is counted +1 and the
other is counted −1.

The theorem applies to divided images with structural symmetry; i.e., any pair of
divided images of faces (of the same dimension) are isomorphic under a bijection that
maps the process ids consistently. Formally, a mapping f : Lm → Km is id consistent
if, for any two vertices v1, v2 ∈ Lm, id(v1) = id(v2) implies id(f(v1)) = id(f(v2)). A
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divided image of σ under ψ has structural symmetry if, for any two i-faces, σi1 and σi2,
of σ, there is an id consistent simplicial bijection (one-to-one mapping), ζ, between
the vertices of ψ(σi1) and the vertices of ψ(σi2).

A binary coloring, b, ofKm with structural symmetry ζ is symmetric if isomorphic
vertices have the same color; that is, b(ζ(v)) = b(v) for every vertex v ∈ bound(Km).
Implicitly, if Km has a symmetric binary coloring, then it has structural symmetry.
Notice that ζ need not be unique, and a binary coloring is symmetric relative to a
particular choice of ζ. It is not trivial to prove that a coloring is symmetric; this is
done when the theorem is applied (section 7.2).

The main property used to prove the renaming impossibility has a flavor similar to
Sperner’s lemma, but it assumes that the divided image is orientable and symmetric.
This result was proved implicitly in [20], based on the existence of algebraic spans.
Here we state the result in our notation and show that divided images are sufficient to
obtain the required algebraic spans. Thus, the proof uses a result of [20] that is stated
in algebraic terms.4 The basic algebraic formalisms needed appear in Appendix B.

Theorem 6.2. Assume Km is a chromatic divided image of σm under ψ, with
a symmetric binary coloring b. If Km is connected and oriented, then #mono(Km)
�= 0.

Proof. The proof is similar to the proof of Theorem 6.2 in [20]. The coloring ofKm

defined by c(v) = (b(v) + id(v)) mod (m+ 1), for every v, induces a symmetric map
from Km to M(σm), and hence a corresponding symmetric chain map. Theorem B.2
implies that there is a chain map from M(σm) to Km. The composition of these chain
maps is the required chain map from M(σm) to M(σm), and hence the result follows
from Lemma 6.1 in [20].

7. Applications. In this section, we apply the condition for wait-free solvabil-
ity presented earlier (Theorem 5.10) to derive lower bounds for k-set consensus and
renaming. The renaming lower bound relies on Theorem 6.2 and, therefore, on the
fact that the ISE complex is orientable.

7.1. k-set consensus. In the k-set consensus task [11], processes start with
inputs from some domain and have to decide on at most k different outputs; each
output has to be the input of some process.

Captured in our combinatorial topology language, the k-set consensus task is the
triple 〈Dn,Dn,∆〉. Dn is P (D), for some domain D, and ∆ maps each σn ∈ Dn
to the subset of n-simplexes in Dn that contain at most k different values from the
values in σn. Theorem 5.10 and Sperner’s lemma are used to prove the next lower
bound, which is tight: If k > n, then there is a simple wait-free protocol for k-set
consensus [11].

Theorem 7.1. If k ≤ n, then there does not exists a wait-free protocol that solves
the k-set consensus task.

Proof. Assume, by way of contradiction, that P is a wait-free protocol for the
k-set consensus task, k ≤ n. We show that P must have at least one execution in
which k+1 different values are output, which implies that P does not solve the k-set
consensus task correctly. This is done by applying Theorem 6.1 to the ISE complex,
which is a chromatic divided image of the input complex, by Theorem 5.10. Let δP
be the decision map implied by P. Note that δP can also be seen as a simplicial map
into In.

4The combinatorial proof in [3] had a mistake.
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Consider the input simplex σ of dimension k+1, where processes p0, . . . , pk have
different inputs v0, . . . , vk, respectively. By Theorem 5.10, En(σ) is a divided image
of σ. Let v be the value δP assigns to some vertex in E(σ), and let σ′ be its carrier in
M(σ). The nontriviality condition implies that v is the input of some process in σ′,
and therefore we get the following.

Claim 7.2. δP is a Sperner coloring of En(σ).
By Theorem 6.1, there is a simplex τ ∈ En(σ) with δP(τ) = σ. Thus, at least k+1

values are output in some IS execution with input σ, which is a contradiction.

7.2. Renaming. In the renaming task [2], processes start with inputs (original
name) from a large domain and are required to decide on distinct outputs (new names)
from a domain which is as small as possible. Clearly, the task is trivial if processes
can access their id; in this case, process pi decides on i, which yields the smallest
possible domain. To avoid trivial solutions, it is required that the processes and the
protocol are anonymous [2]. That is, process pi with original name x executes the
same protocol as process pj with original name x.

Captured in our combinatorial topology language, the M -renaming task is the
triple 〈Dn,Mn,∆〉. Dn contains all subsets of some domain D (of original names)
with different values, Mn contains all subsets of [0,M ] (of new names) with different
values, and ∆ maps each σn ∈ Dn to all n-simplexes of Mn. We use Theorems 5.10
and 6.2 to prove that there is no wait-free anonymous protocol for the M -renaming
task if M ≤ 2n−1. The bound is tight, since there is an anonymous wait-free protocol
for 2n-renaming [2].

Theorem 7.3. If M < 2n, then there is no anonymous wait-free protocol that
solves the M -renaming task.

Proof. Assume, by way of contradiction, that P is a wait-free protocol for the
M -renaming task, M ≤ 2n−1. Assume that D = [0, 2n]; i.e., assume that the original
names are only between 0 and 2n. Since we consider a bounded set of inputs, we can
assume, without loss of generality, that every process takes the same number of steps.
Moreover, by an observation of Eli Gafni (see Herlihy [18]), we may assume, without
loss of generality, that P is comparison-based. That is, the protocol produces the
same outputs on inputs which are order-equivalent.

By Theorem 5.10, the ISE complex, S, is a chromatic divided image of the input
complex Dn. By Theorem 5.13, S is orientable, and by Theorem 5.11 S is connected.
Let ζ be the order preserving mapping between any two subsets of process ids, of the
same size, i.e., the mapping that maps the smallest id in one set to the smallest id in
the second set, etc. It is obvious that S has structural symmetry under ζ, since we
consider only executions in which all processes take the same number of steps.

Let δP be the decision map implied by P and define δ′ to be the binary coloring
which colors each vertex in S with the parity of the value assigned to it by δP . Fix
an input simplex σn. Since the protocol is comparison-based and anonymous, δ′ is a
symmetric coloring of S(σn) (with respect to ζ). Therefore, the assumptions of Theo-
rem 6.2 are satisfied, and, therefore, at least onem-simplex of S(σn) is monochromatic
under δ′.

On the other hand, note that the domain [0, 2n−1] does not include n+1 different
odd names; similarly, the domain [0, 2n−1] does not include n+1 different even names.
This implies that δ′ cannot color any simplex of S with all zeroes or with all ones;
i.e., no simplex of S is monochromatic, which is a contradiction.

8. Discussion. This paper presents a study of wait-free solvability based on
combinatorial topology. Informally, we have defined the notion of a chromatic divided
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image and proved that a necessary condition for wait-free solvability is the existence of
a simplicial chromatic mapping from a divided image of the inputs to the outputs that
agrees with the task specification. In fact, we show the existence of a specific, well-
structured chromatic divided image, the ISE complex; the ISE complex is proved to be
orientable and connected, which allowed us to prove theorems about its combinatorial
properties. These properties were then used to derive tight lower bounds for k-set
consensus and renaming. Our results do not use homology groups, whose computation
may be complicated.

Borowsky and Gafni [9] introduce another model of computation, based on an
iterated version of ISs, and prove that it is equivalent to the wait-free model, when
only decision tasks are concerned. In this model, there is a sequence of IS objects,
each used at most once by each process: in its i-step, a process writes its entire state
to the ith object. It is easy to check that the iterated ISE complex is a divided image
of the input complex; the proof is completely analogous to the proof that the ISE
complex is a divided image of the input complex. Therefore, the characterization and
impossibility results of this paper hold for this model as well. This exemplifies how
our combinatorial framework can be useful for other models of computation.

Several questions remain open. First, it is of interest to find other applications to
the necessary condition presented here. Second, there are several directions to extend
our framework, e.g., to allow fewer than n failures (as was done for one failure in [6]),
to handle other primitive objects besides read/write registers (cf. [19, 10]), and to
incorporate ongoing tasks.

Appendix A. Connectivity of divided images. It is useful to note the fol-
lowing lemma.

Lemma A.1. If Km is full to dimension j and j-connected, then it is i-connected
for every i, 0 < i < j.

Proof. Fix some i, 0 < i < j, and consider two i-simplexes, σi1 and σi2 in Km.
Since Km is full to dimension j, and i < j, it follows that there are two j-simplexes
σj1 and σj2 in Km such that σi1 ⊂ σj1 and σi2 ⊂ σj2. Since Km is j-connected, it follows

that there is a j-path in Km from σj1 to σj2. This path can be used to obtain an i-path
in Km from σi1 to σi2.

We now prove the following theorem.

Theorem A.2. Let Km be a divided image of Lm under ψ. There exists a
complex Hm, Hm ⊆ Km, and ψ̃, a restriction of ψ to Hm, such that Hm is a divided
image of Lm under ψ̃, and ψ̃(σi) is i-connected. Moreover, bound(ψ̃(σi)) is (i − 1)-
connected for every σi ∈ Lm, i > 1.

Proof. We construct Hm by defining ψ̃(σi) for every σi ∈ Lm, by induction on i.
We show that the properties of Definition 4.1 hold and that ψ̃(σi) is i-connected.

For i = 0, for every σ0 ∈ Lm, let ψ̃(σ0) = ψ(σ0).

Assume ψ̃(σj) has been defined for j < i, satisfying the required properties. Let
ψ̃(σi) be the complex containing every face of every τ i ∈ ψ(σi) such that there exists
an i-path from τ i to some simplex with an (i− 1)-face in ψ̃(bound(σi)).

First notice that ψ̃(σi) is an i-pseudomanifold, since ψ̃(σi) ⊆ ψ(σi), and it is full
to dimension i. It is also simple to see it has properties 1, 2, and 3 of Definition 4.1.
Next, we prove condition 4 of Definition 4.1.

Claim A.3. ψ̃(σ ∩ σ′) = ψ̃(σ) ∩ ψ̃(σ′).
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Proof. By definition of ψ̃ if σi−1 ⊆ σi, then ψ̃(σi−1) ⊆ ψ̃(σi). Hence, for
every face σj of σi, ψ̃(σj) ⊆ ψ̃(σi). This implies that ψ̃(σ ∩ σ′) ⊆ ψ̃(σ) ∩ ψ̃(σ′).
Assume τ i ∈ ψ̃(σ) ∩ ψ̃(σ′). Thus τ i ∈ ψ(σ) ∩ ψ(σ′) and τ i ∈ ψ(σ ∩ σ′). This
implies that there exists an i-path from τ i to a simplex containing some τ i−1 ∈
ψ̃(bound(σ ∩ σ′)).

Next, we prove condition 5 of Definition 4.1.

Claim A.4. ψ̃(bound(σi)) = bound(ψ̃(σi)).

Proof. Assume τ i−1 ∈ ψ̃(bound(σi)). Then τ i−1 ∈ ψ̃(σi−1) for some face σi−1

of σi. Thus, τ i−1 ∈ ψ(σi−1) and τ i−1 ∈ ψ(bound(σi)) = bound(ψ(σi)). It follows
that there exists a unique τ i ∈ ψ(σi) containing τ i−1. This implies that τ i−1 ∈
bound(ψ̃(σi)).

Before proving the other direction of the claim, notice that bound(ψ̃(σi)) ⊆
bound(ψ(σi)). Otherwise, if τ i−1 ∈ bound(ψ̃(σi)), then there exists a unique τ i ∈
ψ̃(σi) containing τ i−1. If there is another i-simplex τ ∈ ψ(σi) containing τ i−1, τ
would also be in ψ̃(σi), by definition of ψ̃, since τ and τ i are connected by a (one
step) i-path.

Assume that τ i−1 ∈ bound(ψ̃(σi)), and let τ i be the unique i-simplex in ψ̃(σi) con-
taining τ i−1. Then τ i−1 ∈ bound(ψ(σi)), since we have just proved that bound(ψ̃(σi))
⊆ bound(ψ(σi)). Hence τ i−1 ∈ ψ(bound(σi)), and thus τ i−1 ∈ ψ(σi−1), for some face
σi−1 of σi. Since τ i ∈ ψ̃(σi), there exists an i-path from τ i to an i-simplex containing
some τ i−1

1 ∈ ψ̃(bound(σi)). Assume τ i−1
1 ∈ ψ̃(σi−1

1 ). Thus there exists an (i−1)-path
from τ i−1 to τ i−1

1 , by using this i-path. By the induction hypothesis, there exists an
(i− 1)-path from τ i−1

1 to an (i− 1)-simplex containing some τ i−2 ∈ ψ̃(bound(σi−1
1 )).

Therefore there exists an (i−1)-path from τ i−1 to the (i−1)-simplex containing τ i−2.
The definition of ψ̃ implies that τ i−1 ∈ ψ̃(σi−1

1 ), and thus τ i−1 ∈ ψ̃(bound(σi)).

To complete the proof of the lemma, we show, by induction on i, that ψ̃(σi) is
i-connected, and that, for i > 1, ψ̃(bound(σi)) is (i− 1)-connected.

To show that ψ̃(bound(σ2)) is 1-connected, observe that ψ̃(σ1) is 1-connected
because, since it is finite, it is a graph which consists of a simple path. The lemma
follows since Definition 4.1(4) holds.

For the induction step, we first show that ψ̃(σi) is i-connected. By the induction
hypothesis, the boundary of ψ̃(σi) is (i−1)-connected. Thus, it suffices to consider two
adjacent (i− 1)-simplexes τ i−1, τ ′i−1 of bound(ψ̃(σi)), that is, such that τ i−1 ∩ τ ′i−1

is an (i− 2)-simplex, τ i−2. In this case, we need to show that τ i is i-connected to τ ′i,
where these are the single i-simplexes of ψ̃(σi) with τ i−1 ⊂ τ i and τ ′i−1 ⊂ τ ′i.

To prove that τ i is i-connected to τ ′i, we construct an i-path (τ i =)τ i0, τ
i
1, . . . , τ

i
�(=

τ ′i), all of whose simplexes contain τ i−2. Denote the pairwise intersections τ i−1
1 , τ i−2

2 ,
. . . , τ i−1

� , and τ i−1
0 = τ i−1.

Notice that there is a unique (i − 1)-face of τ i0, τ
i−1
1 that (a) contains τ i−2 and

(b) is different from τ i−1
0 . Now, τ i−1

1 is not in bound(ψ̃(σi)) because bound(ψ̃(σi)) is a
pseudomanifold, and hence τ i−2 is contained in only two (i− 1)-simplexes, τ i−1 and
τ ′i−1. It follows that τ i−1

1 is contained in two i-simplexes, τ i(= τ i0), and τ i1.

Repeating this argument, we obtain an i-path (τ i =)τ i0, τ
i
1, . . . , τ

i
� . This path

either ends in τ ′i or it repeats a simplex and the construction is stopped at that
point. We now show that it can end only in τ ′i, and hence τ ′i = τ i� . Consider τ

i−1
�+1 , the

unique (i−1)-face of τ i� , that satisfies conditions (a) and (b) above, i.e., that contains
τ i−2, and is different from τ i−1

� . We have seen that this face cannot be external

(unless it is equal to τ ′i−1, τ i� = τ ′i, and then we are done) because bound(ψ̃(σi)) is a
pseudomanifold, and hence τ i−2 is contained in only two (i−1)-simplexes, τ i−1, τ ′i−1.
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Thus the path must have a loop. That is, the face τ i−1
�+1 is contained in τ i� , and in

some other previous simplex in the i-path, and the next simplex after τ i� in the i-path
is a previous simplex. However, this is impossible, since each previous (i− 1)-simplex
satisfying conditions (a) and (b) in the i-path already is contained in two i-simplexes,
or else is τ i−1 which is an external simplex.

The proof that ψ̃(bound(σi+1)) is i-connected follows from the fact that ψ̃(σi)
is i-connected: it suffices to prove that for any σ1, σ2 ∈ bound(σi+1), ψ̃(σ1) ∩ ψ̃(σ2)
contains an (i − 1)-simplex. This follows from Definition 4.1(4) because ψ̃(σ1) ∩
ψ̃(σ2) = ψ̃(σ1 ∩ σ2), and from Definition 4.1(5) because ψ̃(σ1 ∩ σ2) is an (i − 1)-
pseudomanifold.

Appendix B. Algebraic spans. We start by describing very briefly some
algebraic preliminaries; for more details and examples see [24, section 1.13] and [20].

Let K be an n-dimensional simplicial complex and σ = (v0, . . . , vq) a q-simplex of
K. An orientation for σ is an equivalence class of orderings on v0, . . . , vq, consisting of
one particular ordering and all even permutations of it. For example, an orientation
of a 1-simplex (v0, v1) is just a direction, either from v0 to v1 or vice-versa. An
orientation of a 2-simplex (v0, v1, v2) can be either “clockwise,” as in (v0, v1, v2), or
“counterclockwise,” as in (v0, v2, v1).

Recall that, by Lemma 5.12, a chromatic pseudomanifold Km is orientable if and
only if its m-simplexes can be partitioned into two disjoint classes such that if two
m-simplexes share an (m− 1)-face, then they belong to different classes.

A q-chain of K is a formal sum of oriented q-simplexes:
∑�
i=0 λi · σqi , where λi is

an integer. When writing chains, we typically omit q-simplexes with zero coefficients,
unless they are all zero, when we simply write 0. We write 1 · σq as σq and −1 · σq
as −σq. We identify −σq with σq having the opposite orientation. The q-chains of K
(with component-wise addition) form a free Abelian group Cq(K), called the qth chain
group of K. For dimension −1, we adjoin the infinite cyclic group Z in dimension −1,
C−1(K) = Z.

A boundary operator ∂q : Cq(K)→ Cq−1(K) is a homomorphism such that, for a
q-chain α,

∂q−1∂qα = 0,

and the augmentation ∂0 : C0(K) → C−1(K) is an epimorphism (i.e., a surjective
homomorphism).

For an oriented simplex σq = (v0, . . . , vq), let facei(σ
q), the ith face of σq, be

the (q− 1)-simplex (v0, . . . , v̂i, . . . , vq), where circumflex denotes omission. The usual
boundary operator ∂q : Cq(K)→ Cq−1(K), q > 0, is defined on simplexes:

∂σq =

q∑
i=0

(−1)i · facei(σq),

and is extended additively to chains: ∂(α0 + α1) = ∂α0 + ∂α1. For q = 0, ∂0(v) = 1,
and extend linearly.5 (We sometimes omit subscripts from boundary operators.)

The chain complex C(K) is the sequence of groups and homomorphisms {Cq(K),
∂q}.

5Munkres [24] uses ε for ∂0.
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Let C(K) = {Cq(K), ∂q} and C(L) = {Cq(L), ∂′q} be chain complexes for simpli-
cial complexes K and L. An augmentation-preserving chain map (or chain map) φ is
a family of homomorphisms.

φq : Cq(K)→ Cq(L)

such that ∂′q ◦ φq = φq−1 ◦ ∂q.
Let Sn = M(σn), for a simplex σn, and let Pn be a divided image of Sn under

ψ. An algebraic span is a chain map φ : C(Sn) → C(Pn) that is carried by ψ. The
chain map φ is carried by ψ if each simplex appearing with a nonzero coefficient in
φ(σi) is in the subcomplex ψ(σi).

A properly colored m-pseudomanifold Km is orientable if its m-simplexes can be
oriented so that two m-simplexes sharing an (m − 1)-face give opposite orientations
to the face. That is, the chain ∂(σ1 + σ2) has zero coefficient on the face that σ1 and
σ2 share. Such an orientation is called coherent, and partitions the m-simplexes in
two classes, so that simplexes sharing an (m − 1)-face are in different classes. The
orientation of simplexes of dimension other than m can be arbitrary. Also, if Km is
orientable, then it has exactly two coherent orientations.

The next proposition follows directly from the definition of pseudomanifold and
of orientability. Indeed, in an m-pseudomanifold every (m − 1)-simplex is contained
in either one or two m-simplexes. For any (m − 1)-simplex σ contained in two m-
simplexes σ1, σ2, the chain ∂(σ1 + σ2) has zero coefficient on σ.

Proposition B.1. Let Km be an m-pseudomanifold with a coherent orientation
and c the chain which is the sum of all its m-simplexes. Then ∂(c) is a chain of
(m− 1)-simplexes, which as a set is equal to bound(Km).

In the renaming applications we assume a divided image with structural symme-
try, in order to use Theorem 6.2. In such cases we assume that the corresponding
algebraic span preserves the symmetry, that is, that symmetric simplexes have as-
sociated symmetric simplexes under the chain map. Let En be the ISE complex on
input σn, a divided image of σn under ψ, where each process executes a fixed number
of steps.

Theorem B.2. There is an algebraic span from M(σn) to En. Moreover, if En
has structural symmetry, then the algebraic span preserves it.

Proof. Give an arbitrary orientation to the simplexes of M(σn) to obtain a chain
complex C(M(σn)).

By Theorem 5.10 we know that En is a chromatic divided image of M(σn) under
ψ. By Theorem 5.13 we can give to every pseudomanifold ψ(σ) a coherent orientation
and obtain the chain complex C(En).

Let ψ̇ be the chain map that associates to σi ∈ M(σn), the chain which is the
sum of the i-simplexes that appear in ψ(σi), with sign defined as follows: ψ̇(σn) is
the sum of the n-simplexes in ψ(σn). If ψ̇(σi) has been defined, then ψ̇(facej(σ

i)) is
the sum of the (i− 1)-simplexes in ψ(facej(σ

i)) with sign (−1)j .
We proceed to prove that ψ̇ is a chain map. First, ψ̇q is a well-defined homomor-

phism, since it is defined on simplexes (the generators of the group Cq(M(σn))) and ex-

tended linearly. Now, ψ̇q(σ
q) = c satisfies the hypothesis of Proposition B.1, and hence

∂′q(c) is equal to bound(ψ(σ
q)), as a set. Since ∂q(σ

q) is equal to
∑q
i=0(−1)i · facei(σq),

and equal to bound(σq) as a set, and by the last requirement of the definition of a
divided image, we have that ∂′q ◦ φq = φq−1 ◦ ∂q, since the orientations correspond.
Notice that with q = 0 we use condition 3 of Definition 4.1.
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Abstract. A graph G is called a Berge graph if neither G nor its complement contains a
chordless cycle whose length is odd and at least five; what we call a dart is the graph with vertices
u, v, w, x, y and edges uv, vw, uy, vy, wy, xy; a graph is called dart-free if it has no induced subgraph
isomorphic to the dart. We present a polynomial-time algorithm to recognize dart-free Berge graphs;
this algorithm uses as a subroutine the polynomial-time algorithm for recognizing claw-free Berge
graphs designed previously by Chvátal and Sbihi [J. Combin. Theory Ser. B, 44 (1988), pp. 154–176].
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1. Introduction. Claude Berge proposed the notion of a perfect graph, which is
a graph G such that, for each induced subgraph F of G, the chromatic number of F
equals the largest number of pairwise adjacent vertices in F ; he made the following
conjecture.

Conjecture 1.1 (The Strong Perfect Graph Conjecture). A graph is perfect
if and only if it contains, as an induced subgraph, no odd hole chordless cycle whose
number of vertices is odd and at least five and no complement of such a cycle.

Berge publicized the Strong Perfect Graph Conjecture as early as April 1960—
at the Second International Meeting on Graph Theory, organized by Horst Sachs at
the University of Halle-Wittenberg—but published it only three years later [1]; the
first widely available reference to it is [2]. For an account of the early history of the
conjecture, see [3, 4].

A hole is a chordless cycle with at least four vertices; an antihole is the complement
of a hole; holes and antiholes are called even or odd according to the parity of their
number of vertices. Following Chvátal and Sbihi [6], we shall call a graph a Berge
graph if it contains no odd hole and no odd antihole: in these terms, the Strong
Perfect Graph Conjecture asserts that a graph is perfect if and only if it is a Berge
graph. Its “only if” part is trivial and its “if” part remains open.

Progress towards proving the Strong Perfect Graph Conjecture is often made by
proving that all graphs in some restricted class of Berge graphs are perfect. A popular
way of creating restricted classes of Berge graphs for this purpose is to forbid a single
induced subgraph F : the resulting class consists of all Berge graphs that are F -free
in the sense of containing no induced subgraph isomorphic to F . In particular, with
a claw defined as the first graph in Figure 1.1, Parathasarathy and Ravindra [10]
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proved that all claw-free Berge graphs are perfect; with a diamond defined as the
second graph in Figure 1.1, Tucker [12] proved that all diamond-free Berge graphs
are perfect; Sun [11] strengthened both of these results by proving that, with a dart
defined as the third graph in Figure 1.1, all dart-free Berge graphs are perfect.

CLAW
DARTDIAMOND

Fig. 1.1. The claw, the diamond, and the dart.

Another fundamental conjecture concerning perfect graphs is the following.

Conjecture 1.2. There is a polynomial-time algorithm to recognize perfect
graphs.

Again, progress towards proving this conjecture is often made by designing a
polynomial-time algorithm to recognize members of some restricted class of perfect
graphs. In particular, Chvátal and Sbihi [6] designed a polynomial-time algorithm to
recognize claw-free perfect graphs; Fonlupt and Zemirline [8, 9] designed a polynomial-
time algorithm to recognize diamond-free perfect graphs; the subject of the present
paper is a polynomial-time algorithm to recognize dart-free Berge graphs.

For a recent survey of results on perfect graphs and related subjects, see [5].

2. Theorems. Many theorems elucidate the structure of objects in some class
C in terms of some proper subclass C0 of C: they assert that, unless an object in C is
primitive in the sense of belonging to C0, it must have a structural fault of a prescribed
type. We follow this paradigm in three iterations.

First, let us call a graph friendly if, for each of its vertices x such that x is the
center of a claw, the subgraph of G induced by the neighbors of x consists of vertex-
disjoint cliques. Trivially, every friendly graph is dart-free; however, the converse is
false (see either of the two graphs in Figure 2.1).

Fig. 2.1. Two unfriendly dart-free graphs.

Our first theorem specifies structural faults appearing in every dart-free graph
that is not friendly. One of these faults is the presence of adjacent twins, meaning
two adjacent vertices such that no vertex distinct from both is adjacent to precisely
one of them.
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Theorem 2.1. Unless a dart-free graph is friendly, it has at least one of the
following properties:

(i) it is disconnected;
(ii) its complement is disconnected;
(iii) it contains adjacent twins.
Next, let us call a graph a bat if it consists of a chordless path a1a2 . . . am and an

additional vertex z that is adjacent to a1, ai, ai+1, am for some i with 3 ≤ i ≤ m− 3
and adjacent to no other aj . Occasionally, we shall refer to z as the head of the bat
and to a1, am as its wing-tips; see Figure 2.2.

a
1

a
i

a
m

a
i+1

z

Fig. 2.2. A bat.

There are infinitely many bats; we call a graph bat-free if it contains none of them
(as an induced subgraph). Our second theorem specifies structural faults appearing in
every friendly Berge graph that is not bat-free. One of these faults is a clique-cutset;
to describe the other fault, we need a few definitions. By a z-edge, we mean any edge
whose endpoints are both adjacent to a vertex z; for any graph G and any vertex z
of G, we let G∗z denote the graph obtained from G− z by removing all the z-edges;
we say that G has a rosette centered at z if G∗z is disconnected and the subgraph of
G induced by all the neighbors of z consists of vertex-disjoint cliques.

Theorem 2.2. Every friendly graph containing no odd hole has at least one of
the following properties:

(i) it is bat-free;
(ii) it has a clique-cutset that is a maximal clique;
(iii) it has a rosette.
Any of the three graphs in Figure 2.4 shows that property (i) in this theorem

cannot be dropped; the two graphs in Figure 2.3 show that neither (ii) nor (iii) can
be dropped.

The two notions of a clique-cutset and a rosette may appear unrelated in terms of
G; in terms of a certain graph which we call the clique graph of G, they are nearly dual
to each other. The clique graph of G is bipartite; its white vertices are the vertices
of G and its red vertices are the maximal cliques in G (here, as usual, “maximal” is
meant with respect to set-inclusion rather than size); a white vertex z is adjacent to
a red vertex C if and only if z ∈ C. Trivially, the removal of a red vertex C and all
its neighbors disconnects the clique graph of G if and only if G− C is disconnected;
trivially, the removal of a white vertex z and all its neighbors disconnects the clique
graph of G if and only if G∗z is disconnected.

Theorem 2.2 is closely related to the following theorem of Conforti and Rao [7]:
If a bipartite graph H containing no cycle of length four and no chordless cycle of
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Fig. 2.3. Neither (ii) nor (iii) in Theorem 2.2 can be dropped.

length congruent to 2 modulo 4 contains a cycle of length congruent to 2 modulo 4,
then H has a vertex v such that the removal of v and all its neighbors disconnects H.
We are going to sketch a derivation of the Conforti–Rao theorem from a weaker form
of Theorem 2.2, where “friendly” is replaced by “diamond-free.”

Given a bipartite graph H that satisfies the hypothesis of the Conforti–Rao the-
orem, color the vertices in one part of H red, color the vertices in the other part of
H white, and consider the graph G defined as follows: the vertices of G are the white
vertices of H and two vertices of G are adjacent if and only if they have a common
neighbor in H. Since H contains no chordless cycle of length six, H is the clique graph
of G; since H contains no cycle of length four, G is diamond-free; since H contains
no chordless cycle of length congruent to 2 modulo 4, G contains no odd hole. The
shortest cycle of length congruent to 2 modulo 4 in H has precisely one chord (cf.
Lemma 3.1 of Conforti and Rao [7]) and induces a bat in G. Now Theorem 2.2 (with
“friendly” replaced by “diamond-free”) guarantees that H has a vertex v such that
the removal of v and all its neighbors disconnects H.

Our third theorem specifies a structural fault appearing in every friendly Berge
graph that is neither bipartite nor claw-free: by a separator in a graph G, we mean
any cutset consisting of at most two vertices except cutsets S such that S consists
of two nonadjacent vertices, G − S has precisely two components, and one of these
components consists of a single vertex.

Theorem 2.3. Every bat-free friendly graph containing no odd hole has at least
one of the following properties:

(i) it is bipartite;
(ii) it is claw-free;
(iii) it has a separator.
Again, none of the three properties in this theorem can be dropped: see the three

graphs in Figure 2.4.
Our polynomial-time algorithm to recognize friendly Berge graphs evolves from

Theorems 2.1, 2.2, and 2.3; in analyzing it, we shall use a strengthening of Theorem
2.2. There, a bat in a friendly graph G is called fragile if, with C standing for the
unique maximal clique of G that contains the triangle of the bat, the two wing-tips
of the bat belong to distinct components of G− C.

Theorem 2.4. Let G be a friendly graph containing no odd hole. If G contains
a bat with head z such that the two wing-tips of the bat belong to the same component
of G ∗ z, then G and z have at least one of the following properties:

(i) G contains a fragile bat with head z;
(ii) G contains a clique-cutset C such that z ∈ C and some component of G−C
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Fig. 2.4. None of the three properties in Theorem 2.3 can be dropped.

includes no neighbor of z.
Neither of the two properties in this theorem can be dropped: see the two graphs

in Figure 2.5.

z

z

Fig. 2.5. Neither of the two properties in Theorem 2.3 can be dropped.

To derive Theorem 2.2 from Theorem 2.4, consider an arbitrary friendly graph G
containing no odd hole. We may assume that G contains a bat (else it has property (i)
of Theorem 2.2) and that, with z standing for the head of the bat, the two wing-tips
of the bat belong to the same component of G∗z (else G has property (iii) of Theorem
2.2). Now G has property (i) of Theorem 2.4 or else it has property (ii) of Theorem
2.4. In the former case, the unique maximal clique of G that contains the triangle
of the bat is a cutset of G; in the latter case, the unique maximal clique of G that
contains C is a cutset of G.

Theorems 2.1, 2.3, and 2.4 will be proved in section 3; the algorithm and its
analysis are the subject of section 4.

3. Proofs. All our subgraphs are induced. When A is a path with vertices
a1, a2, . . . , am and edges a1a2, a2a3, . . . , am−1am, we write A = a1a2 . . . am and borrow
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the notation used for intervals: A[ai, aj ] = aiai+1 . . . aj , A[ai, aj) = aiai+1 . . . aj−1,
etc. Any path of the form a1a2 . . . ak will be called a prefix of A and any path of the
form akak+1 . . . am will be called a suffix of A.

3.1. Proof of Theorem 2.1. Consider an arbitrary graph G such that G is not
friendly, G is connected, its complement G is connected, and G contains no adjacent
twins. We shall find a dart in G.

It is a routine matter to verify that a graph is not friendly if and only if it contains
(as an induced subgraph) either a dart or else the graph with vertices u1, u2, u3, v1, v2

and the seven edges v1v2, uivj (i = 1, 2, 3; j = 1, 2). In particular, we may assume that
our G contains an induced subgraph of the second kind. Now consider the subgraph of
G induced by all the common neighbors of u1, u2, and u3; let Q denote the component
of this subgraph that contains v1 and v2.

Case 1. There are vertices x,w1, w2 such that x �∈ Q,w1 ∈ Q,w2 ∈ Q, and
xw1 ∈ E, xw2 �∈ E.

Since Q is connected, we may assume that w1w2 ∈ E; since x �∈ Q, we have
xui �∈ E for at least one i. Now the subgraph of G induced by u1, u2, u3, w1, w2, x
contains an induced dart.

Case 2. The set of vertices of G − Q partitions into sets A and B such that
xw ∈ E whenever x ∈ A,w ∈ Q and such that xw �∈ E whenever x ∈ B,w ∈ Q.

Since G is connected, we have B �= ∅; in turn, since G is connected, there is an
edge ab with a ∈ A, b ∈ B. Since v1 and v2 are not adjacent twins, some vertex v is
adjacent to precisely one of them; note that v ∈ Q. Now a, b, v, v1, v2 induce a dart
in G.

3.2. Two simple lemmas.
Lemma 3.1. Let G be a graph with at least four vertices and with a unique triangle

v1v2v3. If all three graphs G−{v1, v2}, G−{v1, v3}, G−{v2, v3} are connected, then
G contains an odd hole.

Proof. Let Q be any component of G − {v1, v2, v3}. We may assume that Q is
bipartite (else Q contains an odd hole and we are done); thus the set of vertices of
Q splits into stable sets S1 and S2. Since each G− {vi, vj} is connected, each of the
three vertices vk must have a neighbor in S1 ∪ S2. Hence two of the three vertices,
say v1 and v2, must have a neighbor in the same Si. Since Q is connected, it follows
that the subgraph of G induced by Q∪ {v1, v2} is not bipartite, and so it contains an
odd hole.

Lemma 3.2. Let an edge e of a graph G extend into no triangle. If G is friendly,
then G−e is friendly; if G contains no odd hole, then G−e contains no odd hole.

3.3. Proof of Theorem 2.3. By a pseudobat, we shall mean any graph with
vertices a1, a2, . . . , am and z such that

(i) a1a2 . . . am is a (not necessarily chordless) path;
(ii) z is adjacent to a1, ai, ai+1 and am for some i with 3 ≤ i ≤ m − 3 (and

possibly to other vertices aj);
(iii) za1aiam is a claw.

(In a friendly graph, condition (iii) is equivalent to saying that both za1aiam and
za1ai+1am are claws.)

Lemma 3.3. Let G be a friendly graph containing no odd hole; let z be a vertex
of G that belongs to no triangle; let u1u2 . . . ur, v1v2 . . . vs, and w1w2 . . . wt be vertex-
disjoint paths in G − z such that u1, v1, and w1 are neighbors of z and urvswt is a
triangle. Then G contains an induced pseudobat.
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Proof. The proof is by induction on the number of vertices of G. The induction
hypothesis allows us to assume that the three paths are chordless and that together
they cover all the vertices of G− z. Lemma 3.1 guarantees that G contains a triangle
T other than urvswt. Trivially, T meets at least two of the three chordless paths;
the induction hypothesis allows us to assume that T meets at most two of the paths.
Hence symmetry allows us to assume that T is vjwkwk+1 for some j and k; in turn,
the induction hypothesis allows us to assume that j = s (consider G− vs).

Case 1. vswt−1 ∈ E.

Since G is friendly, at least two of the three vertices ur, vs−1, wt−1 must be adja-
cent (consider the neighborhood of vs), and so we are done by the induction hypothesis
applied to G− wt.

Case 2. vswt−1 �∈ E.

Write v0 = z. The induction hypothesis allows us to assume that vs−1 is adjacent
neither to wk nor to wt (consider G−wt−1). Thus the path vs−1 . . . v2v1v0w1w2 . . . wt
along with the additional vertex vs induces a pseudobat in G.

Lemma 3.4. Let G be a friendly graph containing no odd hole. If G contains an
induced pseudobat, then it contains an induced bat.

Proof. The proof is by induction on the number of edges of G. Let a1, a2, . . . , am
and z be as in our definition of a pseudobat. Note that a1ai+1 �∈ E and ai+1am �∈
E since G is friendly (consider the neighborhood of z). The induction hypothesis
allows us to assume that G is the pseudobat and that the two paths a1a2 . . . ai and
ai+1ai+2 . . . am are chordless.

Case 1. z is adjacent to some aj other than a1, ai, ai+1, am.

Symmetry allows us to assume that 2 ≤ j ≤ i− 1. If j = i− 1, then ai−1ai+1 ∈
E, a1ai−1 �∈ E, ai−1am �∈ E (consider the neighborhood of z), and we are done by
the induction hypothesis applied to G − ai. Thus we may assume that j ≤ i − 2;
in particular, ajai �∈ E (since the path a1a2 . . . ai is chordless). If ajam �∈ E, then
we are done by the induction hypothesis applied to the pseudobat induced in G by
ajaj+1 . . . am and z; if ajam ∈ E, then a1aj �∈ E, ajai+1 �∈ E, a1ai+1 �∈ E (consider
the neighborhood of z), and we are done by the induction hypothesis applied to the
pseudobat induced in G by a1a2 . . . ajamam−1 . . . ai+1 and z.

Case 2. z is adjacent to no aj other than a1, ai, ai+1, am.

We may assume that the path a1a2 . . . am has at least one chord (else G is a bat
and we are done). If no chord of this path extends into a triangle, then G has an odd
hole since conditions of Lemma 3.1 are satisfied for G or for the subgraph induced
in G by a1a2 . . . aiai+1 and z or for the subgraph induced in G by aiai+1 . . . am and
z. Thus we may assume that a chord e extends into a triangle, T ; since z �∈ T ,
symmetry allows us to assume that T is ajakak+1 for some j and k with 1 ≤ j ≤ i
and i + 1 ≤ k ≤ m − 1. Among all such triangles, choose one with j as small as
possible. If j ≤ i − 1, then Lemma 3.3 guarantees that G − ai contains an induced
pseudobat (in which case we are done by the induction hypothesis). Thus we may
assume that j = i.

Subcase 2.1. aiai+2 �∈ E.

Now k ≥ i+3 and (since za1aiam is a claw) k ≤ m−2, and so zak �∈ E, zak+1 �∈ E;
minimality of j implies that ai−1ak �∈ E or ai−1ak+1 �∈ E (or both); hence aiai−1zak or
aiai−1zak+1 is a claw. It follows that aiai−1zak is a claw (consider the neighborhood
of ai), and so we are done by the induction hypothesis applied to the pseudobat
induced in G by ai−1 . . . a2a1zai+1ai+2 . . . ak and ai.

Subcase 2.2. aiai+2 ∈ E.
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Now ai−1ai+2 ∈ E (consider the neighborhood of ai), and so minimality of j
implies ai−1ai+1 �∈ E, ai−1ai+3 �∈ E; since the path ai+1ai+2 . . . am is chordless,
ai+1ai+3 �∈ E. Thus G is not friendly (consider the neighborhood of ai+2), a contra-
diction.

Proof of Theorem 2.3. Consider an arbitrary bat-free friendly graph G that con-
tains no odd hole, is not bipartite, and is not claw-free. We shall find a separator in
G.

For each vertex x of G, write x ∈ A if x is in a triangle; write x ∈ B if x is the
center of a claw. By assumption, A �= ∅ and B �= ∅.

Case 1. A ∩B �= ∅.
Let z be a vertex in A∩B. Since G is friendly, z has neighbors c1, c2, d1, d2 such

that c1c2 �∈ E, d1d2 and cidj �∈ E for all choices of i and j. Lemma 3.4 guarantees
that G − z contains no two vertex-disjoint paths from {c1, c2} to {d1, d2}; now, by
Menger’s theorem, G− z contains a vertex w such that G− {z, w} contains no path
from {c1, c2} to {d1, d2}. Observe that {z, w} is a separator in G.

Case 2. A ∩B = ∅.
Let T be a triangle in G, let z be a vertex in B and let N denote the neighborhood

of z. Lemmas 3.3 and 3.4 guarantee that G contains no three vertex-disjoint paths
from N to T ; now, by Menger’s theorem, G contains a set S of at most two vertices
such that G − S contains no path from N to T . Observe that S is a separator
in G.

3.4. Proof of Theorem 2.4. The following simple fact will be used quite a few
times.

Lemma 3.5. Let G be a graph with a chordless path x1x2 . . . xn such that n ≥ 5;
let z be a vertex of G such that
• zxj ∈ E if and only if j is one of 1, 2, n− 1, n

and such that
• x2x3 . . . xn−1 is a connected component of G− {z, x1, xn}.

If G is friendly, then G−{zx1, zx2, zxn−1, zxn} is friendly; if G contains no odd hole,
then G− {zx1, zx2, zxn−1, zxn} contains no odd hole.

Proof. First of all, note that
(i) zx1x2 is the only triangle containing zx1

(any other triangle zx1y would form a dart with x2 and xn−1); similarly,
(ii) zxnxn−1 is the only triangle containing zxn.

Now write F = G− {zx2, zxn−1}. It is a routine matter to verify, using (i) and (ii),
that F is friendly. The only hole in F that has a chord in G is zx1x2 . . . xn; if this
hole is odd, then zx2x3 . . . xn−1 is an odd hole in G. The rest follows from (i) and (ii)
by two applications of Lemma 3.2.

Unless indicated otherwise, we shall use a1, . . . , ai, ai+1, . . . , am and z to denote
the vertices of a generic bat just as we did in its definition: the bat consists of a
chordless path a1a2 . . . am and an additional vertex z that is adjacent to a1, ai, ai+1, am
for some i with 3 ≤ i ≤ m−3 and to no other aj . Trivially, if a friendly graph contains
a bat, then the triangle zaiai+1 in the bat extends into a unique maximal clique; we
shall often rely tacitly on a lemma that guarantees a stronger conclusion under the
additional assumption that the friendly graph contains no odd hole.

Lemma 3.6. If a friendly graph G containing no odd hole contains a bat, then
each edge of the triangle in the bat extends into a unique maximal clique of G.

Proof. Since zaiai+1 extends into a unique maximal clique, our task reduces
to proving that no vertex of G other than z, ai, ai+1 is adjacent to precisely two of
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z, ai, ai+1. Assume the contrary. Symmetry allows us to distinguish between two
cases.

Case 1. G includes a vertex x such that xz ∈ E, xai ∈ E, xai+1 �∈ E, and
x �= ai+1.

We must first have xai−1 ∈ E (else ai−1aiai+1zx is a dart) and xa1 ∈ E (else
a1aiai+1zx is a dart) and xam ∈ E (else amzxaiai+1 is a dart), and then i = 3 (else
a1ai−1amzx is a dart). However, then a1a2a3amx is a dart, a contradiction.

Case 2. G includes a vertex x such that xai ∈ E, xai+1 ∈ E, xz �∈ E, and x �= z.
We must first have xai−1 ∈ E (else ai−1aiai+1xz is a dart) and xai+2 ∈ E (else

ai+2ai+1aixz is a dart), and then xaj �∈ E whenever 1 ≤ j ≤ i−2 (else ajxai+1aiai+2

is a dart). However, then one of the holes za1a2 . . . aiz and za1a2 . . . ai−1xai+1z is
odd, a contradiction.

A path in G will be called x-sparse if it is chordless and contains no x-edge.
Lemma 3.7. Let a friendly graph containing no odd hole contain a bat. Then

every z-sparse path joining the two wing-tips of the bat passes through the maximal
clique that contains the triangle of the bat.

Proof. Consider a counterexample G with the smallest number of edges. Some
portion b1b2 . . . bn of the z-sparse path is vertex-disjoint from the bat, with b1 having
at least one neighbor in A[a1, ai−1] and with bn having at least one neighbor in
A[ai+2, am]. Write B = b1b2 . . . bn. Since B is a portion of a z-sparse path from a1 to
am, neither a1b1 nor bnam is a z-edge. Minimality of G guarantees that
• every vertex of G belongs either to the bat or to B;
• no edges of G go from A[a1, ai−1] to B − b1;
• no edges of G go from A[ai+2, am] to B − bn.

Furthermore, Lemma 3.2 and minimality of G guarantee that
• every edge of G that belongs neither to the bat nor to B
has at least one of the four vertices ai, ai+1, b1, bn for an endpoint:

all other edges would have the form zbj with 1 < j < n, and so they could be removed.
Case 1. There are subscripts s, t such that s < t, aibt ∈ E, ai+1bs ∈ E.
Let t be as small as possible subject to the assumption of this case; once t has

been fixed, let s be as large as possible subject to the assumption of this case. By
Lemma 3.2 and minimality of G, each of the two edges aibt, ai+1bs extends into a
triangle; since aibs �∈ E and ai+1bt �∈ E, it follows that ai+1bs−1, aibt+1 ∈ E.

Subcase 1.1. ai+1br ∈ E for some r with r < s− 1.
Let r be as large as possible subject to the assumption of this case. Since G

is friendly, we have r ≤ s − 3 (consider the neighborhood of ai+1); maximality of r
guarantees that ai+1bj �∈ E whenever r < j < s− 1; minimality of t guarantees that
aibj �∈ E whenever r < j < s−1. By Lemma 3.2 and minimality of G, the edge ai+1br
extends into a triangle; since aibr �∈ E, it follows that ai+1br−1 ∈ E. However, then
G,B[br−1, bs], and ai+1 satisfy the hypothesis of Lemma 3.5, and so the minimality
of G is contradicted.

Subcase 1.2. ai+1br ∈ E for no r with r < s− 1.
Let F denote the subgraph of G induced by A[a1, ai] and B[b1, bs−1]. By assump-

tion of this case, no vertex of F other than ai and bs−1 is adjacent to ai+1; trivially,
F contains a chordless path P from ai to bs−1. By Lemma 3.1, the subgraph of G
induced by the union of P , ai+1, and B[bs, bt] contains an odd hole.

Case 2. There are no subscripts s, t such that s < t, aibt ∈ E, ai+1bs ∈ E.
By assumption of this case, there is a subscript j such that ai is adjacent to none

of bj , bj+1, . . . , bn and such that ai+1 is adjacent to none of b1, b2, . . . , bj−1. Trivially,
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G − {z, ai} contains a chordless path C from a1 to ai+1 and G − {z, ai+1} contains
a chordless path D from ai to am. Since a1 and ai+1 belong to distinct components
of G − {z, ai, bj}, path C must pass through bj ; since ai and am belong to distinct
components of G− {z, ai+1, bj}, path D must also pass through bj . Write

C1 = C[a1, bj ], C2 = C[bj , ai+1], D1 = D[ai, bj ], D2 = D[bj , am];

let ck and dk denote the number of edges in Ck and Dk, respectively. Since at least
one of the four numbers c1 + c2 +2, d1 +d2 +2, c1 +d2 +2, d1 + c2 +1 is odd, at least
one of the four cycles Cz, Dz, C1D2z, D1C2 is odd. Since none of the four subgraphs
of G induced by these four cycles contains a triangle (in particular, neither zaib1 nor
zai+1bn is a triangle as the neighborhood of z consists of vertex-disjoint cliques), it
follows that G contains an odd hole.

By a z-splitter, we mean a bat (with head z) along with a z-sparse path between
the two wing-tips of the bat that passes through one of ai, ai+1.

Lemma 3.8. Let G be a friendly graph containing no odd hole and let z be a
vertex of G such that G contains a z-splitter. Then G contains a fragile bat with head
z.

Proof. Among all counterexamples (G, z), choose one with G having as few edges
as possible. In this G and for this z, consider a z-splitter with as few vertices as
possible.

Symmetry allows us to assume that the z-sparse path between the two wing-
tips of the bat in the z-splitter passes through ai+1; now minimality of the z-splitter
implies that this path has the form XBA[ai+1, am] with X a prefix of A[a1, ai). Write
B = b1b2 . . . bn. Minimality of the z-splitter guarantees that

• B is chordless and vertex-disjoint from A;

• no vertex in A[a1, ai) has a neighbor in B(b1, bn];

• ai+1 is adjacent to no vertex in B[b1, bn).

We claim that

(α) some vertex in A(a1, ai) is adjacent to b1.

To justify this claim, assume the contrary: no vertex in A(a1, ai) has a neighbor in
B. With F standing for the graph induced in G by {z} ∪A[a1, ai+1]∪B, Lemma 3.1
guarantees that zaiai+1 is not the only triangle in F ; as XBA[ai+1, am] is a z-sparse
path, all other triangles in F must have the form aibkbk+1 with 1 ≤ k < n. Let k
be the smallest subscript such that aibk ∈ E, write b0 = a1, and let j be the largest
subscript such that zbj ∈ E and 0 ≤ j < k. Now the path bj . . . bkai . . . am and z
induce in G a bat with head z, whose wing-tips bj and am are joined by the z-sparse
path bj . . . bnai+1 . . . am. Hence minimality of our z-splitter is contradicted: a proper
subset of its vertex-set (a2 is missing) induces another z-splitter. This contradiction
completes the justification of (α).

Furthermore, we claim that

(β) z has no neighbor in B.

To justify this claim, assume the contrary and let k be the smallest subscript such
that zbk ∈ E; note that (since XBA[ai+1, am] is z-sparse) k < n. If aibs ∈ E for
some s such that 1 ≤ s ≤ k, then let s be the largest subscript with this property,
note that (since ai+1bk �∈ E) s < k, and set r = i; else let r be the largest subscript
such that arb1 ∈ E and set s = 1. In either case, the path bk . . . bsar . . . am and z
induce in G a bat with head z, whose wing-tips bk and am are joined by the z-sparse
path bk . . . bnai+1 . . . am. Hence minimality of our z-splitter is contradicted: a proper
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subset of its vertex-set (a1 is missing) induces another z-splitter. This contradiction
completes the justification of (β).

Lemma 3.7 guarantees that

• no edge of G goes from A[a1, ai) ∪B to A(ai+1, am].

Let K denote the maximal clique in G that contains the triangle zaiai+1. Since (G, z)
is a counterexample, a1 and am belong to the same component of G−K. Hence there
is a path c1c2 . . . cp in G−K such that c1 has a neighbor in A[a1, ai)∪B and cp has a
neighbor in A(ai+1, am]; among all such paths, choose one with p as small as possible
and write C = c1c2 . . . cp. Minimality of p guarantees that

• C is chordless and vertex-disjoint from A[a1, ai) ∪B ∪A(ai+1, am];

• no vertex of C(c1, cp] has a neighbor in A[a1, ai) ∪B;

• no vertex of C[c1, cp) has a neighbor in A(ai+1, am].

With G0 standing for the subgraph of G induced by the union of the splitter and C,
observe that G0 has no clique-cutset K ′ such that z ∈ K ′. Hence (G0, z) is also a
counterexample; now mimimality of G guarantees that

• G has no vertices outside the splitter and C.

Lemma 3.2 and minimality of G guarantee that

• every edge aicj extends into a triangle;

• every edge ai+1cj extends into a triangle;

note that

• if aicjx is a triangle and j > 1, then x = cj−1 or x = cj+1;

• if ai+1cjx is a triangle and 1 < j < p, then x = cj−1 or x = cj+1.

There is a chordless path from a1 to am of the form Y CZ such that Y is a prefix
of XB and Z is a suffix of A(ai+1, am]; Lemma 3.7 guarantees that this path is not
z-sparse; since neither Y nor Z contains a z-edge, it follows that C includes at least
one neighbor of z. Let v denote the first neighbor of z on C.

We claim that

(γ) no edge of G goes from A[a1, ai+1) ∪B ∪ C[c1, v) to A(ai+1, am] ∪ C(v, cp].

To justify this claim, assume the contrary. This assumption implies that some edge of
G joins ai to a vertex in C(v, cp]; it follows that C[v, cp] contains an ai-edge. There is
a suffix Y of A(ai+1, am] such that C[v, cp]Y is a chordless path; write D = C[v, cp]Y
and note that (as D is vertex-disjoint from K) each vertex of D is adjacent to at
most one of z, ai, and ai+1. Consider a minimal portion D[x, y] of D such that x, y
are neighbors of z and such that D[x, y] contains an ai-edge; note that no vertex of
D(x, y) is adjacent to z. If D[x, y] contains precisely one ai-edge, then the subgraph
of G induced by D[x, y] ∪ {z, ai} satisfies the hypothesis of Lemma 3.1, and so G
contains an odd hole. Hence D[x, y] contains at least two ai-edges. These two ai-
edges lie on C[v, cp]; consider a minimal portion C[cr, cs] of C[v, cp] ∩ D(x, y) that
contains two ak-edges with k = i or k = i + 1. Lemma 3.5 and minimality of G
guarantee that C(cr, cs) is not a connected component of G − {ak, cr, cs}; it follows
that some vertex of C(cr, cs) is adjacent to at with {t, k} = {i, i + 1}; now C(cr, cs)
contains precisely one at-edge and no ak-edge. However, then Lemma 3.1 guarantees
that the subgraph of G induced by C(cr, cs) ∪ {ai, ai+1} contains an odd hole; this
contradiction completes the justification of (γ).

The subgraph of G induced by A[ai+1, am] ∪ C[v, cp] contains a chordless path
from ai+1 to v; let P denote this path. We propose to find, in the subgraph of G
induced by A[a1, ai+1]∪B∪C[c1, v], chordless paths P0, P1 from v to ai+1 such that P0

has an even number of edges and P1 has an odd number of edges. This will complete
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the proof of Lemma 3.8: one of the cycles P0P and P1P is odd and, by virtue of (γ),
chordless.

In finding P0 and P1, we shall rely tacitly on the fact that

• the subgraph of G induced by A(a1, ai) ∪B

is connected and includes no neighbor of z,

which is guaranteed by (α) and (β).

Case 1. At least one of ai and ai+1 has a neighbor in C[c1, v).

Since the subgraph of G induced by A[a1, ai)∪B ∪C[c1, v]∪{ai+1} is connected,
it contains a chordless path P0 from v to ai+1; by assumption of this case, c1 �= v,
and so a1v �∈ E; it follows that P0 is z-sparse. Since the subgraph of G induced by
P0 and z contains no triangle, it must be bipartite; in particular, the cycle P0z must
be even; hence P0 has an even number of edges.

Let u be the last vertex on C[c1, v) adjacent to one of ai, ai+1. If uai+1 ∈ E and u
has a neighbor in A[a1, ai), then u = c1; in this case, let w denote the last neighbor of
u on A[a1, ai]; Lemma 3.1 guarantees that the subgraph of G induced by z, A[w, ai+1],
and C[u, v] contains an odd hole. If uai+1 ∈ E and u has no neighbor in A[a1, ai),
then A[a1, ai+1]C[u, v] and z induce a bat whose wing-tips are joined by a z-sparse
path in the subgraph of G induced by A[a1, ai) ∪ B ∪ C[c1, v], contradicting Lemma
3.7. Hence uai ∈ E. With Q standing for C[u, v] reversed, write P1 = Qaiai+1; since
P1[v, ai]z is a hole, P1 has an odd number of edges.

Case 2. Neither ai nor ai+1 has a neighbor in C[c1, v).

Subcase 2.1. c1 has a neighbor in A(a1, ai) ∪B[b1, bn).

By assumption of this subcase, the subgraph of G induced by A(a1, ai) ∪ B ∪
{ai+1} ∪ C[c1, v] contains a chordless path P0 from v to ai+1 and the subgraph of G
induced by A(a1, ai] ∪ B[b1, bn) ∪ C[c1, v] contains a chordless path Q from v to ai.
Observe that each of P0z, Qz is a hole, and so each of P0, Q has an even number of
edges. Set P1 = Qai+1 and observe that P1 is a chordless path.

Subcase 2.2. c1 has no neighbor in A(a1, ai) ∪B[b1, bn).

The subgraph of G induced by A(a1, ai]∪B contains a chordless path Q from bn
to ai. Since G contains no odd hole, its subgraph induced by Q ∪ C[c1, v] ∪ {z, ai+1}
must not satisfy the hypothesis of Lemma 3.1; under the assumption of this subcase,
this means c1bn �∈ E. Hence a1 is the unique neighbor of c1 in A[a1, ai) ∪B.

The subgraph of G induced by A[a1, ai) ∪ B ∪ {ai+1} contains a chordless path
S from a1 to ai+1. Observe that each of A[a1, ai]z, Sz is a hole, and so each of
A[a1, ai], S has an even number of edges. With R standing for C[c1, v] reversed, each
of RA[a1, ai+1] and RS is a chordless path; one of these paths has an even number of
edges and the other has an odd number of edges.

A path w1w2 . . . wm in G will be called z-special if

• w1w2 . . . wm is a chordless path in G ∗ z,

• w1 and wm are neighbors of z,

• z has at least two neighbors in w2w3 . . . wm−1,

the set N of these neighbors forms a clique,

and w1w �∈ E,wmw �∈ E whenever w ∈ N .

(Note that w1 and wm may or may not be adjacent.)

Lemma 3.9. Let G be a friendly graph containing no odd hole and let z be a
vertex of G such that z is the center of a claw. If G contains a z-special path, then G
and z have at least one of the following properties:

(i) G contains a fragile bat with head z;
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(ii) G contains a clique-cutset K such that z ∈ K and some component of G−K
includes no neighbor of z.

Proof. Note that the neighborhood of z consists of vertex-disjoint cliques. We
shall proceed by induction on the number of neighbors of z on the z-special path.
Let A denote the z-special path; write A = a1a2 . . . am; let ai be the first neighbor of
z on A(a1, am) and let aj be the last neighbor of z on A(a1, am); let K denote the
maximal clique in G that contains z and all its neighbors on A(a1, am). Write

AO = A[a1, ai) ∪A(aj , am] and AI = A(ai, aj)−K.

(The subscripts O and I are mnemonic for “outside” and “inside”.) If AO and AI
belong to the same connected component of G − K, then G − K contains a path
b1b2 . . . bn such that b1 has a neighbor in AO and bn has a neighbor in AI . If AO and
AI belong to distinct connected components of G−K, then consider a component Q
of G−K that includes a vertex of AI : unless (ii) holds (in which case we are done),
Q includes a neighbor of z, and so Q contains a path b1b2 . . . bn such that b1 is a
neighbor of z and bn has a neighbor in AI . Hence we may assume in any case that
G−K contains a path b1b2 . . . bn such that
• b1 has a neighbor in AO ∪ {z};
• bn has a neighbor in AI ;

taking n as small as possible, we may assume further that
• b1b2 . . . bn is chordless and vertex-disjoint from A;
• no bk with k > 1 has a neighbor in AO ∪ {z};
• no bk with k < n has a neighbor in AI .

Write B = b1b2 . . . bn and note that
• every neighbor of z in A ∪B belongs to K ∪ {a1, am, b1}.

Let F denote the subgraph of G ∗ z induced by A ∪B.
Case 1. b1 has no neighbor in AO.
F contains a chordless path C from b1 to a1 that avoids A[aj , am]; by assumption

of this case, C must pass through ai; if some other interior vertex of C also belongs
to K, then C is z-special and we are done by the induction hypothesis; hence we may
assume that b1, ai, a1 are the only neighbors of z on C; in particular, C is z-sparse.
Similarly, F contains a z-sparse path D from b1 to am such that D avoids A[a1, ai]
and such that b1, aj , am are the only neighbors of z on D.

If aj has no neighbor on C[b1, ai), then C[b1, ai], A[aj , am], and z induce in G a
bat with head z, whose wing-tips are joined by the z-sparse path D, and so (i) follows
by Lemma 3.8. If aj has a neighbor on C[b1, ai), then let x be the first neighbor of aj
on C[b1, ai); note that x is not the last vertex on C[b1, ai) (else xaizajaj+1 would be a
dart); now C[b1, x]aj , A[a1, ai], and z induce in G a bat with head z, whose wing-tips
are joined by the z-sparse path C, and so (i) follows again by Lemma 3.8.

Case 2. At least one of zb1a1 and zb1am is a triangle.
Symmetry allows us to assume that zb1a1 is a triangle.
Subcase 2.1. b1 has no neighbor in A(a1, ai).
F contains a chordless path C from b1 to a1 that avoids A[aj , am]; by assumption

of this subcase, C must pass through ai. Lemma 3.1 applied to the subgraph of G
induced by C∪{z} guarantees that ai is not the only interior vertex of C that belongs
to K. Hence C is z-special and we are done by the induction hypothesis.

Subcase 2.2. b1 has a neighbor in A(a1, ai) and it has a neighbor in A(aj , am].
Let u be the last neighbor of b1 on A(a1, ai) and let v be the first neighbor of b1 on

A(aj , am]; Lemma 3.1 guarantees that zaiaj is not the only triangle in the subgraph
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of G induced by A[u, ai] ∪ A[aj , v] ∪ {b1, z}. Hence v = am, which brings us back to
a mirror image of Subcase 2.1.

Subcase 2.3. b1 has a neighbor in A(a1, ai) and it has no neighbor in A(aj , am].
F contains a chordless path C from b1 to am that avoids A[a1, ai]; by assumption

of this subcase, C must pass through aj . If C is z-special, then we are done by the
induction hypothesis; hence we may assume that aj is the only interior vertex of C
that belongs to K. With x standing for the last neighbor of b1 on A(a1, ai), observe
that b1A[x, ai]A[aj , am] and z induce a bat in G, whose wing-tips are joined by the
z-sparse path C; hence (i) follows by Lemma 3.8.

Case 3. b1 has a neighbor in AO; neither zb1a1 nor zb1am is a triangle.
By assumption of this case, F contains a chordless path C from a1 to am that

avoids at least one of ai and aj and has the following property: If b1 appears on C
at all, then it appears either before all the vertices of C ∩K or after all the vertices
of C ∩K. If C includes at least two vertices of K, then C is z-special or else one of
C[a1, b1], C[b1, am] is z-special and we are done by the induction hypothesis; hence
we may assume that
• C includes at most one vertex of K.

Note that
• if C includes a vertex of K, then this vertex is ai or aj .

The assumption of this case guarantees that
• C has no chords in G except possibly a1am.

If a1am �∈ E, then A[a1, ai], A[aj , am], and z induce a bat with head z, whose wing-
tips are joined by the z-sparse path C; Lemma 3.7 guarantees that C includes a vertex
of K; hence the bat and C constitute a splitter and (i) follows by Lemma 3.8. We
propose to complete the proof by deriving a contradiction from the assumption that
• a1am ∈ E.

Since C includes no z-edge, Lemma 3.1 applied to the subgraph of G induced by
C ∪ {z} guarantees that
• no interior vertex of C is adjacent to z.

Now all the vertices of C come from (A ∪ B) −K, which is AO ∪ AI ∪ B. With F0

standing for the subgraph of G ∗ z induced by AO ∪AI ∪B, observe that A[a1, ai) is
a connected component of F0 − b1 and that A(aj , am] is another; it follows that
• C = A[a1, x]b1A[y, am]

for some x on A[a1, ai) and some y on A(aj , am].
Subcase 3.1. x = ai−1 and y = aj+1.
Let H1 denote the subgraph of G induced by A[a1, ai] ∪ A[aj , am] and let H2

denote the subgraph of G induced by C. By definition, H1 is a hole of length at least
six; by assumption of this subcase, H2 is a hole whose length is one less than the
length of H1. Hence one of H1, H2 is odd, a contradiction.

Subcase 3.2. x �= ai−1 or y �= aj+1.
Symmetry allows us to assume that x �= ai−1. Observe that B extends into a

chordless path D in F such that D leads from b1 to some vertex in A∩K other than
aj and such that no interior vertex of D has a neighbor in AO ∪ {z}. Lemma 3.1 is
contradicted by the subgraph of G induced by C, z, and D.

Lemma 3.10. Let G be a friendly graph containing no odd hole and let xyz be
a triangle in G such that z is the center of a claw; let K be the maximal clique in G
that contains the triangle xyz. If G ∗ z contains a chordless path P from x to y such
that some neighbor of z on P does not belong to K, then G and z have at least one
of the following properties:
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(i) G contains a fragile bat with head z;
(ii) G contains a clique-cutset K ′ such that z ∈ K ′ and some component of

G−K ′ includes no neighbor of z.
Proof. The neighborhood of z consists of vertex-disjoint cliques K1,K2, . . . ,Km

such that K = K1. By assumption, G ∗ z contains a chordless path P from x to y
such that some neighbor of z on P does not belong to K1. Let P [a, f ] be a minimal
segment of P such that a, f belong to the same Kr and some vertex of P (a, f) belongs
to a Ks with s �= r; write Q = P [a, f ]. By minimality of Q, no interior vertex of Q
belongs to Kr; Lemma 3.1 guarantees that the subgraph of G induced by Q and z
contains a triangle other than zaf ; hence some two interior vertices of Q belong to
the same Kt. Let c and d be the first and the last vertex in Q that belong to Kt;
note that (by minimality of Q) all the neighbors of z in Q[c, d] belong to Kt. Let b be
the last neighbor of z in Q[a, c) and let e be the first neighbor of z in Q(d, f ]. Then
Q[b, e] is a z-special path and the desired conclusion follows by Lemma 3.9.

Proof of Theorem 2.4. Note that the assumption
“a1 and am belong to the same component of G ∗ z”

is equivalent to the assumption
“ai and ai+1 belong to the same component of G ∗ z.”

Write A = a1a2 . . . am and let K denote the maximal clique in G that contains the
triangle zaiai+1. We may assume that the bat is not fragile: G−K contains a path
from a1 to am. Hence G− aiai+1 contains a path P from ai to ai+1 with all interior
vertices outside K; write P = p1p2 . . . pt.

Case 1. P contains no z-edge.
Now P is a path in G ∗ z; we may assume that P is a chordless path in G ∗ z

(but not necessarily a chordless path in G − aiai+1); then Lemma 3.10 allows us
to assume that no interior vertex of P is adjacent to z. Since G ∗ z contains the
path A[a1, ai]PA[ai+1, am], it contains a chordless path Q from a1 to am such that
all neighbors of z on Q come from {a1, ai, ai+1, am}; Lemma 3.7 guarantees that Q
contains at least one of ai, ai+1. If Q contains precisely one of ai, ai+1, then the
desired conclusion follows from Lemma 3.8; else the desired conclusion follows from
Lemma 3.9.

Case 2. P contains precisely one z-edge.
Let pjpj+1 be the unique z-edge on P and let K ′ denote the maximal clique in

G that contains the triangle zpjpj+1. Since G ∗ z contains P [p1, pj ], P [pj+1, pt], and
a path from p1 to pt, it contains a chordless path Q from pj to pj+1. Lemma 3.10
allows us to assume that all the neighbors of z on Q come from K ′. However, then
the walk P [p1, pj−1]QP [pj+2, pt] in G ∗ z contains no vertices of K other than ai and
ai+1, which brings us back to Case 1.

Case 3. P contains at least two z-edges.
We may assume that P is a chordless path in G− aiai+1. By assumption of this

case, z has at least four neighbors on P (p1, pt); with pr standing for the first neighbor
of z on P (p1, pt) and with ps standing for the last neighbor of z on P (p1, pt), let us
write

B = b1b2 . . . bn = prpr−1 . . . p1ptpt−1 . . . ps and bj = p1, bj+1 = pt.

Now B and z induce in G a bat; note that bj = ai, bj+1 = ai+1, and so K is the
maximal clique in G that contains the triangle zbjbj+1 in this new bat.

By assumption, G ∗ z contains a chordless path Q from bj to bj+1; Lemma 3.10
allows us to assume that all the neighbors of z on Q come from K. Since G∗z contains
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the path B[b1, bj ]QB[bj+1, bn], it contains a chordless path C from b1 to bn such that
all vertices of C come from B ∪ Q; write C = c1c2 . . . cp. Lemma 3.7 allows us to
assume that C contains at least one vertex of K; Lemma 3.9 allows us to assume that
C contains at most one vertex of K; let x be the unique vertex in C ∩K.

Lemma 3.7 allows us to assume that

◦ no vertex in C[c1, x) has a neighbor in B(bj+1, bn];

◦ no vertex in C(x, cp] has a neighbor in B[b1, bj);

in turn, Lemma 3.8 allows us to assume that

• x is distinct from bj and bj+1;

◦ no vertex in C[c1, x) is adjacent to bj+1;

◦ no vertex in C(x, cp] is adjacent to bj .

Now if x has no neighbor in B(b1, bj), then B[b1, bj ]C[x, cp] and z induce a bat; since
this bat and C constitute a z-splitter, Lemma 3.8 allows us to assume that

◦ x has a neighbor in B(b1, bj);

◦ x has a neighbor in B(bj+1, bn).

Letting u denote the first neighbor of x in B(b1, bj) and letting v denote the last
neighbor of x in B(bj+1, bn), we may just as well assume that

• C = B[b1, u]xB[v, bn].

Since C ∪ {z} induces a cycle in G and since zx is the unique chord of this cycle,
C has an even number of edges; B ∪ {z} induces a bat in G, and so B has an odd
number of edges; let us note for future reference that

• the lengths of B and C differ in parity.

Recall that the vertex-set of P induces in G a hole H such that

• B is a segment of H.

We propose to complete the proof by contradicting the assumption that the subgraph
of G induced by H ∪ {z, x} is friendly and contains no odd hole.

For this purpose, first note that (since the neighborhood of z consists of vertex-
disjoint cliques and since bj , bj+1 are the only vertices of K on H),

• z and x have no common neighbor on H other than bj and bj+1.

H is a concatenation of two paths: path B from b1 to bn and its counterpart B
(= H − B(b1, bn)) from bn to b1. Starting with the subgraph F of G induced by
H ∪ {z, x}, keep reducing F as long as possible by the following two operations:

(α) If B contains a vertex w such that

w is adjacent to x and the edge xw extends into no triangle,

then remove the edge xw from F .

(β) If B contains a segment w1w2 . . . wd such that

w1, w2, wd−1, wd are adjacent to x,

none of w3, . . . , wd−2 are adjacent to x,

and none of w1, w2, . . . , wd are adjacent to z,

then remove the four edges xw1, xw2, xwd−1, xwd from F .

Lemma 3.2 guarantees that the invariant

• F is a friendly graph containing no odd hole

is maintained after each application of (α); Lemma 3.5 guarantees that this invariant is
maintained after each application of (β). Now let us distinguish between two subcases.

Subcase 3.1. x has a neighbor on B.

Since transformation (α) is not (any more) applicable to F , the assumption of
this subcase guarantees that B contains an x-edge, e. Let B0 be a minimal segment
of B that contains e, begins at a neighbor of z, and ends at a neighbor of z. Since
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transformation (β) is not (any more) applicable to F , edge e is the only x-edge in B0.
However, then the subgraph of F induced by B0 ∪ {z, x} contradicts Lemma 3.1.

Subcase 3.2. x has no neighbor on B.
The concatenation of B and B is H; by assumption of this subcase, the concate-

nation of C and B is another hole; since the lengths of B and C differ in parity, one
of these two holes is odd, a contradiction.

4. The algorithm. Theorem 2.3 suggests a recursive algorithm that, given any
friendly bat-free graph G, finds out whether or not G is a Berge graph. This algorithm,
Test(G), uses a procedure Decomp1(G; S) that, given any friendly graph G and a
separator S in G, either finds an odd hole in G at once or else constructs friendly
graphs G1 and G2 such that
• if G is a bat-free Berge graph,
then both of G1 and G2 are bat-free Berge graphs;
• if G is not a Berge graph,
then at least one of G1 and G2 is not a Berge graph.

Decomp1(G; S) goes as follows.
By definition, the set of vertices of G − S splits into disjoint nonempty sets V1

and V2 such that no edge of G joins a vertex in V1 to a vertex in V2; if S consists of
two nonadjacent vertices, then each Vi includes at least two vertices. Let Fi denote
the subgraph of G induced by Vi ∪ S. If S is a clique, then Decomp1(G;S) simply
returns F1 and F2. If S consists of nonadjacent vertices u and v, then we may assume
that both G − u and G − v are connected (else a one-point separator could be used
in place of S) and find a chordless path Pi from u to v in each Fi; now if both Pi
have an odd number of edges, then Decomp1(G;S) returns graphs G1 and G2 such
that each Gi is Fi with one additional edge, uv; if both Pi have an even number of
edges, then Decomp1(G;S) returns graphs G1 and G2 such that each Gi is Fi with
one additional vertex, w, and two additional edges, uw and vw; if one Pi has an odd
number of edges and the other Pi has an even number of edges, then Decomp1(G;S)
returns the odd hole P1 ∪ P2.

Test(G):
(Step 1) if G is bipartite then return true end
(Step 2) if G is claw-free

then if G is a Berge graph then return true else return false end
end

(Step 3) if G has no separator then return false end
(Step 4) S = separator in G;

if Decomp1(G;S) returns graphs G1 and G2

then return Test(G1)∧Test(G2);
else return false;
end

Lemma 4.1. Let G be a friendly graph. If Test(G) returns true, then G is a
Berge graph; if Test(G) returns false, then G is not a Berge graph or else G contains
a bat.

Proof. We use induction on the number of vertices of G. If Test(G) returns
false in Step 3, then Theorem 2.3 guarantees that G contains an odd hole or a bat.
If Decomp1(G; S) returns graphs G1 and G2 in Step 4, then G1 and G2 are both
friendly; if both of them are Berge graphs, then G is a Berge graph; if at least one
of them is not a Berge graph, then G is not a Berge graph; if at least one of them
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contains a bat, then G contains a bat. (When S consists of vertices u and v that are
nonadjacent in G and adjacent in Gi, it may help to keep in mind that u and v have
no common neighbor.)

Lemma 4.2. Test(G) runs in polynomial time.
Proof. Each step of the algorithm, except for the recursive calls to evaluate

Test(G1) and Test(G2) in Step 4, can be executed in polynomial time; in particular,
Step 2 can be executed in polynomial time by the algorithm of Chvátal and Sbihi [6].
Thus our task reduces to showing that the number t(G) of nodes in the recursion
tree of Test(G) does not exceed some polynomial in n, the number of vertices of the
input graph G.

For this purpose, first note that

t(G) = 1 whenever n ≤ 4

(since every graph with at most four vertices is bipartite or claw-free). Now induction
on n shows that

t(G) ≤ 4n− 17 whenever n ≥ 5 :

if G1, G2 are the graphs returned by Decomp1(G;S) in Step 4, then

t(G) = 1 + t(G1) + t(G2)

and, with ni standing for the number of vertices of Gi,

n1 ≤ n− 1, n2 ≤ n− 1, and n1 + n2 ≤ n + 4.

Our main algorithm, given any friendly graph G, returns true if and only if G is
a Berge graph. This algorithm, Berge(G), is also recursive; it evolves from Theorem
2.2 much as Algorithm Test(G) evolves from Theorem 2.3.

If G, the input of Berge(G), contains a clique-cutset C, then we call a procedure
Decomp2(G;C) which goes as follows: Let F1, F2, . . . , Fk be the components of G−C;
let Gi denote the subgraph of G induced by Fi ∪ C; return G1, G2, . . . , Gk.

If G contains a rosette centered at z (but G contains no clique-cutset), then
we call a more complicated procedure Decomp3(G; z) which goes as follows: Let
F1, F2, . . . , Fk be the components of G ∗ z; let Gi denote the subgraph of G induced
by Fi ∪{z}. Let N denote the subgraph of G induced by all the neighbors of z; let H
be the graph obtained from N by adding pairwise nonadjacent vertices w1, w2, . . . , wk
along with all the edges xwi such that x ∈ N ∩ Fi. Return G1, G2, . . . , Gk and H.

Decomp3 is illustrated in Figure 4.1. There, G is not a Berge graph but G1, G2,
G3 are; the unique odd hole in G is contained in none of G1, G2, G3, but it reappears
in H.

In general, H may be seen as a device for detecting those odd holes in G that
are contained in none of G1, G2, . . . , Gk: at first, one might be tempted to conjecture
that G is a Berge graph if and only if G1, G2, . . . , Gk and H are all Berge graphs.
Unfortunately, this is not the case: two counterexamples are shown in Figure 4.2.
Fortunately, these two counterexamples are harmless: each of them has a clique-
cutset, and so it can be subjected to Decomp2 instead of Decomp3.

We make it our policy to subject G to Decomp3 only if it has no clique-cutset.
Under this assumption (as we shall prove later), G is a Berge graph if and only if
G1, G2, . . . , Gk and H are all Berge graphs and none of G1, G2, . . . , Gk contains a
fragile bat with head z. The proviso involving fragile bats cannot be dropped: see
Figure 4.3.



RECOGNIZING DART-FREE PERFECT GRAPHS 1333

A straightforward algorithm NoFB(F ; z), given any graph F along with a vertex
z of F such that the neighborhood of z in F consists of vertex-disjoint cliques, returns
true if and only if F contains no fragile bat with head z. There, as usual, N(v)
denotes the neighborhood of v.

NoFB(F ; z):
for all z-edges xy
do C = the maximal clique of F that contains xyz;

for all choices of distinct components A,B of F − C
do if A−N(y) contains a path from N(z) to N(x) and

B −N(x) contains a path from N(z) to N(y)
then return false;
end

end
end
return true;

Berge(G):
(Step 1) if G has a clique-cutset, C

then G1, G2, . . . , Gk = the output of Decomp2(G;C);
return Berge(G1) ∧Berge(G2) ∧ · · · ∧Berge(Gk);

end
(Step 2) if G has a rosette, centered at some vertex z

then G1, G2, . . . , Gk, H = the output of Decomp3(G; z);
return Berge(G1) ∧Berge(G2) ∧ · · · ∧Berge(Gk)

∧Test(H)
∧NoFB(G1; z) ∧NoFB(G2; z) ∧ . . .NoFB(Gk; z);

end
(Step 3) return Test(G);

Theorem 4.3. Given any friendly graph G, algorithm Berge(G) returns true
if and only if G is a Berge graph.

Proof. We use induction on the number of vertices of G.
Case 1. Berge(G) returns in Step 1.
This case is trivial.
Case 2. Berge(G) returns in Step 2.
It is easy to see that H is friendly and bat-free; hence Lemma 4.1 guarantees that

H is a Berge graph if and only if Test(H) = true. Thus our task reduces to proving
the following statements:

(i) If G contains an odd hole, then one of G1, . . . , Gk, H contains an odd hole
or else one of G1, . . . , Gk contains a bat with head z.

(ii) If some Gi contains a bat with head z, then it contains an odd hole or a
fragile bat with head z.

(iii) Every antihole of length at least seven in G is contained in one of G1, . . . , Gk.
(iv) If H contains an odd hole, then G contains an odd hole.
(v) H contains no antihole of length at least seven.
(vi) If some Gi contains a bat with head z, then G contains an odd hole.
Proof of (i). Let G contain an odd hole. If this hole contains at most one z-edge,

then it is contained in one of G1, . . . , Gk. Thus we may assume that the hole has
the form e1P1e2P2 . . . etPt where e1, e2, . . . , et are z-edges, t ≥ 2, and each Pi is a
chordless path in G that contains no z-edge; since Pi does not pass through z, all its
edges come from some Fj(i), and so Pi is a chordless path in Gj(i)− z. If some Pi has
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Fig. 4.1. Decomp3 illustrated.

an odd number of edges, then the subgraph of G induced by Pi ∪{z} is not bipartite;
since it contains no triangle, it contains an odd hole and we are done. Thus we may
assume that each Pi has an even number of edges. Now t is odd, and so the closed
walk e1wj(1)e2wj(2) . . . etwj(t) in H has an odd length, 3t; hence the subgraph H0 of
H induced by all the vertices of this walk is not bipartite. If H0 contains no triangle,
then it contains an odd hole and we are done. Thus we may assume that H0 contains a
triangle. It is easy to see that the triangle consists of some ei and some wj . However,
then both endpoints of ei belong to Fj , and so both Pi−1 (with P0 = Pt) and Pi are
fully contained in Fj ; the subgraph of Gj induced by Pi−1 ∪ Pi ∪ {z} contains a bat.

Proof of (ii). If some Gi contains a bat with head z, then—since Gi ∗ z is
connected—Theorem 2.4 guarantees that Gi contains an odd hole (in which case
we are done), or Gi contains a fragile bat with head z (in which case we are done
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Fig. 4.2. Clique-cutsets create counterexamples.
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Fig. 4.3. The significance of fragile bats.

again), or Gi contains a clique-cutset C such that z ∈ C and some component of Gi

includes no neighbor of z (in which case C is a clique-cutset in G, contradicting our
assumption that Berge(G) does not return in Step 1).

Proof of (iii). Let A be an antihole of length at least seven in G. Observe
that z �∈ A (since the neighborhood of z consists of vertex-disjoint cliques). If A is
contained in one of G1, . . . , Gk, then we are done; else symmetry allows us to assume
that A includes at least one vertex of G1 and at least one vertex of G2. Since A
is connected, it follows that A contains an edge x1x2 with x1 ∈ G1, x2 ∈ G2. Note
that x1x2 is a z-edge. In every antihole of length at least six, each edge is contained
in a hole of length four; in particular, x1x2 is contained in a hole x1x2y2y1. Since
the neighborhood of z consists of vertex-disjoint cliques and x1, x2 are adjacent to
z, neither y1 nor y2 is adjacent to z. Hence x1y1y2x2 is a path in G ∗ z and yet its
endpoints belong to distinct components of G ∗ z, a contradiction.

Proof of (iv). Let H contain an odd hole. Since w1, w2, . . . , wk have pairwise
disjoint neighborhoods, this hole has the form

u1v1wj(1)u2v2wj(2) . . . utvtwj(t)

such that u1v1, u2v2, . . . , utvt are z-edges in G and t is odd. Replacing each path
viwj(i)ui+1 (here, ut+1 = u1) by a chordless path Pi from vi to ui+1 in Fj(i), we obtain
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a cycle C in G− z.

Note that each Pi, although chordless in G ∗ z, may have chords in G. However,
choosing C with as few edges as possible, we claim that each Pi is chordless in G or
else G contains an odd hole (in which case we are done). To justify this claim, consider
a chord xy of Pi in G. The assumption that C has as few edges as possible guarantees
that neither x nor y equals vi or ui+1 (if x = vi, then we may replace vi and Pi by y
and P [y, ui+1]); first choosing x as close to vi as possible and then y as close to ui+1

as possible, we conclude that Gi contains a bat with head z. Since Berge(G) did
not return in Step 1, G has no clique-cutset; hence Theorem 2.4 guarantees that G
contains an odd hole.

Now we may assume that each Pi is chordless in G. Let F denote the subgraph of
G induced by the vertices of C; note that the edge-set of F partitions into edge-sets
of P1, P2, . . . , Pt and edge-sets of pairwise vertex-disjoint cliques formed by z-edges.

If some Pi has an odd number of edges, then the subgraph of G induced by Pi∪{z}
is not bipartite; since it contains no triangle, it contains an odd hole and we are done.
Thus we may assume that each Pi has an even number of edges. Now C has an odd
number of edges, and so F is not bipartite. If F contains no triangle, then it contains
an odd hole and we are done. Thus we may assume that F contains a triangle.

Observe that at least one vertex of this triangle is an interior vertex of some Pi.
Let u denote this vertex and let v, w denote the remaining two vertices of the triangle
so that, proceeding from u along C in some cyclic order, we encounter first v and
then w; let a denote the immediate predecessor of u in this order and let b denote the
immediate successor of u.

Observe that uv, uw, vw are z-edges and au, ub are not; it follows that the five
vertices u, v, w, a, b are distinct and (since the path Pi is chordless) the subgraph of G
induced by them has no edges other than uv, uw, vw, au, ub. Hence Lemma 3.4 (with
F in place of G) guarantees that F contains an odd hole (in which case we are done)
or a bat. Thus we may assume that F contains a bat. The bat consists of a head x
and a chordless path a1a2 . . . am such that x is adjacent to a1, ai, ai+1, am for some
i with 3 ≤ i ≤ m − 3 (and to no other aj). Again, all three edges of the triangle
xaiai+1 must be z-edges. Since all the paths P1, P2, . . . , Pt are chordless in G, x and
ai cannot belong to the same Pj ; hence the path xa1a2 . . . ai must involve at least one
z-edge; similarly, the path ai+1ai+2 . . . amx must involve at least one z-edge. Thus
a1 and am belong to the same component of G ∗ x; since Berge(G) did not return
in Step 1, G has no clique-cutset; hence Theorem 2.4 guarantees that G contains an
odd hole.

Proof of (v). Each vertex in an antihole of length at least seven has the property
that its neighborhood contains a chordless path with three edges; no vertex of H has
this property.

Proof of (vi). Let Gi contain a bat with head z. The two wing-tips of this
bat belong to the same component of G ∗ z (this component is Fi). Now Theorem
2.4 guarantees that G contains an odd hole (in which case we are done) or G has a
clique-cutset (contradicting our assumption that Berge(G) does not return in Step
1).

Case 3. Berge(G) returns in Step 3.

Now G has neither a clique-cutset nor a rosette; hence Theorem 2.2 guarantees
that G is bat-free or else G contains an odd hole; in turn, Lemma 4.1 guarantees that
Test(G) = true if and only if G is a Berge graph.

Theorem 4.4. Berge(G) runs in polynomial time.
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Proof. A clique-cutset in G can be found (or its absence established) in polynomial
time by an algorithm designed by Whitesides [13]; evidently, a rosette in G can be
found (or its absence established) in polynomial time; Decomp2(G;C), Decomp3
(G; z) andNoFB(Gi; z) can be executed in polynomial time; by Lemma 4.2, Test(H)
in Step 2 and Test(G) in Step 3 can be evaluated in polynomial time. Thus our task
reduces to showing that the number t(G) of nodes in the recursion tree of Berge(G)
does not exceed some polynomial in n, the number of vertices of the input graph G.

We are going to show that t(G) ≤ n2. More precisely, with e(G) standing for the
number of edges in the complement of G, we claim that t(G) ≤ 2e(G) + 1. Justifying
this claim by induction on e(G) amounts to proving that

2(e(G1) + e(G2) + · · ·+ e(Gk)) + k ≤ 2e(G)

whenever G1, . . . , Gk are returned by Decomp2(G;C) or G1, . . . , Gk, H are returned
by Decomp3(G; z). A stronger inequality,

e(G1) + e(G2) + · · ·+ e(Gk) +

(
k

2

)
≤ e(G),

follows from observing that (i) there is a clique C such that Gi ∩ Gj = C whenever
i �= j and that (ii) for every choice of distinct i and j, there are nonadjacent vertices
xi and xj with xi ∈ Gi − C, xj ∈ Gj − C. The first observation is trivial. (We have
C = {z} in case of Decomp3.) To make the second observation in case of Decomp2,
choose any xj in Gj − C. To make the second observation in case of Decomp3, first
recall that the subgraph N of G induced by the neighborhood of z consists of vertex-
disjoint cliques and then note that (since G has no clique-cutset) each Gi meets at
least two of these cliques; hence xi and xj can be chosen from two distinct cliques of
N .

Finally, Theorem 2.1 reduces the task of recognizing dart-free Berge graphs in
polynomial time to the task of recognizing friendly Berge graphs in polynomial time:
given any dart-free graph H, we can find in polynomial time a family F of pairwise
vertex-disjoint friendly induced subgraphs of H such that H is a Berge graph if and
only if all the members of F are Berge graphs. The procedure is obvious. To initialize,
we set F = {H}. While some member G of F has one of the properties (i), (ii),
(iii) of Theorem 2.1, we replace it in F by its connected components (in case G is
disconnected) or by graphs G1, G2, . . . , Gk such that G1, G2, . . . , Gk are connected
components of G (in case G is disconnected) or by G−w such that w and some other
vertex of G are adjacent twins. Upon termination, Theorem 2.1 guarantees that all
the members of F are friendly.
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Abstract. We develop a combinatorial algorithm for determining a minimum volume simplex
enclosing a set of points in R3. If the convex hull of the points has n vertices, then our algorithm
takes Θ(n4) time. Combining our exact but slow algorithm with a simple but crude approximation
technique, we also develop an ε-approximation algorithm. The algorithm computes in O(n + 1/ε6)
time a simplex whose volume is within (1 + ε) factor of the optimal for any ε > 0.

Key words. shape approximation, bounding volumes, centroid
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1. Introduction. Approximating a geometric body by a combinatorially sim-
pler shape is a problem with many applications. In computer graphics and robotics,
for instance, checking for collision between complex geometric models is frequently a
computational bottleneck. Therefore, collision detection packages commonly use sim-
ple bounding objects, such as axis-aligned bounding boxes [3, 14, 16], discrete oriented
polytopes [9, 13], or spheres [10] to quickly eliminate pairs whose bounding objects
are collision-free. Since intersecting simple bounding objects is computationally more
efficient than checking objects themselves, this heuristic performs well in practice.
(Suri, Hubbard, and Hughes [21] and Zhou and Suri [23] give theoretical proofs of
these heuristics.) While in computer graphics and robotics rectangular boxes and
spheres tend to be the approximating shapes of choice, in many applications, such as
hyperspectral imaging and remote sensing, the natural object is a bounding simplex.

A key information processing task in hyperspectral imaging is to determine the
parameters of a linear model for a set of multidimensional data vectors. These vectors
could represent a set of spectral radiances or reflectances sampled finely in wavelength.
A common model is to write these data vectors as a convex combination of certain ex-
treme vectors, called endmembers. The full unmixing problem, as it is often called, is
to determine both the endmembers and the associated proportions. The endmembers
are defined as the corners of the smallest volume simplex enclosing the data vectors,
and thus the problem of algorithmically fitting a simplex around a set of points has
been considered by various researchers in Earth sciences [4, 5, 6, 20]. The method
of Erlich and Full [5] works from “inside out”—it takes a set of extreme data points
as initial guesses for the endmembers, then pushes the faces of the simplex out until
all the data points are in the interior. Craig’s method [4] works from outside in.
Fuhrmann’s method [6] uses a gradient descent approach. All of these methods are
heuristics and do not always compute the smallest enclosing simplex. These heuris-
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tics also lack any provable bound on the relative volume of the simplex found or the
worst-case analysis of the running time.

Computing circumscribing or inscribed shapes of a given class, such as simplex,
is also a fundamental problem in computational convexity. The paper by Gritzmann
and Klee [8] gives a broad survey of results on the basic problems of computing,
approximating, or measuring the smallest volume convex sets of a class containing
a given convex body. In particular, Klee [11] proved the following useful centroid
property: if T is a minimum volume simplex enclosing a convex body P , then the
centroid of each facet of T touches P . Klee and Laskowski [12] used this centroid
property to develop an efficient algorithm for computing the smallest area triangle
containing a convex polygon in the plane. Their result was shortly improved to a
linear time algorithm by O’Rourke et al. [17].

1.1. Related work. O’Rourke [18] has published a technical report claiming an
O(n4) time algorithm for a minimum volume simplex inR3. Shortly after distributing
the report in 1984, however, O’Rourke discovered a fatal flaw in a crucial lemma
and has since retracted the claim [personal communication, June 1999]. The three-
dimensional smallest simplex problem has since remained open.

Unlike the minimum volume simplex, efficient algorithms are known for other
enclosing shapes such as bounding boxes, spheres, or ellipsoids in three, and sometimes
in any fixed, dimensions. The axis-aligned bounding box is trivially computed in O(n)
time for any fixed dimension by computing the span of the enclosed polytope in each
dimension and taking the cross product of these intervals. When the box can be
arbitrarily oriented, O’Rourke [19] describes an O(n3) algorithm in three dimensions,
where n is the number of vertices of the convex polytope.

The problem of computing the smallest ball enclosing a set of points is a clas-
sical one, dating back to Sylvester in 1857. In any fixed dimension, the smallest
enclosing ball can be computed in optimal linear time using the fixed-dimensional
linear programming algorithm of Megiddo [15]. Using an abstraction called “LP-type
problems,” the smallest enclosing ellipsoid can also be computed in (randomized)
linear time [7]. Unlike spheres or ellipsoids, which have constant “combinatorial di-
mensions,” simplices do not seem amenable to the abstract framework of “LP-type
problems”—specifically, the simplex problem lacks the “locality” property exploited
by the LP-type scheme.

A polynomial-time algorithm for the minimum volume simplex can be obtained
by formulating the problem as an instance of cubic programming with linear con-
straints in 12 variables. The simplex is defined by four vertices and thus 12 variables.
The objective function is the volume of the simplex, which is a cubic function of
these variables. The condition that all points of the input lie inside the simplex can
be written as linear constraints. If we adopt the model that a constant number of
fixed-degree multinomials can be simultaneously solved in constant time, then this
optimization problem can be solved in O(n6) time, since the feasible region defined
by the constraints is a convex polytope in R12.

1.2. Our contribution. We develop an O(n4) time combinatorial algorithm
for computing the smallest simplex enclosing a set of points in R3. The algebraic
complexity of our algorithm is a significant improvement over the previous results. In
all but one case, we need only to solve a quadratic function in one variable, which
is trivially done. In the last case, we do require solving a degree ten polynomial;
however, it is a single-variable polynomial, whose roots can be found efficiently by
numerical methods. Building on the earlier work by Klee [11] and Vegter and Yap [22],
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we further characterize the geometric properties of an optimal simplex and develop
geometric procedures for computing the local optima of each combinatorial type. Let
P be a convex polytope of n vertices in R3. (Given a set of points S, the minimum
volume enclosing simplex for S is the same as the one enclosing the convex hull of
S. Thus, we may assume from now on that the underlying body to be enclosed is a
convex polytope.)

If T is the smallest simplex enclosing P , then each facet of T must touch P . The
centroid property of Klee [11] says that each centroid pi lies on P .1 This alone is
insufficient for determining the simplex, since the facets of T may have rotational
degrees of freedom. In particular, each facet of T may contact P in a vertex, edge, or
face of P . Let us denote these contact types as V (vertex), E (edge), or F (face). We
may classify enclosing simplices according to the contact types of their facets. Since
each facet of T has three possible contact types, altogether there are 15 such classes,
which we call combinatorial types. Some example combinatorial types are FFFF ,
FFEV , and V V EE. Of these, only the type FFFF is trivial, in the sense that given
the contacts (actual faces of P ), one can easily compute the unique simplex, if there is
one. The other cases require nontrivial geometric reasoning to determine the smallest
simplex.

We use a theorem of Vegter and Yap [22], which says that a locally minimal
simplex does not have more than four degrees of freedom, to eliminate some of these
combinatorial types. (A simplex’s degree of freedom is the sum of its facets’ degrees
of freedom. A facet’s degree of freedom is 0, 1, or 2, respectively, when its contact
type is F , E, or V .) We add a new technical lemma to further reduce the possible
combinatorial types to six plus the trivial type FFFF . For each of these six types,
we develop geometric procedures to determine the unique simplex with the centroid
property. In all but one case, our geometric procedures are highly efficient, requiring
nothing more than solving a quadratic equation in one unknown. The combinatorial
type EEEE (all facets touching P at an edge),2 however, proves to be quite difficult
and requires computing the roots of a tenth degree polynomial. While this computa-
tion is necessarily expensive and requires numerical methods, in the standard RAM
model of computation, its cost is O(1).

Once we can compute the local optima for each combinatorial type in constant
time, our simplex algorithm is enumerative. We test each quadruple of P (vertices,
edges, and faces) as a possible contact type, check if it supports a simplex with the
centroid property, and keep track of the smallest volume simplex found. The worst-
case running time of this algorithm is Θ(n4).

Next, we combine our slow but exact algorithm with a simple, fast, but crude
approximation scheme to develop an ε-approximation algorithm. The algorithm com-
putes in O(n+ 1

ε6 ) time a simplex whose volume is within (1+ε) factor of the optimal
for any ε > 0.

2. Properties of centroids and locally optimal simplices. We assume
throughout that P is a convex polytope of n vertices, and we want to compute a
minimum volume simplex enclosing P . Let T denote a simplex, with vertices qi, and
facets ti, for 1 ≤ i ≤ 4. The facet ti is opposite qi, and let point pi denote the centroid
of ti. Figure 1 illustrates these basic definitions. We recall from elementary geometry
that if �abc is a triangle in R3 and d is the centroid of �abc, then d = (a+ b+ c)/3.

1Recall that the centroid of a triangle (a, b, c) is the point 1
3

(a+ b+ c).
2Vegter and Yap [22] give an example for which the type EEEE simplex has local minimum.
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Fig. 1. A simplex T with its vertices, faces, and centroids.

Geometrically, d is the intersection of three median lines of �abc. The distance from
any vertex of the triangle to its opposite side is three times the distance from d to the
side. For instance, the distance from a to bc is three times the distance from d to bc.
The following lemma establishes two simple but useful facts relating the distances in
a simplex.

Lemma 2.1. Let T be a simplex with vertices qi, facets ti, and centroids pi, as
above.

1. Given any pair i, j, where 1 ≤ i < j ≤ 4, edges qiqj and pipj are parallel;
qiqj = 3pipj; and vectors −−→qiqj and −−→pipj are oppositely directed.

2. The triangle defined by three centroids is parallel to the fourth facet of T—for
instance, �p1p2p3 is parallel to t4. The distance between �p1p2p3 and t4 is
one third the distance between q4 and t4. The triangle �p1p2p3 is homothet
to t4, with area ratio 1/9. By symmetry, the same holds for the other three
facets.

Proof.

1. Without loss of generality, consider i = 1 and j = 2. By the definition of
centroid, we have p1 = (q2 + q3 + q4)/3 and p2 = (q1 + q3 + q4)/3. Therefore,
p1 − p2 = (q2 − q1)/3. In vector notation, it is equivalent to −−→q1q2 = −3−−→p1p2,
which proves the claim.

2. In the triangle �q2q3q4, the distance from the centroid p1 to edge q2q3 is
1/3 the distance from q4 and q2q3. Taking the vertical projection of these
distances into the plane containing t4, the distance from p1 to t4 is 1/3 the
distance from q4 to t4. A similar argument holds for p2 and p3. Thus, p1, p2, p3

are equidistant from t4, and therefore �p1p2p3 is parallel to t4. Next, since
p1p2 ‖ q1q2, p2p3 ‖ q2q3, and p3p1 ‖ q3q1, we conclude that triangles �p1p2p3

and �q1q2q3 are homothets. Furthermore, because their length ratio is 1/3,
the area ratio is 1/9.

If T is the smallest simplex enclosing P , then each facet of T must touch P . We
will call T a centroidal simplex if all facet centroids of T lie on P . That is, T is
centroidal if pi ∈ P for i = 1, 2, 3, 4. We will use the following theorem of Klee [11],
which shows that a locally minimal enclosing simplex is always centroidal. (Klee
proves this theorem for any dimension [11]. For the sake of completeness, we include
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a proof of the centroid property in three dimensions in Appendix A.1.)

Lemma 2.2 (centroid lemma [11]). If T is an enclosing simplex of polytope P
with locally minimal volume, then T is centroidal.

Consider a locally minimal simplex T enclosing P . Each facet of T touches P , and
this contact can be of one of three types: V (vertex), E (edge), or F (face). (That is,
T ∩P is a vertex, edge, or face of P .) We classify enclosing simplices according to the
contact types of their facets. Since each facet of T has three possible contact types,
altogether there are 15 such classes, which we call combinatorial types. These types are
FFFF , FFFE, FFFV , FFEE, FFEV , FFV V , FEEE, FEEV , FEV V , FV V V ,
EEEE, EEEV , EEV V , EV V V , V V V V . For instance, type FFEE means that
simplex touches P in two faces and two edges.

A facet t of T has 0, 1, or 2 (rotational) degrees of freedom if the contact type of
t is F , E, or V , respectively. A simplex’s degree of freedom is the sum of its facets’
degrees of freedom. Thus, a simplex of type FFFF has zero degrees of freedom, while
type FEEV has four degrees of freedom. We will use the following result of Vegter
and Yap [22], which says that a locally minimal simplex does not have more than four
degrees of freedom.

Lemma 2.3 (degrees of freedom [22]). If T is an enclosing simplex of P with
locally minimal volume, then T has at most four degrees of freedom.

The “degrees of freedom” lemma allows us to exclude six of the 15 combinatorial
types. We further eliminate two more types (FFEV and FFV V ) using a local
perturbation argument, which leaves us seven classes of simplices to search.

Lemma 2.4 (classification lemma). Given a convex polytope P in R3, there
always exists a minimum volume simplex enclosing P whose combinatorial type is one
of the following seven: FFFF , FFFE, FFFV , FFEE, FEEE, FEEV , EEEE.

Proof. Of the original 15 classes, we can eliminate the following six because
they each have five or more degrees of freedom: FEV V , FV V V , EEEV , EEV V ,
EV V V , V V V V . Of the remaining nine, we show that classes FFEV and FFV V
are nonessential, meaning that one can always find a minimum volume simplex in
the remaining seven classes. Next, we show by a perturbation argument that the
combinatorial types FFEV and FFV V are nonessential.

We perturb the vertices of P slightly to get a polytope P̂ ; we use the notation
x̂ to denote the face x after the perturbation. The perturbed polytope satisfies the
following condition: consider two facets f̂1, f̂2 and let � be the line of intersection of the
planes supporting these facets; then the line � is not parallel to any plane determined
by an edge ê3 and a vertex v̂4 of P̂ , where ê3 and v̂4 are disjoint from f̂1, f̂2.

We now observe that cases FFEV and FFV V cannot arise in this perturbed
polytope. Indeed, if T is a simplex of type FFV V , whose facets t1, t2 are coplanar
with facets f̂1, f̂2, and whose centroids p3, p4 are coincident with vertices v̂3, v̂4, then
the line � = t1 ∩ t2 is parallel to the line p3p4, which is parallel to v̂3, v̂4, and thus to
the plane defined by v̂4 and any edge containing v̂3, a contradiction. Similarly, if T is
a simplex of type FFEV , whose facets t1, t2 are coplanar with facets f̂1, f̂2, facet t3
contains the edge ê3, and the centroid p4 is coincident with vertex v̂4, then the line
� = t1∩ t2 is parallel to the line p3p4. Because p3 lies on ê3, it follows that � is parallel
to the plane determined by edge ê3 and vertex v̂4, again a contradiction.

If T, T̂ , respectively, are the minimum volume simplices enclosing P and P̂ , then
|Vol(T̂ ) − Vol(T )| → 0, because P̂ is an arbitrarily small perturbation of P . As we
argued above, the minimum volume simplex for P̂ cannot have combinatorial type
FFEV or FFV V . Let T̂ ′ be the simplex enclosing P that is homothet to T̂ . Because
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P̂ is a small perturbation of P and T̂ ′ is a homothetic copy of T̂ , |Vol(T̂ )−Vol(T̂ ′)| → 0.
Therefore, we have |Vol(T̂ ′) − Vol(T )| → 0. In the limit of the perturbation, T̂ ′

converges to a simplex T ′ enclosing P , with Vol(T ′) = Vol(T ). Furthermore, since
the perturbation removes only degeneracies, the degrees of freedom can decrease only
in going from T̂ ′ to T ′. Because T ′ is also the limit of T̂ and T̂ is centroidal, T ′ is
centroidal with the same combinatorial type as T̂ . Thus, T ′ is a centroidal simplex
enclosing P with the same volume as T , and its combinatorial type is neither FFEV
nor FFV V .

3. Computing centroidal simplices. We now turn to the main contribution
of our paper, which is to develop geometric procedures for computing a centroidal
simplex of each combinatorial type. Specifically, given a set of four contact elements
(vertices, edges, or faces of P ), such that their contact types define a valid combina-
torial type (Lemma 2.4), we show below how to find a centroidal simplex determined
by these contacts. Observe that not every centroidal simplex necessarily encloses P ,
but checking for enclosure is relatively straightforward, and we discuss that in the
next section. If the simplex T is defined by four vertices qi, for i = 1, 2, 3, 4, where
qi has coordinates (xi, yi, zi), then we have

A(T ) =




x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1


 and Vol(T ) =

1

6
|det(A)|.

The first type, FFFF , is quite trivial. Given four faces of P , we can easily
compute the simplex defined by their supporting planes. (Intersecting three planes at
a time gives the four vertices of the simplex.) We check in constant time if P lies in
this simplex and, if so, compute its volume. The remaining six cases of Lemma 2.4
are less trivial.

3.1. Combinatorial type FFFV . Let f1, f2, f3 be three faces of P and v
a vertex of P . We want to compute the unique centroidal simplex determined by
(f1, f2, f3, v). (See Figure 1.) Let q4 denote the intersection point of the three planes
determined by f1, f2, f3. Let p4 = v, the centroid of facet t4. The centroid p1 of facet
t1 lies on the face f1. Next, because p1, p4, respectively, are centroids of facets t1, t4,
we have

p1 − p4 =
(q2 + q3 + q4)

3
− (q1 + q2 + q3)

3
=

(q4 − q1)

3
.

Thus, p1p4 ‖ q1q4. We can now determine p1 because it is the intersection of the
plane determined by f1 and the line passing through p4 parallel to faces f2 and f3.
Similarly, we can determine the centroids p2 and p3. Once we have all four centroids,
we can compute the remaining three vertices of T from the following formula:

q1 = p2 + p3 + p4 − 2p1,

q2 = p1 + p3 + p4 − 2p2,

q3 = p1 + p2 + p4 − 2p3.

With all four vertices of T known, we can compute its volume.
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Fig. 2. Type FFFE. (a) Case 1. (b) Case 2.

3.2. Combinatorial type FFFE. Let f1, f2, f3 be three faces of P and e
an edge of P . We want to compute the unique centroidal simplex determined by
(f1, f2, f3, e). Let q4 denote the intersection point of the three planes determined by
f1, f2, f3. Let p, q, r, respectively, denote the intersection points of line e with planes
determined by faces f1, f2, f3. (See Figure 2.) Let

−→
d1,
−→
d2,
−→
d3, respectively, be three

unit vectors such that
−→
di is the direction of q4qi for i = 1, 2, 3. (The direction of q4qi

can be obtained by calculating the intersection of its two adjacent faces, and the sign
of
−→
di is chosen to ensure that P lies in the cone spanned by

−→
d1,
−→
d2,
−→
d3.)

We use a linear transform L to map q4 to origin and (
−→
d1,
−→
d2,
−→
d3) into (x, y, z)

basis. In the new coordinate system, q4 = (0, 0, 0), p = (0, py, pz), q = (qx, 0, qz),

r = (rx, ry, 0). The edge e lies inside the cone spanned by (
−→
d1,
−→
d2,
−→
d3). We need to

consider two cases.
1. At least one of py, pz, qx, qz, rx, ry is zero. Without loss of generality,

assume that py = 0. Thus, p is collinear with q4, q3, and we have p = q3 = q.
Because the line containing e passes through q3 and the centroid of �q1q2q3,
this line is the median of �q1q2q3, and r is the middle point of q1q2. We
can now determine �q1q2q4 because we know the vertex q4, the directions
−−→q4q1,−−→q4q2, and the middle point of q1q2. Thus, in this case, we know all the
vertices of the simplex, and T is determined.

2. None of py, pz, qx, qz, rx, ry is zero. Of the three points p, q, r, two should

lie on the boundary of the cone spanned by (
−→
d1,
−→
d2,
−→
d3), and one is outside.

A point is outside the cone if it has one negative coordinate. Without loss of
generality, we assume that p and q are on the boundary of the cone. Thus,
py, pz, qx, qz > 0 because they are nonzero. Suppose q1 = (lx, 0, 0), q2 =
(0, ly, 0), and q3 = (0, 0, lz). We get the following implications (the first
because q2, p, q3 are collinear, and the second because q3, q, q1 are collinear):

py
ly

+
pz
lz

= 1 =⇒ ly =
py

1− pz
lz

,

qx
lx

+
qz
lz

= 1 =⇒ lx =
qx

1− qz
lz

.
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Thus,

lxlylz =
pyqxlz

(1− pz
lz
)(1− qz

lz
)

=
pyqx

λ(1− pzλ)(1− qxλ)
, where λ =

1

lz
.

Because T has minimum volume, and the volume is proportional to lxlylz,
the term lxlylz should be locally minimal. We need to maximize the function
f(λ) = λ(1− pzλ)(1− qzλ). The derivative f ′(λ) = 3pzqzλ

2− 2(pz + qz)λ+1
has the following two roots:

λ1 =
pz + qz −

√
p2
z + q2

z − pzqz
3pzqz

, λ2 =
pz + qz +

√
p2
z + q2

z − pzqz
3pzqz

.

We claim that 0 < λ1 < min{1/pz, 1/qz} ≤ λ2. (This follows from straight-
forward algebra.) Thus, λ2 is too big, and λ = λ1 is the only choice. This
yields

lz =
1

λ
= pz + qz +

√
p2
z + q2

z − pzqz.

Once lz is known, we can compute lx and ly, and the original coordinates of
q1, q2, q3 from the inverse transform L−1.

e4

4p

4q 3q

q1

2q

e3

3p

p

l

l’

q

Fig. 3. Combinatorial type FFEE.

3.3. Combinatorial type FFEE. See Figure 3. Let f1, f2 be two faces of P
and e3, e4 be two edges of P . We want to compute the unique centroidal simplex
determined by (f1, f2, e3, e4). Assume that facets t1, t2 of T are determined by f1, f2,
and facets t3, t4 are constrained by edges e3, e4. Let pi be the centroid of facet ti, and
let line � be the intersection of the planes determined by faces f1 and f2. Then, by
Lemma 2.1, we first observe that � ‖ p3p4 and that q4q3 = 3p3p4. Let us use c = q4q3
to denote this quantity.

Let p, q, respectively, denote the intersection of plane through f1 with lines
through e3 and e4. Let −→e3 , −→e4 , and

−→
� , respectively, denote the direction vectors

of e3, e4, and �. There exist scalars λ1, λ2, λ3 such that p3 = p+λ1
−→e3 , p4 = q+λ2

−→e4 ,
and p3p4 = p4 − p3 = λ3

−→
� . Thus,

p− q = −λ1
−→e3 + λ2

−→e4 − λ3
−→
� .(1)
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The three equations in (1) have a unique solution for (λ1, λ2, λ3) if and only if

det(−→e3 ,−→e4 ,
−→
� ) = 0. The determinant det(−→e3 ,−→e4 ,

−→
� ) is zero exactly when vectors

−→e3 ,−→e4 ,
−→
� are dependent, which occurs exactly when e3, e4 are coplanar. We claim

that the case when e3, e4 are coplanar is not needed—in Appendix A.2, we show that
in this case there is an infinite family of centroidal simplices, whose limiting case
is either FFFF or FFFE. Thus, in the following, we assume that e3, e4 are not
coplanar.

Since det(−→e3 ,−→e4 ,
−→
� ) = 0, there is unique solution (λ1, λ2, λ3). With this solution,

we know p3 = p+ λ1
−→e3 and p4 = q + λ2

−→e4 . By the centroid property, the distance
from q2 to plane t2 is three times the distance from p3 to t2. We draw a line �′ ‖ �
in the plane of t1 whose distance to t2 is three times the distance between p3 and t2.
Now q2 lies on �′ and �′ ‖ �. We compute the distance between � and �′, and let it be
h. We want to fix the point q2 on line �′ such that q2p intersects with � at point q4,
q2q intersects with � at point q3, and q4q3 = c.

This can be done as follows. We choose �′ as the x-axis, and the line perpendicular
to �′ as the y-axis such that line � has y-coordinate h. Because q4, p, q2 are collinear,
and q2, q, q3 are collinear, we have

(q4q2)x =
h ∗ (pq2)x

py
and (q2q3)x =

h ∗ (q2q)x
qy

.

We plug these two equations into q4q3 = c, thus,

c = q4q3 = (q4q2)x+(q2q3)x =
h ∗ (pq2)x

py
+
h ∗ (q2q)x

qy
=

h ∗ (q2x − px)

py
+
h ∗ (qx − q2x)

qy
,

and solve for q2x:

q2x =
cpyqy/h+ pxqy − qxpy

qy − py
.

Observe that we must have py = qy, because otherwise pq ‖ p3p4, which would
imply that e3, e4 are coplanar, a contradiction. From q2x, we calculate q2, and then
get q4, q3, and finally q1 = 3p3−q2−q4. This completes the discussion of combinatorial
type FFEE.

3.4. Combinatorial type FEEV . See Figure 4. Given a face f , two edges
e1, e2, and a vertex v of P , we want to compute the unique centroidal simplex deter-
mined by (f, e1, e2, v). Let us suppose that v = p3 is the centroid of facet t3, while
facet t4 is coplanar with the face f . The remaining two facets of T are constrained by
e1 and e2, with the centroid theorem ensuring that p1 ∈ e1 and p2 ∈ e2. Because the
plane p1p2p3 is parallel to t4, if we draw a plane through p3 and parallel to f , it will
intersect e1 at p1 and e2 at p2.

3 Once p1, p2, p3 are known, we can determine t1, t2, t3
easily, as follows.

Since t1 contains e1 and t1 ‖ p2p3, the plane containing t1 is uniquely determined.
Similarly, the plane containing t2 is uniquely determined since t2 contains e2 and is
parallel to p3p1. Once we know t1, t2, and t4, this case reduces to combinatorial type
FFFV , which has already been discussed.

3Observe that this construction fails if edges e1 or e2 are parallel to the plane p1p2p3. This
is a case of input degeneracy, since edge e1 must be parallel to the plane determined by edge e2
and vertex v3. The symbolic perturbation argument of Lemma 2.4 can be used to show that this
degenerate case need not be considered.
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Fig. 4. Combinatorial type FEEV .

3.5. Combinatorial type FEEE. Given a face f , and three edges e1, e2, e3 of
P , we want to compute the unique centroidal simplex determined by (f, e1, e2, e3). Let
us suppose that f is coplanar with the facet t4 of T . We first calculate the intersection
points p, q, r, respectively, where the lines containing the edges e1, e2, e3 intersect the
plane containing f . (See Figure 5.) Next, choose any linear transform L that maps
the plane containing f into the xy plane. Under this transform, the points p, q, r have
new coordinates, and denote them as p = (px, py, 0), q = (qx, qy, 0), r = (rx, ry, 0).
Let −→u denote the direction of e1 and scale it so that −→u = (ux, uy, 1). Similarly, let
−→v = (vx, vy, 1) and −→w = (wx, wy, 1) denote the scaled direction of e2 and e3.

2q

3q

1q

4q

p
1

p
3

p
2

e2e1

e3

p

q
r

Fig. 5. Combinatorial type FEEE.

Since the centroid triangle �p1, p2, p3 is parallel to t4, let h denote the common
height of the three centroids p1, p2, p3. The centroid pi is also contained in edge ei
for i = 1, 2, 3. If h is fixed, the coordinates of the three centroids can be written as
p + hu, q + hv, r + hw, respectively, and we know that the triangle formed by these
centroids is a homothet of the base triangle t4, with the area ratio 1/9. Furthermore,
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the height of the simplex is 3h. Thus, the volume of the simplex can be expressed as

Vol(T ) =
1

3
∗ (3h) ∗ 9 ∗ 1

2

∣∣∣∣∣∣
px + hux py + huy 1
qx + hvx qy + hvy 1
rx + hwx ry + hwy 1

∣∣∣∣∣∣
=

9

2
∗ (ah3 + bh2 + ch), where

a =

∣∣∣∣∣∣
ux uy 1
vx vy 1
wx wy 1

∣∣∣∣∣∣
, b =

∣∣∣∣∣∣
px uy 1
qx vy 1
rx wy 1

∣∣∣∣∣∣
+

∣∣∣∣∣∣
ux py 1
vx qy 1
wx ry 1

∣∣∣∣∣∣
, c =

∣∣∣∣∣∣
px py 1
qx qy 1
rx ry 1

∣∣∣∣∣∣
.

For the volume to be minimized, we need 3ah2 + 2bh+ c = 0, which solves to

h1,2 =
−b±√b2 − 3ac

3a
.

(If a = 0, then the minimization occurs for h = −c/2b.) For each of the two roots
of this equation, we calculate the corresponding simplex and its volume. Once we
know h, we get p1 = (px + hux, py + huy, h), p2 = (qx + hvx, qy + hvy, h), p3 =
(rx + hwx, ry + hwy, h).

Because q2q3 ‖ p2p3 and q2, p, q3 are collinear, we can draw the line �1 passing
through p and parallel to q2q3; similarly, we draw a line �2 passing through q and
parallel to p3p1 and line �3 passing through r and parallel to p1p2. Now, q1 = �2 ∩ �3,
q2 = �3∩�1, q3 = �1∩�2. The final vertex is determined as q4 = p1+p2+p3−2/3(q1+
q2 + q3). Finally, the transform L−1 maps the coordinates of q1, q2, q3, q4 back to the
original space.

3.6. Combinatorial type EEEE. See Figure 6. Our final case is also the
most complicated. Given four edges e1, e2, e3, e4 of P , we want to compute the unique
centroidal simplex determined by them. We first use a linear transform L that maps
the line containing e4 to the x-axis. In the new coordinate system, ei can be written
as oi+λvi for i = 1, 2, 3. Suppose that t4 makes an angle of θ with the xy-coordinate
plane. Then, there is a rotation R(θ) around the x-axis that maps the plane containing
t4 into the xy plane. The orthogonal transform R(θ) can be written in matrix notation
as

R(θ) =

∣∣∣∣∣∣
1 0 0
0 cos θ sin θ
0 − sin θ cos θ

∣∣∣∣∣∣
.

Each edge ei, for i = 1, 2, 3, has new coordinates R(θ)(oi + λvi) = oi(θ) + λvi(θ).
The centroid pi lies on ei, and the three centroids p1, p2, p3 have the same height
(z-coordinate). Letting this height be h, we have

(oi(θ) + λivi(θ))z = oiz(θ) + λiviz(θ) = h⇒ λi =
h− oiz(θ)

viz(θ)
for i = 1, 2, 3.

The volume of the simplex T can be written as

Vol(T )

=
1

3
∗ (3h) ∗ 9 ∗ 1

2

∣∣∣∣∣∣
o1x(θ) + λ1v1x(θ) o1y(θ) + λ1v1y(θ) 1
o2x(θ) + λ2v2x(θ) o2y(θ) + λ2v2y(θ) 1
o3x(θ) + λ3v3x(θ) o3y(θ) + λ3v3y(θ) 1

∣∣∣∣∣∣
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=
9

2
∗ h ∗

∣∣∣∣∣∣∣

o1x(θ) +
h−o1z(θ)
v1z(θ) v1x(θ) o1y(θ) +

h−o1z(θ)
v1z(θ) v1y(θ) 1

o2x(θ) +
h−o2z(θ)
v2z(θ) v2x(θ) o2y(θ) +

h−o2z(θ)
v2z(θ) v2y(θ) 1

o3x(θ) +
h−o3z(θ)
v3z(θ) v3x(θ) o3y(θ) +

h−o3z(θ)
v3z(θ) v3y(θ) 1

∣∣∣∣∣∣∣

=
9

2

h

v1z(θ)v2z(θ)v3z(θ)

×
∣∣∣∣∣∣
o1x(θ)v1z(θ)+(h−o1z(θ))v1x(θ) o1y(θ)v1z(θ)+(h−o1z(θ))v1y(θ) v1z(θ)
o2x(θ)v2z(θ)+(h−o2z(θ))v2x(θ) o2y(θ)v2z(θ)+(h−o2z(θ))v2y(θ) v2z(θ)
o3x(θ)v3z(θ)+(h−o3z(θ))v3x(θ) o3y(θ)v3z(θ)+(h−o3z(θ))v3y(θ) v3z(θ)

∣∣∣∣∣∣

=
9

2

h

v1z(θ)v2z(θ)v3z(θ)
[a(θ)h2 + b(θ)h+ c(θ)],

where

a(θ) =

∣∣∣∣∣∣
v1x(θ) v1y(θ) v1z(θ)
v2x(θ) v2y(θ) v2z(θ)
v3x(θ) v3y(θ) v3z(θ)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
v1x v1y v1z

v2x v2y v2z

v3x v3y v3z

∣∣∣∣∣∣

b(θ) =

∣∣∣∣∣∣
v1x(θ) o1y(θ)v1z(θ)−o1z(θ)v1y(θ) v1z(θ)
v2x(θ) o2y(θ)v2z(θ)−o2z(θ)v2y(θ) v2z(θ)
v3x(θ) o3y(θ)v3z(θ)−o3z(θ)v3y(θ) v3z(θ)

∣∣∣∣∣∣

+

∣∣∣∣∣∣
o1x(θ)v1z(θ)−o1z(θ)v1x(θ) v1y(θ) v1z(θ)
o2x(θ)v2z(θ)−o2z(θ)v2x(θ) v2y(θ) v2z(θ)
o3x(θ)v3z(θ)−o3z(θ)v3x(θ) v3y(θ) v3z(θ)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
v1x o1yv1z − o1zv1y v1z(θ)
v2x o2yv2z − o2zv2y v2z(θ)
v3x o3yv3z − o3zv3y v3z(θ)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
o1xv1z(θ)− o1z(θ)v1x v1y v1z

o2xv2z(θ)− o2z(θ)v2x v2y v2z

o3xv3z(θ)− o3z(θ)v3x v3y v3z

∣∣∣∣∣∣

c(θ) =

∣∣∣∣∣∣
o1x(θ)v1z(θ)− o1z(θ)v1x(θ) o1y(θ)v1z(θ)− o1z(θ)v1y(θ) v1z(θ)
o2x(θ)v2z(θ)− o2z(θ)v2x(θ) o2y(θ)v2z(θ)− o2z(θ)v2y(θ) v2z(θ)
o3x(θ)v3z(θ)− o3z(θ)v3x(θ) o3y(θ)v3z(θ)− o3z(θ)v3y(θ) v3z(θ)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
o1xv1z(θ)− o1z(θ)v1x o1yv1z − o1zv1y v1z(θ)
o2xv2z(θ)− o2z(θ)v2x o2yv2z − o2zv2y v2z(θ)
o3xv3z(θ)− o3z(θ)v3x o3yv3z − o3zv3y v3z(θ)

∣∣∣∣∣∣
.

The preceding calculations have used two key properties of the rotation R(θ).
One is the x-coordinate of any point is invariant under R(θ) and the other that R(θ)
restricted to the yz-plane is orthogonal. We can write the volume function as

Vol(T ) =
9

2

[
A(θ)h3 +B(θ)h2 + C(θ)h

]
, where

A(θ) =
a(θ)

s(θ)
, B(θ) =

b(θ)

s(θ)
, C(θ) =

c(θ)

s(θ)
, s(θ) = v1z(θ)v2z(θ)v3z(θ).

The volume function Vol(T ) = V (θ, h) has two parameters, θ and h. For the
volume to be locally minimal, we need that

∂V (θ, h)

∂θ
= 0,

∂V (θ, h)

∂h
= 0.
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Fig. 6. Type EEEE.

The above equations solve to

3A(θ)h2 + 2B(θ)h+ C(θ) = 0 and A′(θ)h2 +B′(θ)h+ C ′(θ) = 0.

We plug a(θ), b(θ), c(θ), s(θ) into A(θ), B(θ), C(θ) and use the fact that a(θ) = a is a
constant. Then

a1h
2 + b1h+ c1 = 0, a2h

2 + b2h+ c2 = 0,

where a1 = 3a, b1 = 2b(θ), c1 = c(θ), a2 = as′(θ), b2 = [b(θ)s′(θ) − b′(θ)s(θ)], c2 =
[c(θ)s′(θ)− c′(θ)s(θ)].

We now need to discuss two cases depending on whether or not a1b2 − a2b1 = 0.
1. Case 1. a1b2 − a2b1 �= 0. In this case, h is uniquely determined by the

two equations above. We get h = −(a1c2 − a2c1)/(a1b2 − a2b1). If we plug
the expression of h into the first equation, and simplify a little, we get the
following:

(a1c2 − a2c1)
2 + a1c1b

2
2 + a2c2b

2
1 = b1b2(a1c2 + a2c1).

Replacing ai, bi, ci, i = 1, 2 by original a, b(θ), c(θ), s(θ) gives

a [3c′(θ)s(θ)− 2c(θ)s′(θ)]2 + 3c(θ) [b(θ)s′(θ)− b′(θ)s(θ)]2

+ 4b(θ)2s′(θ) [c(θ)s′(θ)− c′(θ)s(θ)]
= 2b(θ) [b(θ)s′(θ)− b′(θ)s(θ)] [4c(θ)s′(θ)− 3c′(θ)s(θ)] .

In this expression, b(θ), c(θ), s(θ) are homogeneous polynomials of variables
cos θ and sin θ. The function b(θ) has degree 1, c(θ) has degree 2, and s(θ) has
degree 3. Because these functions are trigonometric, their derivatives have
the same degree as the functions themselves. Thus, the preceding equation is
a homogeneous polynomial of degree 10 with variables cos θ and sin θ, which
can be converted into a tenth degree polynomial with single variable tan θ.
While there is no analytic formula for the roots of a degree 10 polynomial,
we can use numerical methods to solve for its roots. All the real roots need
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to be checked separately. Once we have a root θ, we can compute

h = −2c(θ)s′(θ)− 3c′(θ)s(θ)
b(θ)s′(θ)− 3b′(θ)s(θ)

.

Once we have h and θ, we calculate λi = (h−oiz(θ))/viz(θ), and ti’s centroid
pi = oi + λivi, for i = 1, 2, 3. Now, the facet t1 is determined by the plane
that contains e1 and is parallel to p2p3, t2’s plane contains e2 and is parallel
to p3p1, t3’s plane contains e3 and is parallel to p1p2, and t4’s plane contains
e4 and is parallel to the plane containing the triangle �p1p2p3. The simplex
T is now determined.

2. Case 2. a1b2 −a2b1 = 0. By plugging in the expressions for ai, bi, we get
the equivalent equation

3b′(θ)s(θ)− b(θ)s′(θ) = 0.

This is actually a degree 4 polynomial in tan θ. We may compute the roots
of this polynomial analytically or using numerical methods. Given a root θ,
we can calculate h by solving

3ah2 + 2b(θ)h+ c(θ) = 0.

Once we have h and θ, we calculate the simplex T as in Case 1. This completes
the discussion of type EEEE.

4. An exact algorithm. We can now describe our algorithm for computing the
minimum volume simplex T enclosing P . Let L be a list containing all the vertices,
edges, and faces of P . We consider all 4-tuples of L. If the combinatorial type of
a tuple is not among the seven types listed in Lemma 2.4, we ignore the tuple and
move on to the next tuple. Otherwise, we use the appropriate geometric procedure
described in the preceding section to compute the centroidal simplex determined by
this tuple. Once the centroidal simplex T is found, we also need to check if P ⊂ T .

The enclosure check is easily done in O(1) time for all cases except FFFV and
FEEV . Observe that, in the remaining cases, all the contacts are of type F or E.
Given a contact type F or E, we can locally decide if the facet of T determined by that
contact has P on the correct side. For each face of P , store the outward normal—the
one pointing away from P . If a face f ∈ P supports the facet t of T , then it suffices to
check that the outward normals of f and t point in the same direction. Given an edge
contact e supporting a facet t, it suffices to check that the normal to t is a convex
combination of the normals to the two faces incident to e.

On the other hand, a vertex v of P can have arbitrarily high degree (number of
faces incident to it). Thus, checking if a facet t ∈ T touching v lies entirely to one side
of P can be expensive. However, since the only combinatorial types involving vertex
contacts are FFFV and FEEV, we can afford to spend even linear time per vertex
contact. Given a vertex v, there are O(n3) triples of face or edge contacts to consider
in conjunction with v. For each such combinatorial type, we spend O(deg(v)) time
checking simplex enclosure, where deg(v) is the number of faces or edges incident to
v. The sum over all vertices v is

O(n3)
∑
v∈P

deg(v) = O(n4),



MINIMUM VOLUME SIMPLEX 1353

since, by Euler’s theorem, the sum of vertex degrees is O(n). Thus, we can summarize
our main result in the following theorem.

Theorem 4.1. Given a convex polytope P of n vertices in R3, we can determine
the minimum volume simplex enclosing P in Θ(n4) worst-case time.

Next, we develop a faster approximation algorithm for the minimum enclosing
simplex.

5. An approximation algorithm. One can easily compute in O(n) time a
simplex whose volume is within a constant factor of the optimal, using the following
result of Barequet and Har-Peled [2]. Given a geometric object Q, and a positive
number c, we use cQ to denote the uniform scaling of Q by factor c.

Lemma 5.1 (see [2]). Given a three-dimensional convex polytope P of n vertices,
one can compute in O(n) time an arbitrarily oriented rectangular box Bapr enclosing P
such that Vol(Bapr) ≤ c1 Vol(P ) for c1 ≥ 6

√
6. Furthermore, P contains a translated

copy of the box 1
c2
Bapr, where c2 ≥ 107 is a positive number.

A minimum volume simplex containing Bapr is a constant factor approximation of
the optimal simplex containing P . While this is a simple approximation algorithm, the
approximation factor is quite poor. We now turn this scheme into an ε-approximation
scheme, following the approach of [2]. The main idea is to replace the polytope P with
a low-complexity convex polytope P ′ enclosing P , and to compute an exact minimum
volume simplex of P ′, using the algorithm of section 4. The closeness of P ′ to P will
ensure that the optimal simplex enclosing P ′ is within ε factor of the optimal simplex
of P . We begin with some definitions.

We denote a rectangular box B in R3 as a triple of orthogonal vectors (b1, b2, b3),
where b1, b2, b3 are vectors having the directions and sizes of the edges of B. The
grid generated by B is the set of points Grid(B) = {i1b1 + i2b2 + i3b3|i1, i2, i3 ∈ Z}.
Given a grid G, the (i1, i2, i3)th cell of G is BG

(i1,i2,i3)
= {x1b1 +x2b2 +x3b3|ij ≤ xj <

ij + 1, j = 1, 2, 3}. We will approximate the polytope P by a set of grid points. Let
PG be the corners of all those cells in G that contain a vertex of P , and let P ′ be the
convex hull of PG. We can describe our ε-approximation algorithm now.

Algorithm ε-approximation Enclosing Tetrahedron (P ).
1. Compute a box Bapr enclosing P as in Lemma 5.1.
2. Compute the convex polytope P ′ = CH(PG), where G = Grid(1

2Bε), and Bε is
a translated copy of ε

428Bapr centered at the origin.
3. Compute T ′apr = Topt(P

′) by our exact algorithm given in section 4.
4. Compute Tapr homothet to T ′apr such that every face of Tapr touches P .
end Algorithm

Let us first analyze the time complexity of this algorithm. Since P ′ ⊆ P ⊕Bε ⊆
Bapr⊕Bε, and since the latter box contains at most k = 856/ε+3 grid points in each
orthogonal direction of the box, P ′ contains at most k3 grid points. By a result of
Andrews [1], the convex polytope P ′ has O(k3/2) = O(1/ε

3
2 ) vertices. The dominant

step of the algorithm is step 3, which takes O((1/ε
3
2 )4) = O(1/ε6) time. The total

time is therefore O(n+ 1/ε6).
Finally, we show that the Vol(Tapr) is at most (1 + ε) times the volume of the

optimal simplex enclosing P . By Lemma 5.1, the approximate box Bapr is such that
a translated copy of 1

107Bapr is contained in P . Thus, a uniform scaling by factor ε/4
gives that a translated copy of ε

428Bapr = Bε lies inside ε
4P . Since P ′ ⊆ P ⊕ Bε,

it follows that P ′ ⊆ P ⊕ ε
4P—that is, P ′ lies inside the Minkowski sum of P and
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some translation of ε
4P . Thus, if Topt(P ) is an optimal enclosing simplex of P , then

(1 + ε
4 )Topt(P ) is an enclosing tetrahedron of P ′. Because T ′apr = Topt(P

′) is an
enclosing simplex of P ′ with minimal volume, we get

Vol(Tapr) ≤ Vol(T ′apr) = Vol(Topt(P
′)) ≤

(
1 +

ε

4

)3

Vol(Topt) ≤ (1 + ε)Vol(Topt).

This completes the analysis of our approximation algorithm, and we summarize
the main result in the following theorem.

Theorem 5.2. Given a convex polytope of v vertices in R3, and a real parameter
0 < ε < 1, we can compute in O(n + 1/ε6) time a simplex enclosing P with volume
at most (1 + ε) times the volume of an optimal enclosing simplex.

6. Concluding remarks. We have described an exact algorithm for determin-
ing a minimum volume simplex enclosing a set of points in R3. If the convex hull
of the points has n vertices, then our algorithm takes Θ(n4) time. Combining our
exact but slow algorithm with a simple but crude approximation technique, we also
develop an ε-approximation algorithm. The algorithm computes in O(n+1/ε6) time
a simplex whose volume is within (1 + ε) factor of the optimal for any ε > 0. We
are currently implementing the exact algorithm. While its overall complexity, both
the running time as well as implementation effort, may be too large for any practical
use, we hope to use it as a benchmark for developing fast and simple approximation
algorithms.

A. The appendix. In this appendix, we include the proofs of various technical
lemmas. We first begin with a proof of the centroid property. This property was
established by Klee [11] for any dimension; we include a proof in three dimensions for
completeness.

A.1. Proof of centroid property. Without loss of generality, assume that
facet t4 of T violates the centroid property. Let Q = t4 ∩ P be the intersection of t4
with P , where Q is a point, segment, or a convex polygon. Clearly, p4 ∈ Q. Since Q
is convex, there exists a line � in the plane of t4 that separates p4 and Q. Consider the
point p4(λ) =

1
1+λ (p4 + λq4) on the segment p4q4 for λ ∈ (0, 1). Let t4(λ) denote the

plane containing the point p4(λ) and the line �. The line through q4 and qi intersects
the plane t4(λ) at the point qi(λ) for i = 1, 2, 3.

Because volumetric ratios are invariant under nonsingular affine transformations,
we may assume without loss of generality that � is X-axis, p4 = (0, 1, 0), and q4 =
(0, 0, 1). Then p4(λ) = (0, 1

1+λ ,
λ

1+λ ) and plane t4(λ) is given by the equation z = λy.
Suppose that qi(λ) = (1− τi)q4 + τiqi = (τiqix, τiqiy, 1− τi); then 1− τi = λτiqiy, or
τi = (1 + λqiy)

−1, for i = 1, 2, 3. When λ is small enough, each τi is positive. The
volume of tetrahedron T (λ) is 1/6 times the absolute value of the determinant

D(λ) =

∣∣∣∣∣∣∣∣

τ1q1x τ1q1y 1− τ1 1
τ2q2x τ2q2y 1− τ2 1
τ3q3x τ3q3y 1− τ3 1
0 0 1 1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

τ1q1x τ1q1y −τ1 0
τ2q2x τ2q2y −τ2 0
τ3q3x τ3q3y −τ3 0
0 0 1 1

∣∣∣∣∣∣∣∣

= (τ1τ2τ3)

∣∣∣∣∣∣
q1x q1y −1
q2x q2y −1
q3x q3y −1

∣∣∣∣∣∣
.
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Since τi’s are all 1 when λ = 0, the third determinant is equal to D(0). Thus,

Vol(T (λ))

Vol(T )
= τ1τ2τ3 =

3∏
i=1

(1 + λqiy)
−1 =

[
3∏
i=1

(1 + λqiy)

]−1

=

[
1 +

(
3∑
i=1

qiy

)
λ+ o(λ)

]−1

= 1−
(

3∑
i=1

qiy

)
λ+ o(λ).

Since p4 is the centroid of �q1q2q3, we have
∑3
i=1 qiy = 3p4y = 3. Thus,

Vol(T (λ))

Vol(T )
= 1− 3λ+ o(λ).

For small enough λ, T (λ) is also an enclosing simplex of P , but the volume of
T (λ) is strictly less than the volume of T , which conflicts the assumed minimality of
T . Thus, the simplex T must be centroidal.

Next, we give a proof for the case of coplanar e3, e4 in combinatorial type FFEE,
which we claimed in section 3.3 that we did not need.

4p

4q 3q

q1

2q

e3

3p
e4

p

l

q

r s

Fig. 7. Combinatorial type FFEE with coplanar e3, e4.

A.2. Type FFEE when e3, e4 are coplanar. Let π be the plane spanned
by (coplanar) edges e3, e4. (See Figure 7.) Then, q4q3 ‖ p3p4 implies that q4q3 ‖ π,
which in turn implies that q4q3 ‖ pq. Similarly, if r, s denote the intersections of plane
through f2 with lines through e3 and e4, then q4q3 ‖ rs (Figure 3).

Let x = pq/q4q3, and y = rs/q4q3. Then, dist(q2, �) = 1
1−xdist(p, �), and

dist(q1, �)
1

1−ydist(r, �), where dist(x, �) denotes the distance from point x to line �.

Since the volume of a simplex is 1/3 the base area times height, we have

Vol(T ) =
1

3
∗
[
1

2
q4q3 ∗ dist(q2, �)

]
∗ [dist(q1, �) ∗ cos θ]

=
c

6
∗ cos θ ∗ dist(q1, �) ∗ dist(q2, �)

=
[ c
6
∗ cos θ ∗ dist(p, �) ∗ dist(r, �)

]
∗ 1

1− x
∗ 1

1− y
,
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where θ is the angle between planes defined by faces f1 and f2, and recall that c = q4q3.

In order for T to be centroidal, p, p3, r should be collinear, as should the triple
q, p4, s. In the plane of t3, if we choose {−−→q4q2,−−→q4q1} as the basis, then p = (1− x, 0),
r = (0, 1− y), and p3 = (1/3, 1/3). It is easy to verify that p, p3, r are collinear if and
only if 1

1−x +
1

1−y = 3, and q, p4, s are collinear if and only if 1
1−x +

1
1−y = 3. Thus, if

e3, e4 are coplanar and T is centroidal, then necessarily 1
1−x + 1

1−y = 3. However, if
this condition is satisfied, then the position of T is not fixed! We need only q4, q3 to
satisfy that q4q3 = c, and both of them belong to the line �. Then the intersection of
q4p and q3q is q2, the intersection of q4r and q3s is q1, and it guarantees that e3, e4

contain the centroids of t3, t4, respectively.

In summary, if there exists one centroidal simplex in this instance, then there
exists a continuous family of them. We can take the limit of this continuous family
in one direction, and the limiting simplex will have fewer degrees of freedom and the
same volume as any of these intermediate centroidal simplices. Thus, the volume of
a centroidal simplex of type FFEE in this case is no smaller than the best simplex
in class FFFF or FFFE. Thus, we need not consider this case.

Acknowledgments. We thank Ken Clarkson, Joseph O’Rourke, and Chee Yap
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Abstract. We analyze the performance of the widely studied Perceptron andWinnow algorithms
for learning linear threshold functions under Valiant’s probably approximately correct (PAC) model of
concept learning. We show that under the uniform distribution on boolean examples, the Perceptron
algorithm can efficiently PAC learn nested functions (a class of linear threshold functions known
to be hard for Perceptron under arbitrary distributions) but cannot efficiently PAC learn arbitrary
linear threshold functions. We also prove that Littlestone’s Winnow algorithm is not an efficient
PAC learning algorithm for the class of positive linear threshold functions, thus answering an open
question posed by Schmitt [Neural Comput., 10 (1998), pp. 235–250]. Based on our results we
conjecture that no “local” algorithm can learn linear threshold functions efficiently.
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1. Introduction. The classical Perceptron algorithm and Littlestone’s Winnow
algorithm are two algorithms for learning linear threshold functions which have been
studied extensively in the online mistake bound model [4, 8, 13, 16, 17, 19, 28]. In
this model the learning algorithm sequentially makes predictions on examples as they
are received, using a hypothesis which it can update after each example, and the
performance of an algorithm is measured by the worst-case number of prediction
mistakes it makes on any example sequence. The well-known Perceptron convergence
theorem [6, 20, 24] establishes conditions under which the Perceptron algorithm will
make a bounded number of mistakes on a (possibly infinite) sequence of examples,
and Littlestone [14, 15, 16] has obtained similar results for the Winnow algorithm.

Despite widespread interest in the Perceptron and Winnow algorithms, relatively
little is known about their performance in Valiant’s commonly used probably approx-
imately correct (PAC) model of concept learning [26]. In this paper we establish some
positive and negative results which help to clarify the learning abilities of Perceptron
and Winnow in the PAC model.

In the PAC learning model there is a fixed distribution D from which labelled
examples are drawn; the goal of the learner is to find a hypothesis which closely ap-
proximates the target function under distribution D. It has long been known that
if the space of possible examples is the n-dimensional unit sphere Sn, then the Per-
ceptron algorithm is not an efficient PAC learning algorithm for the class of linear
threshold functions because of “hard” distributions which concentrate their weight
on examples close to the separating hyperplane. Baum [5] has shown that if D is re-
stricted to be the uniform distribution on Sn, though, then Perceptron is an efficient
PAC learning algorithm for the class of linear threshold functions. Schmitt [25] has
shown that Perceptron is not an efficient PAC learning algorithm for the class of linear
threshold functions over the example space {0, 1}n; his proof works by exhibiting a
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nested boolean function (a special type of linear threshold function) and a distribution
which is concentrated on “hard” examples for that function. No results analogous to
these have appeared for the Winnow algorithm; as Schmitt noted, it was not known
“whether Littlestone’s rules can PAC identify in polynomial time” [25].

This paper makes the following contributions: In section 3 we show that un-
der the uniform distribution on {0, 1}n the Perceptron algorithm is an efficient PAC
learning algorithm for the class of nested boolean functions. This demonstrates that
Schmitt’s negative result for nested functions depends on choosing a “hard” distribu-
tion. However, in section 4 we give a simple proof that the Perceptron algorithm is not
an efficient PAC learning algorithm for the class of linear threshold functions under
the uniform distribution on {0, 1}n. This provides an interesting contrast to Baum’s
result and answers an open question in Schmitt [25]. Finally, we prove in section 5
that the Winnow algorithm is not an efficient PAC learning algorithm for the class
of positive linear threshold functions over {0, 1}n. To the best of our knowledge this
is the first negative result for Winnow in the PAC model. We conclude in section 6
with suggestions for future research.

2. Preliminaries. A concept class C on an example space X is a collection
of boolean functions on X. The sets C and X are striated; i.e., C = ∪n≥1Cn and
X = ∪n≥1Xn, where each c ∈ Cn has domain Xn. Throughout this paper Xn will
be the boolean cube {0, 1}n. We will mainly deal with the class Hn of n-dimensional
linear threshold functions. A boolean function f : {0, 1}n → {−1, 1} is a linear
threshold function if there is a weight vector w ∈ Rn and a threshold θ ∈ R such that
f(x) = 1 iff w ·x ≥ θ. Such a pair (w, θ) is said to represent f. See [7, 21] for extensive
treatments of linear threshold functions on {0, 1}n.

2.1. Perceptron. Throughout its execution the Perceptron algorithm maintains
a weight vector w and a threshold θ as its current hypothesis. The algorithm proceeds
in a series of steps; in each step it receives an example x, uses its hypothesis to make
a prediction on x, and adjusts its hypothesis if the prediction is incorrect. Initially,
the algorithm starts with weight vector w = (0, . . . , 0) and threshold θ = 0. Upon
receiving an example x, the algorithm predicts according to the threshold function
w · x ≥ θ. If the prediction is incorrect, the hypothesis is updated according to the
following rule:

• On a false positive prediction, set w ← w − x and set θ ← θ + 1.
• On a false negative prediction, set w ← w + x and set θ ← θ − 1.

No change is made if the hypothesis was correct on x. If each example x belongs to
{0, 1}n, then each wi and θ will always be integers; this fact will prove useful later.

The well-known Perceptron convergence theorem bounds the number of mistakes
which the Perceptron algorithm can make.
Theorem 2.1 (see [6, 20, 24]). Let 〈x1, y1〉, . . . , 〈xm, ym〉 be a sequence of labeled

examples with ‖xi‖ ≤ R and yi ∈ {−1, 1} for all i. Let u be a vector and θ, ξ be such
that yi(u · xi − θ) ≥ ξ for all i, where ξ > 0. Then the total number of mistakes made
by the Perceptron algorithm on this example sequence is at most

(R2 + 1)(‖u‖2 + θ2)

ξ2
.

2.2. Winnow. The Winnow algorithm takes as input an initial vector wI ∈ Rn,
a promotion factor α ∈ R, and a threshold θ ∈ R. The algorithm requires that wI is
positive (i.e., each coordinate of wI is positive), that α > 1, and that θ > 0. Like
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the Perceptron algorithm, Winnow proceeds in a series of trials and predicts in each
trial according to the threshold function w · x ≥ θ. If the prediction is correct, then
no update is performed; otherwise the weights are updated as follows:

• On a false positive prediction for all i set wi ← α−xiwi;
• On a false negative prediction for all i set wi ← αxiwi.

It should be noted that, in this form, Winnow is capable only of expressing pos-
itive threshold functions as its hypotheses. This limitation can be easily overcome,
however, by using various simple transformations on the input (see [14, 15]). Lit-
tlestone has proved the following result, analogous to the Perceptron convergence
theorem, bounding the number of mistakes which Winnow makes.

Theorem 2.2 (see [16]). Let 〈x1, y1〉, . . . , 〈xm, ym〉 be a sequence of labeled ex-
amples with xi ∈ [0, 1]n and yi ∈ {−1, 1} for all i. Let u be a positive vector and
δ > 0 be such that whenever yi = 1 we have u · x ≥ 1 and whenever yi = −1 we
have u · x ≤ 1− δ. If Winnow is run on this example sequence with initial parameters
wI , α, θ where wI = (1, . . . , 1), α = 1+ δ

2 and θ > 0, then the total number of mistakes
made by Winnow on this example sequence is at most

8n

δ2θ
+max

{
0,

14

δ2

n∑
i=1

ui ln(uiθ)

}
.

2.3. PAC learning with online learning algorithms. In Valiant’s PAC
learning model [12, 26] the learning algorithm has access to an example oracleEX(c,D)
which, in one time step, provides a labelled example 〈x, c(x)〉, where x is drawn from
the distribution D on the example space X. The function c ∈ C is called the target
concept; the goal of the learning algorithm is to construct a hypothesis h which, with
high probability, has low error with respect to c. We thus have the following.

Definition 2.3. We say that an online learning algorithm A (such as Perceptron
or Winnow) is an efficient PAC learning algorithm for concept class C over X if there
is a polynomial p(·, ·, ·) such that the following conditions hold for any n ≥ 1, any
distribution D over Xn, any c ∈ Cn, and any 0 < ε, δ < 1 :

• Given any example x ∈ Xn algorithm A always evaluates its hypothesis on x
and (once provided with c(x)) updates its hypothesis in poly(n) time.

• If algorithm A is run on a sequence of examples generated by successive calls
to EX(c,D), then with probability at least 1 − δ algorithm A will generate a
hypothesis h such that Prx∈D[h(x) �= c(x)] < ε after at most p(n, 1

ε ,
1
δ ) calls

to EX(c,D).
An algorithm A is said to be an efficient PAC learning algorithm under a fixed

distribution D if it satisfies the above definition for the fixed distribution D. The most
natural distribution over a finite set is of course the uniform distribution; we write
Un to denote the uniform distribution over {0, 1}n.

2.4. PAC learning versus online mistake bound learning. Several generic
techniques are known [1, 11, 14] for converting any online mistake bound learning
algorithm to a PAC algorithm. These conversion procedures yield PAC learning
algorithms whose running time is polynomially related to the running time of the
original online algorithm. Using these conversion procedures Theorems 2.1 and 2.2
imply that Perceptron and Winnow are efficient PAC learning algorithms for certain
restricted linear threshold learning problems. For example, one straightforwardly
obtains the following.
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Corollary 2.4. Let CW be the class of linear threshold functions w ·x ≥ θ over
{0, 1}n such that each wi is an integer and

∑n
i=1 |wi| < W. Then both Perceptron and

Winnow yield PAC learning algorithms for CW which run in time poly(n,W, 1
ε ,

1
δ ).

It is well known, though, that there are linear threshold functions over {0, 1}n
which require integer coefficients of magnitude 2Ω(n). (See, e.g., [10]; we will see an
example of such a linear threshold function in section 5.1.) For functions such as these
the time bound of Corollary 2.4 is exponentially large in n and hence does not shed
light on whether or not Perceptron and Winnow are efficient PAC learning algorithms.

3. Perceptron can learn nested functions under Un. In this section we
establish a sufficient condition for a family of threshold functions to be efficiently
learnable by Perceptron under Un. We prove that nested functions satisfy this condi-
tion and thereby immediately obtain the main result of this section. This complements
Schmitt’s result [25] that the Perceptron algorithm cannot efficiently PAC learn nested
functions under arbitrary distributions.

The class of nested functions, denoted NFn, was introduced by Anthony, Bright-
well, and Shawe-Taylor in [3].
Definition 3.1. The class of nested functions over x1, . . . , xn is defined as

follows:
1. For n = 1, the functions x1 and x1 are nested.
2. For n > 1, f(x1, . . . , xn) is nested if f = g ∗ ln, where g is a nested function

on x1, . . . , xn−1, ∗ is either ∨ or ∧, and ln is either xn or xn.
It is easy to verify that the class of nested functions is equivalent to the class of 1-

decision lists of length n in which the variables appear in the reverse order xn, . . . , x1.
The following lemma establishes a canonical representation of nested functions as
threshold functions.
Lemma 3.2. Any f ∈ NFn can be represented by a linear threshold function

w1x1 + · · ·+ wnxn ≥ θn

with θn = k + 1
2 for some integer k,wi = ±2i−1, and

∑
wi<0 wi < θn <

∑
wi>0 wi.

Proof. The proof is by induction on n. For n = 1 the appropriate threshold
function is x1 ≥ 1

2 or −x1 ≥ − 1
2 . For n > 1, f must be of the form g ∗ ln, where g is a

nested function on x1, . . . , xn−1. By the induction hypothesis, g can be expressed as a
threshold function w1x1 + · · ·+wn−1xn−1 ≥ θn−1, with w1, . . . , wn−1, θn−1 satisfying
the conditions of the lemma. There are four possibilities:

1. f = g ∧ xn: then f is w1x1 + · · ·+wn−1xn−1 + 2n−1xn ≥ θn = θn−1 + 2n−1.
2. f = g ∧ xn: then f is w1x1 + · · ·+ wn−1xn−1 − 2n−1xn ≥ θn = θn−1.
3. f = g ∨ xn: then f is w1x1 + · · ·+ wn−1xn−1 + 2n−1xn ≥ θn = θn−1.
4. f = g ∨ xn: then f is w1x1 + · · ·+wn−1xn−1 − 2n−1xn ≥ θn = θn−1 − 2n−1.

In each case it can be verified that the stated threshold function is equivalent to f
and that w1, . . . , wn, θn satisfy the conditions of the lemma.
Definition 3.3. Let Gn be a collection of hyperplanes in Rn. A family G =

∪n≥1Gn of hyperplanes is said to be gradual if there is some constant c > 0 such that
the following condition holds: for every τ ≥ 0, every n ≥ 1, and every hyperplane in
Gn, at most cτ2n boolean examples x ∈ {0, 1}n lie within Euclidean distance τ of the
hyperplane. A class of linear threshold functions F is said to be gradual if there is
a mapping ϕ : F → G, where G is a gradual family of hyperplanes, such that for all
f ∈ F, if ϕ(f) is the hyperplane w · x = θ, then (w, θ) represents the linear threshold
function f.
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Lemma 3.4. The class of nested functions is gradual.
Proof. We use the representation established in Lemma 3.2; so let f ∈ NFn and

let w · x ≥ θ be a linear threshold function which represents f with wi = ±2i−1 and
θ = k + 1

2 for some integer k. For x ∈ {0, 1}n, if w · x = t, then t must be an integer,
but since every integer has a unique binary representation, at most one x ∈ {0, 1}n
can satisfy w · x = t for any given value of t. Consequently, no example x ∈ {0, 1}n
can have |w · x− θ| < 1

2 , and

|{x ∈ {0, 1}n : |w · x− θ| ≤ m}| ≤ 2m+ 1

for m ≥ 1
2 . The lemma follows by noting that ‖w‖ = ( 4n−1

3 )1/2 = Θ(2n) and that the
distance from a point x′ to the hyperplane w · x = θ is ‖w‖−1 · |w · x′ − θ|.

This lemma ensures that relatively few points can lie close to the separating
hyperplane for a nested function; consequently, as we run Perceptron most of the
updates will cause the algorithm to make significant progress, and it will achieve
ε-accuracy in polynomial time. The following theorem formalizes this intuition.
Theorem 3.5. If C is a gradual class of linear threshold functions, then Percep-

tron is an efficient PAC learning algorithm for C under Un.
Proof. The proof is similar to the proof of Theorem 1 in [5]. Let w · x ≥ θ be

a gradual linear threshold function which represents c. We assume without loss of
generality that w, θ have been normalized; i.e., ‖w‖ = 1, so |w · x− θ| is the distance
from x to the hyperplane. By Definition 3.3, there is some constant k > 0 such that
for all τ > 0 the probability that a random example drawn from EX(c,Un) is within
distance τ of the hyperplane w · x = θ is at most τ/2k. Letting τ = kε, we have
that with probability at most ε/2, a random example drawn from EX(c,Un) is within
distance kε of the hyperplane. Let B ⊆ {0, 1}n be the set of examples x which lie
within distance kε of the hyperplane; so Prx∈Un [x ∈ B] ≤ ε/2.

Let (wt, θt) represent the Perceptron algorithm’s hypothesis after t updates have
been made. If (wt, θt) is not yet ε-accurate, then with probability at most 1/2 the
next example which causes an update will be in B. Consider the following potential
function:

Nt(α) = ‖αw − wt‖2 + (αθ − θt)
2.

Recalling our Perceptron update rules, we see that Nt+1(α)−Nt(α) is

∆N(α) = ‖αw − wt+1‖2 + (αθ − θt+1)
2 − ‖αw − wt‖2 − (αθ − θt)

2

= ∓2αw · x± 2αθ ± 2wt · x∓ 2θt + ‖x‖2 + 1

≤ 2αA± 2(wt · x− θt) + n+ 1

with A = ∓(w · x − θ). Since x was misclassified, we know that ±(wt · x − θt) ≤ 0,
and hence ∆N(α) ≤ 2αA + n + 1. If x ∈ B, then A ≤ 0; if x /∈ B, then A ≤ −kεα.
As a result, ∆N(α) < n+ 1 for x ∈ B, and ∆N(α) < n+ 1− 2kεα for x /∈ B.

Suppose that during the course of its execution the Perceptron algorithm has
made r updates on examples in B and s updates on examples outside B. Since (w, θ)
have been normalized we have that |θ| ≤ √n, and hence N0(α) ≤ α2(n + 1). Since
Nt(α) must always be nonnegative, it follows that

0 ≤ r(n+ 1) + s(n+ 1− 2kεα) + α2(n+ 1).

If we set α = 12(n+1)
5kε , then simplifying the above inequality we obtain

0 ≤ r − 19

5
s+

144(n+ 1)2

25(kε)2
,
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from which it follows that if m1 = 144(n+1)2

25(kε)2 updates have been made, at least 7/12

of the updates must have been on examples in B.

Let m = max{144 ln δ
2 ,m1} and consider running the Perceptron algorithm for

2m/ε examples. Let h1, h2, . . . denote the hypotheses which are generated by the
Perceptron algorithm during the course of its execution on these 2m/ε examples. We
have that

Pr[each hi has error > ε] = Pr[(each hi has error > ε) &

(fewer than m updates take place)]

+ Pr[(each hi has error > ε) &

(at least m updates take place)]

≤ Pr[(fewer than m updates take place) |
(each hi has error > ε)]

+ Pr[(at least m updates take place) |
(each hi has error > ε)].

To bound the first of these conditional probabilities, we note that conditioned on the
event that each hi has error at least ε, the expected number of updates is at least 2m.
A straightforward Chernoff bound [2] shows that this first conditional probability is
at most δ/2.

To bound the second conditional probability, we recall that if at least m updates
take place, then at least 7/12 of the updates must be on examples in B. However, as
noted earlier, if each hi has error at least ε, then for each update the probability that
the update is in B is at most 1/2. Another application of Chernoff bounds shows that
the second conditional probability is at most δ/2, and the theorem is proved.

As an immediate corollary of Theorem 2.1 we have that the Perceptron is a PAC
learning algorithm for the class of nested functions under the uniform distribution on
{0, 1}n.

4. Perceptron cannot learn Hn under Un. A very simple argument suffices
to establish this result. We require the following definition.

Definition 4.1 (see [25]). The weight complexity of a linear threshold function
f is the smallest positive integer t such that f can be represented as w · x ≥ θ, with
each wi and θ an integer and max{|w1|, . . . , |wn|, |θ|} ≤ t.

Theorem 4.2. The Perceptron algorithm is not an efficient PAC learning al-
gorithm for the class of linear threshold functions under the uniform distribution on
{0, 1}n.

Proof. We take ε = 1
2n+1 ; so any ε-accurate hypothesis must agree exactly with

the target concept, since misclassification of a single example would imply an er-
ror rate under the uniform distribution of at least 1

2n > ε. H̊astad [9] has con-

structed a linear threshold function which has weight complexity 2Ω(n logn). If we
take this as our target concept, then it follows that at least 2Ω(n log n) update steps
must be performed by the Perceptron algorithm in order to achieve exact identifi-
cation (since Perceptron hypothesis weights are always integral and each weight is
increased by at most 1 during each Perceptron update step). However, the amount
of computation time which a PAC learning algorithm is allowed is only poly(n, 1

ε ) =

poly(n, 2n) = 2O(n).
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5. Winnow cannot learn Hn. Although the Winnow algorithm has been ex-
tensively studied in the online mistake bound learning model, little is known about
its performance in other learning models. In this section we show that Winnow is not
an efficient PAC learning algorithm for the class of positive linear threshold functions.
More precisely, we prove the following theorem.
Theorem 5.1. Given any positive start vector wI , any promotion factor α > 1

and any threshold θ > 0, there is a positive threshold function c, a distribution D on
{0, 1}n, and a value ε > 0 for which Winnow(wI , α, θ) will not generate a hypothesis
h such that Prx∈D[h(x) �= c(x)] ≤ ε in poly(n, 1

ε ) steps.
As a consequence of the proof of this theorem, we will obtain an explicit family of

“hard” threshold functions and corresponding example sequences which cause Winnow
to make exponentially many mistakes. Maass and Turan [18] have used a counting
argument to show that, given any (wI , α, θ), there exists a target threshold function
and example sequence which together cause Winnow(wI , α, θ) to make exponentially
many mistakes, but no explicit construction was known.

5.1. A threshold function with large coefficients and a small specifying
set. The proof of Theorem 3.5 makes use of several lemmas. In the first lemma we
show that a nested boolean function with alternating connectives requires exponen-
tially large coefficients. (Similar results can be found in [21, 22].)
Lemma 5.2. Let n be odd and let u · x ≥ θ be a positive threshold function which

represents the nested function

fn = (. . . (x1 ∨ x2) ∧ x3) ∨ x4) . . . ) ∨ xn−1) ∧ xn.
For all i ≥ 3 we have that ui ≥ Fi−3u3, where Fi is the ith Fibonacci number:
F0 = 1, F1 = 1, F2 = 1, F3 = 2, F4 = 3, . . . .

Proof. The proof is by induction on k, where n = 2k + 1. For clarity we use two
base cases. The case k = 1 is trivial. If k = 2, then since f5(0, 0, 0, 1, 1) = 1 and
f5(0, 0, 1, 0, 1) = 0, we find that u4 ≥ u3. Similarly, since f5(0, 0, 1, 1, 0) = 0, we find
that u5 ≥ u3.

We now suppose that the lemma is true for k = 1, 2, . . . , j− 1 and let n = 2j+1.
By assumption, (u1, . . . , un) and θ are such that u · x ≥ θ represents fn. If we fix
xn = 1 and xn−1 = 0, then it follows that u1x1 + · · · + un−2xn−2 ≥ θ − un is a
threshold function which represents fn−2; so by the induction hypothesis the lemma
holds for u3, . . . , un−2, and we need only show that it holds for un−1 and un.

Since fn(1, 1, . . . , 1, 0, 0, 1) = 0, we have that u1 + u2 + · · ·+ un−3 + un < θ. On
the other hand, since fn(0, 0, . . . , 0, 1, 1) = 1, we have that un−1+un ≥ θ. From these
two inequalities it follows that

un−1 ≥ u1 + u2 + · · ·+ un−3.

Since u is positive, this inequality implies that

un−1 > u3 + u4 + · · ·+ un−3.

Using the induction hypothesis we obtain the inequality

un−1 ≥ (1 + F1 + · · ·+ Fn−6)u3 = Fn−4u3.

Similarly, since fn(1, 1, . . . , 1, 0) = 0, we have that u1 + u2 + · · ·+ un−1 < θ; so

un ≥ u1 + u2 + · · ·+ un−2 > u3 + u4 + · · ·+ un−2.
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By the induction hypothesis, we find that

un ≥ (1 + F1 + · · ·+ Fn−5)u3 = Fn−3u3,

and the lemma is proved.

Since Fn = Ω(φn), where φ = 1+
√

5
2 , we have shown that fn must have coefficients

whose ratio is exponentially large.
We require a definition from [3] before stating the next lemma.
Definition 5.3. Let c ∈ Hn. We say that c is consistent with a set S = {〈x1, b1〉,

〈x2, b2〉, . . . , 〈xm, bm〉} of labelled examples if c(xi) = bi for all i. The set S is said
to specify c in Hn if c is the only function in Hn which is consistent with S; we say
that such a set is a specifying set for c in Hn. The specification number of c, denoted
σn(c), is the smallest size of any specifying set for c in Hn.

The following results are proved in [3].
Lemma 5.4.
1. Every c ∈ Hn has a unique specifying set of size σn(c).
2. If c ∈ NFn, then σn(c) = n+ 1.
3. Given any c ∈ Hn, let c ↑ (x1, . . . , xn−1) = c(x1, . . . , xn−1, 1) and let c ↓

(x1, . . . , xn−1) = c(x1, . . . , xn−1, 0). Then σn(c) ≤ σn−1(c↑) + σn−1(c↓).
4. If c ∈ Hn and c depends on only coordinates 1, 2, . . . , k, then the specification

number of c in Hn is σn(c) = 2n−kσk(c).
We use the results of Lemma 5.4 to show that the function gn defined below has

a small specifying set.
Lemma 5.5. Let n be even and let gn be the linear threshold function represented

by

x1 + 2x2 + 4x3 + · · ·+ 2n−2xn−1 + (2n−2 + 1)xn ≥ 4 + 16 + · · ·+ 2n−4 + 2n−2 +
1

2
.

Then σn(gn) ≤ 5n− 8.
Proof. The function gn↓ is represented by

x1 + 2x2 + 4x3 + · · ·+ 2n−2xn−1 ≥ 4 + 16 + · · ·+ 2n−2 +
1

2
.

It is straightforward to verify that this is precisely the nested function

(. . . (x1 ∨ x2) ∧ x3) ∨ x4) . . . ) ∧ xn−1

on n− 1 variables. By part 2 of Lemma 5.4, we have σn−1(gn↓) = n.
The function gn↑ is represented by

x1 + 2x2 + 4x3 + · · ·+ 2n−2xn−1 ≥ 4 + 16 + · · ·+ 2n−4 − 1

2
.

Again, one can easily verify that this is precisely the nested function

(. . . (x3 ∨ x4) ∧ x5) ∨ x6) . . . ) ∧ xn−3) ∨ xn−2) ∨ xn−1

on the n − 3 variables x3, . . . , xn−1; in this nested function the boolean connectives
alternate between ∨ and ∧ until the very end, where two consecutive ∨’s occur. Since
gn↑ does not depend on the two variables x1, x2, parts 4 and 2 of Lemma 5.4 imply
that σn−1(gn↑) = 4σn−3(gn↑) = 4(n − 2). It follows from part 3 of Lemma 5.4 that
σn(gn) ≤ 5n− 8.
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5.2. Proof of Theorem 3.5. One more lemma is required. We prove that
the coefficients of xn−1 and xn in any representation of gn must be almost, but not
exactly, equal.
Lemma 5.6. Let n be even and let gn be as defined in Lemma 5.5. Let v · x ≥ θ

represent gn. Then vn−1 < vn < vn−1 + v3.
Proof. Let ej denote the boolean vector whose jth coordinate is 1 and all of whose

other coordinates are 0. Let a = e3 + e5 + e7 + · · ·+ en−1. Since gn(a) = 0, it follows
that v3 + v5 + · · ·+ vn−1 < θ. On the other hand, let b = e3 + e5 + · · ·+ en−3 + en.
Since gn(b) = 1, it follows that v3 + v5 + · · · + vn−3 + vn ≥ θ. Combining these two
inequalities, we find that vn > vn−1.

To see that vn cannot be much greater than vn−1, let c = e1 + e5 + e7 + e9 + · · ·+
en−3 + en. Since gn(c) = 0, we have v1 + v5 + · · ·+ vn−3 + vn < θ. On the other hand,
let d = e1 + e3 + · · ·+ en−1. Since gn(d) = 1, we have that v1 + v3 + · · ·+ vn−1 ≥ θ.
Combining these two inequalities, we find that vn < vn−1 + v3, and the lemma is
proved.

Proof of Theorem 3.5. We first prove the theorem for the restricted case in which
we assume that wI = (1, . . . , 1). After we have done this we will show how this
assumption can be eliminated.

Fix α > 1 and θ > 0. Let S denote the specifying set for the threshold function
gn; we know from Lemma 5.5 that |S| ≤ 5n− 8. Let D be the distribution on {0, 1}n
which is uniform on S and gives zero weight to vectors outside of S. We will show that
with gn as the target concept, D as the distribution over examples, and ε = 1

5n−7 as
the error parameter, Winnow((1, . . . , 1), α, θ) cannot achieve a hypothesis h(x) which
satisfies PrD[h(x) �= c(x)] ≤ ε in poly(n, 1

ε ) = poly(n) steps. To see this, first note
that by our choice of ε and D, any threshold function w · x ≥ θ which is ε-accurate
with respect to gn must be consistent with S. (This technique was first used by Pitt
and Valiant in [23].) Since S is a specifying set for gn, though, if w ·x ≥ θ is consistent
with S, then it must in fact agree exactly with gn. We will show that there is no value
of α which could enable Winnow to generate a vector w such that w ·x ≥ θ represents
gn(x) in poly(n) steps.

Let (w, θ) be such that Winnow generates w and w ·x ≥ θ represents gn(x). Since
gn↓ is precisely the nested function fn−1 of Lemma 5.2 and w is positive, by Lemma
5.2 we have that wn−1 ≥ Fn−4w3. Combining this with Lemma 5.6, we obtain

1 <
wn
wn−1

< 1 +
1

Fn−4
= 1 +

1

Ω(φn)
.

Since we assumed that wI = (1, . . . , 1), and every example for Winnow lies in {0, 1}n,
it follows that wn

wn−1
= αj for some positive integer j, and hence that α = 1 + 1

Ω(φn) .

However, then at least Ω(nφn) update steps are required to achieve wn−1 ≥ Fn−4w3;
consequently, no hypothesis consistent with gn can be achieved in poly(n) steps.

Now we consider the case of an arbitrary positive start vector wI ; so fix some
positive wI , α > 1, and θ > 0. We assume without loss of generality that wI1 ≤ wI2 ≤
· · · ≤ wIn, since if this is not already the case renaming variables will make it so. Since
all examples for Winnow are in {0, 1}n, at every point in the execution of Winnow

the ratio of weights wi and wj must be
wI

i

wI
j

·αc for some integer c. If there is no integer

i1 such that

1 <
wIn
wIn−1

· αi1 < 1 +
1

Fn−4
,
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then Winnow can never achieve a hypothesis which represents the threshold function
gn(x), and can hence never achieve ε-accuracy; so we assume that such an i1 exists.
Similarly, if there is no integer i2 such that

1 <
wIn−1

wIn
· αi2 < 1 +

1

Fn−4
,

then there is a threshold function which Winnow can never achieve (the function gn
with a permutation on the variables is such a function); so such an i2 must exist as
well. Taking the product of these inequalities, we find that

1 < αi1+i2 <
(
1 +

1

Fn−4

)2

.

Since i1 + i2 must be a positive integer, this implies that α < (1 + 1
Fn−4

)2. Now

consider a threshold function which requires that w1 ≥ Fn−4wn. (Again, gn with a
permutation on the variables is such a function.) Since wI1 ≤ wIn and α < (1+ 1

Fn−4
)2,

it follows that Ω(nφn) update steps will be required. Hence no hypothesis consistent
with gn can be achieved in polynomial time, and the theorem is proved.

As an immediate consequence of this proof, we note that the example sequence
which simply cycles through S will force Winnow to make exponentially many mis-
takes on gn.

6. Conclusion. Many questions remain to be answered about the PAC learning
ability of simple online algorithms such as Perceptron and Winnow. Perceptron is now
known to be a PAC learning algorithm for linear threshold functions under the uniform
distribution on the n-dimensional unit sphere and is known not to be a PAC learning
algorithm for linear threshold functions under the uniform distribution on {0, 1}n.
Analogous results have yet to be obtained for Winnow under uniform distributions.
More generally, it would be interesting to identify the class of threshold functions
which Perceptron (Winnow) can PAC learn under the uniform distribution and under
arbitrary distributions.

The linear threshold function gn used in our Winnow proof is very similar to a
nested function; in particular, both gn ↑ and gn ↓ are nested functions. In light of
this fact, and of Schmitt’s proof that Perceptron is not a PAC learning algorithm for
the class of nested functions, it would be interesting to determine whether Winnow
is capable of PAC learning the class of nested functions (or, equivalently, the class of
decision lists).

Both the Perceptron and Winnow algorithms are local in the sense of [27]: each
update to a weight wi depends only on the value of w · x, the value of wi, the value
of xi, and the correct classification of the example. Such algorithms are of particular
interest because they require very limited communication between the processors that
perform the updates for each weight and are hence well suited for implementation
on a distributed system such as a neural network. Known algorithms for learning
threshold functions efficiently, such as the algorithm of [18] which is based on linear
programming, are nonlocal. We conjecture that local learning algorithms cannot
efficiently learn the unrestricted class of threshold functions.

A final issue is attribute efficiency. A learning algorithm is said to be attribute
efficient if, when the target concept has k relevant variables out of n, the number of
calls which the algorithm makes to the example oracle is polynomial in k and poly-
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logarithmic in n. Littlestone’s results for Winnow show that it is an attribute efficient
algorithm for certain simple subclasses of threshold functions such as disjunctions and
r-out-of-k threshold functions. Our results imply that Winnow is not an attribute ef-
ficient PAC learning algorithm for the unrestricted class of linear threshold functions.
It would be interesting to gain a better understanding of the abilities and limitations
of Winnow as an attribute efficient learning algorithm.

Acknowledgment. We thank Les Valiant for helpful comments and suggestions.
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Abstract. We consider the classical problem of scheduling jobs in a multiprocessor setting in
order to minimize the flow time (total time in the system). The performance of the algorithm, both
in offline and online settings, can be significantly improved if we allow preemption, i.e., interrupt
a job and later continue its execution, perhaps migrating it to a different machine. Preemption
is inherent to make a scheduling algorithm efficient. While in the case of a single processor most
operating systems can easily handle preemptions, migrating a job to a different machine results in
a huge overhead. Thus, it is not commonly used in most multiprocessor operating systems. The
natural question is whether migration is an inherent component for an efficient scheduling algorithm
in either the online or offline setting.

Leonardi and Raz [Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Com-
puting, El Paso, TX, 1997, pp. 110–119] showed that the well-known algorithm, shortest remaining
processing time (SRPT), performs within a logarithmic factor of the optimal offline algorithm. Note
that SRPT must use both preemption and migration to schedule the jobs. It is not known if better
approximation factors can be reached and thus SRPT, although it is an online algorithm, becomes
the best known algorithm in the offline setting. In fact, in the online setting, Leonardi and Raz
showed that no algorithm can achieve a better bound.

Without migration, no (offline or online) approximations are known. This paper introduces
a new algorithm that does not use migration, works online, and is just as effective (in terms of
approximation ratio) as the best known offline algorithm that uses migration.
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1. Introduction.
Objectives. One of the most basic performance measures in multiprocessor schedul-

ing problems is the overall time the jobs are spending in the system. This includes the
delay of waiting for service as well as the actual service time. This measure captures
the overall quality of service of the system. Multiprocessor scheduling problems arise,
for example, in the context of server farms accommodating requests for retrieving
Web contents over the Internet.

We consider the classical problem of minimizing the flow time in a multiprocessor
setting with jobs which are released over time. The performance of the algorithm, both
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in offline and online settings, can be significantly improved if we allow preemption, i.e.,
interrupt a job and later continue its execution, perhaps migrating it to a different
machine. As shown below, preemption is inherent to make a scheduling algorithm
efficient.

While in the case of a single processor, most operating systems can easily handle
preemptions, migrating a job to a different machine results in a huge overhead. Thus,
it is not commonly used in most multiprocessor operating systems. The natural
question is whether migration is an inherent component for an efficient scheduling
algorithm in either the online or offline setting.

Existing work. Surveys on approximation algorithms for scheduling can be found
in [4, 7]. In the nonpreemptive case it is impossible to achieve a “reasonable” ap-
proximation. Specifically, even for one machine one cannot achieve an approximation
factor of O(n

1
2−ε) unless NP = P , where n is the number of jobs [6]. For m > 1 it

is impossible to achieve an O(n
1
3−ε) approximation factor unless NP = P [8]. Thus,

preemptions really seem to be essential.
Existing work: Single processor. Minimizing the flow time on one machine with

preemption can be done optimally in polynomial time using the natural algorithm
shortest remaining processing time (SRPT) [1].

Existing work: Multiple processors with migration. For more than one machine
the preemptive problem becomes NP -hard [2]. Only very recently, Leonardi and Raz
[8] showed that SRPT achieves logarithmic approximation for the multiprocessor case,
showing a tight bound of O(log(min{n/m,P})) on m > 1 machines with n jobs, where
P denotes the ratio between the processing time of the longest and the shortest jobs.

Note that SRPT must use both preemption and migration to schedule the jobs.
In the offline setting, it is not known if better approximation factors can be reached.
In fact, in the online setting SRPT is optimal; i.e., no algorithm can achieve a better
bound up to a constant factor [8]. For the easier problem of minimizing the total
completion time a constant approximation can be achieved [3].

Existing work: Multiple processors without migration. In a recent paper by
Kalyanasundaram and Pruhs [5] an algorithm is shown that converts any multipro-
cessor preemptive schedule to a nonmigratory one. However, it is assumed that the
number of processors available is a constant factor more than in the original schedule.
An important property of their algorithm is that the jobs are scheduled to begin later
than their original start time and are completed before their original completion time.
Thus, the total flow time is not increased by their transformation. By combining their
methods with a migratory algorithm such as SRPT, one can achieve a logarithmic
factor approximation with the assumption that a constant factor more machines are
available.

Our result: Multiple processors without migration. Without migration, no (offline
or online) approximations are known (without increasing the number of processors).
We present in section 2 a new algorithm for minimizing flow time that uses local
preemption but does not migrate jobs between machines. We show in section 3 that
our algorithm performs as well as the best known offline algorithm (SRPT) for the
preemptive problem that uses migration. More specifically, our algorithm guarantees,
on all input instances, a small performance gap in comparison to the optimal offline
schedule that allows both preemption and migration. Denote by P the ratio between
the processing time of the longest and the shortest jobs. Then our algorithm performs
by at most an O(min{logP, log n}) factor of the optimal flow time of any (possibly
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migratory) schedule. The algorithm can be easily implemented in polynomial time in
the size of the input instance.

Our algorithm is also online. We note that in the proof of the Ω(logP ),
Ω(log(n/m)) lower bounds of [8] for online algorithms, the optimal algorithm does
not use migration. Hence, the (randomized) lower bound holds also for a nonmi-
gratory algorithm. This implies that our algorithm is optimal with respect to the
parameter P ; i.e., no online algorithm can achieve a better bound both when the
offline algorithm is or is not allowed to migrate jobs (the first claim is obviously
stronger), while there is still a small gap between the O(log n) upper bound and the
Ω(log(n/m)) lower bound for large m. An Ω(logn) competitive lower bound for our
algorithm is also proved in section 4 for any m.

Our algorithm and its analysis draw on some ideas from the SRPT algorithm [8].
Moreover, we eliminated several difficulties in the analysis by basing the analysis
on classes of jobs. Basically, our algorithm prefers short jobs over long jobs. How-
ever, unlike SRPT, our algorithm may continue to run a job on a machine even
when a shorter job is waiting to be processed. This seems essential in the nonmigra-
tory setting since being too eager to run a shorter job may result in an unbalanced
commitment to machines. A nonmigratory algorithm has to trade off between the
commitment of a job to a machine and the decrease in the flow time yielded by
running a shorter job. Our algorithm runs the job with the SRPT among all the
jobs that were already assigned to that machine, and a new job is assigned to a
machine if its processing time is considerably shorter than the job that is currently
running.

The model. We are given a set J of n jobs and a set of m identical machines.
Each job j is assigned a pair (rj , pj), where rj is the release time of the job and pj is
its processing time. In the preemptive model a job that is running can be preempted
and continued later on any machine. Our model allows preemption but does not
allow migration; i.e., a job that is running can be preempted but must later continue
its execution on the same machine on which its execution began. The scheduling
algorithm decides which of the jobs should be executed at each time. Clearly, a
machine can process at most one job in any given time and a job cannot be processed
before its release time. For a given schedule define cj to be the completion time of
job j in this schedule. The flow time of job j for this schedule is Fj = cj − rj . The
total flow time is

∑
j∈J Fj . The goal of the scheduling algorithm is to minimize the

total flow time for each given instance of the problem. In the offline version of the
problem all the jobs are known in advance. In the online version of the problem each
job is introduced at its release time, and the algorithm bases its decision only upon
the jobs that were already released.

2. The algorithm. A job is called alive at time t for a given schedule if it has
already been released but has not been completed yet. Our algorithm classifies the
jobs that are alive into classes according to their remaining processing times. A job j
whose remaining processing time is in [2k, 2k+1) is in class k for −∞ < k <∞. Notice
that a given job changes its class during its execution. The algorithm holds a pool
of jobs that are alive and have not been processed at all. In addition, the algorithm
holds a stack of jobs for each of the machines. The stack of machine i holds jobs
that are alive and have already been processed by machine i. The algorithm works as
follows:

• Each machine processes the job at the top of its stack.
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• When a new job arrives the algorithm looks for a machine that is idle or
currently processing a job of a higher class than the new job. In case it finds
one, the new job is pushed into the machine’s stack and its processing begins.
Otherwise, the job is inserted into the pool.
• When a job is completed on some machine it is popped from its stack. The

algorithm compares the class of the job at the top of the stack with the
minimum class of a job in the pool. If the minimum is in the pool, then a job
that achieves the minimum is pushed into the stack (and removed from the
pool).

Clearly, when a job is assigned to a machine it will be processed only on that
machine and thus the algorithm does not use migration. In fact, the algorithm bases
its decisions only on the jobs that were released up to the current time and hence is
an online algorithm. Note that it may seem that the algorithm has to keep track of
all the infinite number of classes through which a job evolves. However, the algorithm
recalculates the classes of jobs only at arrival or completion of a job.

3. Analysis. We denote by A our scheduling algorithm and by OPT the optimal
offline algorithm that minimizes the flow time for any given instance. For our analysis
we can even assume that OPT may migrate jobs between machines. Whenever we
talk about time t we mean the moment after the events of time t happened. For a
given scheduling algorithm S we define V S(t) to be the volume of a schedule at a
certain time t. This volume is the sum of all the remaining processing times of jobs
that are alive. In addition, we define δS(t) to be the number of jobs that are alive.
∆V (t) is defined to be the volume difference between our algorithm and the optimal
algorithm, i.e., V A(t) − V OPT (t). We also define by ∆δ(t) = δA(t) − δOPT (t) the
alive jobs difference at time t between A and OPT . For a generic function f (V , ∆V ,
δ or ∆δ) we use f≥h,≤k(t) to denote the value of f at time t when restricted to jobs
of classes between h and k. Similarly, the notation f=k(t) will represent the value of
function f at time t when restricted to jobs of class precisely k.

Let γS(t) be the number of nonidle machines at time t. Notice that because
our algorithm does not migrate jobs, there are situations in which γA(t) < m and
δA(t) ≥ m. We denote by T the set of times in which γA(t) = m, that is, the set
of times in which none of the machines is idle. Denote by Pmin the processing time
of the shortest job and by Pmax the processing time of the longest job. Note that
P = Pmax/Pmin. Denote by kmin = �logPmin	 and kmax = �logPmax	 the classes of
the shortest and longest jobs upon their arrival.

We start by observing the simple fact that the flow time is the integral over time
of the number of jobs that are alive. (For example, see [8].)

Fact 3.1. For any scheduler S,

FS =

∫

t

δS(t)dt.

First we note that the algorithm preserves the following property of the stacks.
Lemma 3.2. In each stack the jobs are ordered in a strictly increasing class order

and there is at most one job whose class is at most kmin.
Proof. At time t = 0 the lemma is true since all the stacks are empty. The lemma

is proved by induction on time. The classes of jobs in the stacks change in one of
three cases. The first is when the class of the currently processed job decreases. Since
the currently processed job is the job with the lowest class, the lemma remains true.
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The second case is when a new job arrives. In case it enters the pool there is no
change in any stack. Otherwise, it is pushed into a stack whose top is of a higher class
which preserves the first part of the lemma. Since the class of the new job is at least
kmin, the second part of the lemma remains true as well. The third case is when a
job is completed on some machine. If no job is pushed into the stack of that machine
the lemma remains easily true. If a new job is pushed to the stack, then the lemma
remains true in much the same way as in the case of the arrival of a new job.

Corollary 3.3. There are at most 2 + logP jobs in each stack.

Proof. The number of classes of jobs in each stack is at most kmax − kmin + 1 ≤
2 + logP .

We look at the state of the schedule at a certain time t. First let us look at t /∈ T .

Lemma 3.4. For t /∈ T , δA(t) ≤ γA(t)(2 + logP ).

Proof. By definition of T , at time t at least one machine is idle. This implies
that the pool is empty. Moreover, all the stacks of the idle machines are obviously
empty. So, all the jobs that are alive are in the stacks of the nonidle machines. The
number of nonidle machines is γA(t), and the number of jobs in each stack is at most
2 + logP according to Corollary 3.3.

Now, assume that t ∈ T and let t̂ < t be the earliest time for which [t̂, t) ⊂ T .
We denote the last time in which a job of class more than k was processed by tk. In
case such jobs were not processed at all in the time interval [t̂, t) we set tk = t̂. So,
t̂ ≤ tkmax

≤ tkmax −1
≤ · · · ≤ tkmin

≤ t.

Lemma 3.5. For t ∈ T , ∆V≤k(t) ≤ ∆V≤k(tk).
Proof. Notice that in the time interval [tk, t), algorithm A is constantly processing

on all the machines jobs whose class is at most k. The offline algorithm may process
jobs of higher classes. Moreover, that can cause jobs of class more than k to actually
lower their classes to k and below therefore adding even more to V OPT

≤k (t). Finally, the
release of jobs of class ≤ k in the interval [tk, t) is not affecting ∆V≤k(t). Therefore,
the difference in volume between the two algorithms cannot increase.

Lemma 3.6. For t ∈ T , ∆V≤k(tk) ≤ m2k+2.

Proof. First we claim that at any moment tk − ε, for any ε > 0 small enough, the
pool does not contain jobs whose class is at most k. In case tk = t̂, at any moment just
before tk there is at least one idle machine which means the pool is empty. Otherwise,
tk > t̂ and by definition we know that a job of class more than k is processed just
before tk. Therefore, the pool does not contain any job whose class is at most k.

At time tk jobs of class at most k might arrive and fill the pool. However, these
jobs increase both V OPT

≤k (tk) and V A
≤k(tk) by the same amount, so jobs that arrive

exactly at tk do not change ∆V≤k(tk) and can be ignored.

Since the jobs in the pool at time tk can be ignored, we are left with the jobs in
the stacks. Using Lemma 3.2, ∆V≤k(tk) ≤ m(2k+1 +2k+2k−1 + · · ·) ≤ m2k+2.

Lemma 3.7. For t ∈ T , ∆V≤k(t) ≤ m2k+2.

Proof. Combining Lemma 3.5 and 3.6, we obtain ∆V≤k(t) ≤ ∆V≤k(tk) ≤
m2k+2.

The claim of the following lemma states a property that will be used in the proof
of both the O(logP ) and the O(log n) approximation results.

Lemma 3.8. For t ∈ T , for kmin ≤ k1 ≤ k2 ≤ kmax, δ
A
≥k1,≤k2(t) ≤ 2m(k2 − k1 +

2) + 2δOPT≤k2 (t).
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Proof. We note that δA≥k1,≤k2(t) can be expressed as

k2∑
i=k1

δA=i(t) ≤
k2∑
i=k1

∆V=i(t) + V OPT
=i (t)

2i

≤
k2∑
i=k1

∆V≤i(t)−∆V≤i−1(t)

2i
+ 2δOPT≥k1,≤k2(t)

≤ ∆V≤k2(t)
2k2

+

k2−1∑
i=k1

∆V≤i(t)
2i+1

− ∆V≤k1−1(t)

2k1
+ 2δOPT≥k1,≤k2(t)

≤ 4m +

k2−1∑
i=k1

2m + δOPT≤k1−1(t) + 2δOPT≥k1,≤k2(t)

≤ 2m(k2 − k1 + 2) + 2δOPT≤k2 (t).

The first inequality follows since 2i is the minimum processing time of a job of
class i. The second inequality follows since the processing time of a job of class i is
less than 2i+1. The fourth inequality is derived by applying Lemma 3.7, observing
that ∆V≤k1−1(t) ≥ −V OPT

≤k1−1(t) and that 2k1 is the maximum processing time of a job
of class at most k1 − 1. The claim of the lemma then follows.

The following corollary of Lemma 3.8 is used in the proof of the O(logP ) approx-
imation ratio of Theorem 3.10.

Corollary 3.9. For t ∈ T , δA(t) ≤ 2m(4 + logP ) + 2δOPT (t).
Proof. We express

δA(t) = δA≤kmax,≥kmin
(t) + δA<kmin

(t)

≤ 2m(kmax − kmin + 2) + 2δOPT (t) + m

≤ 2m(4 + logP ) + 2δOPT (t).

The second inequality follows from the claim of Lemma 3.8, when k2 = kmax and
k1 = kmin, and from the claim of Lemma 3.2 stating that the stack of each machine
contains at most one job of class less than kmin. The third inequality is obtained since
kmax − kmin + 5/2 ≤ logP + 4.

Theorem 3.10. FA ≤ 2(5 + logP ) · FOPT ; that is, algorithm A has a
2(5 + logP ) approximation factor even compared to the flow time of the (possibly
migratory) schedule of the optimal offline algorithm.

Proof.

FA =

∫

t

δA(t)dt

=

∫

t/∈T
δA(t)dt +

∫

t∈T
δA(t)dt

≤
∫

t/∈T
γA(t)(2 + logP )dt +

∫

t∈T
(2m(4 + logP ) + 2δOPT (t))dt

≤ (2 + logP )

∫

t/∈T
γA(t)dt + 2(4 + logP )

∫

t∈T
mdt + 2

∫

t∈T
δOPT (t)dt

≤ (8 + 2 logP )

∫

t

γA(t)dt + 2

∫

t

δOPT (t)dt

≤ 2(5 + logP ) · FOPT .
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The first equality is from the definition of FA. The second is obtained by looking
at the time in which none of the machines is idle and the time in which at least one
machine is idle separately. The third inequality uses Lemma 3.4 and Corollary 3.9.
The fifth inequality is true since γA(t) = m when t ∈ T . Finally,

∫
t
γA(t)dt is the

total time spent processing jobs by the machines which is exactly
∑
j∈J pj . That sum

is upper bounded by the flow time of OPT since each job’s flow time must be at least
its processing time.

We now turn to prove the O(log n) approximation ratio of the algorithm. A
different argument is required to prove this second bound. The main idea behind
the proof of the O(logP ) approximation ratio was to bound for any time t ∈ T the
alive jobs difference between A and OPT by O(m logP ). A similar approach does not
allow us to prove the O(log n) approximation ratio: It is possible to construct instances
where the alive jobs difference is Ω(n). The proof that follows uses ideas drawn from
the proof given by Leonardi and Raz [8] of the O(log(n/m)) approximation ratio for
SRPT when migration is allowed. The idea behind the proof is that the worst case
ratio between the algorithm’s flow time and the optimal flow time can be raised only
if a “big” alive jobs difference is kept for a “long” time period.

We need to introduce more notation. Recall that T is defined to be the set of
times in which γA(t) = m. We denote by T =

∫
t∈T dt the size of set T . For any t ∈ T ,

define by δA,P (t) the number of jobs in the pool of algorithm A, i.e., not assigned to
a machine, at time t, and by ∆δP (t) = δA,P (t)− 2δOPT (t) the difference between the
number of jobs in the pool of algorithm A and twice the number of jobs not finished
by the optimal algorithm. For any machine l, time t, define by δA,l(t) the number of
jobs assigned to machine l at time t in the schedule of algorithm A. Moreover, define
by T l = {t|δA,l(t) > 0} the set of times when machine l is assigned with at least one
job and by T l =

∫
t∈T l dt the size of set T l.

Lemma 3.11. For any time t ∈ T , if ∆δP (t) ≥ 2mi, for i ≥ 3, then the pool of

algorithm A contains at least 2m jobs of remaining processing time at most V A(t)
m2i−3 .

Proof. Let khigh be the maximum integer such that δA,P≥khigh
(t) ≥ 2m and let klow

be the maximum integer such that δA,P<klow
(t) < 2m. Note that both numbers are

well defined and klow ≤ khigh since there are at least 6m > 2m jobs in the pool.
Then,

2m ≤ δA,P≥khigh
(t) ≤ δA≥khigh

(t) ≤ V A(t)

2khigh
,

thus yielding 2khigh ≤ V A(t)
2m . In particular, the last inequality follows since 2khigh is

the minimum processing time of a job of class khigh.

By the definition of khigh, we have

∆δP≤khigh
(t) = δA,P≤khigh

(t)− 2δOPT≤khigh
(t)

= δA,P (t)− δA,P>khigh
(t)− 2(δOPT (t)− δOPT>khigh

(t))

= ∆δP (t)− δA,P>khigh
(t) + 2δOPT>khigh

(t)

≥ 2m(i− 1),

where the last inequality follows since δA,P>khigh
(t) < 2m.
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From Lemma 3.8, we get

∆δP≤khigh
(t) = δA,P≤khigh,≥klow(t) + δA,P<klow

(t)− 2δOPT≤khigh
(t)

≤ δA≤khigh,≥klow(t) + δA,P<klow
(t)− 2δOPT≤khigh

(t)

≤ δA,P<klow
(t) + 2m(khigh − klow + 2),

thus yielding δA,P<klow
(t) ≥ 2m(i + klow − khigh − 3). Therefore, we get that 2m >

2m (i + klow − khigh − 3) and thus klow ≤ khigh − i + 3. It follows that there exist at
least 2m jobs of class at most klow ≤ khigh − i + 3 in the pool of the algorithm. The

remaining processing time of these 2m jobs is bounded by 2khigh−i+4 ≤ V A(t)
m2i−3 , thus

proving the claim.

Lemma 3.12. For any machine l, time t ∈ T l, if δA,l(t) ≥ i for i ≥ 1, then

there exists a job with remaining processing time at most T l

2i−2 assigned to machine l
at time t.

Proof. For any time t ∈ T l, there is at most one job assigned to machine l for
every specific class. Assume k to be the highest class of a job assigned to machine
l, obviously satisfying T l ≥ 2k. If δA,l(t) ≥ i, then there is a job of class at most

k − i + 1 assigned to machine l, with processing time at most 2k−i+2 ≤ T l

2i−2 .

At this stage of the exposition we give a brief overview of the proof. Roughly
speaking, Lemmas 3.11 and 3.12 show that if the alive jobs difference between the
algorithm and the optimum is order of mi, then the remaining processing time of the
jobs on execution is proportional to 1/2i. This implies, as we will show in Lemmas
3.14 and 3.15, that one new job is released for every nonidle machine in every interval
of size proportional to 1/2i. This fact is exploited in Theorem 3.17 to argue that
the integral of the alive jobs difference between A and OPT (e.g., order of mi) is
logarithmic in the number of jobs that are released (i.e., order of 2i).

We partition the set of time instants T when no machine is idle into a collection
of disjoint intervals Ik = [tk, rk), k = 1, . . . , s, and associate an integer ik with each
interval such that for any time t ∈ Ik, 2m(ik − 1) < ∆δP (t) < 2m(ik + 2).

Each maximal time interval [tb, te) contained in T is dealt with separately. As-
sume we already dealt with all times in T which are smaller than tb, and we have

created k − 1 intervals. We then define tk = tb. Given tk we choose ik = �∆δP (tk)
2m 	.

Given an interval’s tk and ik, we define

rk = min{te, t|t > tk,∆δP (t) ≥ 2m(ik + 2) or ∆δP (t) ≤ 2m(ik − 1)};

that is, rk is the first time ∆δP (t) reaches the value 2m(ik+2) or the value 2m(ik−1).
As long as rk < te, we continue with the next interval beginning at tk+1 = rk.

Observation 3.13. When an interval k begins, 2mik ≤ ∆δP (tk) < 2m(ik + 1).
When it ends, either ∆δP (rk) ≤ 2m(ik−1), ∆δP (rk) ≥ 2m(ik+2), or ∆δP (rk) ≤ 0.

Proof. The first part is clear by the way we choose ik. The second part is clear
when rk is not equal to some te, that is, tk ∈ T . Otherwise, rk /∈ T and therefore
δA,P (rk) = 0 and ∆δP (rk) ≤ 0.

Denote by xk = rk− tk the size of interval Ik and define Ti = {∪Ik|ik = i}, i ≥ 1,
as the union of the intervals Ik with ik = i. We indicate by Ti =

∫
t∈Ti dt the size of

set Ti. We also denote by D = max{T,maxt∈T {V A(t)/m}}. The following lemma
relates the number of jobs, n, and the values of Ti.
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Lemma 3.14. The following lower bound holds for the number of jobs:

n ≥ m

8D

∑
i≥4

Ti 2i−5.

Proof. We prove the lemma by associating with every interval a set of jobs that
have been, during the interval itself, either released, or completed by OPT , or moved
to execution or completed by algorithm A. Consider an interval Ik, with a correspond-
ing ik ≥ 4. According to Observation 3.13, when the interval starts ∆δP (tk) is between
2mik and 2m(ik+1). This interval ends when ∆δP (rk) goes above 2m(ik+2) or below
2m(ik−1). (It might also reach 0 but 0 < 2m(ik−1).) In the first case we have the ev-
idence of at least m jobs finished by OPT . (Recall that ∆δP (t) = δA,P (t)−2δOPT (t).)
In the second case we have the evidence of at least 2m jobs that either leave the pool
to be assigned to a machine by algorithm A or arrive to both A and OPT . In both
cases we charge nk ≥ m jobs to interval Ik. We can then conclude with a first lower
bound nk ≥ m on the number of jobs charged to any interval Ik ∈ Ti, ik ≥ 4.

Next, we give a second lower bound, based on Lemma 3.11, stating that during
an interval Ik = [tk, rk) there exist in the pool 2m jobs with remaining processing
time at most D

2ik−4 , since ∆δP (t) > 2m(ik − 1) for any t ∈ [tk, rk). This implies
that all the m machines are processing jobs with remaining processing time at most
D

2ik−5 . We look at any subinterval of Ik of length D
2ik−5 . For each machine, during this

subinterval, a job is either finished by the algorithm or is preempted by a job of lower
class. Therefore, we can charge at least m jobs that are either released or finished
with any subinterval of size D

2ik−5 of Ik. A second lower bound on the number of jobs

charged to any interval is then given by nk ≥ m�xk2ik−5

D 	.
Now observe that each job is charged at most four times: when it is released, when

it is assigned to a machine by A, when it is finished by A, and when it is finished by
OPT . Then,

m

2D

∑
i≥4

Ti 2i−5 ≤
∑

k|ik≥4

m max

{
1,

⌊
xk2

ik−5

D

⌋}
≤ 4n,

where the first inequality is obtained by summing over Ik’s instead of over Ti’s and
the simple fact that α ≤ max{1, �2α	} and the second inequality follows from the
lower bounds we have shown on the charged jobs. The lemma easily follows.

We next bound the number of jobs that are assigned to a machine l during the time
instants of T l. We partition the set of time instants T l into a set of disjoint intervals
I lk = [tlk, r

l
k), k = 1, . . . , sl, and associate an integer ilk with each interval such that for

any time t ∈ I lk, δ
A,l(t) = ilk. Consider a maximal interval of times [tlb, t

l
e) contained

in T l. Assume tlk = tlb. Given tlk and ilk, define rlk = min{tle, t|t > tlk, δ
A,l(t) �= ilk}. In

case rlk < tle, we set tlk+1 = rlk. Denote by xlk = rlk − tlk the size of interval I lk. Define

by T li = {∪I lk|ilk = i}, i ≥ 1, the union of the intervals I lk when the number of jobs
assigned to machine l is exactly i and by T li =

∫
t∈T l

i
dt the size of set T li .

Lemma 3.15. The following lower bound holds for the number of jobs assigned
to machine l:

nl ≥ 1

4T l

∑
i≥1

T li 2i−2.

Proof. For each interval I lk we charge at least one job. Every job will be charged
at most twice: when it is assigned to a machine by A and when it is finished by A.
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Consider the generic interval I lk, with the corresponding ilk. The interval starts
when δA,l(tk) reaches ilk, from above or from below. The interval ends when δA,l(rk)
reaches ilk + 1 or ilk − 1. In the first case we have the evidence of one job that is
assigned by A to machine l and in the second case of one job that is finished by A.
In both cases we charge one job to interval I lk.

Next we give a second lower bound, based on Lemma 3.12. Lemma 3.12 states
that during an interval I lk = [tlk, r

l
k), machine l is constantly assigned with a job of

remaining processing time at most T l/2i
l
k−2. We look at any subinterval of I lk of

length T l/2i
l
k−2. During this subinterval, a job is either finished by the algorithm or

is preempted by a job of a lower class. In any case, a job that is assigned or finished

during any subinterval of size T l/2i
l
k−2 is charged. A second lower bound on the

number of jobs charged to any interval is then given by nk ≥ �xlk2i
l
k−2/T l	.

Now observe that each job is considered at most twice: when it is assigned to
machine l and when it is finished by A. Then, from the inequalities

1

2T l

∑
i≥1

T li 2i−2 ≤
∑

k|il
k
≥1

max

{
1,

⌊
xlk2

ilk−2

T l

⌋}
≤ 2nl,

the claim follows.
Before completing the proof, we still need a simple mathematical lemma.
Lemma 3.16. Given a sequence a1, a2, . . . of nonnegative numbers such that∑

i≥1 ai ≤ A and
∑
i≥1 2iai ≤ B, then

∑
i≥1 iai ≤ log(4B/A)A.

Proof. Define a second sequence, bi =
∑
j≥i aj for i ≥ 1. Then it is known

that A ≥ b1 ≥ b2 ≥ · · · . Also, it is known that
∑
i≥1 2iai =

∑
i≥1 2i(bi − bi+1) =

1
2

∑
i≥1 2ibi + b1. This implies that

∑
i≥1 2ibi ≤ 2B.

The sum we are trying to upper bound is
∑
i≥1 bi. This can be viewed as an

optimization problem where we try to maximize
∑
i≥1 bi subject to

∑
i≥1 2ibi ≤ 2B

and bi ≤ A for i ≥ 1. This corresponds to the maximization of a continuous function
in a compact domain and any feasible point where bi < A, bi+1 > 0 is dominated by
the point we get by replacing bi, bi+1 with bi + 2ε, bi+1 − ε. Therefore, it is upper
bounded by assigning bi = A for 1 ≤ i ≤ k and bi = 0 for i > k, where k is large
enough such that

∑
i≥1 2ibi ≥ 2B. A choice of k = �log(2B/A)� is adequate, and the

sum is upper bounded by kA from which the result follows.
Theorem 3.17. FA = O(log n)FOPT ; that is, algorithm A has an O(log n)

approximation ratio even compared with the flow time of the (possibly migratory)
schedule of the optimal offline algorithm.

Proof.

FA =

∫

t

δA(t)dt

=

m∑
l=1

∫

t

δA,l(t)dt +

∫

t∈T
δA,P (t)dt

=

m∑
l=1

∫

t∈T l

δA,l(t)dt +

∫

t∈T
(2δOPT (t) + ∆δP (t))dt

≤
m∑
l=1

∫

t∈T l

δA,l(t)dt + 2FOPT +
∑
i

∫

t∈Ti
2m(i + 2)dt
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≤
m∑
l=1

∑
i≥1

i T li + 2FOPT + 2m
∑
i

(i + 2) Ti

=

m∑
l=1

∑
i≥1

i T li + 2FOPT + 2m
∑
i

(i− 3) Ti + 2m
∑
i

5 Ti

≤
m∑
l=1

∑
i≥1

i T li + 2FOPT + 2m
∑
i≥4

(i− 3) Ti + 10FOPT

≤
m∑
l=1

∑
i≥1

i T li + 12FOPT + 2m
∑
i≥1

i Ti+3.

The second equality is obtained by separately considering the contribution of
every machine l and the contribution of the jobs in the pool. The fourth inequality is
obtained by partitioning T into the Ti’s such that at any time t ∈ Ti, ∆δP (t) < 2m(i+
2). The seventh inequality is obtained by observing that m

∑
i Ti ≤

∑
j pj ≤ FOPT ,

since all machines are busy processing jobs at any time t ∈ T .

We upper bound
∑
i≥1 i Ti+3 under the constraint

∑
i≥1 Ti+3 ≤ T ≤ D and the

constraint on n given by Lemma 3.14. By choosing ai = Ti+3 we see that
∑
i≥1 ai ≤ D

and
∑
i≥1 2iai ≤ 32 nmD. These two bounds together with Lemma 3.16 result in

the upper bound
∑
i≥1 iai ≤ (7 + log n

m )D. A similar argument is used for the

other sum. We choose ai = T li instead. First note that
∑
i≥1 ai ≤ T l. Then,

according to Lemma 3.15,
∑
i≥1 2iai ≤ 16nlT l. The upper bound by Lemma 3.16 is∑

i≥1 iai ≤ (6 + log nl)T l.

We finally express the total flow time of algorithm A as

FA ≤
m∑
l=1

∑
i≥1

iT li + 12FOPT + 2m
∑
i≥1

i Ti+3

≤
m∑
l=1

O(T l log nl) + 12FOPT + O
(
mD log

n

m

)

= O(log n)

m∑
l=1

T l + 12FOPT + O
(
log

n

m

)
FOPT

= O(log n)FOPT .

The third equality follows since mD ≤ max{mT,maxt∈T {V A(t)}} ≤∑j∈J pj ≤
FOPT . The fourth equality follows since

∑m
l=1 T

l =
∑
j pj ≤ FOPT .

4. Tightness of the analysis. In this section we present an Ω(log n) lower
bound on the competitive ratio of the algorithm analyzed in the previous section.
The number of machines is an arbitrary m ≥ 2 but note that the lower bound uses
only the first two machines. While presenting the lower bound we assume an order
between jobs with the same release time. The algorithm deals with jobs released at
the same time following the specified order.1 Moreover, we assume that the algorithm
arbitrarily decides whether to schedule a job on an idle machine or on a machine

1This can be forced by releasing some jobs slightly after previous ones in the specified order and
decreasing their processing times appropriately.
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processing a job of higher class. The latter assumption is crucial in proving the lower
bound, and it agrees with the definition of the algorithm.

We choose P , the ratio between the maximum and the minimum processing time
to be a power of 2. The maximum processing time is P/2 and the minimum is 1/2.

At each time ri = P (1 −∑ 1
2 logP−1
j=i

1
22j+1 ), for i = 0, . . . , 1

2 logP − 1, three jobs are

released; one job of processing time P
22i+1 followed by two jobs of processing time P

22i+2 .
Finally, two jobs of size 1

2 are released every 1/2 time unit between time r 1
2 logP = P

and 2P − 1/2.

Let us consider the behavior of the algorithm and of the optimal solution in this
instance. At time r0 the released job of processing time P/2 is assigned to machine
1, and a job of processing time P/4 is assigned to machine 2 while the second job of
processing time P/4 preempts the job on execution on machine 1. The two jobs of
processing time P/4 are finished at time r0 + P/4, where the job of size P/2 is taken
again on execution on machine 1. In general, at time ri, i = 1, . . . , 1

2 logP , i jobs are

in the queue of machine 1, the smallest of remaining processing time P
22i , while no job

is on execution on machine 2. The job on execution on machine 1 is preempted by the
job of size P

22i+1 that is released at time ri. Immediately afterwards it is preempted by

a job of size P
22i+2 that is released at time ri while the other job of size P

22i+2 released
at time ri is scheduled on machine 2.

At time P , 1
2 logP jobs are in the queue of machine 1, the smallest of size 1,

while no job is in the pool or assigned to the other machines. The two jobs of size
1/2 released every 1/2 time unit between time P and 2P − 1/2 are scheduled on
machines 1 and 2. Observe that 1

2 logP jobs are waiting on queue 1 between time P
and 2P , thus leading to a flow time of Ω(P logP ) for the algorithm on this instance
of n = 3

2 logP + 4P jobs.

On the other hand, an optimal solution schedules the job of size P
22i+1 released at

time ri for i = 0, . . . , 1
2 logP − 1 on machine 1 and the two jobs of size P

22i+2 released
at time ri on machine 2. Observe that in this schedule machines 1 and 2 are idle at
time ri. Thus, the jobs of size 1

2 are scheduled at their release times on machines 1
and 2 and are completed before the next two jobs of size 1

2 are released. The flow
time of the optimal solution is then O(P ).

It follows that the ratio between the flow time of the algorithm and the flow time
of the optimal solution is Ω(logP ) that is also Ω(log n).

5. Conclusions. In this paper we considered the problem of finding a preemp-
tive schedule that optimizes the total flow time of a set of jobs released over time when
job migration is not allowed. We presented a new online algorithm that is almost as
effective as the best known algorithm that uses migration [8].

In our algorithm jobs are kept in a pool since the release time until they are
assigned to a machine. An interesting open problem is to devise an efficient algorithm
that assigns jobs to machines at the time of release. A challenging open problem is
also to devise a constant offline approximation algorithm for optimizing total flow
time even if both preemption and migration are allowed.
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Abstract. The computational hardness of factoring integers is the most established assumption
on which cryptographic primitives are based. This work presents an efficient construction of pseudo-
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1. Introduction. Almost any interesting cryptographic task must be based on
the computational hardness of some problem. Proving such hardness assumptions ex-
ceeds by far the state of the art of complexity theory. It is therefore desirable to base
the security of a cryptographic construction on as reasonable an assumption as possi-
ble. A natural approach is to rely on a well-studied problem where many algorithms
have been tried and their complexity is well understood. The most established can-
didate in these respects, and certainly the one with the best pedigree, is the problem
of factoring integers (see [22] for the state of the art of factoring).

The focus of this paper is an efficient construction of pseudorandom functions
(see definition below) whose security is based on the intractability of factoring. In
particular, we are able to construct efficient length-preserving pseudorandom functions
whose evaluation requires only a constant number of modular multiplications per
output bit. This is substantially more efficient than any previous construction of
pseudorandom functions based on factoring and matches (up to a constant factor)
the efficiency of the best-known factoring-based pseudorandom bit generators.

Pseudorandom functions,1 originally defined by Goldreich, Goldwasser, and Mi-
cali (GGM) [13] are an important cryptographic primitive. A distribution of functions
is pseudorandom if it satisfies the following requirements:

• Easy to sample. It is easy to sample a function according to the distribution.
• Easy to compute. Given such a function, it is easy to evaluate it at any given

point.
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1Note the difference between a pseudorandom function and a bit generator—the latter expands a
random seed to some fixed length sequence that should be indistinguishable from a random sequence
of similar length; there is no “probing” in the attack.
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• Pseudorandom. It is hard to tell apart a function sampled according to the
pseudorandom distribution from a uniformly distributed function when the
distinguisher is given access to the function as a black-box.

Pseudorandom functions have a wide range of applications, most notably in cryp-
tography, but also in computational complexity and computational learning theory.
Coming up with efficient constructions for such functions is a challenge of great prac-
tical and theoretical interest.

The new construction improves the one by Naor and Reingold (NR) [20], who
showed how to construct pseudorandom functions based on factoring, where the cost
of evaluation is comparable to two modular exponentiations. The drawback of those
functions is that the output is only a single bit. In order to apply them for achieving
a length-preserving pseudorandom function, one would need to repeat the process n
times, rendering it inefficient. The improvement we propose lies in a method to expand
the one-bit output of the NR functions to polynomially many bits while paying only a
small overhead in the complexity of the evaluation (i.e., one modular multiplication for
each additional output bit). This improvement will be achieved through a surprising
combination of the NR functions and the Blum–Blum–Shub (BBS) pseudorandom
generator [5]. As will be demonstrated in what follows, in general, such a composition
does not necessarily yield a pseudorandom function. This, in particular, implies a
nonstraightforward proof of security.

The method we suggest enables us to construct efficient length-preserving pseu-
dorandom functions which are at least as secure as factoring Blum-integers and can
be evaluated at the cost of fewer than three modular exponentiations. This is compa-
rable to another attractive construction by NR [20] of pseudorandom functions which
are at least as secure as the decisional Diffie–Hellman (DDH) problem. While the
DDH problem has received much attention recently (see [4]), it is not nearly as well
established as factoring.

Organization. The next section contains the background material and our con-
struction. The main result of our work, the efficient construction of a pseudorandom
function which is at least as secure as factoring Blum-integers, is presented in section
4. The proof of security is given in section 5.

2. Old and new constructions.

2.1. Background. When GGM originally defined pseudorandom functions [13],
they were at least partly motivated by the construction of the BBS pseudorandom
generator [5] and, in particular, by an open question suggested there—the easy-access
problem.2 Nevertheless, the actual GGM construction of pseudorandom functions did
not appear to have any direct connection to the BBS generator (apart from the fact
that the BBS generator can be used as a building block for the GGM construction).
The current work suggests a construction which is directly related to the BBS gener-
ator. We now turn to survey previous constructions of pseudorandom functions (as
well as the BBS generator).

2The easy-access problem arises when one notices that it is easy to access exponentially far away
bits in the BBS pseudorandom pad. The question is whether the BBS pad remains pseudorandom
even when the distinguisher has access to these exponentially far away bits.
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2.1.1. The BBS generator.

The Blum–Micali paradigm (cf. [7, 27]). Let f : {0, 1}n → {0, 1}n be a
one-way permutation (i.e., one where it is easy to compute f(x) but intractable to
find x = f−1(y)), and let B(·) be a hard-core predicate for f(·) (i.e., given y, it is
difficult to guess B(f−1(y))). Let � : N→ N be a function so that �(n) > n for all n.
Blum and Micali proposed the following scheme to construct a generator stretching
an n-bit seed, x, to an �-bit pseudorandom string:

B(x),B(f(x)), . . . ,B(f (k)(x)), . . . ,B(f (�(n)−1)(x)).(1)

As a candidate one-way permutation (based on factoring), BBS [5] considered the
squaring function modulo an integer N = P ·Q (i.e., the mapping x �→ x2 mod N).3

Following [5], the values of N are restricted to integers of the form N = P ·Q, where P
and Q are two distinct primes both congruent to 3 mod 4. (Such integers are known
as Blum-integers.)

Blum-integers. Restricting N to a Blum-integer enabled BBS to prove that
the squaring function is indeed a permutation (when its domain is limited to the
subgroup of quadratic-residues in Z∗N ). Let N = P · Q be an integer; an element in
Z∗N is called a quadratic-residue if it has a square-root; namely, there is a y ∈ Z∗N
such that y2 = x mod N . It is easy to verify that the set of quadratic-residues in Z∗N
forms a subgroup (which we denote by QRN ). We note that every x2 ∈ QRN has
exactly four distinct square-roots, ±x,±y ∈ Z∗N , and, in the special case that N is a
Blum-integer, it is possible to prove [5] that exactly one of these square-roots resides
in QRN (which implies that squaring is indeed a permutation over QRN ).

Constructing the BBS generator. The BBS pseudorandom generator is ob-
tained by applying the Blum–Micali paradigm to the squaring permutation together
with the LSB(·) (least significant bit) hard-core predicate. This generator has been
originally proven secure assuming intractability of the quadratic residuosity problem
in [5], and subsequently under the assumption that factoring Blum-integers is hard
(Assumption 4.1) in [26] (by adapting the techniques in [1]). Note also that it is the
basis for the Blum–Goldwasser public-key encryption scheme [6]. For simplicity of
exposition, we choose to replace the LSB(·) hard-core predicate with the Goldreich–
Levin Br(·) predicate [14] (where Br(m) denotes the inner product, 〈m, r〉 mod 2). We
obtain a generator which stretches an n-bit seed, x ∈ QRN , to an �-bit pseudorandom
string (and is completely analogous to the BBS generator):4

Br(x),Br(x2), . . . ,Br(x2k

), . . . ,Br(x2�(n)−1

).(2)

The BBS generator is considered efficient (relative to other generators based on
factoring); each bit in its output can be obtained at the cost of one modular multi-
plication. In particular, by performing 2n modular multiplications, it is possible to
stretch an n-bit seed to a 2n-bit pseudorandom string.

3It was shown by Rabin [23] that the problem of factoring an integer N = P ·Q can be reduced
to the problem of extracting square-roots in Z∗

N . Thus, if factoring N = P ·Q is hard, then squaring
is indeed one-way.

4We denote by n the size (in bits) of N and by x2
j
the value of x2

j
mod N .
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The easy-access problem. In the BBS generator, a seed (x,N) defines an infi-
nite (ultimately periodic) bit-sequence b0, b1, . . . (even though a pseudorandom string
generated with an n-bit long seed consists of only polynomially many (in n) bits). An
interesting feature of the BBS generator is that knowledge of the factorization of N
allows easy access to each of the first 2n bits; that is, if log i < n, the ith bit, bi, can
be computed in poly(n) time (by first computing βi = 2i−1 mod ϕ(N) and then set-
ting bi = Br(xβi)). However, as GGM noted [13], this easily accessible exponentially
long bit-string may not appear “random.” What BBS have proved is that any single
polynomially long interval of consecutive bits in the string is pseudorandom (provided
that factoring Blum-integers is hard). Indeed, it might be the case that, say, given
b1, . . . , bn and b2

√
n+1, . . . , b2

√
n+n, it is easy to compute any other bit in the string.

The easy-access problem is whether direct access to exponentially far away bits
in the BBS bit-sequence is an operation which preserves pseudorandomness. This
problem was discussed in [2, 8, 5, 13] and is still unresolved.

2.1.2. The GGM construction. Motivated in part by the easy-access prob-
lem, GGM [13] introduced the notion of pseudorandom functions and provided a
generic construction based on any length-doubling pseudorandom generator. Note
that a pseudorandom function may be viewed as an exponentially long bit-string
which remains pseudorandom even after its bits are accessed in a direct manner.
Thus, in some sense, GGM have bypassed the easy-access problem.5

When applied to an efficient pseudorandom generator based on factoring (e.g.,
the BBS generator), the GGM construction yields a length-preserving pseudorandom
function which is as secure as factoring but requires as much as O(n2) modular mul-
tiplications per evaluation. On the other hand, a positive answer to the easy-access
problem implies that the function

fBBS
N,g,r(i) = GBBS

N,r,n(g2i·n
)(3)

is a length-preserving pseudorandom function which is at least as secure as factoring
and requires only O(n) modular multiplications per evaluation. Thus, in some sense,
the question of whether it is possible to construct such efficient pseudorandom func-
tions (which require as much modular multiplications as fBBS

N,g,r) based on factoring
remained open.

2.1.3. The NR constructions. About a decade after the GGM paper ap-
peared, NR [19] suggested a parallel construction of pseudorandom functions. The
NR construction was obtained by introducing a new cryptographic primitive, the
pseudorandom synthesizer. By applying their method to specific constructions of
pseudorandom synthesizers, they were later able to present efficient pseudorandom
functions based on standard number-theoretic assumptions [20]. These constructions
are considerably more efficient than the constructions which would have been obtained
by applying the generic GGM construction to specific pseudorandom generators that
are based on the same assumptions.

The DDH construction. The DDH construction is a construction of length-
preserving pseudorandom functions as secure as the DDH problem requiring roughly

5What GGM have actually demonstrated is how to construct exponentially long, easily accessible,
pseudorandom strings based on any one-way function (following [16]). However, this does not imply
that the specific BBS bit-sequence remains pseudorandom given direct access to exponentially many
of its bits.
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2n modular multiplications per evaluation [20]. This already matches the efficiency
offered by fBBS

N,g,r and, to the best of our knowledge, is the most efficient construction
of pseudorandom functions to date (based on standard intractability assumptions).

The factoring construction. The factoring construction is a construction of
pseudorandom functions at least as secure as factoring requiring roughly 2n modular
multiplications per evaluation [20]. (Their proof of security utilizes Biham, Boneh,
and Reingold’s [3] result that breaking the generalized Diffie–Hellman assumption
over composites implies an efficient algorithm for factoring.)

For every n ∈ N, a key of a function in the NR pseudorandom function ensemble,
Fn, is a tuple (N,�a, g, r), where N is an n-bit Blum-integer, r is an n-bit string, g is
a quadratic-residue in Z∗N , and �a = (a1,0, a1,1, a2,0, a2,1, . . . , an,0, an,1) is a sequence
of 2n elements in {1, . . . , N}. For any n-bit input x = x1x2 . . . xn, the NR function
(with a single bit of output) is defined as

fN,�a,g,r(x) = Br(gΠn
i=1ai,xi ).(4)

The NR construction gives a pseudorandom function which seems to be as efficient
as fBBS

N,g,r. Note however, that the NR function has only one bit of output, whereas

fBBS
N,g,r has linear output length. While this may be sufficient for some applications,

in most scenarios it is not. The goal of our work is to match the result one would
have obtained by proving that fBBS

N,g,r are indeed pseudorandom functions. That is, we
provide a new construction of pseudorandom functions that (1) are at least as secure
as factoring Blum-integers, (2) have linear output length, and (3) require only O(n)
modular multiplications per evaluation.

2.2. Our construction. The NR pseudorandom function, fN,�a,g,r, is obtained
by extracting the Br(·) predicate from the value of the function

hN,�a,g(x) = gΠn
i=1ai,xi .(5)

It turns out that, even though it is not pseudorandom in itself, the function hN,�a,g

is unpredictable in some weak sense. Assuming the intractability of factoring Blum-
integers, NR have shown [20, 21] that hN,�a,g is unpredictable against an adaptive
sample and a random challenge. That is, for a random x ∈ {0, 1}n, no polynomial-
time adversary is able to predict the value of h(x) after adaptively querying the value
of h(y) for polynomially many y �= x of his choice.

The main idea behind our construction is using the value of hN,�a,g as a seed to
the BBS pseudorandom generator. At first glance, it is not clear why this method
should work at all. Indeed, applying a pseudorandom generator to an “unpredictable”
value does not necessarily yield a pseudorandom function (see section 5.1 for a more
detailed discussion on the subject). The reason for which our construction does work
lies in the specific number theoretic features which the function hN,�a,g and the BBS
generator have in common.

This enables us to expand the output length of the NR function to polynomially
many bits while paying a “reasonable” overhead in the complexity of the evaluation
(i.e., one modular multiplication for each additional output bit). Specifically, let
N,�a, g, and r be defined as in the NR function; the function we propose is defined as

fN,�a,g,r(x) = GBBS
N,r,�(g

Πn
i=1ai,xi ).(6)

Even though this does not solve the particular easy-access problem, it does match
the efficiency one would have obtained by proving that fBBS

N,g,r are indeed pseudoran-
dom functions (as well as the efficiency of the DDH-based pseudorandom functions by
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NR [20]). By taking �(n) = n, we obtain a length-preserving pseudorandom function
which is at least as secure as factoring, has linear output length, and requires only 3n
modular multiplications per evaluation. This already matches (up to a constant fac-
tor) the efficiency of the best-known factoring-based pseudorandom generators (which
also require O(n) multiplications per evaluation) and certainly improves the efficiency
of the GGM pseudorandom functions which use BBS as a building block.

3. Preliminaries. For the sake of completeness, we present the formal definition
of pseudorandom functions. Our exposition follows the ones appearing in [11, 12, 19].

3.1. Pseudorandom functions—definition. Pseudorandom functions were
defined by GGM [13]. Loosely speaking, these are efficient distributions of functions
that cannot be efficiently distinguished from the uniform distribution. That is, an
efficient algorithm that gets a function as a black-box cannot tell (with nonnegligible
advantage) from which of the distributions it was sampled.6 To formalize the notion
of pseudorandom functions, we will need to consider ensembles of functions.

Definition 3.1. Let �d and �r be any two integer functions. An I�d → I�r

function ensemble is a sequence F = {Fn}n∈N of random variables such that the
random variable Fn assumes values in the set of I�d(n) → I�r(n) functions. The
uniform I�d → I�r function ensemble, R = {Rn}n∈N, has Rn uniformly distributed
over the set of I�d(n) → I�r(n) functions.

An explicit description of a function f : I�d → I�r requires as many as 2�r2�d bits.
This suggests an alternative view of pseudorandom functions: These are distributions
of exponentially long bit-sequences that cannot be distinguished from random by
an efficient algorithm which has direct access to the sequence. To be of practical
value, however, we require that pseudorandom functions can be efficiently sampled
and computed. This property is not satisfied by every function ensemble (e.g., the

uniform function ensemble: it contains 2�r2�d functions whose mere representation
requires as many as �r2

�d bits); we therefore restrict ourselves to efficiently computable
function ensembles.

Definition 3.2. A function ensemble, F = {Fn}n∈N, is efficiently computable
if there exist probabilistic polynomial-time algorithms, I and V, and a mapping from
strings to functions, φ such that φ(I(1n)) and Fn are identically distributed and
V(i, x) = (φ(i))(x).

We denote by fi the function assigned to i (i.e., fi
def
= φ(i)). We refer to i as the

key of fi and to I as the key-generating algorithm of F .
In particular, functions in efficiently computable function ensembles have rela-

tively succinct representation (i.e., of polynomial rather than exponential length). As
a consequence, these ensembles may have only exponentially many functions (out of
double-exponentially many possible functions).

The distinguisher, in our setting, is defined to be an oracle machine that can
make queries to a function (which is either sampled from the pseudorandom function
ensemble7 or from the uniform function ensemble8). We assume that on input 1n

6For a detailed exposition on pseudorandom functions and their applications, we refer the reader
to [24].

7We stress that, in the case that the function is sampled from the pseudorandom function en-
semble, the distinguisher is not given the representation of the function fi (i.e., the key i).

8As we have mentioned, it is not clear even how to efficiently represent a uniformly distributed
function (as the representation it is too large to store). Still, one may simulate such a function
by answering given queries with independently and uniformly chosen answers (while memorizing
previous answers for the sake of consistency).
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the oracle machine makes only n-bit queries. For any probabilistic oracle machine,
M, and any In → I�(n) function, O, we denote by MO(1n) the distribution of M’s
output on input 1n and with access to O.

Definition 3.3. An efficiently computable In → I�(n) function ensemble, F =
{Fn}n∈N, is pseudorandom if, for every probabilistic polynomial-time oracle machine
M, every polynomial p(·), and all sufficiently large n’s,

∣∣Pr
[MFn(1n) = 1

]− Pr
[MRn,�(1n) = 1

]∣∣ < 1

p(n)
,

where R = {Rn,�}n∈N is the uniform In → I�(n) function ensemble.
The term “pseudorandom functions” is hereafter used as an abbreviation for “ef-

ficiently computable pseudorandom function ensemble.”

3.2. Notation.
• N denotes the set of all natural numbers.
• For any integer k ∈ N, denote by [k] the set of integers {0, 1, . . . , k − 1}.
• For any integer N ∈ N, the multiplicative group modulo N is denoted by Z∗N .
• The order of Z∗N (i.e., the number of x ∈ [N ] such that gcd(x,N) = 1) is

denoted by ϕ(N).
• In denotes the set of all n-bit strings, {0, 1}n.
• Un denotes the random variable uniformly distributed over In.
• Let x and y be any two-bit strings; then x, y denote the string x concatenated

with y.

4. The main result. We are now ready to present the main result of our work,
an efficient construction of pseudorandom functions whose security is based on the
intractability of factoring. Specifically, we are able to show how any procedure which
is able to distinguish our functions from randomly chosen ones can be turned into
an algorithm which factors a nonnegligible fraction of Blum-integers. We begin by
formalizing the assumption that factoring Blum-integers is hard.

4.1. The factoring assumption. In order to keep our result general, we let
N be generated by some polynomial-time algorithm FIG (where FIG stands for
factoring-instance-generator).

Definition 4.1. A factoring-instance-generator, FIG, is a probabilistic polyno-
mial-time algorithm such that, on input 1n, its output, N = P ·Q, is distributed over
n-bit integers, where P and Q are two primes that satisfy P = Q = 3 mod 4. (Such
N is known as a Blum-integer.)

A natural example for a factoring-instance-generator would be to let FIG(1n)
be uniformly distributed over n-bit Blum-integers.9 However, other choices were
previously considered (e.g., letting P and Q obey some “safety” conditions).10 We
now formalize the assumption that factoring Blum-integers is hard.

Definition 4.2 (ε-factoring). Let A be a probabilistic Turing machine, and let
ε = ε(n) be a real-valued function. A ε-factors if, for infinitely many n’s,

Pr[A(P ·Q) ∈ {P,Q}] > ε(n),

9We note that n-bit Blum-integers are a nonnegligible fraction of all n-bit integers and that it is
easy to sample a uniformly distributed n-bit Blum-integer.

10For example, it is often required that P and Q be of equal size and that P,Q be of the form
P = 2P ′ + 1 and Q = 2Q′ + 1 for some primes P ′, Q′.
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where the distribution of N = P ·Q is FIG(1n).
In spite of the extensive research directed toward the construction of efficient

integer factoring algorithms, the best algorithms currently known for factoring an

integer N have (heuristic) running-time L(N)
def
= e1.92(logN)1/3(log logN)2/3

(cf. [22]).
This (together with the fact that Blum-integers are a nonnegligible fraction of all
n-bit integers) leads us to the following assumption.

Assumption 4.1 (factoring integers generated by FIG). Let A be any probabilis-
tic polynomial-time machine. There is no positive constant α such that A 1

nα -factors.
All exponentiations in the rest of this section are in Z∗N . To simplify the notation,

we omit the expression “mod N” from now on.

4.2. The construction.
Construction 4.1. We define a function in the ensemble F = {Fn}n∈N. For

every n ∈ N, a key of a function in Fn is a tuple (N,�a, g, r), where N is an n-bit
Blum-integer, g is a quadratic-residue in Z∗N , �a = (a1,0, a1,1, a2,0, a2,1, . . . , an,0, an,1)
is a sequence of 2n elements in [N ], and r is an n-bit string. For any n-bit input
x = x1x2 . . . xn and for every integer-valued function � = �(n), the function fN,�a,g,r :
In → I�(n) is defined by

fN,�a,g,r(x)
def
= Br(gΠn

i=1ai,xi ),Br(g2Πn
i=1ai,xi ), . . . ,Br(g2kΠn

i=1ai,xi ), . . . ,Br(g2�−1Πn
i=1ai,xi ),

where Br(m) denotes the inner product, 〈m, r〉 mod 2. The distribution of functions
in Fn is induced by the following distribution on their keys: �a, g, and r are uniform
in their range, and the distribution of N is FIG(1n).

Remark 4.1. Construction 4.1 employs a Blum-integer, N . In this we follow
[5] and many other works. As discussed in section 2.1.1, this restriction implies that
squaring is a permutation on the subgroup of quadratic-residues in Z∗N . Nevertheless,
as was pointed out to us by Shai Halevi and an anonymous referee, it is rather easy
to extend our construction (as well as many previous results) in order to allow an
arbitrary moduli N = P ·Q (that is assumed to be hard to factor) instead of a Blum-
integer. The main observation that is needed is that, for any such N , squaring is a
permutation on the subgroup of 2n-powers in Z∗N . See [15, 25] for additional details
on avoiding the restriction to a Blum-integer in related contexts.

An additional variant of the construction is discussed in section 6. There, we
discuss how to replace the Goldreich–Levin hard-core bit with the LSB predicate.

4.3. Efficiency of the construction. Consider a function fN,�a,g,r ∈ Fn as in
Construction 4.1. Computing the value of this function at any given point, x, involves
one multiple product y =

∏n
i=1 ai,xi (which can be performed modulo ϕ(N)), one

modular exponentiation, z = gy mod N , and �(n) − 2 successive modular squarings

z2, . . . , z2k

, . . . , z2�−1

(which require less than one modular multiplication each). The

value of the function is finally obtained by computing Br(z),Br(z2), . . . ,Br(z2�−1

)
(which is a cheap operation compared to modular multiplication). As discussed in
[20], it is possible to use preprocessing in order to get improved efficiency.11 This
gives us a pseudorandom function which can be evaluated roughly at the cost of
2n+�(n) modular multiplications. (A modular exponentiation is counted as n modular
multiplications.)

11The most obvious preprocessing would be to compute the values g2
i
(for every positive integer

i up to the length of (P −1) · (Q−1)). See [20] for additional preprocessing techniques which further
improve the efficiency.
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An attractive feature of our construction is that, for each input, we can have a
variable length output; i.e., if for some x’s one needs more bits in the output of f(x),

then the natural way of simply taking more bits of the form Br(z2j

) works. While it
is possible to get this feature generically by combining a pseudorandom function and
a generator, here we get it “for free.”

5. Proof of security. The following theorem establishes the security of Con-
struction 4.1.

Theorem 5.1. If the factoring assumption holds (Assumption 4.1), then F =
{Fn}n∈N (as in Construction 4.1) is an efficiently computable pseudorandom function
ensemble.

Remark 5.1. The proof of Theorem 5.1 yields a more quantitative version as
well: Assume that there exists a probabilistic polynomial-time oracle machine with
running-time t(n) that distinguishes fN,�a,g,r from ρn,� with advantage ε(n) (where
ρn,� is uniformly distributed in the set of functions with domain {0, 1}n and range
{0, 1}�(n)). Let q = q(n) be a bound on the number of queries made this machine. Then
there exists a probabilistic polynomial-time algorithm with running-time poly( 1

ε(n) , t(n),

�(n)) that ε′′-factors for ε′′(n) which equals Ω( ε(n)2

q(n)2·�(n)2 ).

5.1. On the methodology.

5.1.1. A simple approach does not work. In order to prove Theorem 5.1,
one might be tempted to use the following approach: Recall the definition of the
function hN,�a,g(x) = gΠn

i=1ai,xi in (5). As mentioned above, it was shown in [20, 21]
that hN,�a,g is unpredictable against an adaptive sample and a random challenge. In
light of this, Construction 4.1 can be viewed as based on the following methodology:

1. Take an “unpredictable” function hs : {0, 1}n → {0, 1}n.
2. Take a pseudorandom generator G : {0, 1}n → {0, 1}�.
3. Obtain a pseudorandom function f : {0, 1}n → {0, 1}� by setting fs(x) =

G(hs(x)).
Unfortunately, this method does not work in general. As will be demonstrated

next, there exist an “unpredictable” function and a pseudorandom generator such
that their composition is not a pseudorandom function.

5.1.2. The counterexample. Consider the following (unnatural) counterex-
ample:

1. (a) Let h′s : {0, 1}n → {0, 1}n
2 be an unpredictable function.

(b) For y ∈ {0, 1}n
2 , define hs,y : {0, 1}n → {0, 1}n as hs,y(x) = (h′s(x), y).

(c) Clearly hs,y is unpredictable.
2. (a) Let G′ : {0, 1}n

2 → {0, 1}� be a pseudorandom generator.
(b) For z, y ∈ {0, 1}n

2 , define G : {0, 1}n → {0, 1}� as G(z, y) = G′(y).
(c) Clearly G is pseudorandom.

3. However, the function f : {0, 1}n → {0, 1}� obtained by setting fs,y(x) =
G(hs,y(x)) is always equal to G′(y) (regardless of the value of x). Obviously,
fs,y cannot be pseudorandom.

It seems that the reason our construction does work lies in the specific number
theoretic features which the function gΠn

i=1ai,xi and the BBS generator have in com-
mon. Since we do not know what precisely are the features of a function hs and of a
pseudorandom generator G that are needed in order to obtain a pseudorandom func-
tion (using the above methodology), we are forced to provide a direct proof for our
construction. As most proofs of pseudorandomness do, we will use a hybrid argument,
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i.e., mixing a truly random and pseudorandom distribution. The type of hybrid we
apply is the reverse hybrid, where first the random part is used and only then the
pseudorandom one. This is an instance of the principle of deferred decision (see [18]):
Do not commit to any value in the pseudorandom part of the distribution until you
have to.

5.2. Proof of Theorem 5.1.

Proof. Let F = {Fn}n∈N be as in Construction 4.1. It is clear that F is efficiently
computable. Assume that F is not pseudorandom; then there exist a probabilistic
polynomial-time oracle machine M and a nonnegligible real-valued function ε = ε(n)
such that, for infinitely many n’s,

∣∣Pr
[MfN,a,g,r (1n) = 1

]− Pr [Mρn,�(1n) = 1]
∣∣ > ε(n),(7)

where, in the first probability, fN,�a,g,r is distributed according to Fn and, in the second
probability, ρn,� is distributed according to Rn,� (the uniform ensemble of functions
with domain {0, 1}n and range {0, 1}�(n)).

A hybrid black-box. Inequality (7) tells us that there is a nonnegligible differ-
ence between the output behavior of M in the case it is given access to a black-box
which answers according to fN,�a,g,r and in the case it is given access to a black-box
which answers according to ρn,�. However,M’s response is still a well defined random
variable even when its queries are answered according to some other distribution. This
means that we are allowed to invokeM and answer its queries in whatever way we find
suitable for our purposes. The way we choose to do it is by defining a hybrid black-
box.12 Informally, this is a black-box which starts by answeringM’s queries according
to ρn,� and then switches mode to continue and answer according to fN,�a,g,r.

Let t = t(n) be a polynomial that bounds the running-time ofM; assume without
loss of generality that M always makes exactly t queries. Since each single answer
given to these queries is �-bit long, we have that the total number of bits whichM gets
as answers during its execution is precisely t · �. Each one of these bits corresponds
to a location for which one of the hybrid black-box distributions will switch from
answering according to ρn,� to answering according to fN,�a,g,r. (Note that this may
also happen in the middle of an answer.)

Definition 5.1 (hybrid black-box). Let J be an element in [t · � + 1] written
as J = I · � + k (where 0 ≤ I ≤ t and 0 ≤ k < �). The Jth hybrid black-box,
HJ

N,�a,g,r, is defined by the answers it gives to M’s queries. The first I queries are
answered according to ρn,� (i.e., at random), and the answer to the (I + 1)st query
up to the kth bit-location is according to ρn,�, and from then on, according to fN,�a,g,r.
All remaining queries are answered according to fN,�a,g,r.

Notice that H0
N,�a,g,r is a black-box which always answers according to fN,�a,g,r,

whereas Ht·�
N,�a,g,r always answers according to ρn,�. By inequality (7), we have that

M distinguishes between fN,�a,g,r and ρn,� with advantage ε(n). Therefore, if we pick
J at random, the expected advantage that M has in distinguishing between HJ

N,�a,g,r

and HJ+1
N,�a,g,r is at least ε′(n) = ε(n)

t(n)·�(n) . An example of a hybrid black-box is depicted

in Figure 1.

12This is just a methodological modification of the standard hybrid technique (see [11] for details
on the hybrid technique).
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1 2 · · · I I+1 I+2 . . . t
1 r r · · · r r
2 r r r r
. . . . . . . .
k r r r r Fn

k + 1 r r r
. . . . . . .
� r r · · · r

Fig. 1. Illustrates the Jth hybrid black-box, HJ
N,�a,g,r

(where J = I · +k). Columns correspond

to queries given to the black-box, and rows correspond to individual bits in the relevant answers.

5.2.1. Simplified proof. We start by giving a simplified version of the proof
under the assumption thatM decides membership in Fn with advantage ε(n) for any
sequence �a of 2n elements in [N ]. (Recall that �a equals (a1,0, a1,1, a2,0, a2,1, . . . , an,0,
an,1).) We then proceed and show how to modify the proof so it will work for a
randomly chosen �a.

Roughly speaking, we show how, given a distinguisher for our pseudorandom
functions, we can construct an algorithm that on input (v2 mod N,N, r) predicts
the value of Br(u), where u is the unique quadratic-residue in Z∗N which satisfies
u2 = v2 mod N . Using the Goldreich–Levin reconstruction algorithm, we are then
able to retrieve u (see [11] for details). This means that we can extract square-roots
in Z∗N and consequently factor Blum-integers (as described in [23]).

Theorem 5.2 (Goldreich–Levin [14]). Let z, r ∈ {0, 1}n. Given an oracle that,
on input r, predicts the value of Br(z) with advantage ε(n) (over the choice of r)
in time t(n), there exists a probabilistic polynomial-time algorithm with running-time

O(n
2·t(n)
ε(n)2 ) that retrieves z with probability at least Ω(ε(n)).

The following lemma can be viewed as the heart of the simplified part of the proof.
It describes how, given a distinguisher for our pseudorandom functions, it is possible
to construct an algorithm, D, which can be used by the reconstruction algorithm as
an oracle for the value of Br(u).

Lemma 5.3. Assume there exists a probabilistic polynomial-time machine M sat-
isfying inequality (7) for any choice of �a. Then there exists a probabilistic polynomial-
time algorithm D such that, for infinitely many n’s,

∣∣Pr
[D(v2, N, r,Br(u)) = 1

]− Pr
[D(v2, N, r, b) = 1

]∣∣ > ε′(n),

where the distribution of N = P · Q is FIG(1n), v is uniformly distributed in Z∗N ,
r is a random n-bit string, b ∈R {0, 1}, and u is the unique quadratic-residue in Z∗N
which satisfies u2 = v2 mod N .

Using an averaging argument, it can be shown that, on at least an ε′(n)
2 fraction

of the choices of N and v2, algorithm D distinguishes the value of Br(u) from random

with advantage ε′(n)
2 (over the choice of r). In particular, D can be used in order to

predict Br(u) with probability 1
2 + ε′(n)

4 . By Theorem 5.2, we know that we can use D
in order to construct a probabilistic polynomial-time algorithm that retrieves u mod N
with probability Ω (ε′(n)). We now have that u2 = v2 mod N and Pr [u �= ±v] = 1/2.
This implies (cf. [23]) that Pr [gcd(u− v,N) ∈ {P,Q}] = 1/2, which enables us to
construct an algorithm that Ω

(
ε′(n)2

)
-factors, in contradiction to Assumption 4.1.
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Description of D. Let the input of D be (v2, N, r, α), where the distribution of
N , v, and r is as in Lemma 5.3. Let u be the unique quadratic-residue in Z∗N which
satisfies u2 = v2 mod N . On this input, D first picks J = I · � + k at random in [t · �].
Then D invokesM and answers its queries in a way that simulates HJ

N,�a,g,r (for some

value of �a and g) if α equals Br(u) and simulates HJ+1
N,�a,g,r if α is a random bit. D will

now be able to utilize the expected advantage that M has in distinguishing between
HJ

N,�a,g,r and HJ+1
N,�a,g,r in order to guess the actual distribution of α. Specifically, D

will answer M’s queries in the following way:

1. Answer the first I queries according to ρn,�.

2. Answer the (I + 1)st query with b0, b1, . . . , bk−1, α,Br(u2), . . . ,Br(u2�−k−1

)
(where b0b1 . . . bk−1 denotes a random k-bit string).

3. Answer the remaining queries consistently according to fN,�a,g,r.

The challenge in constructing D is to assign values to �a and g such that the above
answers will be distributed according to the correct hybrid black-box distribution and
will be efficiently computable by D.

Defining �a and g. The way we define the value of g depends on the choice of J ,
whereas the values assigned to �a will depend on the (I + 1)st query made byM. We
require that, if x is the (I +1)st query, then the value of the (k+1)st bit of fN,�a,g,r(x)
(which is answered with α by D) will be equal to Br(u). In addition, we require that
D will be able to efficiently compute the answers to all the subsequent queries made
byM (starting from the (k + 2)nd bit-location in the answer to the (I + 1)st query).

The definition of g. D computes s = � · n− k and sets g = v2s

mod N .

Claim 5.1. Let γ be the order of g in Z∗N ; then γ is odd.

Proof. It will be sufficient to show that the size of QRN is odd. This implies that
all quadratic-residues in Z∗N (and, in particular, g) have odd order. Since N is a Blum-
integer, for every quadratic-residue in Z∗N , exactly one of its four square-roots resides

in QRN . This means that |QRN | = |Z∗
N |
4 = (P−1)·(Q−1)

4 . Since P = Q = 3 mod 4, we

have that P−1
2 and Q−1

2 are odd, which implies that (P−1)·(Q−1)
4 is also odd, and the

claim follows.

Claim 5.2. For every 0 < i < s, g2−i mod γ = v2s−i

mod N .13

Proof. By Claim 5.1, we have that γ is odd. This implies that 2 ∈ Z∗γ and,

therefore, 2−1 mod γ exists (and is simply γ+1
2 ). For simplicity of exposition, let

us denote by g2−1

the value g2−1 mod γ mod N . We now have that, whenever 2−1

appears in the exponent, it denotes the value 2−1 mod γ = γ+1
2 . Similarly, 2−i in

the exponent denotes the value 2−i mod γ = (γ+1
2 )i mod γ. Therefore, for every i,

the value g2−i

mod N is a quadratic-residue (since g is a quadratic-residue). Take

i = 1; we now have that both g2−1

and v2s−1

are square-roots of g and they are both
quadratic-residues. Since squaring is a permutation over the set of quadratic-residues
in Z∗N (for any Blum-integer N), we must have that g2−1

and v2s−1

are equal. By

induction on 0 < i < s, we get that g2−i

= v2s−i

mod N .

Corollary 5.1. Let u = g2−s

mod N ; then u2 = v2 mod N .

The definition of �a. Since the first I queries of M are answered randomly,
we can defer the assignment to the values of �a until D is given the (I + 1)st query,
x = x1x2 . . . xn. It is then possible to define �a so that the value of the (k + 1)st

13Note that γ is not known to D. However, as long as s − i > 0, it is possible for D to compute

v2
s−i

mod N .
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bit of fN,�a,g,r(x) (namely, Br(g2kΠn
i=1ai,xi )) will be equal to Br(u).14 Let �a be the

vector (a1,0, a1,1, a2,0, a2,1, . . . , an,0, an,1), where, for all i, ai,xi = 2−� mod γ and ai,xi

is uniformly distributed in [N ].
Claim 5.3. Let �a, g, and u be defined as above; then

Br(g2kΠn
i=1ai,xi ) = Br(u).

Proof. By the above notation,

g2kΠn
i=1ai,xi = g2k−�n

= g2−s

= u mod N,

and the claim follows.

The running-time of D. We now show that D is indeed able to complete steps
(2) and (3) (i.e., answer all the remaining queries of M starting from the (k + 2)nd
bit-location in the answer to the (I + 1)st query in a way which is consistent with the
definition of �a and g). The key point is that D can achieve this task even though it
does not actually know the values of ai,xi .

Claim 5.4. Algorithm D is able to efficiently complete the answer to the (I+1)st
query (step 2).

Proof. Since v2 = u2 mod N and since v2 and r are given to D in the input, D is
able to complete the answer to the (I + 1)st query and answer M with

b0, b1, . . . , bk−1, α,Br(v2), . . . ,Br(v2�−k−1

)

as required.
Claim 5.5. For any query y �= x, D is able to efficiently compute the value of

fN,�a,g,r(y) (step 3).
Proof. It will be sufficient to show that, for any query y = y1y2 . . . yn �= x, D is

able to compute the value gΠn
i=1ai,yi , and thus it is always able to answer the query

with the value of fN,�a,g,r(y). Now

gΠn
i=1ai,yi = g(Π{yi=xi}ai,yi

)(Π{yi �=xi}ai,yi
)

= g(2−�j)(Π{yi �=xi}ai,yi
)

= v(2s−�j)(Π{yi �=xi}ai,yi
) mod N,

where j is the number of locations for which yi equals xi. Since j < n (remember
that y �= x) and since k < �, we always have that s − �j = (n − j)� − k is at least 1
over the integers. As we have already stated, D knows the value of v2; therefore, by
performing the appropriate exponentiations, it is always able to compute gΠn

i=1ai,yi =

v(2s−�j)(Π{yi �=xi}ai,yi
) as required. (Remember that D knows the value of ai,yi for all

yi �= xi.)
We are finally ready to establish Lemma 5.3. Recall that, given some J , the value

of α determines which of the possible hybrid black-boxes is simulated by D. If α equals
Br(u), then D simulates HJ

N,�a,g,r, whereas if α is a random bit, D simulates HJ+1
N,�a,g,r.

Since the expected advantage M has in distinguishing the above neighboring hybrid
black-boxes is ε′(n) and since D picks J at random, we expect that D will be able to
decide with advantage ε′(n) whether α is indeed the value of Br(u).

14It is worth noticing that this would not have been possible in the case that D would have
answered M’s queries in a reverse order (i.e., by first answering according to fN,�a,g,r and then
switching mode to ρn,
).
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5.2.2. Completing the proof. To complete the proof, we follow the same lines,
along with an additional “randomization” of the values in �a, achieved by taking ai,xi =
ξi+2−� mod γ. This causes the value of the (k+1)st bit in the answer to the (I +1)st

query to change into Br(g2kΠn
i=1ai,xi ) = Br(g2kΠn

i=1(ξi+2−�)) = Br(u · w), where w is
an element in Z∗N which is completely determined by the ξi’s and by the value of v2

(and is efficiently computable given the above values). Note that now algorithm D
becomes an oracle for the value of Br(u · w) and will therefore be used in order to
retrieve u · w (rather than u).

Jumping ahead, we note that letting D pick the random ξi’s by itself would have
caused the value of w (and therefore u · w) to change each time D is invoked. This
would not allow the reconstruction algorithm to retrieve u · w for any specific value
of w. The solution to this problem will be to fix the values which determine w in
advance and then use D (which now takes only r as input) as an oracle for Br(u ·w).15

For the time being, we ignore the above issue and let D pick the random ξi’s by itself.
We now give the (full) analogue of Lemma 5.3.

Lemma 5.4. Assume there exists a probabilistic polynomial-time machine M
satisfying inequality (7). Then there exists a probabilistic polynomial-time algorithm
D such that, for infinitely many n’s,

∣∣Pr
[D(v2, N, r,Br(u · w)) = 1

]− Pr
[D(v2, N, r, b) = 1

]∣∣ > ε′(n)− n · 2−O(n),

where the distribution of N = P ·Q is FIG(1n), v is uniformly distributed in Z∗N , r is
a random n-bit string, b ∈R {0, 1}, u ·w is the unique quadratic-residue in Z∗N which
satisfies (u · w)2 = v2 · w2 mod N , and w is a randomly chosen quadratic-residue in
Z∗N (which is completely determined by the value of v2 and D’s internal coin tosses
and is efficiently computable by D).

Proof. On input (v2, N, r, α), D is defined as follows:
1. (a) Sample J = I · � + k uniformly at random in [t · �].

(b) Sample J random bits (needed in order to simulate the hybrid black-
box).

(c) Sample �ξ = (ξ1, ξ2, . . . , ξn, ξ
′
1, ξ
′
2, . . . , ξ

′
n) by uniformly picking 2n ele-

ments in [N ].
2. Compute s = � · n− k, and set g = v2s

mod N .
3. Invoke M on input 1n:

(a) Answer each of its first I queries with a random string in {0, 1}�.
(b) Let x1x2 . . . xn be M’s (I + 1)st query.

For 1 ≤ i ≤ n, denote by ai,xi
the value ξi + 2−� mod γ and by ai,xi

the
value ξ′i. Denote by �a the sequence (a1,0, a1,1, a2,0, a2,1, . . . , an,0, an,1).
(ai,xi is not actually known to D.)
Let b0b1 . . . bk−1 be a random k-bit string; answer the (I + 1)st query
with the �-bit string

b0, b1, . . . , bk−1, α,Br(g2k+1Πn
i=1ai,xi ), . . . ,Br(g2�−1Πn

i=1ai,xi ).

(c) Answer each remaining query of M, y with the value fN,�a,g,r(y).

15Here we use a special property of the Br predicate, which enables the reconstruction of u ·w by
asking only queries which refer to u ·w (i.e., u ·w is fixed throughout the process, and only r changes
from one query to another). As discussed in section 6, a similar property is satisfied by the LSB-
based reconstruction techniques by Alexi et al. [1, 10]. See section 6 for an analogous construction
that uses the LSB predicate.
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4. If M outputs 1, then output 1.
If M outputs 0, then output 0.

Why does D predict the value of Br(u · w)?. To define u, we set u =

g2−s

mod N . As before (see Corollary 5.1), we have that u2 = v2 mod N . To define

w, we set w = v(Σn−1
i=0

βi2
�(n−i)) mod N , where βi are the coefficients (over Z) of the

polynomial p(x) =
∏n

i=1(ξi+x) = xn+
∑n−1

i=0 βix
i. Note that the βi’s can be efficiently

computed given the ξi’s (either recursively or by interpolation). Given the values of
the βi’s and of v2, we are able to compute w. (Note that the exponent of v in the
definition of w is always even.) Therefore, w is an efficiently computable quadratic-
residue in Z∗N which is completely determined by the value of v2 and D’s internal coin
tosses (i.e., the ξi’s sampled in step 1c).

Claim 5.6. Let �a, g, u, and w be defined as above; then Br(g2kΠn
i=1ai,xi ) =

Br(u · w).
Proof. Using the above notation (and Claim 5.2), we have

g2kΠn
i=1ai,xi = g2kΠn

i=1(ξi+2−�)

= g2kp(2−�)

= g2k−�n+Σn−1
i=1

βi2
−(�i−k)

= g2−s · v(Σn−1
i=1

βi2
s−(�i−k))

= u · v(Σn−1
i=1

βi2
�(n−i))

= u · w mod N,

and the claim follows.
This implies that the (k + 1)st bit in the answer that the fN,�a,g,r black-box is

supposed to give to the (I + 1)st query (and is answered with α instead) is equal to
Br(u · w). As we have already seen, this fact can be used by D in order to decide
whether α equals Br(u · w).

The running-time of D. It is clear that steps 1, 2, and 3a can be carried
out in time poly(n, �(n)). In order to prove that steps 3b and 3c can be carried
out in time poly(n, �(n)) · t(n), we observe that, if, for some j in [�], D is able

to compute λ = g2jΠn
i=1ai,xi mod N , then, by squaring and taking the inner prod-

uct of the results with r, it is also able to compute any bit-sequence of the form

Br(λ),Br(λ2), . . . ,Br(λ2�−j−1

).
Claim 5.7. Algorithm D is able to efficiently complete the answer to the (I+1)st

query (step 3b).
Proof. By the above observation, it will be sufficient to show that D is able

to efficiently compute the value of g2k+1Πn
i=1ai,xi . To see that, notice that g2kΠn

i=1ai,xi

equals u·w (see Claim 5.6). This implies that g2k+1Πn
i=1ai,xi = u2 ·w2 = v2 ·w2 mod N .

Since both the values of v2 and w2 are known to D, it is possible for it to efficiently
answer the (I + 1)st query (as described in step 3b).

Claim 5.8. For any query y �= x, D is able to efficiently compute the value of
fN,�a,g,r(y) (step 3c).

Proof. By the above observation, it will be sufficient to show that D is able
to compute the value gΠn

i=1ai,yi (and, consequently, it will be able to compute the
value of fN,�a,g,r(y)). Given a query y = y1y2 . . . yn �= x, D starts by computing (in
time poly(n)) the coefficients, δi ∈ Z, of the polynomial q(x) =

∏
{yi=xi}(ξi + x) =
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∑j
i=0 δix

i (where j is the number of locations for which yi equals xi). Under this
notation,

∏
{yi=xi} ai,yi equals q(2−�), we then have

gΠn
i=1ai,yi = g(Π{yi=xi}ai,yi

)(Π{yi �=xi}ai,yi
)

= g(Σj
i=0

δi2
−�i)(Π{yi �=xi}ai,yi

)

=

j∏
i=0

g(δi2
−�i)(Π{yi �=xi}ai,yi

)

=

j∏
i=0

v2s−�i(δiΠ{yi �=xi}ai,yi
) mod N ;

since i ≤ j < n (remember that y �= x) and since k < �, we always have that the value
of s − �i = (n − i)� − k is at least 1 over the integers. Therefore, D is always able

to compute all the values v2s−�i(δiΠ{yi �=xi}ai,yi
) mod N by performing the appropriate

exponentiations of v2. (Remember that D knows the value of all δi’s and the value
of ai,yi for all yi �= xi.) Finally, by taking the product of the above values (reduced
mod N), D is able to compute the value of gΠn

i=1ai,yi as required.

The success-probability of D. To find the success-probability of D, we notice
that the distribution of the function fN,�a,g,r (which is induced by the way D chooses
�a and g) is statistically close to the distribution of functions in Fn. To see this, we
will need the following claims regarding the distributions of �a and g.

Claim 5.9. g is a uniformly distributed quadratic-residue in Z∗N .
Proof. Since v2 is a uniformly distributed quadratic-residue in Z∗N and squaring

is a permutation over the set of quadratic-residues in Z∗N , it immediately follows that
g = v2s

is a uniformly distributed quadratic-residue in Z∗N .
Claim 5.10. Let ξi and a′i,xi

be uniformly distributed elements in [N ], and denote

by ai,xi the value ξi+2−� mod γ. Then the statistical distance of ai,xi and a′i,xi
mod γ

is 2−O(n).
Proof. Note that γ divides (P−1)(Q−1). Therefore, the distribution of ai,xi condi-

tioned on the event that ξi ∈ [(P−1)(Q−1)] is the same as the distribution of a′i,xi
mod γ

conditioned on the event that a′i,xi
∈ [(P−1)(Q−1)] (and in both cases it is simply the

uniform distribution over [γ]). It remains to notice that

Pr [ξi ∈ [(P−1)(Q−1)]] = Pr
[
a′i,xi

∈ [(P−1)(Q−1)]
]

=
(P−1)(Q−1)

N

= 1− P+Q
N + 1

N

= 1− 2−O(n),

which completes the proof.
Claim 5.11. Let fN,�a′,g,r be distributed according to Fn, and let fN,�a,g,r be

distributed as in the construction of D. Then the statistical distance of fN,�a′,g,r and
fN,�a,g,r is n · 2−O(n).

Proof. Let each element in �a′ = (a′1,0, a
′
1,1, a

′
2,0, a

′
2,1, . . . , a

′
n,0, a

′
n,1) be uniformly

distributed in [N ]. By Claim 5.10, we have that, for every 1 ≤ i ≤ n, ai,xi
and

a′i,xi
mod γ are of statistical distance 2−O(n). It follows (by the triangle inequality)

that �a and �a′ mod γ are of statistical distance n · 2−O(n). It is then immediate that
fN,�a,g,r and fN,�a′,g,r are of statistical distance n · 2−O(n).
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Since applying any function (even a randomized one) does not increase the sta-
tistical distance, then, by Claim 5.11, we have that, for infinitely many n’s,

∣∣Pr
[MfN,a′,g,r (1n) = 1

]− Pr
[MfN,a,g,r (1n) = 1

]∣∣ < n · 2−O(n).

To complete the proof, we recall Definition 5.1 of the hybrid distribution, HJ
N,�a,g,r.

By Claim 5.6, we have that g2kΠn
i=1ai,xi = u · w mod N . Therefore, the value of

the (k + 1)st bit in the answer that D is supposed to give to the (I + 1)st query is
precisely equal to Br(u · w). Given that J = j and that α = Br(u · w) (where u · w
is a quadratic-residue in Z∗N ), the distribution that M sees is Hj

N,�a,g,r. On the other

hand, if α is random, then the distribution that M sees is Hj+1
N,�a,g,r. We now have

that, for infinitely many n’s,

∣∣Pr
[D(v2 mod N,N, r,Br(u · w)) = 1

]− Pr
[D(v2 mod N,N, r, b) = 1

]∣∣

=
1

t(n)·�(n)
·
∣∣∣∣∣∣

t·�−1∑
j=0

(
Pr
[D(v2, N, r,Br(u · w)) = 1 | J = j

]− Pr
[D(v2, N, r, b) = 1 | J = j

])
∣∣∣∣∣∣

=
1

t(n)·�(n)
·
∣∣∣∣∣∣

t·�−1∑
j=0

(
Pr
[MHj

N,a,g,r (1n) = 1
]− Pr

[MHj+1
N,a,g,r (1n) = 1

])
∣∣∣∣∣∣

=
1

t(n)·�(n)
· ∣∣Pr

[MfN,a,g,r (1n) = 1
]− Pr [Mρn,�(1n) = 1]

∣∣

≤ ε(n)

t(n)·�(n)
+ n · 2−O(n),

where the distribution of N = P ·Q is FIG(1n), v is uniformly distributed in Z∗N , r is
a random n-bit string, b ∈R {0, 1}, u ·w is the unique quadratic-residue in Z∗N which
satisfies (u · w)2 = v2 · w2 mod N , and w is a randomly chosen quadratic-residue in
Z∗N . The proof of Lemma 5.4 is complete.

Remark 5.2. From the proof of Lemma 5.4, we get that D works even if the
distinguisher M has access to N, g, and r.

Reconstructing u · w mod N . Technically, D is not suitable to be used as
an oracle for the Goldreich–Levin reconstruction algorithm, first because it is not a
predictor for the value Br(u ·w) but rather a distinguisher. Furthermore, the value of

w potentially changes each time D is invoked (since it depends on v2 and �ξ), which
does not allow the reconstruction algorithm to retrieve u · w for any specific value of
w. The transformation to a suitable predictor, however, is not difficult. By fixing the
values of v2 and �ξ in advance, we are able to construct an algorithm, DN,�ξ,v2 , which
invokes D as a subroutine and with nonnegligible probability succeeds in predicting
Br(u · w). On input r, DN,�ξ,v2 is defined as follows:

1. Sample two independent random bits α, β in {0, 1}.
2. Invoke D on input (v2, N, r, α); feed it with �ξ on its random tape.
3. (a) If D outputs 1, then output α.

(b) If D outputs 0, then output β.
Note that, now, the value of w does not change each time DN,�ξ,v2 is invoked. This

means that it is possible to use DN,�ξ,v2 as an oracle in order to reconstruct u · w.
Lemma 5.5. Assume there exists a probabilistic polynomial-time machine M

satisfying inequality (7), and let DN,�ξ,v2 be as above. Then, with probability ε′(n)
2
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(over the choices of N , v2, and �ξ), it holds that, for infinitely many n’s,

Pr
[DN,�ξ,v2(r) = Br(u · w)

]
>

1

2
+

ε′(n)

4
,

where the distribution of N = P · Q is FIG(1n), v is uniformly drawn from Z∗N , r

is a random n-bit string, �ξ is a random vector of 2n elements in [N ], w = w(�ξ, v2)
is a quadratic-residue in Z∗N , and u · w is the unique quadratic-residue in Z∗N which
satisfies (u · w)2 = v2 · w2 mod N .

Proof. By Lemma 5.4, D has an (ε′(n)− n · 2−O(n)) advantage in distinguishing
Br(u · w) from a randomly chosen bit. Using an averaging argument, it is easy to

see that on at least an ε′(n)
2 fraction of the choices of N , v2, and �ξ, algorithm D has

an ε′(n)
2 advantage in distinguishing Br(u · w) from a randomly chosen bit. It is then

straightforward that DN,�ξ,v2 can predict the value of Br(u · w) with advantage ε′(n)
4

as required.

The factoring algorithm. For the sake of completeness, we now turn to de-
scribe an algorithm, A, which uses DN,�ξ,v2 as oracle and succeeds to ε′′(n)-factor

(where ε′′(n) = Ω(ε′(n)2)); this is in contradiction to Assumption 4.1 and will com-
plete the proof.

Lemma 5.6. Assume there exists a probabilistic polynomial-time machine M
satisfying inequality (7). Then there exists a probabilistic polynomial-time algorithm,
A, that ε′′(n)-factors.

Proof. On input N , A is defined as follows:
1. (a) Sample v uniformly at random in Z∗N , and compute v2 mod N .

(b) Sample �ξ = (ξ1, ξ2, . . . , ξn, ξ
′
1, ξ
′
2, . . . , ξ

′
n) by uniformly picking 2n ele-

ments in [N ].

2. Compute the value of w = v(Σn−1
i=0

βi2
�(n−i)) mod N , where βi are the coeffi-

cients (over Z) of the polynomial p(x)
def
=
∏n

i=1(ξi + x) = xn +
∑n−1

i=0 βix
i

(and are easily found given the ξi’s).
3. Invoke the Goldreich–Levin reconstruction algorithm, R(1n).

(a) Whenever asked for Bri(z), invoke DN,�ξ,v2 on input ri, and give its

output as an answer. (Recall that DN,�ξ,v2 invokes M and answers its

queries.)
(b) Denote by z the output of R.

4. Compute u = z·w−1 mod N . Given thatR outputs the correct value (i.e., z =
u ·w), we have that u2 = v2 mod N . If u �= ±v mod N , output gcd(u− v,N)
which is indeed in {P,Q}. Otherwise, output “failed.”

The running-time of A. It is clear that steps 1, 2, and 4 can be carried out
efficiently by A (and, in addition, are independent of DN,�ξ,v2). As for step 3, assuming

that DN,�ξ,v2 has nonnegligible advantage in predicting Br(u ·w) (which by Lemma 5.5

happens with nonnegligible probability), we are guaranteed (by Theorem 5.2) that R
will terminate in polynomial time.

The success-probability of A. Since, with probability ε′(n)
2 , DN,�ξ,v2 predicts

the value of Br(u · w) with advantage ε′(n)
4 , then, by Theorem 5.2, we have that R

retrieves the value of u · w with probability at least Ω(ε′(n)2) (over the choices of N ,

v2, and �ξ). Note that u · w and w are both quadratic-residues in Z∗N ; therefore, u
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must also be a quadratic-residue in Z∗N . Given that, the probability that u does not
equal ±v mod N is exactly 1/2. We are finally able to conclude that A ε′′(n)-factors
as required.

This completes the proof of Theorem 5.1.

6. Using other hard-core bits. In Construction 4.1, we use the Goldreich–
Levin hard-core bit, Br. The other, more natural, hard-core bit in this context is the
LSB predicate, shown to be secure by Alexi et al. [1]. (The LSB predicate was the one
originally used in the BBS construction.) The key property which we require from the
Br predicate is that its reconstruction algorithm fixes the unknown value and changes
r throughout the process (see footnote 15). As pointed out to us by Roger Fischlin
[9], a similar property is satisfied by the LSB-based reconstruction techniques [1, 10]
(see Theorem 6.1, where r is explicitly considered).

The above observation suggests that using the LSB predicate in Construction 4.1
(rather than using the Br predicate) may yield a secure pseudorandom function. How-
ever, we were not able to prove it. What we are able to do is to slightly modify
Construction 4.1 in order to obtain a secure pseudorandom function that is secure
when using the LSB predicate.

Interestingly, the modified construction does not exactly follow the paradigm of
applying the BBS generator to the unpredictable function h(x) = gΠn

i=1ai,xi (but
rather multiplies each of the elements in the sequence with r before applying the LSB
predicate).

Construction 6.1 (LSB version of pseudorandom functions). We define a
function in the ensemble F = {Fn}n∈N. For every n ∈ N, a key of a function in Fn

is a tuple (N,�a, g, r), where N is an n-bit Blum-integer, g is a quadratic-residue in
Z∗N , r is an element in Z∗N , and �a = (a1,0, a1,1, a2,0, a2,1, . . . , an,0, an,1) is a sequence
of 2n elements in [N ]. For any n-bit input x = x1x2 . . . xn and for every integer
function � = �(n), the function fN,�a,g : In → I�(n) is defined by

fN,�a,g,r(x)
def
= LSB(r · gΠn

i=1ai,xi ),LSB(r · g2Πn
i=1ai,xi ), . . . ,LSB(r · g2�−1Πn

i=1ai,xi ).

The distribution of functions in Fn is induced by the following distribution on their
keys: �a and g are uniform in their range, and the distribution of N is FIG(1n).

Sketch of proof of security. The proof of security of Construction 6.1 is sim-
ilar to the case of the Br hard-core predicate. Specifically it is shown how, given a
distinguisher for the above pseudorandom functions, we can construct an algorithm
D that on input (v2 mod N,N, r) predicts the value of LSB(r · u · w), where u · w is
the unique quadratic-residue in Z∗N which satisfies (u ·w)2 = v2 ·w2 mod N , and w is
a randomly chosen quadratic-residue in Z∗N (which is completely determined by the
value of v2 and D’s internal coin tosses and is efficiently computable by D). Using
the reconstruction algorithm of Alexi et al. [1] (see [10] for tighter results), we are
then able to retrieve u · w (and so u). As before, this means that we can extract
square-roots in Z∗N and consequently factor Blum-integers.

Theorem 6.1 (see [1, 10]). Let z, r ∈ Z∗N . Given an oracle that, on input
r, predicts the value of LSB(r · z) with advantage ε(n) (over the choice of r) in
time t(n), there exists a probabilistic polynomial-time algorithm with running-time

O(n
2·t(n)
ε(n)2 ) that retrieves z with probability at least Ω(ε(n)).

As in the proof of Theorem 5.1, the security of Construction 6.1 is proved using
the following main lemma (which is the analogue of Lemma 5.4).
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Lemma 6.2. Assume there exists a probabilistic polynomial-time machine M
satisfying inequality (7). Then there exists a probabilistic polynomial-time algorithm
D such that, for infinitely many n’s,

∣∣Pr
[D(v2, N, r,LSB(r · u · w)) = 1

]− Pr
[D(v2, N, r, b) = 1

]∣∣ > ε′(n)− n · 2−O(n),

where the distribution of N = P ·Q is FIG(1n), v is uniformly distributed in Z∗N , r is
a random n-bit string, b ∈R {0, 1}, u ·w is the unique quadratic-residue in Z∗N which
satisfies (u · w)2 = v2 · w2 mod N , and w is a randomly chosen quadratic-residue in
Z∗N (which is completely determined by the value of v2 and D’s internal coin tosses
and is efficiently computable by D).

Proof sketch. The proof of Lemma 6.2 is essentially identical to the proof of
Lemma 5.4. Given v2, N, r, and J = I · � + k, the values of g,�a, u, and w are defined
exactly as before. The following claim establishes the correctness of D (and is proved
exactly in the same way as Claim 5.6).

Claim 6.1. Let �a, g, u, and w be defined as above; then LSB(r · g2kΠn
i=1ai,xi ) =

LSB(r · u · w).
As before, this implies that the (k + 1)st bit in the answer that the fN,�a,g,r black-

box is supposed to give to the (I + 1)st query (and is answered with α instead) is
equal to LSB(r · u ·w). As we have already seen, this fact can be used by D in order
to decide whether or not α equals LSB(r · u · w).

As for D’s running-time, since the values of g,�a, u, and w are identical to the case

of Lemma 5.4, it follows that D is able to efficiently compute both r ·g2k+1Πn
i=1ai,xi and

r·gΠn
i=1ai,yi for all y �= x. In particular, D can be implemented in time poly(n, �(n))·t(n).
Finally, since the distribution of the key (N,�a, g, r) chosen by D is identical to

the distribution of the key chosen by the distinguisher in the proof of Lemma 5.4, the
success-probability of D is identical to the success-probability of the distinguisher in
the proof of Lemma 5.4.

7. Further research. The proof of Theorem 5.1 is tailored to the specific cryp-
tographic primitives which are used in Construction 4.1 (i.e., the “unpredictable”
function gΠn

i=1ai,xi and the BBS generator). An interesting open problem would be to
provide an alternative proof for Theorem 5.1. Such a proof might make use of more
general notions and different techniques and will hopefully shed more light on the
reasons for which our construction yields a pseudorandom function. In particular, it
may provide new constructions of pseudorandom functions based on more general (or
more efficient) cryptographic primitives.

As we have demonstrated, in section 5.1, there exists an “unpredictable” function
and a pseudorandom generator such that their composition is not a pseudorandom
function. It should be interesting to recognize what precisely are the features of a
function hs (from an ensemble H = {hs}) and of a pseudorandom sequence generator
G that are needed in order to prove that our construction indeed yields pseudorandom
functions.

Comparing to the DDH pseudorandom functions. As we have already
mentioned, the efficiency of Construction 4.1 is comparable to the efficiency of the
DDH functions by NR [20]. Apart from being slightly more efficient than our func-
tions, the DDH functions have some additional properties:

• The simple algebraic structure of the DDH functions implies several attractive
features (e.g., zero-knowledge proof for the value of the function, function
sharing, and oblivious evaluation of the value of the function). In spite of the
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similarity between the two constructions, we do not know how to prove that
similar protocols are secure in our case.
• As opposed to the proof of Theorem 5.1, the security of the DDH functions

does not decrease proportionally to the number of queries which are made
by the adversary.16 (This is due to the random self-reducibility of the DDH
assumption [20].)

It is natural to consider the features of the DDH functions as guidelines for further
research regarding our functions.
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Abstract. We consider a bounded Lipschitz-polyhedron Ω ⊂ R3 of general topology equipped
with a tetrahedral triangulation that induces a mesh Γh of the surface ∂Ω. We seek a maximal set of
surface edge cycles that are independent in H1(Γh,Z) and bounding with respect to the exterior of Ω.

We present an algorithm for constructing suitable 1-cycles in Γh: First, representatives of a
basis of the homology group H1(Γh,Z) are constructed, merely using the combinatorial description
of the surface mesh Γh. Then, a duality pairing based on linking numbers is used to determine
those combinations that are bounding with respect to R3 \ Ω. This is the key to circumventing a
triangulation of the exterior region R3 \ Ω in the computations. For shape-regular, quasi-uniform
families of meshes, the asymptotic complexity of the algorithm is shown to be O(N2), where N is
the number of edges of Γh.

The scheme provides an essential preprocessing step for all boundary element methods for eddy
current simulation, which rely on discrete divergence-free vectorfields and their description through
stream functions.

Key words. cellular homology, nonbounding cycles, linking numbers, surface stream functions,
computational electromagnetism
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1. Background. This paper straddles the fields of algebraic topology, graph
theory, and numerical approximation. More precisely, starting out from boundary
element method computations of electromagnetic fields, we encounter a problem of
discrete cellular homology and solve it via continuous fields and numerical approxi-
mations.

Throughout the paper we have in mind the following task faced in computational
electromagnetism (for details see [13]): A Lipschitz-polyhedron Ω in three-dimensional
Euclidean space, the conductor, is equipped with a tetrahedral triangulation Ωh.
The goal is to compute the eddy currents in Ω that are triggered by an exciting
loop current. This involves the solution of partial differential equations on the entire
space. A boundary element method is used to take into account the unbounded
exterior Ω′ := R3 \ Ω. It relies on a divergence-free surface current λ as auxiliary
unknown, which is discretized by means of twisted discrete 1-forms on the surface
mesh Γh := Ωh ∩ ∂Ω. These 1-forms are special representatives of Whitney-forms
[24]. Their degrees of freedom are associated with the edges of the surface mesh.
Thus, they can be regarded as complex-valued 1-cochains of the simplicial cellular
complex provided by Γh.

The discrete surface current has to be a closed form. In the context of a boundary
element method the most efficient way to realize this constraint is through discrete
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γ

Fig. 1. Left: Current generated by local stream function. Right: Current sheet along a 1-cycle γ.

potentials (stream functions; see Figure 1); i.e., the 1-cochains are represented as
exterior derivatives of 0-cochains. However, if the first Betti number β1(Γ), Γ := ∂Ω,
does not vanish, potentials do not supply all of the desired space. What is missing is
the space spanned by representatives of a basis of the cohomology group H1(Γh,C).
Its dimension is known to be equal to β1(Γ).

As ∂Γ = ∅ and Γ is orientable, we can exploit the (Poincaré-)duality between
cohomology and homology H1(Γh,C) ∼= H1(Γh,C). Moreover, as these groups are
torsion free [15, section II], we need only consider integral coefficients, i.e., H1(Γh,Z).
Representatives of the latter group are given by nonbounding edge cycles in Γh. If
we know them, we can recover surface currents in H1(Γh,C) as sheets of current
traveling along the 1-cycles as sketched in Figure 1 (left). Yet, not all of H1(Γh,Z) is
really desired, because λh can be regarded as an approximation of the trace H × n
(n exterior unit normal) of the magnetic field H. Ampere’s law tells us that

∫

∂S

H · d�s =
∫

S

j · d�S,(1.1)

where S is any orientable 2-surface and j stands for a current. If S has its boundary
on Γ, we expect

∫

∂S

n× λh · d�s =
∫

S

j · d�S.(1.2)

Outside Ω currents cannot exist. This means that the integral of n × λh along any
1-cycle in Γh will vanish if that cycle is bounding relative to Ω′ := R3 \ Ω. Current
sheets skirting nonbounding surface edge cycles that are not bounding with respect
to Ω′ fail to meet this constraint. Thus relevant surface edge cycles in H1(Γh,Z)
are marked by the property that they are bounding relative to Ω′. Zeroing in on
relevant cycles, we will end up with a subgroup of H1(Γh,Z) of dimension 1

2β1(Γ).
To get an idea of what relevant cycles look like, imagine a ring-shaped hollow Ω,
for instance the closed circular pipe of Figure 2. Only the circles γ1 on the outer
surface surrounding the central hole and γ2 linking the inner cavity qualify as relevant
independent representatives of H1(Γ,Z).

It is not only a matter of economy to discard the redundant generators ofH1(Γh,C).
On the contrary, it is essential for the applicability of the boundary element method,
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γ1

γ2

Fig. 2. The two relevant surface 1-cycles γ1 and γ2 (modulo homology) for a toroidal pipe.

✂

Fig. 3. Destroying a 1-cycle bounding relative to Ω′.

because in the model excitations are taken into account by prescribing the total cur-
rent in a loop-shaped part of Ω, the so-called inductor. In computational practice,
this is done by fixing the contribution of the relevant representative of H1(Γh,C) to
the boundary element space. Choosing one that does not bound with respect to Ω′ is
physically meaningless. In Figure 2 only γ1 is suitable to impose a loop current.

In principle, relevant 1-cycles can be constructed based on a triangulation of O\Ω,
where O is a sufficiently large cube containing Ω̄. Then there are algorithms for the
construction of so-called cutting surfaces in Ω′, whose boundaries are the desired 1-
cycles. Pioneering work in this field was done by Brown [4]. His algorithm finds
generators of H1(Ω̄,Z) by successive retractions applied to elements of Ωh. However,
it is not clear whether the method can cope with arbitrary meshes, and the resulting
cycles are not located on Γ. On top of that, the computational costs might behave like
O(N3), where N is the number of edges of Ωh. Profound theoretical and algorithmic
investigations on the construction of cutting surfaces were conducted by Kotiuga
[17, 16, 15]. In [12, Chap. 3], an actual computation of cutting surfaces is presented.
It involves the solution of a finite element problem on the triangulated complement Ω′.
Yet, this option is not available to us. First, a rationale for using boundary element
methods is to avoid meshing parts of the exterior of Ω. Second, the computations
turn out to be extremely expensive. Their complexity is at least O(N3), where N
now stands for the number of elements in the exterior mesh. Very effective algorithms
for construction of generators of H1(Γh,Z) have been developed in computational
topology [23, 18]. They can guarantee quite a few particular properties of the cycles
but short of picking relevant cycles.

At first glance it seems that we could successfully tackle the problem in an en-
tirely discrete setting, relying on the connectivity of Ωh alone. Yet, consider a plain
triangulated torus. Cut it at its small circle, twist by 2π, and reconnect as in Fig-
ure 3. If we had found a surface 1-cycle bounding with respect to the exterior, this
operation will render it nonrelevant. However, the combinatorial description of the
mesh remains the same. It is evident that it is impossible to find the desired 1-cycles
merely using combinatorial information about Ωh. Unless we want to use an exterior
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mesh, we also have to rely on information about the geometry of Ω.
The main objective of this paper is to convey how blending combinatorial and

geometric techniques can yield a fast algorithm for the construction and classification
of generators of H1(Γh,Z). In section 2 we fix the framework and basic concepts
of cellular homology. Then, to make the presentation self-contained, in section 3
we follow [19] and introduce the construction of generators of H1(Γh,Z) based on
graph algorithms. Those are reminiscent of so-called cotree gauging methods, widely
employed in computational electromagnetism (see [2, section 5.3], [8], and [14]). In
section 4 we appeal to the venerable topological notion of linking numbers to come up
with an algebraic characterization of 1-cycles bounding with respect to the exterior.
We point out that a different classification problem has been treated in [7] using rather
similar ideas. The numerical computation of linking numbers is detailed in section 5.

2. Setting and notations. Denote by S0 := Vh,S1 := Eh, and S2 := Fh the
sets of vertices, edges, and faces of the surface mesh Γh covering Γ. From an abstract
point of view, Γh can be regarded as a nondegenerate simplicial cellular complex [9].
We say that an l-simplex x ∈ Sl is contained in another k-simplex y ∈ Sk, x ≺ y,
if all vertices of x are vertices of y, too. For x ∈ Sl we introduce the k-simplicial
neighborhood

Sk(x) := {y ∈ Sk, x ≺ y or y ≺ x}.
Each simplex is endowed with an interior orientation prescribed by an ordering of

its vertices. From a combinatorial point of view, the oriented triangulation Γh can be
completely described by the incidence relations ιll−1 : Sl−1 × Sl �→ {−1, 0, 1}, where
ι(x,y) = 0, if x is not contained in y, and, otherwise, ι(x,y) = ±1, if the induced
orientation of x with respect to y is the same as/opposite to the interior orientation
of x (cf. [11, section 2.2] and [2, section 5.2]).

Mappings Sl �→ Z are called surface l-chains. They form a free Abelian group
Cl(Γh,Z). We adopt the convenient sum notation γ :=

∑
x∈Sl αxx, αx ∈ Z for a

surface l-chain γ with γ(x) = αx. The coefficients αx will be referred to as weights.
We define the set of l-simplices contained in an l-chain as

Sl(γ) := {x ∈ Sl, γ(x) �= 0}, γ ∈ Cl(Γh,Z).
For l > 0 we define the boundary ∂lx of x ∈ Sl as

∂lx :=
∑

y∈Sl−1(x)

ι(y,x) · y ⇒ ∂lx ∈ Cl−1(Γh,Z)

and get the boundary homomorphism ∂l : Cl(Γh,Z) �→ Cl−1(Γh,Z) by extension:

∂l

(∑
x∈Sl

αxx

)
:=
∑
x∈Sl

αx∂lx.

We will need cycles and 1-boundaries, i.e., subgroups of C1(Γh,Z) defined by

Z1(Γh,Z) := Ker(∂1), B1(Γh,Z) := Im(∂2),

respectively (cf. [22, section IV,V] for a lucid exposition). A 1-cycle γ is said to be
bounding in Γh if γ ∈ B1(Γh,Z). Two 1-cycles are called homologous if their difference
is a boundary, that is,

ω, η ∈ C1(Γh,Z) : ω ∼ η :⇔ ω − η ∈ B1(Γh,Z).
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Fig. 4. Surface configurations not possible in the case of a Lipschitz-polyhedron.

A fundamental property of the incidence relations guarantees that B1(Γh,Z) ⊂
Z1(Γh,Z). The quotient group is called the first homology group H1(Γh,Z) :=
Z1(Γh,Z)/B1(Γh,Z). It has finite rank β1(Γh), which is called the first Betti number
of Γh [20, section 5.2].

As the current task reaches beyond mere combinatorics, some assumptions on the
geometry of Ω have to be made. We demand that Ω has a Lipschitz-continuous bound-
ary; that is, Γ has to have a local representation as the graph of a Lipschitz-continuous
function [10, Sect 1.2.1]. Topologically speaking, this forces Ω̄ to be homeomorphic to
a compact domain with a smooth boundary. First, this implies ∂Γ = ∅ and that each
t ∈ Fh is a face of a tetrahedron of Ωh. A second consequence is that Γ is orientable.
Thus, we can fix an orientation of ∂Ω and endow all triangles t ∈ Fh with the induced
orientation. Third, the surface is “locally flat” in the sense that exactly two faces in
Fh are incident with each edge in Eh. Situations like the “double cone” and “double
ridge” depicted in Figure 4 are ruled out.

As the meshes are used for finite element computations, it also makes sense to
reign in distortions of tetrahedra. We attribute the mesh Ωh a shape-regularity mea-
sure ρ, ρ > 0, if

max
T∈Ωh

diam(T )

sup{r > 0 : ∃c ∈ T, |x− c| < r ⇒ x ∈ T} ≤ ρ,(2.1)

with diam(T ) := supx,y∈T |x− y| [5, Chap. 3, section 3.1]. We infer that

4
3π (diam(T )/ρ)

3 ≤ Vol(T ) ≤ 1
6 diam(T )3, T ∈ Ωh.(2.2)

Another common concept is q-quasi-uniformity [5], 0 < q ≤ 1, of a mesh that claims

q−1 min
T∈Ωh

diam(T ) ≥ max
T∈Ωh

diam(T ).(2.3)

The expression on the right-hand side is commonly called the meshwidth of Ωh. Ob-
viously, (2.1) and (2.3) hold for Γh instead of Ωh with the same constants.

3. Construction of representatives of basis of H1(Γh,Z). This part of the
algorithm is purely combinatorial and relies on interpreting Γh as a graph. We are
using the standard definition of a graph as an ordered triple (V G,EG,Ψ) of sets
VG (“vertices”), EG (“edges”)1 and an incidence function Ψ : EG �→ {V G × V G}
[1, Chap. 1].

1Be aware of the ambiguity of the terms “vertex” and “edge,” which may refer either to a graph
or simplices of a mesh.
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We interpret Γh as a graph in two different ways: The incidence function ΨD :
Eh �→ Fh of the graph D := (Fh, Eh, ΨD) is given by ΨD(e) := S2(e). Due to
!S2(e) = 2 for all e ∈ Eh it is well defined.2 This graph D is commonly known
as the dual graph of the mesh Γh. The other graph is the actual edge graph G :=
(Vh, Eh, ΨG) with incidence function ΨG : Eh �→ Vh, ΨG(e) := S0(e).

The components Di, i = 1, . . . , p, p ∈ N, of D correspond to the different con-
nected components of the surface Γ. In a straightforward manner they give rise to
components Γ1

h, . . . ,Γ
p
h of Γh. If a 1-cycle is bounding in Γh all its restrictions to con-

nected components have to be bounding, too. Otherwise, two triangles of different
components would have to be adjacent, which is impossible. Therefore,

H1(Γh,Z) =

p⊕
i=1

H1(Γ
i
h,Z).(3.1)

Hence, without loss of generality, we can focus on a single component Γih. Its sets
of simplices will be tagged by a superscript i. Note that the geometric constraints
enforce Vih ∩Vjh = ∅ for i �= j. Thus, a natural partitioning of the vertex-graph G into
components G1, . . . ,Gp is also implied.

Let T iD be a spanning tree of Di, i.e., a spanning subgraph of Di that is a tree
(cf. Figure 8). It induces a natural partitioning of E ih into edges contained in T iD and
the complement set E i� .

Lemma 3.1. No nontrivial 1-cycle only comprising edges in E i� can be bounding
in Γih.

Proof. Assume that there is a nontrivial bounding 1-cycle ω in E i� ; i.e., there is
ϕ ∈ C2(Γ

i
h,Z), ϕ �= 0 such that ∂2ϕ = ω. If two triangles t, t′ ∈ ϕ share an edge

e then ι(e, t)ι(e, t′) = −1 as t and t′ carry the orientation induced by Γ. If e is
not contained in S1(ω), this means that t and t′ must have the same weight in ϕ.
Eventually,

t, t′ ∈ Fh : (S1(t) ∩ S1(t
′)) ⊂ E ih ⇒ ϕ(t) = ϕ(t′).

Hence, two triangles connected by a path in T iD have the same weights in ϕ. This
will be true for all t ∈ Fh, since T iD is a spanning tree: ϕ = κ ·∑t∈Fi

h
t for some

κ ∈ Z \ {0}. However, the boundary of Γih, which is considered as a 2-chain, is empty.
This refutes the assumption.

Lemma 3.2. Each γ ∈ Z1(Γ
i
h,Z) is homologous to a 1-cycle comprising only

edges in E i� .
Proof. Fix an arbitrary tr ∈ Fh as “root” of T iD. This makes it possible to assign

to each triangle t of T iD a unique number d(t) ∈ N, its distance to the root, i.e., the
length of the unique path in T iD connecting t and tr. Then set

d(e) := min{d(t), e ≺ t}, e ∈ Eh.
Please observe that (identifying T iD with its edge set)

t ∈ Fh, d(t) > 0 ⇒
{ ∃1e ∈ S1(t) : d(e) = d(t)− 1,
d(e′) = d(t) ∀e′ ∈ (S1(t) ∩ T iD) \ {e}(3.2)

by elementary properties of the tree.

2� extracts the cardinality of a finite set.
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We sort the edges of T iD with respect to this “distance function,” get a sequence
(e1, e2, . . . , eM ), and write T Ek := {e1, . . . , ek}, k = 1, . . . ,M . Let j be the smallest
index of an edge in T iD contained in a cycle γ, i.e., S1(γ) ∩ T Ej−1 = ∅. Select

t ∈ S2(ej) such that d(t) = max{d(t′), t′ ∈ S2(ej)} = d(ej) + 1.

Transform γ into a homologous 1-cycle γ′ according to

γ′ := γ − γ(ej) · ι(ej , t) · ∂2t.

By definition of the boundary operator γ′(ej) = 0, but γ′ will probably contain the
other edges of t, which might belong to T iD. Fortunately, as we see from (3.2), their
distance to the root will be greater than that of ej in case they belong to T iD. This
establishes E(γ′) ∩ T Ej = ∅. Repeating this construction, we arrive at a path γ̃ with
γ̃ ∼ γ and E(γ̃) ∩ T EM = ∅, sloppily speaking, a homologous cycle in E i� .

Lemma 3.3. The subgraph Gi
� := (Vih, E i� , ΨG|Ei

�
) is connected.

Proof. Assume that there are two components in Gi
�, spawning a partition Vih =

V1 ∪ V2. Define

EB := {e ∈ E ih, S0(e) ∩ V1 �= ∅ and S0(e) ∩ V2 �= ∅}
and note that EB �= ∅ as Gi is connected. Next, set

FB := {t ∈ F ih, S1(t) ∩ EB �= ∅}.
By the definition of components of a graph we know EB ∩ E i� = ∅, hence EB ⊂ T iD,
where, for convenience, the tree is identified with the set of edges it contains. For all
t ∈ FB both S0(t) ∩ V1 �= ∅ and S0(t) ∩ V2 �= ∅, which establishes

!(S1(t) ∩ EB) = 2.

We conclude that in the subgraph (FB , EB ,ΨD|EB ) of T iD, which is a valid graph as
!(S2(e) ∩ FB) = 2 holds for all e ∈ EB , every vertex has degree 2 such that it must
contain a circuit. This contradicts its being contained in the tree T iD.

According to the previous lemma we can find a single spanning tree T iG of Gi
� (see

Figure 9). It also defines a subset of E i� in a natural fashion. Viewing T iG as a set of
edges, we write E i∗ := E i� \ T iG for the remainder. Since T iG is a spanning tree in Gi

�,
for each e ∈ E i∗ we can find a unique fundamental circuit se in Gi

� that, except for e,
only contains edges in T iG [1, section 1.8] (see Figure 10).

Lemma 3.4. Every vertex in se belongs to exactly two edges of se, e ∈ E i∗.
Proof. The proof is a straightforward consequence of [1, Thm. 1.2].
From the above lemma we infer that the se, e ∈ E i∗, do not intersect themselves.

Thus, it confirms that se can be easily converted into a 1-cycle γe by fixing γe(e) =
1 and assigning weights ±1 to its edges. The assignment of weights can proceed
sequentially along se.

Theorem 3.5. {γe, e ∈ E i∗} represents a basis of H1(Γ
i
h,Z).

Proof. Lemma 3.1 tells us that γe �∈ B1(Γ
i
h,Z). Moreover, as γe(e

′) = δe,e′ ,
e, e′ ∈ E i∗, the different 1-cycles are independent in H1(Γ

i
h,Z).

Let η ∈ Z1(Γ
i
h,Z). Due to Lemma 3.2 we can find a homologous 1-cycle η′

covering only edges in E i� . Set

π := η′ −
∑

e∈Ei∗
η′(e) · γe.
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Dh := Fh; EDh := ∅;
while (Dh �= ∅) {

Pick t ∈ Dh; Q := ∅; Q.push back(t); Dh := Dh \ {t};
while (Q �= ∅) {

t := Q.pop front();
foreach (e′ ∈ S1(t)) {
{t′} := S2(e

′) \ {t};
if (t′ ∈ Dh) { Dh := Dh \ {t′}; Q.push back(t′); EDh := EDh ∪ {e′}; }

}}}
Fig. 5. Algorithm: Construction of trees T i

D. Q is a FIFO container as supplied by the deque-
container of the STL [21, section 17.2.3].

Lh := Vh; E i∗ := ∅;
while (Lh �= ∅) {

Pick v ∈ Lh; v.depth := 0; Lh := Lh \ {v}; Q := ∅; Q.push back(v);
while (Q �= ∅) {

v := Q.pop front();
foreach (e′ ∈ S1(v) \ EDh ) {
{v′} := S0(e

′) \ {v};
if (v′ ∈ Lh) { Lh := Lh \ {v′}; Q.push back(v′); v′.depth = v.depth+1; }
else { E i∗ := E i∗ ∪ {e′}; }}}}

Fig. 6. Algorithm: Construction of trees T i
G and sets Ei∗.

Assume that π is not trivial. Then π is a 1-cycle and S1(π) is completely contained
in the tree T iG. In the subgraph G|S1(π) every vertex must have degree ≥ 2, which is
implied by π ∈ Z1(Γh,Z). Hence, there is a circuit in G|S1(π). At the same time it is
supposed to be contained in a tree, which, by contradiction, forces π = 0.

In sum, every cycle is homologous to a combination of the γe.
Be aware that we have found generators of H1(Γh,Z) that, by construction, have

a geometric meaning as closed curves in Γ, too.
An outline of the combinatorial algorithms for the construction of the circuits se,

e ∈ E i∗, is given in Figures 5–7. The sets Dh, EDh , and Lh, and the related queries can
be efficiently realized through marking simplices of Γh. The individual steps of the
algorithm in the case of a triangulated torus are illustrated in Figures 8–10.

If access to local incidence information is possible in constant time, the total
computational effort will be proportional to !Fh + (1 + β1(Γ)) · !Vh. The algorithm
produces ordered sequences se of edges, e ∈ E i∗, that represent circuits. Notice that
the algorithm from Figure 5 permits us to identify the connected components of Γh
without additional effort.

Remark . By a cheap algorithm we can always replace each γe, e ∈ E i∗, by a
homologous edge cycle that does not contain two edges of the same surface triangle.
For these “straightened” cycles, still denoted by Γe, will hold

!Eh(γe) ≤ !Fh(γe).

Often, this estimate is extremely pessimistic, as in most cases the cycles γe, e ∈ E i∗,
will cover only a fraction of the edges in Eh. The example of Figure 11 is typical.
However, this cannot be guaranteed, in particular for very coarse surface meshes that
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foreach (e ∈ E i∗) {
list<Edge> se; se := ∅; {x,y} := S0(e); se.push back(e);
do {

while (x.depth > y.depth) {
foreach (e′ ∈ S1(x) \ EDh ) {
{z} := S0(e

′) \ {x};
if (z.depth < x.depth) { se.push back(e′); x ← z; break; }}}

while (x.depth ≤ y.depth and x �= y) {
foreach (e′ ∈ S1(y) \ EDh ) {
{z} := S0(e

′) \ {y};
if (z.depth ≤ y.depth) { se.push front(e′); y ← z; break; }}}

}
while (x �= y); }
Fig. 7. Algorithm: Construction of circuits se, e ∈ Ei∗. They are assembled in STL-list-

containers [21, section 17.2.2].

Fig. 8. Tree TD in the case of a triangulated torus, which is represented by identifying opposite
sides of a rectangle. Output of the algorithm from Figure 5.

barely resolve the topology of Γ.

4. Identification of relevant cycles. As pointed out in the first section, find-
ing generators of H1(Γh,Z) that bound relative to Ω′ involves geometric consider-
ations. This forces us to resort to concepts of homology theory on subsets of the
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e1

e2

Fig. 9. Construction of TG (dashed lines) on the torus according to the algorithm from Figure 6,
yielding Ei∗ := {e1, e2}.

Euclidean space R3. For a domain D ⊂ R3 we adopt the notation Z1(D,Z) for the
group of 1-cycles, i.e., oriented closed curves in D. An element of Z1(Γh,Z) is said to
bound relative to Ω (or Ω′) if it can be represented by an oriented closed edge curve
on Γ and if it is the boundary of an orientable 2-surface in Ω (or Ω′).

The linking number (cf. [20, section 5.2], [4, Appendix I]) will be a crucial device.
Definition 4.1. Given two piecewise differentiable disjoint 1-cycles γ, γ′ ∈

Z1(R
3,Z) we define their relative linking number by

L(γ, γ′) := −
∫

γ

∫

γ′
gradyG(x,y) · (d�s(x)× d�s(y)), G(x,y) :=

1

4π|x− y| .

Obviously L(γ, γ′) = L(γ′, γ). Moreover, L(γ, γ′) ∈ Z. The linking number can
also be expressed as L(γ, γ′) =

∫
γ
Hγ′ where Hγ′ is a 1-form defined on R3 \ γ′ by

〈Hγ′(x),v〉 := −
∫

γ′
gradyG(x,y) · (v × d�s(y)), v ∈ R3.

Straightforward computations show that Hγ′ is closed, as the curl of its vector proxy
vanishes on R3 \ γ′. If two 1-cycles γ1, γ2 ∈ Z1(R

3 \ γ′,Z) are homologous, i.e., the
boundary of an oriented surface S, then, by Stokes’ theorem,

L(γ1, γ
′)− L(γ2, γ′) =

∫

γ1−γ2
Hγ′ =

∫

∂S

Hγ′ =

∫

S

dHγ′ = 0.(4.1)
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e1

e2

Fig. 10. Two circuits se1 (solid) and se2 (dashed) on the triangulated torus as produced by the
algorithm from Figure 7.

!Fh=586
!Eh=874
!Vh=289

!S1(γ1)=15
!S1(γ2)=13
!S1(γ3)=21
!S1(γ4)=19
!S1(γ5)=9
!S1(γ6)=10

Fig. 11. Surface mesh (left) and cycles γ1, . . . , γ6 (right) in the case of a cyclinder with two
intersecting holes drilled through it.

Thus, the linking number defines a (bilinear) pairing

L : H1(Ω,Z)×H1(Ω
′,Z) �→ Z(4.2)
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between homology classes of 1-cycles in the interior and exterior of Ω. Recall that for
a connected Γ an argument based on the Mayer–Vietoris exact sequence [3, section 2]
shows

H1(Γ,Z) ∼= H1(Ω
′,Z)⊕H1(Ω,Z).(4.3)

In addition, we know [20, section 6.6] that the first Betti numbers of Ω and its com-
plement agree, i.e., β1(Ω) = β1(Ω

′), and set L := β1(Ω). Thanks to (4.3), this means
that a basis of H1(Γ,Z) can be represented by L 1-cycles π′1, . . . , π

′
L ∈ H1(Ω

′,Z)
bounding relative to Ω and L 1-cycles π1, . . . , πL ∈ H1(Ω,Z) bounding relative to Ω′.
As exposed in [20, section 6.8], the pairing defined in (4.2) is nondegenerate in the
sense that

L(γ, γ′) = 0 ∀γ′ ∈ H1(Ω
′,Z) ⇒ γ = 0 in H1(Ω,Z),

and vice versa. Thus, we can always choose the above 1-cycles such that

L(πi, π
′
j) = δij , 1 ≤ i, j ≤ L.(4.4)

Retraction will give us 1-cycles ∈ Z1(Γ,Z) located on the boundary that are ho-
mologous to π1, . . . , πL, π

′
1, . . . , π

′
L in Ω̄ and Ω̄′, respectively. We are calling them

fundamental 1-cycles φ1, . . . , φL, φ
′
1, . . . , φ

′
l, and note that still

L(πi, φ
′
j) = δij , 1 ≤ i, j ≤ L.

Besides, the fundamental cycles provide a basis for H1(Γ,Z). By simple retraction to
the 1-skeleton of Γh we also get a basis of H1(Γh,Z) for which we keep the notation
{φ1, . . . , φL, φ

′
1, . . . , φ

′
L}.

Linking numbers are well defined for disjoint 1-cycles only. Otherwise, the formula
from Definition 4.1 will produce noninteger values. Therefore, we need a tool to
disentangle surface 1-cycles.

Definition 4.2. For γ ∈ Z1(Γh,Z) we define the submerged 1-cycle γ ↓ as the
homology class of γ in H1(Ω̄,Z).

In the current setting, in which Ω̄ is homeomorphic to a compact set with smooth
boundary, H1(Ω̄,Z) = H1(Ω,Z) and γ ↓ can as well be regarded as an element of
H1(Ω,Z). We note the following consequences:

φi ↓= πi in H1(Ω,Z), φ′i ↓= 0, i = 1, . . . , L.(4.5)

This is due to the fact that the exterior cycles π′i are bounding relative to R3 and,
consequently, φ′i is bounding relative to Ω̄. Submersion is crucial for introducing the
following “bilinear” pairing:

〈·, ·〉 :
{
Z1(Γh,Z)× Z1(Γh,Z) �→ Z

(η1, η2) �→ L(η2 ↓, η1).(4.6)

Due to (4.1) it is well defined as L(β, η) = 0 for any 1-cycle β ∈ Z1(Ω,Z) bounding
relative to Ω and η ∈ Z1(Γh,Z). From (4.5) we conclude that 〈η, φ′i〉 = 0 for all
i = 1, . . . , L.

The point about this pairing is that it offers a criterion for telling the type of
1-cycles.

Lemma 4.3. γ ∈ Z1(Γh,Z) is bounding relative to Ω′ if and only if 〈γ, φi〉 = 0
for all i = 1, . . . , L.
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Proof. The 1-cycle γ has a unique (modulo homology) representation with respect
to the fundamental cycles

γ ∼
L∑
l=1

(αlφl + βlφ
′
l) , αl, βl ∈ Z.

Recall that the 1-cycles φ1, . . . , φL, which have been “projected” onto the boundary of
Ω from the interior, are bounding with respect to the exterior, whereas this is not true
for φ′1, . . . , φ

′
L. Thus, γ is bounding relative to Ω′, if and only if it does not contain

any contributions from φ′1, . . . , φ
′
L, since the latter cannot be bounding relative to

Ω′ by definition. In short, γ is bounding relative to Ω′ if and only if βl = 0 for all
l = 1, . . . , L.

〈γ, φi〉 = L(φi ↓, γ) = L

(
φi ↓,

L∑
l=1

αlφl + βlφ
′
l

)

=
L∑
l=1

αlL(φi ↓, φl) +
L∑
l=1

βlL(φi ↓, φ′l) =
L∑
l=1

βlδil = βi,

as L(φi ↓, φl) = 0, because φl is bounding relative to Ω̄′, and L(φi ↓, φ′l) = L(πi, π
′
l) =

δil according to (4.4).
The lemma seems to be of limited value, since we do not know the fundamen-

tal cycles explicitly. However, as 〈η, φ′i〉 = 0 throughout, we need only a basis of
H1(Γh,Z).

Corollary 4.4. γ ∈ Z1(Γh,Z) is bounding relative to Ω
′ if and only if 〈γ, τi〉 = 0

for any basis {τ1, . . . , τ2L} of H1(Γh,Z).
Proof. The basis property ensures that each φi, i = 1, . . . , L, can be represented

as a combination of τj (modulo homology).
We have already got a basis at our disposal, namely the generators γ1, . . . , γ2L

created by the graph algorithm of section 3. It goes without saying that any desired
cycle can be obtained as an integral combination of these generators. So

δ =
2L∑
j=1

κjγj bounding with respect to Ω′ ⇔
2L∑
j=1

κj 〈γj , γi〉 = 0, i = 1, . . . , 2L.

In other words, δ ∈ Z1(Γh,Z) is bounding with respect to Ω̄′ if and only if �κ =
(κ1, . . . , κ2L)

T ∈ Z2L satisfies

�κ ∈ Ker(GT ), G := (〈γj , γi〉)2Li,j=1 ∈ Z2L,2L.

This suggests the following approach to the construction of the relevant surface
1-cycles:

1. Determine γ1, . . . , γ2L through spanning tree techniques (see section 3).
2. Compute the matrix G by evaluation of the pairing 〈·, ·〉 (see section 5).
3. Use Gaussian elimination with full pivoting in Z to obtain an integral basis

for Ker(GT ). Every basis vector will define a combination of γ1, . . . , γ2L that
provides a relevant cycle.

The independence of the cycles thus obtained is clear from the linear independence of
the basis vectors of Ker(GT ). However, do we get all L possible nonbounding surface
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1-cycles (up to homology) that are bounding with respect to Ω′? The next result
gives an affirmative answer.

Theorem 4.5.

dimKer(GT ) = L.

Proof. Start with a representation by means of fundamental cycles

γi ∼
L∑
l=1

(αilφl + βilφ
′
l) , αil, βil ∈ Z, i = 1 . . . , 2L.(4.7)

Observe that for i, j = 1, . . . , 2L

〈γi, γj〉 =
L∑

l,k=1

(αilαjk 〈φl, φk〉+ αilβjk 〈φl, φ′k〉+ βilαjk 〈φ′l, φk〉+ βilβjk 〈φ′l, φ′k〉)

=

L∑
l=1

L∑
k=1

βilαjk 〈φ′l, φk〉 =
L∑
l=1

βilαjl,

as 〈φl, φk〉 = 〈φl, φ′k〉 = 〈φ′l, φ′k〉 = 0 and 〈φ′l, φk〉 = δlk. In short, we may write

G = B ·AT , A = (αil) ∈ Z2L,L, B = (βil) ∈ Z2L,L.

As both φ1, . . . , φl, φ
′
1, . . . , φ

′
L and γ1, . . . , γ2L are bases of H1(Γh,Z), the matrix

(A|B) ∈ Z2L,2L has full rank. This also holds for A and B: rank(A) = rank(B) = L.
From this we infer rank(G) = L, which means dimKer(G) = L.

5. Evaluation of pairing. In order to obtain the matrix G, we have to provide
an algorithm for computing representatives of the submerged cycles γi ↓, i = 1, . . . , 2L.
It turns out to be most efficient to split the task into two parts:

1. The computation of shifted surface 1-cycles γ̂i, i = 1, . . . , 2L, that clear all
vertices of Γh and satisfy γ̂i = γi in H1(Γ,Z). This resembles the barycentric
perturbation proposed in [7, section 4.1].

2. Replacing every γi by a 1-cycle γ̌i such that γ̌i = γi inH1(Ω̄,Z), i = 1, . . . , 2L,
and γ̌i ∩ γ̂j = ∅ for all i, j.

As the linking numbers are well defined on homology classes, by construction

〈γi, γj〉 = L(γ̌j , γ̂i).(5.1)

For the discussion of the algorithmic details pick some i ∈ {1, . . . , 2L} and set
γ := γi. Recall that γ is a 1-chain ∈ Z1(Γh,Z) with weights ∈ {−1, 0, 1} and that it is
naturally associated with a closed non-self-intersecting edge curve in Γh. Denote by
Vh(γ) and Eh(γ) the set of vertices and edges “contained” in γ. As γ has an orientation
we can number the edges in Eh(γ) := {e1, e2, . . . , eN}, N ∈ N. Then, to each vertex
v ∈ Vh(γ) assign the number of that edge e ∈ Eh(γ) for which ι(v, e) · γ(e) = −1. By
the construction of γ this is well defined (cf. Lemma 3.4) and furnishes a numbering
of the vertices of γ: Vh(γ) = {v1, . . . ,vN}. By setting

ti := triangle t ∈ Fh : ι(ei, t) · γ(ei) = 1, i = 1, . . . , N,

we fix a sequence (t1, . . . , tN ) of triangles. Be aware that one triangle might occur
twice in this sequence. The triangles are located on one side of γ, because all triangles
in Fh have the same orientation inherited from Γ (see Figure 12).
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p1

p2

p3,p7

p4,p6

p5

p8

v1

v2

v3

v4

v5

v6

e2
e3

e4

e5

e1

t1
t2

t3, t4

t5

γ

Fig. 12. Numbering of edges, vertices, and triangles in connection with a path γ. Shifted path
as polygon (p1,p2, . . . ).

list<Point> U := ∅;
for (i = 1; i ≤ N ; i++) {
U .push back(vi);
T := tetrahedron adjacent to vi and vi+1 ;
U .push back(center of gravity of T );}

Fig. 13. Submerging of a cycle (v1, . . . ,vN ). Output is polygon U .

The 1-cycles γ̌ and γ̂ will be computed as closed oriented polygons U := (u1, . . . ,
u2N ) and P := (p1, . . . ,pM ), M ∈ N, given by sequences of points pi,ui ∈ R3 (which
are supposed to be connected by straight lines). This is sufficient, since we need only
U and P for the evaluation of path integrals. Note that, throughout, all sequences
(of simplices and points) will be assumed to be cyclic.

We get the polygon U by starting with the sequence of vertices (v1, . . . ,vN ).
Then we insert the center of gravity of a tetrahedron adjacent to two consecutive
vertices vi, vi+1 after vi, i = 1, . . . , N . The simple algorithm is shown in Figure 13.
Only at this stage do we make use of the volume mesh Ωh!

The polygon P defining the shifted cycle γ̂ runs through midpoints of certain edges
in
⋃

v∈Vh(γ) S1(v) \ Eh(γ). It is constructed by the algorithm sketched in Figure 14.

Obviously, P provides a 1-cycle ∼ γ in H1(Γ,Z). Formally, this can be proved by
considering a refined surface mesh Γ̃h generated by subdividing each triangle of Γh
into four congruent smaller triangles. Viewing γ as an element of Z1(Γ̃h,Z) the shifted
cycle γ̂ is seen to emerge by successively adding the boundaries of triangles of Γ̃h to γ.
We skip the tedious details. We remark that the “dead end” conspicuous in Figure 12
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list<Point> P := ∅;
for (i = 1, i ≤ N, i++) {
P .push back(midpoint of that edge of ti adjacent to vi);
{e} := S1(ti) \ S1(vi); t := ti;
while (e �∈ S1(ti+1)) {
P .push back(midpoint of e); {t} ← S2(e)\{t}; {e} ← (S1(t)∩S1(vi+1))\{e}; }}
Fig. 14. Construction of an oriented polygon P representing a shifted cycle. Note that we

identify tN+1 := t1. See also Figure 12.

cannot occur with straightened 1-cycles (cf. the remark at the end of section 3).
It is straightforward that the computational effort it takes to get U and P is

proportional to N + !Fh. Moreover, a bounded shape-regularity measure ρ from (2.2)
implies that only a small number of edges can be incident on a vertex. Assuming a
certain shape regularity we end up with a complexity O(N) for the construction of P
and U .

Next, we have to compute the relative linking number of a submerged 1-cycle γ̌
and a shifted 1-cycle γ̂. They are supplied as closed polygons U = (u1, . . . ,u2N ),
N ∈ N, and P = (p1, . . . ,pM ), M ∈ N. Recalling Definition 4.1 and (5.1), we have
to compute the linking numbers

L(γ̌, γ̂) = −
2N∑
i=1

M∑
j=1

∫

[ui,ui+1]

∫

[pi,pi+1]

gradyG(x,y) · (d�s(x)× d�s(y))

= −
2N∑
i=1

M∑
j=1

∫ 1

0

∫ 1

0

gradyG(xj(σ),yi(τ)) · zij dσdτ,

where yi(τ) := ui + τ(ui+1 − ui), xj(σ) := pj + σ(pj+1 − pj), zi,j := (pj+1 − pj)×
(ui+1 − ui). Analytic expressions are available for the inner integrals

fij(τ) :=

∫ 1

0

gradyG(xj(σ),yi(τ)) · zij dσ.

For the outer integrals we have to resort to numerical quadrature. Here, it is important
to take into account the singular behavior of the kernel G(x,y) for x → y. It entails
an adaptive approach to quadrature: We use a Gauß–Legendre quadrature formula of
order 2n (i.e., with n nodes), n ∈ N, on each interval of an equidistant subdivision of
[0; 1] into kij , kij ∈ N, parts. Adaptivity will be achieved by adjusting kij depending
on the relative position of the line segments [ui,ui+1] and [pi,pi+1].

The Gauß–Legendre formulas give us an approximation Ĩij for
∫ 1

0
fij(τ) dτ . Stan-

dard estimates of the quadrature error [6, Thm. 9.5] yield

εij :=

∣∣∣∣
∫ 1

0

fij(τ) dτ − Ĩij
∣∣∣∣ ≤

1

2n− 1

(
1

2kij

)2n

sup
ξ∈[0;1]

∣∣∣∣
d2nfij
dτ2n

(ξ)

∣∣∣∣ .(5.2)

Using

dmfij
dτm

(τ0) =

∫ 1

0

Dm+1
y G(xj(σ),yi(τ0))(ui+1 − ui, . . . ,ui+1 − ui︸ ︷︷ ︸

m times

, zij) dσ
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and, for x �= y, wl ∈ R3,

Dm+1
y G(x,y)(w1, . . . ,wm+1) = (−1)m+1(m+ 1)!

1

|x− y|m+2
wr1 · · · · · wrm+1,

where wrl := |x− y|−1(x− y) ·wl, we can estimate

εij ≤ |ui+1 − ui|m+1|pj+1 − pj |(m+ 1)!
1

dm+2
ij

,

with the distance

dij := inf{|x− y|, x ∈ [ui,ui+1], y ∈ [pj ,pj+1]}.

Finally,

εij ≤ (2n+ 1)!

2n− 1

(
1

2kij

)2n

|ui+1 − ui|2n+1|pj+1 − pj | 1

d2n+2
ij

.

The exact linking numbers are integers. We must be able to recover them despite the
impact of quadrature errors. This is guaranteed if 2NMεij ≤ θ for some tolerance
θ < 1

2 . We get the following a priori criterion for choosing kij :

kij ≥ 1

2

(
(2n+ 1)!

2n− 1

|ui+1 − ui|2n+1|pj+1 − pj |
d2n+2
ij

θ−12NM

) 1
2n

.

We will gauge the costs of evaluating L(γ̌, γ̂) for a q-quasi-uniform, 0 < q ≤ 1, mesh
Ωh of meshwidth h > 0, and shape-regularity measure ρ > 0. Then |ui+1 − ui| ≤ h
and |pj+1 − pj | ≤ h. We find that kij = 1 is sufficient if

dij ≥ hSn, Sn :=

(
(2n+ 1)!

2n− 1

2NM

θ

) 1
2(n+1)

≤ (2n+ 1)

(
2NM

θ

) 1
2(n+1)

.

The geometric restrictions on Ωh also force two edges of U and P to be farther apart
than C2h with a geometric constant C2 = C2(ρ), 1 > C2 > 0. Fix j and take into
account that due to shape regularity there are fewer than

π( 4
3d

3 + |pj − pj+1|d2)
minT∈Ωh

Vol(T )
≤
(
ρ

qh

)3

d2( 4
3d+ h) ≤

(
ρ

qh

)3

d3( 4
3 + C−1

2 ) = C(ρ, q)

(
d

h

)3

tetrahedra in a d-neighborhood, d > C2h, of [pj ,pj+1]. This is also an upper bound
for (half) the number of edges of U contained in that neighborhood. Hence, the total
number of subintervals required for a sufficiently accurate quadrature on the “near
edges” (edges [ui,ui+1] with dij < hSn) is as follows:

Kj ≤ 2C(ρ, q)

∫ Snh

C2h

d3

h3

((
(2n+ 1)!

2n− 1

h2n+2

d2n+2
θ−12NM

) 1
2n

+ 1

)
dd

≤ 2C(ρ, q)

∫ Sn

C2

s2−
1
n (. . . ) + s3 ds ≤ 4C(ρ, q)

(
S4
n − C4

2

)
.
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Taking into account that also N,M ≤ C(ρ, q)h−2, we end up with

Sn ≤ C(ρ, q, θ)(2n+ 1)h−2/n ⇒ Kj ≤ C(ρ, q, θ)n4h−8/n.

This translates into an asymptotic total effort (measured in terms of quadrature
nodes) of O(n4h−(2+8/n)) for the treatment of all “near edges.” The “far edges”
take at most 2NM evaluations. This teaches us that we should choose n ≥ 4 in order
to balance the effort required to treat “near” and “far” pairs of line segments. The
bottom line is that assuming a certain shape regularity and quasi-uniformity of Ωh,
at worst we encounter total computational costs of the order O((!Fh)2) · β1(Γh)

2. As
pointed out before, in most practical computations the costs will be much lower.

Remark . In [7, section 4.1] the linking numbers are computed by projecting the
edge cycles onto a plane and counting oriented intersections of the projected curves.
This obviously allows us to compute the relative linking number of U and P with
an effort proportional to N · M , because all pairs of projected edges have to be
examined. Yet, carrying out the projection in a stable fashion might be challenging
in finite precision arithmetic.
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A THEOREM ON SENSITIVITY AND APPLICATIONS IN PRIVATE
COMPUTATION∗
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Abstract. In this paper we prove a theorem that gives an (almost) tight upper bound on the
sensitivity of a multiple-output Boolean function in terms of the sensitivity of its coordinates and
the size of the range of the function. We apply this theorem to get improved lower bounds on the
time (number of rounds) to compute Boolean functions by private protocols. These bounds are given
in terms of the sensitivity of the function being computed and the amount of randomness used by
the private protocol. These lower bounds are tight (up to constant factors) for the case of the xor

function and together with the results in [E. Kushilevitz and A. Rosén, SIAM J. Discrete Math., 11
(1998), pp. 61–80.] establish a tight (up to constant factors) tradeoff between randomness and time
in private computation.
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1. Introduction. An important characteristic of a Boolean function is its sen-
sitivity. Informally, the sensitivity of a function is the maximum number of input
variables such that changing the value of just one variable at a time changes the value
of the function as well. The sensitivity of Boolean functions and its relation to other
complexity measures have been studied extensively. A number of important results
have been achieved via arguments about sensitivity. For example, lower bounds on
the time required for CREW PRAM computation [33, 10, 28] and lower bounds on
the size of reliable circuits from unreliable gates [11, 30, 31, 14, 15] were given in
terms of the sensitivity of the function being computed. A generalization of sensitiv-
ity, block sensitivity, was defined by Nisan [28]. Studying block sensitivity revealed
that sensitivity provides lower bounds for several other measures, including Boolean
decision tree complexity [28] and the degree of real polynomials representing Boolean
functions [29]. The relation between sensitivity and block sensitivity has been studied
in a number of papers [28, 17, 32, 20]. In several settings, average sensitivity is an
important measure. It has been shown that the average sensitivity of a function is
related to its Fourier coefficients [19] and that the average sensitivity of functions
computable by constant depth circuits must be low [26]. Bounds on the sensitivity of
various classes of functions were given in [34, 35].

In this paper we prove a theorem on the sensitivity of multiple-output Boolean
functions. We give an almost tight upper bound on the sensitivity of such functions,
in terms of the sensitivity of each coordinate, and the size of the range of the function.
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More formally, we prove the following theorem:

Let F : {0, 1}n → {0, 1}m be an m-output Boolean function with coordinate func-
tions fj : {0, 1}n → {0, 1} such that s(fj) ≤ k for each 1 ≤ j ≤ m, where s(f) is the
sensitivity of f . If the range of F contains D different values, then the sensitivity of
F is at most k · 4(log2 D + 2).

Note that the restriction on the size of the range of F can be interpreted as a
condition on the “correlation” between the coordinate functions fj . Without this
restriction, the number of possible values of an m-output Boolean function is 2m. It
is easy to see that s(F ) ≤ km must always hold. Similarly, if we restrict the range
of F to be a q-dimensional subcube of {0, 1}m, that is, we require that m− q of the
m coordinate functions are constants (and the other q coordinate functions can be
arbitrary functions), then s(F ) ≤ kq must hold. Our results show that even if the
range of F is an arbitrary subset of size 2q of {0, 1}m, the sensitivity of F cannot
be much larger. Our bound is almost tight, as for q independent coordinates the
sensitivity kq is achieved.

We use the above theorem to prove lower bounds in information-theoretic private
computation. We believe, however, that the theorem is of independent interest and
may find additional applications. Using the above theorem and the machinery of
[25] we prove improved lower bounds on the number of rounds required to privately
compute a Boolean function. The lower bound is given in terms of the sensitivity
of the function being computed and the amount of randomness used by the protocol
overall. For the case of the function xor (exclusive or) these lower bounds are tight,
up to a small constant factor. A private protocol to compute a Boolean function f
allows a number of players, each possessing a single input bit, to compute the value
of the function f on their combined input in a way that no single player learns any
“unnecessary” information (in particular, the inputs of the other players).1 Private
computation in this setting was first considered by Yao [36] and has been the subject
of a considerable amount of research [1, 2, 4, 5, 7, 8, 9, 12, 13, 16, 22, 21, 23].

Using randomness any function can be computed privately if the number of players
is at least three. On the other hand, for most functions (except very simple ones),
randomness is necessary in order to compute the function privately. Randomness as a
resource has been the subject of extensive research in the past decade. In the context
of private computation, the main questions addressed about randomness as a resource
have been the minimum number of random bits required for private computation of
different functions and tradeoffs between the amount of randomness and the amount
of time (i.e., number of rounds) required for the computation [5, 22, 25, 24, 6]. It is
worthwhile to note that one can also characterize the class of functions computable
by linear size circuits in terms of the amount of randomness required for their private
computation [24]. The question of whether private computations in general can be
carried out in constant number of rounds was addressed in [1, 3, 18].

A lower bound on the number of rounds required for the private computation
of Boolean functions was given by Kushilevitz and Rosén [25]. They proved that it
takes at least Ω(log s(f)/d) rounds to privately compute a function f of sensitivity
s(f) using d random bits overall. They also gave protocols to compute the function
xor that use a small number of random bits and at the same time are efficient in
terms of rounds: for any d ≥ 2, they provided a protocol to privately compute the

1In the literature, a more general notion of t-privacy is used, requiring that no coalition of t
players learns extra information. Here we discuss the case of t = 1. See section 3 for a formal
definition of private protocols.
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xor of n bits, using O(log n/ log d) = O(log s(xor)/ log d) rounds and d random bits.
However, the exact tradeoff between randomness and rounds was left as an open
question. Using our theorem on sensitivity we prove that it takes Ω(log s(f)/ log d)
rounds to privately compute a Boolean function f using d random bits overall.

2. A theorem on sensitivity. In this section we prove a theorem that gives an
upper bound on the sensitivity of a Boolean function F : {0, 1}n → {0, 1}m, in terms
of the sensitivity of the coordinate functions fj : {0, 1}n → {0, 1}, and the size of the
range of F .

Definition 2.1 (sensitivity).
• For a binary vector y, denote by y(i) the binary vector obtained from y by
flipping the ith entry.

• A function f is sensitive to its ith variable on input y if f(y) 	= f(y(i)).
• sy(f) is the number of variables to which the function f is sensitive on input

y.
• The sensitivity of a function f is s(f) = maxy sy(f).
• The average sensitivity of a function f is as(f) = 1

2n

∑
y∈{0,1}n sy(f).

Note that for a multiple-output Boolean function F : {0, 1}n → {0, 1}m the value
of F on each input x ∈ {0, 1}n is a binary vector of length m, and F (x) 	= F (y) if
and only if fj(x) 	= fj(y) for at least one of the coordinate functions fj , 1 ≤ j ≤ m.

Fact 1. Let F : {0, 1}n → {0, 1}m be an m-output Boolean function with coor-
dinate functions fj : {0, 1}n → {0, 1} such that s(fj) ≤ k for each 1 ≤ j ≤ m. Then
s(F ) ≤ km.

Proof. The statement follows from the simple fact that s(F ) ≤∑m
j=1 s(fj).

Note that this bound is tight: taking fj(x) = xj , we have s(fj) = 1 = k and
s(F ) = m = km.

The proof of Fact 1 shows that if we restrict the range of F to be a q-dimensional
subcube of {0, 1}m, then s(F ) ≤ kq must hold. In the following theorem we prove
that the sensitivity of F cannot be much larger, even if the range of F is an arbitrary
subset of size 2q of {0, 1}m.

Theorem 2.2. Let F : {0, 1}n → {0, 1}m be an m-output Boolean function with
coordinate functions fj : {0, 1}n → {0, 1} such that s(fj) ≤ k for each 1 ≤ j ≤ m.
If the range of F contains D different values, then the sensitivity of F is at most
k · 4(log2 D + 2).

We observe that this bound is almost tight. Consider again the functions fj(x) =
xj , each of sensitivity k = 1. In this case the sensitivity of F is k · log2 D, as D =
2n = 2m. Note that our bound holds for every k and D, independent of the values of
n and m.

In the following the function F and the functions fj are as defined in the above
theorem. In particular, we always assume that s(fj) ≤ k.

For our argument it is convenient to use the following definition.
Definition 2.3 (sensitivity restricted to a set). For F (x) = (f1(x), . . . , fm(x))

and x ∈ {0, 1}n, let S(x) denote the set of vectors y ∈ {0, 1}n that are at Hamming
distance 1 from x and for which F (y) 	= F (x). Let U ⊆ {0, 1}n. We use the notation
S(x, U) = S(x) ∩ U and say that |S(x, U)| is the sensitivity of F on x restricted to
the set U .

Notation. Let V ⊆ {0, 1}n be a subset of input vectors. We partition the set
V into levels with respect to a fixed vector v0 ∈ V . The set Vi is the set of vectors
in V that are at Hamming distance i from v0 and is called the ith level of V with
respect to v0. Note that V0 = {v0}. The notation used for the levels Vi does not
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indicate their dependence on the choice of v0. This should nevertheless be clear from
the context. For x ∈ Vi we use the notation σV,v0(x) = |S(x, Vi+1)| and σV,v0(Vi) =
minx∈ViσV,v0(x). Note that σV,v0 depends on the choice of both V and v0 ∈ V ,
since the levels Vi are defined with respect to v0, and if x ∈ Vi, then σV,v0(x) is
the sensitivity of F on x restricted to the set Vi+1. We omit from our notation the
dependence of the set S(x) and σV,v0(x) on F .

2.1. The proof. Our argument proceeds in two stages. First we choose a subset
V ⊆ {0, 1}n of inputs with certain properties that we define below. Informally these
properties say that if F has sensitivity s on some input v0, then we can start with v0

and build a set of inputs V such that for “many” levels Vi of V (partitioning V into
levels with respect to v0) the following holds: on each input from Vi the sensitivity of
F restricted to Vi+1 is “high” (in terms of s). That is, not only the sensitivity of F
is high on each selected input, but it remains high even when restricted to the next
level of the set V .

In the second stage we use the set V to demonstrate a large number (in terms of
s) of different values for F . This will give us the relation between the sensitivity s
and the number of possible values D.

We start with a lemma stating that if the sensitivity of F on an input x is s, then
the sensitivity must be “almost” s on many inputs from the set S(x). Moreover, this
holds even if we consider the sensitivity with respect to a partition of the inputs into
levels.

Lemma 2.4. Let F : {0, 1}n → {0, 1}m be an m-output Boolean function with
coordinate functions fj : {0, 1}n → {0, 1} such that s(fj) ≤ k for 1 ≤ j ≤ m. Let
S(x, U) be defined with respect to F as above. Let B = {0, 1}n, and let v0 ∈ B. Let
Bi denote the ith level of B with respect to v0, that is, the set of vectors in B that
are at Hamming distance i from v0. Let x ∈ Bi, and let S ⊆ S(x,Bi+1) such that
|S| = σ. Then there are at least σ/2 nodes v ∈ S such that |S(v,Bi+2)| ≥ σ − 4k.

Proof. We think of B as the n-dimensional hypercube, with an edge connecting
two nodes if and only if their Hamming distance is exactly 1. We number the nodes
in S from 1 to σ and name them v�, 1 ≤ � ≤ σ. (Recall that S ⊆ Bi+1.) Let v(�,j) for
1 ≤ �, j ≤ σ, � 	= j, be the node in Bi+2 whose Hamming distance to both v� and vj
is 1. (Note that by our notation v(�,j) and v(j,�) denote the same node.) Let e�,j be
the edge that connects v� to v(�,j).

Call an edge sensitive if it connects nodes x and y such that F (x) 	= F (y). First
we show that among the σ(σ− 1) edges e�,j at most σ2(k− 1) are not sensitive edges.
To this end we partition the σ(σ−1) edges into σ sets. The set E� contains the edges
ej,� for j 	= �, 1 ≤ j ≤ σ; that is, the set E� contains for each node vj , j 	= �, the edge
that connects vj to the node v(j,�).

Now we claim that in each set E� there are at most 2(k− 1) edges which are not
sensitive. Since v� ∈ S, there is some coordinate t such that ft(v�) 	= ft(x). Without
loss of generality assume that ft(x) = 0 and ft(v�) = 1. For an edge ej,� which is
not sensitive, we have that F (vj) = F (v(�,j)), and, in particular, ft(vj) = ft(v(�,j)).
There can be at most k − 1 such edges with ft(vj) = 1, since the sensitivity of ft is
at most k, and together with v� there are at most k nodes adjacent to x on which ft
is 1. Similarly, together with x there are at most k nodes adjacent to v� on which ft
is 0. It follows that in E� there are at most 2(k − 1) edges which are not sensitive.
Thus, among the σ(σ− 1) edges e�,j at most σ2(k− 1) are not sensitive. By a simple
averaging argument there are at most σ/2 nodes in S which are adjacent to at least
4(k − 1) nonsensitive edges in ∪σ�=1E�.
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It follows that there are at least σ/2 nodes in S which are adjacent to more than
σ − 1 − 4(k − 1) ≥ σ − 4k sensitive edges in ∪σ�=1E�. That is, there are at least σ/2
nodes in S such that the sensitivity of F restricted to Bi+2 is at least σ− 4k on each
of them.

Now we are ready to prove the existence of a set V of input vectors with the
desired properties.

Lemma 2.5. If the sensitivity of F on v0 is s, then there is a set V ⊆ B = {0, 1}n
such that σV,v0(Vi) ≥ s/4 for i = 0, . . . , �s/(8k)� − 1.

Proof. We construct the set V by building its levels Vi inductively. (Recall that
Vi denotes the ith level of V with respect to v0; that is, Vi is the set of vectors from
V that are at Hamming distance i from v0.) We have V0 = {v0}. We also partition
the set B into levels with respect to v0.

We prove by induction on i that we can build sets V0, . . . , Vi such that
• for 0 ≤ j < i and any x ∈ Vj , we have σV,v0(x) ≥ (1/2)s− j2k;
• for any x ∈ Vi, we have σB,v0(x) ≥ s− i4k.

If the sensitivity of F on v0 is s, then by Lemma 2.4 there is a set V1 ⊆ S(v0, B1)
of at least s/2 nodes such that for any x ∈ V1 we have |S(x,B2)| = σB,v0(x) ≥ s−4k.
This proves the statement for i = 1.

Now assume we have built the set V by levels up to level i. We now build level i+1.
Consider a node x ∈ Vi. By the induction hypothesis σB,v0(x) ≥ s − i4k for x ∈ Vi,
that is, |S(x,Bi+1)| ≥ s−i4k. By Lemma 2.4 there is a set Gx of at least (1/2)(s−i4k)
nodes v ∈ S(x,Bi+1) such that |S(v,Bi+2)| ≥ (s− i4k)− 4k = s− (i+ 1)4k.

To build the set Vi+1 we let

Vi+1 = ∪x∈Vi
Gx .

It follows that each node x ∈ Vi has at least (1/2)s− i2k neighbors y in Vi+1 for which
F (x) 	= F (y); that is, for any x ∈ Vi it holds that

σV,v0(x) ≥ (1/2)s− i2k .

Moreover, for all the nodes y ∈ Vi+1, it holds that σB,v0(y) ≥ s− (i+1)4k. Thus our
induction step is complete. Now, as long as i ≤ s/(8k) we have that σV,v0(x), for any
x ∈ Vi, is at least (1/2)s− (s/(8k))2k = (1/4)s.

This completes the first stage of our proof. Next we will show, using the set V
guaranteed by the above lemma, that F must take many different values. We start
by a claim that selects a number of different values among the neighbors of a single
input vector.

Claim 1. Let x ∈ {0, 1}n and S ⊆ S(x). If |S| ≥ ξ, then for some �, such that
ξ/k ≤ � ≤ m, we can find � vectors y1, . . . , y� among the vectors in the set S, and �
coordinates j1, . . . , j� among the m coordinates of F , such that fja(ya) 	= fja(x) for
a = 1, . . . , � and fja(yb) = fja(x) for 1 ≤ a < b ≤ �.

The above claim says, for example, that if F (x) is 0 in all coordinates, then we
can find � vectors y1, . . . , y� in S, for ξ/k ≤ � ≤ m, and a set of � coordinates such
that if we appropriately reorder the coordinates of F , then the values of F on these
vectors have the following form: F (y1) = (1.....), F (y2) = (01....), F (y3) = (001...),
F (y4) = (0001..), and so on.

Proof of Claim 1. We can take any vector from S as y1, and let j1 be the first
coordinate where F (y1) and F (x) differ, that is, fj1(y1) 	= fj1(x). Since the sensitivity
of each fj is at most k, there are at most k−1 other vectors in S on which the value of
F differs from F (x) in the same coordinate j1. Pick any of the remaining vectors from
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S as y2, and let j2 be the first coordinate where F (y2) and F (x) differ. Thus we can
continue this process for at least � ≥ ξ/k steps and find the vectors and coordinates
required by the claim. Note that � ≤ m, since there are only m coordinates.

Selecting different values. We now define a procedure to select input vectors from
the set V guaranteed by Lemma 2.5 in a way that F has a different value on each
selected vector.

Definition 2.6.

• A signature of a node x is a subset T ⊆ [1...m] of coordinates, and a set of
cardinality |T | of binary values εj ∈ {0, 1}, such that fj(x) = εj for j ∈ T .
The signature of x serves as a witness of the value of F on x. We say that
the length of the signature is |T |.
• We say that the signatures of the nodes x and y are inconsistent if there is a
coordinate j that participates in both signatures but fj(x) 	= fj(y).

• We say that a node z preserves the signature of the node x if for each coor-
dinate j participating in the signature of x it holds that fj(z) = fj(x).

• For x ∈ Vi, let Sx ⊆ S(x, Vi+1) be the subset of S(x, Vi+1) consisting of the
nodes that preserve the signature of x.

The following observation follows directly from the definitions above.

Observation 1. For any two nodes x and y, if the signatures of x and y are
inconsistent, then Sx ∩ Sy = ∅.

The next observation requires a simple proof.

Observation 2. If the length of the signature of a node x ∈ Vi is ν, then
|Sx| ≥ |S(x, Vi+1)| − νk.

Proof. Since the sensitivity of each fj is at most k, there are at most νk vectors
in S(x, Vi+1) on which F takes a value that differs from F (x) in at least one of the ν
coordinates that belong to the signature of x.

We now describe the procedure for selecting input vectors with different values. In
this process we will assign to each selected vector a signature (defined above) and an
address, which is a sequence of integers, representing the way the vector was selected,
as defined in what follows. The procedure selects from each level Vi a subset of the
nodes that we denote by Zi. The procedure starts with selecting the node v0 to which
we assign a signature of size 0 and address of size 0 (i.e., an empty signature and an
empty address). We thus have Z0 = {v0}. For any i, the procedure selects the set
Zi+1 after the set Zi has been determined. To determine the set Zi+1 we start with the
sets Sx ⊆ S(x, Vi+1) for x ∈ Zi. (Recall that the nodes in Sx preserve the signature
of x by definition.) If Sx is not empty, we apply Claim 1 to x and Sx to get nodes to
be included in Zi+1. We get a set Yx of at least � ≥ |Sx|/k vectors, Yx = {y1, . . . , y�}.
Note that Claim 1 selects � coordinates, such that for every 1 ≤ a ≤ � the value of
F (ya) differs from the value of F (x) on the ath selected coordinate, and the value of
a coordinates are fixed. On the other hand, since for each vector y ∈ Sx the value
F (y) must be consistent with the signature of x, none of the � coordinates chosen by
Claim 1 participates in the signature of x. We thus set the signature of ya by adding
the additional a coordinates and their values fixed by Claim 1 to the signature of x
(which is consistent with F (ya)). Thus, if the length of the signature of x is ν, then
the length of the signature of ya is ν + a. We obtain the address of ya by appending
the integer a to the address of x. The set Zi+1 is defined to be the union of the vectors
selected for each node x ∈ Zi, that is, Zi+1 = ∪x∈ZiYx. We continue this procedure
as long as the last set Zi is not empty.

Next we analyze the properties of our procedure. First note that the address
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of a node x ∈ Zi consists of exactly i integers. We also have the following simple
observation.

Observation 3. For x ∈ Zi, the length of the signature of x is exactly
∑i
u=1 tu

if the address of x is (t1, t2, . . . , ti).

The following two claims show that the values of F on all inputs in Z = ∪i≥0Zi
are all different.

Claim 2. For any two vectors y and z from the same level Zi (i ≥ 1), the
signatures of y and z are inconsistent.

Proof. We prove the claim by induction on i. The statement holds for i = 1,
since the vectors in Z1 and their signatures were selected by applying Claim 1 to v0.
Now assume that we have proved the statement for i; that is, for any x1, x2 ∈ Zi the
signatures of x1 and x2 are inconsistent. Then by Observation 1 we have Sx1∩Sx2 = ∅.
Recall that every y ∈ Zi+1 must belong to a set Sx for some x ∈ Zi. Thus for every
y ∈ Zi+1 we have a unique x ∈ Zi such that y ∈ Sx. Let y, z ∈ Zi+1. If y, z ∈ Sx
for x ∈ Zi, then the signatures of y and z must be inconsistent in the part that was
appended to the signature of x after applying Claim 1 to x and Sx. If y ∈ Sx1 and
z ∈ Sx2

, for x1 	= x2, then the signatures of y and z must be inconsistent in the part
that was “inherited” from x1 and x2, respectively.

Corollary 1. For any two vectors y and z from the same level Zi (i ≥ 1), we
have F (y) 	= F (z).

We will think of the set Z = ∪i≥0Zi as a tree rooted at v0. For a node z ∈ Zi+1,
we define its parent to be the node x ∈ Zi such that z ∈ Sx. Note that there is exactly
one such node since for any x, y ∈ Zi we have Sx∩Sy = ∅ by Observation 1 and Claim
2. Thus Z indeed forms a rooted tree. We say that y is an ancestor of z if there is
a path from z to y in Z such that each step along the path leads from a node to its
parent.

Claim 3. For any two vectors from different levels y ∈ Zi1 and z ∈ Zi2 , i1 	= i2,
we have F (y) 	= F (z).

Proof. Assume that there are vectors y ∈ Zi and z ∈ Zj for i < j such that
F (y) = F (z). This is only possible if y is an ancestor of z, since each vector we
select must preserve the signature of its parent and by Claim 2 the signatures are all
inconsistent within each level. For the case that y is an ancestor of z, note that z
must preserve the signature of each of its ancestors on the path in Z from z to y,
in particular the signature of y′ for some y′ ∈ Sy ⊆ S(y, Vi+1). However, this is not
possible if F (y) = F (z) because y′ and its signature were selected by applying Claim
1 to y; thus the signature of y′ contains a coordinate � ∈ [1...m] such that f�(y

′) 	=
f�(y).

Counting the number of selected values. Since no two selected input vectors are
mapped to the same value by F , it remains to show that we select a “large” number
of vectors. We will prove the following theorem.

Theorem 2.7. If for a set V ⊆ {0, 1}n and vector v0 ∈ V the sensitivity of F
restricted to the levels of V satisfies σV,v0(Vi) ≥ ξ = ∆k for i = 0, . . . , i∗ − 1, then F

takes at least
∑i∗

i=0

(
∆
i

)
different values.

Proof. Let V be a set that satisfies the conditions set forth in the theorem. We
will show that by applying the procedure described above to the set V , we select at

least
∑i∗

i=0

(
∆
i

)
input vectors. Let Z = ∪i≥0Zi be the set obtained by applying our

procedure to the set V .

We say that the degree of a node z ∈ Z is the number of vectors selected by our
procedure from the set Sz (by applying Claim 1 to z and Sz), that is, the number of
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z’s children in the tree.
Observation 4. If for some 0 ≤ i ≤ i∗−1 and x ∈ Zi the length of the signature

of x is ν, then the degree of x is at least ∆− ν.
Proof. Since σV,v0(Vi) ≥ ξ = ∆k for i = 0, . . . , i∗−1, we have that |S(x, Vi+1)| ≥ ξ.

Thus, |Sx| ≥ ξ − νk = k(∆− ν) must hold by Observation 2. It follows from Claim 1
that the degree of x is at least ∆− ν.

As described in the above selection procedure, we number the children of a given
node by the number of additional coordinates we fix when applying Claim 1 to this
node. Thus the address (t1, t2, . . . , ti) of a node in Zi specifies the path to follow on
the tree from v0 to reach this node. The path contains one node from each level Z�
for 0 ≤ � ≤ i such that the node from Zj on the path is the tjth child of the node
from Zj−1.

The following lemma is helpful in counting the number of vertices in Zi.
Lemma 2.8. If tu ≥ 1 is an integer for 1 ≤ u ≤ i ≤ i∗ and (t1, t2, . . . , ti) satisfies

i∑
u=1

tu ≤ ∆ ,(2.1)

then (t1, t2, . . . , ti) is a valid address in the tree Z.
Proof. We prove by induction on i that if (t1, t2, . . . , ti) is a solution of (2.1) such

that tu ≥ 1 is an integer for 1 ≤ u ≤ i ≤ i∗, then (t1, t2, . . . , ti) is a valid address in
the tree.

To prove the statement for i = 1, we need to observe that v0 has at least ∆
children; thus if t1 ≤ ∆, then (t1) is a valid address.

Assume the statement is true for i ≤ i∗ − 1, and let (t1, t2, . . . , ti, ti+1) be a

solution to
∑i+1
u=1 tu ≤ ∆. It follows that

i∑
h=1

th ≤ ∆− ti+1 < ∆ ;

thus by our induction hypothesis (t1, t2, . . . , ti) is a valid address that leads to a node

v. By Observation 3, the length of the signature of v is
∑i
h=1 th, and by Observation

4 its degree in the tree is at least ∆−∑i
h=1 th. If (t1, t2, . . . , ti, ti+1) is a solution to∑i+1

u=1 tu ≤ ∆, then 1 ≤ ti+1 ≤ ∆−∑i
h=1 th, thus v has indeed at least ti+1 children

and (t1, t2, . . . , ti+1) is a valid address.
We now prove the following lemma.
Lemma 2.9. The number of nodes selected in level i ≤ i∗, |Zi|, satisfies

|Zi| ≥
(
∆

i

)
.

Proof. The number of nodes |Zi| at level i is the number of different sequences
of length i (t1, t2, . . . , ti), where tu ≥ 1 is an integer for 1 ≤ u ≤ i, and such that
(t1, t2, . . . , ti) corresponds to a valid address in the tree.

There are exactly
(
∆
i

)
different solutions for (2.1) where tu ≥ 1 is integer for

1 ≤ u ≤ i (cf. [27]). To see this, note that we can specify a solution for (2.1)
by choosing i distinct integers between 1 and ∆, and this gives a bijection between
solutions of (2.1) with the required properties and sets of i distinct integers between
1 and ∆. Suppose that the i distinct integers are 1 ≤ n1 < · · · < ni ≤ ∆. Then
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by taking t1 = n1 and tu = nu − nu−1 we get a solution for (2.1) with the required
properties. Thus by Lemma 2.8 we have that the number of nodes selected at level
i ≤ i∗ is |Zi| ≥

(
∆
i

)
.

Since we have shown that F takes different values on each input in Z, Theorem
2.7 follows from the above lemma.

We can now conclude this section with the following proof.
Proof of Theorem 2.2. Let the sensitivity of F be s. Then there is at least one

node v0 that has sensitivity s. Using Lemma 2.5 we construct a set V ⊆ {0, 1}n such
that σV,v0(Vi) ≥ s/4 for any 0 ≤ i ≤ �s/(8k)� − 1.

We apply Theorem 2.7 to the set V with parameters i∗ = �s/(8k)� and ∆ =
�s/(4k)�.

We get that the number of values that F takes is at least

	s/(8k)
∑
i=0

(�s/(4k)�
i

)
≥ 2�s/(4k)�−1 .

Since by the hypothesis of the theorem the number of values that F takes is D,
we get

2�s/(4k)�−1 ≤ D

and

s ≤ k · 4(log2 D + 2) .

3. Applications to private computation. In this section we apply the the-
orem on sensitivity of the previous section to give improved lower bounds on the
number of rounds required for the private computation of Boolean functions, given
a certain amount of randomness. Comparing our results with known protocols [25]
shows that our lower bounds are tight (up to a small constant factor) in terms of the
sensitivity of the functions and the amount of randomness. We first briefly define
private protocols and the complexity measures that we are interested in.

Let f : {0, 1}n → {0, 1} be any Boolean function. A set of n players Pi (1 ≤
i ≤ n), each possessing a single input bit xi (known only to Pi), collaborate in a
protocol to compute the value of f(x). The protocol operates in rounds. In each
round each player may toss some coins and then sends messages to the other players.
(Messages are sent over private channels so that other than the intended receiver no
other player can listen to them.) After sending its messages, each player receives the
messages sent to it by the other players in the current round. In addition, each player
chooses to locally output the value of the function at a certain round. We say that the
protocol computes the function f : {0, 1}n → {0, 1} if for every input x ∈ {0, 1}n the
output produced by each player is f(x). Sometimes it is more convenient to model
the coin tossing done by each player, as a set of binary random tapes Ri, each Ri
being provided to player Pi. The number of random coins tossed by player Pi is the
number of random bits it reads from its random tape.

Notation. We denote by Ri a specific random tape provided to player Pi and by
*R = (R1, . . . , Rn) the vector of the random tapes of all the players. By *r = (r1, . . . , rn)
we denote the random variable for these tapes and vector of tapes. Note that if we
fix *R, we obtain a deterministic protocol. By Ci we denote a specific sequence of
messages received by Pi, and ci denotes the random variable (depending on *r) for the
sequence of messages received by Pi.
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Informally, privacy with respect to player Pi means that player Pi cannot learn
anything (in particular, the inputs of the other players) from the messages it receives,
except what is implied by its input bit, and the value of the function computed.
Formally,

Definition 3.1 (privacy). A protocol A for computing a function f is private
with respect to player Pi if for any two input vectors x and y, such that f(x) = f(y)
and xi = yi, for any sequence of messages Ci, and for any random tape Ri provided
to Pi,

Pr[ci = Ci|Ri, x] = Pr[ci = Ci|Ri, y],
where the probability is over the random tapes of all other players.

A protocol is said to be private if it is private with respect to all players.
Definition 3.2 (randomness complexity). A d-random protocol is a protocol

such that for any input assignment the total number of coins tossed by all players in
any execution is at most d.

Let V iewti be the view of player i at round t, that is, the input bit to this player
and all the messages it has seen until round t. Note that V iewti, for any i and t, is a
function of the input assignment x and the random tapes of all the players. We can
thus write it as V iewti(x,*r). We denote by Ti(x,*r) the round number in which player
Pi outputs its result as a function of the input to all players and of the random tapes
given to all players.

Definition 3.3 (rounds complexity). A ρ-round protocol is a protocol such that

for all i, x, *R we have Ti(x, *R) ≤ ρ.
We will also make use of the following definition.
Definition 3.4 (expected rounds complexity).2 An expected ρ-round protocol is

a protocol such that there exists a player Pi such that, for all x, E*r[Ti(x,*r)] ≤ ρ.
We are interested in tradeoffs between the rounds complexity (and expected

rounds complexity) and the randomness complexity of private protocols.
Our proof follows the line of proof of [25]. We get (almost) tight lower bounds by

using our result of the previous section on the sensitivity of multiple-output Boolean
functions. For completeness we give below the full proof. We will prove the following
theorem.

Theorem 3.5. Let A be a ρ-round d-random (d ≥ 2) private protocol to compute

a Boolean function f . Then, ρ ≥ Ω( log s(f)
log d ), where s(f) is the sensitivity of f .

To prove the above theorem we use the following lemma from [25].
Lemma 3.6 ([25, Lemma 4.11]). Consider a private d-random protocol to com-

pute a Boolean function f . Fix random tapes *R = (R1, . . . , Rn). Then, for any Pi,

V iewti(x,
*R) can assume at most 2d+2 different values (over the values of x).

Using the above lemma we can prove our next lemma, following the proof in [25],
but using our tight bound on the sensitivity of multiple-output Boolean functions.

Lemma 3.7. Consider a private d-random protocol to compute a Boolean function
f , and consider a specific vector of random tapes *R and the deterministic protocol
derived by it. Then for every player Pi, the function V iewti(x,

*R) (as a function of x

only) has sensitivity at most Q(t)

= (4(d+ 4))t−1.

Proof. First note that since we fix the random tapes the views of the players
are functions of the input assignment x only. (We regard each bit of the view as a

2We adopt this weak definition, rather than requiring the property to hold for all players, as we
are interested here in lower bounds.
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Boolean function of x.) We prove the lemma by induction on t. For t = 1 the view
of any player depends only on its single input bit. Thus, the claim is obvious. For
t > 1 assume the claim holds for any � < t and for any player. For t > 1 the view of
any Pi is composed of the input bit of Pi, and bits that were received as messages,
each one in some round � < t. Each such message bit is a function of the view of the
player that sent it at the round in which it was sent. That is, each such message bit
is a function of a view with sensitivity at most Q(t − 1), and hence the sensitivity
of each such message bit (regarded as a Boolean function of x) is at most Q(t − 1).
Clearly the input bit of Pi has sensitivity 1 which is at most Q(t − 1). Thus, the
view under consideration is composed of coordinates each having sensitivity at most
Q(t − 1). Moreover, by Lemma 3.6 the view can assume at most 2d+2 values. It
follows from Theorem 2.2 that the sensitivity of the view under consideration is at
most Q(t− 1) · 4(d+ 4) = Q(t).

We can now give the proof of the main theorem of this section.
Proof of Theorem 3.5. Consider the deterministic protocol obtained from a d-

random private protocol (d ≥ 2) by fixing the vector of random tapes to be a given

vector *R.
We prove that for any player Pi there is at least one input assignment x such that

Ti(x, *R) ≥ log s(f)/(2 + log(d+ 4)) + 1 .

This proves our theorem, since for every player it shows a run of the protocol where
the player outputs its value only after log s(f)/(2 + log(d+ 4)) + 1 rounds.

Let y be an input assignment on which the sensitivity s(f) is obtained. That is,
y has s(f) neighbors (in the inputs hypercube) where the value of f is different from

f(y). Denote this set of neighbors by S(y). Denote by t the value of Ti(y, *R), i.e., the
time step at which Pi outputs the value of f when the input to all players is y.

Now consider the view of Pi at round t, denoted V iewt(x, *R), and the sensitivity

of this view. Assume towards a contradiction that the sensitivity of V iewt(x, *R) is
less than s(f). Then, in particular, the sensitivity of this view on y is less than s(f).

It follows that for at least one input assignment z ∈ S(y), V iewt(y, *R) = V iewt(z, *R),
and Pi would output the same value for f on inputs y and z, contradicting the fact
that it is a correct protocol.

Thus the sensitivity of V iewt(x, *R) on input y is at least s(f), and t is such

that s(V iewti(x,
*R)) ≥ s(f). By Lemma 3.7, we get (4(d + 4))t−1 ≥ s(f), i.e., t ≥

log s(f)
2+log(d+4) + 1. It follows that Ti(y, *R) ≥ log s(f)

2+log(d+4) + 1.

Using similar techniques, that also follow the proofs from [25], we can obtain the
following improved bound on the expected number of rounds of private protocols.

Theorem 3.8. Let A be an expected ρ-round, d-random (d ≥ 2) private protocol

to compute a Boolean function f . Then, ρ ≥ Ω(as(f)n · log as(f)
log d ).

Proof. To prove the theorem we consider a protocol A and fix any player Pi. We
say that the protocol is late on input x and vector of random tapes *R if Ti(x, *R) ≥

log as(f)
4+2 log(d+4) + 1. We define a 0 − 1 random variable L(x,*r) to be 1 if and only

if the protocol is late on x and *r. For the purpose of this proof we also define a
uniform distribution on the 2n input assignments. (This is not to say that the input
assignments are actually drawn according to such distribution.)

We first show that for any deterministic protocol to compute f , derived from a
private protocol by fixing *R, not only is there at least one input on which the protocol
is late but that this happens for a large fraction of the inputs.
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Lemma 3.9. Consider a player Pi and any fixed vector of random tapes *R =
(R1, . . . , Rn). Then

Ex[L(x, *R)] ≥ as(f)−√as(f)

2n
.

Proof. Consider the views of Pi, V iewti, given the vector of random tapes *R. For

any round t such that t < log as(f)
4+2 log(d+4) + 1, by Lemma 3.7, we get that s(V iewti) <

(4(d+ 4))
log as(f)

4+2 log(d+4) =
√

as(f). Any function g computed from such a view can have

at most the same sensitivity and thus clearly an average sensitivity of at most
√

as(f).

Such function g can have the same values as f on at most 2n(1− as(f)−
√
as(f)

2n ) input

assignments. It follows that at least 2n
as(f)−

√
as(f)

2n input assignments are late.
The lower bound on the expected number of rounds now follows. Since at least

2n
as(f)−

√
as(f)

2n input assignments are late for any set of random tapes, E*r,x[L(x,*r)] ≥
as(f)−

√
as(f)

2n . Hence, there is at least one input assignment x for which E*r[L(x,*r)] ≥
as(f)−

√
as(f)

2n . For such x we get

E*r[Ti(x,*r)] ≥
(

as(f)−√as(f)

2n

)
·
(

log as(f)

4 + 2 log(d+ 4)
+ 1

)
,

as needed.

4. Conclusions. In this paper we prove an almost tight upper bound on the
sensitivity of multiple-output Boolean functions, in terms of the sensitivity of each
output coordinate, and the size of the range of the function. Using this bound,
we establish improved lower bounds on the number of rounds of private protocols,
in terms of the sensitivity of the function that they compute, and the amount of
randomness that they use. These lower bounds are tight (up to a small constant
factor) for the function xor.

We believe that the theorem on the sensitivity is of independent interest, and
it would be interesting to see if it can find additional applications. Also, it would
be interesting to close the remaining (small constant factor) gap in our bound on
sensitivity. In fact, we conjecture that the right bound is k�log2 D�, which can be
achieved for D = 2q by a construction of q independent coordinate functions.
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Abstract. Given an edge-weighted graph where all weights are nonnegative reals, an edge
reweighting is an assignment of nonnegative reals to edges such that, for each vertex, the sums of
given and new weights assigned to the edges incident on the vertex do coincide. An edge is then
said to be invariant if its weight is the same for any edge reweighting. We show that the set of
invariant edges of an arbitrary edge-weighted graph can be determined in time linear in the size of
the underlying graph. Moreover, an application to the security of statistical data is discussed.

Key words. linear algebra, graph algorithms, matroid theory
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1. Introduction. Let G = (V,E) be a graph without isolated vertices (where
self-loops and parallel edges may exist), and let w = (w(e))e∈E be a vector of nonneg-
ative reals. The pair Γ = (G,w) is referred to as an edge-weighted graph EWG. Let
A be the incidence matrix of G and let b = (b(v))v∈V be the vector of nonnegative
reals such that, for each vertex v of G, b(v) equals the sum of the weights of the edges
incident to v. Consider the following system of linear equations:

Ax = b.(1)

For every edge of G, let L[x(e)] and U [x(e)] denote, respectively, the minimum
and the maximum of the variable x(e) over the nonnegative solutions of equation
system (1). An edge e of G is an invariant edge of Γ if L[x(e)] = U [x(e)]. Thus, an
edge e of G is an invariant edge of Γ if and only if x(e) = w(e) for every nonnegative
solution of equation system (1). The following two examples show two EWGs which
have all and no invariant edges, respectively.

Example 1. Consider the EWG Γ = (G,w) shown in Figure 1, where α, β, and
γ are any positive reals. By making use of standard algebraic methods, one finds there
is no nonnegative solution of equation system (1) other than w. Therefore, each edge
of G is an invariant edge of Γ.

Example 2. Consider the EWG Γ = (G,w) shown in Figure 2. The general
expression of a nonnegative solution of equation system (1) is

x(1, 1) = 1− 2λ, x(1, 2) = x(1, 3) = λ, x(2, 3) = 1− λ,

where the parameter λ ranges from 0 to 1/2. Therefore, one has

L[x(1, 1)] = 0, U [x(1, 1)] = 1,

L[x(1, 2)] = L[x(1, 3)] = 0, U [x(1, 2)] = U [x(1, 3)] = 1/2,

L[x(2, 3)] = 1/2, U [x(2, 3)] = 1,

and hence, no edge of G is an invariant edge of Γ.
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The problem addressed in this paper lies in finding the set of invariant edges of
an arbitrary EWG. The following obvious fact allows us to limit our considerations
to EWGs with underlying simple graphs (i.e., graphs without parallel edges).

Fact 1. Let Γ = (G,w) be an EWG, where G = (V,E) is a nonsimple graph. Let
S be a set of two or more parallel edges and let e0 be an arbitrarily chosen element
of S. Let G′ = (V,E) be the graph with edge set E′ = (E − S) ∪ {e0}. Consider the
EWG Γ′ = (G′,w′), where w′ is defined as follows:

w′(e) =





w(e), e �∈ S,
∑
e′∈S

w(e′), e = e0.

Then, an edge not in S is an invariant edge of Γ if and only if it is an invariant edge
of Γ′, and an edge in S is an invariant edge of Γ if and only if w′(e0) = 0 and e0 is an
invariant edge of Γ′.

The problem of finding the set of invariant edges of an EWG arises in the security
analysis of statistical data, which will be discussed in section 6, and Gusfield [7] proved
that if G is bipartite, then the set of invariant edges of Γ can be determined in time
linear in the size of G. Here we present a linear time algorithm which finds the set of
invariant edges of an arbitrary EWG.

2. Background. Let G = (V,E) be a simple graph with vertex-edge incidence
matrix A. For any vector x = (x(e))e∈E , the support of x is the set S = {e ∈
E : x(e) �= 0}, and the signed support of x is the ordered set pair (S+, S−), where
S+ = {e ∈ E : x(e) > 0} and S− = {e ∈ E : x(e) < 0}; moreover, the set E − S is
called the zero set of x. The nonzero solutions of the homogeneous equation system
Ay = 0 are referred to as circulations in G and the linear space of the solutions
of the homogeneous equation system Ay = 0 is referred to as the circulation space.
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Thus, a nonempty subset S of E corresponds to a set of columns of A that are linearly
dependent (over the field of reals) if and only if S contains the support of a circulation
in G. A minimal circulation in G is a circulation in G with inclusion-minimal support.
The following is a well-known result of linear algebra.

Proposition 1 (e.g., see page 107 in [3]). Let S and (S+, S−) be the support
and the signed support of a circulation in G, respectively. For each edge e in S, there
is a minimal circulation in G with support C and signed support (C+, C−) such that
e is in C, C+ ⊆ S+ and C− ⊆ S−.

The set of supports of minimal circulations in G can be viewed as the family of
circuits of a matroid [20], which we denote by M(G), whose rank (i.e., the rank of
A) is given by |V | − q, where q is the number of connected components of G that are
bipartite (in that they contain no odd cycles); see Theorem 1, page 421 in [6], or [19].
Explicitly, a subset of E is a circuit of M(G) if and only if it is the edge set of either
an even simple cycle or a pair of two edge-disjoint odd simple cycles that either have
exactly one vertex in common or are vertex-disjoint and are connected by a simple
path (see Figure 3) [5].

Let Z be a (proper or improper) subset of E. We say that a circuit of M(G)
is Z-traversable if it is the support of a (minimal) circulation whose signed support
(C+, C−) is such that Z ∩ C− = ∅.

Consider now the vectors that are linear combinations of rows ofA. The inclusion-
minimal supports of these vectors are the cocircuits of M(G); that is, they are mini-
mal edge sets whose removal decreases the rank of M(G) [20]. Moreover, an edge e
of G is a coloop of M(G) if the singleton {e} is a cocircuit of M(G). In other words,
an edge e of G is a coloop of M(G) if and only if the incidence vector of {e} is a
linear combination of rows of A or, equivalently, if and only if e is not in any circuit
of M(G) [20].

3. Invariant edges. In this section, we state a few characteristic properties of
invariant edges of an arbitrary EWG which will be used later on. We need some
preliminary definitions and results.

Let Γ = (G,w) be an EWG with G = (V,E) and let Z be the zero set of w. A
circulation in G with signed support (S+, S−) is said to be legal in Γ if Z ∩ S− = ∅.
Accordingly, a circuit of M(G) is Z-traversable if and only if it is the support of a
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(minimal) circulation in G which is legal in Γ. It should be noted that if the weights
of the edges of G are all positive, then Z is empty so that each circulation in G is
legal in Γ.

Theorem 1. Let Γ = (G,w) be an EWG. An edge of G is not an invariant edge
of Γ if and only if it belongs to the support of a circulation in G which is legal in Γ.

Proof. (“only if”) Let e be an edge of G that is not an invariant edge of Γ.
Then, there exists a nonnegative solution x of (1) with x(e) �= w(e). The vector
y = x − w is then a circulation in G. Let S and (S+, S−) be the support and the
signed support of y, respectively, and let Z be the zero set of w. Then e is in S and,
since y(e′) = x(e′) ≥ 0 for each e′ in Z, one has Z ∩ S− = ∅; that is, e belongs to the
support of a circulation which is legal in Γ.

(“if”) Let y be a legal circulation with support S and signed support (S+, S−),
and let e be in S. Consider the solution x = w + y of equation system (1). If x
is nonnegative everywhere, then the statement follows from the fact that e is in S,
which implies x(e) �= w(e). Otherwise, let

S′ = {e′ : x(e′) < 0} and λ = min{−w(e′)/y(e′) : e′ ∈ S′}.

Since S′ is a subset of S− and y is a legal circulation, λ is positive. Then the vector
y′ = λy is a circulation in G having the same support and the same signed support
as y. Consider the solution x′ = w+ y′ of equation system (1). It is easily seen that
x′ is nonnegative everywhere since, for each e′ not in S, one has trivially x′(e′) ≥ 0
and, for each e′ in S′, one has

x′(e′) = w(e′) + λy(e′) = −y(e′)(−w(e′)/y(e′)− λ) ≥ 0.

Finally, since e is in the support S of y, one has

x′(e) = w(e) + λ y(e) �= w(e),

which proves the statement.
Theorem 2. Let Γ = (G,w) be an EWG and let Z be the zero set of w. An

edge of G is not an invariant edge of Γ if and only if it belongs to some Z-traversable
circuit of M(G).

Proof. (“if”) It follows from the “if” part of Theorem 1.
(“only if”) If e is not an invariant edge of Γ, then by the “only-if” part of

Theorem 1 there is a circulation in G with support S and signed support (S+, S−)
such that e is in S and Z ∩ S− = ∅. But, by Proposition 1, there is a minimal
circulation in G such that its support contains e and its signed support (C+, C−) is
such that C− ⊆ S−. Therefore, one has Z ∩ C− ⊆ Z ∩ S− = ∅, which proves the
statement.

Example 1 (continued). The zero set of w is Z = {(2, 3), (2, 5), (4, 5)}. The
minimal circulations in G are summarized in Figure 4 by taking λ to be any nonzero
real. So, M(G) contains one circuit which is not Z-traversable. By Theorem 2, each
edge of G is an invariant edge of Γ.

Example 2 (continued). The zero set of w is Z = {(1, 2), (1, 3)}. The minimal
circulations in G are summarized in Figure 5 by taking λ to be any nonzero real. So,
M(G) contains one circuit which is Z-traversable. By Theorem 2, no edge of G is
an invariant edge of Γ.

Note that if the zero set Z of w is empty, then, by Theorem 2, an edge of G is
an invariant edge of Γ if and only if it is not in any circuit of M(G); that is, if and
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only if it is a coloop of M(G). We now prove that the same holds in a more general
case. In what follows, by the kernel of Γ [15] we mean the intersection of Z with the
set of invariant edges of Γ

Lemma 1. Let Γ = (G,w) be an EWG whose kernel is empty. An edge of G is
an invariant edge of Γ if and only if it is a coloop of M(G).

Proof. (“if”) If an edge of G is a coloop of M(G), then it is an invariant edge
of Γ by the “only-if” part of Theorem 2.

(“only if”) Let e be an invariant edge of Γ. Suppose by contradiction that e is
in some circuit of M(G). Then, as is shown below, e should belong to the support
of a legal circulation in Γ, which contradicts Theorem 1. To show that, suppose that
e is in the circuit C0 of M(G). By the “only-if” part of Theorem 2, C0 cannot be
Z-traversable, where Z is the zero set of w. Thus, if c0 is any minimal circulation
in G with support C0 and signed support (C+

0 , C
−
0 ), one has Z ∩ C−0 �= ∅. Let

Z ∩ C−0 = {e1, . . . , ep}. Since the kernel of Γ is empty, no edge in Z is an invariant
edge of Γ. Then, by the “only-if” part of Theorem 1, for each ei, 1 ≤ i ≤ p, there is a
legal circulation yi of Γ such that, if Si is the support of yi, ei is in Si; moreover, if
(S+
i , S

−
i ) is the signed support of yi, then yi(ei) > 0, since Z ∩S−i = ∅. Now consider

the circulation

ci = [−c0(ei)/yi(ei)]yi.
Since c0(ei) < 0 (recall that ei ∈ C−0 ) and yi(ei) > 0, ci has the same support and
signed support as yi, and hence is legal in Γ. Let

y = c0 +
∑

i=1,...,p

ci.

Since the circulation space of A is a linear space, y is still a circulation in G. Let
S and (S+, S−) be the support and signed support of y, respectively. Finally, we now
prove that (i) e is in S, and (ii) the circulation y is legal in Γ.
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Proof of (i). Since e is an invariant edge of Γ, by the “if” part of Theorem 2,
e is in the support of none of the legal circulations ci so that ci(e) = 0 for each i,
1 ≤ i ≤ p. Therefore, y(e) = c0(e) and, since e is in C0, one has that e is also in S.

Proof of (ii). In order to prove that the intersection of Z with S− is empty, we
separately examine the edges e1, . . . , ep in Z ∩C−0 and the edges in Z−C−0 . For each
i and j, 1 ≤ i, j ≤ p, cj(ei) ≥ 0, since Z ∩ S−j = ∅. Moreover, for each i, 1 ≤ i ≤ p,
one has

ci(ei) = −c0(ei)

and, hence,

y(ei) = c0(ei) + ci(ei) +
∑
j �=i

cj(ei) =
∑
j �=i

cj(ei) ≥ 0.

Therefore, each ei is not in S
−.

We now consider the edges in Z − C−0 . If e
′ is such an edge, then c0(e

′) ≥ 0.
Moreover, since Z ∩ S−i = ∅, 1 ≤ i ≤ p, one has ci(e

′) ≥ 0. Therefore

y(e′) = c0(e
′) +

∑
i=1,...,p

ci(e
′) ≥ 0,

and, hence, e′ is not in S−.
After proving (i) and (ii), by the “if” part of Theorem 1, one has that e is not an

invariant edge of Γ (a contradiction).
As a consequence of Lemma 1, we obtain the following characterization of invari-

ant edges of an EWG.
Theorem 3. Let Γ = (G,w) be an EWG with kernel K. The set of invariant

edges of Γ is the union of K with the set of coloops of M(G−K).
Proof. Let Γ′ = (G′,w′), where G′ = G−K, and let w′ be the restriction of w

to the edge set of G′. It is clear that an edge of G is an invariant edge of Γ if and
only if either it is in K or it is an invariant edge of Γ′. On the other hand, the kernel
of Γ′ is empty so that, by Lemma 1, the invariant edges of Γ′ are exactly the coloops
of M(G′).

By Theorem 3, the set of invariant edges of Γ = (G,w) can be found by deter-
mining first the kernel K of Γ and, then, the set of coloops of M(G−K). We shall
solve the problem of the kernel of an EWG in section 5 and, in the next section, we
shall give a linear algorithm for finding the set of coloops of the matroid on a graph.

4. Finding the coloop set. Let G = (V,E) be a simple graph. Bearing in mind
that a subset of E is a cocircuit ofM(G) if and only if it is a minimal edge set whose
removal decreases the rank of M(G), one easily obtains the following proposition.

Proposition 2 (see [5]). An edge of G is a coloop of M(G) if and only if its
removal creates one more bipartite connected component.

Let e be a coloop of M(G). The graph G− e has or has not one more connected
component than G. By Proposition 2, in the former case e must be a bridge, which
we call an algebraic bridge of G, and in the latter case, as is shown below, e is an
odd edge, by which we mean that e is common to all odd cycles of the connected
component G containing e.

Lemma 2. An edge of a simple graph G is a coloop of M(G) if and only if it is
either an algebraic bridge or an odd edge.



1444 F. M. MALVESTUTO AND M. MEZZINI

Proof. The statement is trivial if the graph is bipartite since, by Proposition 2,
each coloop of M(G) is a bridge and vice versa. Consider now a graph G which is
not bipartite. Without loss of generality, we assume G is connected. It is sufficient
to prove that a coloop e of M(G) is not a bridge if and only if it is an odd edge. If e
is not a bridge, then, by Proposition 2, G− e is bipartite and connected and, hence,
every odd cycle of G must contain e; that is, e is an odd edge of G. On the other
hand, if e is an odd edge of G, then G− e is connected and contains no odd cycles so
that, by Proposition 2, e is a coloop of M(G).

Example 1 (continued). The coloops of M(G) are the two edges missing from
the even simple cycle supporting the minimal circulations shown in Figure 4. Both of
them are odd edges.

Example 2 (continued). M(G) has no coloops (see Figure 5).
Let G = (V,E) be a simple graph which without loss of generality we assume to

be connected. We first show that the problem of finding the set of coloops of M(G)
is polynomial; next, we shall give a linear algorithm based on Lemma 2.

In [14, 16, 17] an O(|E|) algorithm is given to decide whether the incidence vector
of a given subset of E is orthogonal to the space of circulations in G. By applying
that algorithm to each singleton, one can determine the set of coloops of M(G) in
O(|E|2) time. In the next two subsections, we give two linear algorithms for finding
the algebraic bridges and the odd edges of G; so, by Lemma 2, determining the whole
set of coloops of M(G) requires O(|E|) time.

4.1. Algebraic bridges. Let G = (V,E) be a connected simple graph, and let
B be the set of bridges of G. Consider the tree T = (N,A) whose nodes represent the
connected components of G−B and whose arcs represent the bridges of G. A node n
of T is marked if the corresponding connected component of G−B is not bipartite. If
no node of T is marked, then G is bipartite and the bridges of G are all and the only
algebraic bridges. Otherwise, there is at least one marked node of T ; then, arbitrarily
choose a marked node r of T and let Tr be the directed tree obtained by rooting T
at r. For each node n of Tr, n �= r, let par(n) be the parent of n in Tr. Of course, a
bridge of G is algebraic if and only if the (directed) arc 〈par(n), n〉 of Tr is such that
the subtree of Tr rooted at n contains no marked nodes. Thus, in order to get the
algebraic bridges of G, it is sufficient to perform a postorder traversal of Tr[1]: when
node n is examined, n �= r; if n is marked, then the edge of G corresponding to the arc
〈par(n), n〉 is removed from B and the vertex par(n) is marked if it was unmarked.
So, the ultimate value of B is exactly the set of algebraic edges of G. Now, since the
construction of T and B and the postorder traversal of Tr require O(|E|) time, we
have the following theorem.

Theorem 4. The set of algebraic bridges of a connected simple graph can be
found in time linear in the number of its edges.

4.2. Odd edges. Let G = (V,E) be a connected simple graph. Trivially, if G
is bipartite, then G contains no odd edges. In the case where G is not bipartite, we
shall show that the set of odd edges of G can be found in O(|E|). To achieve this, we
need the following technical lemmas, the first two of which refer to general properties
of the symmetric difference (⊕) of cycles.

Lemma 3 (see, e.g., [1]). The symmetric difference of two distinct nondisjoint
cycles is a set of edge-disjoint cycles.

Lemma 4. If the symmetric difference of two or more cycles contains an odd
number of edges, then the number of such cycles having odd lengths is odd.



INVARIANT EDGES OF A WEIGHTED GRAPH 1445

Proof. It easily follows from the fact that, for every two sets C and C ′, |C ⊕ C ′|
is odd if and only if |C| and |C ′| have different parities.

Let T be the edge set of a spanning tree of G. For each back-edge e (i.e., e not in
T ), the set T ∪ [e] contains exactly one simple cycle; such simple cycles, one for each
back-edge, are called the fundamental cycles of G with respect to T [18].

Lemma 5 (see, e.g., page 251 in [1]). Let T be the edge set of a spanning tree
of a simple graph G. Every cycle of G can be expressed as a symmetric difference of
fundamental cycles of G with respect to T .

Lemma 6. Let G be a nonbipartite connected simple graph and let T be a spanning
tree of G. An edge of G is an odd edge of G if and only if it is in all odd fundamental
cycles with respect to T and in no even fundamental cycle with respect to T .

Proof. (“if”) Let e be an edge of G that is in all odd fundamental cycles with
respect to T and in no even fundamental cycle with respect to T . Let C be any odd
cycle. By Lemma 5, C can be expressed as symmetric difference of fundamental cycles
with respect to T , and, by Lemma 4, the number of odd fundamental cycles in its
expression is odd so that, since e is in all of them and in no even fundamental cycle
with respect to T , e belongs to C.

(“only if”) Let e be an odd edge of G. Of course e is in all odd fundamental
cycles with respect to T . Suppose by contradiction that there is an even fundamental
cycle C ′ with respect to T that contains e. Let C be an odd cycle containing e. By
Lemma 3, C⊕C ′ contains an odd cycle, say C ′′, because the lengths of C and C ′ have
different parities. So, since e is in both C and C ′, e is not in C ′′, which contradicts
the hypothesis that e is in all odd cycles of G.

From a computational point of view, the fundamental cycles of G with respect
to a given spanning tree can be constructed using an O(|V |3) algorithm (see, e.g.,
Algorithm 8.10 in [18]). So, by Lemma 6 one can resort to that algorithm to find the
set of odd edges of G in O(|V |3) time. However, we shall use Lemma 6 to work out
an algorithm which runs in O(|E|) time. It consists of two phases.

Phase I. Arbitrarily choose a vertex r of G and perform a traversal of G with the
depth-first search (DFS) technique to produce

— the edge set T of a directed spanning tree of G,
— the set B of back-edges that create odd fundamental cycles of G with respect

to T , and
— a vertex table which, for each vertex v, reports the following information

items:
– the DFS number of v, denoted by n(v);
– a label, denoted by col(v), which is set to “white” or “black” depending
on whether the length of the path from r to v in the spanning tree is
even or odd;

– if v �= r, the parent of v, denoted by par(v);
– if v �= r, the tree-edge 〈par(v), v〉, denoted by arc(v).

Phase II. First of all, join a back-edge to Odd if it is the unique element of B.
Next, in order to decide if a tree-edge e can be joined to Odd, compute

— the number of the even fundamental cycles that contain e, denoted by NEC[e],
and

— the number of the odd fundamental cycles that contain e, denoted by NOC[e],
as follows. For each vertex u, let N(u) be the set of neighbors of u in G and let C(u)
be the set of children of u in T . Then, set (see Figure 6)



1446 F. M. MALVESTUTO AND M. MEZZINI

u

r

arc(u)

arc(v)

v

Fig. 6.

NEC[arc(u)] = |Peven(u)|+
∑

v∈C(u)

NEC[arc(v)]− |Seven(u)|,(2)

where

Peven(u) = {v ∈ N(u) : par(u) �= v and col(v) �= col(u) and n(v) < n(u)},
Seven(u) = {v ∈ N(u) : par(v) �= u and col(v) �= col(u) and n(v) > n(u)},

and

NOC[arc(u)] := |Podd(u)|+
∑

v∈C(u)

NOC[arc(v)]− |Sodd(u)|,(3)

where

Podd(u) = {v ∈ N(u) : par(u) �= v and col(v) = col(u) and n(v) < n(u)},
Sodd(u) = {v ∈ N(u) : par(v) �= u and col(v) = col(u) and n(v) > n(u)}.

After calculating the quantities NEC[e] and NOC[e] for each edge e in T , deter-
mine the set of odd edges, denoted by Odd, as follows (see Lemma 6): for each edge
e in T , join e to Odd if NEC[e] = 0 and NOC[e] = |B|.

The following algorithm details the steps of Phase II.
Algorithm 1.

Input: A nonbipartite, connected simple graph G = (V,E), a vertex r of G, T , B and
the vertex table of G.

Output: The set Odd of odd edges of G.
(1) Set Odd := ∅. Set k := |B|. If k = 1, then Odd := Odd ∪B.

For each edge e in T , set NEC[e] := NOC[e] := 0.
(2) For each child u of r in T , TRAVERSE (G, u).
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(3) For each edge e in T , if NEC[e] = 0 and NOC[e] = k, then add e fo Odd.
Procedure Traverse (G, u).
For each neighbor v of u, do:

begin
If v is a child of u, then do:

begin
TRAVERSE (G, v);
NEC[arc(u)] := NEC[arc(u)] + NEC[arc(v)];
NOC[arc(u)] := NOC[arc(u)] + NOC[arc(v)]
end;

otherwise, if v is not the parent of u, then do:
Case 1. if n(v) > n(u) and col(v) �= col(u), then set

NEC[arc(u)] := NEC[arc(u)]− 1;
Case 2. if n(v) > n(u) and col(v) = col(u), then set

NOC[arc(u)] := NOC[arc(u)]− 1;
Case 3. if n(v) < n(u) and col(v) �= col(u), then set

NEC[arc(u)] := NEC[arc(u)] + 1;

Case 4. if n(v) < n(u) and col(v) = col(u), then set

NOC[arc(u)] := NOC[arc(u)] + 1

end.
Theorem 5. Let G be a nonbipartite, connected simple graph. The value of Odd

computed by Algorithm 1 with input G and vertex r is exactly the set of odd edges
of G.

Proof. It is sufficient to prove that the quantities NEC[e] and NOC[e], for each
tree-edge e, equal the number of even fundamental cycles containing e and the number
of odd fundamental cycles containing e, respectively. The statement is proven by
structural induction.

Basis. Assume that u is a leaf of T . Then, u has no children so that if v is a
neighbor of u, then v must be an ancestor of u. If v = u, then the self-loop (u, u)
contributes to neither NEC[arc(u)] nor NOC[arc(u)]. If v is a proper ancestor of the
parent of u, then n(v) < n(u) and the back-edge (u, v) correctly adds 1 to either
NEC[arc(u)] or NOC[arc(u)].

Inductive step. Let u be not a leaf of T and assume the statement holds for each
one of the children of u. Thus, if v is a child of u, then values of both NEC[arc(v)]
and NOC[arc(v)] are right. It is then easily seen that, by formulae (2) and (3), the
statement also holds for u.

From the complexity-theoretic point of view, it is easily seen that the time of
Algorithm 1 is dominated by the time required by the DFS traversal and, hence, is
O(|E|). So, by Theorem 5 one has the following corollary.

Corollary 1. Let G = (V,E) be a nonbipartite, connected simple graph. The
set of odd edges of G can be found in O(|E|) time.

5. Finding the kernel. Let Γ = (G,w) be an EWG with G = (V,E) and kernel
K. If the zero set Z of w is empty, then K is empty too and we are done. Assume that
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Z is not empty. If G is bipartite, Gusfield [7] proved that K equals the set of directed
edges joining strongly connected components of the mixed graph G(Z) obtained from
G by directing all the edges in Z from one side of the bipartition to the other one so
that it can be computed in time linear in the size of G. In this section we show that,
even in the case where G is not bipartite, the kernel of Γ can be computed in time
linear in the size of G.

With Γ we associate a bipartite EWG Γ′ = (G′,w′), which we call a bipartite
EWG associated with Γ. The graph G′ = (V ′, E′) is constructed as follows. Let B
be a maximal bipartite partial graph of G and let {V1, V2} be a bipartition of V such
that each edge of B has one end in V1 and the other end in V2. Let V be a “copy” of
V , that is, V ∩ V = ∅ and |V | = |V |. If v is a vertex of G, then by v̄ we denote the
copy of v. The vertex set of G′ is taken to be V ′ = V ∪ V , and the edge set of G′ is
taken to be

E′ =
⋃
e∈E

f(e),

where f is function defined on E as follows:
— if e is a self-loop, say (v, v), then f(e) = {(v, v̄)};
— if e = (u, v) is an edge of B, then f(e) = {(u, v), (ū, v̄)};
— if e = (u, v) is neither a self-loop nor an edge of B, then f(e) = {(u, v̄), (ū, v)}.
The set f(e) will be referred to as the image of e in G′. Let V ′1 = V1 ∪ V 2 and

V ′2 = V 1 ∪ V2, where V 1 = {v̄ : v ∈ Vi}, i = 1, 2. The graph G′ is bipartite and the
partition {V ′1 , V ′2} of V ′ is such that each edge of G′ has one end in V ′1 and the other
end in V ′2 . Furthermore, G

′ is connected if and only if G is not bipartite. Finally,
to each edge e′ of G′ we assign the weight w′(e′) = w(e), where e is the edge of G
for which e′ ∈ f(e). Let A′ be the incidence matrix of G′ and let b′ = (b′(v′))v′∈V ′ ,
where b′(v′) equals the sum of the weights w′(e′) of the edges of G′ incident to v′.
Consider the equation system

A′x′ = b′.(4)

For every edge e′ of G′, let L[x′(e′)] and U [x′(e′)] denote the minimum and the max-
imum of the variable x′(e′) over the nonnegative solutions of equation system (4),
respectively. Moreover, for every edge e of G, let L[f(e)] and U [f(e)] denote the
minimum and the maximum of the expression

∑
e′∈f(e) x

′(e′) over the nonnegative
solutions of equation system (4), respectively. First, observe that if x′ is a (nonneg-
ative) solution of equation system (4), then a (nonnegative) solution x′′ of equation
system (4) can be obtained by setting for each edge e′ of G′

x′′(e′) = x′(e′) if {e′} is the image of a self-loop of G
and

x′′(e′) = x′(e′′) if {e′, e′′} is the image of an edge of G that is not a self-loop.

It follows that, if {e′, e′′} is the image of an edge of G that is not a self-loop, then

L[x′(e′)] = L[x′(e′′)] and U [x′(e′)] = U [x′(e′′)].(5)

Second, if x is a (nonnegative) solution of equation system (1), then a (nonnegative)
solution x′ of equation system (4) can be obtained by setting for each edge e′ of G′

x′(e′) = x(e), where e is the edge of G whose image f(e) contains e′.
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On the other hand, if x′ is a (nonnegative) solution of equation system (4), then a
(nonnegative) solution x of equation system (1) can be obtained by setting for each
edge e of G

x(e) =


 ∑

e′∈f(e)
x′(e′)



/
|f(e)|.

Therefore, one has

L[x(e)] = (1/|f(e)|)L[f(e)] and U [x(e)] = (1/|f(e)|)U [f(e)].(6)

Example 2 (continued). By choosing as the maximal bipartite partial graph of
G the graph shown in Figure 7, we associate with Γ the bipartite EWG Γ′ = (G′,w′)
shown in Figure 8.

The general expression of a nonnegative solution of equation system (4) is

x′(1, 2) = x′(1̄, 3̄) = µ,

x′(1, 3) = x′(1̄, 2̄) = ν,

x′(1, 1̄) = 1− µ− ν,

x′(2, 3̄) = 1− µ,

x′(2̄, 3) = 1− ν,

where µ and ν are bounded as shown in Figure 9. At this point, it is easy to check
formulae (5) and (6).

We now state some technical results to relate the kernels of Γ and Γ′.
Lemma 7. Let Γ = (G,w) be an EWG and let Γ′ = (G′,w′) be a bipartite

EWG associated with Γ. An edge e of G is an invariant edge of Γ if and only if
L[f(e)] = U [f(e)], where f(e) is the image of e in G′.

Proof. The proof follows from formula (6).
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Lemma 8. Let Γ = (G,w) be an EWG and let Γ′ = (G′,w′) be a bipartite EWG
associated with Γ. An edge e of G belongs to the kernel of Γ if and only if its image
in G′ is contained in the kernel of Γ′.

Proof. If e is a self-loop of G, then the statement immediately follows from formula
(6) and Lemma 7. We now prove the statement in the case where e is not a self-loop
and f(e) = {e′, e′′}.

(“if”) If both e′ and e′′ belong to the kernel of Γ′, then x′(e′) = x′(e′′) = 0 for
every solution x′ of equation system (4). Therefore, L[x′(e′) + x′(e′′)] = U [x′(e′) +
x′(e′′)] = 0 and the statement follows from formula (6).

(“only if”) If e belongs to the kernel of Γ, then, by formula (6), one has

x′(e′) + x′(e′′) = 0

for every nonnegative solution x′ of equation system (4). By the nonnegativity of
x′, x′(e′) = x′(e′′) = 0, which proves that both e′ and e′′ belong to the kernel
of Γ′.

Corollary 2. Let Γ = (G,w) be an EWG and let Γ′ = (G′,w′) be a bipartite
EWG associated with Γ′. An edge of G belongs to the kernel of Γ if and only if an
element of its image in G′ belongs to the kernel of Γ′.

Proof. The proof follows from Lemma 8 and formula (5).
Example 2 (continued). The zero set of w′ is Z ′ = {(1, 2), (1, 3), (1̄, 2̄), (1̄, 3̄)}.

The mixed graph G′(Z ′) is strongly connected (see Figure 10). So, the kernel of Γ′ is
empty. By Corollary 2, the kernel of Γ is empty.

Theorem 6. The kernel of an EWG can be found in time linear in the size of G.
Proof. Let Γ = (G,w) be an EWG and let Γ′ = (G′,w′) be a bipartite EWG

associated with Γ. If G is bipartite, then the statement was proven by Gusfield [7].
Otherwise, since G′ is bipartite, the kernel K ′ of Γ′ can be found in time linear in the
size of G′ and, hence, of G. So, it is sufficient to prove that both constructing G′ and
determining K from K ′ take a linear time. In order to construct G′, we perform a
DFS traversal of G, which allows us to find both a maximal bipartite partial graph B
of G and the nontree edges that create odd cycles when added to B. When an edge
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e′ of G′ is created, we get e′ to point to the edge e of G for which e′ ∈ f(e). Finally,
by Corollary 2, the set K can be obtained as follows. Initially, each edge e of G is
unmarked. For each element e′ of K ′, if the edge e of G that e′ points to is unmarked,
then e is marked and added to K.

6. Security of statistical data. In the security analysis of statistical data
[4, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17], EWGs and, more in general, weighted hypergraphs
can be used to control the amount of information that is implicitly released when
statistical data are made public, in order to avoid disclosure of confidential data. We
now illustrate this application by discussing a typical case. Suppose that we are given
a data set {bi : i ∈ I}, where bi is the value of a confidential variable b of nonnegative
real type (e.g., salary) for individual i in the population I. The sum of values of b over
a subset I ′ of I is called sensitive if I ′ contains exactly one individual. Now, given a
statistical summary σ = {b(v) : v ∈ V } where b(v) is the sum of b over a subset I(v)
of I containing at least two people, for each v in V , the problem that naturally arises
consists of checking that no sensitive sum is implicitly released. We now present a
graph-theoretic approach to this problem. Let Iσ = ∪v∈V I(v), which we call the set of
individuals covered by σ. The basic partition of Iσ is the coarsest partition of Iσ such
that each I(v) can be obtained as the union of one or more classes of the partition. A
class J of the basic partition of Iσ will be indexed by the set e = {v ∈ V : J ⊆ I(v)}.
If E is the index set of the classes of the basic partition of Iσ, the pair G = (V,E)
defines a hypergraph where hyperedge e is incident to vertex v if and only if v belongs
to e. Consider the weighted hypergraph Γ = (G,w), where, for each hyperedge e of
G, w(e) is given by the sum of the values of the variable b over the class J(e) of the
basic partition of Iσ indexed by e; that is,

w(e) =
∑

i∈J(e)

bi.

Finally, a hyperedge e of G ismarked if |J(e)| = 1. Then, no sensitive sum is implicitly
released given σ if and only if no invariant hyperedge of Γ is marked. If this is the
case, the statistical summary σ is said to be safe. Since the invariant edges of an
EWG can be found in linear time, one has that, if G is a graph, then one can decide
whether σ is or is not safe in linear time, too.

Example 3. Consider five individuals with salaries b1 = 2.0, b2 = 2.5, b3 = 3.8,
b4 = 3.7, and b5 = 3.0. Suppose that the two sums b1 + b2 + b3 and b3 + b4 + b5 are
made public. Let σ1 = {b1+ b2+ b3, b3+ b4+ b5}. The set of individuals covered by σ1

is {1, . . . , 5} and its basic partition consists of the three classes {1, 2}, {3}, and {4, 5}.
Thus, the weighted hypergraph Γ1 associated with σ1 is the EWG shown in Figure 11,
where the edge (1, 2) is marked. Since the set of invariant edges of Γ1 turns out to be
empty, σ1 is safe. Next, suppose that the sum b1 + b2 + b4 + b5 is also made public.

Let σ2 = {b1+ b2+ b3, b3+ b4+ b5, b1+ b2+ b4+ b5}. Again, the set of individuals
covered by σ2 is {1, . . . , 5} and its basic partition consists of the three classes {1, 2},
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{3}, and {4, 5}. The weighted hypergraph Γ2 associated with σ2 is the EWG shown
in Figure 12, where the edge (1, 2) is marked. Since each edge is an invariant edge of
Γ2, σ2 is not safe (and the salary b3 is unprotected).

Let σ = {b(v) : v ∈ V } be a statistical summary of the data set {bi : i ∈ I} and let
Γ = (G,w) be the associated weighted hypergraph. It is worth noting that if v is a
“leaf” of G, that is, if v belongs to exactly one hyperedge e of G, then the class of the
basic partition of Iσ indexed by e coincides with I(v) so that w(e) = b(v); furthermore,
the hyperedge e is definitely an invariant hyperedge of Γ, and, since |I(v)| > 1, it is not
marked. As we are interested in checking the existence of marked invariant hyperedges
of Γ (if any), we can reduce Γ by deleting all leaves of G and their incident hyperedges.
Let Γ′ = (G′,w′) be the resulting weighted hypergraph. Of course, σ is safe if and
only if no invariant hyperedge of Γ′ is sensitive. We now show that if σ is a two-
dimensional table with suppressions, then G′ is always a graph so that one can decide
whether σ is or is not safe in linear time. Let σ be obtained from a complete two-
dimensional table T by suppressing all sensitive cells (“primary suppressions”) as
well as additional (internal or marginal) cells to exclude the possibility of arriving at
the contents of sensitive cells by indirect methods (“complementary suppressions”).
Denote by

— T (r, c) the value of internal cell (r, c), 1 ≤ r ≤ m, and 1 ≤ c ≤ n,
— T (r,+) the rth row total, 1 ≤ r ≤ m, and
— T (+, c) the cth column total, 1 ≤ c ≤ n.

Assume that each T (r, c) is the sum of the values of a confidential variable of non-
negative real type over the set I(r, c) of individuals. So, a cell (r, c) of T is sensitive
if |I(r, c)| = 1. We first detail the structure of the weighted hypergraph Γ = (G,w)
associated with σ and then show that the reduction of Γ results in an EWG. Let U ,
R, and C be the set of unsuppressed internal cells, the set of marginal cells corre-
sponding to unsuppressed row totals, and the set of marginal cells corresponding to
unsuppressed column totals, respectively. Then the vertex set of G is

V = U ∪R ∪ C.

Let S = {(r, c) �∈ U : r �∈ R and c �∈ C}. Moreover, for each r ∈ R, let Cr = {c �∈ C:
(r, c) �∈ U}; analogously, for each c ∈ C, let Rc = {r �∈ R: (r, c) �∈ U}. Then, the set of
individuals covered by σ is Iσ = ∪(r,c) �∈SI(r, c) and the basic partition of Iσ contains

— one class I(r, c) for each (r, c) in U and for each (r, c) not in U with r ∈ R
and c ∈ C,

— one class ∪c∈Cr
I(r, c) for each r ∈ R with Cr �= ∅, and

— one class ∪r∈RcI(r, c) for each c ∈ C with Rc �= ∅.
Recall that the hyperedges of G are the indices of these classes. The hyperedge e
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indexing a class such as I(r, c) is

e = {(r, c), (r,+), (+, c)} if (r, c) ∈ U, r ∈ R, c ∈ C,
e = {(r, c), (r,+)} if (r, c) ∈ U, r ∈ R, c �∈ C,
e = {(r, c), (+, c)} if (r, c) ∈ U, r �∈ R, c ∈ C,
e = {(r, c)} if (r, c) ∈ U, r �∈ R, c �∈ C,
e = {(r,+), (+, c)} if (r, c) �∈ U, r ∈ R, c ∈ C,

and w(e) is always set to T (r, c). For the hyperedge e indexing a class such as
∪c∈CrI(r, c), one has e = {(r,+)} and

w(e) =
∑
c∈Cr

T (r, c),

and for the hyperedge e indexing a class such as ∪r∈Rc
I(r, c), one has e = {(+, c)}

and

w(e) =
∑
r∈Rc

T (r, c).

At this point, it should be clear that the leaves of G are all and the only vertices of the
type (r, c), of the type (r,+) with r ∈ R and Cr = {1, . . . , n}, and of the type (+, c)
with c ∈ C and Rc = {1, . . . ,m}. Let L be the set of leaves of G and let R′ = R− L
and C ′ = C − L. After deleting all the leaves of the hypergraph G, we remain with
the hypergraph G′ = (V ′, E′) whose hyperedges are incident to at most two vertices.
More precisely, one has that V ′ = R′ ∪ C ′ and E′ consists of the edges

{(r,+), (+, c)} if (r, c) �∈ U, r ∈ R, c ∈ C,
{(r,+)} with r ∈ R′,
{(+, c)} with c ∈ C ′.

To sum up, the reduction of the weighted hypergraph associated with σ is an EWG
and, therefore, the safety of σ can be tested in linear time.

Example 4. Consider the table of Figure 13 whose entries are assumed to be
nonnegative reals. Suppose that the following cells

(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (4, 4)

are all sensitive. The table of Figure 14 is obtained from the table of Figure 13 by
suppressing all the six sensitive cells and the additional cells (3, 3), (3,+), (4,+), and
(+, 4).

The reduced weighted hypergraph Γ′ = (G′,w′) associated with the table of Fig-
ure 14 is the EWG shown in Figure 15. The invariant edges of Γ′ are the edge joining
the vertices (2,+) and (+, 3) and the self-loop at vertex (+, 3). One of these two edges
is marked and, therefore, the table of Figure 14 is not safe.

7. Closing remarks. We solved the problem of finding the set of invariant edges
of an EWG under the assumption that edge weights are nonnegative reals. The case
where edge weights are nonnegative integers is an open problem. However, if the
underlying graph of the EWG is bipartite, then Gusfield’s algorithm still holds owing
to the total unimodularity of the incidence matrix.
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A natural generalization of the problem dealt with in this paper is the search
of invariant edges of an edge-weighted hypergraph. It should be noted that mutatis
mutandis Theorem 3 (see section 3) applies to edge-weighted hypergraphs, too. So,
in order to find the invariant edges of an edge-weighted hypergraph (G,w), we have
to devise a procedure for computing its kernel, say K, and the coloops of the matroid
M(G−K). It should be clear that, in order to find to coloops ofM(G−K), we need
a formula for the rank of the incidence matrix of G. At present, such a formula is
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known only for special classes of hypergraphs, e.g., for the class of connected uniform
hypergraphs [2].
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[4] L. Branković, P. Horak, and M. Miller, An optimization problem in statistical databases,
SIAM J. Disc. Math., 13 (2000), pp. 346–353.

[5] M. Conforti and M.R. Rao, Some new matroids on graphs: Cut sets and the max cut
problem, Math. Oper. Res., 12 (1987), pp. 193–204.

[6] G.B. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton,
NJ, 1963.

[7] D. Gusfield, A graph theoretic approach to statistical data security, SIAM J. Comput.,
17 (1988), pp. 552–571.

[8] P. Horak, L. Brankovic, and M. Miller, A combinatorial problem in database security,
Discrete Appl. Math., 91 (1999), pp. 119–126.

[9] T.-S. Hsu and M.Y. Kao, Security problems for statistical databases with general cell sup-
pression, in Proceedings of the 9th International Conference on Scientific and Statistical
Database Management, IEEE Computer Society, 1997, pp. 155–164.

[10] M.-Y. Kao, Data security equals graph connectivity, SIAM J. Discrete Math., 9 (1996), pp. 87–
100.

[11] M.Y. Kao, Efficient detection and protection of information in cross-tabulated tables II: Min-
imal linear invariants, J. Comb. Optim., 1 (1997), pp. 187–202.

[12] M.Y. Kao, Total protection of analytic-invariant information in cross-tabulated tables, SIAM
J. Comput., 26 (1997), pp. 231–242.

[13] M.-Y. Kao and D. Gusfield, Efficient detection and protection of information in cross tab-
ulated tables I: Linear invariant test, SIAM J. Discrete Math., 6 (1993), pp. 460–476.

[14] F.M. Malvestuto, A universal-scheme approach to statistical databases containing homoge-
neous summary tables, ACM Trans. Database Systems, 18 (1993), pp. 678–708.

[15] F.M. Malvestuto and M. Moscarini, Suppressing marginal totals from a two-dimensional
table to protect sensitive information, Statist. Comput., 7 (1997), pp. 101–114.

[16] F.M. Malvestuto and M. Moscarini, An audit expert for large statistical databases, in Pro-
ceedings of the First Conference on Statistical Data Protection, Lisbon, Eurostat, 1998,
pp. 29–43.

[17] F.M. Malvestuto, M. Moscarini, and M. Rafanelli, Suppressing marginal cells to protect
sensitive information in a two-dimensional statistical table, in Proceedings of the 10th
Symposium on Principles of Database Systems, Denver, CO, 1991, pp. 252–258.

[18] E.M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms: Theory and Prac-
tice, Prentice-Hall, Englewood Cliffs, NJ, 1977.

[19] C. Van Nuffelen, On the incidence matrix of a graph, IEEE Trans. Circuits and Systems,
23 (1976), p. 572.

[20] D.J.A. Welsh, Matroids: Fundamental concepts, in Handbook of Combinatorics, Vol. 1, R.L.
Graham, M. Groötschel, and L. Lovász, eds., North-Holland, Amsterdam, 1995.



CHARACTERIZATIONS OF
1-WAY QUANTUM FINITE AUTOMATA∗

ALEX BRODSKY† AND NICHOLAS PIPPENGER†

SIAM J. COMPUT. c© 2002 Society for Industrial and Applied Mathematics
Vol. 31, No. 5, pp. 1456–1478

Abstract. The 2-way quantum finite automaton introduced by Kondacs and Watrous [Proceed-
ings of the 38th Annual Symposium on Foundations of Computer Science, 1997, IEEE Computer
Society, pp. 66–75] can accept nonregular languages with bounded error in polynomial time. If we
restrict the head of the automaton to moving classically and to moving only in one direction, the
acceptance power of this 1-way quantum finite automaton is reduced to a proper subset of the regular
languages.

In this paper we study two different models of 1-way quantum finite automata. The first model,
termed measure-once quantum finite automata, was introduced by Moore and Crutchfield [Theoret.
Comput. Sci., 237 (2000), pp. 275–306], and the second model, termed measure-many quantum finite
automata, was introduced by Kondacs and Watrous [Proceedings of the 38th Annual Symposium on
Foundations of Computer Science, 1997, IEEE Computer Society, pp. 66–75].

We characterize the measure-once model when it is restricted to accepting with bounded error
and show that, without that restriction, it can solve the word problem over the free group. We also
show that it can be simulated by a probabilistic finite automaton and describe an algorithm that
determines if two measure-once automata are equivalent.

We prove several closure properties of the classes of languages accepted by measure-many au-
tomata, including inverse homomorphisms, and provide a new necessary condition for a language
to be accepted by the measure-many model with bounded error. Finally, we show that piecewise
testable sets can be accepted with bounded error by a measure-many quantum finite automaton,
introducing new construction techniques for quantum automata in the process.

Key words. quantum finite automata, quantum computation, automata theory

AMS subject classifications. 68Q05, 68Q10, 68Q45, 68Q70

PII. S0097539799353443

1. Introduction. In 1997 Kondacs and Watrous [9] showed that a 2-way quan-
tum finite automaton (2QFA) could accept the language L = anbn in linear time with
bounded error. The ability of the reading head to be in a superposition of locations
rather than in a single location at any time during the computation gives the 2QFA its
power. Even if we restrict the head of a 2QFA from moving left, we can still construct
a 2QFA that can accept the language L′ = {x ∈ {a, b}∗ | |x|a = |x|b} in linear time
with bounded error. However, if we restrict the head of a 2QFA to moving right on
each transition, we get the 1-way quantum finite automaton (1QFA) of Kondacs and
Watrous [9], which, when accepting with bounded error, can accept only a proper
subset of the regular languages.

If the reading head is classical, then quantum mechanical evolution hinders lan-
guage acceptance, restricting the set of languages accepted by 1QFAs with bounded
error to a proper subset of the regular languages [9].

During its computation, a 1QFA performs measurements on its configuration.
Since the acceptance capability of a 1QFA depends on the measurements that the
QFA may perform during the computation, we investigate two models of 1QFAs that
differ only in the type of measurement that they perform during the computation.
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The first model, termed measure-once quantum finite automata (MO-QFAs), is
similar to the one introduced by Moore and Crutchfield [12]. The second model,
termed measure-many quantum finite automata (MM-QFAs), is similar to the one
introduced by Kondacs and Watrous [9] and is more complex than the MO-QFA. The
main difference between the two models is that a MO-QFA performs one measurement
at the end of its computation, while a MM-QFA performs a measurement after every
transition. This makes the measure-many model more powerful than the measure-
once model, where the power of a model refers to the acceptance capability of the
corresponding automata.

First, we present results dealing with MO-QFAs. We show that the class of
languages accepted by MO-QFAs with bounded error is exactly the class of group
languages. Consequently, this class of languages accepted by MO-QFAs is closed under
inverse homomorphisms, word quotients, and Boolean operations. We show that MO-
QFAs that do not accept with bounded error can accept nonregular languages and,
in particular, can solve the word problem over the free group. We also describe an
algorithm that determines if two MO-QFAs are equivalent and prove that probabilistic
finite automata (PFAs) can simulate MO-QFAs.

Second, we shift our focus to MM-QFAs. We show that the classes of languages
accepted by these automata are closed under complement, inverse homomorphisms,
and word quotients. We prove by example that the class of languages accepted by MM-
QFAs with bounded error is not closed under homomorphisms and prove a necessary
condition for membership within this class. We also relate the sufficiency of this
condition to the question of whether the class is closed under Boolean operations.
Finally, we show, by construction, that MM-QFAs can accept piecewise testable sets
with bounded error and introduce novel concepts for constructing MM-QFAs.

The rest of the paper is organized in the following way: section 2 contains the
definitions of the quantum automata and background information, section 3 discusses
measure-once quantum finite automata, section 4 discusses measure-many quantum
finite automata, and section 5 summarizes.

2. Definitions and background.

2.1. Definition of an MO-QFA. An MO-QFA is defined by a 5-tuple:

M = (Q,Σ, δ, q0, F ),

where Q is a finite set of states; Σ is a finite input alphabet with an end-marker
symbol $; δ is the transition function

δ : Q× Σ×Q→ C

that represents the probability density amplitude that flows from state q to state q′

upon reading symbol σ; the state q0 is the initial configuration of the system; and F
is the set of accepting states. For all states q1, q2 ∈ Q and symbols σ ∈ Σ the function
δ must be unitary, thus satisfying the condition

∑
q′∈Q

δ(q1, σ, q′)δ(q2, σ, q′) =

{
1, q1 = q2,
0, q1 �= q2.

(2.1)

We assume that all input is terminated by the end-marker $; this is the last symbol
read before the computation terminates. At the end of a computation, M measures
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its configuration; if it is in an accepting state, then it accepts, otherwise it rejects.
This definition is equivalent to that of the QFA defined by Moore and Crutchfield [12].

The configuration of M is a linear superposition of states and is represented by
an n-dimensional complex unit vector, where n = |Q|. This vector is denoted by

|Ψ〉 =
n∑
i=1

αi|qi〉,

where {|qi〉} is the set of orthonormal basis vectors corresponding to the states of M .
The coefficient αi is the probability density amplitude of M being in state qi. Since
|Ψ〉 is a unit vector, it follows that

∑n
i=1 |αi|2 = 1.

The transition function δ is represented by a set of unitary matrices {Uσ}σ∈Σ

where Uσ represents the unitary transitions of M upon reading symbol σ. If M is in
configuration |Ψ〉 and reads symbol σ, then the new configuration of M is denoted by

|Ψ′〉 = Uσ|Ψ〉 =
∑

qi,qj∈Q
αiδ(qi, σ, qj)|qj〉.

Measurement is represented by a diagonal zero-one projection matrix P where Pii =
[qi ∈ F ]. The probability of M accepting string x is defined by

pM (x) = 〈Ψx|P |Ψx〉 = ‖P |Ψx〉‖2,
where |Ψx〉 = U(x)|q0〉 = UxnUxn−1 . . . Ux1 |q0〉.

2.2. Definition of an MM-QFA. An MM-QFA is defined by a 6-tuple:

M = (Q,Σ, δ, q0, Qacc, Qrej),

where Q is a finite set of states, Σ is a finite input alphabet with an end-marker
symbol $, δ is a unitary transition function of the same form as for an MO-QFA,
and the state q0 is the initial configuration of M . The set Q is partitioned into three
subsets: Qacc is the set of halting accepting states, Qrej is the set of halting rejecting
states, and Qnon is the set of nonhalting states.

The operation of an MM-QFA is similar to that of an MO-QFA except that after
every transition, M measures its configuration with respect to the three subspaces that
correspond to the three subsets Qnon, Qacc, and Qrej : Enon = Span({|q〉 | q ∈ Qnon}),
Eacc = Span({|q〉 | q ∈ Qacc}), and Erej = Span({|q〉 | q ∈ Qrej}). If the configuration
of M is in Enon, then the computation continues; if the configuration is in Eacc, then
M accepts, otherwise it rejects. After every measurement the superposition collapses
into the measured subspace and is renormalized.

Just like MO-QFAs, the configuration of an MM-QFA is represented by a complex
n-dimensional vector, the transition function is represented by unitary matrices, and
measurement is represented by diagonal zero-one projection matrices that project the
vector onto the respective subspaces.

The definition of an MM-QFA is almost identical to the definition by Kondacs
and Watrous in [9]. The only difference is that we require only one end-marker at the
end of the tape, rather than two end-markers at the start and end of the tape; this
does not affect the acceptance power of the automaton; see Appendix A for further
details.

Since M can have a nonzero probability of halting partway through the computa-
tion, it is useful to keep track of the cumulative accepting and rejecting probabilities.
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Therefore, in some cases we use the representation of Kondacs and Watrous [9] that
represents the state of M as a triple (|Ψ〉, pacc, prej), where pacc and prej are the
cumulative probabilities of accepting and rejecting. The evolution of M on reading
symbol σ is denoted by

(Pnon|Ψ′〉, pacc + ‖Pacc|Ψ′〉‖2, prej + ‖Prej |Ψ′〉‖2),
where |Ψ′〉 = Uσ|Ψ〉, and Pacc, Prej , and Pnon are the diagonal zero-one projection
matrices that project the configuration onto the nonhalting, accepting, and rejecting
subspaces.

2.3. Language acceptance. A QFA M is said to accept a language L with
cut-point λ if for all x ∈ L, the probability of M accepting x is greater than λ, and
if for all x �∈ L, the probability of M accepting x is at most λ. A QFA M accepts L
with bounded error if there exists an ε > 0 such that for all x ∈ L the probability of
M accepting x is greater than λ+ ε and for all x �∈ L the probability of M accepting
x is less than λ− ε. We call ε the margin.

We partition the languages accepted by QFAs into several natural classes. Let
the class RMOε be the set of languages accepted by an MO-QFA with a margin of
at least ε. Let the restricted class of languages, RMO = ∪ε>0RMOε, be the set
of languages accepted by an MO-QFA with bounded error, and let the unrestricted
class of languages, UMO = RMO0, be the set of languages accepted by an MO-QFA
with unbounded error. We define the languages classes RMMε, RMM, and UMM
accepted by an MM-QFA in a similar fashion.

Since the cut-point of a QFA can be arbitrarily raised or lowered, we could without
loss of generality fix the cut-point to be 1

2 . However, for the purposes of presentation
we use the general cut-point definition stated above.

2.4. Reversible finite automata. Unitary operations are reversible, thus
QFAs bear a strong resemblance to various variants of reversible finite automata.
A group finite automaton (GFA) is a deterministic finite automaton (DFA) M =
(Q,Σ, δ, q0, F ) with the restriction that for every state q ∈ Q and every input symbol
σ ∈ Σ there exists exactly one state q′ ∈ Q such that δ(q′, σ) = q, i.e., δ is a complete
one-to-one function and the automaton derived from M by reversing all transitions is
deterministic.

A reversible finite automata (RFA) is a DFA M = (Q,Σ, δ, q0, F ) such that for
every state q ∈ Q and for every symbol σ ∈ Σ there is at most one state q′ ∈ Q such
that δ(q′, σ) = q, or, if there exist distinct states q1, q2 ∈ Q and symbol σ ∈ Σ such
that δ(q1, σ) = q = δ(q2, σ), then δ(q,Σ) = {q}. The latter type of state is called
a spin state because once an RFA enters it, it will never leave it. This definition
is equivalent to the one used by Ambainis and Freivalds [3] and is an extension of
Pin’s [17] definition.

2.5. Previous work. Moore and Crutchfield [12] introduced a variant of the
MO-QFA model and investigated the model in terms of quantum regular languages
(QRLs). They showed several closure properties including closure under inverse homo-
morphisms and derived a method for bilinearizing the representation of an MO-QFA
that transforms it into a generalized stochastic system.

Kondacs and Watrous [9] introduced a variant of the MM-QFA that was derived
from their 2QFA model. Using a technique similar to Rabin’s [18], Kondacs and
Watrous proved that 1QFAs that accept with bounded error are restricted to accepting
a proper subset of the regular languages and that the language L = {a, b}∗b is not a
member of that subset.
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Ambainis and Freivalds [3] showed that MM-QFAs could accept languages with
probability higher than 7

9 if and only if the language could be accepted by an RFA,
which is equivalent to being accepted with certainty by an MM-QFA. In [2] Ambainis,
Bonner, Freivalds, and Kikusts construct a hierarchy of languages such that the ith
language in the hierarchy can be accepted by an MM-QFA with at most probability
pi, where the series (pi) converges to 1

2 and is strictly decreasing.
Ambainis, Nayak, Ta-Shma, and Vazirani [5], and Nayak [13], investigated how

efficiently MM-QFAs can be constructed compared to DFAs. They showed that for
some languages the accepting MM-QFA is exponentially larger than the corresponding
DFA.

In [1] Amano and Iwama studied a restricted version of the 2QFA model where
the head was not allowed to move right. They showed that the emptiness problem
for this model is not decidable. This is another instance where quantum mechanics
provides computational power that is not achievable in the classical case.

3. MO-QFAs.

3.1. Bounded error acceptance. Restricting MO-QFAs to accept with bound-
ed error greatly reduces their accepting power; this is not surprising since PFAs suffer
a similar fate [18]. Since MM-QFAs can accept only a proper subset of the regular
languages if they are required to accept with bounded error and since every MO-
QFA can be simulated exactly by an MM-QFA, the class RMO is a proper subset
of the regular languages. The class RMO is exactly the class of languages accepted
by GFAs, otherwise known as group languages, and whose syntactic semigroups are
groups; see Eilenberg [7]. This result is implied by Theorem 7 in [12] but is not stated
in the paper. To prove this result we first need Lemma 3.1.

Lemma 3.1. Let U be a unitary matrix. For any ε > 0 there exists an integer
n > 0 such that for all vectors x, where ‖x‖2 ≤ 1, it is true that ‖(I − Un)x‖2 < ε.

Proof. Let m = dim(U). Since U is a normal matrix, Un can be written as

Un = PDnP−1,

where P is a unitary matrix and D is the diagonal matrix of eigenvalues with the jth
eigenvalue having the form eiπrj [14]. If all eigenvalues in D are rotations through
rational fractions of π, i.e., rj is rational, then let n = 2

∏m
j=1 qj , where qj is the

denominator of rj . Thus Dn = I and we are done.
Otherwise, at least one eigenvalue is a rotation of unity through an irrational

fraction of π. Let l ≤ m be the number of these eigenvalues. For the other m − l
eigenvalues compute n, just as above, and let D′ = Dn. The value of the jth element
on the diagonal of D′ is either 1 or eiπnrj , where rj is some irrational real number.
Consider taking D′ to some power k ∈ Z+. The values that are 1 do not change, but
the other l values that are of the form eiθjk, where θj = πnrj , form a vector that
varies through a dense subset in an l-dimensional torus. Hence, there exists k such
that the l-dimensional vector is arbitrarily close to "1 = (1, 1, . . . , 1). Thus, for any

ε′ > 0 there exists a k > 0 such that ‖(I −D′k)"1‖2 < ε′. Hence

‖(I − Unk)x‖2 = ‖(I − PDnkP−1)x‖2
= ‖P (I −D′k)P−1x‖2
≤ ‖(I −D′k)m"1‖2
= m2‖(I −D′k)"1‖2
≤ m2ε′.
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Select ε′ such that ε′ < ε
m2 to complete the proof.

Lemma 3.2, due to Bernstein and Vazirani [6], states that if two configurations
are close, then the differences in probability distributions of the configurations are
small. This lemma relates the closeness of configurations to the variation distance
between their probability distributions and allows us to partition the set of reachable
configurations into equivalence classes. The variation distance between two proba-
bility distributions is the maximum difference in the probabilities of the same event
occurring with respect to both distributions.

Lemma 3.2 (Bernstein and Vazirani [6]). Let |ψ〉 and |ϕ〉 be two complex vectors
such that ‖ |ψ〉‖2 = ‖ |ϕ〉‖2 = 1 and ‖ |ψ〉 − |ϕ〉‖2 < ε. The total variation distance
between the probability distributions resulting from the measurement of |ψ〉 and |ϕ〉
is at most 4ε.

Theorem 3.3 follows from these two lemmas.
Theorem 3.3. A language L can be accepted by an MO-QFA with bounded error

if and only if it can be accepted by a GFA.
Proof. The “if” direction follows from the fact that the transition function for

a GFA is also a valid transition function for an MO-QFA that can accept the same
language with certainty.

For the “only if” direction, by contradiction, assume that there exists a language
L that can be accepted by an MO-QFA with bounded error but cannot be accepted
by a GFA. Since the class RMO is a subset of the regular languages, L must be
regular. Let M = (Q,Σ, δ, q0, F ) be an MO-QFA that accepts L with bounded error.
If two strings x and y take M into the same reachable configuration, then for any
string z the probability of M accepting xz is equal to the probability of M accepting
yz, which means that xz ∈ L if and only if yz ∈ L. Therefore, the space of reach-
able configurations of M ’s computation can be partitioned into a finite number of
equivalence classes defined by the corresponding minimal DFA for L.

Let |ψ〉 and |ϕ〉 denote reachable configurations of M and let ∼L be the right
invariant equivalence relation induced by L. Since L cannot be accepted by a GFA,
there must exist two distinct equivalence classes [y] and [y′], an equivalence class [x],
and a symbol σ ∈ Σ such that [yσ] ∼L [y′σ] ∼L [x]. If Uσ is the transition matrix for
symbol σ, |ψ〉 ∈ [y] and |ϕ〉 ∈ [y′], then Uσ|ψ〉 ∈ [x] and Uσ|ϕ〉 ∈ [x].

Since M accepts L with bounded error, let ε be the margin. By Lemma 3.1 there
exists an integer k > 0 such that ‖(I−Uk

σ )|ψ〉‖2 < ε
4 and ‖(I−Uk

σ )|ϕ〉‖2 < ε
4 . Hence,

Uk
σ |ψ〉 ∈ [y] because if

‖(I − Uk
σ )|ψ〉‖2 = ‖ |ψ〉 − Uk

σ |ψ〉‖2
= ‖V (|ψ〉 − Uk

σ |ψ〉)‖2

<
ε

4
,

where V is an arbitrary unitary matrix, then by Lemma 3.2 the probability of V Uk
σ |ψ〉

being measured in a particular state is within ε of V |ψ〉 being measured in the same
state; this probability is less than the margin. Similarly Uk

σ |ϕ〉 ∈ [y′]. Hence [y] ∼L
[yσk] and [y′] ∼L [y′σk].

We assumed that [x] ∼L [yσ] ∼L [y′σ] and showed that [y] ∼L [yσk] and [y′] ∼L
[y′σk]; therefore, [y] ∼L [xσk−1] ∼L [y′]. Let z be the string that distinguishes [y]
and [y′]. Then the string σk−1z partitions [x] into at least two distinct equivalence
classes, but this is a contradiction. Therefore, there cannot exist a language L that
can be accepted by an MO-QFA with bounded error but not by a GFA.
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Theorem 3.3 implies that RMOε = RMOε′ for all ε, ε′ > 0; hence there are most
two distinct classes of languages accepted by MO-QFAs: the restricted class RMO,
which is equivalent to the class of languages accepted by a GFA, and the unrestricted
class UMO.

It follows immediately from Theorem 3.3 that the class RMO is closed under
Boolean operations, inverse homomorphisms, and word quotients and is not closed
under homomorphisms.

3.2. Nonregular languages. Unlike the class RMO, the class UMO contains
languages that are nonregular. This is not surprising given that Rabin [18] proved a
similar result for PFAs. In fact our proof closely mimics Rabin’s [18] technique.

Lemma 3.4. Let L = {x ∈ {a, b}∗ | |x|a �= |x|b}; there exists a 2-state MO-QFA
M that accepts L with cut-point 0.

Proof. Let M = (Q,Σ, δ, q0, F ), where Q = {q0, q1}, Σ = {a, b}, F = {q1}, and δ
is defined by the transition matrices

Ua = U−1
b =

[
cosα sinα
− sinα cosα

]
,

where α is an irrational fraction of π. Since Ua is a rotation matrix and α is an
irrational fraction of π, the orbit formed by applying Ua to |q0〉 is dense in the circle,
and there exists only one k, such that Uk

a |q0〉 = |q0〉, namely k = 0. This also holds for
Ub = U−1

a . Thus, U(x)|q0〉 = |q0〉 if and only if the number of Ua rotations applied to
|q0〉 is equal to the number of Ub rotations, which is true if and only if the |x|a = |x|b.
Otherwise, M has a nonzero probability of halting in state q1.

Lemma 3.4 implies that the class RMO is properly contained within the class
UMO, and therefore the two classes are distinct.

The MO-QFA in Lemma 3.4 solves the word problem for the infinite cyclic group:
is the input word equal to the identity element in the group, where the group has only
one generator element, say a, and its inverse b = a−1? We can generalize this result
to the general word problem for the free group. The word problem for a free group is
to decide whether or not a product of a sequence of elements of the free group reduces
to the identity [10].

Lemma 3.5. The word problem for the free group language can be accepted by an
MO-QFA.

Proof. Construct a free group of rotation matrices drawn from the group SO3

as discussed by Wagon [20]. Let M = (Q,Σ, δ, q0, F ) be a 3-state MO-QFA where
Σ = {a, a−1, b, b−1, . . . } such that |Σ| is equal to the sum of the number of rotation
matrices and their inverses, δ is defined by the rotation matrices and their inverses,
and F = {q0}. The MO-QFA will accept identity words with certainty and reject non-
identity words with a strictly nonzero probability, hence solving the word problem for
the free group.

3.3. Equivalence of MO-QFAs. In classical automata theory there is an al-
gorithm to determine if two automata are equivalent. We say that QFAs M and M ′

are equivalent if their probability distributions over Σ∗ are the same: for every word
x ∈ Σ, the probability of M accepting x is equal to the probability of M ′ accepting
x. In order to determine if two MO-QFAs are equivalent we first bilinearize them
using the method detailed by Moore and Crutchfield [12]; this yields two generalized
stochastic systems. We then apply Paz’s [15, p. 21, p. 140] method for testing stochas-
tic system equivalence to the generalized stochastic systems to determine if they have
the same distribution.
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3.4. Simulation of MO-QFAs by PFAs. Most classical computation is either
deterministic or probabilistic; hence it is useful to ask how probabilistic automata
compare to their quantum analogues. In the case of MO-QFAs, any language accepted
by an MO-QFA can also be accepted by a PFA. If L can be accepted by an MO-QFA
with bounded error, then it can also be accepted by a PFA with bounded error.

Theorem 3.6. Let M be an MO-QFA that accepts L with cut-point λ; then
1. there exists a PFA that accepts L with some cut-point λ′,
2. if M accepts L with bounded error, then there exists a PFA that accepts L

with bounded error.
Proof. The second result follows from Theorem 3.3 because every GFA is also a

PFA.
Since we can bilinearize M , L is a generalized cut-point event (GCE) [15, p. 153].

Since the class of GCEs is equal to the class of probabilistic cut-point events (PCEs)
[15, p. 153], which are accepted by PFAs, there exists a PFA that can accept L with
some cut-point λ′.

Combining Theorem 3.6 with Lemma 3.5 yields a new insight into the languages
accepted by PFAs.

Corollary 3.7. The word problem for the free group language can be solved by
a PFA.

4. MM-QFAs. MM-QFAs are more powerful than MO-QFAs because a mea-
surement is performed after every transition. This allows the machine to terminate
before reading the entire string and simulate the spin states of RFAs.

As mentioned before, an MM-QFA uses one end-marker while the Kondacs and
Watrous [9] 1QFA uses two end-markers. The second marker does not add any more
power to the model (see Appendix A) but makes constructing an MM-QFA easier
because the MM-QFA can start in an arbitrary configuration. Hence, for the sake of
conciseness and clarity we shall assume that some of the MM-QFAs constructed in
the following proofs have two end-markers.

4.1. Closure properties. Unlike the closure properties of the classes RMO
and UMO, which can be derived easily, the closure properties of the classes RMM
and UMM are not as evident and in one important case are unknown. We show that
the classes RMM and UMM are closed under complement, inverse homomorphism,
and word quotient. Similar to the class RMO, the class RMM is not closed under
homomorphisms. It remains an open problem to determine whether the classesRMM
and UMM are closed under Boolean operations.

Theorem 4.1 proves that both classes are closed under complement and inverse
homomorphisms by showing that each class RMMε is closed under complement and
inverse homomorphisms; closure under word quotient follows directly from the latter,
given the presence of end-markers.

Theorem 4.1. The class RMMε is closed under complement, inverse homo-
morphisms, and word quotient.

Proof. Closure under complement follows from the fact that we can exchange
the accept and reject states of the MM-QFA. This exchanges the probabilities of
acceptance and rejection but does not affect the margin.

Given an MM-QFA M and a homomorphism h we construct an MM-QFA M ′

that accepts h−1(L). Let M = (Q,Σ, δ, Qacc, Qrej) and M ′ = (Q′,Σ, δ′, Q′acc, Q
′
rej).

Assume that δ and δ′ are defined in terms of matrices {Uσ}σ∈Σ and {U ′σ}σ∈Σ. Unlike
the proof for MO-QFAs in [12], the direct construction of

U ′σ = U(h(σ))
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will not work because a measurement occurs between transitions, and combining tran-
sitions without taking this into account could produce incorrect configurations. After
every transition some amount of probability amplitude is placed in the halting states
and should not be allowed to interact with the nonhalting states in the following tran-
sitions. This is achieved by storing the amplitude in additional states; this technique
is also used in [5]. Assume without loss of generality that

Qnon = {qi ∈ Q | 0 ≤ i < nnon},
Qhalt = {qi ∈ Q | nnon ≤ i < n},

where n = |Q| and nnon = |Qnon|. Let m = maxσ∈Σ{|h(σ)|} and let

Q′ = Q ∪Q′halt,

where

Q′halt = {qi}n+m(n−nnon)
i=n+1 ,

Q′acc = Qacc ∪ {qn+j(i−nnon) ∈ Q′halt | qi ∈ Qacc, 1 ≤ j ≤ m},
Q′rej = Qrej ∪ {qn+j(i−nnon) ∈ Q′halt | qi ∈ Qrej , 1 ≤ j ≤ m}.

Intuitively, we replicate the halting states m times; each replication is termed a halting
state set.

We construct δ′ from the matrices of δ. Let Vσ be a unitary block matrix

Vσ = Ushift

[
Uσ

Im(n−nnon)

]
,

where

Ushift =




Innon

In−nnon

Im(n−nnon)


.

The matrix Ushift is a unitary matrix that shifts the amplitudes in the halting set i
to the halting set i+1 and the amplitude in halting set m to halting set 0. Analogous
to the MO-QFA case where U ′σ = U(h(σ)), for MM-QFAs let

U ′σ = V (h(σ)) = Vxk
Vxk−1

. . . Vx1 ,

where h(σ) = x = x1x2 . . . xk and k ≤ m.
After every xi subtransition the halting amplitude is shifted and stored in the

m+ 1 halting sets of states. When the subtransition is done, the amplitude in halt
state set 0 is zero, which is what is required to prevent unwanted interactions. A mini-
mum of m subtransitions must occur before halting set m contains nonzero amplitude,
but no more than m subtransitions will ever occur; therefore halting set 0 will never
receive nonzero amplitude from halting set m. Since M ′ has the same distribution as
M , the margin will not decrease.

Closure under word quotient follows from closure under inverse homomorphism
and the presence of both end-markers.

Just like the class RMO, the class RMM is not closed under homomorphisms.
Theorem 4.2. The class RMM is not closed under homomorphisms.
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Proof. Let L = {a, b}∗c and define a homomorphism h to be h(a) = a, h(b) = b,
and h(c) = b. Since L can be accepted by an RFA, L ∈ RMM [3], but h(L) =
{a, b}∗b �∈ RMM, the result follows.

A more interesting question is whether the classes RMM and UMM are closed
under Boolean operations. Unlike MO-QFAs that have two types of states, accept
and reject, MM-QFAs have three types of states: accept, reject, and nonhalt. Con-
sequently, the standard procedure of taking the tensor product of two automata to
obtain their intersection or union does not work. A general method of intersecting
two MM-QFAs is not known. Thus, it is not known whether RMM and UMM are
closed under Boolean operations.

4.2. Bounded error acceptance. The restriction of bounded error acceptance
reduces the class of languages that an MM-QFA can accept to a proper subclass
of the regular languages [9]. To study the languages in class RMM, we look at
their corresponding minimal automata. Ambainis and Freivalds [3] showed that if the
minimal DFA M(L) = (Q,Σ, δ, q0, F ) contains an irreversible construction, defined by
two distinct states q1, q2 ∈ Q and strings x, y, z ∈ Σ∗ such that δ(q1, x) = δ(q2, x) = q2,
δ(q2, y) ∈ F , and δ(q2, z) �∈ F , then an RFA cannot accept L and an MM-QFA
cannot accept it with a probability greater than 7

9 ; this condition is both sufficient
and necessary.

We derive a similar necessary condition for a language L to be a member of the
class RMM. This condition, called the partial order condition, is a relaxed version of
a condition defined by Meyer and Thompson [11]. A language L is said to satisfy the
partial order condition if the minimal DFA for L satisfies the partial order condition.
A DFA satisfies the partial order condition if it does not contain two distinguishable
states q1, q2 ∈ Q such that there exists strings x, y ∈ Σ+, where δ(q1, x) = δ(q2, x) =
q2, and δ(q2, y) = q1. States q1 and q2 are said to be distinguishable if there exists
a string z ∈ Σ∗ such that δ(q1, z) ∈ F and δ(q2, z) �∈ F or vice versa [8]. Using a
result in [9], Theorem 4.3 proves that the partial order condition is necessary for an
MM-QFA to accept L with bounded error.

Theorem 4.3. If M = (Q,Σ, δ, q0, F ) is a minimal DFA for language L that
does not satisfy the partial order condition, then L �∈ RMM.

Proof. By contradiction, assume that L ∈ RMM. Let Lb = {a, b}∗b. Since the
minimal DFA for L does not satisfy the partial order condition, there exist states
q1, q2 ∈ Q and strings x, y ∈ Σ+ as defined above and a distinguishing string z ∈ Σ∗

such that δ(q1, z) �∈ F if and only if δ(q2, z) ∈ F . Without loss of generality assume
that δ(q1, z) �∈ F and δ(q2, z) ∈ F .

Let s be the shortest string such that δ(q0, s) = q1. Let L′ = s−1Lz−1. By
Theorem 4.1, L′ ∈ RMM. Define the homomorphism h as

h(a) = xy,

h(b) = x,

h(Σ− {a, b}) = xy,

where the last definition is for completeness. Let L′′ = h−1(L′). By Theorem 4.1
L′′ ∈ RMM. But L′′ = Lb �∈ RMM, a contradiction.

The partial order condition is so named because once the state q2 is visited,
there is no path back to state q1. Thus, there exists a partial order on the states
of the DFA. We do not know whether this condition is also sufficient for MM-QFA
acceptance with bounded error. While we do not know whether the class RMM is
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closed under Boolean operations, Theorem 4.6 relates closure under intersection to
the partial order condition.

Lemma 4.4. Let M be a DFA that satisfies the partial order condition. The
minimal DFA M ′ that accepts L(M) satisfies the partial order condition.

Proof. Let M = (Q,Σ, δ, q0, F ) be a DFA and M ′ = (Q′,Σ, δ′, q′0, F
′) be the

corresponding minimal DFA. Assume by contradiction that M ′ does not satisfy the
partial order condition. Hence, M ′ has two states that correspond to the equivalence
classes [q′1] and [q′2] such that [q′1]x ∼L [q′2]x ∼L [q′2] and [q′2]y ∼L [q′1]. By the Myhill–
Nerode theorem [8], the equivalence classes partition the set of reachable states in Q.
Hence, for each equivalence class [q′i] there is a corresponding subset of Q. Let Q1

and Q2 denote the subsets of Q corresponding to the equivalence classes [q′1] and [q′2]
and assign an arbitrary order on each subset. Select the first state, say p1 ∈ Q1, and
define the set R = {q ∈ Q2 | ∃n,m ∈ Z+, δ(p1, x

m) = δ(q, xn) = q}. If there exists
a state r ∈ R and string y ∈ Σ+ such that δ(r, y) = p1, then M does not satisfy the
partial order condition, and this is a contradiction. Otherwise, there does not exist a
y ∈ Σ+ such that δ(r, y) = p1 for all r ∈ R. In this case there is a partial order on p1

and on Q1\{p1} because p1 will never be visited again if M reads a sufficient number of
x’s. Remove p1 from Q1 and repeat the procedure on p2 ∈ Q1. After a finite number
of iterations either we will find a pi that satisfies our requirements, which means
that M does not satisfy the partial order condition and is a contradiction, or none of
the states in Q1 will have the required characteristics, in which case M ′ satisfies the
partial order condition. Therefore, if M satisfies the partial order condition, so will
its minimal equivalent M ′.

Lemma 4.5. Let L′ and L′′ be languages that satisfy the partial order condition.
Then L = L′ ∩ L′′ also satisfies the partial order condition.

Proof. Let M ′ = (Q′,Σ, δ′, q′0, F
′) be the minimal DFA accepting the language L′

and let M ′′ = (Q′′,Σ, δ′′, q′′0 , F
′′) be the minimal DFA accepting the language L′′. We

first construct an automaton M that accepts L′ ∩L′′ by combining M ′ and M ′′ using
a direct product. Define M = (Q,Σ, δ, q00, F ), where Q = Q′ × Q′′, q00 = (q′0, q

′′
0 ),

F = {(q′, q′′) ∈ Q | q′ ∈ F ′ ∧ q′′ ∈ F ′′}, and δ((q′, q′′), σ) = (δ′(q′, σ), δ′′(q′′, σ)).
We argue that if M ′ and M ′′ satisfy the partial order condition, then so will

M . Assume, by contradiction, that M does not satisfy the partial order condition.
Then there exist two states qij = (q′i, q

′′
j ) and qkl = (q′k, q

′′
l ) and strings x, y, z ∈ Σ+

such that δ(qij , x) = δ(qkl, x) = qkl, δ(qkl, y) = qij , and δ(qij , z) ∈ F if and only if
δ(qkl, z) �∈ F . In the first case assume that either i �= k or j �= l, and without loss
of generality, assume the former. Then there exists state q′i ∈ Q′ and state q′k ∈ Q′

such that δ′(q′i, x) = δ′(q′k, x) = q′k, δ1(q
′
k, y) = q′i. But this means that M ′ does not

satisfy the partial order condition, a contradiction. In the second case assume that
i = k and j = l. This implies that qij = qkl and hence there cannot exist a string z
that distinguishes the two states, also a contradiction. Therefore M must satisfy the
condition.

Since M satisfies the partial order condition and accepts L, by Lemma 4.4 the
minimal automaton that accepts L satisfies the partial order condition, and hence L
itself satisfies the partial order condition.

Theorem 4.6. If the partial order condition is sufficient for acceptance with
bounded error by MM-QFAs, then the class RMM is closed under intersection.

Proof. By Lemma 4.5 the intersection of two languages that satisfy the partial
order condition is a language that satisfies the partial order condition.

One method for proving that the class RMM is not closed under intersection
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involves intersecting two languages in RMM and showing that the resulting language
is not in RMM. By Theorem 4.6 this method will not work unless the partial order
condition is insufficient. To study whether the partial order condition is sufficient, as
well as necessary, we show that a well-known class of languages can be accepted by
an MM-QFA with bounded error.

4.3. Piecewise testable sets. A piecewise testable set is a Boolean combina-
tion of sets of the form

Lz = Σ∗z1Σ∗z2Σ∗. . .Σ∗znΣ∗,

where zi ∈ Σ [16]. Intuitively, Lz is the language of strings that contains the successive
symbols of z as a subsequence; we call such a language a partial piecewise testable
set.

Piecewise testable sets, introduced by Simon in [19], form a natural family of
star-free languages. Such sets define a class of computations that wait for a partially
ordered sequence of trigger events (input symbols); if a trigger event (symbol) is read
that is not next in the sequence, it is simply ignored. Another natural interpretation
of piecewise testable sets is subsequence searching. Consider a language where a word
is said to be in the language if it contains a finite Boolean combination of subse-
quences. Such a language is a piecewise testable set and word acceptance corresponds
to searching the words for the required subsequences. Finally, such languages belong
to a class of languages whose MM-QFAs have an arbitrarily large, but finite, set of
ordered states.

We show, by construction, that MM-QFAs can accept partial piecewise testable
sets with bounded error. The MM-QFAs we construct accept with one-sided error and
are what we call “end-decisive.” We say that an MM-QFA accepts with positive one-
sided error if it accepts strings in the language with nonzero probability and rejects
strings not in the language with certainty. We say that an MM-QFA accepts with
negative one-sided error if it accepts strings in the language with certainty and rejects
strings not in the language with nonzero probability.

We say that an MM-QFA is end-decisive if it will not be observed in an accept
state until the end-marker $ is read. An MM-QFA is co-end-decisive if it will not be
observed in a reject state until the end-marker is read.

Classes of languages that are accepted by end-decisive MM-QFAs with the same
one-sided error, i.e., all positive or all negative, are closed under intersection and
union. Furthermore, if language L can be accepted by an end-decisive MM-QFA with
bounded error, and language L′ can be accepted by an end-decisive MM-QFA with
bounded one-sided error, then the union or intersection of L and L′ can be accepted
by an end-decisive MM-QFA with bounded error. To construct these MM-QFAs we
introduce two useful concepts: junk states and trigger chains.

A junk state is a halting state of an end-decisive or co-end-decisive MM-QFA. If
the MM-QFA is end-decisive, then all its junk states are reject states. If the MM-
QFA is co-end-decisive, then all its junk states are accept states. An end-decisive
or co-end-decisive MM-QFA may be observed in a junk state at any point of the
computation. While junk states are either accept or reject states, we treat the junk
state as a separate halting state. Any accept or reject state that is not a junk state
is called a decisive state. Intuitively, a junk state signals a failed computation.

Each end-decisive or co-end-decisive automata that accepts with bounded error
has probability, bounded by some constant τ < 1, of ending up in a junk state and
a probability 1 − τ of ending up in a decisive state. If τ �< 1, then the amount
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of probability amplitude ending up in a decisive state can become arbitrarily small,
dropping below any fixed margin. Thus, τ must be strictly less than one for the
MM-QFA to accept with bounded error; τ is independent of the input string x.

A trigger chain is a construction of junk states and transition matrices that causes
a reduction in amplitude of a particular state only if the amplitude of another state
is decreased, presumably by some previous transition. Trigger chains correspond
directly to partial piecewise testable sets. Consider the matrix

X =




1
2

1√
2

1
2

1√
2

0 − 1√
2

1
2 − 1√

2
1
2


 .

This matrix is a special case of a transition matrix introduced by Ambainis and
Freivalds [3]. This matrix operates on three states and is a triggering mechanism of
the chain. Consider the vectors

|ψ〉 = (α, 0, β)T

and

X|ψ〉 =
(
α

2
+

β

2
,
α√
2
− β√

2
,
α

2
+

β

2

)T

.

The vectors |ψ〉 and X|ψ〉 are equal if and only if α = β. If α �= β, then the amplitudes
of the first and third state are averaged, with the remainder of the amplitude going
into the second state. We define a generalized version of X by embedding it into a
larger identity block matrix. Define Xi to be

Xi =




Ii
X

Is−i−3


 ,

where Im is an m×m identity matrix, X is defined as above, and s is the number of
states, i.e., the size of Xi. The matrix Xi operates on a triple of states, qi through
to qi+2. We assume that state qi+1, the second state, is a junk state unless otherwise
noted.

Theorem 4.7. Let Lz be a partial piecewise testable set. There exists an end-
decisive MM-QFA that accepts Lz with bounded positive one-sided error.

Proof. We construct an MM-QFA M with m + 1 states that accepts Lz where
z = z0z1 . . . zn and m = 2n+ 4.

For each link in the trigger chain we require a junk state and a nonhalting state.
We order the states to correspond with the description of the Xi matrices. Specifically,
the first 2n + 1 states are the nonhalting states, interleaved with junk states. Each
triple of states (q2i, q2i+1, q2i+2) corresponds to a link of the trigger chain, of which
there are n+1. State q2n+1 is the decisive accept state and state q2n+3 is the decisive
reject state. The junk states are rejecting states.

Let m = 2n+ 4 and M = (Q,Σ, δ, q0, Qacc, Qrej), where

Q = {q0, . . . , qm},
Qjunk = {qi ∈ Q | 0 < i < 2n ∧ i ≡ 1 mod 2} ∪ {q2n+4},
Qacc = {q2n+1},
Qrej = {q2n+3}.
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Define δ by the transition matrices {Uσ}σ∈Σ. Each transition matrix Uσ consists
of a product of matrices:

Uσ = Uσ,0Uσ,1 . . . Uσ,n,

where the matrices Uσ,i implement the triggers.
Define Uσ,i to be

Uσ,i =





S, i = 0 ∧ z0 = σ,
X2i−2, 1 ≤ i ≤ n ∧ zi = σ,
Im+1, otherwise,

where

S =




0 1
1 0

Im−1


 .

The matrix S shifts the amplitude of q0 to the junk state q1. This is the first trigger
that is activated when z0 is read.

Finally, let the transition matrix for the end-marker $ be

U$ = FX2n,

where

F =




R
. . .

R
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
1 0 0 0 0




and the matrix

R =

[
0 1
1 0

]
.

The matrix F sends all amplitude into the junk states. The matrix X2n sends some
minimum amount of amplitude into an accept state if the amplitudes of states q2n
and q2n+2 differ.

The initial configuration of the machine is |ψinit〉 = (α0, α1, . . . , αm)T , where

αi =

{
1√
n+2

, 0 ≤ i ≤ 2n+ 2 ∧ i ≡ 0 (mod 2),

0, otherwise,

i.e., the amplitude is evenly distributed among all nonhalting states.
The only decisive accepting state in the machine is q2n+1, and amplitude flows

into it only when the end-marker is read. In order for it to get a nonzero amplitude,
the amplitudes of states q2n and q2n+2 must differ. Since all nonhalting states start
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with the same amplitude, and since the amplitude of state q2n+2 will not change
during the execution of the machine until the end-marker is read, the amplitude of
state q2n−2 must change in order for the amplitude of state q2n to change. Following
the same argument, state q2i will not change in amplitude until state q2i−2 changes
in amplitude. Furthermore, the change in amplitude of state q2i is governed by the
matrix components X2i−2 and X2i. Hence, the initial change of amplitude of state q2i
depends exclusively on a change in amplitude of state q2i−2 and is governed by com-
ponent X2i−2 that is located in the transition matrix Uzi . If any other transition
matrix is applied, then the amplitude of state q2i will not change. Hence, M can
read (Σ − {zi})∗ without changing the amplitude of state q2i, but, as soon as zi is
read, component X2i−2 will be applied and q2i will have a decreased amplitude, pro-
vided state q2i−2 already had a decrease of its amplitude. Finally, the amplitude of
any state q2i will never increase beyond its initial value, and once the amplitude of
state q2i decreases, it will never increase beyond 1√

n+2
(1 − ( 1

2 )
n+1). For the case of

symbol z0, the amplitude of state q0 is changed by matrix S to 0 and is the starting
trigger. When the end-marker is read, a minimum of 1√

2(n+2)
( 1
2 )

n+1 of amplitude

is placed into the accepting state only if the amplitude of state q2n has decreased.
The amplitude from q2n+2 is channeled into a decisive reject state. The rest of the
amplitude from the remaining n + 1 nonhalting states is channeled into junk states.
If the amplitudes of q2n and q2n+2 do not differ, then all amplitude is channeled into
junk and decisive reject states.

The probability of M accepting a string not in the language is 0, while the prob-
ability of M accepting a string in the language is at least 1

n+2 (
1
2 )

2n+3. We select the
cut-point to be strictly between the two values.

Any Boolean combination of partial piecewise testable sets may be expressed as
a union of intersections of partial piecewise testable sets and complements of partial
piecewise testable sets, i.e.,

s⋃
i=0




t⋂
j=0

L̃ij


,(4.1)

where L̃ij is a partial piecewise testable set or the complement thereof.
We first show how to construct the implicants of the above expression, i.e.,

∩tj=0L̃ij , and then how to take the union of the implicants. An implicant can be
written in the form

t⋂
j=0

L̃ij =




r⋂
j=0

Lij


⋂




t⋂
j=r

Lij


,

where the Lij ’s are partial piecewise testable sets. By De Morgan’s rule, the latter part

of this expression can be rewritten as ∪tj=rLij . Let L∩i = ∩rj=0Lij , let L
∪
i = ∪tj=rLij ,

and let Li = L∩i ∩ L∪i.
First, we show that L∩i can be accepted by an end-decisive MM-QFA with

bounded positive one-sided error. Second, we show that L∪i can be accepted by
an end-decisive MM-QFA with bounded error. Third, we show that Li can be ac-
cepted by an end-decisive MM-QFA with bounded error. Finally, we show that ∪si=0Li
can be accepted by an end-decisive MM-QFA with bounded error. We first need two
composition lemmas.
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We say that an MM-QFA M accepts L with cut-point λ and maximum margin η
if for all x ∈ Σ∗,

λ− η < Pr[M(x) = accept] < λ+ η.

Usually, the maximum margin will be exponentially greater than the margin ε; this
creates problems when we compose automata.

Lemma 4.8. Let M and M ′ be end-decisive MM-QFAs that accept L and L′,
respectively, with cut-points λ and λ′, margins ε and ε′, and maximum margins η
and η′. There exists an end-decisive MM-QFA M ′′ such that the inequalities

(λ+ ε) · (λ′ + ε′) ≤ Pr[M ′′(x) = accept] ≤ (λ+ η) · (λ′ + η′) ∀x ∈ L ∩ L′,(4.2)

(λ− η) · (λ′ + ε′) ≤ Pr[M ′′(x) = accept] ≤ (λ− ε) · (λ′ + η′) ∀x ∈ L ∩ L′,(4.3)

(λ+ ε) · (λ′ − η′) ≤ Pr[M ′′(x) = accept] ≤ (λ+ η) · (λ′ − ε′) ∀x ∈ L ∩ L′,(4.4)

(λ− η) · (λ′ − η′) ≤ Pr[M ′′(x) = accept] ≤ (λ− ε) · (λ′ − ε′) ∀x ∈ L ∩ L′(4.5)

are satisfied.
Proof. Let M = (Q,Σ, δ, q0, Qacc, Qrej) and M ′ = (Q′,Σ, δ′, q′0, Q

′
acc, Q

′
rej) be

end-decisive MM-QFAs that accept L and L′. Using these two MM-QFAs we construct
an MM-QFA M ′′ = (Q′′,Σ, δ′′, q′′0 , Q

′′
acc, Q

′′
rej) that satisfies the above inequalities.

Let Q′′ = Q×Q′ and q′′0 = (q0, q
′
0). The sets of halting states are defined as

Q′′acc = {(qi, q′j) ∈ Q′′ | qi ∈ Qacc ∧ q′j ∈ Q′acc},
Q′′rej = {(qi, q′j) ∈ Q′′ | (qi ∈ Qrej ∨ q′j ∈ Q′rej)},

and the transition function δ′′ is defined as

δ′′((q, q′), σ, (r, r′)) = δ(q, σ, r) · δ′(q′, σ, r′),
which is a tensor product of the transition functions δ and δ′.

Since M and M ′ are end-decisive, i.e., the accepting states will have only nonzero
amplitude when the end-marker is read, thus the MM-QFA M ′′ will be end-decisive.

By the tensor product construction, the probability of M ′′ accepting x is

Pr[M ′′(x) = accept] = Pr[M(x) = accept] · Pr[M ′(x) = accept].

Since

λ+ ε ≤ Pr[M(x) = accept] ≤ λ+ η ∀x ∈ L,

λ− η ≤ Pr[M(x) = accept] ≤ λ− ε ∀x �∈ L,

λ′ + ε′ ≤ Pr[M ′(x) = accept] ≤ λ′ + η′ ∀x ∈ L′,
λ′ − η′ ≤ Pr[M ′(x) = accept] ≤ λ′ − ε′ ∀x �∈ L′,

multiplying out the probabilities yields the inequalities (4.2), (4.3), (4.4), and
(4.5).

Corollary 4.9. Let M and M ′ be end-decisive MM-QFAs that accept L and
L′, respectively, with bounded positive one-sided error. There exists an end-decisive
MM-QFA that accepts L ∩ L′ with bounded positive one-sided error.

Proof. Let λ, λ′, ε, and ε′ be the respective cut-points and margins of MM-QFAs
M and M ′. Since λ − ε = λ′ − ε′ = 0, λ + ε > 0, and λ′ + ε′ > 0, the result follows
from Lemma 4.8.
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We mentioned before that the maximum margin of an MM-QFA that accepts
language L could be exponentially greater than the margin. This prevents us from
directly constructing intersections or unions of languages that are accepted by end-
decisive MM-QFAs with bounded error. To get around this problem we use a tensor
power technique to magnify the ratio of the probability of a true positive to the
probability of a false positive.

Lemma 4.10. Let M be an end-decisive MM-QFA that accepts words in L with
probability at least λ + ε and accepts words not in L with probability at most λ −
ε. For any positive integer n there exists an MM-QFA M ′ that accepts words in L
with probability at least (λ + ε)n and accepts words not in L with probability at most
(λ− ε)n.

Proof. Using Lemma 4.8 to compose n copies of M yields the result.
We first use Lemma 4.10 to construct finite unions of languages that are accepted

by end-decisive MM-QFAs with bounded error.
Lemma 4.11. Let M be an end-decisive MM-QFA that accepts L with bounded

error and letM ′ be an end-decisive MM-QFA that accept L′ with bounded error. There
exists an end-decisive MM-QFA M ′′ that accepts L′′ = L ∪ L′ with bounded error.

Proof. Assume that M accepts words in L with probability at least λ + ε and
accepts words not in L with probability at most λ − ε. Similarly, assume that M ′

accepts words in L′ with probability at least λ′ + ε′ and accepts words not in L′ with
probability at most λ′ − ε′.

Using Lemma 4.10, let Ms be the sth tensor power of M and let M ′t be the tth
tensor power of M ′.

Let Ms = (Q,Σ, δ, q0, Qacc, Qrej) and M ′t = (Q′,Σ, δ′, q′0, Q
′
acc, Q

′
rej), where Q =

{q0, . . . , qn−1} and Q′ = {q′0, . . . , q′m−1}. Let δ and δ′ be represented by the unitary
matrices Uσ and U ′σ, respectively.

Let M ′′ = (Q′′,Σ, δ′′, Q′′acc, Q
′′
rej) where Q′′ = {q′′0 , . . . , q′′n+m−1}; δ′′ is represented

by the matrices

U ′′σ =

[
Uσ 0
0 U ′σ

]
,

Q′′acc = {q′′i ∈ Q′′ | qi ∈ Qacc ∨ q′i−n ∈ Q′acc}, and Q′′rej = {q′′i ∈ Q′′ | qi ∈
Qrej ∨ q′i−n ∈ Q′rej}. The automata are initialized with the amplitude evenly divided

between the states q′′0 and q′′n, i.e., each state contains 1√
2

amplitude. Intuitively, M

and M ′ run in parallel, not interacting unless one of the two crashes. In that case the
computation is over.

If x ∈ L ∩ L′, then

Pr[M ′′(x) = accept] ≥ (λ+ ε)s + (λ′ + ε′)t

2
;

if x ∈ L ∩ L′, then

Pr[M ′′(x) = accept] ≥ (λ+ ε)s

2
;

if x ∈ L ∩ L′, then

Pr[M ′′(x) = accept] ≥ (λ′ + ε′)t

2
;
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and if x ∈ L ∩ L′, then

Pr[M ′′(x) = accept] ≤ (λ− ε)s + (λ′ − ε′)t

2
.

The last case corresponds to x �∈ L′′. By setting s and t appropriately, we can ensure
that

(λ− ε)s + (λ′ − ε′)t � min {(λ+ ε)s, (λ′ + ε′)t}.
Hence, the MM-QFA M ′′ accepts L ∪ L′ with bounded error. Furthermore, M ′′ is
end-decisive because both Ms and Mt are end-decisive.

Corollary 4.12. Let M and M ′ be end-decisive MM-QFAs that accept L and
L′, respectively, with bounded positive one-sided error. There exists an end-decisive
MM-QFA that accepts L ∪ L′ with bounded positive one-sided error.

Proof. Since λ − ε = λ′ − ε′ = 0, the same argument as in Corollary 4.9
applies.

One useful property of languages that are accepted by end-decisive MM-QFAs
with bounded positive one-sided error is that we can usually construct end-decisive
MM-QFAs that can accept the complement of such languages with bounded error. We
say that an end-decisive MM-QFA accepts with positive amplitude if the amplitude
in its accept states is always nonnegative.

Lemma 4.13. Let L be a language that is accepted by an end-decisive MM-QFA
with bounded positive one-sided error and positive amplitude. There exists an end-
decisive MM-QFA that accepts L with bounded error.

Proof. Let M = (Q,Σ, δ, q0, Qacc, Qrej) be an end-decisive MM-QFA that ac-
cepts L with bounded positive one-sided error. Since M rejects all strings not in
L with certainty, for every computation of M on x �∈ L zero amplitude is placed
into the accepting states of M . Let n = |Q|, let a = |Qacc|, and assume that
Qacc = {qn−1, qn−2, . . . , qn−a}.

We use M to construct an end-decisive MM-QFA M ′ to accept L with bounded
error. Let M ′ = (Q′,Σ, δ′, q0, Q′acc, Q

′
rej), where

Q′ = Q ∪ {qn, qn+1, . . . , qn+3a},
Q′rej = Qrej ∪Qacc ∪ {qn+i ∈ Q′ | i ≡ 2 mod 3},
Q′acc = {qn+i ∈ Q′ | i ≡ 0 mod 3},

and the transition function δ′ is extended in the following manner. For all symbols
except the end-marker, the transition function for M ′ is defined by the matrices

U ′σ =

[
Uσ

I3a

]
.

The end-marker transition is defined by the matrix

U ′$ =

[
U$

I3a

]
X,

where matrix X performs an averaging and cleanup operation. We define X in
terms of 4 × 4 submatrices. Every accept state qn−a+i ∈ Qacc in M becomes a
reject state in M ′. Additionally, for each such state, three additional states were
added to M ′, qn+3i, qn+3i+1, and qn+3i+2, which are an accepting, a nonhalting,
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and a rejecting state, respectively. The matrix X operates on the 4-tuples of states
(qn−a+i, qn+3i, qn+3i+1, qn+3i+2). Each operation is localized to the 4-tuple of states
and hence can be described by a 4× 4 matrix Xi. Assume that the order of rows and
columns of the matrix correspond to the order in the 4-tuple. Let

Xi =

cleanup︷ ︸︸ ︷


1
1

0 1
1 0




averaging︷ ︸︸ ︷


1
2

1√
2

1
2

− 1√
2

0 1√
2

1
2 − 1√

2
1
2

1


 .

Since M accepts with positive amplitude, the amplitude in state qn−a+i will be non-
negative. If the nonhalting state qn+3i+1 contains a fixed amount of amplitude α,
and the old accept state qn−a+i contains β amplitude. Then, the averaging operation
places α−β√

2
amplitude in the accept state qn+3i. Then, the cleanup operation places

any amplitude remaining in the nonhalting state qn+3i+1 into the reject state qn+3i+2.

We initialize M ′ in the same way as M except that a fraction of the amplitude
is placed in the new nonhalting states. These states behave as reservoirs until the
end-marker is read. The amount of amplitude placed in the states is greater than
the maximum amount of amplitude that any accepting state may ever contain, i.e.,
α > β ≥ 0.

If x ∈ L, then at least one of the accept states of M will contain a minimum
amount of positive amplitude. Hence, the amount of amplitude in at least one of the
accept states of M ′ will be strictly less than α√

2
by some fixed amount. If x �∈ L, then

all accept states of M ′ will have exactly α√
2

amplitude in them.

Hence, if x ∈ L, the probability of M ′ accepting x will be strictly less than that
if x �∈ L. Hence, M ′ accepts L with bounded error. Since the accept states are only
observed after the end-marker is read, M ′ is end-decisive.

If L is a language that can be accepted by an end-decisive MM-QFA with bounded
error and L′ is a language that can be accepted by an end-decisive MM-QFA with
bounded positive one-sided error, then we use Lemma 4.10 to construct an MM-QFA
that accepts the intersection of the two languages.

Lemma 4.14. Let M be an end-decisive MM-QFA that accepts L with bounded
error and let M ′ be an end-decisive MM-QFA that accept L′ with bounded positive
one-sided error. There exists an MM-QFA M ′′ that accepts L′′ = L∩L′ with bounded
error.

Proof. Let MM-QFA M accept L with cut-point λ, margin ε, and maximum
margin η, and let MM-QFA M ′ accept M ′ with cut-point λ′, margin ε′, and maximum
margin η′.

First, consider the inequalities in Lemma 4.8 that occur when we compose the
MM-QFAs M and M ′ using the tensor technique. Since MM-QFA M ′ accepts with
bounded positive one-sided error, the inequalities are

(λ+ ε) · (λ′ + ε′) ≤ Pr[N(x) = accept] ≤ (λ+ η) · (λ′ + η′) ∀x ∈ L ∩ L′,
(λ− η) · (λ′ + ε′) ≤ Pr[N(x) = accept] ≤ (λ− ε) · (λ′ + η′) ∀x ∈ L ∩ L′,

(λ+ ε) · 0 ≤ Pr[N(x) = accept] ≤ (λ+ η) · 0 ∀x ∈ L ∩ L′,
(λ− η) · 0 ≤ Pr[N(x) = accept] ≤ (λ− ε) · 0 ∀x ∈ L ∩ L′.
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These reduce to three cases:

Pr[M ′′(x) = accept] ≥ (λ+ ε) · (λ′ + ε′) ∀x ∈ L ∩ L′,(4.6)

Pr[M ′′(x) = accept] ≤ (λ− ε) · (λ′ + η′) ∀x ∈ L ∩ L′,(4.7)

Pr[M ′′(x) = accept] = 0 ∀x ∈ L′.(4.8)

If we can guarantee that

(λ− ε) · (λ′ + η′) < (λ+ ε) · (λ′ + ε′),

then the tensor technique is sufficient to construct the intersection. Let Mn be the nth
tensor composition of M . By Lemma 4.10 Mn accepts words in L with probability at
least (λ+ε)n and accepts words not in L with probability at most (λ−ε)n. Construct
MM-QFA M ′′ by composing Mn with M ′ using the tensor technique; for sufficiently
large constant n the inequality

(λ− ε)n · (λ′ + η′) < (λ+ ε)n · (λ′ + ε′)

will be satisfied. Thus, MM-QFA M ′′ accepts L′′ end-decisively with bounded er-
ror.

We now assemble our array of tools to construct an arbitrary Boolean combination
of partial piecewise testable sets.

Theorem 4.15. Piecewise testable sets can be accepted by end-decisive MM-QFAs
with bounded error.

Proof. Let L be a piecewise testable set. We first rewrite it in canonical form:

L =
s⋃

i=0

t⋂
j=0

L̃ij

=

s⋃
i=0

(
∩rj=0Lij

⋂
∩tj=rLij

)

=

s⋃
i=0

(
∩rj=0Lij

⋂
∪tj=rLij

)

=
s⋃

i=0

(
L∩i

⋂
L∪i

)

=

s⋃
i=0

Li.

By Theorem 4.7 we can construct end-decisive MM-QFAs that accept partial
piecewise testable sets, Lij , with bounded positive one-sided error. Using these con-
structions and Corollaries 4.9 and 4.12, we can construct end-decisive MM-QFAs that
accept languages L∩i and L∪i with bounded positive one-sided error.

The constructions in Theorem 4.7 channel only nonnegative amplitude into their
accept states; furthermore, the constructions in Lemmas 4.8 and 4.11 do not negate
amplitude. Consequently, the constructions for languages L∩i and L∪i channel only
positive amplitude into their accept states. Hence, said constructions accept with
positive amplitude. Since L∪i is also accepted with bounded positive one-sided error,
by Lemma 4.13, we can construct an end-decisive MM-QFA that can accept L∪i with
bounded error.

Since L∩i is accepted by an end-decisive MM-QFA with bounded positive one-
sided error and L∪i is accepted by an end-decisive MM-QFA with bounded error, by
Lemma 4.14, we can construct an end-decisive MM-QFA that accepts Li = L∩i ∩L∪i
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with bounded error.
Since the languages Li can be accepted by end-decisive MM-QFAs with bounded

error, by Lemma 4.11, we can construct an end-decisive MM-QFA that accepts L =
∪iLi with bounded error.

5. Conclusions. We defined two models of 1QFA: the measure-once model that
performs one measurement at the end of the computation, and the measure-many
model that performs a measurement after every transition. The measure-many model
is strictly more powerful than the measure-once but is more difficult to characterize.

When restricted to accepting with bounded error, measure-once automata can
accept only group languages, while unrestricted measure-once automata can accept
irregular sets and, in particular, can solve the word problem on the free group. Any
language accepted by an MO-QFA can also be accepted by a PFA; therefore PFAs
can also solve the word problem on the free group. We also sketched an algorithm for
determining equivalence of two MO-QFAs.

The measure-many automaton is difficult to characterize. We have shown that the
two classes of languages, those accepted with and without bounded error, are closed
under complement and inverse homomorphisms; it is still an open question if these
classes are closed under Boolean operations. We defined the partial order condition
for languages and proved that it is a necessary condition for a language to be accepted
by an MM-QFA with bounded error. We also showed that piecewise testable sets can
be accepted with bounded error by MM-QFAs, and in the process detailed several
novel construction techniques.

We do not know if the partial order condition is also a sufficient condition for
bounded acceptance. If it is, then the two classes of languages accepted by an MM-
QFA are closed under intersection.1

Appendix A. End-marker theorems.
Theorem A.1. Let M be an MO-QFA that has both left and right end-markers.

There exists an MO-QFA M ′ that uses only one end-marker and is equivalent to M .
Proof. Let M = (Q,Σ, δ, q0, F ) be an MO-QFA with left and right end-markers,

effectively allowing M to start in any possible configuration. Let the symbol /c denote
the left end-marker. Define M ′ = (Q,Σ, δ′, q0, F ) from M . Let δ be defined in terms
of the transition matrices {Uσ}σ∈Σ. We define δ′ from δ in the following way: for
every σ ∈ Σ let

U ′σ = U−1

/c
UσU/c,

and let

U ′$ = U$U/c.

Now consider what happens when M and M ′ read a string x = x1 . . . xn. Since

U ′(x$) = U ′$U
′
xn
. . . U ′x1

= U$U/cU
−1

/c
UxnU/c . . . U

−1

/c
Ux1U/c

= U$Uxn . . . Ux1U/c

= U(/cx$),

1After this paper was submitted, Ambainis, Kikusts, and Valdats [4] showed that this condition
is not sufficient and that the class RMM is not closed under intersection.
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the probability of M accepting x is equal to the probability of M ′ accepting x. Thus
one end-marker on the right suffices, and by symmetry one left end-marker would
also suffice. Therefore, an MO-QFA starting in configuration |q0〉 can simulate an
MO-QFA starting in any arbitrary configuration.

Theorem A.2. Let M be an MM-QFA that has both left and right end-markers.
There exists an MM-QFA M ′ that uses only a right end-marker and is equivalent
to M .

Proof. Let M = (Q,Σ, δ, Qacc, Qrej) be an MM-QFA that uses two end-markers
and accepts L. Assume without loss of generality that

Qnon = {qi ∈ Q | 0 ≤ i < nnon},
Qacc = {qi ∈ Q | nnon ≤ i < nacc},
Qrej = {qi ∈ Q | nacc ≤ i < nrej = n = |Q|},

which facilitates a simpler description ofM ′. We constructM ′ = (Q′,Σ, δ′, Q′acc, Q
′
rej)

that accepts L with only the right end-marker. Let Q′ = Q∪{qn, qn+1, . . . , q2n−nnon},
Q′acc = {qn+i−nnon ∈ Q′ | qi ∈ Qacc}, and Q′rej = {qn+i−nnon ∈ Q′ | qi ∈ Qrej}. As-
sume that δ is defined in terms of transition matrices {Uσ}σ∈Σ. The construction of
{U ′σ}σ∈Σ is similar to that in the proof of Theorem A.1. Let Il represent an identity
matrix of size l and m = n−nnon. We define δ′ in terms of its unitary block matrices.
For all σ ∈ Σ let

U ′σ =

[
U−1

/c
Im

]
S

[
Uσ

Im

][
U/c

Im

]
,

U ′$ = S

[
U$

Im

][
U/c

Im

]
,

where

S =




Innon

Im
Im




transfers (sweeps) all probability amplitude from states in the old halting states to
the new halting states. The old halting states, those in Qacc and Qrej , are no longer
halting states in M ′. The operation of M ′ is similar to the operation of the QFA
constructed in Theorem A.1. The “sweeping” operation saves the amplitude that
was in the old states, while it performs the U−1

/c
operation in the new halting states

(since otherwise the U−1

/c
would corrupt the amplitude stored in the original halting

states).
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Abstract. Given a set V of n points in Rd and a real constant t > 1, we present the first
O(n logn)-time algorithm to compute a geometric t-spanner on V . A geometric t-spanner on V
is a connected graph G = (V,E) with edge weights equal to the Euclidean distances between the
endpoints, and with the property that, for all u, v ∈ V , the distance between u and v in G is at most
t times the Euclidean distance between u and v. The spanner output by the algorithm has O(n)
edges and weight O(1) · wt(MST ), and its degree is bounded by a constant.

Key words. computational geometry, sparse geometric spanners, cluster graph
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1. Introduction. Complete graphs represent ideal communication networks,
but they are expensive to build; sparse spanners represent low-cost alternatives. The
weight of the spanner network is a measure of its sparseness; other sparseness measures
include the number of edges, the maximum degree, and the number of Steiner points.
Spanners for complete Euclidean graphs as well as for arbitrary weighted graphs find
applications in robotics, network topology design, distributed systems, design of par-
allel machines, and many other areas and have been a subject of considerable research
[1, 2, 4, 8, 11].

Consider a set V of n points in Rd, where the dimension d is a constant. A network
on V can be modeled as an undirected graph G with vertex set V and with edges
e = (u, v) of weight wt(e). A Euclidean network is a geometric network where the
weight of the edge e = (u, v) is equal to the Euclidean distance d(u, v) between its two
endpoints u and v. Let t > 1 be a real number. We say that G′ is a t-spanner for V if,
for each pair of points u, v ∈ V , there exists a path in G′ of weight at most t times the
Euclidean distance between u and v. A sparse t-spanner is defined to be a t-spanner
of size (number of edges) O(n) and weight (sum of edge weights) O(1) · wt(MST ),
where wt(MST ) is the total weight of a minimal spanning tree. Given a geometric
network G = (V,E), a (generic) weight function wt defined on its edges, and two
vertices u, v ∈ V , we let D{G,wt}(u, v) denote the weight of the shortest path from u
to v in G for the weight function wt.

The problem of constructing spanners has been investigated by many researchers.
Levcopoulos and Lingas [10] presented an O(n log n)-time algorithm that produced
a sparse t-spanner for the two-dimensional case. It works by taking any t-spanner
which has the form of a (possibly partial) triangulation and achieving almost the
same t as that triangulation. However, the problem gets much more difficult in higher
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dimensions. There are several algorithms that run in time O(n log n) [3, 9, 15, 17].
However, they only guarantee a linear number of spanner edges, and they do not
guarantee low weight. Das and Narasimhan [8] gave an O(n log2 n)-time algorithm
that constructs, for any set V of n points in Rd and any constant t > 1, a sparse
t-spanner for V in which the degree of every point is bounded by a constant. Chen,
Das, and Smid [5] showed that the lower bound for computing any t-spanner for a
given set of points V in Rd is Ω(n log n) in the algebraic computation tree model.

Mount [12] showed that a significant result claimed in Arya et al. [2] of an
O(n log n)-time algorithm to compute a low-weight Euclidean spanner is incorrect.
Thus the problem of devising an O(n log n)-time algorithm to produce low-weight
spanners remained unsolved.

Before a correct O(n log n)-time algorithm was presented, sparse spanners were
used in designing efficient approximation schemes for geometric problems. Rao and
Smith [14] made a breakthrough by showing an optimalO(n log n)-time approximation
scheme for the well-known Euclidean traveling salesperson problem, assuming that it
is possible to compute sparse spanners in time O(n log n). Also, Czumaj and Lingas
[6] showed approximation schemes for minimum-cost multiconnectivity problems in
geometric graphs that also depended on the assumption that sparse spanners could
be computed in O(n log n) time. Thus the existence of an O(n log n)-time algorithm
to construct sparse spanners became a critical open problem. Note that the most
efficient algorithm to construct sparse spanners is due to Das and Narasimhan [8] and
runs in O(n log2 n) time. In this paper we show the following theorem.

Theorem 1. Given a set V of n points in d-dimensional space and any real
constant t > 1, in the algebraic decision tree model of computation, a sparse t-spanner

of the complete Euclidean graph can be constructed in O( n log2 n
log log n ) time. If the model

is extended with indirect addressing, a sparse t-spanner of the complete Euclidean
graph can be constructed in O(n log n) time. The constants implicit in the O-notation
depend on t and d.

It was shown in [8] that the greedy algorithm produces spanners with O(n) edges
and weight O(wt(MST )). However, a naive implementation of the greedy algorithm
(shown in Figure 1) takes O(n3 log n) time, mainly due to the fact that a quadratic
number of shortest path queries are needed to be answered in a “dynamic” graph with
O(n) edges. Each of the queries takes O(n log n) time.

Our algorithm is inspired by the algorithm due to Das and Narasimhan [8]. They
showed how to use clustering in order to speed up shortest path queries; i.e., they
showed that approximate shortest path queries sufficed to produce sparse spanners.
However, their algorithm was not efficient enough because they were unable to main-

Algorithm Standard-Greedy(G, t)
1. sort the edges in E by increasing weight
2. E′ := ∅
3. G′ := (V,E′)
4. for each edge (u, v) ∈ E do
5. if ShortestPath(G′, u, v) > t · d(u, v) then
6. E′ := E′ ∪ {(u, v)}
7. G′ := (V,E′)
8. output G′

Fig. 1. The naive O(n3 logn)-time greedy spanner algorithm.
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tain the clusters efficiently, and the algorithm had to frequently rebuild the clusters.
For convenience, we will refer to the O(n log2 n)-time algorithm from [8] as the DN-
clustering spanner algorithm. We retain the general framework of that algorithm. Our
main contribution is in developing techniques to efficiently perform clustering. We
believe that the techniques that we have developed are likely to be useful in designing
other greedy-style “dynamic algorithms,” i.e., in situations where only insertions take
place and particularly in increasing order of length. What we prove in this paper is
that, after some preprocessing, given a linear-sized edge-weighted graph with integral
edge weights in the range [0, N ], and given a set of cluster centers, one can perform
clustering very efficiently in only O(n+N) time.

The terms length and weight are used interchangeably throughout the paper.

2. An improved spanner algorithm. We first describe the previous cluster-
based spanner algorithm due to Das and Narasimhan [8]. Then, in section 2.2, we
present a simple modification to the DN-clustering algorithm to construct sparse t-
spanners.

2.1. The DN-clustering spanner algorithm. The algorithm by Das and
Narasimhan [8] can roughly be described as follows.

The algorithm starts with an empty spanner G′. A preprocessing step helps to
eliminate all but a linear number of edges from further consideration. For a given
value of t, this step is performed by a call to an O(n log n)-time algorithm presented
by Salowe [15] or Arya et al. [2] to compute a spanner with stretch factor

√
t/t′ (for

some t > t′ > 1). Among the edges not eliminated, very short edges (i.e., those of
length at most D/n, where D is the distance between the farthest pair of points) are
simply added to G′ since their contribution to the overall weight of the spanner cannot
be more than the weight of a minimum spanning tree, wt(MST ). For the remaining
edges, the greedy algorithm is simulated by sorting the edges (by increasing weight)
and then processing them in logn phases. Greedy processing of an edge e = (u, v)
entails a shortest path query, i.e., checking whether D{G′,wt}(u, v) ≤

√
tt′ · wt(e). If

the answer to the query is no, then edge e is added to the spanner G′, or else it is
discarded. Whenever shortest path queries are required to be answered, these are not
solved on the spanner G′ being constructed. Instead, they are solved on a cluster
graph H, which is simultaneously maintained. A set of points C ⊆ V is a cluster
of radius r with cluster center v ∈ C if, for every point u ∈ C, there is a path in
G′ between v and u of length at most r. A set of clusters C1, . . . , Ck is a cluster
cover of G′ if every point in V belongs to at least one cluster. A cluster graph H
can be constructed from a cluster cover by adding two types of edges: intracluster
edges (edges connecting the cluster center of a cluster C to all other vertices in C)
and intercluster edges (edges connecting two cluster centers). The cluster graph H
from [8] has the following properties:

1. distances in H “approximate” distances in the current spanner graph G′,
2. every vertex in H has bounded degree, and
3. “specialized” shortest path queries in H can be answered in O(1) time.

Item 1 was demonstrated by showing that corresponding distances in H and G′ differ
by only a small constant factor. The shortest path query when processing edge e =
(u, v) is “specialized” in the sense that, at the instant that this query is processed,
the cluster graph H has only edges between clusters (the so-called intercluster edges)
whose lengths are within a constant factor of wt(e).

In order to understand how shortest path queries can be answered efficiently,
we note that, in an unweighted graph with bounded degree, checking whether the



1482 J. GUDMUNDSSON, C. LEVCOPOULOS, AND G. NARASIMHAN

distance between two vertices u and v is at most a constant
√
tt′ can be achieved in

O(1) time (since there are only O(1) vertices at the distance t from u). Thus, for all
practical purposes, the cluster graph H behaves like an unweighted graph of bounded
degree for which a bounded radius subgraph around vertex u needs to be searched for
the presence of vertex v. It is thus easily shown that specialized shortest path queries
can be answered in O(1) time.

Since the edges considered have weights in the range (D/n,D] and they are pro-
cessed in log n phases, the edges can be sorted into log n bins, where the ith bin has
edges of weight in the range (2i−1 ·D/n, 2i ·D/n]. In order for shortest path queries
to be answered quickly, the cluster graph has to be carefully maintained. At the
end of each phase, the cluster graph is recomputed from scratch using the graph G′.
This was deemed necessary since, in order to answer specialized shortest path queries
about edge e=(u, v) in constant time, all intercluster edges in H need to be of length
within a constant factor of d(u, v).

The time complexity analysis is straightforward. Preprocessing steps ran in
O(n log n) time. The O(n) shortest path queries were processed in O(n) time, since
each query took only O(1) time. The cluster graph computation at the start of each
phase took O(n log n) time (since it involved running Dijkstra’s shortest path algo-
rithm on linear-sized graphs starting from sequentially selected cluster centers). Since
there were log n phases, the cluster graph computations took a total of O(n log2 n)
time. The crucial observation made in [8] was that shortest path queries need not
be answered precisely. Instead, approximate shortest path queries suffice to produce
low-weight spanners. The second observation was that shortest path queries are ex-
pensive if the shortest path involves a number of short edges and that clustering can
help to eliminate all short edges. This, of course, meant that the greedy algorithm,
too, was only approximately simulated by the algorithm.

2.2. A faster spanner algorithm. In this section, we present a simple modifi-
cation to the DN-clustering algorithm to construct sparse t-spanners. This algorithm
improves on the time complexity of the DN-clustering algorithm and runs in time

O( n log2 n
log log n ) in the algebraic decision tree model of computation.
First we observe that there is wide disparity in the overall time spent by the

DN-clustering algorithm on shortest path queries (O(n)) and the time spent on the
cluster graph computations (O(n log2 n)). In order to balance the two costs, it is
necessary to do fewer than O(log n) cluster graph computations. This in turn would
make the shortest path queries more expensive because it increases the ratio between
the lengths of the longest and shortest edges in the cluster graph, which implies that
the number of edges along the shortest path between two cluster centers will also
increase, and therefore the query time will also increase. Instead of processing the
edges in log n phases, we process them in 4·d·logn

log log n batches. We use the term batches
to distinguish from the word phases used by the earlier DN-clustering algorithm.

If the clustering is recomputed after processing every batch of edges, the total time

for cluster graph computations will be O( n log2 n
log log n ), since each call to the clustering

algorithm takes O(n log n) time. We carefully analyze the cost of the O(n) shortest
path queries and show that it can now be answered in a total of O(n log n) time. In
phase i of the DN-clustering algorithm, edges from the ith bin were processed. These
edges had weights in the range (W, 2W ], where W = 2i−1(D/n). During phase i,
the cluster graph H could have intercluster edges whose weights were in the range
(δW, 2W (1+2δ)], where δ < 1

2 is a positive constant. This meant that, for edge (u, v)
of weight l ∈ (W, 2W ], checking whether there is a path from u to v of length at most
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t · l could be done in O(1) time. More precisely, it was observed in [8] that, if there
exists a path from u to v of length at most t · l, then the number of edges on this
path can be at most 2t

δ . It was further observed that, since the vertices of H had a

constant degree bound (say, c), and since there are at most O(c
2t
δ ) vertices that lie

2t
δ edges away from vertex u, this shortest path query could be done in O(c

2t
δ log c

2t
δ )

time. A tighter analysis was unnecessary in the DN-clustering algorithm of [8] since
c, t, and δ were all constants; below we show an improved analysis of this cost.

Recall that our algorithm works in 4·d·logn
log log n batches. Batch i of our algorithm can

be described as follows. For W = 2
(i−1)·log log n

4·d (D/n), the edges processed in batch i

have weights in the range (W,W2
log log n

4·d ]; i.e., they are in the range (W,W (log n)
1

4·d ].

Thus, for edge (u, v) of weight l ∈ (W,W (log n)
1

4·d ], we need to check whether there is
a path from u to v of length at most

√
tt′ · l. During batch i, the cluster graph H can

have intercluster edges with weights in the range (δW, (1 + 2δ)W (log n)
1

4·d ]. Thus, if
there does exist such a path from u to v, then the number of edges on this path can

be at most
√
tt′(log n)

1
4·d

δ . The crucial observation we make is that the vertices of the
cluster graph correspond to clusters of radius δW . These clusters may overlap, but
their centers can lie in only one cluster. In other words, if these clusters are shrunk
in half, they do not intersect. Thus the vertices correspond to disjoint clusters of
radius δ ·W/2. Now it is possible to bound the number of vertices within distance

at most
√
tt′ · l = √tt′W (log n)

1
4·d . Packing arguments [8] show that, in Rd, the

number of balls of radius r that can be packed in a ball of radius R is bounded by
O((R/r)d). Thus the number of balls of radius r = δW

2 that can be packed in a ball of

radius R =
√
tt′W (log n)

1
4·d is at most O(( t·(log n)

1
4·d

δ )d). Due to the constant degree,
the maximum number of vertices and edges that can be reached when performing

Dijkstra’s algorithm starting from vertex u is O(( t·(log n)
1

4·d
δ )d) = O((log n)

1
4 ) (since

t, d, and δ are constants). We conclude that Dijkstra’s algorithm for a shortest path

query has a time complexity ofO((log n)
1
4 ·(log((logn)1/4))) = O(log n). Thus allO(n)

shortest path queries can be answered in O(n log n) time. Note that, even though the
clustering and shortest path costs are not precisely balanced, it is possible to prove
(using lengthy but straightforward algebraic calculations) that (asymptotically) it
cannot be improved. The obtained spanner satisfies the leapfrog property [8] (also
defined in section 5), which implies that the weight of the spanner is O(wt(MST ).

Theorem 2. In the algebraic decision tree model of computation, given a set V
of n points in d-dimensional space and any real constant t > 1, a sparse t-spanner of

the complete Euclidean graph can be constructed in O( n log2 n
log log n ) time. The constants

implicit in the O-notation depend on t and d.

3. A fast spanner algorithm that uses indirect addressing. In the rest
of the paper, we describe an efficient algorithm to construct sparse spanners with
a running time of O(n log n). This algorithm is also inspired by the DN-clustering
algorithm in [8]. As explained in section 2.1, the reason their algorithm runs in
time O(n log2 n) is that the clustering step takes O(n log n) time per phase. The
running time for our algorithm is achieved by designing a linear time algorithm for an
“approximate” version of the clustering step, thus executing all the clustering steps
in O(n log n) total time.

One crucial idea that we employ to speed up the clustering is to replace the
real-valued edge weights by integral values. As observed in [8], the shortest path
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queries required by the algorithm need not be answered precisely; approximately cor-
rect answers suffice. A convenient way to achieve the integralization is to use the
floor /ceiling function. However, this assumes a more powerful model of computation.
In order to get around this problem, we reduce the dependence of the algorithm on the
floor/ceiling function and compute the floor/ceiling function by using operations al-
lowed under the algebraic computation tree model extended with indirect addressing.
The second crucial component of our algorithm is an implementation of the clustering
algorithm in O(n) time assuming small integral edge weights for the edges. We also
prove that the integralization introduces only a bounded amount of error and that
this error bound helps to prove the correctness of the other required operations. The
third and final crucial component in our algorithm is that we show how it is possible
to select the cluster centers for each stage of the algorithm in linear time.

The improved spanner algorithm can be roughly described as follows; see Fig-
ure 2. It is important to note that the skeleton of the algorithm is similar to the
DN-clustering algorithm from [8]. In particular, this improved algorithm also runs in
O(log n) phases. If a fewer number of phases are used, then the error due to integral-
ization could be too large. Even if a fewer number of phases can be used, the running
time of the overall algorithm will remain as O(n log n), since it is dominated by other
steps in the algorithm. In particular, the integralization itself has an initial cost of
O(n log n).

The algorithm starts with an empty spanner G′ and employs the same first (pre-
processing) step to eliminate all but a linear number of edges. For a given value of t,
this step is performed by a call to an O(n log n)-time algorithm presented by Arya et
al. [2] to compute a spanner with stretch factor

√
t/t′ (for some t > t′ > 1) and with

bounded degree. As in [8], in the next step, short edges of length at most D/n are
simply added to G′; their contribution to the overall weight of the spanner is bounded
by O(wt(MST )). The greedy algorithm is then simulated on the remaining edges of
the initial spanner.

The edges of the graph have real-valued weights that are equal to the Euclidean
distance between their endpoints. The edges are sorted by increasing weight and
then processed in log n phases. Each of the edges in the spanner graph also have
corresponding integer-valued weights that are sufficiently close approximations of the
real-valued weights; these integer-valued weights change through the course of the
algorithm, becoming coarser and coarser approximations as the algorithm progresses.
In order to distinguish between the real- and integer-valued weights, we assume that
there are two different weight functions defined on the edges of G′. For edge e = (u, v),
the real-valued weight function wt(e), as mentioned before, is defined as the Euclidean
distance d(u, v) between u and v. The integer-valued weight function, denoted by
Iwti(e), is a function of wt(e) and the phase number i. It is maintained during the
execution of the algorithm, as will be described later. Whenever the phase number is
clear from the context, we use the simpler notation Iwt(e) instead of Iwti(e). Also,
unless specified otherwise, we assume that, when we refer to the weight of an edge,
we are referring to the real-valued weight of the edge.

At the start of each phase, the integer-valued weight function Iwt(e) is recom-
puted for this phase. Then a set of vertices of G′ are selected as cluster centers,
and a cluster graph H is constructed from the current spanner graph G′, using the
weight function Iwt. This cluster graph H is a simpler graph than the graph G′, and
distances between vertices in H are reasonably close to distances between the same
pair of vertices in G′. Clustering is made more precise in section 3.2. The difference
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between this and the one in [8] lies in the fact that the cluster centers have to be se-
lected before the clustering is done, and the clustering is done with the weight function
Iwt. As mentioned before, we improve on the time complexity of this clustering step
and show how it can be implemented to run in O(n) time. Once the cluster graph
H is constructed, the algorithm processes the set of edges for that phase. Greedy
processing of an edge e = (u, v) entails, as before, a shortest path query, i.e., checking
whether D{G′,wt}(u, v) ≤ t · wt(e). We answer an approximate version of this query,
i.e., performing a shortest path query on the simpler graph H and not on the partial
spanner graph G′. If the answer to the approximate query is “no,” edge e is added to
the graph G′; otherwise, it is discarded. Each of the steps is described in more detail
in the rest of the paper.

In section 3.1, we describe the integralization process and analyze the error due
to it. The clustering algorithm is described in section 3.2, and, finally, in section 3.3,
we describe how to compute the shortest paths in the cluster graph and prove that
the total running time of the algorithm is O(n log n).

The detailed algorithm is given in Figure 2. The inputs are V , which is a set of
n points in d-dimensional space, and two constants t and t′ such that 1 < t′ ≤ t. As
one can see, it is similar to the DN-clustering algorithm except for the integralization
steps (steps 10, 11, 14, and 22) and the computation of the cluster centers (steps 12
and 21). In sections 4 and 5, we will show that the output G′ indeed is a t-spanner
and that a suitable selection of the input parameter t′ will guarantee that G′ has small
weight. Recall that the truly time-critical step of this algorithm is the clustering step
(step 15) and selecting the new cluster centers for the next phase (step 21). Both of
these steps will be closely described in section 3.2. Note that the two values bounding
δ are decided in Lemmas 14 and 17.

3.1. Integralization. As mentioned before, in order to speed up the cluster
graph computation, we replace the real-valued edge weights by integral values. The
integralization changes in every phase. It is done in such a way that the edge weights
and distances encountered in that phase are always in the range [0, N ], where N = c·n
for some constant integer c. The choice of c will dictate the errors introduced in the
distance computations; this will be discussed later.

A closer inspection of a phase leads to the following simple observations. At the
start of phase i, the spanner graph constructed so far has edges of weight at most Wi.
During phase i, the edges considered for inclusion by the greedy algorithm are in the
range (Wi, 2Wi]. The shortest path query for an edge of length l involves checking
whether the distance between a given pair of vertices is at most t · l. Hence the longest
paths that need to be dealt with during phase i are of weight t · 2Wi. The idea is
to make the largest distance we consider in phase i correspond to the integer c · n.
To be on the safe side, since there are small errors in the distance computations, we
set 2(t · 2Wi) to correspond to c · n. Thus, in phase i, the unit integer length will
correspond to the real length of Ui =

4·t·Wi

c·n .
Although a constant-time floor/ceiling function is not used in the algorithm, a

convenient way to describe the integralization is as follows:

Iwti(e) :=

⌈
wt(e)

Ui

⌉
.

We will describe below how the integralization step is performed.

3.1.1. Error bounds. As defined above, we observe that the integralization
function Iwt always involves a rounding up (Iwti(e)·Ui ≥ wt(e)). Thus, in phase i, the
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Algorithm Improved-Greedy(V, t, t′)
1. Compute a (

√
t/t′)-spanner G = (V,E) using the algorithm from [2]

2. δ := min
( √

tt′−(1+ε)t′

2(1+ε)(
√

tt′+3t′)
,

√
tt′−(1+ε)

2(
√
tt′(1+ε)+5+7ε+2ε2)

)
3. D := length of longest edge in E
4. E′ = {e ∈ E | wt(e) < D/n}
5. G′ := (V,E′)
6. Wi := 2(i−1)D/n for i = 1, 2, . . . , logn
7. r := 	n

ε

;R = 	 n

εδ

; Comment: R & r are integral versions of Wi & δWi.

8. for i := 1 to log n− 1 do
9. Ei := set of (sorted) edges of E with weights in (Wi,Wi+1]
10. Build Integer tree with values {1, . . . , cn}
11. Integralize(E′, 1)
12. C1 := Naive-Centers(G′, δW1);
13. for i := 1 to log n do
14. Integralize(Ei, i)
15. H := Cluster-Graph(G′, Iwt, Ci, r, R)
16. for each edge e = (u, v) ∈ Ei in increasing order do

17. if not Short-Path

(
H,u, v,

n
√
tt′d(u,v)
εδWi

)
then

18. E′ := E′ ∪ {e}
19. G′ := (V,E′)
20. InterEdgesType2(u, v)
21. Ci+1 := Update-Centers(H, i, Ci, r)
22. ReIntegralize(E′)
23. output G′

Fig. 2. The O(n logn)-time spanner algorithm.

error in the length of any single edge is at most Ui. In other words, Iwti(e)·Ui−wt(e) ≤
Ui. Note that this error is an additive or an absolute error. Since any simple path
can use at most n− 1 edges, the error in the length of any simple path of the spanner
graph is less than nUi. Another consequence is that, given two simple paths P1 and
P2, if Iwt(P1) = Iwt(P2), then |wt(P1) − wt(P2)| < nUi. It follows that nUi is also
a bound on the error that can be introduced when running Dijkstra’s single-source
shortest path algorithm using the integral weights instead of the real weights. The
following lemma formalizes this statement.

Lemma 3. In phase i, if D{G′,wt}(u, v) > Wi for some u, v ∈ G′, then

D{G′,wt}(u, v) ≤ D{G′,Iwt}(u, v) · Ui <
(
1 +

4t

c

)
·D{G′,wt}(u, v).

Proof. Since wt(e) ≤ Iwti · Ui = 	wt(e)Ui

 · Ui < wt(e) + Ui, we have

D{G′,wt}(u, v) ≤ D{G′,Iwt}(u, v) · Ui
< D{G′,Iwt}(u, v) + nUi

= D{G′,wt}(u, v) +
4tWi

c

<

(
1 +

4t

c

)
D{G′,wt}(u, v).

As a direct consequence, we obtain the following important corollary.
Corollary 4. For a path P in G′ with wt(P ) ≥ δWi, the absolute error in

computing its weight is at most nUi, and the relative error is at most nUi

δWi
= 4t

cδ .
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3.1.2. Computing the integralization. Here we show how to compute the
integer values of the weights of the edges over all phases in O(n log n) total time
without using the floor/ceiling function.

We first observe that the spanner graph has at most O(n) edges at the start of
any phase. Consider a specific phase i. In this phase, for a specific edge e, since its
integer value is in the range [0, N ] (where N = c · n), Iwt(e) can be computed in
O(log n) time without the use of the floor/ceiling function by performing a binary
search on the set of real values j · Ui, for j = 0, . . . , N . We assume that the function
Integralize(Ei, i) performs this operation for each edge in the set Ei in O(log n)
time per edge.

If the above observations are used in a naive fashion for all edges, then the cost
of integralization is O(n log n) just for one phase. Since the number of phases is not
constant, the integralization would turn out to be too expensive. We have to show
that the algorithm spends O(log n) time for computing the integralization of an edge
weight over all the phases. The idea is to compute the integral value in O(log n)
time when the edge is encountered for the first time. Integralizations of an edge for
subsequent phases is done by calling ReIntegralize, and are computed in constant
time from the integer weights of the edge computed in the previous phase. If the
integral weight of an edge is I in phase i, then the integral weight of the edge in phase
i+1 will be I/2 if I is even and (I+1)/2 if it is odd. This is correct since Ui+1 = 2Ui;
i.e., the integralization in phase i+ 1 is twice as coarse as that in phase i. Checking
if an integer is odd or even cannot be done in constant time in our model but can be
easily accomplished by using O(n) preprocessing. One way to accomplish this would
be to build a balanced leaf-oriented binary tree including c · n leaves with the values
1, . . . , cn. Every element in the tree, with value val, also contains a pointer to the
element in the tree containing the value 	 val2 
. Assume for simplicity that c · n = 2c

′
.

The tree can be built top-down in linear time. The root will have value 1. Consider a
node v with value $. The left child of v will have the value 2$− 1, and the right child
will have value 2$. This step is repeated until all of the leaves are at level c′. Hence,
by using O(n)-time preprocessing, the integral weight of an edge for the next phase
can be computed in constant time. Another way to handle this problem would be to
extend the model of computation with trigonometric functions, i.e., the sine function.

Note also that the relative error for an edge with newly computed weight is less
than Ui+1; hence Lemma 3 still holds. It is clear that ReIntegralize(E

′) performs
its operation for each edge in the edge set E′ in O(1) time per edge.

The above explanation proves that the integralization is computed in O(n log n)
time for all edges over all phases. The integer weights are then used directly in the
clustering algorithms described below.

3.2. Clustering the graph. Now we turn our attention to the main contri-
bution of this paper, namely, how to construct a cluster graph in linear time. First
we have some definitions. Here we assume that G = (V,E) is a metric graph with
a weight function w defined on its edges E. The following definition of a cluster is
modified from the one in [8] to allow for arbitrary weight functions. The definition of
a cluster cover is also modified and is defined for a given set of cluster centers. Figure
3 illustrates a cluster and a cluster cover.

Definition 5 (cluster, cluster center, and radius). Given a vertex v ∈ V and
a nonnegative real value r, Cluster(G, v, r, w) is defined as the set of all vertices
U ⊆ V such that D{G,w}(v, u) ≤ r for all u ∈ U . The vertex v is called the cluster
center of this cluster, and r is called the radius of the cluster.
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v

Fig. 3. (a) A cluster with center at v and radius r. (b) The clusters K1, . . . ,K7 form a cluster
cover.

Definition 6 (cluster-cover). Given a set of cluster centers C = {v1, . . . , vm} ⊆
V and a radius r, the Cluster-Cover(G,C, r, w) (if it exists) is a set of clusters
K = {K1, . . . ,Km} such that Ki, for 1 ≤ i ≤ m, is a cluster with radius r and cluster
center vi and such that K1 ∪K2 ∪ · · · ∪Km = V .

The set C and the radius r will be chosen in such a way that the cluster cover
always exists. In general, clusters in a cluster cover may overlap. In our algorithm, the
cluster centers will be reasonably far apart so that the amount of overlap is limited.
We also modify the definition from [8] of a cluster graph so that it is a bit more general
and is defined for a given set of clusters and for an arbitrary weight function.

Definition 7 (cluster graph). Assume that C = {v1, v2, . . . , vm} ⊆ V is a given
set of cluster centers. For a given radius r, we assume that K = {K1,K2, . . . ,Km}
is equal to Cluster-Cover(G,C, r, w). Given a second radius R > r, Cluster-
Graph(G,w,C, r,R) is defined as a graph H = (V,EH) with a weight function w
defined on its edges EH . The weight of an edge [u, v] in EH is defined to be equal
to D{G,w}(u, v). (We use square brackets to distinguish cluster graph edges from the
edges of G.) The edges of H are defined as follows.

Intracluster edges. For all Ki and for all u ∈ Ki, [u, vi] ∈ EH .
Intercluster edges. For all vi, vj ∈ C, [vi, vj ] is an intercluster edge

if either
1. vi /∈ Kj and vj /∈ Ki and D{G,w}(vi, vj) ≤ R (type 1), or
2. there exists e = (ui, uj) ∈ E such that ui ∈ Ki and uj ∈
Kj (type 2).

3.2.1. Computing the cluster cover. Here we describe how the cluster cover
is computed efficiently under some assumptions. Once a cluster cover is computed,
we show later that it is straightforward to construct the cluster graph.

Note that the input to the cluster cover computation is a weighted graph G =
(V,E) with a weight function w defined on its edges, a set C ⊆ V of cluster centers,
and a radius R. We will assume that |V | = n, |E| = O(n), the weight function w is an
integral, and the radius R is an integer. Since we do not have to deal with distances
greater than R, we can safely assume that the weight of any edge is an integer value
in the range [0, R]. We will further assume that the cluster centers are chosen in
such a way that a cluster cover exists, which will be shown in section 3.3. The
obvious way to implement this algorithm is as it was done in [8], i.e., to run Dijkstra’s
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single-source shortest path algorithm from all the cluster centers and to compute the
clusters in the cluster cover. However, this has a running time of O(n log n). In order
to speed it up, we run Dijkstra’s algorithm in parallel from all the cluster centers and
use a simple and fast priority queue, which we denote by PQ. The priority queue
we use is an array of size R, indexed from 1 to R, as shown in Figure 4. This is
sufficient for our purposes because of the following reasons. First, the weight function
is integral, and the array contains all possible distance values from the cluster centers
to vertices in the clusters. Second, it is well known that, in Dijkstra’s algorithm,
once a vertex has been extracted from the priority queue, its distance from the source
will never be updated again, and the distance from the source at the time of the
extraction is the correct distance from the source. In other words, the minimum
value of the items in the priority queue is monotonic. Since the priority queue is an
array, Extract-Min can be implemented as a scan through the array for the “next”
largest item.

One problem is that clusters can overlap and that vertices may have entries in the
priority queue with distances from several cluster centers. Let σ denote the maximal
number of clusters that a vertex may belong to. The problem can be taken care of
by augmenting the priority queue entries to be a pointer to a linked list where every
entry in the list also stores information about the vertex as well as the corresponding
cluster center. Since a vertex belongs to at most σ clusters, the space complexity
of the priority queue will be O(n · σ + R). Also, every vertex contains a list of the
clusters it belongs to.

It should be noted that this version of Dijkstra’s algorithm, as shown in Figure 5,
needs to perform a number of Relax steps and that in each such step the priority
queue may need to be updated. The process of Relaxing an edge (u, v) consists of
testing whether we can improve the shortest path to v found so far by going through
u and, if so, updating the value for v, i.e., adding a new entry and removing an old
entry. Since every vertex contains information about which clusters it belongs to and
the distance to each cluster center, each update is performed in time O(σ). It should
be pointed out that this is the only place where we are unable to eliminate the use
of indirect addressing since it is critical that this update be performed efficiently, i.e.,

b

c

a

6

7

5

9

3

13

x

4
3
2
1

5
6
7
8
9

4
3
2
1

5
6
7
8
9

y,c

x,a

x,b x,b
y,b

x,a

y,c

y

Fig. 4. An example of how the cluster cover is computed with x and y as cluster centers and
radius R = 9. The array to the left is the initial priority queue after all edges leading out of x
and y have been processed. The array to the right shows the final priority queue. Note that, after
vertex c was processed, the edge (c, b) was relaxed, and (y, b) was inserted into the priority queue
with length 8.
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Algorithm ParallelDijkstra
1. Q := Initialize(G′, ClusterCenters) O(n)
2. while Q �= ∅ do O(n · σ)
3. u := ExtractMin(Q)
4. for each vertex v adjacent to u do O(1)
5. Relax(u, v, Iwt) O(σ)

Fig. 5. The parallel Dijkstra algorithm.

in constant time. Also note that an edge (u, v) may be Relaxed several times (O(σ)
times), each time with respect to a different cluster center.

Thus the time and space complexity of the algorithm is affected by the amount of
overlap of the clusters in the cluster cover. The space complexity of the data structure
is O(n · σ +R). Furthermore, the Relax operation has a running time of O(σ), and
the total number (O(n · σ)) of ExtractMin operations can be performed in total
time O(n · σ + R). A careful implementation of cluster cover can be made to run in
time O(n · σ2 + R). The value of R in our applications will be O(n); hence the time
complexity will be O(n · σ2).

3.2.2. Computing the cluster graph. Now we are ready to describe how to
compute the cluster graph. The input is a weighted graph G with a weight function
w, a set of cluster centers C = {v1, . . . , vm}, and two different radii r and R, where
R > r. In order to compute the cluster graph, the algorithm computes a cluster cover
from the same set of cluster centers but with the two radii r and R. Let the cluster
covers with radii, r and R be denoted by Kr and KR, respectively. We augment the
cluster cover procedure to also produce a data structure that supports the following
queries for both the cluster covers.

• FindCenters(v,K): Given v ∈ V , it returns all cluster centers vi such that
v is in a cluster from K centered at vi; i.e., D{G,w}(v, vi) is at most the radius
of the clusters in K. It also returns D{G,w}(v, vi) for these cluster centers.
• ComputeDistance(vi, v): Given v ∈ V and a cluster center vi, it returns

the quantity D{G,w}(v, vi) if D{G,w}(v, vi) ≤ R; otherwise, it returns the
value ∞.

Now the cluster graph H = (V,EH) is computed easily as follows. The intracluster
edges of H are computed by performing FindCenters queries for each vertex v ∈ V
in the cluster cover Kr and adding the corresponding edges. Recall that FindCen-
ters returns a set T of 2-tuples, where each tuple t consists of a vertex t.u and its
distance t.d to v. The algorithm is described in pseudocode in Figure 6 and has a
running time of O(n · σ).

From Definition 7, we have that each intercluster edge can be one of two types—
either type 1 or type 2. The type 2 edges are only added after the initial construction

Algorithm IntraEdges
1. for every vertex v ∈ V do
2. T := FindCenters(v,Kr)
3. for every element t ∈ T do
4. AddEdge(H, v, t.u, t.d); Comment: add edge (v, t.u) of weight t.d to H

Fig. 6. Algorithm to add intracluster edges.



CONSTRUCTING SPARSE SPANNERS 1491

Algorithm InterEdgesType1
1. for every cluster center v in Kr do
2. T :=FindCenters(v,KR)
3. for every element t ∈ T do
4. if (ComputeDistance(v, t.u) ≥ r) then
5. AddEdge(H, v, t.u, t.d)

Fig. 7. Algorithm to add intercluster edges of type 1.

to maintain the cluster graph and will be considered in the next paragraph. An
edge [vi, vj ] of type 1 is added if vi /∈ Kj , vj /∈ Ki, and D{G,w}(vi, vj) ≤ R, where
Ki,Kj ∈ Kr are clusters with centers at vi and vj . For every cluster center vi, we use
the FindCenters query to list all the clusters from KR that it is contained in. The
centers vj of these clusters satisfy the condition that D{G,w}(vi, vj) ≤ R. Now we use
the ComputeDistance queries to make sure that vi /∈ Kj and vj /∈ Ki. Adding the
intercluster edges of type 1 is done in time O(n · σ2), as shown in the algorithm in
Figure 7.

The time complexity of computing the cluster graph is O(n · σ2). Having the
cluster centers selected before performing the clustering enables clusters to be grown
in “parallel,” and thus the above algorithm is able to use one common priority queue
to grow all the clusters and is consequently able to perform the clustering efficiently.

3.2.3. Maintaining the cluster graph during a phase. An edge [vi, vj ] of
type 2 is added if there exists an edge e = (ui, uj) ∈ E such that ui ∈ Ki and
uj ∈ Kj . During the computation of the cluster graph H at the start of a phase, only
intracluster edges and intercluster edges of type 1 are added. Additional edges may
be added during a phase of the greedy algorithm. Every time the greedy algorithm
decides to add an edge e = (u, v) to the partial spanner graph, several intercluster
edges of type 2 may be added to H. This is achieved as follows: for every edge
e = (ui, uj) that is to be added to G′, perform FindCenters queries for ui and
uj from Kr, and join the corresponding cluster centers by intercluster edges in H.
The weight of such edges is computed by performing two ComputeDistance queries
for ui and uj with the corresponding cluster centers and adding it to the weight of
(ui, uj). Note that this gives a safe upper bound on the true distance between ui and
uj . The ratio of R to r determines the maximum error represented by the bound. It
is clear that the function shown in Figure 8 runs in O(σ2) time, and it is performed
O(n) times.

3.2.4. Selecting the cluster centers for a phase. In order for the Cluster-
graph function to be implemented efficiently, it needs to have the set of cluster

Algorithm InterEdgesType2(ui, uj)
1. T1 :=FindCenters(ui,Kr)
2. T2 :=FindCenters(uj ,Kr)
3. for every t1 ∈ T1 do
4. for every t2 ∈ T2 do
5. AddEdge(H, t1.u, t2.u, t1.d + w(ui, uj) + t2.d)

Fig. 8. Algorithm to add intercluster edges of type 2.
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centers as input. For the first phase, the cluster centers C1 are identified in a greedy
fashion using the weighted graph G′ = (V,E′) with real-valued edge weights, and
using a radius of r = δW1. That is, select any point v ∈ V not belonging to any
clusters already computed, as a cluster center, and compute the cluster with center
at v. Continue this procedure until all points in V belong to a cluster. This is
referred to as Naive-Centers in the algorithm given in Figure 2. Naive-Centers
runs in O(σn log n) time, since this can be implemented using the standard Dijkstra’s
algorithm.

For subsequent phases, cluster centers are identified (using UpdateCenters) in
a different way. As a first approximation, the set of cluster centers is always chosen
as a subset of the cluster centers used in the previous phase. It may turn out that
this choice of cluster centers does not give us a cluster cover. Later we describe how
to augment the set of cluster centers to ensure that a cluster cover is obtained.

At the end of each phase, the algorithm selects a set of cluster centers for the
next phase. These centers are guaranteed to be sufficiently far apart from each other.
More specifically, the cluster centers Ci used in phase i are guaranteed to be at a
distance of at least r/2.

At the end of phase i, the set of cluster centers for phase i + 1 is computed.
Initially we set Ci+1 := Ci\Mi; i.e., a subset Mi of the cluster centers is deleted from
the list of cluster centers. Later Ci+1 is augmented appropriately. We now describe
how the set Mi is chosen. M1 is the empty set, implying that C2 is identical to C1.
For i > 1, the algorithm iteratively picks a cluster center from Ci and marks all cluster
centers that are within distance r from it. The cluster centers that are marked are
inserted intoMi and hence deleted in the next phase. We will refer to this process as a
“thinning” of centers in Ci. This is easily implemented by calling the FindCenters
after the cluster cover for phase i has been computed. The next cluster center is
then picked, and the process continues until all centers have been processed. Now set
Ci+1 := Ci\Mi. Clearly this process runs in time O(m · σ). It is important to note
that, since the integralization changes in every iteration, vertices that are at distance
r′ in one iteration are at distance at least r′/2 in the next iteration. Since the integers
are rounded up, it is possible that clustering from centers Ci+1 with radius r in phase
i+ 1 may not give us a cluster cover.

Steps 1 through 3 (described below) are repeated until a clustering from cluster
centers Ci+1 with radius r gives us a cluster cover in phase i+ 1.

• Step 1. Run ParallelDijkstra from all vertices of Ci+1 using the integral-
ization of phase i+1. Let Ki be the set of vertices not covered by the clusters
centered at Ci+1.
• Step 2. Greedily pick a subset K ′ ⊆ Ki such that no two vertices in K

′ belong
to the same cluster from the cluster cover of phase i.
• Step 3. If Ki is empty, then Stop. Else let K be the result of “thinning” out
of the centers in K ′, and set Ci+1 := Ci+1 ∪K.

It is easy to see that, after the above process, the new centers are guaranteed to
remain at a distance of at least r/2. Second, because the process continues until all
vertices are covered, it produces a set of cluster centers that will produce a cluster
cover in the next phase. Finally, we argue that the number of times steps 1 through
3 are executed is O(1) per phase. Let C be a cluster from the cluster cover of phase
i. Let P be the region composed of the circular discs of radius r centered at vertices
of C. In each iteration of steps 1 through 3, at least one vertex of C is picked for
Ki. This vertex is either chosen for K, or else a large constant fraction of its area
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i+1iPhase i-1

Fig. 9. If a cluster contains another cluster center, then this cluster center is marked for
deletion in the next phase. The figure shows an example of a set of cluster centers, where the cluster
centers that are marked for deletion for the next phase are marked in grey.

is covered by some circular discs of radius r centered at vertices of K. Clearly the
region P will be covered by at most a constant number (exponentially proportional
to the dimension of the space d) of circular discs of radius r. Thus steps 1 through 3
will only be executed a constant number of times, each of which takes O(n) time.

We now show that, in phase i, the cluster centers are guaranteed to be at a
distance of at least r/2 from each other. In phase 1, since cluster centers are identified
by using a radius of r, all cluster centers are at a distance of at least r from each other.
In phase i − 1, if two cluster centers are at a distance of r or less, then one of them
will get marked and will subsequently be deleted from the list Ci for phase i, as shown
in Figure 9. Lemma 8 specifies conditions under which vertices belong to at most a
constant number of clusters.

It follows from this lemma that no vertex of H is in more than a constant number
of clusters of radius r or of radius R (since R

r = 1
δ ).

Lemma 8. Let C = {v1, . . . , vm} ⊆ V be a set of vertices such that, for any
pair of vertices vi, vj ∈ C, D{G,w}(vi, vj) > r′. If K = {K1, . . . ,Km} is returned
by Cluster-Cover(G,C, c′ · r′), where c′ is a constant, then each vertex v ∈ V is
contained in at most a constant (which depends on the dimension d and c′) number
of clusters from K.

The conditions of the lemma are true for the cluster graph as constructed above
with r′ = r/2 and c′ = 2 or c′ = 4t/δ. Hence any vertex in H is part of at most a
constant number of clusters in Kr or KR. The proof follows from standard packing
arguments; see also section 2.2. Similar arguments also show that the number of
intercluster edges incident to a cluster center is also a constant (although it might
have a large number of intracluster edges). It follows that the degree of any vertex in
H that is not a cluster center must be a constant, and the size of H is O(n). Thus σ is
also bounded by a constant. Note that Improved-Greedy uses integralized weights
so the resulting clusters are approximate clusters; they are a little bit larger (since
integers are always rounded up) than the exact clusters. It is clear that this does not
affect the correctness of Lemma 8.

3.3. Answering shortest path queries. When the algorithm Improved-
Greedy considers an edge e = (u, v) for inclusion in the spanner graph, it needs
to answer a shortest path query. It needs to check if D{G′,wt}(u, v) ≤ t · d(u, v),
where G′ is the spanner graph constructed so far. As noted in [8], it is sufficient for
this query to be answered approximately. So it is sufficient to devise a procedure to
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efficiently check if D{G′,wt}(u, v) ≤ t(1 + ε′) · d(u, v) for some small ε′ > 0. In other
words, it is sufficient to check if D{G′,Iwt}(u, v) ≤ t(1+ ε′′) · d(u, v)/Ui for some small
ε′′ > 0. In fact, the algorithm will check if D{H,Iwt}(u, v) ≤

√
tt′ · d(u, v)/Ui. The

time complexity of this test is constant if D{H,Iwt}(u, v) < c′ · r for some constant c′.
Hence we conclude this section with the following theorem, which follows from the
above arguments.

Theorem 9. Improved-Greedy runs in time O(n log n).

Proof. Following the steps of the Improved-Greedy algorithm shown in Figure
2, we have that step 1 in the initialization and steps 8 and 11 take time O(n log n);
step 2 takes constant time; step 6 runs in O(log n) time, while steps 3 and 10 take
linear time. The integralization of the weight of the edges in steps 11, 14, and 22
takes a total of O(log n) time per edge. Since each edge is considered exactly once,
the total time spent on integralizing and reintegralizing the weight of the edges is
O(n log n) according to section 3.1. Step 15 requires linear time since σ is bounded
by a constant. On line 16, every edge in the input spanner is considered once. For
each edge, the algorithm performs one shortest path query in the cluster graph. As
mentioned above, each query takes constant time. Hence the total time complexity
for computing a linear number of shortest path queries is O(n). Finally, updating the
centers is easily done in linear time. From this it follows that Improved-Greedy
runs in time O(n log n).

In 1999, Thorup [16] showed that single-source shortest path queries could be
answered in linear time for undirected graphs with integer edge weights. However,
this algorithm was not used in this paper since it does not visit the vertices in order of
increasing distance, which is crucial for our algorithm. Also, it uses bit-shift for com-
puting the floor function in constant time, which is not allowed in the computational
model used in our algorithm.

4. The graph produced by IMPROVED-GREEDY is a t-spanner. In order
to show that the produced spanner graph G′ is a t-spanner, we need two main results.
First, we need to show that the cluster graph H approximates the spanner graph G′;
i.e., D{G′,wt}(v, u) ≤ D{H,Iwt}(v, u) · Ui ≤ αD{G′,wt}(v, u) for some constant α close
to 1. This is done in Lemmas 12 and 13. Second, we need to show, in Lemma 14,
that H is always a valid cluster graph of G′. From these results, we easily obtain
Theorem 15, which says that the produced spanner G′ is a t-spanner of the complete
Euclidean graph.

Since the clusters are computed using the function Iwt(·) instead of wt(·), clusters
are not as precise as they were in [8]. In this section, we will assume that the smaller
radii ri is δWi and the larger radii Ri is Wi, where δ is a positive constant decided in
Lemmas 14 and 17. Finally, we set ε = nUi

δWi
. Some of the results in this section and

the next are modified versions of analogous results in [8].

Lemma 10. Let K be equal to Cluster(G′, v, δWi, Iwti), i.e., a cluster with
cluster center v and radius δWi computed in iteration i of the algorithm. If u is
a vertex in K, then D{G′,wt}(v, u) ≤ (1 + ε)δWiUi. Otherwise, if u /∈ K, then
D{G′,wt}(v, u) > δWiUi.

Proof. The lemma follows from Corollary 4 and the fact that a cluster from K
with center at v consists of all vertices within integer distance δWi/Ui from v.

Consider the cluster graph H that results from the clustering performed on G′ at
the start of phase i. The following results apply to edges and paths in H.
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Lemma 11. If u is a cluster center and [u, v] is an intracluster edge in H, then

(1) D{G′,wt}(u, v) ≤ (1 + ε)δWiUi.

If [vj , vk] is an intercluster edge in H, then

(2) δWiUi < D{G′,wt}(u, v) ≤ (1 + ε) · (Wi + 2δWi)Ui.

Proof. The first statement is a direct consequence of Lemma 10; the same holds
for the left inequality in (2). The right inequality in the second statement follows
from Definition 7 since an intercluster edge of type 2 may be constructed to connect
two cluster centers vj and vk since there exists an edge (x, y) ∈ G′ such that x ∈ Kj ,
y ∈ Kk, and Iwt(x, y) < Wi/Ui.

For simplicity, in the rest of this section, we will leave out the unit length Ui. The
following lemma is straightforward since H is an approximation of G′.

Lemma 12. If there exists a path PH in H between vertices u and v such that
Iwt(PH) = L, then there exists a path PG′ in G′ between vertices u and v such that
Iwt(PG′) ≤ L.

We first introduce some definitions. A vertex u is defined to be sufficiently far
from a vertex v if (1) no single cluster contains both u and v and (2) D{G′,wt} ≥
Wi. Define a cluster path in H to be a path where the first and last edges may be
intracluster edges but all intermediate edges are intercluster edges.

The next lemma is the approximate converse of Lemma 12.
Lemma 13. Let u be sufficiently far from v. Let PG′ be a path between u and v

in G′ such that wt(PG′) = L1. Then there exists a cluster path PH between u and v
in H such that

Iwt(PH) = L2 < L1 · (1 + ε)(1 + 6δ)

1− 2δ(1 + ε)
.

Proof. The proof is similar to the proof of Lemma 4 in [8]. Let the path from u
to v having weight L1 in G′ be P . We shall use the notation P (y, x) to denote the
vertices of P between vertices y and x, not including y. We construct a cluster path
Q from u to v in H with weight L2 as follows. Let C0 be any cluster, with center
v0, containing u. The first edge of Q is the intracluster edge [u, v0]. Next, among all
clusters with centers adjacent to v0 in H, let C1, with center v1, intersect the furthest
vertex along P (u, v), say, w1. Add the intercluster edge [v0, v1] to Q. Next, among all
clusters with centers adjacent to v1 in H, let C2, with center v2, intersect the furthest
vertex along P (w1, v), say, w2. Add the intercluster edge [v1, v2] to Q. This process
continues until we reach a cluster center, vm, whose cluster contains v. At this stage,
complete Q by adding the intracluster edge [vm, v], as shown in Figure 10. Three
cases arise, and the lemma is proved in each of these cases.

Case 1 (m = 1). In this case, there is only one intercluster edge along Q. Since u is
sufficiently far from v, we know that L1 > Wi−2(1+ ε)δWi. Now L2 = Iwt([u, v0])+
Iwt([v0, v1]) + Iwt([v1, v]). However, Iwt([u, v0]) ≤ (1 + ε)δWi and Iwt([v, v1]) ≤
(1+ε)δWi, while Iwt([v0, v1]) ≤ 2(1+ε)δWi+D{G′,Iwt}(v, u) ≤ 2(1+ε)δWi+(1+ε)L1.
This result follows from the procedure AddInterEdgesType2, since wt([v0, v1]) is
at most 2(1 + ε)δWi plus the length of the shortest edge connecting vertices of the
two clusters to which u and v belong. So L2 ≤ (1 + ε)L1 + 4(1 + ε)δWi, and we have

that Wi <
(1+ε)L1

1−2(1+ε)δ . Combining these inequalities, we get

L2 ≤ (1 + ε)L1 +
4(1 + ε)δ

1− 2(1 + ε)δ
· L1 <

(1 + ε)(1 + 2δ)

1− 2δ(1 + ε)
· L1.
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v2
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u

v
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intra-cluster edge

inter-cluster edge

Fig. 10. Paths in H approximate paths in G′.

Case 2 (m ≥ 2 and m even). Suppose [vi, vi+1] and [vi+1, vi+2] are any two
consecutive intercluster edges on Q. Observe that the sum of their weights is greater
than Wi. If this were not so, then the edge [vi, vi+2] would instead have been added
to Q while Q was being constructed. Divide Q into portions Q0, Q1, . . ., where Q2i

is the portion between v2i and v2i+2. Similarly, divide P into portions P0, P1, . . .,
where P2i is the portion between the last vertex intersecting C2i and the first vertex
intersecting C2i+2. We shall first prove that, for any even i, the weight of Q2i is no
more than a constant times the weight of P2i.

Let the weight of P2i be p2i and that of Q2i be q2i. Since there cannot be
an intercluster edge between v2i and v2i+2, we have that p2i > Wi − 2δ(1 + ε)Wi.
Thus Wi <

p2i
1−2(1+ε)δ . Select r to be any vertex of P2i within the intermediate

cluster C2i+1. The vertex r splits P2i into two portions. Let p′2i (respectively, p
′′
2i)

be the initial (respectively, final) portions; thus p2i = p′2i + p′′2i. From the procedure
InterEdgesType2, we have Iwt([v2i, v2i+1]) ≤ (1+ε)p′2i+2δ(1+ε)Wi, and, similarly,
Iwt([v2i+1, v2i+2]) ≤ (1+ε)p′′2i+2δ(1+ε)Wi. Adding the two, we get q2i ≤ (1+ε)p2i+
4δ(1 + ε)Wi. We now have two inequalities relating p2i, q2i and Wi. Thus

q2i < (1 + ε)p2i + 4δ(1 + ε) · p2i
1− 2δ(1 + ε)

< p2i · (1 + ε)(1 + 2δ)

1− 2δ(1 + ε)
.

Summing over all even values of i and taking into account the two intracluster edges
at either end of Q, we get

L2 < L1· (1 + ε)(1 + 2δ)

1− 2δ(1 + ε)
+ 2δ(1 + ε)Wi.

Since u is sufficiently far from v, we know that L1 > Wi − 2δ(1 + ε)Wi. That is,
L1

1−2δ(1+ε) > Wi. Substituting this in the above inequality, we obtain

L2 < L1 · (1 + ε)(1 + 4δ)

1− 2δ(1 + ε)
.

Case 3 (m ≥ 3 and m odd). The analysis will be exactly the same as in the
previous case, except that we have to account for the last intercluster edge along
Q and, correspondingly, the portion of P between the last two clusters. Let qm−1

be the integer weight of [vm−1, vm], and let pm−1 be the weight of the portion of
P between the last vertex intersecting Cm−1 and the first vertex intersecting Cm.
Clearly qm−1 ≤ (1 + ε)pm−1 + 2δ(1 + ε)Wi. This inequality can be rewritten as

qm−1 < ( (1+ε)(1+2δ)
1−2δ(1+ε) )pm−1+2δ(1 + ε)Wi. We then sum up as above to get

L2 < L1· (1 + ε)(1 + 2δ)

1− 2δ(1 + ε)
+ 4δ(1 + ε)Wi.
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Since L1 > Wi− 2δ(1+ ε)Wi, we have that L1 · 4δ(1+ε)
1−2δ(1+ε) > 4δ(1+ ε)Wi. Substituting

this in the above inequality, we obtain

L2 < L1· (1 + ε)(1 + 6δ)

1− 2δ(1 + ε)
.

That completes the proof of the lemma.
Before processing group Ei (which contains edges with weights in the range

(Wi, 2Wi]), the algorithm constructs a fresh cluster graph H using a radius of δWi.
Lemma 14. During the processing of any group Ei, the graph H always represents

a valid cluster graph of G′.
Proof. Let the edges in Ei be ordered by increasing weight as ei1, . . . , eil. The

proof is by induction. In the base case, when none of the edges have been processed,
the lemma is obviously true. Now assume that the lemma is true just before the
algorithm decides to examine edge eij=(u, v). If this edge is not added to G′, then
the lemma still holds. Now suppose this edge is added to G′. Since wt(u, v) > Wi

and δ < 1/2, the distance between any two previous cluster centers in the new G′

will remain greater than δWi, and thus the previous cluster cover will remain valid.
Also, the previous intracluster edges and the intercluster edges of type 1 (see the
definition of intercluster edges) will remain the same. We have only to make sure
that we add new intercluster edges of type 2, and it is easily seen that this is done
by the algorithm. It remains to decide what weights are to be assigned to these new
intercluster edges in H. Consider one such edge [x, y], where x (respectively, y) is
the center of the cluster to which u (respectively, v) belongs. The weight of this edge
should be assigned D{G′,Iwt}(x, y) (the shortest path in the new graph G′ between x
and y). However, it will be too time consuming to compute this directly. Instead the
algorithm assigns the weight as Iwt([x, u])+Iwt(u, v)+Iwt([y, v]) (see section 3.2.3).
We now show that our choice of δ makes this acceptable.

Assume the contrary, i.e., that a shorter alternate path P exists between x and y.
Let Iwt(P ) denote its integral weight in this phase. Since P cannot involve the edge
(u, v), it contains only edges of the previous G′. However, we know that (u, v) was
selected to be added to G′; thus no cluster path existed between u and v of weight
within

√
tt′ · Iwt(u, v) in H. Furthermore, since u is sufficiently far from v, we may

use Lemma 13 to get

Iwt(P ) + 2δWi(1 + ε) >
1− 2δ(1 + ε)

(1 + ε)(1 + 6δ)
·
√
tt′·Iwt(u, v).

We have that Iwt(P ) < Iwt([x, u])+Iwt(u, v)+Iwt([v, y]), which is at most Iwt(u, v)+
2δWi(1 + ε). Putting these two results together, we obtain

4δ(1 + ε)Wi + Iwt(u, v) >
1− 2δ(1 + ε)

(1 + ε)(1 + 6δ)
·
√
tt′ · Iwt(u, v).

Using the fact that Iwt(u, v) > Wi, we get

4δ(1 + ε) >
1− 2δ(1 + ε)

(1 + ε)(1 + 6δ)
·
√
tt′ − 1.

If we solve this inequality for δ, we see that the only positive solutions are

δ >

√
tt′ − (1 + ε)

2(
√
tt′(1 + ε) + 5 + 7ε+ 2ε2)

.
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Fig. 11. Illustration of the definition of the leapfrog property.

According to our choice of δ in the algorithm Improve-Greedy, the above inequality
will never be satisfied (see Figure 2). Hence we have a contradiction.

The following theorem now concludes this section.
Theorem 15. The graph produced by Improved-Greedy is a t-spanner of the

complete Euclidean graph.
Proof. The proof follows from the fact that G′ is a

√
tt′ spanner of G and that G

is a
√
t/t′ spanner of the complete graph.

5. The weight of G′ is O(wt(MST )). In [4], it was shown that the greedy
algorithm produces a spanner that has O(n) edges and a total weight of O(log n)
·wt(MST (V )), where MST (V ) is the minimum spanning tree of V . The analysis of
the greedy algorithm was then improved in [7]. The proof relies on a property known
as the leapfrog property. This property restricts how a set of line segments may be
positioned in space. Here we provide a definition which is technical and nonintuitive.

Let t ≥ t′ > 1. A set of line segments, denoted E′, in d-dimensional space
satisfy the (t′, t)-leapfrog property if the following is true for every possible S =
{(u1, v1), . . . , (um, vm)}, which is a subset of E′:

t′·wt(u1, v1) <

m∑
i=2

wt(ui, vi) + t·
(
m−1∑
i=1

wt(vi, ui+1) + wt(vm, u1)

)
.

Informally, this definition says that, if there exists an edge between u1 and v1, then
any path, not including (u1, v1), must have length greater than t

′ ·wt(u1, v1), as shown
in Figure 11. The following fact was shown by Das and Narasimhan [8].

Fact 16 (Theorem 3 in [8]). There exists a constant 0 < φ < 1 such that the
following holds: if a set of line segments E′ in d-dimensional space satisfies the (t′, t)-
leapfrog property, where t ≥ t′ ≥ φt+ 1− φ > 1, then wt(E′) = O(wt(MST )), where
MST is a minimum spanning tree connecting the endpoints of E′. The constant
implicit in the O-notation depends on t and d.

Now suppose that we construct a t-spanner such that, for every spanner edge
(u, v), the second shortest path is not necessarily longer than t · wt(u, v) but longer
than t′ · wt(u, v) for some t′ such that t ≥ t′ > 1. In this case, the t-spanner satisfies
the (t, t′)-leapfrog property, as can be proved by using arguments similar to those
used in Lemma 2.4 in [7]. Hence the produced spanner will then have total weight
O(wt(MST (V ))).

So it remains to prove that the weight of the second shortest path between u and
v is greater than t′ ·wt(u, v). First, note that the edges in E0 do not contribute much
because their total length is at most equal to the length of the longest edge (< n·D/n),
which is less than the weight of the minimum spanning tree. We estimate wt(E′\E0),
where E′ is the set of edges produced by the algorithm.
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Lemma 17. Let e=(u, v) ∈ E′\E0. The weight of the second shortest path between
u and v is greater than t′·wt(u, v).

Proof. Let C be the shortest simple cycle in G′ containing e. We have to estimate
wt(C)−wt(u, v). Let e1 = (u1, v1) be the longest edge on the cycle. Then e1 ∈ E′\E0,
and, among the cycle edges, it is examined last by the algorithm. What happens while
the algorithm is examining e1?

Assume that e1 is examined in phase i. There is an alternate path in G′ from u1

to v1 of weight wt(C) − wt(u1, v1). However, since the algorithm eventually decides
to add e1 to the spanner, at that moment, the weight of each cluster path from u1 to
v1 is larger than

√
tt′ · Iwt(u1, v1) ·Ui. Notice that Iwt(u1, v1) ·Ui and wt(u1, v1) are

larger than Wi. This implies that u1 and v1 are not contained in the same cluster.
Thus u1 is sufficiently far from v1. Lemma 13 implies that the weight of each path in
G′ between u1 and v1 is large; i.e.,

wt(C)− wt(u1, v1) >
√
tt′ · Iwt(u1, v1) · Ui >

√
tt′ · wt(u1, v1) · 1− 2δ(1 + ε)

(1 + ε)(1 + 6δ)
.

However, we know, according to the algorithm, that δ ≤
√
tt′−(1+ε)t′

2(1+ε)(
√
tt′+3t′) . Substituting,

we obtain wt(C)− wt(u1, v1) > t′ · wt(u1, v1).

Finally, since Lemma 17 holds, we can use the following observation which, to-
gether with Fact 16, concludes the proof of Theorem 1.

Observation 18. E′\E0 satisfies the (t′, t)-leapfrog property.

Proof. Consider any subset of the edges S = {(u1, v1), . . . , (um, vm)} of E′. By
Lemma 17, we know that t′ ·d(u1, v1) is smaller than the weight of the second shortest
path between u1 and v1 in G′. Consider a path P from v1 to u1, composed of
the shortest path from v1 to u2 (of weight ≤ t · d(v1, u2)), the edge (u2, v2), the
shortest path from v2 to u3 (of weight ≤ t · d(v2, u3)), and so on, until the final
portion is the shortest path from vm to u1. Clearly wt(P ) is at least as large as the
weight of the second shortest path between u1 and v1. However, wt(P ) is also equal
to the right-hand side of the definition of the leapfrog property. The observation
follows.

This concludes the proof of Theorem 1.

6. Conclusions and open problems. This paper represents an important ad-
vancement in the study of spanners; we present the first correct O(n log n)-time algo-
rithm to construct low-weight spanners (weight O(1) ·wt(MST )) and a small number
of edges (only O(n) edges). The implementation of clustering techniques is of inde-
pendent interest in the design of efficient algorithms.

The main theoretical open problem that remains unsolved is to design an algo-
rithm to construct a sparse t-spanner in time O(n log n) in the algebraic decision tree
model of computation.
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Abstract. Traditional hardness versus randomness results focus on time-efficient randomized
decision procedures. We generalize these trade-offs to a much wider class of randomized processes.
We work out various applications, most notably to derandomizing Arthur-Merlin games. We show
that every language with a bounded round Arthur-Merlin game has subexponential size membership
proofs for infinitely many input lengths unless exponential time coincides with the third level of
the polynomial-time hierarchy (and hence the polynomial-time hierarchy collapses). Since the graph
nonisomorphism problem has a bounded round Arthur-Merlin game, this provides the first strong
evidence that graph nonisomorphism has subexponential size proofs.

We also establish hardness versus randomness trade-offs for space bounded computation.
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1. Introduction. Randomness has proven to be a valuable tool in computer
science. It is an indispensable resource in areas like cryptography and distributed
computing. The situation is less clear for algorithms. Several computational problems
turn out to have simple randomized solutions that require less time or space than the
known deterministic algorithms. It is conceivable, however, that efficient deterministic
algorithms exist for all of these problems.

In fact, many complexity theorists believe that randomness cannot significantly
reduce the time or space complexity of a problem. To this end, they try to construct
efficient pseudorandom generators—deterministic procedures that stretch seeds con-
taining a few random bits into much longer bit sequences that look random to the
randomized process in question. This allows us to reduce the amount of randomness
needed and, in some cases, eliminate the need for random bits completely without
increasing the need for other resources by much.

Considerable progress has been made in the construction of pseudorandom gen-
erators that fool arbitrary time-bounded decision procedures. We now know how to
construct them out of certain types of “hard” computational problems. The exis-
tence of such hard problems is still open. These constructions are often referred to as
hardness versus randomness trade-offs; they rule out the possibility that both hard
problems exist and randomness speeds up some time-bounded decision problem.

1.1. Traditional hardness versus randomness trade-offs. Blum and Micali
[BM84] and Yao [Yao82] were the first to realize this connection. Nisan and Wigderson
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[NW94] established a whole range of hardness versus randomness trade-offs using an
average-case hardness notion. They showed how to use any language in exponential
time that requires large circuits to be computed exactly on slightly more than half
of the inputs, to construct a pseudorandom generator that fools circuits of polyno-
mial size. They obtained nontrivial derandomizations of polynomial-time randomized
decision algorithms under average-case hardness assumptions and even deterministic
polynomial-time simulations under the strongest of their hypotheses. Babai, Fortnow,
Nisan, and Wigderson [BFNW93] and Impagliazzo and Wigderson [IW97] relaxed the
hardness condition from an average-case condition to a worst-case one. For their con-
structions, they had only to start from a language in exponential time that requires
large circuits to be computed exactly on every input. As a corollary, they showed
how to simulate every polynomial-time randomized decision algorithm deterministi-
cally in subexponential time for infinitely many input lengths unless exponential time
collapses to the second level of the polynomial-time hierarchy (and, in fact, to the
class MA) [BFNW93].

The authors of these papers [NW94, BFNW93, IW97] used their techniques to
derandomize traditional models of randomized computation, most notably BPP. We
show how to apply the techniques used to derandomize BPP to more general models
of randomized computation. The key observation we make is that the reductions used
in the proofs are “black-box”; i.e., they relativize. More specifically, the above papers
start from a Boolean function f and construct a proposed pseudorandom generator
based on it. They then argue that any small circuit that distinguishes the output of the
proposed pseudorandom generator from the uniform distribution can be transformed
into a small circuit that computes f . We observe that these reductions work for
any nonuniform model of computation that satisfies certain closure properties. In
particular, they work for oracle circuits given any fixed oracle B, i.e., for circuits
consisting of AND, OR, and NOT gates and gates that evaluate the oracle B. Thus,
in order to build a pseudorandom generator that looks random to any small B-oracle
circuit, we need only assume the existence of a function f that cannot be computed
by small B-oracle circuits. The same holds for more recent constructions by Sudan,
Trevisan, and Vadhan [STV01] that provide alternate proofs for some of the earlier
results [NW94, BFNW93, IW97].

1.2. Derandomizing Arthur-Merlin games. The above observations allow
us to apply the classical hardness versus randomness results to various settings, in
particular to the nondeterministic setting of Arthur-Merlin games [Bab85].

Arthur-Merlin games are verification procedures in which a prover (Merlin) tries
to convince a randomized polynomial-time verifier (Arthur) of some fact, say, that
a given input belongs to some language. Arthur-Merlin games define an extension
of the classical proof paradigm in two ways: the use of randomness by the verifier
and the interaction between the prover and the verifier. Of particular interest is the
class AM of languages for which there exists an Arthur-Merlin game with a bounded
number of rounds of interaction between the verifier and the prover. The class AM
forms a randomized extension of NP. The most notable problem in AM not known to
be in NP is graph nonisomorphism [GMW91, GS89, BM88].

Derandomizing Arthur-Merlin games requires security against the nondetermin-
istic adversary Merlin. Rudich [Rud97] pointed out that pseudorandom generators
in the traditional cryptographic setting, where an adversary has more resources than
the generator, cannot hope to have this property. This is because a nondeterministic
adversary can guess the seed the verifier will use and run the generator on this seed
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Table 1
Hardness versus randomness trade-offs for AM.

Hardness assumption Derandomization consequence

∃ f ∈ NEXP ∩ coNEXP : CSAT
f (n) = nω(1) AM ⊆ ∩ε>0NTIME[2n

ε
]

∃ f ∈ NEXP ∩ coNEXP : CSAT
f (n) = 2n

Ω(1)
AM ⊆ ∪c>0NTIME[2(logn)c ]

∃ f ∈ NE ∩ coNE : CSAT
f (n) = 2Ω(n) AM = NP

to obtain the pseudorandom sequence the verifier will use. From a derandomization
perspective, however, we can limit the resources the adversary can use. Nisan and
Wigderson exploited this fact in the BPP setting. We use it in the context of Arthur-
Merlin games. The drawback of cryptographic pseudorandom generators does not
apply because the adversaries do not have the resources to run the generator—even
if they correctly guess the seed.

We give evidence that AM coincides with NP. More specifically, we show that the
existence of an exponential-time decidable language with high worst-case SAT-oracle
complexity implies nontrivial derandomizations of AM. Examples of the trade-offs we
obtain are presented in Table 1, where we use CB to denote circuit complexity given
access to oracle B. We provide the precise definitions in section 2 and the general
trade-off statement in section 3.

For example, the first line of Table 1 states that, if there exists a function com-
putable in NEXP∩coNEXP which requires SAT-oracle circuits of superpolynomial size
for almost all input lengths, then AM is contained in nondeterministic subexponential
time, i.e., has subexponential size proofs. The third line of Table 1 states that, if
we go further and assume that there exists a function in NE ∩ coNE which requires
SAT-oracle circuits of size 2εn for some ε > 0 and almost all input lengths, then every
language in AM has polynomial size proofs.

If the hardness condition on the left-hand side of Table 1 holds for infinitely
many input lengths, then the corresponding derandomization on the right-hand side
works for infinitely many input lengths. We refer to the weak version of Table 1
when we assume the above hardness conditions hold only for infinitely many input
lengths. As in the above papers [NW94, BFNW93, IW97], we typically state our
theorems assuming the hardness conditions are true for every input length. Both
interpretations hold for all of our results.

We can view the assumptions in Table 1 as statements concerning the relation-
ships among computation, nonuniformity, and nondeterminism. For example, the
third entry in the table states that, if nonuniformity and nondeterminism cannot sig-
nificantly speed up computation, then we can derandomize AM. We point out that,
if the hardness assumption in the first row of the weak version of Table 1 fails, then
exponential time collapses to the third level of the polynomial-time hierarchy.

Arvind and Köbler [AK97] obtained similar results to those in Table 1 using
nondeterministic circuits but needed average-case hardness assumptions instead of
worst-case ones. Nondeterministic circuits consist of AND, OR, and NOT gates and
have some additional input bits y. An input x is accepted if there is a setting of
the additional input bits y that makes the circuit accept x. Nondeterministic circuits
can be efficiently simulated by SAT-oracle circuits but presumably not the other way
around. Nondeterministic circuits do not seem to have the closure properties that
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allow us to relax the hardness hypothesis from average-case to worst-case, whereas
SAT-oracle circuits do. Bridging the gap between average-case and worst-case as-
sumptions is crucial. It allows us to conclude that every language in AM, and graph
nonisomorphism, in particular, has subexponential size proofs for infinitely many in-
put lengths unless the polynomial-time hierarchy collapses. See the weak version of
the first line in Table 1. Without any unproven hypothesis, the smallest proofs known

for the nonisomorphism of two graphs on n vertices are of size 2O(
√
n logn), namely,

the transcripts of the deterministic graph isomorphism algorithm by Babai, Kantor,
and Luks [BL83, BKL83].

Recently, Miltersen and Vinodchandran [MV99] managed to relax the hardness
assumption in the last line of Table 1. They showed that AM collapses to NP if there
exists a Boolean function in NE ∩ coNE with exponential nondeterministic circuit
complexity (instead of SAT-oracle circuit complexity). Their technique works only
under strong hardness assumptions. In particular, it does not apply to the rest of
Table 1. See section 6 for a more detailed discussion.

1.3. Generalizing hardness versus randomness trade-offs. Our simula-
tions of AM are a special case of a general derandomization tool which applies to any
randomized process for which we can efficiently check whether a particular choice of
random bits results in a successful computation. For example, for a fixed BPP algo-
rithm and input, at least 2/3 of the random strings result in a “successful” computa-
tion. Any randomized function computation with this property, regardless of whether
it involves a decision problem or not, falls within our framework. We formally define
the notion of a success predicate in section 4. If we can decide the success predicate
of a randomized process with polynomial size B-oracle circuits, then assuming the
existence of a function with high B-oracle circuit complexity implies the existence of
a pseudorandom generator suitable for derandomizing the process. Table 2 gives a
summary of these trade-offs. The symbol A in Table 2 represents an arbitrary class
of oracles and determines the complexity of computing the generator G.

Table 2
Overview of pseudorandom generator constructions.

Hardness assumption Complexity of G Seed length

∃ f ∈ EXPA : CB
f (n) = nω(1) EXPA O(nε) for arbitrary ε > 0

∃ f ∈ EXPA : CB
f (n) = 2

nΩ(1)
EXPA (logn)O(1)

∃ f ∈ EA : CB
f (n) = 2

Ω(n) EA O(logn)

In this paper, we illustrate the power of our generalization by applying it to the
following randomized processes from different areas of theoretical computer science:

(i) the Valiant–Vazirani random hashing procedure which prunes the number of
satisfying assignments of a propositional formula to one [VV86],

(ii) exact learning of circuits using equivalence queries and access to an NP oracle
[BCG+96],

(iii) the construction of matrices with high rigidity [Val77],
(iv) the construction of polynomial size universal traversal sequences [AKL+79].
Consider the first item above. Valiant and Vazirani [VV86] give a randomized

algorithm that takes as input a propositional formula φ and outputs with high prob-
ability a list of formulas with the following property: If φ is satisfiable, then some
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formula in the output list has exactly one satisfying assignment; if φ is unsatisfiable,
then no formula in the list is satisfiable. Strictly speaking, the Valiant–Vazirani proce-
dure is not a “BPP algorithm,” and it is not clear how one could use a pseudorandom
generator for BPP to derandomize it. One reason for this is that checking if the
Valiant–Vazirani procedure was “successful,” (i.e., it outputs a list of formulas with
the above property) does not seem to be computable in polynomial time. Checking if
the Valiant–Vazirani procedure succeeds for a particular input and choice of random
bits is polynomial-time computable, however, if we are given access to an oracle for
SAT. From this observation, we can prove that the existence of a Boolean function
in exponential time with high SAT-oracle circuit complexity implies the existence of
a pseudorandom generator which can be used to derandomize the Valiant–Vazirani
procedure.

More specifically, we show that, given a propositional formula φ, we can construct
in subexponential time a collection of polynomial size formulas satisfying the above
Valiant–Vazirani property unless the polynomial-time hierarchy collapses. If there
exists a language in E with SAT-oracle circuit complexity 2εn for some ε > 0, then we
achieve a polynomial-time deterministic procedure. It follows that, under the same
hypothesis, we can find in polynomial time a satisfying assignment for a propositional
formula using nonadaptive access to an oracle for SAT. The latter contrasts with the
standard adaptive method of binary search. We obtain derandomization results of a
similar kind for the other items in the above list. We refer to section 5 for the precise
statements.

1.4. Relationship to extractors. Our generalized hardness versus random-
ness trade-offs have also played a crucial role in the recent breakthrough extractor
constructions by Trevisan [Tre99]. An extractor is a combinatorial object used to
“extract” randomness from a corrupt or weakly random source. More specifically, ap-
plying an extractor to a probability distribution with some crude randomness results
in a distribution which is almost uniform over strings of length related to the amount
of crude randomness in the original distribution. We refer to the survey paper by
Nisan and Ta-Shma [NT99] for background, precise definitions, and constructions.

In retrospect, from the observation that the construction due to Impagliazzo and
Wigderson [IW97] is a black-box transformation of a hard function, one can directly
prove the existence of the type of extractors found in the aforementioned work of
Trevisan [Tre99]. See section 6 for a discussion.

1.5. Universal traversal sequences and randomized logspace. We also ob-
tain some results related to the construction of universal traversal sequences and the
derandomization of randomized logspace. Universal traversal sequences are instruc-
tions for walks on arbitrary undirected graphs of a given size that have the property
that any vertex of the graphs is visited at least once by the walk. The instructions
depend only on the number of vertices of the graph and not on its structure. A major
open problem is to give a deterministic polynomial-time (or logspace) construction of
such sequences. A logspace construction of universal traversal sequences, for example,
would show that undirected connectivity is computable in logspace.

We give polynomial-time constructions of universal traversal sequences under the
assumption that there exists a language in E with circuit complexity 2εn for some ε.
We also show that, if there is a language in linear space that requires circuits of size
2Ω(n), then BPL = L, where BPL denotes the languages recognizable in randomized
logspace with bounded two-sided error. In fact, we need only the weaker hypothesis
that there exists a language in linear space that requires branching programs of size
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2εn. This answers a question raised by Clementi, Rolim, and Trevisan [CRT98]. As
a corollary, under the same hypothesis, we can generate universal traversal sequences
in logspace.

1.6. Organization. Section 2 introduces our notation. In section 3, we gen-
eralize the techniques used to derandomize BPP and show how to use them in the
Arthur-Merlin setting. Section 4 defines a broad class of randomized processes and
shows how our approach allows us to reduce the randomness of any process that fits
within this class. In section 5, we apply this framework to the four examples men-
tioned above. We discuss directions for further research and some recent progress in
section 6.

2. Notation. Most of our complexity theoretic notation is standard. We re-
fer the reader to the textbooks by Balcázar, Dı́az, and Gabarró [BDG95] and by
Papadimitriou [Pap94].

An oracle circuit D is a circuit with AND, OR, and NOT gates as well as oracle
gates, which compute membership of the string formed by their input bits to some
unspecified oracle B. The function DB the circuit computes depends on the oracle
B. For fixed B, we will use the term B-oracle circuit to denote an oracle circuit with
access to B as an oracle. In this paper, we measure the size of a circuit by its number
of connections.

Given a Boolean function f : {0, 1}∗ → {0, 1} and an oracle B, the circuit com-
plexity CB

f (n) of f at length n relative to B is the smallest integer t such that there
is a B-oracle circuit of size t that computes f on inputs of length n. The hardness
HB
f (n) of f at length n relative to B is the largest integer t such that, for any oracle

circuit D of size at most t with n inputs,

∣∣∣∣Prx [D
B(x) = f(x)]− 1

2

∣∣∣∣ <
1

t
,

where x is uniformly distributed over {0, 1}n.
A pseudorandom generator G is a sequence of functions (Gn)n∈N such that Gn

maps {0, 1}s(n) to {0, 1}n for some function s : N → N with s(n) < n. The function
s is called the seed length of G. We say that G is computable in C if the problem of
deciding the ith bit of Gn(σ) given 〈n, σ, i〉 belongs to C. Given an oracle B, Gn is
said to be secure against B if, for any oracle circuit D of size at most n,

|Pr
ρ
[DB(ρ) = 1]− Pr

σ
[DB(Gn(σ)) = 1]| < 1

n
,(1)

where ρ is uniformly distributed over {0, 1}n and σ is uniformly distributed over
{0, 1}s(n). G is said to be secure against B if Gn is secure against B for almost all n.

For any function t : N → N, AM-TIME[t(n)] represents the class of languages L
for which there exists a deterministic Turing machine M that runs in time O(t(n))
on inputs of the form 〈x, y, z〉, where x ∈ {0, 1}n and y, z ∈ {0, 1}t(n), such that, for
any input x,

x ∈ L⇒ Pr
|y|=t(n)

[∃z ∈ {0, 1}t(n) : M(〈x, y, z〉) = 1] � 2

3
,(2)

x �∈ L⇒ Pr
|y|=t(n)

[∃z ∈ {0, 1}t(n) : M(〈x, y, z〉) = 1] � 1

3
,(3)
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where n = |x| and the probabilities are with respect to the uniform distribution. AM
denotes ∪c>0AM-TIME[nc]. The above definition of Arthur-Merlin games allows two-
sided error. Requiring a one-sided error leads to the same class modulo polynomial
factors. More precisely, an Arthur-Merlin game running in time O(t(n)) can be trans-
formed into an equivalent Arthur-Merlin game running in time (t(n))O(1) satisfying
(2) with the 2/3 on the right-hand side replaced by 1 [FGM+89]. In particular, one
can assume without loss of generality that every language in AM has a polynomial-
time one-sided error Arthur-Merlin game. We will not exploit that fact in this paper,
but later work [MV99] crucially relies on it.

EXP = ∪c>0DTIME[2n
c

], and E = ∪c>0DTIME[2cn]. Similarly, NEXP =
∪c>0NTIME[2n

c

], and NE = ∪c>0NTIME[2cn].
For any complexity class C, the class infinitely-often-C (i.o.-C) consists of all lan-

guages L for which there is a language L′ ∈ C such that L∩ {0, 1}n = L′ ∩ {0, 1}n for
infinitely many lengths n.

For any function s : N→ N, Ω(s) denotes the class of all functions t : N→ N for
which there exists a constant ε > 0 such that t(n) � ε · s(n) for almost all n. ω(s) is
the class of t such that, for any c > 0 and almost all n, t(n) � c · s(n).

3. Derandomizing Arthur-Merlin games. In this section, we develop meth-
ods for derandomizing Arthur-Merlin games and give evidence that the class AM of
languages with bounded round Arthur-Merlin games is not much larger than NP and
may even coincide with it. For clarity of exposition and to provide an initial outline
for our arguments, we first state all of our theorems without proofs. We then fill in
details starting in section 3.1.

As is customary in the area of derandomization, our approach will be to construct
pseudorandom generators with appropriate security properties. The following lemma
states that, to derandomize AM = ∪c>0AM-TIME[nc], the pseudorandom generator
need only be secure against SAT. See section 3.1 for a proof.

Lemma 3.1. Let s, t, τ : N → N be constructible functions. If there is a pseu-
dorandom generator G computable in NTIME[τ(n)] ∩ coNTIME[τ(n)] and with seed
length s that is secure against SAT, then

AM-TIME[t(n)] ⊆ NTIME[2s(t
′(n)) · τ(s(t′(n))) · t(n)],(4)

where t′(n) = O(t(n) log2 t(n)).
In order to build such a pseudorandom generator, we will extend previous work

[NW94, BFNW93, IW97, STV01] to the nondeterministic setting of Arthur-Merlin
games. The main construction in these papers is a reduction from a circuit that
distinguishes the output of a pseudorandom generator based on f from the uniform
distribution to a circuit capable of computing f . We argue that this construction
works for any nonuniform model of computation satisfying certain closure properties
and, in particular, for B-oracle circuits for any fixed oracle B. In this way, we ob-
tain pseudorandom generators secure against B from functions which small B-oracle
circuits cannot compute.

We begin with a generalized version of the main result of Nisan and Wigderson
[NW94]. Their construction works for any nonuniform model which is closed under
precomputation and complementation. In particular, it carries through for oracle
circuits. See section 3.2 for a more detailed argument.

Theorem 3.2. Let B be any oracle, let g be a Boolean function, and let � : N→ N

be a constructible function. If

HB
g (�(n)) � n2,
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then there exists a pseudorandom generator G which is secure against B and has
a constructible seed length s(n) = O(�2(n)/ log n). Computing any bit of G(σ) for
σ ∈ {0, 1}s(n) takes time 2O(s(n)) plus one evaluation of g on an input of length �(n).

Theorem 3.2 states that the existence of functions with high average-case oracle
circuit complexity, say, SAT oracles, implies the existence of pseudorandom generators
secure against the corresponding oracle, in this case SAT. We would like to relax this
assumption from average-case to worst-case, however, so we will need to examine
worst-case to average-case reductions, also known as hardness amplifications.

The worst-case to average-case hardness transformation of Babai et al. [BFNW93]
requires only closure of the model of computation under majority, complementation,
and certain arithmetic field operations. Since oracle circuits have these closure prop-
erties, the transformation also works for this model. This observation enables us to
establish the first two lines of derandomization results for Arthur-Merlin games in
Table 1 but falls short in establishing the last line. For the last line, sometimes re-
ferred to as a “high-end” derandomization, we appeal to the reduction in Impagliazzo
and Wigderson [IW97], which also carries through for oracle circuits and is powerful
enough to establish all of Table 1. An alternate to the Impagliazzo–Wigderson con-
struction is described by Sudan, Trevisan, and Vadhan [STV01] and is more amenable
to generalization. In section 3.3, we provide the details of this generalization and ob-
tain the following hardness amplification result.

Theorem 3.3. There exist positive constants γ and δ such that, for any oracle
B, Boolean function f , and constructible function h : N→ N satisfying

h(n) � (CB
f (γn))

δ/n,

the following holds: There exists a Boolean function g such that HB
g (n) � h(n).

Computing g on an input of length n takes time 2O(n) plus evaluating f on all inputs
of length γn.

Combining Theorems 3.2 and 3.3 yields our main derandomization tool. Some
instantiations are given in Table 2.

Theorem 3.4. There exists a positive constant c such that the following holds
for any class A of oracles, oracle B, a Boolean function f ∈ EA, and a constructible
function � : N→ N: If

CB
f (�(n)) � nc,

then there exists a pseudorandom generator G computable in EA which is secure
against B and has a constructible seed length s(n) = O(�2(n)/ log n). The same
holds if E is replaced by EXP.

In this section, we will apply Theorem 3.4 with A = NP ∩ coNP and B = SAT.
Note that EXPNP∩coNP = NEXP ∩ coNEXP. Together with Lemma 3.1, Theorem 3.4
yields the following result.

Theorem 3.5. If there is a Boolean function f ∈ NEXP ∩ coNEXP such that
CSAT
f (n) = nω(1), then

AM ⊆ ∩ε>0NTIME[2n
ε

].

We can rephrase the weak version of Theorem 3.5 as follows.
Theorem 3.6. If NEXP∩coNEXP �⊆ PNP/poly, then AM ⊆ ∩ε>0i.o.-NTIME[2n

ε

].
So, if the conclusion of Theorem 3.6 fails to hold, then NEXP ∩ coNEXP ⊆
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PNP/poly, which implies that EXP = Σp
3 ∩ Πp

3 [KL82]. Therefore, we obtain the
following theorem.

Theorem 3.7. If exponential time does not collapse to the third level of the
polynomial-time hierarchy, then every language in AM, and graph nonisomorphism,
in particular, has subexponential size proofs for infinitely many lengths.

More generally, Theorem 3.4 yields the following derandomization result for
Arthur-Merlin games. Note that ENP∩coNP = NE ∩ coNE.

Theorem 3.8. If there is a Boolean function f ∈ NE∩ coNE and a constructible
function � : N→ N such that

CSAT
f (�(n)) = Ω(n),

then

AM ⊆ ∪c>0NTIME[2�
2(nc)/ logn].

Theorem 3.8 yields a range of hardness versus randomness trade-offs for the vari-
ous choices of the parameter �. Since CB

f (n) is always at most O(2n/n), the hypothesis
of Theorem 3.8 cannot be met for � sublogarithmic. On the other hand, the conclusion
becomes trivial in the case where � is polynomial. Therefore, the interesting range
for � lies between logarithmic and subpolynomial. For example, for � polylogarithmic,
Theorem 3.8 (combined with some padding) yields the second line in Table 1 and the

following. Recall that quasi-polynomial means 2logO(1) n.
Theorem 3.9. If there is a Boolean function f ∈ NEXP ∩ coNEXP such that

CSAT
f (n) = Ω(2n

ε

) for some ε > 0, then every language in AM has quasi-polynomial
size proofs.

Theorem 3.8 achieves complete derandomizations of Arthur-Merlin games in case
of logarithmic �.

Theorem 3.10. If there is a Boolean function f ∈ NE∩coNE such that CSAT
f (n) ∈

2Ω(n), then AM = NP. In particular, the same hypothesis implies that graph noniso-
morphism has polynomial size proofs.

We wish to point out that, under the hypothesis of Theorem 3.10, the proof of
Lemma 3.1 describes an explicit certificate for graph nonisomorphism or any other
AM-language.

We also note that, for derandomizing AM, it is actually sufficient to construct
efficient pseudorandom generators that are secure against SAT-oracle circuits with
parallel access to the oracle. All theorems in this section also hold for oracle circuits
with such restricted access.

Finally, we note that our derandomizations also apply to Arthur-Merlin games
where the number of rounds of interaction is not necessarily bounded by a constant.
Via standard transformations (see [BM88]), one can show that any language possess-
ing an Arthur-Merlin game with � rounds and verifier complexity t(n) is contained
in AM-TIME[t′(n)], where t′(n) = t(n)O(�)), so we can apply the theorems from this
section directly.

3.1. Proof of Lemma 3.1. Let L be a language satisfying (2) and (3), and
consider

L′ = {〈x, y〉 | y ∈ {0, 1}t(|x|) and ∃ z ∈ {0, 1}t(|x|) : M(〈x, y, z〉) = 1}.
By Cook’s theorem [Coo71, Coo88], since L′ is in nondeterministic linear time, there
exists a circuit of size t′(n) = O(t(n) log2 t(n)) that many-one reduces L′ to SAT on
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counter← 0

for every σ ∈ {0, 1}s(t′(n))

for i← 1, . . . , t(n)

guess ρi ∈ {0, 1}
guess a computation path p for N(〈n, σ, i, ρi〉)
if N(〈n, σ, i, ρi〉) rejects along p
then reject and abort

guess z ∈ {0, 1}t(n)

counter← counter +M(〈x, ρ, z〉)
if counter > 2t

′(n)−1 then accept

Fig. 1. Nondeterministic algorithm for deciding L.

inputs 〈x, y〉 with x ∈ {0, 1}n and y ∈ {0, 1}t(n). For any fixed value of x ∈ {0, 1}n,
let Cx denote the corresponding oracle circuit obtained by hardwiring x. Note that
Cx makes a single oracle query and outputs the answer to that query. Since G is a
pseudorandom generator secure against SAT, conditions (2) and (3) imply that

Pr
σ
[CSAT

x (Gt′(n)(σ)) = 1]
> 1

2 if x ∈ L,
< 1

2 if x �∈ L,(5)

where the probability is with respect to the uniform distribution of σ over {0, 1}s(t′(n)).
Since G is computable in NTIME[τ(n)]∩ coNTIME[τ(n)], there exists a nondeter-

ministic Turing machineN running in time τ that accepts {〈n, σ, i, b〉 | ith bit of Gn(σ)
equals b}. Now consider the nondeterministic algorithm in Figure 1.

Figure 1 describes a nondeterministic Turing machine that runs in time 2s(t
′(n)) ·

τ(s(t′(n))) · t(n). The largest possible value of counter at the end of the outer loop
over all possible nondeterministic choices in the algorithm of Figure 1 equals 2s(t

′(n)) ·
Prσ[C

SAT
x (Gt′(n)(σ)) = 1]. It follows from (5) that the machine accepts L. This

finishes the proof of Lemma 3.1.

3.2. Proof of Theorem 3.2. This and the next section establish our general-
ization of known hardness versus randomness trade-offs. The key observation is that,
using the appropriate notion of relativization, the known hardness versus randomness
trade-offs relativize.

Relativization is the idea of giving all computing devices access to one or more
oracles for arbitrary but fixed computational problems. Most theorems in computa-
tional complexity relativize; i.e., they hold under relativization. This is often just
stated as a remark, as it is straightforward to verify that the proof of the theorem
carries through when oracles are introduced. The few known nonrelativizing results
are almost all in the area of interactive proofs and probabilistically checkable proofs.
One of their distinguishing features is that they rely on considerable combinatorics
and algebra. The latter are also crucial ingredients in the known hardness versus
randomness trade-offs, which might lead one to believe that these trade-offs also do
not relativize. However, a careful examination in this and the next section will reveal
that the hardness versus randomness trade-offs do relativize. In fact, they relativize
in the very strong way stated in Theorem 3.4.
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We start with the construction of a pseudorandom generator out of a Boolean
function that is hard on average. Nisan and Wigderson use the following notion of a
combinatorial design in their construction of a pseudorandom generator.

Definition 3.11 (see [NW94]). An (m, �) design of size k over a universe Ω is
a collection S = (S1, S2, . . . , Sk) of subsets of Ω, each of size �, such that, for any
1 � i < j � k, the intersection Si ∩ Sj has size at most m.

In particular, in order to construct Gn, Nisan and Wigderson need a (logn, �)
design of size n for a given value of � � log n. The size of the design universe will
be the seed length s(n) of Gn and therefore should be small. Nisan and Wigderson
[NW94] show that the greedy approach works and that it yields a (logn, �) design
of size n over a universe of size O(�2/ log n). See [Tre99, Lemma 7] for a detailed
analysis.

Lemma 3.12 (see [NW94]). A (log n, �) design of size n can be constructed over
a universe of size s ∈ O(�2/ log n) in time 2s · nO(1).

Given a function g : {0, 1}� → {0, 1} and a (logn, �) design S = (S1, S2, . . . , Sn)
over {1, 2, . . . , s}, Nisan and Wigderson define their pseudorandom generator Gn as
follows:

Gn : {0, 1}s → {0, 1}n : σ → g(σ|S1
) g(σ|S2

) . . . g(σ|Sn
),(6)

where σ|Si
denotes the substring of σ consisting of the bits indexed by the elements

from Si.
The following theorem, combined with Lemma 3.12, finishes the proof of Theo-

rem 3.2.
Theorem 3.13. Let B be any oracle, let g : {0, 1}� → {0, 1}, and let S =

(S1, S2, . . . , Sn) a (log n, �) design over {1, 2, . . . , s}. If HB
g � n2, then Gn as defined

by (6) is secure against B.
The proof follows along the lines of the one by Nisan and Wigderson [NW94].

It is an application of Yao’s observation that distinguishability from the uniform
distribution implies predictability [Yao82] and uses the so-called hybrid argument
[GM84].

Proof. We proceed by contradiction. Assume that Gn is not secure against B.
This means that there exists an oracle circuit D of size at most n such that either

Pr
σ
[DB(Gn(σ)) = 1]− Pr

ρ
[DB(ρ) = 1] >

1

n
(7)

or else Prρ[D
B(ρ) = 1]− Prσ[D

B(Gn(σ)) = 1] > 1
n , where ρ is uniformly distributed

over {0, 1}n and σ over {0, 1}s. We will assume that (7) holds. The other case is
similar.

Consider the following sequence of “hybrid” distributions D0, . . . ,Dn:
D0 = g(σ|S1) g(σ|S2) . . . g(σ|Sn−1) g(σ|Sn)
D1 = ρ1 g(σ|S2) . . . g(σ|Sn−1) g(σ|Sn)
...

...
Di = ρ1 ρ2 . . . ρi−1 ρi g(σ|Si+1

) . . . g(σ|Sn−1
) g(σ|Sn

)
...

...
Dn−1 = ρ1 ρ2 . . . ρn−1 g(σ|Sn)
Dn = ρ1 ρ2 . . . ρn−1 ρn

As before, ρ is uniformly distributed over {0, 1}n and σ over {0, 1}s.
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Since the left-hand side of (7) can be written as

Pr
y∈D0

[DB(y) = 1]− Pr
z∈Dn

[DB(z) = 1] =

n∑
i=1

Pr
y∈Di−1

[DB(y) = 1]− Pr
z∈Di

[DB(z) = 1],

there must exist an index i, 1 � i � n, such that

Pr
y∈Di−1

[DB(y) = 1]− Pr
z∈Di

[DB(z) = 1] � 1

n2
.(8)

The only difference between Di−1 and Di is the way the ith bit is generated: In
Di−1, it is set to g(σ|Si

), whereas in Di, it is a random bit. Equation (8) says that,
in the former case, the B-oracle circuit DB is more likely to accept than in the latter
case. This suggests the following randomized predictor P (x) for g(x):

(i) Pick ρ1, ρ2, . . . , ρi ∈ {0, 1} uniformly at random.
(ii) Set σ|Si equal to x, and pick the other bits of σ uniformly at random.
(iii) If DB(ρ1, ρ2, . . . , ρi, g(σ|Si+1), . . . , g(σ|Sn)) accepts, then output ρi; other-

wise, output ρi (the complement of ρi).
Claim 3.14.

Pr
ρ,σ

[P (x) = g(x)]− 1

2
= Pr

y∈Di−1

[DB(y) = 1]− Pr
z∈Di

[DB(z) = 1],(9)

where x denotes σ|Si .
We argue the claim by conditioning on all of ρ and σ except ρi. Let ỹ denote y

with the ith bit flipped.
(i) Case DB(y) = DB(ỹ). Since the value of the ith component does not affect

DB , the right-hand side of (9) vanishes. P (x) is a random bit in this case, so the
left-hand side also vanishes.

(ii) Case DB(y) �= DB(ỹ). Then DB(z) accepts with probability 1
2 , and P (x)

equals g(x) precisely when DB(y) = 1.
This finishes the proof of the claim.
Note that x

.
= σ|Si is uniformly distributed over {0, 1}m. By an averaging argu-

ment, (8) and (9) imply that we can fix ρ and all of σ outside of Si such that

Pr
x
[P (x) = g(x)] � 1

2
+

1

n2
.(10)

Note that

P (x) = DB(ρ1, ρ2, . . . , ρi, g(σ|Si+1), . . . , g(σ|Sn))⊕ ρi.(11)

Since |Sj ∩ Si| � log n for j �= i, each of the components g(σ|Sj ), i < j � n,
depend only on logn bits of x and therefore can be computed by circuits of size at
most n with input x. There are at most n− 1 such components. As ρ is fixed and the
size of D is at most n, it follows that the right-hand side of (11) can be evaluated by
a B-oracle circuit CB of size at most (n − 1)n + n = n2. In combination with (10),
this leads to the contradiction that HB

g < n2.

3.3. Proof of Theorem 3.3. Sudan, Trevisan, and Vadhan showed the fol-
lowing list decoding result which is used to give a strong worst-case to average-case
hardness amplification [STV01, Definition 22 and Lemma 28].

Theorem 3.15 (see [STV01]). There exists a family of maps (CN,ε)N∈N,ε>0,

where CN,ε : {0, 1}N → {0, 1}N ′(N,ε) such that the following hold.
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(i) CN,ε is computable in time polynomial in N and 1/ε. In particular, N ′ .
=

N ′(N, ε) is polynomial in N and 1/ε.
(ii) There exists a randomized algorithm that, on input N and ε and given oracle

access to a string y ∈ {0, 1}N ′
, runs in time polynomial in logN and 1/ε and

outputs with high probability a list of randomized oracle machines Mj with
the following properties:
• For every x ∈ {0, 1}N such that (CN,ε(x))i = yi for at least (

1
2 + ε)N ′

of the positions i, 1 � i � N ′, there exists an index j such that, for any
position i, 1 � i � N , My

j (i) outputs xi with high probability.
• Each machine Mj runs in time polynomial in logN and 1/ε.

By Adleman’s argument [Adl78], we can transform the randomized procedures in
(ii) of Theorem 3.15 into circuits. This yields the following corollary.

Corollary 3.16. There exists a constant c such that, for any N ∈ N, x ∈
{0, 1}N , and y ∈ {0, 1}N ′

satisfying (CN,ε(x))i = yi for at least ( 1
2 + ε)N ′ of the

positions i, 1 � i � N ′, there exists an oracle circuit D of size ( 1
ε logN)c such that

Dy(i) = xi for every 1 � i � N .
We define g such that its truth-table at length n′ .= logN ′ equals the encoding

CN,ε of the truth-table of f at length n
.
= logN . We set ε = 1/h(n′), where h(n′) is

the hardness level we want to achieve. Since h(n′) ∈ O(2n
′
/n′), (i) in Theorem 3.15

implies that N and N ′ are polynomially related, so we can set n = γ · n′ for some
positive constant γ.

Now suppose that there exists a B-oracle circuit of size at most h(n′) that com-
putes g correctly on at least ( 1

2 +
1

h(n′) )N
′ of the inputs of length n′. By plugging this

circuit in as the oracle y in Corollary 3.16, we obtain aB-oracle circuit that computes f
at length n = γ ·n′ correctly and has size at most ( 1

ε logN)c ·h(n′) = (γn′)c ·(h(n′))c+1.
In other words,

CB
f (γn

′) � (γn′)c · (h(n′))c+1.(12)

For δ < 1/(c + 1), (12) contradicts the upper bound on h(n′) in the hypothesis of
Theorem 3.3. Therefore, HB

g (n′) � h(n′).

4. A general framework for derandomization. In the previous section, we
showed that an Arthur-Merlin protocol can be viewed as an SAT-oracle distinguisher
for a pseudorandom generator, and, if a Boolean function f exists with sufficient hard-
ness against SAT-oracle circuits, we can construct a pseudorandom generator based
on f that will look random to our Arthur-Merlin protocol. Still, we have only applied
our results to randomized decision algorithms. In this section, we show how to relax
this condition and obtain hardness versus randomness trade-offs for a broader class
of randomized processes. Under a sufficient hardness condition depending upon the
particular randomized algorithm, we are able to reduce the algorithm’s randomness to
a logarithmic factor and, in some cases, provide a complete derandomization. Weaker
hardness conditions yield partial derandomizations.

We first define the notion of a randomized process to which our approach applies.
Definition 4.1. A randomized process that uses r(n) random bits on inputs of

length n is a pair (F, π), where the following hold:
(i) F is a function that takes a string x and a string ρ of length r(|x|), and

outputs the outcome of the process on input x using ρ as the random bit
sequence.

(ii) π is a predicate with the same domain as F . Intuitively π indicates whether
the process succeeds on input x using ρ, i.e., whether ρ is a “good” choice
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of random bits for the given input x. We call π the success predicate of the
randomized process.

In the case of Arthur-Merlin games, F is Boolean. More specifically, for the
game defined by (2) and (3) in section 2, F (x, ρ) coincides with the predicate ∃z ∈
{0, 1}t(n) : M(〈x, ρ, z〉) = 1; the success predicate π(x, ρ) equals F (x, ρ) if x ∈ L and
the complement of F (x, ρ) otherwise. In the specific randomized processes we will
consider in section 5, F will be non-Boolean.

What matters for our derandomization results are the complexity of the success
predicate π and, more precisely, the property stated in the following straightforward
lemma.

Lemma 4.2. Let B be any oracle, and let (F, π) be a randomized process using
r(n) random bits such that, for any fixed input x of length n, the predicate πx :
{0, 1}r(n) → {0, 1}, where πx(ρ) .

= π(x, ρ), can be decided by a B-oracle circuit of size
t(n) � r(n). If G is a pseudorandom generator with seed length s(n) which is secure
against B, then, for any input x of length n,

|Pr
ρ
[π(x, ρ) = 1]− Pr

σ
[π(x,Gt(n)(σ)[1..r(n)]) = 1]| = O(1/t(n)),

where ρ is uniformly distributed over {0, 1}r(n) and σ is uniformly distributed over
{0, 1}s(t(n)).

In our applications, we will be concerned with randomized processes that use
a polynomial number of random bits. We will choose the oracle B in Lemma 4.2
powerful enough so that it can check the process efficiently in the following sense.

Definition 4.3. Let B be an oracle, and let (F, π) be a randomized process using
a polynomial number r(n) of random bits. We say that B can efficiently check (F, π)
if there is a polynomial p such that, for any fixed input x of length n, the predicate
πx : {0, 1}r(n) → {0, 1}, where πx(ρ)

.
= π(x, ρ), can be decided by a B-oracle circuit

of size p(n).
Using the success predicate as a distinguisher as in Lemma 4.2, Theorem 3.4

yields our general derandomization result.
Theorem 4.4. Let A be a class of oracles, B an oracle, d a positive constant,

and � : N → N a constructible function. Let (F, π) be a randomized process using a
polynomial number of random bits such that B can efficiently check (F, π). If there
exists a Boolean function f ∈ EA such that CB

f (�(n)) = Ω(n), then there exist a

function G computable in EA and a constructible function s(n) = O(�2(nO(1))/ log n)
such that, for any input x of length n,

|Pr
ρ
[π(x, ρ) = 1]− Pr

σ
[π(x,G(σ)) = 1]| = O(1/nd),

where ρ is uniformly distributed over {0, 1}r(n) and σ is uniformly distributed over
{0, 1}s(n). The same holds if E is replaced by EXP.

See Table 2 for some interesting instantiations of Theorem 4.4.
In order to reduce the randomness of a randomized process, we will first analyze

the complexity of an oracle B capable of efficiently checking the associated success
predicate and then construct a pseudorandom generator secure against B based on a
function with presumed hardness against B. We will see several examples of this in
the next section.

5. More applications. We will now apply the general framework of section
4 to various other constructions in computational complexity. As is customary, we
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state only our results in terms of the strongest of the assumptions in Table 2, yielding
polynomial-time deterministic simulations. It should be noted, however, that weaker
assumptions can be taken (e.g., that the polynomial-time hierarchy does not collapse)
in order to achieve weaker, but still subexponential, deterministic simulations.

5.1. Valiant–Vazirani. Our first example is the randomized Boolean hashing
protocol developed by Valiant and Vazirani [VV86]. They give a method for pruning
the satisfying assignments of a propositional formula to one.

Theorem 5.1 (see [VV86]). There exists a randomized polynomial-time algo-
rithm that, on input a propositional formula φ, outputs a list of propositional formulas
such that

(i) every satisfying assignment to any of the formulas on the list also satisfies φ;
(ii) if φ is satisfiable, then, with high probability, at least one of the formulas on

the list has exactly one satisfying assignment.
Let F (x, ρ) denote the list of formulas the Valiant–Vazirani algorithm produces

on input x using coin flips specified by ρ. We define the success predicate π(x, ρ) to
hold unless x is a satisfiable formula and none of the formulas in F (x, ρ) has a unique
satisfying assignment. It is clear that (F, π) corresponds to a formalization of the
Valiant–Vazirani process and fits within our framework.

Theorem 5.2. If there is a Boolean function f ∈ E such that CSAT
f (n) = 2Ω(n),

then, given a propositional formula φ, we can generate in polynomial time a list of
propositional formulas such that

(i) every satisfying assignment to any of the formulas on the list also satisfies φ;
(ii) if φ is satisfiable, then at least one of the formulas on the list has exactly one

satisfying assignment.
Proof. Let (F, π) be the formalization as described above. Notice that checking

whether a given propositional formula has at least two satisfying assignments is an NP
question. Hence we can check, in polynomial time, whether a propositional formula
has a unique satisfying assignment using two queries to SAT. It follows that SAT
can efficiently check (F, π). Applying Theorem 4.4 to (F, π) yields a pseudorandom
generator G computable in E that looks random to the Valiant–Vazirani process.
Enumerating over all seeds and collecting all formulas produce the desired list of
formulas in polynomial time.

We now have the following corollary about computing satisfying assignments non-
adaptively.

Corollary 5.3. If there is a Boolean function f ∈ E such that CSAT
f (n) = 2Ω(n),

then, given a satisfiable propositional formula φ, we can find a satisfying assignment
for φ in polynomial time given nonadaptive oracle access to SAT.

Proof. A satisfying assignment to a uniquely satisfiable propositional formula
ψ can be found in polynomial time using nonadaptive oracle queries to SAT: We
set a variable v of ψ iff the formula obtained from ψ by substituting True for v is
satisfiable.

We run the latter procedure on each formula ψ of the list produced by Theorem
5.2 on input φ and output the first satisfying assignment we obtain.

We also obtain interesting structural observations. Recall that the class #P con-
tains all functions f : Σ∗ → N for which there exists a nondeterministic polynomial-
time Turing machine M such that f(x) equals the number of accepting computations
of M on input x. A language L belongs to ⊕P if there exists a #P function f such
that an input x belongs to L iff f(x) is odd. A GapP function is the difference of
two #P functions, and SPP denotes the class of all languages whose characteristic
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function is a GapP function. The class PP contains all languages L for which there
exists an f ∈ GapP such that x ∈ L iff f(x) > 0. SPP is contained in both ⊕P and
PP. We refer the reader to the survey by Fortnow [For97] for background on these
counting classes. Theorem 5.2 implies the following corollary.

Corollary 5.4. If there is a Boolean function f ∈ E such that CSAT
f (n) = 2Ω(n),

then NP is contained in SPP.
Proof. Let h(φ, i) denote the #P function that gives the number of satisfying

assignments to the ith formula of the list produced by Theorem 5.2 on input φ. Then

1−
∏
i

(1− h(φ, i))(13)

equals the characteristic function of SAT. By the closure properties of GapP [FFK94],
(13) belongs to GapP.

Similarly, we can conditionally derandomize the result by Toda and Ogiwara
[TO92] that the polynomial-time hierarchy does not add power to GapP in a ran-
domized setting. Applying our techniques to their main lemma yields the following
theorem.

Lemma 5.5. Let B be any oracle. If there is a Boolean function f ∈ E such that

CSATB

f (n) = 2Ω(n), then GapPNPB

is contained in GapPB.
This allows us to show the following theorem.
Theorem 5.6. For any integer k � 1, the following holds: If there is a Boolean

function f ∈ E such that C
TQBFk

f (n) = 2Ω(n), then Σp
k is contained in SPP.

Here TQBFk denotes the language of all true fully quantified propositional for-
mulas with at most k − 1 quantifier alternations.

Proof. Corollary 5.4 relativizes and, under the given assumption, implies that
the characteristic function of any language in Σp

k is contained in GapPTQBFk−1 . The
successive application of Lemma 5.5 with B = TQBFk−2, B = TQBFk−3, . . . , B =

TQBF1, and B = ∅ yields, under the given assumption, that GapPTQBFk is contained
in GapP.

Corollary 5.7. Let B be any oracle hard for the polynomial-time hierarchy
under polynomial-time Turing reductions. If there is a Boolean function f ∈ E such
that CB

f (n) = 2Ω(n), then the polynomial-time hierarchy is contained in SPP.
Corollary 5.7 is strongly related to Toda’s theorem [Tod91] that the polynomial-

time hierarchy lies in BP · ⊕P. Applying our derandomization technique directly to
Toda’s theorem, along with the observation that ⊕P is closed under majority [PZ83]
(in fact ⊕P⊕P = ⊕P), yields the following theorem.

Theorem 5.8. If there is a Boolean function f ∈ E such that C⊕SAT
f (n) = 2Ω(n),

then the polynomial-time hierarchy is contained in ⊕P.

5.2. Learning circuits. Learning theory represents another area where we can
apply our techniques. We will focus on exact concept learning with equivalence queries
[Ang88, Lit88], in which the learner presents hypotheses to a teacher, who then tells
the learner whether the hypothesis agrees with the concept in question. If it does,
the learner has succeeded; otherwise, the teacher provides a counterexample, and the
learner continues.

A fundamental question is whether we can efficiently learn Boolean circuits in this
model. If P = NP, we can; if one-way functions exist, we cannot [PW90]. Without
any complexity theoretic assumption, Bshouty et al. [BCG+96] showed that access to
an NP oracle and to a source of randomness suffice to efficiently learn Boolean circuits.
We give evidence that we may be able to dispense with the source of randomness.
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Theorem 5.9. If there is a Boolean function f ∈ NE∩coNE such that C
TQBF2

f (n)

= 2Ω(n), then we can perform the following task in deterministic polynomial time given
access to an NP oracle: exactly learn Boolean circuits of size t using equivalence
queries with hypotheses that are circuits of size O(tn+ n log n).

As before, TQBF2 denotes the language of all true, fully quantified propositional
formulas with at most one quantifier alternation.

Proof. We apply Theorem 4.4 to a randomized process (F, π) underlying the al-
gorithm of Bshouty et al. [BCG+96]. We define F in the obvious way, namely, as
the candidate-equivalent circuit the learner outputs. The specification of the success
predicate π is somewhat more involved than in the examples we have seen so far.
We want only to consider a random seed as “good” if the learner, when using this
seed, finds an equivalent circuit no matter how the teacher picks the counterexam-
ples. Therefore, we define π(x, ρ) to indicate whether, for every choice of candidate
counterexamples, either one of them fails to be a valid counterexample on input x
and random seed ρ or the learner ends up with an equivalent circuit to x. It follows
from the construction of Bshouty et al. that π is a Πp

2 predicate, and their analysis
shows that, for any input x, π(x, ρ) holds with high probability.

Using the derandomization provided by Theorem 4.4, we end up with a polynomial
number of candidate circuits, at least one of which is equivalent to x. So we just
present each of these to the teacher and will succeed.

Bshouty et al. used their learning theory result to improve the known collapse of
the polynomial-time hierarchy in case NP would have polynomial size circuits: They
showed that the latter implies that the polynomial-time hierarchy is contained in
ZPPNP. Along similar lines, we obtain the following derandomization.

Corollary 5.10. If NP has polynomial size circuits and there is a Boolean
function f ∈ ENP such that Cf (n) = 2Ω(n), then the polynomial-time hierarchy is
contained in PNP.

Proof. If NP has polynomial size circuits and there is a Boolean function f ∈
ENP such that Cf (n) = 2Ω(n), then the same function f also satisfies CSAT

f (n) =

2Ω(n). Therefore, by applying Theorem 3.4 with A = NP and B = SAT, we obtain a
pseudorandom generator G computable in ENP which is secure against SAT and has
logarithmic seed length. If follows that ZPPNP = PNP. To finish the proof, it suffices
to combine this with the Bshouty et al. [BCG+96] result that the polynomial-time
hierarchy collapses to ZPPNP if NP has polynomial size circuits.

5.3. Rigid matrices. Several researchers have studied the problem of finding
explicit constructions of combinatorial objects that have been proven to exist non-
constructively (by using the probabilistic method, for example). In many cases, an
explicit construction of some combinatorial object yields an interesting complexity
theoretic result. One of the notable examples of this is the problem of matrix rigidity.
The rigidity of a matrix M over a ring S, denoted RS

M (r), is the minimum number of
entries of M that must be changed to reduce its rank to r or below. (An entry can
be changed to any element of S.) Valiant [Val77] proved that an explicit construction
of an infinite family of highly rigid matrices yields a circuit lower bound.

Theorem 5.11 (see [Val77]). Let ε, δ > 0 be constants. For any positive integer
n, let Mn be an n × n matrix over a ring Sn. If RSn

Mn
(εn) � n1+δ for infinitely

many values of n, then the linear transformations defined by the family Mn cannot be
computed by linear size log-depth circuits consisting of gates computing binary linear
operators on Sn.

Valiant also proved that almost all matrices over an infinite field have rigidity
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(n−r)2, and almost all matrices over a fixed finite field have rigidity Ω((n−r)2/ log n).
The best known explicit constructions achieve rigidity Ω(n2/r) over infinite fields

[PV91, Raz] and Ω(n
2

r log(nr )) [Fri90] over finite fields. These are not sufficient to
obtain circuit lower bounds using Theorem 5.11. Under a hardness assumption, our
derandomization technique will give an explicit construction to which Theorem 5.11
applies—a family of matrices Mn over Sn = Zp(n)[x] such that RSn

Mn
(r) ∈ Ω((n −

r)2/ log n), where p(n) is polynomially bounded.
We will use the following lemma, which follows directly from Valiant’s paper

[Val77].
Lemma 5.12 (see [Val77]). Let S be a ring with at least two elements, and let n

be a positive integer. All but at most a 1
n fraction of the n × n matrices M over S

satisfies

RS
M (r) � (n− r)2 − 2n− 2 log n

1 + 2 log n
.(14)

We can use our technique to achieve the nonconstructive rigidity bounds by notic-
ing that there exist polynomial size SAT-oracle circuits which can check if a matrix
is rigid.

Theorem 5.13. If there exists a Boolean function f ∈ E such that CSAT
f (n) =

2Ω(n), then, given integers n � 1 and p � 2, we can construct in time polynomial in
n+ log p a list of n× n matrices M over S = Zp, most of which satisfy (14).

Proof. Let ρ be a string of length n2 · �log p�. We will view ρ as the concatenation
of n2 blocks of �log p� bits each. Let F (〈1n, p〉, ρ) denote the matrix whose ijth entry
is the (n(i− 1)+ j)th block of ρ interpreted as a number in binary and taken modulo
p. We define the predicate π(〈1n, p〉, ρ) to be true if M = F (〈1n, p〉, ρ) satisfies (14).
Note that the latter is a coNP predicate: If (14) is violated for some r, we can guess
modified values for fewer than the right-hand side of (14) many entries of M and
verify that the rank of the modified matrix over S is at most r. So we can decide
π by one query to an oracle for SAT. Moreover, Lemma 5.12 states that, for most
sequences ρ, the predicate holds. By applying Theorem 4.4 to (F, π), we obtain a
pseudorandom generator which, on most seeds, outputs a matrix with the required
rigidity property. Enumerating over all seeds gives us the desired list of matrices in
polynomial time.

Now we need to combine this list of matrices into a single matrix with similarly
high rigidity. We can do so by switching to the ring of univariate polynomials over Zp.

Lemma 5.14. Given n×n matrices M0,M1, . . . ,Mk over Zp, where p is a prime
larger than k, we can construct in time polynomial in n + k + log p an n × n matrix
N over Zp[x] such that

R
Zp[x]
N (r) � max

0�i�k
R

Zp

Mi
(r),(15)

where the entries of N are polynomials of degree at most k.
Proof. Let qij(x) be the polynomial of degree at most k such that qij(�) equals

the ijth entry of M�, 0 � � � k; i.e., qij interpolates the ijth entries of all k + 1
matrices. Note that the qij ’s exist and that each coefficient can be computed in time
polynomial in k + log p. Let N be the matrix whose ijth entry is qij . We now argue
that (15) holds.

Let m = R
Zp[x]
N (r), and let N ′ be a matrix obtained by changing m entries of N

such that the rank of N ′ is at most r. Then every (r + t) × (r + t) minor of N ′ has
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determinant 0 for 0 < t � n− r. Thus the determinant of any (r+ t)× (r+ t) minor
of N ′ can be viewed as an identically 0 polynomial in its entries. Let φa(N

′) be the
matrix obtained by substituting a ∈ Zp for x in every entry of N ′. (Recall that N ′

has entries from Zp[x].) Every (r+ t)× (r+ t) minor of φa(N
′) has determinant 0 for

0 < t � n − r. We conclude by noticing that changing m or fewer entries of φa(N)
has reduced its rank to a value less than or equal to r. However, φa(N) equals Ma

for a ∈ {0, 1, . . . , k}. Therefore, RZp

Mi
(r) � m for any 0 � i � k; i.e., (15) holds.

Given this construction of rigid matrices, we can conclude the following relation-
ship among circuit lower bounds.

Theorem 5.15. If there exists a function f ∈ E such that CSAT
f (n) = 2Ω(n), then

there exists a polynomially bounded function p(n) and a polynomial-time computable
family of matrices Mn, where Mn is an n × n matrix over Zp(n)[x] such that the
linear transformations defined by the familyMn cannot be computed by log-depth linear
size circuits which have special gates that can compute binary linear operators over
Zp(n)[x].

Proof. For any polynomial time computable function p(n), Theorem 5.13 allows
us to efficiently compute a list of (n + log p(n))c matrices M over Zp(n) for some
constant c, most of which are rigid. Provided p(n) is a prime satisfying

p(n) � (n+ log p(n))c,(16)

Lemma 5.14 efficiently combines them into a single matrix N over Zp(n)[x] which
satisfies a rigidity condition sufficient for Theorem 5.11. The smallest prime value for
p(n) that satisfies (16) is polynomially bounded in n, and we can compute it in time
polynomial in n.

We point out that the weaker assumption that there exists a function f ∈ E such
that Cf(n) = 2Ω(n) immediately implies (by padding) the existence of a function in P
with superpolynomial circuit complexity, regardless of the depth restrictions. Viewed
that way, Theorem 5.15 uses a stronger hypothesis to produce a weaker conclusion,
namely, the existence of a function in P that requires superpolynomial size but only
for circuits of restricted depth. However, Theorem 5.15 adds credibility to Valiant’s
program of exhibiting an explicit function that cannot be computed by linear size
log-depth circuits using matrix rigidity. Theorem 5.15 shows that, under a reasonable
assumption, Valiant’s program will work.

5.4. Universal traversal sequences. Universal traversal sequences, intro-
duced by Cook, form another example where explicit constructions have important
complexity theoretic implications. A universal traversal sequence for size n is a se-
quence σ of labels from {1, 2, . . . , n−1} such that, for any undirected connected graph
G with n vertices in which the incident edges at every vertex have been assigned dis-
tinct labels from {1, 2, . . . , n− 1}, the following process always visits every vertex of
G: Pick an arbitrary start vertex, and, in subsequent steps, go along the edge with
the label matching the next symbol of σ; in case of no match, stay put during that
step and continue with the next symbol of σ.

If we can construct universal traversal sequences in logspace, then we can solve
undirected graph connectivity in logspace, and symmetric logspace equals logspace
[LP82]. However, we do not know how to generate universal traversal sequences in
logspace or even in polynomial time. Aleliunas et al. [AKL+79] showed that most
sequences of length O(n3) over {1, 2, . . . , n− 1} are universal traversal sequences for
size n, but, as of now, the best explicit construction, due to Nisan [Nis92], yields
universal traversal sequences of length nO(log n). We give evidence supporting the
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belief that explicit universal traversal sequences of polynomial size can be generated
efficiently.

A straightforward application of our technique would yield a polynomial-time con-
struction under the assumption that E requires exponential size SAT-oracle circuits.
Since being a universal traversal sequence is a coNP predicate, Theorem 4.4 applied to
the Aleliunas et al. process and oracle B = SAT would efficiently generate under that
hypothesis a collection of sequences, most of which are universal traversal sequences.
Concatenating all of them would yield the desired universal traversal sequence of
polynomial size. However, we can do better and dispense with the oracle B.

Theorem 5.16. If there is a Boolean function f ∈ E such that Cf (n) = 2Ω(n),
then we can construct universal traversal sequences in polynomial time.

Proof. Let G encode a graph with n vertices with edge labels as above. For
any sequence σ over {1, 2, . . . , n − 1}, let τ(G, σ) indicate whether, for every vertex
v of G, the walk in G starting from v and dictated by σ visits every vertex of G.
Let F (G, ρ) denote the sequence of length c · n3 over {1, 2, . . . , n − 1} (where c is
some sufficiently large constant) as specified by the successive bits of ρ. Let π(G, ρ)
equal τ(G,F (G, ρ)). Note that π is a P predicate, so B = ∅ can efficiently check
the randomized process (F, π). Since every universal traversal sequence σ satisfies
τ(G, σ), the result of Aleliunas et al. [AKL+79] shows that for any graph G, π(G, ρ)
holds for most ρ. Therefore, Theorem 4.4 allows us to generate in polynomial time a
collection of sequences σ, most of which satisfy τ(G, σ). Their concatenation forms a
single sequence σ′ satisfying τ(G, σ′). Since the σ’s are independent of G, so is their
concatenation σ′. Hence we have constructed a sequence σ′ which satisfies τ(G, σ′) for
every edge labeled graph G with n vertices; i.e., we have found a universal traversal
sequence σ′.

Under the assumption that linear space requires exponential size circuits, we can
actually construct universal traversal sequences in logspace. In fact, that assumption
allows us to build logspace computable pseudorandom generators for logspace and
hence to derandomize BPL, the class of languages accepted by logspace randomized
Turing machines with bounded two-sided error.

Theorem 5.17. If there is a Boolean function f ∈ DSPACE[n] such that Cf (n) =
2Ω(n), then BPL = L.

Along the lines of Babai, Nisan, and Szegedy [BNS92], the pseudorandom gener-
ators behind Theorem 5.17 let us conclude the following corollary.

Corollary 5.18. If there is a Boolean function f ∈ DSPACE[n] such that
Cf (n) = 2Ω(n), then we can construct universal traversal sequences in logspace.

Remark. We can actually relax the hypothesis in both Theorem 5.17 and Corollary
5.18 to the existence of a Boolean function in linear space that requires branching
programs of size 2Ω(n): If there is a Boolean function f ∈ DSPACE[n] that requires
branching programs of size 2Ω(n), then BPL = L, and we can construct universal
traversal sequences in logspace.

This stronger statement forms a more natural space-bounded analogue of the
Impagliazzo–Wigderson [IW97] result than Theorem 5.17. The proof of the statement
goes along the lines of the proof of Theorem 3.4. However, it needs a more space-
efficient transformation of worst-case hardness into average-case hardness than the
one by Sudan, Trevisan, and Vadhan [STV01] which we used in the proof of Theorem
3.4. The original construction by Impagliazzo and Wigderson [IW97], building on
previous work by Babai et al. [BFNW93] and by Impagliazzo [Imp95], would do.
Instead of going through the details of the latter constructions, we provide the details
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for the weaker statement given in Theorem 5.17, for which the Sudan, Trevisan, and
Vadhan construction used in our proof of Theorem 3.4 works fine.

5.5. Proof of Theorem 5.17. In order to establish Theorem 5.17, it suffices
to show the following: If the function f in Theorem 3.4 is in linear space and �(n) =
Θ(log n), then we can make the pseudorandom generator G provided by Theorem 3.4
computable in linear space. This is because the seed length s(n) of G in Theorem 3.4
is logarithmic for logarithmic �(n).

The proof of Theorem 3.4 consists of two steps:
(i) Converting the worst-case hard function f into an average-case hard function

g using Theorem 3.3.
(ii) Applying Theorem 3.2 to the average-case hard function g to obtain the

pseudorandom generator G.
First, we argue that, if the function f in Theorem 3.3 is in linear space, then so is the
function g. This is because the code CN,ε in Theorem 3.15 is actually computable in
space O(logN + log 1/ε), as follows from a straightforward analysis of the paper by
Sudan, Trevisan, and Vadhan [STV01].

We next apply Theorem 3.2 to the function g in order to obtain the pseudorandom
generator G. Computing the ith bit of G(σ) for σ ∈ {0, 1}s(n) amounts to computing
the set Si of a (logn, �) design S = (S1, S2, . . . , Sn) over {1, 2, . . . , s(n)} and evaluating
g on input σ|Si

. The latter can be done in space O(s(n)) since g is in linear space.
The greedy design construction of Lemma 3.12 requires too much space, namely,

Θ(n). However, the next lemma describes a different approach, which needs only
O(s(n)) = O(log n) space. The construction goes along the lines of Impagliazzo
and Wigderson [IW97]. Allender informed us that Wigderson showed him the same
construction [ARZ99]. For any �(n) = Θ(logn), it yields a (logn, �(n)) design of
size nδ over {1, 2, . . . , s(n)} for some positive δ and s(n) = O(log n). Note that this
design is smaller than the one obtained through the greedy construction, which yields
δ = 1. However, designs of the former type are good enough for Theorem 3.13 (with
appropriately modified parameters) and Theorem 3.2 to carry through. So, the next
lemma finishes the proof of Theorem 5.17.

Lemma 5.19. For any positive constant c, there are positive constants α and
γ such that we can generate an (αs, cαs) design of size 2γs over {1, 2, . . . , s} in
space O(s).

Proof. We will show that the following process has a positive probability of
generating an (m, �) design of size k

.
= 2γs over Ω = {1, 2, . . . , s} for sufficiently small

positive constants α and γ, where m
.
= αs and �

.
= βs with β

.
= cα: Pick k subsets of

Ω of size � in a pairwise independent way such that each of the
(
s
�

)
subsets has about

the same probability of being selected.
More precisely, we will do the following. We choose an integer a � 0 such that

2a � k3 · (s�
)
< 2a+1, pick k numbers ri ∈ {0, 1, . . . , 2a − 1} at random in a pairwise

independent way, and set Si to be the [(ri mod
(
s
�

)
) + 1]st subset of Ω of size � (say,

using the lexicographical order). Known constructions of such sample spaces [CG89]
need only O(a) random bits and can generate the samples from the random bits in
space O(a). Moreover, checking whether a given sample S1, . . . , Sk forms an (m, �)
design can be done within the same space bounds. Therefore, we can cycle through all
possible random bit sequences, check the corresponding candidate design, and output
the first valid one. This process runs in space O(a) = O(s) and succeeds provided the
probability of picking a valid design this way is positive. The remainder of the proof
will argue the latter.
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Claim 5.20. Let S, S′ be subsets of Ω of size � chosen independently and
uniformly at random. Then, for some constants dβ and d

′ > 0,

Pr
[ |S ∩ S′| � 2β2s

]
� dβ · s · exp(−d′β2s).

Proof of Claim 5.20. First, consider a subset S of Ω obtained by doing the
following independently for every i ∈ Ω: Put i in S with probability β. Similarly, and
independently, construct S′. Then, by Chernoff’s bounds [MR97, Theorem 4.1],

Pr
[ |S ∩ S′| � 2β2s

]
� exp(−d′β2s)

for some constant d′ > 0. Stirling’s formula yields that

Pr [ |S| = βs ] =

(
s

βs

)
· ββs(1− β)s−βs

∼ 1√
2πβ(1− β)

· 1√
s
.

So

Pr
[ |S ∩ S′| � 2β2s

∣∣ |S| = |S′| = βs
]

� Pr
[ |S ∩ S′| � 2β2s

] · Pr [ |S| = |S′| = βs ]

� dβ · s · exp(−d′β2s)

for some constant dβ depending on β. Since the above distribution of S and S′ con-
ditioned on |S| = |S′| = βs coincides with the uniform distribution of the statement
of the claim, this finishes the proof of the claim.

There is a constant d < 2k3 such that, for any 1 � i � k and any T ⊆ Ω with
|T | = �,

d

2a
� Pr[Si = T ] � d+ 1

2a
.

Because of the pairwise independence, it follows that, for any 1 � i < j � k, the
distribution of (Si, Sj) differs from uniform by at most

(
s

�

)2

·
[(

d+ 1

2a

)2

−
(
d

2a

)2]
= (2d+ 1)

((
s
�

)

2a

)2

< (2c+ 1)

(
2

k3

)2

<
4(4k3 + 1)

k6

<
17

k3

in L1-norm. Therefore, by Claim 5.20,

Pr
[ |Si ∩ Sj | � 2β2s

]
� 17

k3
+ dβ · s · exp(−d′β2s).

Recall that m
.
= αs, �

.
= βs, and β

.
= cα. Hence, for α � 1/(2c2),

Pr[S1, S2, . . . , Sk is not an (m, �) design] �
(
k

2

)
·
(
17

k3
+ dβ · s · exp(−d′β2s)

)
.(17)

The right-hand side of (17) approaches 0 for k = 2γs provided 0 < γ < d′β2

ln 4 = d′c2α2

ln 4 .
This finishes the proof of the lemma.
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6. Recent progress and further research. In this paper, we have demon-
strated the power of relativization in the area of derandomization. We gave several
striking examples, most notably Arthur-Merlin games. New applications have been
discovered recently, and we are convinced that even more will follow.

Critical to our argument is the idea that the analyses of the Nisan–Wigderson and
other generators work for a large class of predicates and statistical tests—whenever
the generator fails a statistical test, the computation of the predicate on which the
generator is based reduces to the computation of the test. This idea lies at the heart
of the breakthrough extractor constructions of Trevisan [Tre99]. In fact, following
Trevisan [Tre99], Miltersen [Mil98] explicitly describes the role of relativization there.
He argues that every relativizable construction of a pseudorandom generator out
of a hard Boolean function yields an extractor. We showed that the Impagliazzo–
Wigderson construction relativizes. Applying Miltersen’s argument to the latter yields
Trevisan’s extractors.

Another application of relativization along the lines of our work is the following:
Nisan and Wigderson [NW94] observed that, if E has circuits of size 2o(n), then, for
every function t(n) = 2Ω(n) and every positive constant ε,

DTIME[t] ⊆ DSPACE[tε].(18)

They concluded from their main results that every language in BPP can be decided
in deterministic polynomial time for infinitely many input lengths unless (18) holds.
Lu [Lu00] noticed that the inclusion (18) even follows if E has B-oracle circuits of
size 2o(n) for some oracle B that is decidable in linear space. Therefore, by setting
B = SAT, the weak version of Theorem 3.10 implies that every language in AM has
polynomial size proofs for infinitely many input lengths unless (18) holds [Lu00].

A different line of further research consists of relaxing the hardness condition
for derandomizing Arthur-Merlin games. In particular, we would like to replace the
SAT-oracle circuit model by the weaker nondeterministic circuit model in Theorem
3.8. Miltersen and Vinodchandran recently managed to do this for the special case
of Theorem 3.10. They showed that, if NE ∩ coNE requires nondeterministic circuits
of size 2Ω(n), then AM collapses to NP. They use a different technique, suited for
one-sided error classes, and exploit the fact that all languages in AM possess a one-
sided error-bounded round Arthur-Merlin game. More specifically, they prove that,
if there exists a Boolean function f ∈ EA that requires nondeterministic B-oracle
circuits of size 2Ω(n), then there exists a hitting set generator computable in EA with
logarithmic seed length that works for conondeterministic B-oracle circuits. Instan-
tiating this statement with A = NP ∩ coNP and B = ∅ yields their main result. In a
similar way, the SAT-oracle circuits in section 5.3 on rigid matrices can be replaced
by nondeterministic circuits [MV99], and the TQBF2-oracle circuits in section 5.2 on
exact learning can be replaced by nondeterministic SAT-oracle circuits.

Due to its one-sided character, the technique of Miltersen and Vinodchandran
does not apply to our results in section 5.1 on derandomizing the Valiant–Vazirani
hashing procedure. It also only works at the “high-end” of the derandomization
spectrum, i.e., under strong hardness assumptions, as in the last lines of Tables 1 and
2. The weakest hardness assumption Miltersen and Vinodchandran can handle is the
existence of a Boolean function in NEXP ∩ coNEXP that requires nondeterministic
circuits of size 2n

α

for some constant α > 1
2 . (Then they obtain quasi-polynomial

size proofs for any language in AM, as in Theorem 3.9.) In particular, it remains
open whether the existence of a Boolean function f ∈ NEXP ∩ coNEXP that requires
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superpolynomial size nondeterministic circuits implies that graph nonisomorphism has
subexponential size proofs. We present this as an open problem for further research.
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Abstract. We prove two results concerning approximate counting of independent sets in graphs
with constant maximum degree ∆. The first implies that the Markov chain Monte Carlo technique is
likely to fail if ∆ ≥ 6. The second shows that no fully polynomial randomized approximation scheme
can exist for ∆ ≥ 25, unless RP = NP.
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1. Introduction. Counting independent sets in graphs is one of several com-
binatorial counting problems which have received recent attention. The problem is
known to be #P-complete, even for low-degree graphs [5]. On the other hand, it has
been shown that, for graphs of maximum degree ∆ = 4, randomized approximate
counting is possible [9, 5]. This success has been achieved using the Markov chain
Monte Carlo method [8] to construct a fully polynomial randomized approximation
scheme (fpras). This has led to a natural question of how far this success might
extend.

Here we consider in more detail this question of counting independent sets in
graphs with constant maximum degree. We prove two results. The first, in section 2,
shows that the Monte Carlo Markov chain method is likely to fail for graphs with
∆ = 6. This leaves open only the case ∆ = 5.

Our second result gives an explicit value of ∆ above which approximate counting,
using any kind of polynomial-time algorithm, is impossible unless RP = NP. The
bound we obtain is ∆ = 25, though we suspect that the true value is in single figures,
probably 6.

We note that Berman and Karpinski [2] have recently given new explicit bounds
for the approximation ratio for the maximum independent set and other problems
in low-degree graphs. These directly imply an inapproximability result for counting.
(See Luby and Vigoda [9], specifically the proof of their Theorem 4.) However, the
bound on ∆ obtained this way is larger than ours by at least two orders of magnitude.

The questions we address in this article could also be studied in a more general
setting in which vertices included in an independent set have weights or “fugacities”
other than 1. In this setting, the weight of an independent set of size k is deemed to
be λk for some constant k, and the goal is to compute the sum of the weights of all
independent sets. One could then ask, for each ∆, at what exact λ an fpras ceases to
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exist (assuming such a λ exists). This question is a more precise version of the one
we ask: for λ = 1, what is the largest ∆ for which an fpras exists?

A reasonable guess is that the critical λ just identified is greater than 1 when
∆ ≤ 5, and less than 1 when ∆ ≥ 6. One might even rashly conjecture (though
we shall not do so) that this critical λ is the same as that marking the boundary
between unique and multiple Gibbs measures in the independent set (hard core gas)
model in the regular infinite tree of degree ∆ (the so-called Bethe lattice). Brightwell
and Winkler have computed the fugacity λ at which multiple Gibbs measures appear
in the Bethe lattice [3]. The only observation we offer here is that our results are
consistent with the critical λ’s being the same in both situations.

2. Markov chain Monte Carlo. For a graph G, let I(G) denote the collection
of independent sets of G. Let M(G) be any Markov chain, asymptotically uniform
on I(G), with transition matrix PG. In this section, G will be a bipartite graph with
a vertex bipartition into classes of equal size n. Let b(n) ≤ n be any function of n,
and suppose we have PG(σ1, σ2) = 0 whenever |σ1 ⊕ σ2| > b(n), where ⊕ denotes
symmetric difference. We will say thatM(G) is b(n)-cautious. Thus a b(n)-cautious
chain is not permitted to change the status of more than b(n) vertices in G at any
step. Ideally, for ease of implementation, we would wish to have b(n) a constant (as
in [9, 5]). However, we will show that no b(n)-cautious chain on I(G) can mix rapidly
unless b(n) = Ω(n). Thus any chain which does mix rapidly on M(G) must change
the status of a sizable proportion of the vertices at each step.

Before stating our result, we need to formalize what we mean by mixing, rapid
or otherwise. LetM be an ergodic Markov chain with state space Ω, distribution pt
at time t, and asymptotic distribution p∞ = π. Let x0 ∈ Ω be the initial state ofM,
so that p0 assigns unit mass to state x0. Define the mixing time τ(x0) of M, with

initial state x0 ∈ Ω, as the first t for which dTV(pt, π)
def
= 1

2 ||pt − π||1 ≤ e−1; then
define the mixing time τ as the maximum of τ(x0) over choices of initial state x0. We
are able to show the following.

Theorem 2.1. Suppose ∆ ≥ 6 and b(n) ≤ 0.35n. Then there exists a constant
γ > 0 and a bipartite graph G0, regular of degree ∆, on n+n vertices (more precisely
a sequence of such graphs parameterized by n) with the following property: any b(n)-
cautious Markov chain on I(G0) has mixing time τ = Ω(eγn).

Since, of course, there does exist a 2n-cautious chain which mixes rapidly, our
result cannot be strengthened much further. Although we do not identify a specific
initial state x0 satisfying τ(x0) = Ω(eγn), our proof does provide a definite (and
natural) initial distribution p0 from which τ = Ω(eγn) steps are required to achieve
dTV(pτ , π) ≤ e−1. The remainder of this section is devoted to the proof of Theo-
rem 2.1.

The counterexample graph G0 is just a random regular graph of degree ∆. Specif-
ically, let Kn,n denote the complete bipartite graph with vertex bipartition V1, V2,
where |V1| = |V2| = n, and let G be the union of ∆ perfect matchings selected in-
dependently and uniformly at random in Kn,n. (Since the perfect matchings are
independent, they may well share some edges.) Denote by G(n, n,∆) the probability
space of bipartite graphs G so defined. Where no confusion can arise, we simply write
G for this class below. Note that G is a class of graphs with degree bound ∆. It is
well known (see [1]) that, provided ∆ is taken as constant, ∆-regular graphs occur in
G(n, n,∆) with probability bounded away from 0. Since we prove that almost every
graph G ∈ G(n, n,∆), for ∆ ≥ 6, has the property we seek, it will follow that almost
every ∆-regular graph (in the induced probability space) has the property too.
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Let 0 < α, β < 1 be chosen values. For G ∈ G, we consider the collection IG(α, β)
of σ ∈ I(G) such that |σ ∩ V1| = αn and |σ ∩ V2| = βn. We will call σ ∈ IG(α, β)
an (α, β)-set. Using linearity of expectation, we may easily compute the expected
number E(α, β) = E(|IG(α, β)|) of (α, β)-sets in G: it is just the number of ways of
choosing an αn-subset from V1 and a βn-subset from V2, multiplied by the probability
that all ∆ perfect matchings avoid connecting the αn-subset to the βn-subset. Thus,
using Stirling’s formula,

E(α, β) =
(
n

αn

)(
n

βn

)[(
(1− β)n

αn

)/(
n

αn

)]∆

=

(
(1− β)(∆−1)(1−β)(1− α)(∆−1)(1−α)

ααββ(1− α− β)∆(1−α−β)

)n(1+o(1))

= eϕ(α,β)n(1+o(1)),(1)

where

ϕ(α, β) = ϕ∆(α, β) = −α lnα− β lnβ −∆(1− α− β) ln(1− α− β)

+ (∆− 1)((1− α) ln(1− α) + (1− β) ln(1− β)
)
.(2)

Mostly, ∆ will be treated as a constant, and we shall suppress the subscript of ϕ
except when we want to emphasize the dependence on ∆.

We shall treat ϕ as a function of real arguments α and β, even though a combina-
torial interpretation is possible only when αn and βn are integers. Then ϕ is defined
on the triangle

T = {(α, β) : α, β ≥ 0 and α+ β ≤ 1}

and is clearly symmetrical in α, β. (The function ϕ is defined by (2) on the interior
of T and can be extended to the boundary by taking limits.) Moreover, the following
facts are established in the appendix about the stationary points of ϕ on T .

Claim 2.2.
(i) The function ϕ has no local minima in the interior of T , and no local maxima

on the boundary of T .
(ii) All local maxima of ϕ satisfy α+ β +∆(∆− 2)αβ ≤ 1.
(iii) If ∆ ≤ 5, ϕ has only a single local maximum, which is on the line α = β.
(iv) If ∆ ≥ 6, ϕ has exactly two local maxima, symmetrical in α, β, and a

single saddle-point on α = β. The maximum with α < β occurs at
(α, β) ≈ (0.03546955, 0.40831988) when ∆ = 6 and at (α, β) ≈ (0.01231507,
0.45973533) when ∆ = 7.

Suppose, for the sake of discussion, we had the additional information that the
number |IG(α, β)| of (α, β)-sets is reasonably well concentrated about its expectation
E(α, β). Then it would follow from (iii) and (iv) that a “typical” independent set in
a random graph G ∈ G(n, n,∆) undergoes a dramatic change in passing from ∆ = 5
to ∆ = 6. For ∆ ≤ 5, a typical independent set σ would be balanced, i.e., the sets
|σ ∩ V1| and |σ ∩ V2| would be of nearly equal size, whereas for ∆ ≥ 6 it would be
unbalanced.

Unfortunately, we have not been able to prove a concentration result, and it is
unclear whether such a result should be expected. Therefore, in examining the first
(apparently) unbalanced case, ∆ = 6, we must make a slight detour. First, observe
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that a knowledge of ϕ does at least provide an upper bound on |IG(α, β)| via Markov’s
inequality. In this way we can bound from above the number of (α, β)-sets that lie
in the strip |α − β| ≤ η for some η > 0. Then, we use a quite crude lower bound to
show that the number of (α∗, β∗)-sets—for some chosen α∗, β∗ with β∗ − α∗ > η—is
much greater that this.

We shall first deal with the boundary case ∆ = 6. Once this has been done,
it will be easy to dispense with the remaining cases, i.e., ∆ ≥ 7, which are less
finely balanced. So suppose for the time being that ∆ = 6. Consider the function
ϕ restricted to the region D = T ∩ {(α, β) : |α − β| ≤ η}, where η = 0.18. Since
the two local maxima of ϕ on T lie outside D (see Claim 2.2(iv)), it must be the
case that the maxima of ϕ on D all lie on one or the other (and hence, by symmetry,
both) of the lines |α − β| = η. Numerically, the (unique) maximum with β − α = η,
achieved at (α, β) ≈ (0.10021227, 0.28021227), is a little less than c = 0.70824602.
(The uniqueness of the maximum may be verified by calculus; then the location of
the maximum may be found to arbitrary precision by repeated evaluation of the
derivative of ϕ(α, α + 0.18) with respect to α. Only simple function evaluations are
required.)

Now define

θ(α) = −α lnα− (1− α) ln(1− α) + (ln 2)(1−∆α)

for ∆α < 1. Then, for any graph G ∈ G, the total number of independent sets σ with
|σ ∩ V1| = αn is (crudely) at least

|IG(α, ∗)| ≥ eθ(α)n(1−o(1)).

(Choose αn vertices from V1; then choose any subset of vertices from the at least
(1−∆α)n unblocked vertices in V2.) Set α

∗ = 0.015. Then, by numerical computation,
θ(α∗) is a little greater than 0.70864644 > c. Thus, with high probability, the number
of (α, β)-sets in G ∈ G lying in either connected component of T \D is greater than the
number lying within D by an exponential factor, specifically eγn, where γ = 0.0004.
The graph G0 of Theorem 2.1 is any graph G0 ∈ G that exhibits the exponential
gap just described. (A randomly chosen graph will do with high probability.) The
remainder of our argument concerns G0.

Now consider a 0.35n-cautious chain M(G0) = M0 on I(G0). Let A comprise
all (α, β)-sets with α ≥ β, i.e.,

A =
{
σ ∈ I(G0) : |σ ∩ V1| ≥ |σ ∩ V2|

}
,

and assume without loss of generality that A is no larger than its complement A =
I\A. Denote byM the set of (α, β)-sets with (α, β) ∈ D. SinceM0 is 0.35n-cautious,
it cannot make a transition from A to A except by using a state in M . Now, we have
already seen that

|A| ≥ eγn |M |.(3)

Intuitively, since M is very small in relation to A, the mixing time of M0 must be
very large. This intuition is captured in the following claim, which is implicit in a line
of argument used by Jerrum [7].

Claim 2.3. Let M be a Markov chain with state space Ω, transition matrix P ,
and stationary distribution π. Let A ⊂ Ω be a set of states such that π(A) ≤ 1

2 , and
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M ⊂ Ω be a set of states that form a “barrier” in the sense that Pij = 0 whenever
i ∈ A \M and j ∈ A \M . Then the mixing time of M is at least π(A)/8π(M).

For completeness, a proof using “conductance” is provided in the appendix. The-
orem 2.1, in the boundary case ∆ = 6, follows from Claim 2.3 and inequality (3)
because the sets A and M that we defined earlier satisfy the conditions of the claim.
Note that the proof of Claim 2.3 actually provides an explicit initial distribution p0

from which the mixing time is large, namely, the uniform distribution on A.
Finally, suppose ∆ ≥ 7. We shall see presently that

ϕ∆(α, β) < 0.6763 < ln 2 for all ∆ ≥ 7 and (α, β) ∈ D.(4)

On the other hand, there are at least 2n (α, β)-sets in either connected component
of T \ D: this comes simply from considering independent sets with α = 0 or β = 0.
Once again, with high probability, the number of (α, β)-sets in G ∈ G lying in either
connected component of T \ D is greater than the number lying within D by an
exponential factor, specifically eγn, where γ = 0.015. Theorem 2.1, in the general
case ∆ ≥ 7, follows as before.

It remains only to verify (4). By calculus, ϕ∆(α, β) as a function of ∆ is mono-
tonically decreasing over the whole region T ; thus we need check only the case ∆ = 7.
(The partial derivative ∂ ϕ∆(α, β)/∂∆ is a function of α and β only; it is zero on
α = 0 and monotonically decreasing as a function of β.) We now argue, as before,
that the maxima of ϕ on D all lie on the lines |α − β| = 0.18. (Here we again use
Claim 2.2(iv).) Once again, by calculus, ϕ has a unique maximum on each of these
lines, and direct calculation yields (4).

3. Hardness of approximate counting. The result of the previous section
implies that the usual approach to approximating the number of independent sets in
a low-degree graph must fail when ∆ ≥ 6, at least in the worst case. Here we show
that, if the degree bound is somewhat larger, then any approach to approximating
the number of independent sets is doomed to failure, under a reasonable complexity
assumption. Precisely, the remainder of this section is devoted to proving the following
theorem.

Theorem 3.1. Unless RP = NP, there is no polynomial-time algorithm that
estimates the logarithm of the number of independent sets in a ∆-regular graph (∆ ≥
25) within relative error at most ε = 10−4.

We give a randomized reduction from the following problem E2LIN2, analyzed by
H̊astad. The input is a system A of m equations over Z2 in n variables x1, x2, . . . , xn,
such that each equation has exactly two variables. (Thus each equation is of the form
xi+xj = 0 or xi+xj = 1.) The objective is to find a maximum cardinality consistent
subset of equations in A, i.e., to assign values to the variables so as to maximize the
number mC of satisfied equations. H̊astad [10] showed, using the powerful theory of
probabilistically checkable proofs (PCPs), that it is NP-hard to estimate mC within
any constant factor smaller than 12/11.1 Therefore consider an instance A of E2LIN2,
as above. We will construct (by a randomized algorithm) a graph G = (V,E), regular
of degree ∆. We then show that, if we can approximate the logarithm of the number
of independent sets in G to within the required relative error, we can (with high
probability) approximate the size ofmC inA to within a factor 12/11−ε. Theorem 3.1
will then follow.

1In other words, determining a number in the range [(11/12+ε)mC ,mC ] is as hard as determining
mC exactly. Following convention, H̊astad normalizes approximation ratios to be greater than 1,
taking the reciprocal in the case of a maximization problem.
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Let us write [n] = {1, 2, . . . , n}. We construct the graph G = G(A) as follows. We
assumem ≥ n; otherwise, A is decomposable or consistent. LetM = m6 and, for each
i ∈ [n], let Ai be the multiset of equations containing xi, with (multiset) cardinality
di. We represent xi by a regular bipartite graph Hi of degree δ = ∆− 1, with vertex
partition (Li, Ri) and edge set Fi. Here Li =

⋃
a∈Ai

Li,a, Ri =
⋃

a∈Ai
Ri,a, where the

sets Li,a, Ri,a partition Li and Ri, respectively, and for all i, a, |Li,a| = |Ri,a| = M .
Thus Hi is bipartite with both its vertex sets of size Mdi. Later, we will associate Li

with the assignment xi = 0, and Ri with xi = 1.
The graph Hi = (Li, Ri, Fi) will be sampled from G(Mdi,Mdi, δ), where G is

the class of random graphs defined in section 2. Just as in that section, and for the
same reason, we are at liberty to reject graphs which are not δ-regular. Clearly, the
property of being δ-regular can be checked in polynomial time.

The equations a of A determine the edges connecting the Hi in G, as follows. If a
is the equation xi+xj = 1 (xi+xj = 0, resp.), we add an arbitrary perfect matching
between Li,a and Lj,a (Rj,a, resp.) and another between Ri,a and Rj,a (Lj,a, resp.).
Thus G is a regular graph of degree ∆. We will show that approximating the logarithm
of the number of independent sets in G to within a factor (1 + 10−4) will allow us to
approximate the E2LIN2 instance within the H̊astad bound.

Before returning to the issue of approximation, we will need to establish some
crucial properties of the “typical” independent set in G. For this purpose, let I be
sampled uniformly from I(G), the set of all independent sets in G. First we show
that I “occupies about half the available space” in each Li,a or Ri,a.

Let Li,a be the set of vertices in Li,a with no neighbor in I, and let Li =⋃
a∈Ai

Li,a.
Lemma 3.2. Suppose that I is sampled uniformly at random (u.a.r.) from I(G).

Then, except for probability e−Ω(m2), either |Li,a| < m4 or |Li,a| = (2 ± O(1/m))×
|I ∩ Li,a|.

Proof. If we condition on I ∩ (V \ Li,a), then I ∩ Li,a is a random subset of Li,a.
If |Li,a| ≥ m4, then Chernoff’s bound implies that

Pr

[
|I ∩ Li,a| /∈ 1

2

(
1± 1

m

)
|Li,a|

]
≤ 2 exp

(
−1
3
m2
)
,

from which the lemma follows.
Clearly, we may define Ri,a and Ri symmetrically and prove an analogous result.

It is also clear that we may claim Lemma 3.2 for all i, a simultaneously, since there are
fewer than m2 such pairs. Now imagine that we choose an independent set I ∈ I(G)
u.a.r. in two steps: first the part of I that lies outside Hi, followed by the restriction
of I to Hi. We now deduce from Lemma 3.2 that, with high probability, at least
around half of Li is “available” to I in the second step.

Let L′i be the set of vertices in Li with no neighbor in I outside of Hi.
Lemma 3.3. Suppose that I is sampled u.a.r. from I(G). Except for probability

e−Ω(m2),

|L′i| ≥
(
1

2
−O

(
1

m

))
|Li|.(5)

Proof. If Li,a is joined by a matching to Vj,a (V ∈ {L,R}), then, from Lemma 3.2,
M ≥ (2−O(1/m))|I ∩ Vj,a|. Hence

∣∣{v ∈ Li,a : {v, w} ∈ E \ Fi implies w /∈ I
}∣∣ ≥

(
1

2
−O

(
1

m

))
|Li,a|.
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Summing this over all a ∈ Ai gives the lemma.
Again, we may define R′i and prove a corresponding result. We now show that for

each i either |Li| or |Ri| is “small.” We will temporarily drop the suffix i and write
H rather than Hi, etc. Let N = |L| = dM ≤ m7, a = |L′|/N , b = |R′|/N . Write
σ = I ∩H, where I is a uniformly chosen independent set in G. We will say that σ
is an (α, β)-set if |σ ∩ L| = αaN , |σ ∩R| = βbN .

Lemma 3.4. Let δ ≥ 24. If I is a uniformly chosen independent set in G, then,
except for probability e−Ω(m2),

min(|Li|, |Ri|) ≤ λN,(6)

where λ = 0.009.
Proof. We focus attention on a particular H in G (corresponding to a particular

variable in the E2LIN2 instance). Suppose that the whole of G aside from the edges
within H has been fixed (i.e., the random choices have already been made), except
that we have not chosen the edges of H itself. Ultimately, we want to argue about a
random independent set I. However, for the time being, suppose that we simply fix the
portion of I that lies outside of H; doing this fixes the sets L′ and R′ of vertices in H
that have no neighbor in I. About I, we assume only that it satisfies inequality (5)
of Lemma 3.3 so that a ≥ b ≥ 1

2 − O( 1
m ), where, without loss of generality, we have

taken a ≥ b.
We now reveal H and examine the number of extensions of I to H as a function

of α and β. It is easy to see that there are at least 2aN independent sets in H in total.
We will show that, for α, β not satisfying the condition of the lemma, the number of
(α, β)-sets is so much smaller than this that they appear with probability e−Ω(m2).
It will be sufficient to show that the expected number of (α, β)-sets in such a case is

2aN−Ω(m2), because Markov’s inequality will then imply the required inequality for
the actual number. Now the expected number of (α, β)-sets in H is

E(α, β) =
(
aN

αaN

)(
bN

βbN

)[(
(1− bβ)N

αaN

)/(
N

αaN

)]δ

≤
(
aN

αaN

)(
bN

βbN

)[
[(1− bβ)N ]αaN

(αaN)!
× (αaN)!

NαaN

]δ

≤
(
aN

αaN

)(
bN

βbN

)
(1− bβ)αaδN

≤
[(

αα(1− α)(1−α)
)−a (

ββ(1− β)(1−β)
)−b

e−αβabδ
]N(1+o(1))

= eψ(α,β)N(1+o(1)),(7)

where an underlined superscript denotes “falling factorial power,” and

ψ(α, β) = −a(α lnα+ (1− α) ln(1− α))

− b(β lnβ + (1− β) ln(1− β))− αβabδ.(8)

Note that ψ is defined in the unit square U = {(α, β) : 0 ≤ α, β ≤ 1}. As before, we
shall treat α and β (and indeed a and b) as real variables, even though a combinatorial
interpretation requires aN , bN , αaN , and βbN to be integers. The key property of ψ
is captured in the following claim, whose proof can be found in the appendix.
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Claim 3.5. Let δ = 24, η > 0 be sufficiently small, and suppose 1
2 − η ≤ b ≤

a ≤ 1. For any (α, β) ∈ U , the inequality ψ(α, β) ≥ a ln 2− η entails min{αa, βb} ≤
0.004.

Recall the crude lower bound 2aN on the total number of independent sets σ
extending I to H. The claim tells us that only very unbalanced independent sets—
those with either |σ ∩ L| ≤ 0.004 or |σ ∩R| ≤ 0.004—make a significant contribution
to that total. All of the above argument was for an independent set I that is fixed
outsideH, so we have not yet proved Lemma 3.4. Nevertheless, all the key calculations
are out of the way, and we can complete the proof with a little algebra.

Let I be the set of all independent sets on V (G) \ V (H). Let Igood ⊆ I be the
independent sets I that satisfy inequality (5) of Lemma 3.3, and Ibad = I \Igood. Let
N(I,H) be the number of independent sets in H consistent with I, and let N∗(I,H)
be the number of such that do not satisfy inequality (6) of Lemma 3.4. Denote by H
the (multi)set of all possible choices for the graph H viewed as a disjoint union of δ
perfect matchings. (Thus each possible graph H will occur with multiplicity µ, where
µ is the number of 1-factorizations of H—i.e., decompositions into disjoint perfect
matchings—of H. Note that our reduction requires us to select uniformly from H.)
For convenience, set ε = e−Ω(m2). We have shown in Lemma 3.3 that

∑
I∈Ibad

N(I,H) ≤ ε
∑
I∈I

N(I,H) for all H ∈ H.(9)

(Note that the sum on the right-hand side is the total number of independent sets
in G, while that on the left-hand side is the number violating inequality (5).) We will
show below that a random H satisfies

∑
I∈Igood

N∗(I,H) ≤ ε
∑

I∈Igood

N(I,H)(10)

with high probability, specifically, with probability at least 1−ε. Putting (9) and (10)
together, a random H satisfies

∑
I∈I N

∗(I,H)∑
I∈I N(I,H)

≤
ε
∑

I∈Igood
N(I,H) +

∑
I∈Ibad

N(I,H)∑
I∈I N(I,H)

≤ ε+ ε = 2ε

with high probability, which is what we require.
We now prove (10). Claim 3.5 taken in conjunction with Lemma 3.2 shows that

∑
H∈HN∗(I,H)
|H| ≤ ε2N̂(I) (I ∈ Igood)

for some N̂(I) satisfying N̂(I) ≤ N(I,H) for all H ∈ H. (Specifically, N̂ = 2aN will
do here.) Summing this over I ∈ Igood gives

1

|H|
∑
H∈H

∑
I∈Igood

N∗(I,H) ≤ ε2
∑

I∈Igood

N̂(I),

giving

1

|H|
∑
H∈H

∑
I∈Igood

N∗(I,H)
∑

I∈Igood
N̂(I)

≤ ε2,
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which implies that

1

|H|
∑
H∈H

∑
I∈Igood

N∗(I,H)∑
I∈Igood

N(I,H)
≤ ε2.(11)

Let

H∗ =


H ∈ H :

∑
I∈Igood

N∗(I,H) ≥ ε
∑

I∈Igood

N(I,H)



 .

Then, from (11),

1

|H| ε |H
∗| ≤ ε2,

so

|H∗|
|H| ≤ ε,

as is required to establish (10) and complete the proof.
We now establish the relationship between the number of independent sets in G

and the maximum size of a consistent subset of A. Let I = I(G). For σ ∈ I let
Sσ ⊆ [n] be defined by

Sσ = {i : |Li ∩ σ| > |Ri ∩ σ|, i ∈ [n]}.

For S ⊆ [n] let IS = {σ ∈ I : Sσ = S} and let µS = |IS |. Recall that m is the
number of equations in A.

Lemma 3.6. For S ⊆ [n] let θ(S) be the number of equations in A satisfied by
the assignment xi = 1 (i ∈ S), xi = 0 (i /∈ S). Then

4Mθ(S)3M(m−θ(S)) ≤ µS ≤ 4Mθ(S)3M(m−θ(S))22λmM (1 + o(1)),(12)

where λ is as in Lemma 3.4.
Proof. Fix S ⊆ [n], and for σ ∈ IS let Jσ = σ ∩ (⋃i∈S Li ∪

⋃
i/∈S Ri

)
. Informally,

Jσ restricts σ to the left or right of each subgraph Hi, according to which side contains
the larger part of σ. Let

µ̂S = |{Jσ : σ ∈ IS}| ≤ µS .

We show that

µ̂S = 4
Mθ(S)3M(m−θ(S)).(13)

This immediately proves the lower bound in (12). Furthermore, Lemma 3.4 implies

that for a fixed value J of Jσ there are (up to a factor (1 + e−Ω(m2))) at most

∏

i∈[n]

2λdiM = 2λM
∑

i di = 22λmM

sets σ ∈ IS with Jσ = J . The upper bound then follows.
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To prove (13) we consider the number of possible choices for J ∩ Li,a, J ∩ Ri,a,
J ∩ Lj,a, and J ∩Rj,a for every equation a : xi + xj = za (za ∈ {0, 1}). For given S,
let us define

Xi,a =

{
Li,a if i ∈ S;

Ri,a if i /∈ S.

Then there are two cases, determined by the status of a.
(1) Equation a is satisfied by the assignment derived from S. Then there are 2M

choices for each of J ∩Xi,a, J ∩Xj,a, giving 4
M in all.

(2) Equation a is not satisfied by the assignment derived from S. Then the
subgraph of G induced by Xi,a ∪ Xj,a is a matching of size M and hence
contains 3M independent sets.

Multiplying the estimates from the two cases over all a ∈ A proves (13) and the
lemma.

We now proceed to the proof of Theorem 3.1. Let ZI = ZI(G) denote the
logarithm of the number of independent sets of G(A). Let ZC = ZC(A) denote
the maximum number of consistent equations in A.

Let YI be some estimate of ZI satisfying |YI/ZI − 1| ≤ ε = 10−4. Using YI , we
define

YC =

(
YI
M
−m ln 3

)
1.001

ln(4/3)
.

A simple calculation will then show that 1 ≤ YC/ZC ≤ 12/11 − ε, so that YC deter-
mines ZC with sufficient accuracy to beat the approximability bound for E2LIN2.

From Lemma 3.6 we see that

YI ≥ (1− ε)M(ZC ln(4/3) +m ln 3).

Hence, since ZC ≥ m/2,

YC
1.001

≥ (1− ε)ZC − εm ln 3

ln(4/3)
≥ ZC

(
1− ε ln 12

ln(4/3)

)
≥ 0.9991ZC ,

which implies that YC ≥ ZC . On the other hand, Lemma 3.6 also implies that

YI ≤ (1 + ε)
[
M
(
ZC ln(4/3) +m ln 3 + 2mλ ln 2

)
+ n ln 2

]
,

where λ ≤ 0.009. Hence
YC
1.001

≤ (1 + ε)ZC +
εm ln 3

ln(4/3)
+
(1 + ε)2mλ ln 2

ln(4/3)
+
(1 + ε) ln 2

n ln(4/3)

≤ ZC

(
1 + ε+

2ε ln 3

ln(4/3)
+
4(ln 2)(1 + ε)λ

ln(4/3)
+O

(
1

n2

))

≤ ZC

(
1.0877 +O

(
1

n2

))
,

which implies that YC/ZC is bounded away from 12/11 for n large enough. Sum-
marizing, the existence of a polynomial-time algorithm, meeting the specification in
Theorem 3.1, for estimating the number of independent sets in a 25-regular graph
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would entail the existence of a randomized (two-sided error) algorithm for approx-
imating the solution to an E2LIN2 instance with relative error better than 12/11.
(The algorithm is randomized because the reduction is too.) Because the latter prob-
lem is NP-hard, we could deduce that NP ⊆ BPP. But this inclusion in turn implies
that RP = NP (see Papadimitriou [11, Problem 11.5.18]). Thus we have established
Theorem 3.1.

Appendix.
Proof of Claim 2.2. We start by computing partial derivatives of ϕ up to order

two:

∂ϕ

∂α
= − lnα− (∆− 1) ln(1− α) + ∆ ln(1− α− β),(14)

∂ϕ

∂β
= − lnβ − (∆− 1) ln(1− β) + ∆ ln(1− α− β),(15)

∂2ϕ

∂α2
= − 1

α
+
∆− 1
1− α

− ∆

1− α− β
,(16)

∂2ϕ

∂β2
= − 1

β
+
∆− 1
1− β

− ∆

1− α− β
,(17)

∂2ϕ

∂α∂β
= − ∆

1− α− β
.(18)

Parts (i)–(iv) of Claim 2.2 may then be verified as follows:
(i) From (16), it can easily be checked that ∂2ϕ/∂α2 < 0 on the interior of T ,
and hence ϕ can have no interior local minima. On α = 0, ϕ has a maximum
at β = 1

2 using (15), but then from (14) we find ∂ϕ/∂α = +∞ at α = 0,
β = 1

2 . Similarly β = 0. On α+ β = 1, both ∂ϕ/∂α, ∂ϕ/∂β = −∞, so ϕ can
have no maximum.

(ii) Since both ∂2ϕ/∂α2, ∂2ϕ/∂β2 < 0, ϕ has a maximum if and only if the
Hessian of ϕ has a positive determinant. The condition for this is α + β +
∆(∆− 2)αβ ≤ 1, as may be checked from (16)–(18).

(iii) From (14) and (15), the conditions for a stationary point of ϕ may be written

β = f(α), α = f(β),

where

f(x) = 1−x−x1/∆(1−x)1−1/∆ = (1−x)

[
1−

(
x

1− x

)1/∆
]

(0 ≤ x ≤ 1).

Thus, at any stationary point,

α = f(f(α)).(19)

Clearly f(x) ≤ 0 for x ≥ 1
2 , so α < 1

2 at any stationary point. Similarly

β < 1
2 . To study the roots of (19), the change of variable y = (α/(1−α))1/∆

proves to be convenient. With a little calculation we may express α, f(α),
and f(f(α)) in terms of y:

α =
y∆

1 + y∆
,(20)

f(α) = (1− α)(1− y) =
1− y

1 + y∆
,
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and

f(f(α)) = (1− f(α))− (f(α)(1− f(α))∆−1
)1/∆

=

(
α+

y

1 + y∆

)
−
(
(1− y)(y + y∆)∆−1

)1/∆
1 + y∆

= α+
y

1 + y∆

[
1−

(
(1− y)(1 + y∆−1)∆−1

y

)1/∆
]
,

and hence (19) is equivalent to

(1 + y∆−1)∆−1 =
y

1− y
(0 ≤ y < 1).(21)

Note that the implicit mapping from α to y is a bijection, so we may legiti-
mately study the solution set of (19) through that of (21). Note also that (21)
has a root y′ satisfying y+ y∆ = 1, and this exists for any ∆ > 0. The reader
may check that y + y∆ = 1 is equivalent to α = f(α), and thus y′ satisfies
α = β. To analyze (21) in general, let

g(y) = (∆− 1) ln(1 + y∆−1) + ln(1− y)− ln y,
so g(y) = 0 has the same roots as (21). Then one may check that g′(y) = 0
if and only if

h(y)
def
= ∆(∆− 2)y∆−1 − (∆− 1)2y∆ − 1 = 0.

But h(0) = −1, h(1) = −2, and h has a single maximum on [0, 1] at y′′ =
(∆ − 2)/(∆ − 1). Now h(y′′) = (∆ − 2)∆/(∆ − 1)∆−1 − 1 > 0 if and only
if ∆ ≥ 6, and h(y′′) < 0 otherwise. Therefore h has two roots in [0, 1] if
∆ ≥ 6; otherwise, it has no roots. Thus g has a single root in [0, 1] if ∆ ≤ 5;
otherwise, it has at most three roots. In the latter case, however, g(0) = +∞,
g(1) = −∞, g(y′) = 0, and a simple calculation shows

g′(y′) =
(∆− 1)2(1− y′)2 − 1

y′(1− y′)
> 0

if and only if ∆ ≥ 6, and g′(y′) < 0 otherwise. These facts imply that g has
exactly three roots if ∆ ≥ 6.
Now the reader may check that the point (α′, α′) corresponding to y′ (i.e.,
given by solving y′ = (α′/(1− α′))1/∆) satisfies

α+ β +∆(∆− 2)αβ ≤ 1,
i.e.,

(
1− α

α

)(
1− β

β

)
≥ (∆− 1)2

if and only if y′ ≥ y′′. This holds if and only if ∆ ≤ 5. Thus this point is a
maximum for ∆ ≤ 5; otherwise, it is a saddle-point.
Thus ϕ has one stationary point in T (on α = β) if ∆ ≤ 5, and this is a
maximum.
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(iv) By the above, if ∆ ≥ 6, ϕ has no boundary maximum on T ′ = {(α, β) ∈
T : α ≤ β} and therefore by continuity has a maximum in the interior of
T ′. By symmetry there is also a maximum in T \ T ′. Thus, when ∆ ≥ 6,
ϕ has two symmetrical maxima and a single saddle-point on the line α = β.
Numerical values for the two maximum points can be obtained by solving (21)
for y. Since we are assured that (21) has exactly three roots, we may locate
these roots to arbitrary precision by repeated function evaluations. Once y
is known to adequate precision, α can be recovered from (20).

Proof of Claim 2.3. Let Ω = {1, . . . , N} be an enumeration of the state space.
When x is an N -vector and P an N ×N matrix, we will use xA to mean the vector
(xi : i ∈ A) and PAB to mean the matrix (Pij : i ∈ A, j ∈ B). First note that

dTV(pt+1, pt) = dTV(ptP, pt−1P ) =
1
2 max
||z||∞≤1

(pt − pt−1)Pz

≤ 1
2 max
||w||∞≤1

(pt − pt−1)w = dTV(pt, pt−1),

since ||Pz||∞ ≤ ||z||∞. Hence, by induction, dTV(pt+1, pt) ≤ dTV(p1, p0) and hence,
using the triangle inequality, dTV(pt, p0) ≤ tdTV(p1, p0). Now, for ∅ ⊂ S ⊂ Ω, define

Φ(S) =
∑
i∈S

∑

j∈S
πiPij/π(S).

Thus Φ = min{Φ(S) : S ⊂ Ω and 0 < π(S) ≤ 1
2} is the “conductance” of M.

(Conductance is normally considered in the context of time-reversible Markov chains.
However, both the definition and the line of argument employed here apply to non–
time-reversible chains.) Now

∑
i∈A
j∈A

πiPij ≤
∑
i∈A

j∈A∩M

πiPij +
∑

i∈A∩M
j∈A

πiPij ≤ π(A ∩M) + π(A ∩M) = π(M).

So by setting (p0)A = πA/π(A), (p0)A = 0, we have that

dTV(p1, p0) =
1
2 ||πA − πAP ||1/||πA||1 = ||πAPAA||1/||πA||1 = Φ(A) ≤ π(M)/π(A).

But dTV(π, p0) ≥ 1
2 , because π(A) ≤ 1

2 , and hence

dTV(π, pt) ≥ dTV(π, p0)− dTV(pt, p0) ≥ 1
2 − tΦ(A).

Thus we cannot achieve dTV(π, pt) ≤ e−1 until

t ≥ ( 12 − e−1)/Φ ≥ π(A)/8π(M).

By an averaging argument there must exist some initial state x0 ∈ A for which
τ(x0) ≥ π(A)/8π(M).

Proof of Claim 3.5. Differentiating (8), we have

∂ψ

∂α
= a(− lnα+ ln(1− α)− βbδ),

∂ψ

∂β
= b(− lnβ + ln(1− β)− αaδ),(22)
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and

∂2ψ

∂α2
=

−a
α(1− α)

,
∂2ψ

∂β2
=

−b
β(1− β)

,
∂2ψ

∂α∂β
= −abδ.(23)

The following three facts about ψ are easily verified:

ψ(α, β) ≥ ψ(1− α, β) if α ≤ 1
2 ,(24)

ψ(α, β) ≥ ψ(α, 1− β) if β ≤ 1
2 ,(25)

ψ(α, β) ≥ ψ(β, α) if β ≤ α ≤ 1− β.(26)

We wish to determine the regions where ψ ≥ a ln 2. These are connected neighbor-
hoods of the local maxima of ψ. From (22) we see that ψ has no boundary maxima for
α, β in the unit square U . Thus, from (23), ψ has only local maxima or saddle-points
in U , and a stationary point is a local maximum if and only if

α(1− α)β(1− β) ≤ 1/(abδ2).(27)

Thus, at any local maximum, either β(1 − β) ≤ 1/(bδ) or α(1 − α) ≤ 1/(aδ). If
the former holds, this and bδ ≥ 11.5 (which holds for η sufficiently small) imply
that β < 0.1, and hence β < 1.2/bδ. An identical argument holds for α. Let us
denote the rectangle [>α, uα] × [>β , uβ ] by [>α, uα | >β , uβ ]. Thus any local maximum
of ψ must lie in the region [0, 1 | 0, 1.2/bδ] ∪ [0, 1.2/aδ | 0, 1] and hence in the en-
closing region [0, 1 | 0, 1.2/bδ] ∪ [0, 1.2/bδ | 0, 1]. (Recall that a ≥ b.) In the square
[0, 1.2/bδ | 0, 1.2/bδ], we have α, β ≤ 1.2/bδ < 0.11 and hence

ψ(α, β) < 2a(−0.11 ln(0.11)− 0.89 ln(0.89)) < a ln 2.

Then, from (24) and (25), we also have ψ(α, β) < a ln 2 in [1−1.2/bδ, 1 | 0, 1.2/bδ] and
[0, 1.2/bδ | 1 − 1.2/bδ, 1]. Now, if β ≤ 1.2/bδ, let ρ = 1 − 2α and consider the upper
bound

ψ(α, β) ≤ Ψ(ρ, β) def
= a(ln 2− 1

2ρ
2) + bβ(1− lnβ)− 1

2 (1− ρ)βabδ.(28)

For fixed β, it is easily shown that Ψ is maximized if ρ = 1
2bδβ ≤ 0.6. If bδβ = 1.2,

then ρ = 0.6 and

max
ρ
Ψ(ρ, β) ≤ a(ln 2− 0.18) + 0.11a(1− ln(0.11))− 0.24a < a ln 2.

Thus ψ < a ln 2 everywhere on the boundary of [1.2/bδ, 1− 1.2/bδ | 0, 1.2/bδ] (but
not including the shared boundary with U). Hence, by (26), ψ < a ln 2 everywhere
on the boundary of [0, 1.2/bδ | 1.2/bδ, 1− 1.2/bδ]. Moreover, ψ(α, β) ≥ ψ(β, α) for all
points (α, β) in [1.2/bδ, 1−1.2/bδ | 0, 1.2/bδ]. It follows that it is sufficient to determine
β∗ such that ψ(α, β) < a ln 2 everywhere in [1.2/bδ, 1 − 1.2/bδ |β∗, 1.2/bδ]. To this
end, again consider

Ψ0(β) = max
ρ
Ψ(ρ, β) = a ln 2 + bβ(1− lnβ)− 1

2abβδ +
1
8ab

2β2δ2.

Now Ψ0 < a ln 2 if

bβδ2 − 4δ + 8(1− lnβ)/a < 0.
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This inequality is satisfied, provided

2
(
1−

√
1− 2bβ(1− lnβ)/a

)
< bβδ < 2

(
1 +

√
1− 2bβ(1− lnβ)/a

)
.

The right-hand inequality is clearly irrelevant since we are assuming that β ≤ 1.2/bδ.
Thus we need consider only the left-hand inequality; i.e., for fixed γ = bβ < 1.2/δ, we
require that

γδ > 2max
a,b

(
1−

√
1− 2γ(1− ln γ + ln b)/a

)
,

where the maximum is over 1
2 − η ≤ b ≤ a ≤ 1. Considering b first, the maximum

occurs when b = a. So we have

γδ > max
1
2−η≤a≤1

2
(
1−

√
1− 2γ(1− ln γ + ln a)/a

)
.(29)

But, because a ≥ γ, the maximum now occurs when a = 1
2 − η. Thus it is enough to

require that

γδ > 2
(
1−

√
1− 4γ(1− ln γ − ln 2)

)
,

because this will imply (29), provided that η is sufficiently small. To achieve γ = 0.004,
it is sufficient that δ ≥ 23.9.
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Abstract. Minimization operators of different strengths have been studied in the framework of
“predicative (safe) recursion.” In this paper, a modification of these operators is presented. By adding
the new operator to those used by Bellantoni–Cook and Leivant to characterize the polynomial-
time computable functions, one obtains a characterization of the nondeterministic polynomial-time
computable multifunctions. Thus the generation of the nondeterministic polytime multifunctions
from the deterministic polytime functions parallels the generation of the computable functions from
the primitive recursive ones.

Key words. implicit computational complexity, safe (predicative) recursion, recursion on nota-
tion, minimization, nondeterministic polynomial time, multifunction, normal form theorem

AMS subject classifications. 03D15, 03D20, 68Q15

PII. S0097539701387854

1. Introduction. As is well known, unbounded minimization allows the gener-
ation of the computable functions from the primitive recursive ones. If one restricts
to bounded minimization, then the latter class is closed under this operation. By
relaxing the minimization condition in such a way that the smallest zero of a given
function is no longer asked for but the smallest argument that is mapped onto an
even result is asked for, Bellantoni [1, 2] could derive a machine-independent charac-
terization of the class ✷p of functions computable in deterministic polynomial time
by querying oracles in the polynomial-time hierarchy. The result is in the style of
Cobham’s classical characterization of the polytime functions [5]. Bellantoni showed
that the class ✷p is the smallest class of functions containing certain basic functions
and being closed under substitution, limited recursion on notation, and his weakened
minimization operator.

Surprisingly, as is also demonstrated by Bellantoni, the characterization remains
true in a tiered, resource-bound–free framework, where, in addition to safe compo-
sition and safe (predicative) recursion on notation, an unbounded version of relaxed
minimization is used that allows us only to minimize safe arguments.

The ramified (predicative) approach to resource-bounded computations, now re-
ferred to as implicit computational complexity , has independently been introduced by
Simmons [11], Leivant [7, 8], and Bellantoni and Cook [3]. One underlying idea is
that data objects are used computationally in different guises. One has two types of
values: values which are known in their entirety and which therefore can be examined
completely, e.g., being recursed upon; and those values which are still emerging and
which therefore can only be accessed in a more restricted way, e.g., by examining a
few low-order bits. In the first case, the values are called normal; in the other they
are called safe.

Bellantoni’s result shows that, even in its relaxed form, minimization (bounded
or unbounded) is still a powerful operation. In a recent paper, Danner and Pollett [6]
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weakened Bellantoni’s safe minimization operation again by first limiting the verifica-
tion that a computed function argument c is minimal to only those numbers d that are
less than the length of c and then prescribing which bits of c a further computation
may at most have access to. This operation, called limited safe weak minimization, is
necessarily multivalued. They showed that the smallest class of multifunctions gener-
ated from certain initial functions by safe composition, safe recursion on notation, and
this new operation is exactly the class NPMV of partial multifunctions computable
in nondeterministic polynomial time.

As already stated by Danner and Pollet, the definition of limited safe weak min-
imization is reminiscent of limited minimization and thus not in the spirit of im-
plicit computational complexity. In this paper, we propose a modified version of safe
weak minimization which remedies this problem. Moreover, we show that the above-
mentioned characterization of NPMV holds true when the new version of safe weak
minimization is used.

The paper is organized as follows. Section 2 contains basic definitions. Here
the various minimization operators considered in the literature are introduced. Our
modification of these operators as well as the main result are presented in section 3.
The proof of this theorem follows from two propositions, one of which is a normal form
result for multifunctions in NPMV. It entails that every function in this class can be
generated from certain basic functions by safe composition, safe recursion on notation,
and safe minimization on notation, the new minimization operator introduced in this
paper. The proof is given in section 4. Final remarks appear in section 5.

The normal form result is based on an appropriate encoding of Turing machine
computations. In the appendix, a coding of finite sequences is presented, and functions
are defined by using only safe composition and safe recursion on notation that allow
us to check whether a number is the code of a finite sequence and, if this is the case,
the computation of the elements of the sequence as well as its length from the code.

2. Basic definitions and facts. A partial multifunction is a map f : Nk ⇀
Pfin(N) for some k, where Pfin(N) is the collection of all finite subsets of the natural
numbers. Alternatively, f can be viewed as a relation on Nk+1 satisfying the constraint
that, for all x̄, { y | (x̄, y) ∈ f } is finite. We write f(x̄) �→ y when y is a (possible)
outcome of f and read f(x̄) as the set of all y with f(x̄) �→ y. Therefore, we also
write y ∈ f(x̄) instead of f(x̄) �→ y. If f is single-valued, i.e., f(x̄) = {y}, we identify
y with {y} and write f(x̄) = y. For two partial multifunctions f and g, f(x̄) ≤ g(x̄)
means that, for every y ∈ f(x̄), there is some z ∈ g(x̄) such that y ≤ z.

The length |x| of a number x is defined as 	log2(x + 1)
. If x̄ is a vector of
n numbers, we write |x̄| for the vector |x1|, . . . , |xn|. Similarly, we write f̄(x̄) for
f1(x̄), . . . , fm(x̄) so that, e.g., ȳ ∈ f̄(x̄) means that y1 ∈ f1(x̄), . . . , ym ∈ fm(x̄).

Inputs to functions are categorized as normal or safe; the normal ones are written
to the left of a semicolon, and the safe ones are written to the right. The variables x,
y, z are usually used in normal position, and a, b, c are usually used in safe position.
For a function class B, the subclass consisting of the functions with only normal
arguments is denoted by Norm(B).

In [1, 3], Bellantoni and Cook characterized the class FP of polytime functions
inductively by using a set B0 of initial functions and safe composition as well as safe
recursion on notation as closure operations.

Definition 2.1. The set B0 consists of the functions (1)–(5) below.
(i) (Constant) 0 (a zero-ary function).
(ii) (Projections) πn,mj (x1, . . . , xn;xn+1, . . . , xn+m) = xj for 1 ≤ j ≤ n+m.
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(iii) (Successors) s0(; a) = 2a, and s1(; a) = 2a + 1. Write “ai” for si(; a),
where i ∈ {0, 1}.

(iv) (Predecessor) p such that p(; 0) = 0 and p(; a0) = p(; a1) = a.
(v) (Conditional)

cond(; a, b, c) =

{
b if amod2 = 0,

c otherwise,

where xmod2 is the value of the low-order bit of x.
Observe that the predecessor is a string predecessor just as the two successor

operations are string successors.
The operations of safe composition and safe recursion on notation are defined as

follows. Note that we directly consider multifunctions.
Definition 2.2 (safe composition). A multifunction f is defined by safe compo-

sition from given multifunctions h, r̄, and t̄ (in symbols, f = SC(h, r̄, t̄)) when

f(x̄; ā) =
⋃
{h(ȳ; b̄) | ȳ ∈ r̄(x̄; ) ∧ b̄ ∈ t̄(x̄; ā) }.

As usual, we write f(x̄; ā) = h(r̄(x̄; ); t̄(x̄; ā)).
Definition 2.3 (safe recursion on notation). A multifunction f is defined by safe

recursion on notation from given multifunctions g and h0, h1 (in symbols, f =
SRN(g, h1, h2)) when, for i ∈ {0, 1},

f(0, x̄; ā) = g(x̄; ā),

f(yi, x̄; ā) = hi(y, x̄; ā, f(y, x̄; ā)) for yi �= 0.

Let [B0; SC,SRN] denote the smallest class of functions containing B0 and closed
under safe composition as well as safe recursion on notation.

Theorem 2.4 (Bellantoni and Cook). FP = Norm([B0; SC,SRN]).
This theorem gives strong reasons to consider the polytime functions as the

complexity-theoretic analogue of the primitive recursive functions. So the following
question comes up: What is the complexity-theoretic analogue of the partial recursive
functions, and can the functions in this class be generated from the polytime functions
by applying a suitable minimization operator? This question was the starting point
for recent investigations of Danner and Pollett [6].

In his dissertation [1, 2], Bellantoni introduced a safe minimization operator.
Definition 2.5 (safe minimization). A function f is defined by safe minimization

from a given function h (in symbols, f = SM(h)) when

f(x̄; ā) =

{
s1(;µb. h(x̄; ā, b)mod 2 = 0) if there is some such b,

0 otherwise.

Moreover, he showed that the functions in ✷p, i.e., the functions computable on
a polynomial-time bounded oracle Turing machine with an oracle in the polynomial-
time hierarchy, are exactly the functions that can be generated from functions in B0

by safe composition, safe recursion on notation, and safe minimization and have only
normal arguments.

Theorem 2.6 (Bellantoni). ✷p = Norm([B0; SC,SRN,SM]).
This class is far beyond what could be considered as a complexity-theoretic ana-

logue of the partial recursive functions. In their paper [6], Danner and Pollett intro-
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duced two weakenings of safe minimization, safe weak minimization and limited safe
weak minimization, and, by using the latter operator instead of safe minimization,
they showed that the collection of functions in the resulting class that have only nor-
mal arguments is exactly the class NPMV of all partial multifunctions computable
in nondeterministic polynomial time, thus answering the above-posed question.

Definition 2.7 (safe weak minimization). A multifunction f is defined by safe
weak minimization from a given a multifunction g when

f(x̄; ā) �→ b⇔ g(x̄; ā, b)mod 2 �→ 0 ∧ (∀c < |b|)g(x̄; ā, c)mod 2 �→ 1.

If f is defined by safe weak minimization from g, we write

f(x̄; ā) = µwb. g(x̄; ā, b)mod 2 = 0.

As is shown in the next example, if f is defined from g by safe weak minimization,
then, for any inputs x̄ and ā, f(x̄; ā) may have superexponentially many outputs even
if g is single-valued.

Example 2.8. Set g(x; a) = cond(;P (x; b), 1, 0), where the function P is defined
by, for i ∈ {0, 1},

P (0; b) = b, P (xi; b) = p(;P (x; b)).

P (x; b) takes |x| predecessors of b.
It follows that g(x; b) has value 0 if the (|x|+1)st low-order bit of b is 1; otherwise,

its value is 1. Now let

f(x; ) = µwb. g(x; b)mod 2 = 0.

Then f(x; ) �→ b for all numbers b such that |b| ≤ 2|x| and the (|x| + 1)st low-order
bit of b is 1.

By definition, if the (|x|+1)st low-order bit of b is 0, then g(x; b) = 1, and hence
f(x; ) ��→ b. Now suppose that |b| > 2|x| and g(x; b)mod 2 = 0. As g(x; 2|x|)mod 2 = 0,
it follows that f(x; ) ��→ b. On the other hand, if |b| ≤ 2|x| so that the (|x|+ 1)st low-
order bit of b is 1, then f(x; ) �→ b, since for d with d < |b| one has that |d| ≤ |x| and
hence that the (|x|+ 1)st low-order bit of d is 0, which means that g(x; d) = 1.

Thus the cardinality of f(x; ) is equal to the cardinality of the set of binary
sequences of length 2|x| − 1; i.e.,

‖f(x; )‖ = 22|x|−1.

Since, for any function h ∈ NPMV, one has that ‖h(x̄)‖ ≤ 2p(|x̄|) for some poly-
nomial p, it follows that the classNPMV is not closed under safe weak minimization,
which means that this operation is still too strong.

Define the function amod v = amod 2|v|. Then amod v is the number given by
the |v| low-order bits of a. For a sequence ā = a1, . . . , ak, write āmod v for a1 mod v,
. . . , akmod v.

Definition 2.9 (limited safe weak minimization). A multifunction f is defined
by limited safe weak minimization from given multifunctions g and h (in symbols,
f = LSWM(g, h)) when

f(x̄; ā) = (µwb. g(x̄; ā, b)mod 2 = 0)modh(x̄; ).
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Theorem 2.10 (Danner and Pollett).

NPMV = Norm([B0; SC,SRN,LSWM]).

If f is defined by limited safe weak minimization from g and h, then the application
of mod cuts the possibly superexponentially many outputs b of µwb. g(x̄; ā, b)mod 2 =
0 down to those with |b| ≤ |z| for some z with h(x̄;) �→ z, thus to exponentially many.
Limited safe weak minimization is reminiscent of limited minimization. As Danner
and Pollett remark, by using this operation, one enters the “gray area” of implicit
computational complexity.

3. Safe minimization on notation. In this section, we present a modification
of safe weak minimization which follows the ideas of implicit computational complexity
and show that an analogue of Theorem 2.10 holds.1 The idea is to minimize with
respect to the prefix order on binary representations.

For numbers a and b, respectively, let an . . . a0 and bm . . . b0 be their binary rep-
resentations. Define a � b if n ≤ m and ai = bi for all i ≤ n. Write a ❁ b if a � b and
a �= b.

Definition 3.1. Let g(x̄; ā) be a multifunction. A multifunction h(x̄; ā) is a
companion of g if

h(x̄; ā)mod 2 �→ 1⇒ g(x̄; ā)mod 2 ��→ 0.

Definition 3.2 (safe minimization on notation). A multifunction f is defined
by safe minimization on notation from a given multifunction g and its companion h
(in symbols, f = SMN(g, h)) when

f(x̄; ā) �→ b⇔ g(x̄; ā, b)mod 2 �→ 0 ∧ (∀c ❁ b)h(x̄; ā, c)mod 2 �→ 1.

Call a multifunction g(x̄; ā) consistent if not both g(x̄; ā)mod 2 �→ 0 and g(x̄; ā)
mod 2 �→ 1. Then a multifunction is consistent exactly if it is its own companion. If
a multifunction f is defined by safe minimization on notation from a given consistent
multifunction g (and its companion g), we say that f is defined by consistent safe
minimization on notation (in symbols: f = CSMN(g)). We also write f(x̄; ā) =
µcb. g(x̄; ā, b)mod 2 = 0 in this case.

In order to see the effect of the modified quantification in the second condition in
Definition 3.2, let us consider the functions defined in Example 2.8 again.

Example 3.3. As has been shown for the multifunction f ,

f(x; ) = { b | |x|+ 1 ≤ |b| ≤ 2|x| } = { b | 2|x| ≤ b < 22|x| }.
Since the function g is single-valued, it is consistent. Define

f ′(x; ) = µcb. g(x; b)mod 2 = 0.

Then f ′(x; ) is the set of all numbers of minimal length such that the (|x|+1)st bit is
1, which means that it is the set of all numbers of exactly length |x|+ 1. Hence

f ′(x; ) = { b | 2|x| ≤ b < 2|x|+1 }.
1This research has been motivated by an earlier version of Danner and Pollett’s paper in which

only safe weak minimization was studied. It should be noted that the definitions and results in this
section have been obtained independently of what the authors presented in their revised version.
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For numbers a and b, let a � b if |a| ≤ |b|. Then � is a preorder. Write a ≺ b if
a � b and not b � a.

Obviously, a ❁ b exactly if a ≺ b and a = bmod a. Therefore, we have the
following lemma, which is useful in the derivation of our main result below.

Lemma 3.4. Let f, g, and h be multifunctions, and let h be a companion of g.
Then f is obtained by safe minimization on notation from g and h if and only if, for
any x̄, ā, and b,

f(x̄; ā) �→ b⇔ g(x̄; ā, b)mod 2 �→ 0 ∧ (∀c ≺ b)h(x̄; ā, bmod c)mod 2 �→ 1.

Theorem 3.5.

NPMV = Norm([B0; SC,SRN,CSMN]) = Norm([B0; SC,SRN,SMN]).

The theorem follows from the following propositions, the first of which will be
proved in the next section. Obviously [B0; SC,SRN,CSMN] ⊆ [B0; SC,SRN,SMN].

Proposition 3.6. Let f ∈ NPMV. Then there are functions T (z; ā, c), res(z; a),
and bnd(x̄; ) in [B0; SC,SRN] such that, for all inputs x̄,

f(x̄) = res(bnd(x̄; );µcb. T (bnd(x̄; ); x̄, b)mod 2 = 0).

Corollary 3.7. Let f(x̄) ∈ NPMV. Then f(x̄; ) ∈ [B0; SC,SRN,CSMN].
The proof of the converse implication uses a technique of Bellantoni.
Definition 3.8. Let f be a multifunction (note that we do not separate the

arguments into normal and safe here), and let q be a polynomial.
(i) Function f(x̄, ā) is a polynomial checking function on x̄ with threshold q if,

for all x̄, ā, w, and v satisfying |v| ≥ q(|x̄|) + |w|,

f(x̄, ā)modw = f(x̄, āmod v)modw.

(ii) Function f(x̄, ā) is polymax bounded by q on x̄ if, for all x̄, ā, |f(x̄, ā)| ≤
q(|x̄|) + maxi |ai|.

Note that the equation in Definition 3.8 (i) has to be understood as an equation
between sets.

Proposition 3.9. If f(x̄; ā) is in [B0; SC,SRN,SMN], then f is a polymax-
bounded polynomial checking function on x̄.

Proof. The proof proceeds by induction on the length of the derivation of f as a
function in [B0; SC,SRN,SMN]. Without restriction we can assume that the polyno-
mial of the size bound and the polynomial of the checking threshold are identical by
summing the two together.

For the initial functions zero, projection, predecessor, conditional, and successors,
the polynomial is at most 1, and the statement of the proposition is easily verified.

The proof that the statement holds in the induction cases is the same as in [1]
and/or [3, 2], except in the case of safe minimization on notation discussed below.

Let h be a companion of g, and assume that f = SMN(g, h). By the induction
hypothesis, there are polynomials qg and qh, respectively, witnessing that g and h are
polychecking and polymax-bounded on x̄. Let q be the sum of qg and qh.

In order to verify that f is polymax-bounded on x̄, we show that, for all c ∈
f(x̄; ā),

|c| ≤ q(|x̄|) + 2.



1548 DIETER SPREEN

Assume, to the contrary, that |c| > q(|x̄|) + 2, and set v = 2q(|x̄|)+1 as well as b =
cmod v. Then |v| = q(|x̄|)+2. Since g is polychecking on x̄ with polynomial threshold
q, it follows that

g(x̄; ā, c)mod 2 = g(x̄; āmod v, cmod v)mod 2

= g(x̄; āmod v, bmod v)mod 2

= g(x̄; ā, b)mod 2.

As c ∈ f(x̄; ā), we have that g(x̄; ā, c)mod 2 �→ 0. Thus g(x̄; ā, b)mod 2 �→ 0 as well.
From our assumption on |c|, we obtain that v ≺ c. Hence h(x̄; ā, b)mod 2 �→ 1, by
Lemma 3.4, in contradiction to the fact that h is a companion of g. Define p(|x̄|) =
q(|x̄|) + 2. Then p witnesses that f is polymax-bounded on x̄.

For the proof that f is also polychecking on x̄ with threshold p, let x̄, ā, w, and
v be such that |v| ≥ p(|x̄|) + |w|. Then |v| ≥ q(|x̄|) + 2. By the induction hypothesis,
it thus follows for c with |c| ≤ q(|x̄|) + 2 that

g(x̄; ā, c)mod 2 = g(x̄; āmod v, cmod v)mod 2 = g(x̄; āmod v, c)mod 2

and correspondingly for h. As we have seen above, it follows for c ∈ f(x̄; ā) as well
as for c ∈ f(x̄; āmod v) that |c| ≤ q(|x̄|) + 2. Hence f(x̄; ā) = f(x̄; āmod v), which
entails that

f(x̄; ā)modw = f(x̄; āmod v)modw.

Corollary 3.10. Let f(x̄; ā) be a multifunction in [B0; SC,SRN,SMN]. Then
f(x̄, ā) is computable in nondeterministic polynomial time.

Proof. The proof is by induction on the definition of f . The initial functions
are clearly computable in polynomial time and hence in NPMV. When g is given
inductively, we assume that it is computed by a nondeterministic Turing machine Mg

in time pg.
For safe composition, note that NPMV is closed with respect to composition.

Now suppose that f(y, x̄; ā) is defined by safe recursion on notation from g and h0, h1.
Then, for any y, we have that f(y, x̄; ā) �→ z exactly if there is a sequence t0, . . . , t|y|
such that g(x̄; ā) �→ t|y|, hy(i)(�y/2i+1�, x̄; ā, ti+1) �→ ti for all i < |y|, and t0 = z.
Here, y(i) denotes the ith bit of y. Furthermore, for any such sequence and all i, we
have that f(�y/2i�, x̄; ā) �→ ti, so |ti| ≤ q(|y|, |x̄|, |ā|), where q is the polynomial length-
bound existing by the preceding lemma. Thus, to compute f(y, x̄, ā), guess a sequence
t0, . . . , t|y| so that, for every ti, |ti| ≤ q(|y|, |x̄|, |ā|), and verify that the above condition
holds for each element of the sequence by running Mg, Mh0

, or Mh1 , respectively,
and comparing the output to the previous element of the sequence. If none of the
verifications fails and t0 = z, then accept and output z. Guessing the sequence takes
|y|q(|y|, |x̄|, |ā|) steps, and the verification takes time |y|p(|y|, |x̄|, |ā|, q(|y|, |x̄|, |ā|)),
where p is the sum of the polynomials pg, ph0 , and ph1 .

Finally, assume that f = SMN(g, h), and let q be the polynomial length-bound
existing by the preceding lemma so that |f(x̄; ā)| ≤ q(|x̄|, |ā|). We compute f(x̄, ā)
as follows. Guess b with |b| ≤ q(|x̄|, |ā|). Next verify that g(x̄, ā, b)mod 2 �→ 0,
and reject if not. If the verification is successful, run Mh on input x̄, ā, c for every
c ❁ b. If Mh accepts with output 1 in each case, then accept with output b; other-
wise, reject. Guessing b takes q(|x̄|, |ā|) steps, and the verifications take at most
time (1 + q(|x̄|, |ā|))p(|x̄|, |ā|, q(|x̄|, |ā|)), where p is the sum of the polynomials pg
and ph.
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In the proof of Proposition 3.9, we took advantage of the proviso made in the
definition of safe minimization on notation, namely, that the second argument of this
operator has to be a companion of the first argument. As can be seen from the follow-
ing example, without this condition, the class NPMV would not be closed under safe
minimization on notation, which means that Theorem 3.5 and hence Proposition 3.9
would be false. The same holds for the operation of consistent safe minimization on
notation and the requirement that the argument of this operator be consistent.

Example 3.11. Let g1(x, b) �→ 0, 1 and g2(x, b) �→ 1 for all x, b ∈ N. Then
g1, g2 ∈ NPMV, but neither is g1 consistent nor is g2 a companion of g1. Now, for
i = 1, 2, define fi by

fi(x) �→ b⇔ g1(x, b)mod 2 �→ 0 ∧ (∀c ❁ b)gi(x, c)mod 2 �→ 1.

Then it is readily verified that fi(x) �→ z for all z ∈ N. Thus fi �∈ NPMV, since
otherwise there exists some polynomial pi such that ‖fi(x)‖ ≤ 2pi(|x|).

If, however, we consider the function h ∈ NPMV with h(x, b) �→ 0 for all x, b ∈ N,
then h is a companion of g1, and SMN(g1, h) is the nowhere defined function.

4. Proof of the normal form result. The proof of Proposition 3.6 proceeds
in the usual way by an appropriate encoding of Turing machine computations. In the
appendix, a coding of finite sequences of numbers is presented such that there are
functions first, last, lth,dc, seq ∈ [B0; SC,SRN], with the following properties: if w is
the Gödel number of a sequence a1, . . . , ak, then first(y; a) = a1 for all y with |y| ≥ |a1|,
last(y;w) = ak for all y with |y| ≥ |w|, lth(y;w) = k, and dc(y, z;w) = a|z|+1 for all
y with |y| ≥ k, |aj | (1 ≤ j ≤ k) and z with |z| < lth(y;w).

Moreover, for z, w with |z| ≥ |w|, seq(z;w) = 1 if w is the Gödel number of a
finite sequence, and seq(z;w) = 0 otherwise.

In addition, functions ≤, <, ebit, obit ∈ [B0; SC,SRN] are defined such that, for
z, a, b with |z| ≥ |a|, |b|, ≤(z; a, b) = 1 if a ≤ b, and ≤(z; a, b) = 0 otherwise, and
correspondingly for <(z; a, b). Moreover, ebit(x; a) and obit(x; a), respectively, are
the coefficients of 22|x| and 22|x|+1 in the binary expansion of a.

The Turing machines we work with have n read-only input tapes, m read/write
work tapes, and one write-only output tape. The alphabet consists of the symbols 0,
1, and ∗ (∗ for blank), and the state set is Q = {q0, q1, q2, . . . , qr}. We always presume
that q0 is the starting and q1 the accepting state.

Our machines work nondeterministically and in polynomial time. Moreover, we
assume the following, again without loss of generality.

(i) The accepting state q1 can only be entered within the given time limit.
(ii) The head on the output tape prints only 0’s and 1’s. If the machine is in state

q1, the finite content of the output tape right to its head is the binary representation
of the output of the machine.

(iii) In the start situation, the machine is in state q0, and on each input tape the
input is written in such a way that it starts one cell right of the cell scanned by the
head.

A configuration is a (3n+ 3m+ 2)-tuple

(q, u1, a1, v1, . . . , un+m, an+m, vn+m, vn+m+1),

where
(i) q is the present state of the machine,
(ii) vn+m+1 is the finite content of the output tape right to its head, written in

reverse order, and, for 1 ≤ j ≤ n+m,



1550 DIETER SPREEN

(iii) uj , is the finite content of tape j left to its head,
(iv) aj is the content of the cell scanned by the head on tape j, and
(v) vj is the finite content of tape j right to its head, written in reverse order.

We always assume that the words uj and vj are of the form b1 . . . bk such that b1 is
not ∗.

In order to encode configurations, we code every state qi by i. The words uj ,
aj , and vj are coded as follows. Replace each 0 by “10,” each 1 by “11,” and
each ∗ by “00.” The resulting strings of zeros and ones are then the binary rep-
resentations of the codes of these words. In this way, we obtain a (3n + 3m + 2)-
tuple (i, ū1, ā1, v̄1, . . . , ūn+m, ān+m, v̄n+m, v̄n+m+1) of numbers, which is encoded as
explained in the beginning of this section.

As is easily verified, a number w is the code of an entry of some configuration
just if, for every odd i such that the coefficient of 2i−1 in the binary expansion of w
is not 0, the coefficient of 2i is 1. This is tested by the function seq1 ∈ [B0; SC,SRN]
defined in the appendix. Moreover, w is the code of the binary representation of some
number, written in reverse order, exactly if, in addition, the binary representation of
w contains no substring of the form 100.

Let the function P be as in Example 2.8, set ŝ1(z; ) = s1(; z), and define

seq4(0;w) = 1,

seq4(zi;w) = cond(; seq4(z;w), 0, cond(;P (z;w),

cond(;P (ŝ1(z; );w), cond(;P (ŝ
2
1(z; );w), 1, 0), 1), 1))

for zi �= 0. Then seq4 ∈ [B0; SC,SRN], and, for z, w with |z| ≥ |w|, we have that
seq4(z;w) = 1 if the binary representation of w contains no substring of the form 100
and seq4(z;w) = 0 otherwise.

If w is the code of the binary representation of some number, written in reverse
order, we need to compute that number. Let

nb(0;w) = 0,

nb(yi;w) = cond(; obit(y;w),nb(y;w),

cond(; ebit(y;w), s0(; nb(y;w)), s1(; nb(y;w))))

for yi �= 0. Then nb ∈ [B0; SC,SRN], and, in case w is such a code, we have for
|y| ≥ |w| that nb(y;w) is the corresponding number.

Now let M be a Turing machine in the way described above. We need to
construct a Turing predicate TM (y; x̄, c) ∈ [B0; SC,SRN] such that, for y, x̄, c with
|y| ≥ r, |c|, |xi|, for 1 ≤ i ≤ n, TM (y; x̄, c) = 1 exactly if c is the Gödel number of an
accepting computation of machine M with respect to input x̄.

1. Set

cfM (y; c) = seq(y; c) ∧ lth(y; c) = 3n+ 3m+ 2 ∧ ≤(y; first(y; c), r)

∧
3n+3m+1∧

i=1

seq1(y; dc(y, 2i − 1; c)).

Since 3n+3m+2 is a fixed number, the term lth(y; c) = 3n+3m+2 can be expressed
in such a way that it is in [B0; SC,SRN]. Hence cfM ∈ [B0; SC,SRN]. If |y| ≥ r, |c|,
cfM (y; c) = 1 just if c is the Gödel number of a configuration of M .
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2. By using the transition table of machineM , one can further construct a func-
tion transM ∈ [B0; SC,SRN] such that, for y, c, d with |y| ≥ r, |c|, |d|, transM (y; c, d) =
1 if c and d, respectively, are Gödel numbers of configurations c′ and d′ of M and
there is a transition from c′ to d′ and transM (y; c, d) = 0 otherwise.

3. Let a ∨ b = cond(; a, cond(; b, 0, 1), 1), define

f6(0, y; c) = seq(y; c),

f6(zi, y; c) = [f6(z, y; c) ∧ transM (y; dc(y, z; c),dc(y, ŝ1(z; ); c))

∧<(y; s1(; z), lth(y; c))] ∨ [≤(y; lth(y; c), s1(; z)) ∧ f6(z, y; c)]

for zi �= 0, and set

compM (y; c) = f6(y, y; c).

Then compM ∈ [B0; SC,SRN], and, for y, c with |y| ≥ r, |c|, we have that compM (y; c) =
1 exactly if c is the Gödel number of a sequence of codings of configurations c0, . . . , ck
of M such that there is a transition from cj to cj+1 for all j < k.

4. Let =(y; a, b) = ≤(y; a, b) ∧ ≤(y; b, a) and cr(y;w) = seq1(y;w) ∧ seq4(y;w).
Moreover, let I be the set of all i with 1 ≤ i ≤ 3n+3m+1 such that i is not divisible
by 3 if 1 ≤ i ≤ n. Define

initM (y; x̄, c) = cfM (y; c) ∧ ≤(y; first(y; c), 0) ∧
∧
i∈I
≤(y; dc(y, 2i − 1; c), 0)

∧
n∧
i=1

[cr(y; dc(y, 23i − 1; c)) ∧=(y; nb(y; dc(y, 23i − 1; c)), xi)].

Again, initM ∈ [B0; SC,SRN], and, for y, x̄, c with |y| ≥ r, |c|, |xi|, for 1 ≤ i ≤ n, we
have that initM (y; x̄, c) = 1 just if c is the coding of the start configuration of machine
M with respect to input x̄.

5. Let

accM (y; c) = cfM (y; c) ∧=(y; first(y; c), 1).

Then accM ∈ [B0; SC,SRN], and, for y, c with |y| ≥ r, |c|, accM (y; c) = 1 exactly if c
is the code of an accepting configuration.

6. Finally, we can define the Turing predicate. Set

TM (y; x̄, c) = compM (y; c) ∧ initM (y; x̄,first(y; c)) ∧ accM (y; last(y; c)).

Now we can prove Proposition 3.6. Let f ∈ NPMV. Then there is some nonde-
terministic Turing machine M that computes f in time p. Set

T (z; x̄, c) = cond(;TM (z; x̄, c), 1, 0)

and

res(z; b) = nb(z; dc(z, 23n+3m; last(z; b))).

If f(x̄) �→ y, there exists an accepting computation of M of length at most p(|x̄|)
with output y. Let c be its Gödel number, and assume there were numbers z, d with
|z| ≥ |c| and d ❁ c such that T (z; x̄, d)mod 2 = 0. Then d is the Gödel number of an
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accepting computation of M on input x̄, which means that the sequences coded by c
and d have the same first element. This is impossible since the choice of our sequence
encoding d ❁ c implies that the sequence coded by d is a proper final segment of the
sequence coded by c. Thus c = µcb. T (z; x̄, b)mod 2 = 0 for all z with |z| ≥ |c|.

During the computation, each head can visit at most p(|x̄|) cells. Thus the length
of the code of every configuration in this computation is bounded by 2[2(n + m +
1)p(|x̄|) + 2|r| + 3n + 3m + 1]. Note that there are 3n + 3m + 1 commas in each
configuration. Moreover, the coding of both the words on the tapes as well as the
configuration requires multiplication by 2. Set

q(|x̄|) = 4(n+m+ 1)p(|x̄|)2 + (4|r|+ 6n+ 6m+ 3)p(|x̄|).
Then |c| ≤ q(|x̄|). As has been shown in [1, 3], one can easily construct a function
bnd ∈ [B0; SC,SRN] such that q(|x̄|) ≤ |bnd(x̄; )|. It follows that last(bnd(x̄; ); c)
is the coding of the last configuration in the computation coded by c, and hence
res(bnd(x̄; ); c) is its result.

This shows that

f(x̄) ⊆ res(bnd(x̄);µcb. T (bnd(x̄); x̄, b)mod 2 = 0).

The converse inclusion is obvious by our general assumption ofM and the construction
of the functions T and res.

5. Conclusion. Bellantoni showed in his dissertation [1, 2] that when unbound-
ed minimization is allowed over safe positions in the presence of safe recursion on
notation, the resulting functions lie in the polynomial hierarchy. Verifying the mini-
mality of a certain number a requires us to test whether all smaller numbers satisfy
the given property. There are exponentially many such numbers with respect to the
length of a. Therefore, it is quite obvious that the polytime functions are not closed
under this operation.

In the present paper, we modified Bellantoni’s minimization operator by requiring
a weaker kind of minimality: only the numbers with a binary representation that is
a proper prefix of the binary representation of a have to be tested. There are only
polynomially many such numbers with respect to the length of a, which implies that
the minimality test can be performed in polynomial time. However, now there may
be several such minimal numbers a: the resulting function is multivalued.

The characterization derived in the paper is partly based on a normal form theo-
rem which is similar to Kleene’s normal form theorem for the computable functions [9].
Here it was shown that the nondeterministic polytime multifunctions can be generated
from the deterministic polytime functions by an application of a weakened unbounded
minimization operator. Kleene’s theorem says that the computable functions can be
generated by an application of full unbounded minimization from the primitive recur-
sive ones.

So there is a certain similarity between the computable functions and the non-
deterministic polytime functions as well as the primitive recursive functions and the
deterministic polytime functions. Danner and Pollett [6] give more examples for this
correspondence.

The minimization operator introduced in this paper is a partial operator: it can
only be applied to multifunctions that are given together with a companion. To check
the property of being a companion seems not to be an easy task, in general. It remains
an open question whether the nondeterministic polytime multifunctions can also be
generated by using only total , fully “implicit” operators.
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In order to derive Proposition 3.9, it would be sufficient to require that the con-
dition given in the definition of a companion holds only for those arguments which
are used in the verification process. However, then the modified requirement would
be part of the minimality condition and hence would have to be tested in polynomial
time. It is not clear how this could be done in the case of nondeterministic polytime
multifunctions. The situation is similar to the one in classical computability theory,
where one has to require that the function minimized over is defined on all arguments
used in the minimality verification. Dropping this condition leads to a minimization
operator under which the class of computable functions is no longer closed [10].

Appendix. As is well known, there are codings of finite sequences such that the
corresponding decodings are in FP. By Bellantoni and Cook’s theorem, this means
that they can be defined from initial functions in B0 with the help of safe composition
and safe recursion on notation. However, in this case, all of their parameters appear
in the normal position, whereas here we need them in the safe position. As we will
see, this can only be achieved in such a way that, for any input, the entire output
of the function does not have the properties we are interested in, but certain of its
low-order bits do. Moreover, there will be an additional normal parameter, the length
of which is an upper bound on the low-order bits that may be used.

In what follows, we use a coding of finite sequences of numbers, which is essentially
due to Buss [4]. The code or Gödel number of a sequence a1, . . . , ak is constructed
as follows. First replace each ai by ai1, and write the resulting numbers in binary
notation so that we have a string of 0’s, 1’s, and commas. Then write the string
in reverse order, and replace each 0 by “10,” each 1 by “11,” and each comma by
“00.” The resulting string of zeros and ones is the binary representation of the Gödel
number 〈a1, . . . , ak〉. For example, the Gödel number of 0,1,2 is (1110110011110011)2
or 60,659. The empty sequence has the Gödel number 〈〉 = 0.

Let us show now that the functions testing whether a number is the Gödel number
of a finite sequence and, if this is the case, computing the length of the sequence as
well as its ith element for given i, are in [B0; SC,SRN]. To this end, we need several
helper functions.

1. Let the function P be as in Example 2.8, and define

rev(0; a) = 0,

rev(xi; a) = cond(;P (x; a), s0(; rev(x; a)), s1(; rev(x; a))) for xi �= 0.

Then the binary representation of rev(y;x) corresponds to the |y| low-order bits of x
written in reverse order.

2. Let

f0(0; a, b) = 1,

f0(zi; a, b) = cond(; f0(z; a, b), 0, cond(; p(; f0(z; a, b)),

cond(;P (z; a), cond(;P (z; b), 1, 3), cond(;P (z; b), 0, 1)), 3))

for zi �= 0, and set

≤(z; a, b) = cond(; f0(z; rev(z; a), rev(z; b)), 0, 1).

In case that |z| ≥ |a|, |b|, we have that ≤(z; a, b) = 1 if a ≤ b and ≤(z; a, b) = 0
otherwise.
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3. Set ŝ1(z; ) = s1(; z), let

f1(0;w) = w,

f1(yi;w) = cond(; f1(y;w), cond(; p(; f1(y;w)), f1(y;w), p
2(; f1(y;w))),

p2(; f1(y;w)))

for yi �= 0, and define

truncate(y;w) = p2(; f1(ŝ1(y; );w)).

If w is the Gödel number of a sequence a1, . . . , ak and |a1| ≤ |y|, then truncate(y;w) =
〈a2, . . . , ak〉.

4. Let sg(z; ) = ≤(z; z, 0), and set

tr(0, y;w) = w,

tr(zi, y;w) = cond(; sg(z; ), truncate(y; tr(z, y;w)), w) for zi �= 0.

For z with |z| > 0, we have that tr(z, y;w) = truncate|z|−1(y;w).
5. Set

ebit(x; a) = cond(;P (x;P (x; a)), 0, 1),

obit(x; a) = cond(; p(;P (x;P (x; a))), 0, 1).

Then ebit(x; a) and obit(x; a), respectively, are the coefficients of 22|x| and 22|x|+1 in
the binary expansion of a. Moreover, let P ′(x, y; ) = P (x; y), and define

f2(0, z;w) = 0,

f2(yi, z;w) = cond(; f2(y, z;w), cond(; ebit(y;w),

cond(; obit(y;w), cond(; sg(P ′(y, z; ); ), 1, 0), 0), 0), 1)

for yi �= 0. If w is as above and |y| > 1+ |a1|, then f2(y, z;w) = 1 if 1+ |a1| < |z| and
f2(y, z;w) = 0 otherwise.

6. Define

f3(0, y;w) = 0,

f3(zi, y;w) = cond(; f2(y, ŝ1(z; );w),

cond(; ebit(z;w), s0(; f3(z, y;w)), s1(; f3(z, y;w))), f3(z, y;w))

for zi �= 0, and set

first(y;w) = p(; f3(ŝ
2
1(y; ), ŝ

2
1(y; );w)).

If w is as above again and |y| ≥ |a1|, then first(y;w) = a1.
7. Finally, let

f4(0, y;w) = 0,

f4(zi, y;w) = cond(; tr(z, y;w), f4(z, y;w), cond(; tr(ŝ1(z; ), y;w), z, 1))

for zi �= 0. Set

lth(y;w) = f4(ŝ1(y; ), ŝ1(y; );w)
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and

dc(y, z;w) = first(y; tr(ŝ1(z; ), y;w));

then lth,dc ∈ [B0; SC,SRN]. Moreover, for w as above and y such that |y| ≥ k, |aj |
for 1 ≤ j ≤ k, we have that lth(y;w) = k and dc(y, z;w) = a|z|+1 as long as |z| <
lth(y;w).

If we want to compute the last element of the sequence coded by w, we cannot do
this by composing the functions dc and lth because of the restriction in the definition
of safe composition. Let, therefore,

<(z; a, b) = cond(;≤(z; a, b), 0, cond(;≤(z; b, a), 1, 0)),
and set

f5(0, z;w) = w,

f5(yi, z;w) = cond(;<(z; |s1(; y)|, lth(z;w)), f5(y, z;w), truncate(z; f5(y, z;w)))
for yi �= 0. Now define

last(z;w) = first(z; f5(z, z;w)).

Note that

|0| = 0, |xi| = s(|x|; ) for xi �= 0,

where

s(0; ) = 1, s(x0; ) = s1(;x) for x �= 0, s(x1; ) = s0(; s(x; )).

Thus last ∈ [B0; SC,SRN]. Moreover, if w is the Gödel number of a finite sequence
and |z| ≥ |w|, then last(z;w) is the last element of the sequence coded by w.

Observe that w is the Gödel number of a finite sequence exactly if the binary
expansion of w satisfies the following four conditions.

(i) Either w = 0 or w is odd.
(ii) For every even j such that the coefficient of 2j−1 is not 0, the coefficient of

2j is 1.
(iii) There is no substring of the form 1000.
(iv) There is no substring of the form 0010.
Set

seq1(0;w) = 1,

seq1(zi;w) = cond(; seq1(z;w), 0, cond(; ebit(z;w), 1, cond(; obit(z;w), 0, 1)))

for zi �= 0,

seq2(0;w) = 1,

seq2(zi;w) = cond(; seq2(z;w), 0, cond(;P (z;w), cond(;P (ŝ1(z; );w),

cond(;P (ŝ21(z; );w), cond(;P (ŝ
3
1(z; );w), 1, 0), 1), 1), 1))

for zi �= 0, and

seq3(0;w) = 1,

seq3(zi;w) = cond(; seq3(z;w), 0, cond(;P (z;w), cond(;P (ŝ1(z; );w), 1,

cond(;P (ŝ21(z; );w), cond(;P (ŝ
3
1(z; );w), 0, 1), 1)), 1))
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for zi �= 0. Moreover, let a ∧ b = cond(; a, 0, cond(; b, 0, 1)), and define

seq(z;w) = cond(;w,≤(z;w, 0), 1) ∧ seq1(z;w) ∧ seq2(z;w) ∧ seq3(z;w).

Then seq ∈ [B0; SC,SRN], and for z, w with |z| ≥ |w|, we have that seq(z;w) = 1 if
w is the Gödel number of a finite sequence and seq(z;w) = 0 otherwise.
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Abstract. Combinatorial property testing, initiated formally by Goldreich, Goldwasser, and
Ron in [J. ACM, 45 (1998), pp. 653–750] and inspired by Rubinfeld and Sudan [SIAM J. Comput.,
25 (1996), pp. 252–271], deals with the following relaxation of decision problems: Given a fixed
property and an input x, one wants to decide whether x has the property or is “far” from having the
property.

The main result here is that, if G = {gn : {0, 1}n → {0, 1}} is a family of Boolean functions
which have oblivious read-once branching programs of width w, then, for every n and ε > 0, there is
a randomized algorithm that always accepts every x ∈ {0, 1}n if gn(x) = 1 and rejects it with high
probability if at least εn bits of x should be modified in order for it to be in g−1

n (1). The algorithm

makes ( 2
w

ε
)O(w) queries. In particular, for constant ε and w, the query complexity is O(1).

This generalizes the results of Alon et al. [Proceedings of the 40th IEEE Symposium on Foun-
dations of Computer Science, IEEE Computer Society, 1999, pp. 645–655] asserting that regular
languages are ε-testable for every ε > 0.
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1. Introduction. Combinatorial property testing, initiated formally by Gold-
reich, Goldwasser, and Ron in [11] and inspired by Rubinfeld and Sudan [16], deals
with the following relaxation of decision problems: Given a fixed property and an
input x, one wants to decide whether x has the property or is “far” from having
the property. A property here is a set of binary strings (those inputs that have the
“property”) and is identified with its characteristic function (that is, “1” on all inputs
that have the property and “0” elsewhere). Being “far” is measured by the number
of bits that need to be changed for an input x in order for it to have the property
(i.e., the Hamming distance). A property is said to be (ε, q)-testable if there is a
randomized algorithm that, for every input, x ∈ {0, 1}n queries at most q bits of x
and with probability 2/3 distinguishes between the case when x has the property and
the case when x is εn-far from having the property. Varying ε and n may result in
different algorithms with different query complexity q = q(ε, n) that may depend on
both ε and n. If, for a fixed ε > 0 and every large enough n, a property P is (ε, q)-
testable with a number of queries q that is independent of the length of the input, n,
then we say that P is ε-testable. If, for every ε > 0, P is ε-testable, then P is said to
be testable.

Apart from being a natural relaxation of the standard decision problem, combi-
natorial property testing emerges naturally in the context of probably approximately
correct (PAC) learning, program checking [10, 6, 16], probabilistically checkable proofs
[3], and approximation algorithms [11].

In [11], the authors mainly consider graph properties and show (among other
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things) the quite surprising fact that the graph property of being bipartite is testable.
They also raise the question of obtaining general results identifying classes of prop-
erties that are testable. Some interesting examples are given in [11], and several
additional ones can be obtained by applying the regularity lemma [1]. Alon et. al.
[2] proved that membership in any regular language is testable, hence obtaining a
general result identifying a nontrivial class of properties, each being testable. Here we
further pursue this direction: We prove that if a language has a (nonuniform) obliv-
ious read-once branching program (BP) of width w, then it is (ε, ( 2

w

ε )O(w))-testable.
In particular, this shows that every family of functions that can be defined by a
nonuniform collection of constant width oblivious read-once BPs is testable. This
also generalizes and gives an alternative proof and algorithm for the result of [2], as
regular languages can be represented by constant width oblivious read-once BPs. We
note, however, that the dependence of the query complexity here is worse than in [2].

A BP of width w is a deterministic leveled BP in which every level contains at
most w vertices. In what follows, we will be interested in BPs of width w that have the
further restriction of being oblivious read-once. Namely, every level is associated with
a variable (all nodes in a level query the same variable), and each variable appears in
at most one level. BPs have been extensively studied as a model of computation for
Boolean functions. ([7] contains a survey text; see also [4, 5, 13] for a partial list of
different aspects involving BPs and read-once BPs.)

The size of a BP (and a read-once BP) is tightly related to the space complex-
ity of the function it computes: If a language is in SPACE(s), then it has a BP of
total size at most n · 2O(s) [8] and also a read-once BP of width 2O(2

s) [12]. How-
ever, the inverse of the last assertion is not true even for computable languages.
The result of [2] and the result here, in its uniform manifestation, may be viewed
as asserting that “very small” space functions are “efficiently” testable: All regu-
lar languages are in SPACE(O(1)) and hence have a read-once BP of O(1) size.
What happens for SPACE(ω(1)) functions? It is known that SPACE(O(1)) =
SPACE(o(log log n)) = Regular [12]. Hence the above question is interesting for
SPACE(s) with s = Ω(log log n). The result here says nothing directly for s =
Ω(log log n). However, we get rid of the strong “uniformity” of the deterministic fi-
nite automata (DFAs) used in [2]. In regular languages, the same finite automaton
is used to test all the words, even of different lengths. On the other hand, when
represented by a family of BPs, each BP computes the characteristic function of the
property for a given input length. There are languages of arbitrary complexity that
can be represented by O(1)-width oblivious BPs. Our results apply to such cases as
well. This includes the family of O(1)-terms disjunctive normal form (DNF), O(1)-
clauses conjunctive normal form (CNF), and some other interesting examples (see
section 4).

Finally, we note that SPACE(O(log n)) functions are not testable in general;
[2, 11, 15] contain lower bounds showing that some functions in SPACE(O(log n))
are not ε-testable and sometimes not even (ε, nδ)-testable for some fixed ε, δ < 1.
However, the question of whether properties in SPACE(s) for log logn ≤ s << log n
are “efficiently” testable is open. In particular, we do not have any candidate for a
SPACE(O(log log n)) function whose ε-testing requires nΩ(1) queries for some fixed
ε > 0.

2. Definitions and notation. We identify properties with the collection of
their characteristic Boolean functions, namely: A property P ⊆ {0, 1}∗ is identified
with {f : {0, 1}n −→ {0, 1}} so that f(x) = 1 if and only if x ∈ P.
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An oblivious leveled BP is a directed graph B in which the nodes are partitioned
into levels L0, . . . , Lm. There are two special nodes: a “start” node belonging to
L0 and an “accept” node belonging to Lm. Edges are going only from a level to
nodes in the consecutive level. Each node has at most two out-going edges, one of
which is labeled by “0” and the other by “1.” In addition, all edges in between two
consecutive levels are associated with a member of {1, . . . , n} (a Boolean variable).
An input x ∈ {0, 1}n naturally defines a path starting at the start-node: At each step,
if the edges are associated with i, then the edge with the label identical to the value
of xi is chosen. A leveled BP defines a Boolean function g : {0, 1}n −→ {0, 1} in the
following way: g(x) = 1 if the path that x defines reaches accept. This definition of
BPs is essentially equivalent to what is sometimes called “deterministic” BPs (as each
input defines at most one path from each node). However, note that this definition
is slightly different from the standard definition of deterministic BPs, in which every
vertex has exactly two outgoing edges; one is labeled by “1” and the other by “0.”
Here, instead, an input x can be “stuck” at an internal node v due to the fact that
v has just one outgoing edge that is associated with i and is labeled by a value that
is opposite to that of xi. (This cannot happen in the standard definition.) A leveled
BP is of width w (w-width) if its largest level contains w nodes.

An oblivious read-once BP computing g : {0, 1}n −→ {0, 1} is a leveled BP with
the additional property that edges ending in distinct levels are labeled with distinct
variables. This implies also that there are exactly n + 1 levels (for a function that
depends on all its n variables). We number the levels of the BP from 0 (containing
the start s) and on and associate to the edges in between levels the formal Boolean
variables X1, . . . , Xn consecutively (by possibly renaming the variables). We may
assume that the last level is numbered by n.

In what follows, we consider only oblivious read-once BPs. For a given BP, B,
and two nodes u, v, we define B[u : v] the (sub) BP for which its start node is u and
its accept node is v. If u ∈ Li and v ∈ Lj , then B[u : v] computes a Boolean function
on the variables Xi, . . . , Xj . The length of B[u : v] in this case is ν = j − i. Such
B[u : v], as a subprogram of a read-once oblivious BP, is also read-once oblivious
BP. When discussing such a BP B[u : v], we renumber its levels so that its first
level, which is level Li in B, is denoted L0(B[u : v]), and its last level is denoted by
Lν(B[u : v]). When it is clear from the context which is the BP that is considered,
we just refer to its first and last levels as L0, Lν , respectively (where ν is the length
of the corresponding BP).

We will be interested in BPs for which the start and accept nodes are not always
defined. Namely, the BP B might have multiple nodes in its first and last levels. For
such a BP of length n, any choice of start and accept nodes (s, t) ∈ L0×Ln defines a
different function on n variables. If no path from a node v ∈ B reaches the last level,
then deleting v from B will not change the function that B computes for any choice
of start and accept nodes in the first and last levels. Similarly, we may delete every
vertex that can be reached from no vertex of the first level. Also, when we talk about
B[u : v], for some specific nodes u, v, we may delete any node from B[u : v] that either
is not reachable from u or cannot reach v. In particular, this means that u is the only
node in L0(B[u : v]), and v is the only node in the last level of B[u : v]. Such nodes
that can be deleted from the BP are called “unnecessary nodes.” In what follows, we
always assume that all BPs under discussion contain no “unnecessary nodes.”

For integers a < b, we denote by Ba:b the subprogram of B containing all nodes
in levels La, La+1, . . . , Lb. Ba:b has undefined source and sink. Note that, if B is an
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oblivious read-once BP of width w, then, for any two nodes u, v and any two numbers
a and b, B[u : v] and Ba:b are oblivious read-once BPs of width at most w. (The
width can become smaller as nodes might become “unnecessary.”)

Let x, y ∈ {0, 1}n; we define dist(x, y) = hamming(x, y) = |{i| xi �= yi}|. Let
g : {0, 1}n −→ {0, 1} such that g−1(1) �= φ; we define dist(x, g) = min{dist(x, y)| y ∈
g−1(1)}. For a BP B and two nodes u and v in levels Li, Lj , respectively, let
dist(x,B[u : v]) = dist(x[i, j], g′), where g′ is the function computed by B[u : v]
on the formal variables Xi, Xi+1, . . . , Xj .

Let B be an oblivious read-once BP with fixed start and accept nodes that com-
putes a Boolean function g : {0, 1}n −→ {0, 1}. A randomized algorithm A is a
1-sided error ε-test for B (g) of query complexity c(A) if, for every input x ∈ {0, 1}n,
it queries at most c(A) queries and

1. for every input x ∈ g−1, the algorithm accepts;
2. for every input x ∈ {0, 1}n for which dist(x, g) ≥ εn, the algorithm rejects

with probability at least 2/3.
Let Bnw be the set of all oblivious read-once BPs of width w and length n. For

B ∈ Bnw, we denote c̃(ε, B) = min{c(A) : A is a 1-sided error ε-test for B}. Namely,
c̃(ε, B) is the query complexity of the best 1-sided error ε-test for B. Let q̃(ε, w) =
max{c̃(ε, B) : B ∈ Bnw}. Namely, q̃(ε, w) is the worst query complexity needed to
ε-test a w-width BP. Formally, q̃(ε, w) is a function of n too; however, as we shall see,
asymptotically this is not the case.

Finally, in what follows, for ease of notation, we neglect taking �� and �� for
numbers, even when they need to be integers, whenever this is clear from the context
and has no bearing on the essence of proofs.

3. Results. Our main result is the following.
Theorem 1. Let g : {0, 1}n −→ {0, 1} be computed by an oblivious read-once BP

of width w. Then there is an ε-test for g that makes ( 2
w

ε )O(w) queries.
Corollary 3.1. If g : {0, 1}n −→ {0, 1} has a read-once BP of width w = O(1),

then g is testable.
The proof of Theorem 1 uses several reduction steps in order to reduce testing

of a w-width BP to testing of (w − 1)-width BPs. This approach has prospects since
1-width BPs are testable, as asserted by the following proposition.

Proposition 1. If g : {0, 1}n −→ {0, 1} is computable by an oblivious read-once
BP of width w = 1, then g is (ε, O( 1ε ))-testable by a 1-sided error algorithm.

Proof. We assume that g is not identically “0” and not identically “1,” as oth-
erwise the test is trivial (with no queries at all). Let B be a BP of width w = 1
computing the nonzero function g. It is clear from the definition that g is a one-term
DNF. That is, written in formal variables, X1, . . . , Xn, g = Πni=1ti, where ti is either
Xi or X̄i. g does not necessarily depend on all of its variables; in this case, we just
look at the variables it does depend on. Let x be an input such that dist(g, x) ≥ εn
(assuming that there is such x). It is easy to see that, for at least ε · n of the places
{1, . . . , n}, xi is not consistent with ti. Hence sampling O( 1ε ) bits of an input x and
rejecting if xi is inconsistent with ti are guaranteed to succeed with probability 2/3
for εn-far inputs, and with probability 1 for any input x for which g(x) = 1.

For the proof of the case w ≥ 2, we will need some machinery developed hereafter.

3.1. Main definitions and some intuition. The algorithm for ε-testing w-
width BPs will be recursive on the width. Namely, our aim is to reduce ε-testing of a
w-width BP to testing of (w − 1)-width BPs with possibly a smaller ε. Key notions
are that of r-full levels and decomposable BPs. They are defined below.
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levellevel l

v

l-r

A  (v)r

Fig. 1. Ar(v) is the set of nodes in level Ll−r that can reach v. Here v is not r-full as not all
nodes in level Ll−r can reach v.

For an integer r and a node v in a BP, we denote

Ar(v) = {u| there is a path of length r from u to v}.
See Figure 1.

Definition 3.2. Let v be a vertex in level Ll of a BP with start and accept nodes
that are not necessarily defined. We say that v is r-full if Ar(v) contains all nodes of
level Ll−r. If every vertex in level Ll is r-full, then Ll is said to be r-full.

Namely, a vertex v is r-full if v is reachable from every vertex of level Ll−r; see
Figure 1. Note that, for every two nodes u and v of a BP B, v is always 1-full with
respect to B[u : v]. This is due to the fact that B[u : v] contains no “unnecessary
nodes.”

Fact 1. Assume that v ∈ Ll is r-full for a certain r and l; then
• v is r′-full for every r′ > r;
• if u ∈ Ll+1 is a neighbor of v, then u is (r + 1)-full.

Proof. For the first part, assume that r′ > r and v′ ∈ Ll−r′ . Then, as we assume
that there are no “unnecessary vertices,” v′ can reach some vertex v′′ ∈ Ll−r. In turn,
v′′ can reach v by the assumption that v is r-full. Hence v′ can reach v.

For the second part, if v is r-full, it can be reached from any w ∈ Ll−r. Since u
is a neighbor of v, it can also be reached by every w ∈ Ll−r.

The following is a crucial ingredient for the rest of what follows.
Definition 3.3. Let δ < 1. A BP of length ν, with start and accept nodes that

are not necessarily defined, is said to be δ-decomposable if, for some δν
20 ≤ , ≤ ν − 1

and r ≤ � δ�10�, L� is r-full.
For a given BP, B, the role of the non δ-decomposable subprogram of B is the

following: We first show in section 3.2 that, if B′ is not δ-decomposable for δ < ε,
then ε-testing B′ can indeed be reduced to testing “narrower” BPs. Then, in section
3.3, we show how a general BP can be decomposed into disjoint nondecomposable
subprograms such that testing the BP can be reduced to testing not too many of the
nondecomposable parts of it.

3.2. Testing nondecomposable BPs. The following lemma, which is the main
technical part of the proof of Theorem 1, relates testing w-width nondecomposable
BPs to the test of general (w − 1)-width BPs.

Lemma 3.4. Let δ ≤ ε, and let B be a non δ-decomposable BP of width w and
length n. Then ε-testing B[s : t], for any start and accept nodes s and t, requires at

most O(w
4

δ3 (log w
2

δ )2) · q̃(0.8ε, w − 1) queries.
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Proof. The idea of the proof is as follows: We fix O( 1
δ2 ) levels that are equally

spaced in B, leaving out enough space in the beginning of B. The assumption that
B is not δ-decomposable will imply that, for each of two nodes u, v in the levels we
choose, the test of B[u : v] can be reduced to tests of (w − 1)-width BPs. We then
show how to combine the results of the tests on B[u : v] for all such u, v into an ε-test
for B.

Formally, let m = � δ2n400 �. Let {l0, . . . , lp} be the set of numbers that are m
apart, starting from � 20mδ � and ending at or before n. Namely, li = � 20mδ � + i ·m,

i = 0, 1, . . . , p = �n−l0m � = O( 1
δ2 ). Let S = Ll0 × · · · × Llp . Our first aim is to show

that, for every pair (u, v) ∈ Lli × Lli+1
, the ε1-test of B[u : v] can be reduced to a

small number of general tests of (w − 1)-width BPs.
We first need the following claims.
Claim 3.5. For every l ≥ l0, level Ll is not (2m)-full.
Proof. The proof is immediate from the choice of parameters and the fact that B

is not δ-decomposable.
For each l such that li < l ≤ li+1, let F (l) be the set of all (l − li)-full vertices in

level Ll. In other words, v ∈ F (l) if it is in the lth level and it is reachable from every
vertex of the lith level. By our assumption on B, F (l) �= Ll, as otherwise Ll would
be (l − li−1)-full in contradiction with Claim 3.5.

Hence the above implies the following claim.
Claim 3.6. Let u, v be vertices in levels Lli , Lli+1

, respectively, and let l be such
that li ≤ l ≤ li+1.

• Let u′ be in level Ll, and assume that u′ /∈ F (l); then B[u : u′] is of width
w′ ≤ w − 1.

• Let v′ be in level Ll, and assume that v′ ∈ F (l); then B[v′ : v] is of width
w′ ≤ w − 1.

Proof. Let u′ /∈ F (l) be in level Ll. As u′ /∈ F (l), u′ is not (l − li)-full; then, by
Fact 1, it is also not (l− l′)-full for every l′ > li. Namely, for every intermediate level
Ll′ , li < l′ < l, there is a vertex that cannot reach u′ and hence can be deleted from
B[u : u′].

For the second part, assume first that v′ is in level Ll for l > li and v′ ∈ F (l). Let
t be any node at level Ll′ , l < l′ ≤ li+1, that is reachable from v′. Since v′ ∈ F (l),
it follows that t is (l′ − li)-full. Hence not all vertices in level Ll′ are reachable from
v′, as otherwise level Ll′ will be (l′ − li)-full, in contradiction to Claim 3.5. As this is
true for every l < l′ ≤ li+1, it follows that B[v′ : v] is of width w′ ≤ w − 1. If v′ is in
level Lli , then the same argument for t will work except that t will be (l′ − li−1)-full.
Again, this implies that level Ll′ , li < l′ ≤ li+1, cannot have all of its nodes reachable
from v′. Otherwise, it would be (l′ − li−1)-full, in contradiction to Claim 3.5.

Claim 3.6 asserts that B[vi : vi+1] is indeed of width of at most (w − 1) unless
vi /∈ F (li) and vi+1 ∈ F (li+1). We still need to deal with the case for which vi /∈ F (li)
and vi+1 ∈ F (li+1), where the subprogram B[vi : vi+1] might be of width w. The key
observation here is that any path from vi to vi+1 must start at Lli − F (li) (as vi is
such) and end in F (li+1). Hence this path must intersect F (l) for some intermediate
level Ll, li < l ≤ li+1. In addition, by Fact 1, once it intersects F (l), it intersects
F (l′) for every l′ > l (see Figure 2). This suggests the following.

Let k = 10
δ ; we choose k + 1 numbers, p0, . . . , pk, that are m

k apart in the range
{li, . . . , li+1}: pj = li + j · mk , j = 0, . . . , k.

Claim 3.7. For every u ∈ Lli − F (li) and v ∈ F (li+1), the following hold:
• If y ∈ {0, 1}n is such that dist(y,B[u : v]) = 0, then, for some j ∈ {1, . . . , k},
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l i

vi

l i+1

vi+1

level  level

Fig. 2. Vertices in shadowed area are in F (). If a path from vi to vi+1 intersects F (l) at some
intermediate level Ll, then it intersects F () for every following level.

there are some u′ ∈ Lpj−1 − F (pj−1), v′ ∈ F (pj) so that dist(y,B[u : u′]) =
dist(y,B[v′ : v]) = 0.

• If y ∈ {0, 1}n is such that dist(y,B[u : v]) ≥ (1−α)εm for some α < 1, then,
for every j ∈ {1, . . . , k} and for every u′ ∈ Lpj−1 − F (pj−1) and v′ ∈ F (pj)
such that u can reach u′, u′ can reach v′, and v′ can reach v,

dist(y,B[u : u′]) + dist(y,B[v′ : v]) ≥ (1− α)εm− m

k
≥ (0.9− α)εm.

Proof. If dist(y,B[u : v]) = 0, then, by the discussion above, there is some level
li < l ≤ li+1 so that the path, Path(y), that y defines from u to v intersects F (l′)
for each l ≤ l′ ≤ li+1 and does not intersect F (l′′) for each li ≤ l′′ < l. Let j be the
smallest such that pj ≥ l. Let u′ be the vertex that Path(y) intersects in Lpj−1 , and
let v′ be the vertex that Path(y) intersects in Lpj . Clearly, for these j, u′, v′, the first
part of the claim holds.

For the second part, assume that, for y ∈ {0, 1}n, there are j ∈ {1, . . . , k},
u′ ∈ Lpj−1 − F (pj−1), and v′ ∈ F (pj) such that u can reach u′, u′ can reach v′,
and v′ can reach v, and such that dist(y,B[u : v]) < (0.9 − α)εm. Then, certainly,
dist(y,B[u : v]) < (1 − α)εm: First, by changing at most (0.9 − α)εm bits of y
in the range {li + 1, . . . , pj−1} and {pj + 1, . . . , li+1}, we can get a y′ such that its
corresponding parts (to the places above) traverse B from u to u′ and from v′ to v.
Then, by changing possibly additional m/k ≤ 0.1εm bits, namely, all bits in the range
{pj−1 + 1, . . . , pj}, we get a y′′ that traverses B from u to v through u′ and v′.

We now can present the algorithm that (1 − α)ε-tests B[u : v] for each (u, v) ∈
Lli × Li+1, given that we have a general 1-sided error test for (w − 1)-width BPs.
Note that the length of B[u : v] for any such u and v is m.

Algorithm A1((1 − α)ε, w, B[u : v]).
The first parameter is relative distance, the 2nd is width, and (u, v) ∈ Lli

× Lli+1
.

1. If u ∈ F (li) or v /∈ F (li+1), then, by Claim 3.6, B[u : v] is already of width w′ ≤ w− 1.
This test is done by calling the general (1−α)ε-testing procedure for (w−1)-width BPs.

2. Otherwise, if u /∈ F (li) and v ∈ F (li+1), let k = 10
δ and ρ = 1+

log(kw2)
log 3 . We choose in

the range {li, . . . , li+1} k + 1 numbers, p0, . . . , pk, that are m
k apart: pj = li + j · m

k ,
j = 0, . . . , k.

For every triplet (j, u′v′) such that j ∈ {1, . . . , k}, u′ ∈ Lpj−1
− F (pj−1), v

′ ∈ F (pj),
and such that u can reach u′, u′ can reach v′ and v′ can reach v, a (0.9 − α)ε-test is
performed ρ independent times on B[u : u′] and B[v′ : v]. This is done by calling the
general procedure for testing (w − 1)-width BPs.
If there is a triplet (j, u′v′) for which all ρ tests pass, then the outcome of A1 is “Yes.”
Otherwise, if, for every triplet (j, u′, v′), one or more of the ρ tests on either B[u : u′] or
B[v′ : v] answer “No,” then the outcome of A1 is “No.”
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Claim 3.8. Let B be a w-width BP that is not δ-decomposable, and let m, k be

as above. Let x ∈ {0, 1}n be any input; then Algorithm A1 makes O(w
2

δ · log w
2

δ ) calls
for a general (1− α)ε-test of (w − 1)-width programs on x and

• if dist(x,B[u : v]) = 0, then A1 answers “Yes” on x with probability 1;
• if dist(x,B[u : v]) ≥ (1 − α)εm, then the outcome of A1 on x is “No” with

probability at least 2/3.
Proof. For each triplet (j, u′, v′) that is relevant to the second case of Algorithm

A1, Claim 3.6 asserts that B[u : u′] and B[v′ : v] are of width at most (w− 1). Hence

all calls of A1 are to tests of (w−1)-width BPs. There are at most O(k ·w2) = O(w
2

δ )
such triplets; hence the claim on the number of calls to (w−1)-width tests is obvious.

We assume that the general (w− 1)-test is a 1-sided error. Let x ∈ {0, 1}n be an
input with dist(x,B[u : v]) = 0. A “No” result will be obtained if B[u : v] is of width
at most w − 1 and the general (w − 1)-width test answers “No” (1st case of A1) or
if, for every triplet (j, u′, v′) as above, one of the tests, to either B[u : u′] or B[v′ : v],
answers “No.” Both cases occur with probability 0 by Claim 3.7.

Now let x ∈ {0, 1}n be an input for which dist(x,B[u : v]) ≥ (1−α)εm. If B[u : v]
is of width (w− 1), then A1 answers “Yes” only if the general (w− 1)-width test errs.
This occurs with probability at most 1/3. If B[u : v] is of width w, then, by Claim 3.7,
for every triplet (j, u′, v′) as above, dist(y,B[u : u′])+dist(y,B[v′ : v]) ≥ (0.9−α)εm.
However, for each such triplet, either dist(y,B[u : u′]) ≥ (0.9 − α)ε · j−1k · m or

dist(y,B[v′ : v]) ≥ (0.9−α)ε·(1− k−jk )m. In any of these cases, a general (0.9−α)ε-test
to the corresponding (w− 1)-width BP would erroneously say “Yes” with probability
at most 1/3. Since there are ρ such independent tests, all of these tests would err with
probability at most (13 )ρ ≤ 1

3kw2 . This would cause A1 to erroneously say “Yes” due
to this triplet. As there are at most kw2 possible triplets, A1 errs with probability at
most 1/3.

We now formally end the proof of Lemma 3.4 by presenting the following propo-
sition and the testing algorithm it implies.

Proposition 2. Let B be a non δ-decomposable BP of width w and length n. Let
m, {l0, . . . , lp}, and S be as defined above (right after the statement of Lemma 3.4).
Let y ∈ {0, 1}n; then, for any start and accept nodes (s, t) ∈ L0 × Ln, the following
hold.

1. If dist(y,B[s : t]) = 0, then there exists a tuple (v0, . . . , vp) ∈ S such that s
can reach v0, vp can reach t, and dist(y,B[vi : vi+1]) = 0 for i = 0, . . . , p− 1.

2. Let dist(y,B[s : t]) ≥ εn; then, for each (v0, . . . , vp) ∈ S such that s can reach

v0 and vp can reach t, Σi=p−1i=0 dist(x,B[vi : vi+1]) ≥ εn− l0− (n− lp) ≥ 0.9εn.
Proof. If dist(y,B[s : t]) = 0, then the path that y takes in B defines the

tuple (v0, . . . , vp) ∈ S which contains the nodes in which this path intersects Lli , i =
0, . . . , p, along the way from s to t. This tuple asserts the first item of the proposition.

If dist(y,B[s : t]) ≥ εn, then, for any (v0, . . . , vp) ∈ S such that s can reach
v0 and vp can reach t, dist(y,B[v0 : vp]) ≥ εn − l0 − (n − lp) ≥ 0.9εn. However,

dist(y,B[v0 : vp]) = Σi=p−1i=0 dist(x,B[vi : vi+1]).

Proposition 2 defines a way to combine answers to tests on BPs of the form
B[vi : vi+1] into an ε-test of B. Intuitively, on an input x ∈ {0, 1}n, we just need
to check for all tuples (v0, . . . , vp) ∈ S, and check whether there exists one for which
dist(x,B[vi : vi+1]) = 0 for i = 0, . . . , p− 1.

Formally, let x ∈ {0, 1}n be the input. The following is an ε-test of B for any



TESTING MEMBERSHIP IN BRANCHING PROGRAMS 1565

start and accept nodes:

Algorithm A2(ε, w). (B is a non δ-decomposable BP of width w.)

Let m and S be as above, and let ν = 1 +
log(pw2)

log 3 = O(log w
δ ).

1. For each (u, v) ∈ Lli
× Lli+1

, i = 0, . . . , p− 1, call A1(0.9 · ε, w,B[u : v]) (namely, with

α = 0.1) independently, for ν times. If for (u, v), all of these tests answer “Yes,” then
define T (u, v) = 1. Otherwise, if there is a test out of the ν tests that answers “No” for
(u, v), then set T (u, v) = 0.

2. Define the following directed graph G = (V,E): V = L0 ∪ Ln ∪ (∪p
i=0
Lli

), and

E = {(s, u) ∈ L0 × Ll0
|s can reach u in B}

∪{(v, t) ∈ Llp × Ln|v can reach t in B}

∪{(u, v) ∈ Lli
× Lli+1

, i = 0, . . . , p− 1| such that T (u, v) = 1}.

3. Answer “Yes” for (s, t) ∈ L0 × Ln if and only if s can reach t in G.

Claim 3.9. For any (s, t) ∈ L0 × Ln and for every input x, the following hold.
1. If dist(x,B[s : t]) = 0, then Algorithm A2 answers “Yes” on (s, t) with

probability 1.
2. If dist(x,B[s : t]) > εn, then Algorithm A2 answers “No” on (s, t) with

probability at least 2/3.
Proof. Assume that dist(x,B[s : t]) = 0 for an input x ∈ {0, 1}n and (s, t) ∈

L0×Ln. Then, by Proposition 2, there exists a tuple (v0, . . . , vp) ∈ S such that s can
reach v0, vp can reach t, and dist(y,B[vi : vi+1]) = 0 for i = 0, . . . , p − 1. By Claim
3.8, Algorithm A1 answers “Yes” on each of the calls A1(0.9 · ε, w,B[vi : vi+1]) with
probability 1. Hence the path (s, v0, . . . , vp, t) is a valid path in G with probability 1,
causing A2 to answer “Yes” with the same probability.

For the second part, assume that dist(x,B[s : t]) > εn. Then, by Proposi-
tion 2, for each (v0, . . . , vp) ∈ S such that s can reach v0 and vp can reach t,

Σi=p−1i=0 dist(x,B[vi : vi+1]) ≥ 0.9εn. However, then, for each such (v0, . . . , vp) ∈ S, for
some i ≤ p− 1, dist(x,B[vi : vi+1]) ≥ 0.9εnp > 0.9εm. Let E′ be the set that contains

for each (v0, . . . , vp) ∈ S a corresponding (vi, vi+1) for which dist(x,B[vi : vi+1]) ≥
0.9εm. Note that E′ contains an (s, t)-cut in G. Namely, s cannot reach t in G−E′.

For each member (vi, vi+1) ∈ E′, Claim 3.8 asserts that Algorithm A1 answers
“No” on the call A1(0.9 · ε, w,B[vi : vi+1]) with probability 2/3. Hence it answers
erroneously “Yes” on all ν calls for a pair (u, v) ∈ E′ with probability at most (13 )ν ≤

1
3pw2 . Namely, T (u, v) is set erroneously to “1” in step 1 of the algorithm with

probability at most 1
3pw2 . However, there are at most pw2 possible pairs in E′. This

implies that with probability at most 1/3 there exists a pair (u, v) ∈ E′ for which
T (u, v) = 1. In particular, it follows that s cannot reach t in G with probability at
least 2/3.

Claim 3.10. For any (s, t) ∈ L0×Ln and for every input x, Algorithm A2 makes

O(w
2

δ2 log wδ ) calls to A1 with distance parameter 0.9ε.

Proof. There are O(pw2) = O(w
2

δ2 ) possible pairs (u, v) ∈ Lli×Lli+1 , i = 0, . . . , p−
1. For each pair (u, v), there are ν = O(log wδ ) calls for A1.

Corollary 3.11. Algorithm A2 provides a 1-sided error ε-test for B[s : t] for

every start and accept nodes (s, t) ∈ L0(B)×Ln(B), making at most O(w
4

δ3 (log w
2

δ )2) ·
q̃(0.8ε, w − 1) queries.

Proof. Claim 3.9 asserts the correction of A2 as a 1-sided error ε-test for B[s : t]
for each (s, t) ∈ L0(B)× Ln(B). Observe that the calls for A1 do not depend on the
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choice of s and t. Hence, with the same number of queries as described above for a
given choice of s, t, A2 provides an ε-test for every choice of s and t; for each s and t,
the outcome has at least probability 2/3 of being correct.

According to Claim 3.8, each call for A1 results in possibly O(w
2

δ ·log w
2

δ ) calls to a

general 0.8ε-test of (w− 1)-width BPs. Claim 3.10 asserts that there are O(w
2

δ2 log wδ )
calls to A1; hence the claim follows.

This ends the proof of Lemma 3.4.

3.3. The general case. In order to test general w-width BPs, it remains to be
shown how to reduce testing of decomposable BPs to that of nondecomposable ones.
We need the following proposition.

Proposition 3. For a BP, B, and t > r, let t1, t2 be r-full vertices in Lt, and
let u ∈ Ll with l ≤ t− r. Then, for every y ∈ {0, 1}n,

|dist(y,B[u : t2])− dist(y,B[u : t1])| ≤ r.

Proof. The closest y′ to y that traverses B from u to t1 must intersect Ar(t2).
Hence, by changing only the r last bits of y′, we get a y′′ that traverses B from u to
t2.

Definition 3.12. Let y ∈ {0, 1}n and 0 ≤ a < b ≤ n; we define

dist(y,Ba:b) = min{dist(y,B[u : v])| u ∈ La, v ∈ Lb}.

Claim 3.13. Let B[s : t] be a BP of length ν with start vertex s (the only vertex
at level L0) and accept vertex t (the only vertex at level Lν). Assume that there
are a sequence of numbers l0 = 1, . . . , lh = ν and a sequence of numbers r1, . . . , rh,
such that level Lli is ri-full for each i = 1, . . . , h. Then, for every y ∈ {0, 1}ν ,
Σidist(y,Bli:li+1) ≥ dist(y,B[s : t])− Σiri.

Proof. Let y be such that Σh1dist(y,Bli−1:li) = d. We will show that dist(y,B[s :
t]) ≤ d + Σiri, which implies the claim.

Indeed, let wi = y[li−1 + 1, : li], i = 1, . . . , h, be the substring of y that corre-
sponds to the variables of Bli−1:li . Let y′i, i = 1, . . . , h, be such that dist(wi, y

′
i) =

di, dist(y′i, Bli−1:li) = 0, and so that Σh1di = d. Then for each y′i, i = 1, . . . , h, let
(ui, vi) ∈ Lli−1 × Lli be such that dist(y′i, Bli−1:li) = dist(y′i, B[ui : vi]) = 0. Namely,
ui, vi are the start and end nodes through which y′i travels through Bli−1:li . Then,
by Proposition 3, for every i = 1, . . . , h, there is a string zi such that dist(y′i, zi) ≤ ri
and dist(zi, B[ui : ui+1]) = 0. However, then, the string z = z1 · . . . · zh, which is
the concatenation of zi, i = 1, . . . , h, “travels” in B through all the ui, i = 0, . . . , h.
In particular, dist(z,B[s : t]) = 0 (as s and t are the only nodes in levels L0, Lν ,
respectively).

On the other hand, dist(y,B[s : t]) ≤ dist(y, z) ≤ Σidist(wi, zi) ≤ Σi(dist(wi, y
′
i)+

dist(y′i, z
′)) ≤ Σi(di + ri) = d + Σiri.

We are ready now to prove Theorem 1.
Proof. Let B be a BP of width w and length n with start and accept nodes s ∈ L0

and t ∈ Ln, respectively. Let a0 = 0, and let a1 = l1 be the smallest integer such
that level La1 is r1-full for r1 ≤ εl1

20 . Let l2 be the smallest integer for which level

La2 , a2 = a1 + l2 is r2-full for r2 ≤ εl2
20 , etc. This defines a sequence of numbers

L = (a0, a1, . . .) of which the last may or may not be n. If the last number in L is
not n, then we add n as the last member resulting in a sequence L′; otherwise, we
set L′ = L. Assume that L′ = (a0 = 0, a1, . . . , ah = n). This defines a sequence
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of h BPs (with start and accept nodes that are not necessarily defined), B1, . . . , Bh,
Bi = Bai−1:ai of length li = ai − ai−1.

Note that, by our choice, for every i = 1, . . . , h, either li = O(1) or Bi is not
ε1-decomposable for ε1 = 0.5ε. Moreover, for every i = 1, . . . , h − 1, the last level of
Bi is ri-full, and for Bh (with Ln as last level) Ln is either ri-full if n ∈ L or is 1-full
if n was added to result in L′ (as t is always 1-full in B[s : t]).

An ε-test of B is done as follows: For 4/ε times, independently an i ∈ {1, . . . , h}
is chosen at random with probability proportional to the length li. Let I be the
multiset that contains the 4/ε chosen i’s, possibly with multiplicity. Let Ti be a
Boolean flag associated with each i ∈ I. For each i ∈ I, an ε1-test is performed on
Bai−1:ai for every choice of start and accept nodes (u, v) ∈ Lai−1 × Lai . If for some
pair (u, v) ∈ Lai−1

× Lai , the answer to (u, v) in this test is “Yes” then we mark Ti
as “1.” Otherwise, if, for all such pairs (u, v), the answer is “No,” we mark it as “0.”

Finally, if there exists a chosen i ∈ I for which Ti = 0, then the answer to the
ε-test for B is “No.” Otherwise, if for all chosen i’s Ti = 1, then the answer to the
ε-test on B is “Yes.”

Let us first analyze the query complexity of the above test: As was remarked
before, each Bi is either of O(1) length or non ε1-decomposable. Hence, for each
chosen i, an ε1-test for each start and accept node (u, v) ∈ Lai−1 × Lai can either be
done in O(1) queries (in the former case) or it can be done by calling Algorithm A2

for nondecomposable BPs. Note that, in the latter case, Corollary 3.11 asserts that
one call to A2 provides a test for each start and accept node.

Since there are at most 4/ε calls for A2 (with δ = ε1), the total complexity is

q̃(ε, w) ≤ 4

ε
·O
(
w4

ε31

(
log

w2

ε1

)2
)
·q̃(0.8ε1, w−1) = O

(
w4

ε4

(
log

w2

ε

)2
)
·q̃(0.4ε, w−1),

which implies that q̃(ε, w) = ( 2
w

ε )O(w).
Let us check the error probability of this algorithm. If, for an input x ∈ {0, 1}n,

dist(x,B[s : t]) = 0, then, for every i ∈ I that is chosen in the algorithm above,
dist(x,B[u : v]) = 0 for some (u, v) ∈ Lai−1 × Lai . Hence the answer will be “Yes”
with probability 1.

For an input x such that dist(x,B[s : t]) ≥ εn, by Claim 3.13, Σidist(x,Bai:ai+1
) ≥

εn− Σiri. However, as ri ≤ ε·li
20 , i = 1, . . . , h− 1, and rh ≤ max{1, ε·lh20 }, we conclude

that Σri ≤ εn
20 + 1, and hence Σdist(x,Bai:ai+1) ≥ 94

100εn for large enough n. Thus, by
sampling one i ∈ {1, . . . , h} as above, we get that dist(x,Bai:ai+1) ≥ 1

2εli = ε1li with
probability at least 0.44ε. To see this, let D = {i| dist(x,Bai−1:ai) ≥ 1

2εli}, and let
di = dist(x,Bai−1:ai); then

94

100
εn ≤ Σi∈Ddi + Σi/∈Ddi ≤ Σi∈Dli +

1

2
εΣi/∈Dli ≤ Prob(i ∈ D) · n +

1

2
εn,

which implies that Prob(i ∈ D) ≥ 0.44ε.
Assuming that i ∈ D, for every u ∈ Lai−1 , v ∈ Lai , dist(x,B[u : v]) ≥ ε1li. Thus

the success probability for a chosen i is at least 0.44ε · 23 . Namely, i ∈ D, and the
ε1-test on Bi answers “No” as it should for at least one pair of start and accept nodes
of Bi. Making 4/ε independent, such tests will again reduce the error probability to
below 1

3 .

3.4. Time complexity. We end this section with a note on the total running
time of the algorithm. Every fixed BP, B, defines a property PB ⊆ {0, 1}n. We have
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presented in the section above an “algorithm scheme.” Namely, it produces an ε-test
for any given ε and w-width oblivious read-once BP, B. For the algorithm scheme,
the input is ε and B, while, for the property tester, the input is x ∈ {0, 1}n. These
two notions should not be confused. Thus, in analyzing the running time of the ε-test
of PB for a given BP, B, we may assume that we have at hand the decomposition of B
into nondecomposable parts for all possible recursion levels. We also assume that we
have F (l) for every level l and for every possible subprogram that is considered in any
of the recursion levels. We do not discuss how this data is represented or computed,
which is out of the scope of this paper. We note, however, that, by computing all-
pairs-connectivity, the data above can easily be obtained. Hence the above can be
done in polynomial time (in the length of B and 1/ε).

For an input x ∈ {0, 1}n, the operations in a given recursion level involve sampling
a decomposable subprogram, calling A1 and A2, and processing the return answers
of Algorithms A1 and A2. Sampling one decomposable program takes O(log n) steps
since there might be O(n) nondecomposable Bi’s in the top level. Once all calls to
A1 are done, computing the outcome of Algorithm A2, for a w-width BP in the top
recursion level, is done by forming the graph G and then checking whether s can
reach t in G. Given the answers of the calls to A1, preparing the graph G takes

O(pw2) = O(w
2

ε2 ) steps. Then, solving the connectivity problem on G takes O(w
2

ε2 )
steps. Putting this together yields the following recursion for the time t(ε, w, n), where
ε is the distance parameter, w is the width, and n is the length of the BP:

t(ε, w, n) =
4

ε
·
[
O(log n) + O

(
w2

ε2

)
+ O

(
w2

ε2
log

w

ε

)

·O
(
w2

ε
· log

w2

ε

)
· t(0.4ε, w − 1, n)

]
.

The 4
ε term comes from the number of i’s chosen in the top level general test.

The log n comes from sampling one i. The O(w
2

ε2 ) term comes from deciding the
connectivity in A2, and the rest come from A1 multiplied by the number of calls to it
from A2.

Solving the above yields t(ε, w, n) = ( 2
w

ε )O(w) · log n.

4. Examples of interesting functions and open problems. We present
here some examples of functions that have narrow width, read-once BPs and are
“efficiently” testable. (Sometimes a direct efficient testing algorithm is obvious.) The
first nontrivial such family is of all regular languages with a direct testing algorithm
by [2]. We remark here that, for this case, our algorithm is conceptually different
than that of [2]. The dependence of the query complexity on w in this case is similar
to what would result from [2]. The dependence on ε is worse.

Other very simple families are k-term-DNF and k-clauses-CNF, each having 2k-
width oblivious read-once BP. A function g : {0, 1}n −→ {0, 1} is k-term-DNF if
it has a DNF representation (a disjunction of terms where each is a conjunction of
literals) with at most k terms. Analogously, a k-clause CNF is defined. Two remarks
are due here: For both k-term-DNF and k-clause-CNF, ε-tests are known (folklore):
k-term DNF is (ε, O(k log kε ))-testable by testing for each term separately. k-term CNF

can be tested by 0 queries for any ε > k
n as such function is either constant or every

input has distance at most k to a satisfiable one.
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It is also interesting to note that 1-term-DNF includes examples of functions
that are, say, in uniform SPACE(log log n) but not regular and hence do not belong
to SPACE(o(log log n)). One such interesting example is the following example of
Papadimitriou [14]: Let b be a binary string without leading 0’s. We denote by n(b) the
natural number whose binary representation is b. Let L = {b1$b2$ . . . $bk| n(bi) = i}.
Clearly L ∈ SPACE(log log n). It is also not hard to see that L is not regular.
However, as L contains at most one word of each length, it obviously has a BP of
width w = 1. Note that, although we have here an alphabet of size 3, we may actually
encode everything in binary by encoding each symbol with two bits.

In view of Theorem 1, one may ask what is the true dependence of ε-testing w-
width read-once BPs on w and ε. This remains open at this point. Another more
puzzling question is whether SPACE(log log n) can be “efficiently” testable. (By this
we mean with complexity, say, less than nδ for any δ > 0.) Currently we do not have
any candidate for a counterexample to this.

Another issue is how far the current result may be generalized. One restriction
that may be considered is being “read-once”—can this be replaced by, say, polynomial
total size? To this, the answer is false: Barrington [4] has proved that every NC1

function has a polynomial length oblivious leveled BP of width 5. However, in [2],
examples of such functions that require θ(

√
n) queries are presented. Hence, instead,

one may ask whether constant width linear size BPs are testable. A negative answer
is given in [9]: They show that there is a Boolean function g : {0, 1}n −→ {0, 1} that
is computed by a read-twice constant width oblivious BP and that is not ε-testable
for some fixed ε > 0 (a read-k-times BP is a BP where each variable appears in at
most k levels).
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Abstract. We investigate the problem of self-stabilizing round-robin token management on
a bidirectional ring of identical processors. Each processor is an asynchronous probabilistic finite
state (i.e., constant space) machine which sends and receives constant-size messages and whose state
transition is triggered by the receipt of a message. We also show that this problem is equivalent to
symmetry breaking (i.e., leader election).

We justify and suggest a two-layer (hardware and software) solution to the token management
problem: The subproblem of reducing an arbitrary but nonzero number of tokens (in an otherwise
arbitrary initial system state) to exactly one token (and a legal system state) is solved in hardware
and takes only small polynomial time. The detection of a complete lack of tokens (communication
deadlock) is done by a software clock. In high-speed networks the hardware layer can be implemented
using fast universal switches (i.e., finite state machines) independent of the size of the network. We
note that randomization is essential, since Dijkstra showed that for arbitrary rings the subprob-
lem does not have a deterministic solution (regardless of the computational power of the identical
processors). The use of the software layer (deadlock detection) in our solution is minimized.
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1. Introduction. We consider a network whose topology is an arbitrary-size
ring of uniform (identical) processors whose size is independent of the ring size. We
use asynchronous message-passing. Each processor can change its state and send
messages only upon receiving a message from one of its two adjacent neighbors. This
is usually called a message-driven model (discussed further in section 2.2).

Our first goal is the design of a fault-tolerant token management protocol. A
token management (TMA) scheme guarantees that the ring network always contains
a predefined number of tokens which circulate in a round-robin fashion (e.g., a token
in a token ring, slots in a slotted ring). In addition, any node waiting to see a
token should be only minimally delayed. An important concern is to make the TMA
scheme fault-tolerant. We aim at making the system able to recover from an arbitrary
transient fault which puts the system in any (even maliciously chosen) state. In fact,
Dijkstra considered such a fault-tolerant token management scheme in the shared
memory model in his seminal paper, which introduced the notion of self-stabilization
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[Dij74]. Informally, the goal of self-stabilization is for the system to reach “normal”
operation, starting from an arbitrary initial state (see section 2.1 for more details).
Of course, while making the scheme fault-tolerant, we should not sacrifice efficiency
in both the speed and space requirements. That is, most of the solution should be
realized in hardware and should rely as little as possible on a software clock or any
other software mechanisms. (See Figure 1 and sections 1.1 and 2.2 for more details.)

Dijkstra’s original solution assumed the presence of a leader. However, choosing
a leader among identical processors is one of the most basic problems in distributed
computing; a leader can coordinate any distributed task. How difficult is it to elect
a leader in a self-stabilizing fashion in our model? Our second contribution is a pair
of reductions (see section 2.4 for a definition) from leader election to self-stabilizing
bidirectional round-robin TMA and vice versa. We show that token management and
leader election are equally hard.

1.1. Design of hardware-based protocols. One motivation for considering
the above model comes from existing architectures of high-speed communication net-
works. The bottleneck in these architectures is typically the speed of the processors
with which they can process incoming messages. Hence, it is important that essen-
tial protocols, such as media access control, can be implemented in simple hardware.
This enables a (constant-size) control message to go through many high-speed hard-
ware switches (finite-state machines) and through many communication links during
a single software clock-tick.

In many systems (e.g., token rings [BCK+83], MetaNet [OY90]; see section 8),
fair access to the network is achieved by passing a single token (i.e., a constant-size
control signal) in a round-robin fashion on a physical or logical ring. When a network
node needs permission for a certain action, it waits for a token, holds it for a single
unit of time, and then passes it on to other processors to ensure fairness.

The above approach is efficient only when being designed in hardware. Further-
more, the switching hardware should decide even before the token arrives if there is
a need to hold it. This depends only on the local state and the requirements of the
network node. For example, let us consider the case when only a single processor on
a ring competes for a resource. The fact that the processor must give up a token to
ensure fairness (i.e., to check if there is some other processor waiting) does not incur
a slowdown proportional to the size of the ring. When the processor gives up a token
it does not wait for the number of software clock-ticks proportional to the size of the
ring: the constant-bit control message makes a full round without substantial delay
by going through high-speed switches at each node and does not wait for software
clock-ticks at any of them. Moreover, the constant-bit control signal essentially does
not decrease the bandwidth of the communication links, making the above scheme
useful in practice. The interplay between hardware and software is thus as follows:
in normal operation the high-speed switch can work while the software monitors it.
This implies the two-layer solution depicted in Figure 1. An efficient solution lets the
software intervene only in rare “catastrophic” events (e.g., by employing long time
intervals for time-outs).

1.2. Related work. Dijkstra [Dij73] showed that round-robin TMA, even when
starting with two or more tokens, is impossible on a ring of unknown size of uniform
and deterministic processors. He gave a solution in the presence of a leader. However,
the problem of “whether a system of probabilistic automata can have a round-robin
TMA scheme” remained open.

Israeli and Jalfon showed that if each token executes a symmetric random walk,
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Fig. 1. Node model.

such that when two tokens meet one gets eliminated, then eventually only one token
will remain [IJ90a]. Notice, however, that their solution gives up the round-robin
property. This relaxation implies that its use is mainly for mutual exclusion (to solve
contention). It cannot be used for regulation and fair coordination of the network
communication medium, which is the usual task of token systems. Indeed, Lamport
and Lynch [LL90] mention that “there is one important property that is harder to
achieve in coordination problems than in contention—namely self-stabilization.” It
seems possible to extend the random walk solution to achieve a basic round-robin
property: all tokens are sent only in one direction and at each step, each token flips
a coin and either stays for a single clock-tick or advances; when two tokens meet, one
gets eliminated. However, this solution increases the round-trip delay of a token and
thus drastically decreases the throughput of the network, given that the token is used
for access control.

Other solutions to self-stabilizing TMA either assume that there is a distinguished
node (leader) or make further assumptions about the network size (such as the number
of nodes being prime or odd). Leader election is a difficult problem (see section 6)
and hence the assumption of having a distinguished node available at all times is very
strong. In practice, the size of a token ring being constrained to be prime or odd
is rather awkward. Brown, Gouda, and Wu [BGW89] and Afek and Brown [AB89]
proposed solutions using a leader. Note that the first solution actually works for more
general topologies than rings, while the latter is the only previous solution designed
for the message-passing model. Burns and Pachl [BP88] and Herman [Her90] present
solutions for special size rings. It is worthwhile mentioning that the first presents a
deterministic and uniform solution and the latter is probabilistic and uniform.

There are many papers concerning self-stabilizing leader election (mostly on gen-
eral topology networks), e.g., [AKY90, APV91, DIM91, KP90, IL94, AO94, ILS95].
All of them either are not message-driven and use the paradigm of local checking
(introduced in [AKY90] and [APV91]), perform repeated snapshots [KP90], or use
additional restrictions on the size of the ring [ILS95]. In section 2.2 we explain why
these paradigms are not suitable for our purpose. Furthermore, most of the previ-
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ous work uses logarithmic size memory (to use identification-based techniques). Fol-
lowing the preliminary version of this paper with its two-layer (hardware-software)
and small memory approach, subsequent work paid attention to small space restric-
tions [IL94, AO94, PY94, ILS95]. In this context the work of [MOY96] further restricts
this model to unidirectional networks in order to cover such architectures as FDDI
(see section 8).

Organization of the rest of the paper. In section 2 we present our model and
definitions and an overview of our results. In section 3 we present a straightforward
modification of a known simple algorithm for the attrition problem on rings to make it
“solve” TMA. We show that its fault-tolerance does not satisfy self-stabilization. In
section 4 we present our TMA algorithm, and in section 5 we demonstrate correctness
and give the time analysis. In sections 6 and 7 we present the reductions between the
TMA problem and the leader election problem. In section 8 we present applications.

2. Model and results.

2.1. Self-stabilization. A system S consists of processors and their intercon-
nection-links. The global state of S is the cross-product of the local states of its
components. Let P denote a desired predicate over the global state, e.g., there exists
a single token in the system.

An algorithm A in system S is self-stabilizing with respect to a predicate P if it
satisfies the following two properties (following Schneider’s survey [Schn93]):

• Closure: P is closed under the execution of A on S. That is, once P is
established in S, A does not falsify it.

• Convergence: Starting from an arbitrary global state, A guarantees to reach
a global state in S which st satisfies P .

The above definition covers at least the following: arbitrary inconsistencies when
initializing the system S, transmission errors, process failure and its recovery, and
memory loss and contamination. Note that this allows us from now on to concentrate
on correct executions starting in an arbitrary initial state, rather than trying to cover
the above problems case by case.

Arora and Gouda [AG92] introduced the notion of stabilization with respect to
predicates P and Q as an algorithm which satisfies closure and convergence with
respect to P , given that the initial state satisfies Q.

Some of our solutions are randomized. Correctness in this case generalizes the
above definition of convergence to occur with probability 1.

2.2. Model of a high-speed ring network. In the following we describe our
system S. We restrict ourselves to networks whose topology is a ring. We let n
denote the number of nodes in the ring. Each processor (node) in the ring is a
probabilistic, finite state machine (PFSM). The PFSM communicates with its two
neighbors via asynchronous message-passing. That is, every message sent on a link
is eventually received by the respective neighbor. The PFSM has a constant-size
buffer for each of its two neighbors. Hence, the PFSM can receive only constant-size
(control) messages. The PFSM performs a state transition and sends its own control
messages only upon the receipt of such a message. Thus, the processing at a node
is done in a message-driven, asynchronous fashion. This is in contrast to other self-
stabilizing models, such as local checking, where each node is continuously requesting
information from its immediate neighbors. Message-driven computing is better suited
for our hardware-based model: There is no need for a notion of time and hence
for a clock, which adds to the complexity of the required hardware. It also seems
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problematic to find the right trade-off for the time-out value: A small value adds an
unacceptable message overhead on each link of the network; a large value delays the
stabilization-time. We can assume that the ring is oriented by using a self-stabilizing
automata-based orientation protocol as suggested in [IJ90b]. A link between two
nodes is modeled as two independent FIFO-channels. We allow neighboring nodes to
detect message collision as a primitive event. That is, two control messages traveling
in opposite directions are said to collide if they physically cross each other on the
link.1

2.3. Self-stabilizing TMA and maintenance. Let predicate P be defined as
follows: The set of global states in which there is exactly one token (in a buffer or on
a link) in each direction and the state of each PFSM correctly reflects the last token
passed through that node. We call a self-stabilizing algorithm for predicate P and
system S a TMA scheme.

Let Q be the predicate over the global states in which there is at least one token.
Node and token states are still arbitrary. We define token maintenance (TM) as the
stabilization with respect to P and Q. As mentioned in section 1.2, it is exactly for
the problem of TM that Dijkstra has shown that there is no general deterministic
solution, namely either lack of stabilization or a deadlock must occur.

We define a TM algorithm to be fair if every node always sends a received to-
ken to the opposite neighbor within one time unit. This property is important for
implementing fair media access control.

We say a TM is nondeadlocking if it never reaches a state with no tokens. In
our context this is a requirement that prevents systems from relying on the slower
(software) layer when not necessary.

2.4. Reduction. Let A be a self-stabilizing algorithm with respect to a predicate
P . Let σ be the space requirement of A on each node and let τ be A’s stabilization
time.

Definition 2.1. We define Algorithm A′ to be a polynomial time space-preserv-
ing self-stabilizing reduction to A with respect to a predicate P ′ and a system S if
A′ is executed concurrently with A in S, it stabilizes to P ′, its space requirement in
addition to A’s space on each node is O(σ), its messages are of length O(σ), and its
stabilization time is O(τ + p(n)), where p denotes an arbitrary polynomial.

Note that the above definition allows Algorithm A′ to introduce additional ran-
domness.

2.5. Our results. Given the definition of system S and predicates P and Q
in section 2.3, our first contribution is a fair, nondeadlocking stabilizing protocol for
S with respect to P and Q (TM) with stabilization time O(n log n). An attractive
feature of such a TM algorithm is that we can choose an arbitrary number of PFSMs,
plug them together in a ring, and consequently obtain a correct token maintenance
scheme. In a second step, our TM algorithm can be augmented to token management
via the following two-layer approach: A node times out after it does not see a token
for “long enough” and inserts a new token into the system S in an uncoordinated
fashion, i.e., without consulting any other node. This time-out has to be dependent

1Our links are unit-capacity and so a handshake protocol for the control messages to detect
a collision can be implemented. This is similar to [APV91] which showed this to be a necessary
condition to avoid an initial state with infinitely flooded channels. Alternatively, if we assume an
upper bound on the communication-delay for control messages over a single link, we can detect
collision by using a local time-out as is done in practice.
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on the ring size. Hence, the corresponding clock needs to be implemented in software.
This software time-out needs only be triggered when all tokens in the system are
lost within one round-trip delay and hence its use is minimized. Furthermore, if a
nondeadlocking TM is used, each node times out at most once during the stabilization
period and never times out once S has stabilized. This is in contrast to the type of
time-out needed for implementing local checking.

Our second contribution is a pair of polynomial time space-preserving self-stabi-
lizing reductions from TMA to leader election and vice versa. Given the fundamen-
tal significance of leader election in distributed computing, this result demonstrates
that token management is a basic problem. Furthermore, given the result of An-
gluin [Ang80] about the impossibility to elect a leader deterministically among identi-
cal processors, this result provides an alternative proof that randomization is required
for TM in our model.

3. A simple (and failed) approach for TM. Here we demonstrate the dif-
ference between self-stabilizing and non-self-stabilizing solutions. [AAGHK89] and
[AAHK91] present algorithms for the attrition problem on rings. A procedure solves
the attrition problem if, when initiated by every candidate, it eventually takes all but
exactly one of these candidates into a permanent state of noncontention. In order to
appreciate the inherent difficulty of the self-stabilizing TM problem, we modify an
attrition algorithm in order to make it “solve” the TM problem and show that such
an approach is not powerful enough.

Consider the code below. Assume that tokens are generated by some time-out
mechanism, as advocated in section 2.5. When a node times out, it becomes active and
executes the loop below. Inactive nodes simply forward tokens unchanged. The state
space of a node consists of the following two local variables: active ∈ {true, false} and
flip ∈ {heads, tails}. The state space of a token is the variable value ∈ {heads, tails}.
The complete state space of a node or a link includes the tokens which currently are
located at that device.

while active do
flip := random independent uniform coin toss
value(token) := flip
send(token)
receive(next-token)
if flip = heads and value(next-token) = tails, then active := false

end while

Arbitrary initial states in this state space include the following:
1. All nodes are inactive and there is more than one token.
2. There is one token (say, with value = heads) and one active node (say, with

flip = tails).
3. There are more tokens than active nodes.
4. There are more active nodes than tokens.

For initial states 1 and 3 the above protocol remains indefinitely in states in which
there is more than one token; the protocol does not guarantee convergence. For initial
states 2 and 4 it is possible that a state is reached in which there are no tokens, hence
the protocol is deadlocking. In general, it is not hard to see that the number of
active nodes equals the number of tokens is a necessary condition for nondeadlocking
convergence to states in which there is exactly one token circulating. The above
algorithm cannot deal with inconsistent initialization, which is an important aspect
of self-stabilization (see section 2.1).
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4. The TM algorithm A. In this section we present first high level ideas
and then an exact formulation of the fair and nondeadlocking TM algorithm A on
a bidirectional ring. The algorithm stabilizes to a state in which exactly one token
circulates in each direction of the ring. Any client program is free to choose one of
these tokens as its unique token with respect to the network-function associated with
it (e.g., access control). We call tokens circulating in one direction positive tokens
and the token circulating in the opposite direction negative tokens.

4.1. Basic ingredients. The following type of control messages are used:

• Tokens: A token t is a constant-size message which carries a value V (t) ∈
{−3,−2,−1, 1, 2, 3}. Tokens which go clockwise always have a positive value,
and tokens which go counter-clockwise always have a negative value. When a
token passes through a node, it leaves a “footprint” of its value on this node,
overwriting any previous “footprint.”
• Probes: A probe p is also a constant-size message, but it does not leave any
“footprints.” Probes also carry a value V (p) ∈ {−3,−2,−1, 1, 2, 3}.

Nodes store “footprints” of passing tokens. When we say that node i has a certain
“value” V (i), we mean the value of its current “footprint.”

Having introduced the basic elements, we now present an overview of the algo-
rithm: We note that line numbers used in this overview refer to lines in the code-like
description of the algorithm, which can be found in section 4.3. The most basic op-
eration of a node i is to receive a token t, copy the value (or footprint) of t into its
own register (V (i) := V (t)), and forward the token (lines B10 and B11). In order to
make the system self-stabilizing we need to add at least the following two mechanisms:
token generation and token elimination. It should be noted at this point that both
operations use local information only. As we will see later, this implies that these
decisions are not always optimal with respect to the global state. In particular, it is
possible that they cause the number of tokens in the system to increase temporarily.
But overall, the system gets “more organized” with each step and thus convergence
to a legal state is assured. In order to implement elimination, we introduce the notion
of a token collision. Every time a positive and a negative token (t1 and t2) meet
on the ring, they execute a collision operation. A collision between t1 and t2 con-
sists of executing the following operations: if t1 and t2 have identical absolute values
(|V (t1)| = |V (t2)|), then the tokens flip a fair coin to agree on a new, distinct value
(lines A4, A5) while maintaining their sign (see Figure 2). In other words, they agree
on new, up to the sign identical, footprints. In the other case, where their absolute
values are different (e.g., |V (t1)| < |V (t2)|), the token with the smaller absolute value
(e.g., t1) is eliminated (line A2). The intuition behind the collision operation is the
following: if two tokens have distinct values and these values originate from a previ-
ous collision, then there must be more than one pair of tokens in the system. If the
(absolute) values are equal, we still cannot be sure that there is really just one pair,
so we must continue to check, i.e., choose a new random value. Note that the above
is the only condition on which a token is eliminated and thus the nondeadlocking
property of the algorithm follows easily. As mentioned in section 2.2, a collision can
be detected by the corresponding endpoints, which in reality are the entities executing
the above operations.

Now let us focus on the generation operation: when a token t arrives at node i
and sees a footprint identical to its own (V (t) = V (i)), it assumes that the footprint
at node i was left behind by itself. If this assumption is correct, it implies that neither
token t nor node i has seen another token since t left i at its last visit. In that case t
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Fig. 2. Token collision.

can conclude that it is the only token left in the system and generates a new token of
opposite sign (see Figure 3). The idea of token generation based on marking has been
used by [Mis83] for unidirectional rings, though his method is different and actually
uses O(log n) space.

So far we have described the collision (and thus the elimination) and the genera-
tion operation. Unfortunately, this is not enough to ensure convergence. To see why,
consider a state in which all tokens travel in the same direction (we call such a state
skewed). In such a state there are only positive (or only negative) tokens left; if each
pair of neighboring tokens leaves distinct footprints behind, neither a collision nor a
generation will ever take place.

To overcome this difficulty we introduce “exploration” by a second kind of mes-
sage, called a probe. As we will show now, probes are used to explore the current
state and, if appropriate, turn around a token from positive to negative (or vice versa).
Probes are always generated by tokens (“fathers”) in pairs (“siblings”). Siblings travel
in opposite directions to each other. A probe traveling in the same direction as its
father token is called a forward probe; analogously, a probe traveling in the opposite
direction is called a backward probe. Now, every time a token suspects that the system
is in a skewed state, it sends a forward and backward probe to “explore” the global
situation. The condition to send probes is enabled when a token sees footprints (val-
ues) of a token of the same kind (direction) which are larger (in absolute values) than
its own. So, for example, a positive token t will send out probes if, upon arriving
at some node i, the condition V (t) < V (i) holds (line B6). A probe p is basically
carrying the value of its father (V (p) = V (t)) and an enabled/disabled bit (initially
enabled).

After a probe p has been generated (and p is enabled), one of the following two
events will occur: (i) p meets or collides with a token t which has a value of opposite
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sign (V (p)V (t) < 0) or (ii) p collides with a probe p′ which has the same value as p
and p thus assumes that p′ is its sibling. In the first case, p has obtained evidence
(i.e., the token t) that the current state is not skewed and thus p will be disabled
(lines D1–D2, E1–E2). In the second case, p has not obtained any evidence that the
current state is not skewed, so it will rely on the experience of p′, since if p′ is indeed
p’s sibling, these two probes have together covered the whole ring. If both are still
enabled, then the probes conclude that the current state is indeed skewed, and thus
the backward probe, whose next collision is with its father-token, will change the sign
(and direction) of its father (line E9). Otherwise, they conclude (correctly) that the
current state still contains tokens of opposite sign, and thus they eliminate each other
(line F7).

4.2. How to piece the basic operations together. It is easy to reconstruct
how a lone token will generate a token of opposite sign. So we provide now an
intuition on how the operations described above work together to reduce the number
of tokens, if there are more tokens in the system than just one positive and one
negative. Consider the following simple observation: Let r, v ∈ {1, 2, 3}. Let r be a
random value and v be either an arbitrary (“initial”) value or another independently
obtained random value. Thus Pr(r �= v) > 0 and in an infinite sequence of comparisons
of two such values we get a mismatch with probability 1.

Now, if in a collision at least one of the tokens carries a value obtained in a previous
collision (and is thus random), then exactly the comparison operation described above
will be executed and a token will be eliminated if there is a mismatch. Thus our
strategy should be to ensure that this kind of collision is repeatedly going to take
place as long as the system has not stabilized to one pair of tokens. In order to show
this, we have to make sure that probes which originate from an “initial” state or
have been produced erroneously are not an obstacle by causing tokens to repeatedly



1580 A. MAYER, R. OSTROVSKY, Y. OFEK, AND M. YUNG

turn and thus preventing these useful collisions. This will be done by again using
our simple observation with respect to comparing values when (erroneous) backward
probes and tokens collide. Thus we will be able to conclude that despite the presence
of arbitrary probes, the system stabilizes to exactly one pair of tokens.

All we have to add to make the algorithm complete are conditions on which a
disabled probe who does not have a sibling probe (anymore) can be eliminated from
the system. Note that this task is facilitated by the fact that erroneous decisions are
not affecting the convergence of the tokens.

It should be mentioned that the condition for a token to send out probes will be
true in a skewed state every time it visits a node. This condition can also hold in
a nonskewed state and even in a stabilized state. But on the other hand, only one
forward and one backward probe of each value is needed and there are only 3 values.
Hence, constant buffer size at each node is sufficient (a node receiving a second probe
before sending out the first can simply delete the second probe). Given the constant
size of probes, the communication-overhead in a stabilized state is minimal.

4.3. Formal description of the algorithm. In the following, we present the
different types of messages used in the algorithm:

• positive tokens: circulating clockwise on the ring;
• negative tokens: circulating counter-clockwise on the ring;
• probes: tokens can send out probes to avoid getting stuck in an skewed state.
A token will send out probes in both directions. A probe circulating in the
same direction as its father token is called a forward probe, otherwise it is
called a backward probe.

Next we present the data-structures used by the algorithm:
• V (i): value of node i (1 ≤ |V (i)| ≤ 3).
• V (t): value of token t (1 ≤ |V (t)| ≤ 3).
• S(t): bit indicating that token t is currently sending out probes. This bit
holds from the time a pair of probes is generated until t’s next collision or
turn. S(t) is used as a guard for the turn operation.

• L(t): value of node that t visited last.
• V (p): value of probe p. V (p) indicates the value of probe p’s father-token.
The test V (t) = V (p) is used as a guard to turn a token t. The test V (p1) =
V (p2) is used to detect sibling probes upon a collision of two probes.

• E(p): bit indicating whether the probe p is enabled.
• T (p): if p is a backward probe and has decided to turn its father-token, then
this bit is set.

Next we describe the algorithm by stating what is done on each message-driven
event.

Positive token t1 and negative token t2 collide:
A1: IF |V (t1)| �= |V (t2)|, THEN
A2: eliminate token with smaller absolute value
A3: ELSE
A4: V (t1) := RANDOM({1, 2, 3} − {V (t1)});
A5: V (t2) := −V (t1)
A6: END;
A7: S(t1) := FALSE; S(t2) := FALSE;
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Node i receives positive token t:
B1: IF V (i) = V (t), THEN
B2: generate token t′ (* negative *);
B3: V (t) := RANDOM({1, 2, 3} − {V (t)});
B4: V (t′) := −V (t); L(t′) := V (i);
B5: S(t) := FALSE; S(t′) := FALSE
B6: ELSIF V (t) < V (i), THEN (* t follows a larger-valued, positive token *)
B7: generate forward probe p1 and backward probe p2;
B8: V (p1,2) := V (t); E(p1,2) := TRUE;
B9: T (p1,2) := FALSE;
B8: S(t) := TRUE
B9: END;
B10: L(t) := V (i); V (i) := V (t);
B11: send positive token t (and negative token if one newly generated)

Node i receives negative token t:
symmetric to the receipt of a positive token

Node i receives forward probe p:
C1: send probe p

Node i receives backward probe p:
D1: IF (V (i)V (p) < 0) AND E(p), THEN
D2: E(p) := FALSE
D3: END;
D4: send probe p

Token t and probe p collide:
E1: IF V (t)V (p) < 0, THEN (* p is a forward probe *)
E2: IF E(p), THEN E(p) := FALSE
E3: ELSE eliminate p
E4: END
E5 ELSE (* p is a backward probe *)
E6: IF ¬E(p), THEN eliminate p
E7: ELSIF E(p) AND T (p), THEN
E8: IF (V (p) = V (t)) AND S(t), THEN
E9: turn t;
E10: V (t) := −L(t);
E11: S(t) := FALSE
E12: END;
E13: eliminate p
E14: END
E15: END

Forward probe p1 and backward probe p2 collide:
F1: IF V (p1) = V (p2), THEN
F2: IF E(p1) AND E(p2), THEN
F3: T (p2) := TRUE;
F4: eliminate p1
F5: ELSE eliminate p1 and p2
F6: END
F7: END

Note that we make use of a function RANDOM(S) which returns a random value
drawn from the set S. We only use it for sets of size 2 and thus it can be thought to
be a fair coin.

5. Analysis. In this section we give a correctness proof of the TM algorithm
introduced in the previous sections, and we analyze its stabilization time.

Let t(n) be the expected stabilization time. The stabilization time is the time
interval starting at the end of the last transient fault and ending when the system has
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reached a legal state. Our main theorem is as follows.
Theorem. Algorithm A is a fair and nondeadlocking self-stabilizing TM algo-

rithm for system S with t(n) = O(n log n).
Since the proof is quite involved, we will precede its presentation with a subsection

introducing all necessary definitions and a subsection giving an overview.

5.1. Definitions. We start with defining a global state of the system and the
transitions among those global states. A global state is basically the value of each
node, the value of each token, and the positions of the tokens on the ring. A transition
from a state to its successor state consists of either a collision among two tokens, or
a turn of a token, or a generation of a token. Further we define a local state of a ring
segment with respect to the probes present on it. Note that probes are “invisible” in
the global state. One can think of a local state as putting a magnifying glass on a
segment of the ring.

Definition 5.1 (local and global state, state transition, segment).
1. The global state of the system is defined by

• for each token t, its value V (t),
• the positions of the tokens on the ring,
• for each node i, its value V (i).

2. The (global) state transition from state s to state s′ is defined by a successor
function S : s′ = S(s), where s′ results from s by applying one of the following
transitions: {collision, turn, generation}. A node copying a new value from a
passing token is strictly speaking also a state transition. But for our purposes
this is not an “interesting” operation by itself. Let Sj(s) be the jth successor
of s.

3. |s| denotes the number of tokens in state s.
4. A sequence of nodes starting at some node i and ending at some node j,

such that V (i) = V (i + 1) = · · · = V (j) is called a segment σ of value
V (σ) = V (i). We will say that a token or a probe is on segment σ if it is on
a node k, i ≤ k ≤ j, or if it is on a link (l, l + 1), i ≤ l < j. We will use
the symbol t alternatively for the token itself or for the segment the token t
creates by leaving its footprints behind.

5. The local state of a segment σ in a global state s is defined by
• its value V (σ),
• for each probes p on σ, its value V (p) and its position. Let fσ(s) (bσ(s))

denote the set of enabled forward probes (backward probes) on σ.
In terms of the above definition we can now define the correctness condition

for TM.
Definition 5.2 (correctness). For an arbitrary state s with |s| ≥ 1 there are

infinitely many successor-states and, in particular, there is a state Sl(s) such that
|Sl(s)| = 2 and every state Sl

′
(s) (l′ > l) results from a collision of two tokens with

identical absolute value.
Since “initially” we have no control over the values stored in the nodes or on the

tokens, we will define now a predicate over states, which will indicate that, although
the system may not have stabilized yet (and indeed might have more tokens than
“initially”), we have reached a certain level of order in the system. Intuitively, this
means that every node has at least seen one token, and thus the neighborhood of a
token is no longer influenced by the “initial” state.

Definition 5.3 (cover). We say that a state s has the predicate cover, i.e.,
cover(s), if
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Fig. 6. “Ingoing” covers.

• |s| ≥ 2;
• the ring is a concatenation of segments, such that a segment boundary is either

at the current position of a token or at a previous collision-point. Following
the scenario in Figure 4, we enumerate all allowable neighborhoods first to
the left of a (positive) token t and then to the right of t. (“✁”, “✄” denote
tokens (and their direction), “©” denote previous collision-points, s’s denote
segments, and t’s denote tokens and the segment they are creating.) Tokens
traveling from left to right are positive tokens and thus their value is always
positive. Tokens traveling from right to left are negative tokens and carry a
negative value.
The values in the scenarios of Figure 5 are constrained as follows:
|V (t2)| = |V (t)|, |V (s1)| �= |V (t2)|; V (s2) = −V (t), |V (t3)| �= |V (s2)|;
V (t4) �= V (t).
The values in the scenarios of Figure 6 are constrained as follows:
|V (s1)| �= |V (t)|, V (s2) = −V (s1) : |V (t2)| �= |V (s2)|, |V (s3)| �= |V (t)| :
|V (s3)| �= |V (t3)|.

We conclude this section with the following sequence of simple definitions.

Definition 5.4 (fragment). A fragment is a largest concatenation of segments,
such that the structural requirement of a cover is still fulfilled and at least one token
is present on this part of the ring.

Definition 5.5 (block). We say that a segment σ has the predicate block in
state s, i.e., block(σ, s), if all probes in bσ(s) have identical values.

Definition 5.6 (state as a sequence of pairs). If for state s cover(s) holds, then
we can view s alternatively as a sequence of pair of numbers. Every pair represents one
token and the segment it is traveling on (through its token component and segment
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component).
For example, the cover in Figure 4 corresponds to the sequence s = (t1, s1)(t2, s1)

(t3, s2)(t4, s2).

5.2. Overview of the proof. The proof will be structured as follows: For
every state s with s ≥ 1 we define a subgoal and show that this subgoal will indeed be
reached. For every possible sequence of these subgoals, the last one is always to reach
stability. Thus, if the algorithm reaches for each state the desired subgoal, correctness
is assured. The following is now a list of different states and their subgoals:

1. For a state s with |s| ≥ 1 and ¬cover(s) the subgoal is to show that there
is a successor state Sl1(s) for which cover(Sl1(s)) holds. Note that it is very
well possible that |Sl1(s)| > |s| and thus, at first glance, the successor state
seems to be farther away from our ultimate goal. However, the predicate
cover implies that we have reached a higher level of order in the system, since
as soon as cover holds, no generation transition can take place anymore and
cover is a stable predicate. Thus, it guarantees that the system does not move
away anymore from its goal state (by generating additional tokens). Another
important fact is that any state with a cover has a successor state. If the
state is skewed, this property holds thanks to our probes scheme.

2. For a state s with cover(s), |s| > 2, and |s| being odd, the subgoal is to
show that there is a successor state Sl2(s) such that either |Sl2(s)| < |s| or
Pr(|Sl2 | < |s|) > 0. If the first disjunctive part of our goal holds, then we
have made direct progress towards the goal state; otherwise, we must have
at least reached a state in which we could have made progress, i.e., there
was a nonzero probability to reduce the number of tokens in the transition
to this state. This probability follows from the fact that in a state with an
odd number of tokens, there will be always at least one token which collides
consecutively with at least two other tokens. Since in the first collision it
picked up a random value independent of the rest of the system, the subgoal
follows.

3. For a state s with cover(s), |s| > 2, and |s| being even, the subgoal is to show
that either |Sl3(s)| < |s| or Pr(|Sl3(s)| < |s|) > 0 or there is a pair of tokens
(t1, t2) of the following form (t1, σ1)(t2, σ2) such that Pr(block(σ2, S

l3(s))) >
0. Thus, in the case in which there is an even number of tokens, we restrict
ourselves to an even more modest goal. This is necessary since tokens can
(at least temporarily) form pairs such that every token collides only with its
partner and then turns and repeats this cycle. However note that in order to
turn, a token needs to be supplied with probes. Now if a block of probes is on
the adjacent segment of a token, then the token, which carries a random value
independent of the rest of the system, has a nonzero probability to mismatch
these probes and will break out of its local cycle.

4. For a state s with |s| = 2, cover(s), the subgoal is to show that the leftover
probes will eventually be removed from the system. This task is considerably
simplified by the fact that as long as the system is in a state with more than
two tokens, we are allowed to make “mistakes” with respect to this task,
since we have shown convergence to a state with two tokens for arbitrary
configurations of probes.

5. For a state s with s = (t1, σ1)(t2, σ2), we show that if there are no leftover
probes, we have reached stability.

The rest of the proof basically ties all the above subgoals together and shows that
in an infinite sequence of states, the desired stable state is reached with probability 1.
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5.3. Correctness proof. In order to prove our main theorem, we will introduce
a series of lemmas. The first lemma addresses the nondeadlocking property of the
algorithm.

Lemma 5.7. For every state s for which |s| ≥ 1, ∀l > 0, |Sl(s)| ≥ 1.

Proof. The only condition on which a token is eliminated is the collision of two
tokens (line A1 in the algorithm). Thus, every time a token is eliminated another
token survives.

The following lemma proves that we reach our first subgoal, a state s for which
cover(s) holds.

Lemma 5.8. For every state s, for which |s| ≥ 1, there exists a finite l > 0 such
that cover(Sl(s)) holds.

Proof. First we need to show that every state s, for which ¬cover(s) holds, has
a successor state: (i) s is skewed, |s| ≥ 2: Assume that no transition takes places.
Then eventually s = (t1, σ1)(t2, σ2) . . . (t|s|, σ|s|), where all V (ti) are either positive
or negative and σi = ti+1. Thus, as can be easily seen, cover(s) holds. (ii) s is not
skewed, |s| ≥ 2: There are always two opposite tokens facing each other with no
other token in between. Thus, either a turn or a collision transition is imminent. (iii)
|s| = 1: If the token does not turn, then a generation transition will take place after
at most one round.

Consider a link (i, i + 1) as a pair of values of its end-nodes (V (i), V (i + 1))
together with the values of tokens which might be in transit on this link. Based on
this information, we can decide for every link whether it could be a part of a fragment,
i.e., the link is consistent.

First note that if a token has crossed a link and updated the value of the destina-
tion-node, the link will become consistent. Thus, a token can enlarge a fragment by
crossing the first inconsistent link outside of its fragment. In that case, we say that
the token is at the border of its fragment. Further, every generation, collision, and
turn transition preserves the fragment in which (or at whose border) it occurs (see
lines A1–A6, B2–B4, E9–E10). Hence the consistency of a link is a stable property.

Consequently, it remains to show that eventually every link will be crossed by
a token and that at least two tokens will be present: By Lemma 5.7, all successor
states have at least one token and thus at least one fragment. Assume that there
is a fragment which does not grow and assume that the token t at the border of
this fragment is moving away from the border (if not it will either turn and thus
move away or enlarge the fragment). At some point it will either turn or collide
with another token t′ (otherwise t would enlarge the fragment on the other border).
Assume without loss of generality that in the latter case t′ survives the collision and
thus is now moving towards the border of the fragment. t left footprints of opposite
sign and thus t′ cannot turn until it reaches a node which t never visited. Thus, we
have shown a contradiction.

If a state is reached with a single fragment spanning the whole ring and just
one token is alive, then after at most one round a second token will be generated
(condition on line B1), and thus a cover will have been reached.

The next few lemmas show that the cover predicate is stable and well defined
with respect to the successor function. We also show that no generation can take
place in a state in which the cover predicate holds.

Lemma 5.9. Every state s, for which cover(s) holds, has a successor state.

Proof.

• s is skewed: If no transition takes place then eventually s = (t1, σ1)(t2, σ2) . . .
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(t|s|, σ|s|), where V (ti) are either all positive or all negative and σi = ti+1.
Thus, for at least one token ti the condition to send out probes (line B7 or
the symmetric case) will be true every time ti visits a node. ti sends forward
probes on σi and backward probes on ti. Given the structure of s, these
probes cannot be disabled (i.e., conditions on lines D1, C1, and E1 cannot
become true). Thus, two enabled siblings (or probes from two tokens with
the same value) will meet and thus the T -bit on the backward probe is set
and a token (which still has the S-bit set) is turned.

• s is not skewed and consequently there is a fragment (t1, σ1)(t2, σ2), where
V (t1) > 0, V (t2) < 0. Thus, a turn transition or a collision transition is
imminent.

Lemma 5.10. For every state s for which cover(s) holds, |S(s)| ≤ |s|.
Proof. By definition of a cover, the only condition on which the algorithm gener-

ates a new token (line B1 in the algorithm) cannot be enabled in s.

Lemma 5.11. For every state s for which cover(s) holds, cover(S(s)) holds.

Proof. By Lemma 5.10, there is no generation transition leading out of s. Given
that |s| > 2, every possible collision transition preserves the cover (see lines A1–A6).
In every turn transition, the new absolute value of the turned token is the same as
the value of the token it was following, and thus the result is identical to a collision
(see lines E10 and B10). Also, if |s| = 2 and cover(s) holds, then, by definition of a
cover, all collisions will take place between tokens of equal absolute value and so |s|
will always remain two.

Lemma 5.12. For every state s, for which cover(s) holds, there exists a finite
l > 0 such that Sl(s) results from a collision transition.

Proof. By Lemma 5.9, we have always a “next” transition, and by Lemma 5.10,
there is no generation transition. If all successor states of s were results of turn
transitions, then the sum of the absolute values of all tokens would steadily increase.
Remember that the new value of a token t after its turn is set to −L(t), where
L(t) = V (i) for i being the last node visited. And S(t) is set only if V (i) > V (t).
Also, since cover(s) holds and t does not collide, it remains on the same segment from
the time S(t) is set until it turns. See lines (B10, B6, B7, E10). Since this sum is
bounded, this is not possible.

Lemma 5.13. Starting in any state s for which cover(s) holds, no token will be
in two or more consecutive turn transitions.

Proof. After a token t has been in a turn transition, its absolute value (|V (t)|)
has been increased. Furthermore, it is traveling on a segment whose absolute value
is t’s old value (see the definition of cover), and thus S(t) is false. Hence, as long as
it is on this segment, t will not turn again. t can leave this segment only through a
collision-transition. The lemma follows.

Lemma 5.14. For every state s for which cover(s) holds, and for every token t
in s, there exists a finite lt > 0 such that Slt(s) results from a collision transition
involving token t.

Proof. By induction on |s|, we have the following:

Basis: |s| = 2: follows immediately from Lemma 5.12.

Hypothesis: |s| = n.

Step: |s| = n + 1. Assume that token t will never be involved in a collision
transition. Then by Lemma 5.13, t can be involved in only one turn transition. Thus,
token t will be neither in a turn transition nor in a collision transition for infinitely
many successor states. By definition of a cover, token t will eventually be in the
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following fragment: (t, σ1)(t
′, σ2), where V (t) and σ1 are either both positive or both

negative and t′ = σ1. Now, if t′ turns, then t is in a collision. If t′ is in a collision
where one token is eliminated, then we can apply the hypothesis. If no token is
eliminated, then t is in a collision. Thus t′ cannot be in a turn transition nor in a
collision transition. It will eventually be in a analogous fragment as t. Then we can
look at t′’s right neighbor, etc. Finally, we will get a contradiction with Lemma 5.9
and thus our assumption that t will never be involved in a collision transition was
wrong.

The next lemma shows that any token which is involved in at least two consecutive
collisions creates a nonzero probability that a token will be eliminated.

Lemma 5.15. The following two statements concern probabilistic elimination of
tokens and hold in any state s with cover(s):

(1) If, starting in state s, there is at least one token which consecutively collides
with at least two opposite tokens (let Sk(s) be the state resulting from the
second collision), then Pr(|Sk(s)| < |s|) > 0.

(2) If Pr(|Sk(s)| < |s|) = 0, then every token has collided with at most one
opposite token during all transitions leading from s to Sk(s).

Proof. (1) The value the token carries after a first collision is random and inde-
pendent of any other value in the system. Thus, there is a nonzero probability that
in a second consecutive collision the tokens carry distinct absolute values, and conse-
quently there is a nonzero probability that one of the tokens involved in the collision
will be eliminated (see lines A1–A2). In addition, no new tokens are generated (by
Lemma 5.10). (2) follows from the contraposition of (1) and Lemma 5.13. Note that a
token needs to turn at least once between any two collisions to ensure that Pr(.) = 0,
and by Lemma 5.13 a token can turn at most once.

The next lemma shows that our second subgoal will be reached.

Lemma 5.16. For every state s with odd( |s|) and cover(s), there exists a finite
l > 0, such that (|Sl(s)| < |s|) ∨ (Pr(|Sl(s)| < |s|) > 0).

Proof. By Lemma 5.14, every token t present in s will be eventually involved in a
collision transition with another token t′. If one of these tokens is eliminated, then we
are done. Otherwise the fragment of these two tokens right after the collision looks as
follows: (t, σ1)(t

′, σ2), where V (t), V (σ2) < 0 and V (t′), V (σ1) > 0. Since the number
of tokens in s is odd, there will be a token t which, after its first collision with t′, will
be involved in a collision with a different token t′′ (t′′ �= t′). By Lemma 5.13, there
cannot be two or more consecutive turns by a token. Thus t must have been involved
in two consecutive collisions. Now we can use Lemma 5.15 and we are done.

Definition 5.17 (partner, pair, local cycle, neighbor).

• Starting in some state s for which cover(s) and even(|s|) hold, |s| > 2, we
call two tokens involved in their first collision partners with respect to state
s, and the function partners(t) yields the partner of token t with respect to
state s. By Lemma 5.14, this function is well defined. Both partners together
form a pair.
• A local cycle of a pair is a sequence of the three transitions which brings both

tokens back to the same relative position: Each token is involved in a turn
transition and in a collision transition with its partner. Note that if both
tokens started out with the same value, this is exactly the scenario for which
the probability of decreasing the number of tokens is zero (Lemma 5.15).
• The two tokens on the left and on the right (which might coincide) of a pair

are called neighbors of that pair.
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The next few lemmas provide useful facts about pairs of tokens and the local state
of adjacent segments.

Lemma 5.18. Let s be a state, such that cover(s) holds, |s| > 2, and even(|s|)
holds. If in s the neighbors of a pair are not a pair, or if a pair does not corre-
spond to one of the following fragments, then there exists a finite l > 0, such that
(|Sl(s)| < |s|) ∨ (Pr(|Sl(s)| < |s|) > 0). For any pair the fragment is in one of the
following scenarios. (t, σ1)(partners(t), σ2) with the following restrictions:

1. Pair is about to collide: V (t) > 0, V (partners(t)) < 0, |V (t)| =
|V (partners(t))|, σ1 = σ2.

2. Pair right after collision: V (t) < 0, V (partners(t)) > 0, |V (t)| =
|V (partners(t))|.

3. Both tokens in positive direction: V (t) > 0, V (partners(t)) > 0, |V (t)| >
|V (partners(t))|, |V (σ2)| = |V (t)|.

4. Both tokens in negative direction: V (t) < 0, V (partners(t)) < 0, |V (t)| <
|V (partners(t))|, |V (σ1)| = |V (partners(t))|.

Proof. If the neighbors are not a pair, an argument similar to the proof of
Lemma 5.16 shows that a token must be involved in two consecutive collisions. If
a pair is not in one of the scenarios above, a collision transition with an elimination
is imminent.

Lemma 5.19. If in state s (cover(s), |s| > 2, even(|s|) both hold) a pair is in
scenario 2, then for every probe p ∈ bσ1(s) (where V (σ1) < 0) the value V (p) is
mutually independent from V (t) (and symmetrically for p ∈ bσ2(s)).

Proof. For every probe p ∈ bσ1(s) we can conclude that token t cannot have
produced p since its last collision because its partner creates a segment of opposite
sign (cf. scenario 2). The lemma follows now since the value V (t) is random and
mutually independent from every other value in the system.

Lemma 5.20. If in state s (cover(s), |s| > 2, even(|s|) both hold) a pair is in
scenario 2, and for at least one of t or partners(t) the next transition is not a turn,
then there exists a finite l > 0, such that (|Sl(s)| < |s|) ∨ (Pr(|Sl(s)| < |s|) > 0).

Proof. Assume without loss of generality that t’s next transition is not a turn. By
Lemma 5.14, every token will be involved in a collision leading into a successor state
(and thus every token is involved in a future transition). From this it follows that t
will be involved in a future transition and the only transition which is possible is a
collision. If the other token involved in this particular transition is not partners(t),
then we can apply Lemma 5.15; if this token is indeed partners(t), then, since |s| > 2,
partners(t) must have been in at least two consecutive collisions, and thus we can
also apply Lemma 5.15 with respect to partners(t).

The next lemma shows that our third subgoal is reached.

Lemma 5.21. If the system is in state s, cover(s) holds, |s| > 2, even(|s|) holds,
and a pair is in scenario 2, where V (σ2) > 0, then there exists a finite l > 0, such
that either (|Sl(s)| < |s|) ∨ (Pr(|Sl(s)| < |s|) > 0) or Pr(block(σ2, s

l)) > 0.

Proof. If either t’s or partners(t)’s next transition is not a turn, then we can
apply Lemma 5.20. Otherwise the transitions of t and partners(t) form a local cycle.
In order to maintain this cycle, both tokens must continuously turn and thus use
probes in |bσ1(s)| and |bσ2(s)|.

So let us consider how |bσ2(Sk(s))| can change for k > 0: First note that the neigh-
bors also will form a local cycle (otherwise we can again invoke Lemma 5.20). This im-
plies that there will always be new “incarnations” of σ2 with initially |bσ2(Sk(s))| = 0.
Note that all probes entering σ2 are either generated by the neighbors or passed
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through the neighbors, and thus their fragment is in scenario 3 (otherwise the probes
would get disabled). In order to pass through this fragment, the incoming back-
wards probes must mismatch all probes in fσ4(s), all of which originated at token
partners(t

′). If incoming backwards probes originated with partners(t
′), then they

obviously match, otherwise they match with nonzero probability, since the forward
probe carries a random value independent of the value of the backward probe (by
Lemma 5.19). Now if the first incoming probe matches, only probes generated by
partners(t

′) will be on partners(t
′) and consequently on σ2. Thus for some finite

l > 0, Pr(block(σ2, s
l)) > 0, or, in other words, the neighboring pair acts as a proba-

bilistic filter with respect to incoming backwards probes.

Note that if there are any disabled probes on σ2 which match any of the enabled
probes, then they will merely eliminate the enabled probes and thus not interfere with
the block predicate.

Lemma 5.22. For every state s (cover(s), |s| > 2, even(s) both hold), there exists
a finite l > 0, such that either (|Sl(s)| < |s|) ∨ (Pr(|Sl(s)| < |s|) > 0).

Proof. By Lemma 5.14, there is a successor state in which a pair is guaranteed to
be in scenario 2, where V (σ1) < 0, V (σ2) > 0. By Lemma 5.21, if ¬((|Sl(s)| < |s|) ∨
(Pr(|Sl(s)| < |s|) > 0)), then there is a nonzero probability that there is a block on
at least one of σ1 or σ2. By Lemma 5.19, the value of the block is independent of
the token’s value. Thus, there is a nonzero probability that the block has a different
value than the token, and thus the next transition of the token is not a turn. Using
Lemma 5.20 and noting that the probability for a block on σ2 and the probability
that there will be an elimination in the subsequent collision (second in a row) are
independent, we are done.

The last few lemmas concern the last two subgoals, i.e., states with two tokens.

Lemma 5.23. For every state s with cover(s), |s| = 2, there is a finite l > 0,
such that Sl(s) = (t1, σ1)(t2, σ2), where V (t1), V (σ2) > 0, V (t2), V (σ1) < 0, and
V (t1) < V (σ2).

Proof. Lemma 5.12 guarantees that there will always be a state s′ as described
above except maybe for the condition V (t1) < V (σ2). If this condition does not hold,
then by simply following the algorithm, we can conclude that the full condition holds
in either S(s′) or S2(s′).

Lemma 5.24. If there are no enabled probes at the time of a transition into a
state s of the form of Lemma 5.23, then the system has reached stability.

Proof. Remember that s = (t1, σ1)(t2, σ2), where V (t1), V (σ2) > 0, V (t2), V (σ1)
< 0, and V (t1) < V (σ2). Assume without loss of generality that just before the next
transition, s = (t1, σ2)(t2, σ2). Thus t1 is sending out probes (S(t1) = TRUE). All of
its forward probes are in fσ2(s) and all of its backward probes are in bt1(s). Following
the algorithm, we get S(s) = (t2, σ3)(t1, σ4), where V (σ3) > 0, V (σ4) < 0. For all
probes which were in fσ2(s), the conditions on lines E1 and E2 became true before
the transition and thus have been disabled. All these forward probes are now on σ4.
All enabled backward probes are now in bσ3(S(s)). Thus before the next transition,
all backward probes will have been in a collision with a disabled forward probe, and
thus both are eliminated (line F7).

Lemma 5.25. For every state s as in the form of Lemma 5.23, with initial enabled
probes, there is (i) a probability of at least 1/2 that those enabled probes cause one
token to turn, in which case the system will be stabilized by S3(s), or else (ii) all
enabled initial probes will be disabled.

Proof. Trivially, |bt1(s)| = |f t1(s)| = |bt2(s)| = |f t2(s)| = 0. Without loss
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of generality let us assume that just before the next transition s = (t1, σ2)(t2, σ2).
Thus we concentrate on bσ2(s). If before t1 reached σ2, |bσ2(s)| �= 0, then there is
a probability of 1/2 for each of these probes that it will match t1’s forward probes
(since V (t1) is random and independent). If indeed there is a matching probe, then
S(s) = (t1, t2)(t2, t1), and all probes which were in bσ2(s) are disabled. By Lemma 5.9
S2(s) is reached by a turn of t2. It is easy to see then that S3(s) is reached through
a collision between t1 and t2 and there are no initial enabled probes.

Furthermore, it is easy to see that all initial probes (which we just showed are
disabled by S2) are removed from the system by S3(s).

We now get to our first main theorem which ties all the previous lemmas together
and shows the correctness of Algorithm A.

Theorem 5.26. Algorithm A is a correct self-stabilizing solution for fair non-
deadlocking round-robin TM on system S. Furthermore, the lifetime of any control-
signal, except for one pair of a positive and a negative token, is finite.

Proof. The following chain of arguments proves that starting the system in an
arbitrary state s, |s| > 0, will lead with probability 1 to a stable state Sl(s) with
|Sl(s)| = 2 (l ≥ 0).

By Lemma 5.8, cover(Sl1(s)) holds for a finite l1. If |Sl1(s)| > 2, then by
Lemma 5.16 and Lemma 5.22 there exists a finite l2, such that (|Sl2(s)| < |Sl1(s)|) ∨
(Pr(|Sl2(s)| < |Sl1(s)|) > 0). Also, by Lemma 5.10 and by Lemma 5.11, |Sk(s)| ≤
|Sl1(s)| ∀k > l1. Suppose now we have an infinite sequence of states such that
|Sm(s)| = |Sl1(s)| (∀m ≥ 0). The number of different states in the system is finite.
So some state s′ for which |Pr(|S(s′)| < |s|) > 0 is visited infinitely often. Therefore,
the probability of the computation we have supposed is zero. This argument can be
repeated until for some l3 we have |Sl3(s)| = 2. By Lemma 5.24, Lemma 5.23, and
an argument similar to the above, there is now an l4 for which Sl4(s) is stable. Using
Lemma 5.25 together with the argument above, we can conclude that the lifetime of
every signal except for one positive and one negative token is indeed finite.

5.4. Stabilization-time. The following sequence of lemmas will show that the
following theorem holds.

Theorem 5.27. Algorithm A has t(n) = O(n log n).
Lemma 5.28. For every s a state Sl(s) with cover(Sl(s)) is reached for the

expected l = O(n).
Proof. From the proof of Lemma 5.8, it follows that the maximum time to enlarge

a fragment is the time it takes for a token to traverse it. Also note that an initial
probe either causes a token to turn within n time units or gets disabled. This holds
since a probe which fails to turn a token will reach the opposite end of a fragment.
If there is no change in sign of the nodes outside the fragment, the tokens on that
fragment will not turn before a cover is reached. Also, if there is a change in sign, the
probe gets disabled.

Lemma 5.29. For every state s with cover(s), there is an l whose expected worst
case bound is O(n log n), such that |Sl(s)| = 2.

Proof. Let k = |s|. If s is skewed, then after at most O(n/k) time units a turn
operation will take place. This holds by Lemma 5.9 and the fact that the maximum
distance between two equal-valued tokens is O(n/k) (important for nonconstant k).
Now for every state which is not skewed a useful collision takes place within O(n/k)
expected time units (by Lemmas 5.16 and 5.22 and the fact that in a nonskewed state
there are tokens going in opposite directions at distance at most O(n/k)). Thus,
the expected time to reach a state with two tokens can be expressed as

∑n
k=1 n/k =
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O(n log n).
Lemma 5.30. For a state s, such that cover(s) holds and |s| = 2, the system

stabilizes in O(n) expected time.
Proof. If there are initial probes, then after an expected constant number of

rounds there will be a turn and then Lemma 5.25 applies, or all initial probes are
disabled before such a turn can take place.

6. Reduction from leader election (L) to TMA. Leader election (symme-
try breaking) is an important procedure in many parallel and distributed computing
scenarios (see, e.g., [AAGHK89, AAHK86, AB89, AM89, Ang80, Dij74, It90, IR81,
FL84, PKR82, RL81, SS89]). This is especially true in our model, where the nodes
in the ring are identical finite state machines. In this section we present an algorithm
which, given a correct TMA-algorithm, achieves self-stabilizing leader election. We
start with the appropriate definition.

Definition 6.1. A self-stabilizing leader election algorithm (L) is a self-sta-
bilizing algorithm with respect to predicate P = “there exists a single leader” and,
furthermore, after stabilization, the leader node remains unchanged.

The control messages used by the L-algorithm are the tokens of the TMA-algo-
rithm. These tokens are augmented essentially by a new data-field which indicates
whether the token has seen (i) zero, (ii) one, or (iii) more than one leader since its
last collision. If the system has stabilized, then, upon a collision, it will always be
the case that one token will be in state (i) and one token will be in state (ii) (since
together they have covered the ring exactly once since their last collision). If the
system has not yet stabilized, it is possible that (a) both tokens are in state (i), in
which case there is no leader, or (b) that both tokens are either in state (ii) or state
(iii), which indicates that there are multiple leaders. For the L-algorithm we assume
that a collision is always associated with a node. (The precise definition depends on
the implementation of a collision.) Thus in case (a) a new leader is created on the
node associated with the collision and in case (b) we also create a new leader and
then put both tokens in a “delete mode” until their next collision. If a token passes
through a node in delete mode, it will remove the leader-predicate from that node.

We use the tokens of our TMA-algorithm as control messages. We augment the
messages and nodes with the following data-structures:

• L(i): the bit indicating that node i is a leader.
• L(t): the leader-value of token t (0 ≤ L(t) ≤ 2).
• D(t): the bit indicating that token t is in delete mode.

Tokens t1 and t2 collide on node i:
L1: IF (L(t1) + L(t2) = 1) OR D(t1) OR D(t2), THEN
L2: L(t1) = L(t2) := 0; D(t1) = D(t2) := FALSE
L3: ELSIF L(t1) + L(t2) = 0, THEN
L4: L(i) := TRUE;
L5: L(t1) := 1; L(t2) := 0
L6: ELSIF (L(t1) + L(t2) > 1), THEN
L7: L(i) := TRUE;
L8: D(t1) = D(t2) := TRUE;
L9: L(t1) := 1; L(t2) := 0

END IF

Token t arrives at node i:
D1: IF D(t) AND L(i), THEN
D2: L(i) := FALSE
D3: END IF
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Theorem 6.2. Algorithm L is a correct polynomial time space-preserving self-
stabilizing reduction from TMA to leader election. Furthermore, p(n) = O(n).

Proof. We show that at the third collision there is exactly one node i for which
L(i) holds and no node j will change its value L(j) from that point on: Note first
that at the second collision either none or both of the tokens are in the delete mode,
since the tokens agreed on the mode in their first collision (lines L2, L8). If they are
in the delete mode, then they created a new leader at their first collision (line L7)
and removed every other leader on the ring (line D2). Now assume that none is in
the delete mode. Then, their L-values correctly reflect the number of leaders in the
ring. Thus, if there is no leader, then one will be created (line L4), and if there is
more than one leader, then one new leader is created (line L7) and all others will be
removed by the time of the third collision.

7. Reduction from TMA to L. In this section we present an algorithm which,
given a correct L-algorithm, achieves self-stabilizing TMA.

The algorithm is simple. We maintain one bit at the leader and one bit on each
token. If a token arrives at the leader and its bit mismatches the leader bit, the
token is removed; otherwise the leader chooses a new bit at random and the token
copies it. Every time a token is removed the leader generates a counter-token in the
opposite direction. This token is used to find out whether the leader just removed the
last token from the system. (This can happen as initially the bits on the token and
leader are arbitrary.) If a counter-token collides with a token, it is removed, and if a
counter-token arrives at the leader, the leader will generate a new token (and remove
the counter-token).

We use tokens (circulating in one direction) and counter-tokens (circulating in
the opposite direction) as control messages and we use the leader of our L-algorithm.
We augment the messages and the leader node with the following data-structures:

• B(l): the bit at leader (l) indicating the current value of the token.
• B(t): the value of token t.

Token t arrives at leader l:
T1: IF B(l) �= B(t), THEN
T2: eliminate t;
T3: generate counter-token;
T4: ELSE
T5: B(l) := random(0, 1); /* fair coin */
T6: B(t) := B(l)

Counter-token t arrives at leader l:
T7: generate token t;
T8: B(t) := B(l)

Token t and counter-token t′ collide:
T9: delete t′.

The above algorithms establishes the following theorem.
Theorem 7.1. Algorithm TMA is a correct polynomial time space-preserv-

ing self-stabilizing reduction from leader election to TMA. Furthermore, p(n) =
O(n log n).

Proof. First note that after n time units all present counter-tokens have actually
been generated by the leader, and thus a token is generated if and only if there are no
tokens in the system (since a counter-token is eliminated upon a collision with a token
(line T9) and if a counter-token arrives at the leader, a token is generated (line T7)).
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Let k be the number of tokens in the system at this point. From the randomization
used by the leader (line T4), it is easy to see that n time units later, the expected
number of tokens in the system is k/2. Finally, note that the last token will not be
removed as its bit always matches the bit of the leader (line T1).

8. Applications. Our work is derived from the needs of actual systems. The
main goals are the development of self-stabilizing mechanisms for high-speed local
area ring networks (LANs) and embedded rings on general topology networks. Note
that many existing and suggested LAN architectures, such as FDDI [R86], Meta-
Ring [CO90], Cambridge LAN [HN88], Magnet [LTG90], and ATM-ring [OMS89],
have ring-based topologies. Also, a recent suggestion for control on a general topol-
ogy network is to embed a virtual ring to support on-line high-speed control mech-
anisms [OY90]. Having self-stabilizing mechanisms can prevent potentially costly
centralized and duplicated monitoring and recovery protocols. (For the high cost of
such mechanisms, see, e.g., [BCK+83].) As explained in section 1.1, for such archi-
tectures, e.g., [R86, CO90, OY90], we need hardware-oriented algorithms to support
fast on-line processing at a low-level protocol.

In particular, TMA is an important regulation control task in well established
(e.g., token ring) and more recently suggested (e.g., MetaRing [CO90]) LANs. Meta-
Ring employs a variant of a token, called the SAT-token. The SAT-token distributes
transmission permits or quotas to the active nodes, and as a result, multiple nodes can
access the network at the same time. In this new scheme a node will hold the SAT-
token only if it is not satisfied. (It could not send the quota given to it by the SAT-
token during its previous visit.) It has been shown that in high-speed implementations,
the efficiency and effectiveness of this new fairness scheme increase as the transfer
delay of the SAT-token decreases. Since the Meta-Ring (unlike token ring) allows
concurrent transmission, it has been further shown that when the SAT-token is used,
the fairness and correct operation are preserved even during stabilization time, when
there are several SAT-tokens in the system, as long as the TMA scheme is round-robin
and fair.
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Abstract. We consider the problem of finding long paths and cycles in Hamiltonian graphs.
The focus of our work is on sparse graphs, e.g., cubic graphs, that satisfy some property known to
hold for Hamiltonian graphs, e.g., k-cyclability.

We first consider the problem of finding long cycles in 3-connected cubic graphs whose edges have

weights wi ≥ 0. We find cycles of weight at least (
∑
wa

i )
1
a for a = log2 3. Based on this result, we

develop an algorithm for finding a cycle of length at least m(log3 2)/2 ≈ m0.315 in 3-cyclable graphs
with vertices of degree at most 3 and with m edges. As a corollary of this result, for arbitrary graphs
with vertices of degree at most 3 that have a cycle of length l (or, more generally, a 3-cyclable minor
with degrees at most 3 and with l edges), we find a cycle of length at least l(log3 2)/2.

We consider the graph property of 1-toughness that is common to Hamiltonian graphs and 3-
connected cubic graphs, and we try to determine if 1-toughness implies the existence of long cycles.
We show that 2-connectivity and 1-toughness, for constant degree graphs, may give cycles that are
only of logarithmic length. However, we exhibit a class of 3-connected 1-tough graphs with degrees
up to 6, where we can find cycles of length at least mlog3 2/2.

Key words. long paths and cycles, Hamiltonian graphs, approximation algorithms
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1. Introduction. Over the last decade, there has been tremendous progress in
the area of approximation algorithms. For most canonical NP-hard problems, either
dramatically improved approximation algorithms have been devised, or strong nega-
tive results have been established, leading to a substantially improved understanding
of the approximability of these problems. However, there is one problem which has
resisted all attempts at devising either positive or negative results—longest paths and
cycles in undirected graphs. Essentially, there is no known algorithm which guaran-
tees an approximation ratio better than n/polylog(n), and there are no hardness of
approximation results that explain this situation. This is true even for the problem
of finding long paths and cycles in bounded-degree Hamiltonian graphs, and indeed
it has been conjectured that this special case is already very hard to approximate.

We examine the following question: If a graph has a Hamiltonian cycle, what is
the longest cycle that can be found in polynomial time? Our approach is to select
properties of Hamiltonian graphs and use them to construct long cycles. For instance,
Hamiltonian graphs are k-cyclable for all k; i.e., any k vertices lie on a common cycle.
For 3-cyclable graphs with vertices of degree at most 3, we find a cycle of length at
least m(log3 2)/2. Before describing these and other results in greater detail, we briefly
review the previous work in this area.
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Previous work. The first approximation algorithm was due to Monien [11], who
gave a polynomial-time algorithm for finding paths of length Ω(logn/ log log n) in
Hamiltonian graphs. Fürer and Raghavachari [7, 8] and Karger, Motwani, and Ramku-
mar [10] improved this to find paths of length Ω(logn) in Hamiltonian graphs. Karger,
Motwani, and Ramkumar also pointed out that the Hamiltonian cycle problem ap-
pears difficult even in cubic graphs and devised an algorithm for finding paths of
length Ω(

√
n log n) in random cubic Hamiltonian graphs. Alon, Yuster, and Zwick [1]

presented an algorithm for finding paths of length c log n for any constant c as long
as the graph had such a path (no assumption of Hamiltonicity). A recent result of
Vishwanathan [14] gives an algorithm for finding paths of length Ω((logn/ log log n)2)
in Hamiltonian graphs.

The situation from the point of view of hardness results is equally dismal. Karger,
Motwani, and Ramkumar [10] showed that, unless P = NP, it is impossible to find
paths of length n − nε in Hamiltonian graphs for any ε. They also established that
there is no constant-factor approximation algorithm for the longest path problem (un-

less P = NP) and that, if there is a polynomial-time algorithm with ratio 2O(log1−ε n),

then NP ⊆ DTIME(2O(log1/ε n)). They extend the latter result to bounded-degree
graphs and conjecture that the problem is as hard even in bounded-degree Hamilto-
nian graphs. More recent work, of Bazgan, Santha, and Tuza [3], establishes that the
longest path problem cannot be approximated within constant factors in cubic Hamil-
tonian graphs. They also showed that, for any ε > 0, this problem is not approximable

within ratio 2O(log1−ε n) unless NP ⊆ DTIME(2O(log1/ε n)).

Overview of results. The focus of our work is on sparse graphs, e.g., cubic graphs,
that satisfy some property known to hold for Hamiltonian graphs, e.g., k-cyclability.
It was conjectured by Bondy and Simonovits [4] that every 3-connected cubic graph
has a cycle of length at least nc for some constant c > 0. This was verified by
Jackson [9], who showed that 3-connected cubic graphs have cycles of length at least
nc for c = log2 (1 +

√
5) − 1 ≈ 0.69. A key tool in our work is a constructive and

generalized version of this result. In section 2, we consider the problem of finding
long cycles in 3-connected cubic graphs whose edges have weights wi ≥ 0. We find

cycles of weight at least (
∑

wai )
1
a for a = log2 3; the exponent

1
a ≈ 0.63 is smaller

than that of Jackson, but the proof is much simpler and constructive and also gives
the first result for the weighted case. (We note that the best upper bound known [4]
for 3-connected cubic graphs has exponent log 8/ log 9 ≈ 0.96.)

Based on our algorithm for weighted cycles in 3-connected cubic graphs, together
with an algorithm given in section 3 for finding a cycle through three given edges
in 3-connected cubic graphs when such a cycle exists, we describe in section 4 an
algorithm for finding cycles of length at least m(log3 2)/2 in 3-cyclable graphs with
vertices of degree at most 3. As a corollary, we find a cycle of length at least l(log3 2)/2

in any graph with vertices of degree at most 3 that has a 3-cyclable minor with degrees
at most 3 and with l edges. (Note that a cycle of length l is such a minor.) A similar
approximation for the longest path problem in graphs with vertices of degree at most
3 follows from this result.

In section 5, we consider the graph property of 1-toughness that is common to
Hamiltonian graphs and 3-connected cubic graphs, and we try to determine if 1-
toughness implies the existence of long cycles. We show that 2-connectivity and
1-toughness, for constant degree graphs, may give cycles that are only of logarithmic
length and only slightly longer paths. However, we exhibit a class of 3-connected 1-
tough graphs with degrees up to 6 where we can find cycles of length at leastmlog3 2/2.
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2. Weighted 3-connected cubic graphs. In this section, we establish the
following result.

Theorem 2.1. Let G(V,E) be an n-vertex, 3-connected, cubic graph. Suppose
that each edge ei ∈ E has associated with it a weight wi ≥ 0. Then G has a cycle of
total weight at least

La(w) =
(∑

wi
a
) 1

a

for a = log2 3 ≈ 1.58, and such a cycle can be found in polynomial time. In the unit

weight case, this gives a cycle of length at least ( 3
2n)

d
for d = log3 2 ≈ 0.63.

The rest of this section is devoted to the proof of this theorem. We first prove
some relevant lemmas. The bound will follow from combining and dropping weights
as follows.

Lemma 2.2. Consider a collection of weights wi ≥ 0. Suppose we repeatedly
perform one of the following operations: either select two weights and replace them
with their sum or select three weights, drop the smallest one, and replace the other
two with their sum. In the end, when only one weight remains, it will be at least

La(w) = (
∑

wi
a)

1
a for a = log2 3.

Proof. We show that the quantity
∑

wi
a is not reduced by either operation.

That is, if 0 ≤ x ≤ y ≤ z, then xa + ya + za ≤ (y + z)
a
. We can assume x = y.

If z = y, then 3ya = (2y)
a
. As z increases, d

dz2y
a + za = aza−1 ≤ d

dz (y + z)
a
=

a(y + z)
a−1

.
We shall simplify the graph by removing and combining edges so that the weights

are treated as in Lemma 2.2. We define an operation on cubic graphs which selects an
edge h, removes it from the graph, and then collapses the two resulting paths of length
2 into single edges. We will refer to this as the H-transform applied at edge h; the
transformation is illustrated in Figure 2.1. Note that, when we apply the H-transform
to a cubic graph G with n vertices and 3n/2 edges, we will obtain a cubic graph G′

with n− 2 vertices and (3n/2)− 3 edges.

T
t

1

2 3
1’

2’3’
1

2 3

a

v

b d

c a

b d

c

h

Fig. 2.1. An illustration of the H-transform and the T-transform.

Lemma 2.3. Let G be a 3-connected cubic graph with no triangles. Then there
exists a vertex v such that applying the H-transform at any of the three edges incident
on v will result in a new graph G′, which is also a 3-connected cubic graph.

Proof. We claim that applying the H-transform at an edge h of a 3-connected
cubic graph G with no triangles results in a new graph G′ which is also 3-connected
and cubic if and only if the graph G does not have two other edges e, f , such that
e, f, h are not all three incident to the same vertex, and removing e, f, h disconnects G.

The “only if” part is immediate since, if G has two such edges e, f , then, in G′,
the two edges e, f , or possibly edges obtained from them after collapsing paths of
length 2 into single edges, will disconnect G′, contrary to 3-connectivity.
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For the “if” part, suppose that G′ is not 3-connected. Then G′ has two edges l,m
that disconnect it. If l is a contracted path of length 2 from G, then the middle vertex
of this path, on which h is incident, together with m disconnect G, contrary to the
3-connectivity of G. So h, l,m are edges in G that separate it, not all three incident
to the same vertex, so these are the required edges e, f, h, completing the proof of the
“if” part.

We can assume that G has three edges e, f, g whose removal disconnects it into
two components K and K ′ having at least two vertices each. (Otherwise, any v will
have the desired property, by the preceding claim.) Choose such a configuration with
K minimal. Since K is not a triangle, it has some vertex v on which none of e, f, g is
incident. Let h be an edge incident on v, drop h, and combine each of the two resulting
paths of length 2 into single edges to obtain G′. Suppose G′ is not 3-connected. Then,
by the claim, G has two edges l,m such that h, l,m are edges in G that separate it,
not all three incident to the same vertex. If either K or K ′, say, K ′, has exactly one
of h, l,m in it, say, l, then l would have to separate one of e, f, g from the other two,
say, e, but then e, l would separate G, contradicting 3-connectivity. So we can assume
that none of h, l,m is in K ′. However, this contradicts the minimality of K.

While Lemma 2.3 assumed the absence of triangles, we must be able to handle
triangles. To this end, we define an operation for removing a triangle T = {u, v, w}
which involves replacing the three vertices in T by a “supervertex” t whose three
incident edges are the three edges incident on u, v, and w that were not a part of the
triangle T (see Figure 2.1). It is obvious that applying this transformation to a cubic
graph G will result in a cubic graph G′. Moreover, since any two edges separating G′

would also separate G, this transformation also preserves 3-connectivity.
Lemma 2.4. Let G 
= K4 be a 3-connected cubic graph having at least one triangle

T . If T is replaced by a supervertex, then the resulting graph G′ is also 3-connected
and cubic.

We now provide the proof of Theorem 2.1. Let G be a 3-connected cubic graph.
If G has no triangle, then we select v as in Lemma 2.3, and, if the three edges incident
on v are 1, 2, and 3 of weights w1 ≤ w2 ≤ w3, we remove edge 1 and combine edges
2 and 3. (The two edges at the other end of 1 also get combined.) Notice that the
combination of weights is as in Lemma 2.2.

If G 
= K4 has triangles, we can replace a triangle with a supervertex as in
Lemma 2.4. We must decide what to do with the weights inside the triangle. For a
triangle T with incident edges 1, 2, and 3, we can label the edges of T with 1′, 2′, and
3′, where, if 1 was incident on a vertex of T , then label 1′ goes to the edge joining
the other two vertices of T , and similarly for 2 and 3 (see Figure 2.1). The weights
of 1′, 2′, and 3′ are then added to 1, 2, and 3, respectively. Notice that, if 1 is later
removed by an application of Lemma 2.3, then also removing 1′ gives a path 2, 3′,
2′, and 3, thus justifying the way the weights are handled. This works recursively
for supervertices consisting of triangles whose vertices are themselves supervertices
consisting of triangles, and so on.

Finally, if G = K4, then label disjoint pairs of edges 1, 1
′, 2, 2′, and 3, 3′. Then

removing 1, 1′ gives a cycle 2, 3′, 2′, 3, so we can remove the pair of disjoint edges of
least weight and apply Lemma 2.2. This completes the proof.

3. Cycle through three edges. In this section, we establish the following
result.

Proposition 3.1. Let G be a 3-connected cubic graph, and let e, f, g be three
edges in it. Then G has a cycle through e, f, g if and only if removing e, f, g does not
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disconnect G. Such a cycle can be found in polynomial time.

If removing e, f, g disconnects G into two components K and K ′, then the cycle
would have to go between K and K ′ an even number of times and so could not include
all three edges. This proves the “only if” part.

The proof of the “if” part is based on reducing the graph to a K4 by repeatedly
applying the H-transform and the T-transform. If e, f, g are three edges in K4 that
do not disconnect it, then they are not all three incident to the same vertex, so they
either form a triangle or a path of length 3 that can be completed to a cycle of length
4. This produces the desired cycle.

We observe that we can find a cycle through two given edges l,m in G by selecting
an endpoint u of l and an endpoint v of m, finding three disjoint paths from u to v,
and observing that some two of these three paths form the desired cycle.

We denote by G∗ the graph obtained from G by removing e, f, g. By assumption,
G∗ is connected.

Suppose first that G has no triangles. Then we can find a vertex v such that
applying the H-transform at any of the three edges h1, h2, h3 incident on v will result
in a new graph G′ which is also a 3-connected cubic graph. There are then three
cases.

Case 1. None of e, f, g is incident on v. If removing h1 from G∗ does not discon-
nect G∗, then applying the H-transform at h1 will result in a graph G′ such that the
three edges e, f, g, or edges obtained from them by contracting paths of length 2, do
not disconnect it. Otherwise, removing h1 from G∗ disconnects it, creating, in partic-
ular, a component C1 not containing v. Similarly, removing h2 or h3 from G∗ creates
components C2, C3 not containing v, respectively. Since G is 3-connected, the three
edges e, f, g must go from C1 to C2, from C1 to C3, and from C2 to C3, respectively.
However, then h1, e, f separate G, and we could not have applied the H-transform at
h1 unless C1 consists of a single vertex. In this last case, e, f get collapsed to a single
edge l so that we just need to find a cycle through l, g in G′, and this can be done as
observed above.

Case 2. Precisely one of e, f, g is incident on v. Say g = h3. As before, if
removing h1 from G∗ does not disconnect G∗, then we can apply the H-transform at
h1. Otherwise, removing h1 or h2 from G∗ creates components C1, C2 not containing
v, respectively. The edge g = h3 goes from v to either C1 or C2, say, C2. The edges
e, f must go from C1 to C2 since G is 3-connected. However, then h1, e, f separate G,
and, as before, we would not have applied the H-transform at h1 unless C1 consists
of a single vertex, in which case e, f get collapsed to a single edge l, and we can find
a cycle through l, g in G′.

Case 3. Precisely two of e, f, g are incident on v. Say f = h2 and g = h3. Then
the H-transform at h1 collapses f, g to a single edge l, and we can find a cycle through
l, e in G′.

It is not possible that all three of e, f, g are incident on v since they would dis-
connect G. This completes the study of the H-transform. We consider next the
T-transform, with four cases.

Case 1. None of e, f, g are inside the triangle T . Then after replacing T with a
supervertex t to obtain G′, the three edges e, f, g will still not disconnect G′.

Case 2. Precisely one of e, f, g is inside the triangle T . Say e is in T . Then, after
replacing T with a supervertex t, it is sufficient to find a cycle in G′ through f, g, and
t; we can always ensure that e gets visited inside T . If either f or g is incident on t,
then we just need to find a cycle through f, g, and this is done as observed before.
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Otherwise, to ensure that t is visited, we can let e′ be one of the three edges 1, 2, 3
incident on T and find a cycle through e′, f, g in G′, provided that these three edges
do not disconnect G′. If they do, then each of the edges 1, 2, 3 disconnects G∗ (even
if e is included in G∗), creating components C1, C2, C3 not containing T , respectively.
Then adding two edges f, g to G∗ to obtain G will not make it 3-connected, which is
a contradiction.

Case 3. Precisely two of e, f, g are inside the triangle T . Say e, f are the edges
1′, 2′ in T . Let e′, f ′ be the two corresponding edges 1, 2 incident to T . Clearly,
e′, f ′, g disconnect G if and only if e, f, g disconnect G, so we can assume they do not.
A cycle entering and leaving T at e′, f ′ can be made to go through e, f inside T ; we
can thus carry out the T-transform.

Case 4. The three edges e, f, g constitute the triangle T . Then T is the desired
cycle.

This completes the proof.

4. 3-cyclable graphs. A graph G is said to be k-cyclable if, for any choice
of k vertices, there is a cycle in G containing all k of them. Clearly, if a graph
has a Hamiltonian cycle, it is k-cyclable for all k. If k is a constant, then, given k
vertices, one can find in polynomial time a cycle containing all k of them if one exists.
This requires finding k disjoint paths connecting the vertices. A polynomial-time
algorithm for the disjoint paths problem with a constant number of paths was given
by Robertson and Seymour [12, 13] in their work on graph minors. For 3-cyclable
graphs with vertices of degree at most 3, however, finding a cycle through three
vertices will require only the result in section 3. Note that, in particular, 3-connected
cubic graphs are 3-cyclable.

In the rest of this section, we will establish the following result (and its corollary).
Theorem 4.1. Let G be a 3-cyclable graph with vertices of degree at most 3 and

with m edges. Then we can find, in polynomial time, a cycle in G of length at least
m

1
2a , where a = log2 3.

Proof. We will need three properties of the 3-cyclable graph G.
1. G is 2-connected since it is 2-cyclable.
2. If there is an edge f = uv such that the subgraph G− {u, v} on the vertices
other than u, v has two or more connected components, then we can remove
the edge f from G and still have a 3-cyclable graph. For, if a cycle uses
f , it could use instead a path from u to v in the connected component of
G − {u, v} not visited by the original cycle. (The justification for counting
edges so removed will be given in the following corollary.)

3. For any two vertices u, v, the graph G−{u, v} on the remaining vertices has at
most two connected components. For, if it has at least three components, then
three vertices in the three components cannot be on a cycle, contradicting
3-cyclability.

Suppose there are two edges e1, e2 that separateG into two componentsK andK ′.
If K has no edge separating the two vertices incident on e1, e2, then we say that K is
a 2-component. The graph of a 2-component K is obtained from K by connecting the
two vertices incident on e1, e2 by an edge e and replacing all maximal 2-components
contained in it by single supervertices. The graph of a 2-component is a 3-connected
graph with edges replaced by paths. This follows from the fact that, if we replace all
maximal paths whose vertices other than the starting and ending vertices have degree
2 by single edges and add the edge e, then there will be no parallel edges, by properties
(1), (2), and (3). The resulting graph must be 3-connected since, otherwise, we could
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identify a new 2-component contained in it, contrary to maximality. At the top level
of G, if G is 3-connected, apply Theorem 2.1. Otherwise, select a 2-component K,
adjacent via two edges e1, e2 to its complement K ′, which has some r ≥ 0 edges,
each separating the two vertices incident on e1, e2, thus decomposing K ′ into (r + 1)
2-components; so G is a cycle of (r + 2) 2-components.

So suppose G is not 3-connected, and perform the above decomposition into 2-
components. The 2-components so selected have a tree structure: at the top level,
we have a cycle of 2-components, which are viewed as the children of the root; for a
2-component in this tree, its children are the maximal 2-components contained in it.

We assign a weight wi to each 2-component in the tree so that, if the 2-component
has mi edges, then wi ≥ mi

d, where d = 1
a = log3 2. We do this inductively, starting

at the leaves. So suppose, for a given 2-component, we have assigned weights to the
maximal 2-components contained in it. The graph of the 2-component is a 3-connected
graph with edges replaced by paths. To every such path, assign a weight equal to
the sum of the weights of the supervertices in it plus the number of edges connecting
these supervertices. The special edge e is given weight 0. Apply then Theorem 2.1 to

the 3-connected graph, obtaining a cycle of weight w ≥ (∑wai )
1
a ≥ (∑mi)

1
a = md.

Assign weight w to the 2-component, completing the induction. At the top level, we
have a cycle of 2-components, so we add their weights plus the number of edges in
the cycle.

Unfortunately, the cycles that we selected for each 2-component to define the
weights of the 2-component do not necessarily connect since the cycle for a 2-compo-
nent may not go through the special edge e that links it to its parent in the tree.
We shall define cycles that do go through e so that, if a 2-component has weight w,
then the cycle through e visits at least w

1
2 ≥ m

1
2a edges other than e, and this will

complete the proof.

Consider a 2-component whose weight w was defined by finding a cycle C of
weights wi, and suppose, for each i, we have found a path inside the corresponding
maximal 2-component of length at least wi

1
2 . We write wi = εiw, with

∑
εi = 1.

Clearly, if C goes through e, we can just select C and have a cycle through e of length
at least

∑
wi

1
2 ≥ w

1
2 since

∑
εi

1
2 ≥ 1, where the sums are over the weights in C.

Suppose C does not go through e. By 3-connectivity, we can join an endpoint of e
to C with three disjoint paths and, in particular, obtain two disjoint paths joining the
two endpoints of e to C, respectively. The two disjoint paths enter C at two distinct
vertices, thus decomposing the weights of C into two subsets S and T delimited by
these two vertices. If

∑
εi

1
2 ≥ 1 when the sum is taken over the weights in either S or

T , then we are done. If this is not the case, then we will show that the largest weight
w1 = ε1w in S and the largest weight w2 = ε2w in T satisfy ε1

1
2 + ε2

1
2 > 1. If w2 = 1,

then the cycle through e and S goes through the edge of weight w1 and at least one
other edge (of weight at least w2 = 1). So we can assume w1, w2 > 1. It will then be
sufficient to make the cycle through e go through the edges corresponding to the two
weights w1, w2. Each of these two edges is a path with a maximal 2-component in it;
then we can select two representative vertices from the two maximal 2-components,
plus a vertex from the complement of the 2-component to represent edge e; a cycle
through these three vertices must exist by 3-cyclability; this implies that there is a
cycle through the three selected edges in the graph of the 2-component, and since this
graph is a 3-connected cubic graph, such a cycle can be found in polynomial time by
Proposition 3.1.

It remains to prove the claim about the sum of the ε
1
2
i . Notice that, if wi ≥ wi′
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and 0 ≤ δ ≤ wi′ , then wi
1
2 + wi′

1
2 ≥ (wi + δ)

1
2 + (wi′ − δ)

1
2 . For the argument, we

modify the weights by choosing the appropriate values δ as follows. We can ensure
that S will have at most one nonzero weight smaller than w1 and, similarly, that T
will have at most one nonzero weight smaller than w2. Thus S has s ≥ 1 weights
equal to w1 and one weight 0 ≤ w′1 < w1; similarly, T has t ≥ 1 weights equal to w2

and one weight 0 ≤ w′2 < w2.

We thus have sε1 + ε′1 + tε2 + ε′2 = 1, with sε
1
2
1 + ε′1

1
2 < 1 and tε

1
2
2 + ε′2

1
2 < 1. We

write ε′1 = λε1 with 0 ≤ λ < 1 and let s′ = s + λ. Similarly, we write ε′2 = µε2 with

0 ≤ µ < 1 and let t′ = t + µ. Then s′ε1 + t′ε2 = 1. Also, s′ε
1
2
1 ≤ (s + λ

1
2 )ε

1
2
1 < 1,

and similarly t′ε
1
2
2 < 1. However, then s′ε1 < ε

1
2
1 and t′ε2 < ε

1
2
2 , so ε

1
2
1 + ε

1
2
2 > 1. This

completes the proof.

Corollary 4.2. Let G be a graph with vertices of degree at most 3. Let l be the
maximum number of edges in a 3-cyclable minor of G with degrees at most 3. (So l
is at least the length of the longest cycle in G.) Then we can find, in polynomial time,
a cycle of length at least l(log3 2)/2.

Proof. Note that a 3-cyclable minor K with degrees at most 3 is obtained from
a subgraph H of G by skipping some vertices of degree 2 in H so that an edge in K
corresponds to a path with internal vertices of degree 2 in H.

We can assume G is 2-connected. Otherwise, some edge f separates G into two
components, and the 3-cyclable minor must be contained in one of these two compo-
nents. We may thus remove f ; the problem decomposes into 2-connected subproblems.

The structure of the graph as a tree of 2-components is still the same as before,
even if the graph is not 3-cyclable. The only difference is that we cannot avoid parallel
edges in the graph of a 2-component. Parallel edges occur only in one new kind of 2-
component: Let P3 be the graph consisting of three parallel edges joining two vertices;
the graph of a 2-component may now also be P3, with one of the three parallel edges
being the special edge e linking to the parent in the tree, and one or both of the other
two parallel edges f1, f2 being a path of vertices corresponding to 2-components that
are children of this 2-component in the tree.

We proceed to simplify the graph as follows, from the leaves of the tree up to
the root. For the special P3 2-component, we remove one of the two parallel edges
f1, f2—the one corresponding to a subgraph of smaller size. Thus we have no parallel
edges anymore, as before.

As we go up the tree, we must also make sure that we will be able to obtain,
from a cycle in a 2-component, a new cycle containing the special edge e. This is
not possible if the two edges f1 and f2 with weights w1 and w2, together with e,
separate the 3-connected graph of the 2-component. All such possible pairs (f1, f2)
which together with e separate the 3-connected graph must be disjoint. We replace
one of f1, f2, the one corresponding to a subgraph of smaller size, with a single edge
(of weight 1).

If the 3-cyclable minor of size l reaches the root of the tree of 2-components, then
the simplified graph will have m ≥ l edges, by induction from the leaves up to the
root of the tree of 2-components. The reason is that, when f1 or f2 is removed or
reduced to a single edge, the 3-cyclable minor of size l necessarily does have vertices
in one of the two subgraphs corresponding to f1 and f2. We then get a cycle of length
at least m(log3 2)/2 with the previous algorithm.

It may seem that one should not count the edges removed to satisfy property
2 above. However, when a single edge f1 is removed from P3, at least one edge
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corresponding to e is later added, and one can count both edges since x
1
2a + 1 ≥

(x+ 2)
1
2a for a, x ≥ 1.

If the 3-cyclable minor of size l does not reach the root of the tree of 2-components,
consider the 2-component closest to the root that it reaches. The 3-cyclable minor
does not have vertices corresponding to the special edge e connecting this 2-component
to its parent. On this 2-component, we do not simplify the graph for pairs of edges
f1, f2 which together with e disconnect the graph of the 2-component (neither in the
case of P3 nor in the case of a 3-connected graph); we assign to e weight 1. As before,
we have m ≥ l edges by induction from the leaves of the tree up to this 2-component
and get a cycle of length at least m(log3 2)/2 with the previous algorithm.

An algorithm that approximates the longest cycle problem can be used to approx-
imate the longest path problem by guessing and adding the edge that would complete
the long path into a cycle and then removing this edge after a long cycle is found and
getting back a path. In our case, since adding an edge could create two vertices of
degree four, we can instead add the edge between two new vertices inserted in the
middle of two existing edges.

5. Long cycles and toughness. A graph G is said to be 1-tough if it has the
following property: For every set S of vertices, the graph G − S on the remaining
vertices has at most |S| components. There has been interest in devising algorithms
for long paths/cycles in graphs that are 1-tough [5, 10, 14] because Hamiltonian and
weakly Hamiltonian graphs are 1-tough. There has been some work that shows that,
for graphs with large degree sums, 1-toughness implies the existence of long cycles [2].
In the above results, 3-connected cubic graphs are 1-tough since every component is
delimited by at least three separating vertices, while each separating vertex delimits
at most three components. The graphs in Theorem 4.1 are not necessarily 1-tough.
However, all 2-connected graphs with vertices of degree at most 3 can be made 1-
tough without significantly altering the structure of the graph, namely, by replacing
each vertex of degree 3 with a triangle; then each vertex of S delimits at most two
components of G − S, and each component of G − S is delimited by at least two
vertices of S, giving 1-toughness.

We show that there are 1-tough cubic graphs that are only 2-connected, and
where the length of the longest cycle is only logarithmic in the number of vertices,
thus giving an exponential gap with respect to the 3-connected case for cubic graphs.

Theorem 5.1. There are arbitrarily large 1-tough, 2-connected, n-vertex k-
regular graphs for k ≥ 3 whose longest cycle has length O(k logk n) and whose longest
path has length O(k log2

k n). The graphs for k = 3 are planar.
Proof. We give an inductive construction, and, for the induction to go through,

we will need a condition that is slightly stronger than 1-toughness. We say that a
graph with some chosen special edges is extra 1-tough if, when counting the number
of components of G−S, we also count as components any special edges both of whose
endpoints are in S; the total is still at most |S|. Notice that Kk+1, with all edges
incident to one chosen vertex v as special, is extra 1-tough.

Suppose we have constructed a 2-connected k-regular graph G with some special
edges, starting with Kk+1 as just described, and this graph is extra 1-tough. We select
a special edge e and replace it with H = Kk+1 as follows. Break one of the special
edges (v, w) in H, and replace e with H by connecting v and w to the vertices to which
e is incident. The resulting graph is still 2-connected, k-regular, and extra 1-tough.
To see this last property, notice that the t vertices in S not in H still give at most t
components, while the |S| − t vertices in H subdivide the component corresponding
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to e as follows. The vertices v and w may each create at most one extra component,
while the remaining vertices in H create no component except for the special edge
(v, u) for each u chosen if v is also chosen. This proves extra 1-toughness.

We apply this construction inductively. Starting with Kk+1, we replace the k
special edges with H, where each copy of H brings in k − 1 special edges. We then
replace the k(k − 1) special edges with a copy of H again, so we now have k(k − 1)2
special edges, and we continue in this fashion. The resulting graph will have the
structure of two balanced trees of degree k connected at the leaves, where one tree
corresponds to the subdivision into special edges at v, while the other tree brings the
special edges back together into the remaining vertices of H−v. The trees have height
O(logk n), and the longest cycle will go from one root to the other and back, visiting
the k vertices in H − v for each vertex in the second tree. The cycle will thus have
length at most O(k logk n). The longest path has a middle section that goes from one
root v1 to the other root v2, then back to a child of v1, then back to a child of a child
of v2, and so on. This gives the O(k log2

k n) bound for paths.

It remains open whether 3-connected graphs always have cycles or paths of length
nc for some c < 1 by also assuming the graph to be planar or of bounded degree. It was
shown by Karger, Motwani, and Ramkumar [10] that there are 3-connected graphs
that are 1-tough, have a 2-factor, and are 3-cyclable, with longest path of length
O(log n); the examples, however, have two vertices adjacent to all vertices.

Theorem 5.2. Let G be a 3-connected graph with maximum degree at most 6
such that every vertex of degree 4 belongs to at least one triangle, every vertex of degree
5 belongs to at least two edge-disjoint triangles, and every vertex of degree 6 belongs
to at least three edge-disjoint triangles. Then G is 1-tough. Let T be a minimal set of
triangles satisfying the conditions on vertices of degree 4, 5, and 6. If no two vertices
of degree 5 or 6 are adjacent, then no triangle in T shares two different edges with
two other triangles of T . If this condition on the triangles of T holds, then we can
find in polynomial time a cycle of length rlog3 2, where r is the number of edges of G
minus 2/3 the number of edges belonging to triangles of T .

Proof. The triangles that are assumed to exist for vertices of degree 4, 5, and
6 imply that the neighborhood of every vertex contains at most three independent
vertices. As a consequence, if we select a set S of vertices, each vertex of S will be
adjacent to at most three components of G− S. On the other hand, each component
of G− S is delimited by at least three vertices of S by 3-connectivity. It follows that
G− S has at most |S| components; that is, G is 1-tough.

Suppose now that the vertices of degree 5 or 6 are independent; thus their neigh-
bors are of degree 3 or 4. Since degree 4 vertices require only one triangle, it follows
that a vertex of degree 6 will not have any triangle in T other than the three edge-
disjoint triangles required to be in T . If a triangle t1 in T shares two distinct edges
with two triangles t2 and t3 in T , then some vertex v of t1 must be of degree 5; say,
it is a vertex v common to t1 and t2. If the vertex of t2 not on t1 and the vertex of
t3 not on t1 are the same, then we can drop t1 or t2 from T . Otherwise, either v also
belongs to t3, in which case t2 and t3 can be used as the two edge-disjoint triangles
for v and we can drop t1, or v does not belong to t3. In this last case, either the
triangle t4 which is edge-disjoint from t1 is also edge-disjoint from t2, in which case
we can drop t1, or it shares an edge with t2, in which case we can drop t2.

So we assume that every triangle of T shares at most one edge with other triangles
of T . We first consider the case where all triangles of T are edge-disjoint. It is known
that the operation of replacing a vertex u of degree at least 4 with two adjacent vertices
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v and w each having at least two neighbors, the neighborhoods of v and w being
disjoint and giving the neighborhood of u when combined, preserves 3-connectivity.
We give weight 1/2 to the edges of T and weight 1 to the remaining edges. We replace
each vertex of degree 4 with two vertices as just explained, with one of the two vertices
incident to a triangle in T , and give weight 0 to the edge joining the two new vertices.
For degree 5 vertices, we replace them with a path of length 2 of weight 0 edges, and
distribute the adjacencies to make the new vertices have degree 3, in such a way that
the first and last vertex of the weight 0 path are incident to two edge-disjoint triangles
in T . For degree 6 vertices, we replace them with a star of degree 3 consisting of three
weight 0 edges, so that the three leaves are incident to three edge-disjoint triangles in
T . By Theorem 2.1, we can find a cycle of weight at least rlog3 2 in the resulting cubic
graph. This cycle, however, might visit some vertex of the original graph more than
once. However, then it must visit two edges of the same selected triangle in T , and
these two edges of weight 1/2 can be replaced with a single direct edge, so we avoid
such conflicts and obtain a cycle of length at least rlog3 2 in the original graph.

Notice that a vertex of degree 6 belongs only to three edge-disjoint triangles in T ,
while a vertex of degree 5 can have at most two triangles sharing an edge in T . So only
two or three triangles can share an edge e. When this happens, we cannot preserve
all two or three triangles when introducing weight 0 edges, but we can preserve one
of them, say, t, and introduce single weight 0 edges at the endpoints of e separating
t from the other one or two triangles that used to share e. Notice that, if there are
two separated triangles, they cannot both give a conflict at their vertices not on e, so
we can restrict our attention to the case of only one separated triangle. We thus have
a gadget with five edges of weight 1/2, at most two edges of weight 0, and at most
four incoming edges. This gadget is traversed by at most one or two paths. We can
verify that these paths can be modified within the gadget so as to avoid conflicts and
in such a way that the resulting path lengths are at least the sum of the original path
weights. This completes the proof.

A graph is said to be α-tough if, for every set S of vertices that leaves a graph
G−S on the remaining vertices with k ≥ 2 connected components, we have |S| ≥ αk.
It has been conjectured that there is a constant α such that all α-tough graphs have
a Hamiltonian cycle. It is known that it is not enough to take α = 1.5: Consider a
3-connected cubic graph that does not have a Hamiltonian cycle, and replace every
vertex with a triangle; since every vertex of the resulting graph has at most two
independent neighbors, it follows that every vertex of S is adjacent to at most two
components of G− S, while every component of G− S is delimited by at least three
vertices of S by 3-connectivity, giving 1.5-toughness. In this direction, we would like
to know if (1 + ε)-tough graphs with ε > 0, which are, in particular, 3-connected,
always have cycles of length at least nc for some c = c(ε) < 1.

Acknowledgment. We are grateful to Sudipto Guha for several helpful discus-
sions.
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[8] M. Fürer and B. Raghavachari, Approximating the minimum-degree Steiner tree to within
one of optimal, J. Algorithms, 17 (1994), pp. 409–423.

[9] B. Jackson, Longest cycles in 3-connected cubic graphs, J. Combin. Theory Ser. B, 41 (1986),
pp. 17–26.

[10] D. Karger, R. Motwani, and G. D. S. Ramkumar, On approximating the longest path in a
graph, Algorithmica, 18 (1997), pp. 82–98.

[11] B. Monien, How to find long paths efficiently, Ann. Discrete Math., 25 (1985), pp. 239–254.
[12] N. Robertson and P. D. Seymour, An outline of a disjoint paths algorithm, in Paths, Flows,

and VLSI-Layout, N. Korte et al., eds., Springer-Verlag, Berlin, 1990, pp. 267–292.
[13] N. Robertson and P. D. Seymour, Graph minors XIII. The disjoint paths problem, J. Com-

bin. Theory Ser. B, 63 (1995), pp. 65–110.
[14] S. Vishwanathan, An approximation algorithm for finding a long path in Hamiltonian graphs,

in Proceedings of the Eleventh Annual ACM–SIAM Symposium on Discrete Algorithms,
San Francisco, CA, 2000, pp. 680–685.



IMPROVED APPROXIMATION ALGORITHMS FOR THE VERTEX
COVER PROBLEM IN GRAPHS AND HYPERGRAPHS∗

ERAN HALPERIN†

SIAM J. COMPUT. c© 2002 Society for Industrial and Applied Mathematics
Vol. 31, No. 5, pp. 1608–1623

Abstract. We obtain improved algorithms for finding small vertex covers in bounded degree
graphs and hypergraphs. We use semidefinite programming to relax the problems and introduce
new rounding techniques for these relaxations. On graphs with maximum degree at most ∆, the
algorithm achieves a performance ratio of 2 − (1 − o(1)) 2 ln ln∆

ln∆
for large ∆, which improves the

previously known ratio of 2− log∆+O(1)
∆

obtained by Halldórsson and Radhakrishnan. Using similar
techniques, we also present improved approximations for the vertex cover problem in hypergraphs.
For k-uniform hypergraphs with n vertices, we achieve a ratio of k − (1 − o(1)) k ln lnn

lnn
for large

n, and for k-uniform hypergraphs with maximum degree at most ∆ the algorithm achieves a ratio

of k − (1 − o(1))
k(k−1) ln ln∆

ln∆
for large ∆. These results considerably improve the previous best

ratio of k(1 − c/∆ 1
k−1 ) for bounded degree k-uniform hypergraphs, and k(1 − c/n k−1

k ) for general
k-uniform hypergraphs, both obtained by Krivelevich. Using similar techniques, we also obtain an
approximation algorithm for the weighted independent set problem, matching a recent result of
Halldórsson.

Key words. vertex cover, semidefinite programming, approximation algorithms

AMS subject classification. 68W25

PII. S0097539700381097

1. Introduction. Given a hypergraph H = (V,E), a vertex cover of H is a set
C ⊂ V such that, for every e ∈ E, there exists v ∈ e ∩ C. The vertex cover problem
is the problem of finding a vertex cover of minimum size. The weighted version of the
problem is obtained when every v ∈ V has a nonnegative weight w(v) and the goal is
to find a vertex cover of H of minimum total weight.

The vertex cover problem in hypergraphs is equivalent to the set cover problem.
An instance of the set cover problem is a set S and a collection C of subsets of S.
A cover of S is a subset X ⊆ C such that every s ∈ S is contained in one of the
sets of X. The goal is to find a cover of minimal size. It is clear that this is another
formulation for the vertex cover problem in a hypergraph, by identifying every edge
with an element of S, and every vertex with the subset that contains all the edges
containing it.

The greedy algorithm gives a (lnn + 1)-approximation ratio for the set cover
problem [5], where |V | = n. Moreover, the set cover problem cannot be approximated
within a factor of less than lnn unless NP ⊆ DTIME[nlog log n] [6].

As the approximation ratio for the vertex cover problem in general hypergraphs
cannot be improved, we consider some of its subproblems. We first consider the
vertex cover problem in bounded degree graphs. The vertex cover problem in graphs
is known to be APX-complete [22], and furthermore, it cannot be approximated within
a factor of 7

6 ≈ 1.1666 [15]. A 2-approximation algorithm for the vertex cover problem
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in a graph is trivial, one has to find a maximal matching in the graph and take all
its vertices as a cover. The best algorithms known for the problem were found by
Bar-Yehuda and Even [2] and by Monien and Speckenmeyer [21]. These algorithms
achieve a ratio of (2− ln lnn

2 lnn ), where n is the number of vertices in the graph.

In graphs with maximal degree ∆, Hochbaum [17] shows how to approximate the
vertex cover problem within a factor of (2− 2

∆ ). Halldórsson and Radhakrishnan [13]

improve this and give a (2− log ∆+O(1)
∆ )-approximation algorithm for the problem. We

improve this result and give a (2− (1− o(1)) 2 ln ln ∆
ln ∆ )-approximation algorithm using

semidefinite programming relaxations and new rounding techniques for the relaxed
solution. Notice that ln ln ∆

ln ∆ � ln ∆
∆ , and thus our algorithm substantially improves

the known algorithms.

We next consider the vertex cover problem in hypergraphs with edges of size at
most k for a given k. It is equivalent to the set cover problem restricted to instances
in which every element is found in at most k sets. For simplicity we consider k-
uniform hypergraphs, which are hypergraphs in which all edges are of size k. All
our results can be easily extended to the case where each edge is of size at most
k. A k-approximation algorithm is straightforward using a maximal matching. For

any fixed k, the best algorithm known [20] achieves a ratio of k(1 − c/n
k−1
k ). For

bounded degree k-uniform hypergraphs, the best algorithm known [20] achieves a

ratio of k(1 − c/∆
1

k−1 ). In this paper we present an algorithm which, for a fixed k,
achieves a ratio of (k − (1 − o(1))k(k − 1) ln ln ∆

ln ∆ ) for k-uniform hypergraphs, where
∆ is the maximal degree in the hypergraph. This result can be extended to the case
where k is allowed to grow slowly with ∆. For general k-uniform hypergraphs with n
vertices, our algorithm achieves a ratio of (k− (1− o(1))k ln lnn

lnn ). These results apply
to the set cover problems in which every element is contained in at most k sets. The
methods used in [2, 21] for graphs cannot be extended easily to hypergraphs, and thus
our techniques establish a uniform approach for the vertex cover problem in graphs
and in hypergraphs.

Finally, we show that our techniques can be easily used in other problems, and
we consider as an example the independent set problem in bounded degree graphs.
Given a graph G = (V,E), an independent set I ⊆ V is a set of vertices satis-
fying that no two vertices in I are adjacent. The independent set problem is the
problem of finding a maximum size independent set in G. If the vertices of G are
weighted, then the weighted version of the problem is finding a maximum weight
independent set in G. This problem was studied extensively by many researchers
[17, 13, 4, 3, 11, 12, 25, 10], and it is known to be hard to approximate within a factor
of n1−ε for any ε > 0, unless NP-hard problems have randomized polynomial time al-
gorithms [14]. For bounded degree graphs, Halldórsson and Radhakrishnan [12] found
the first nontrivial approximation algorithm which achieves a ratio of O(∆/ ln ln∆),
where ∆ is the maximal degree in the graph. Vishwanathan [25] found a polynomial
O(∆ ln ln∆/ ln∆)-approximation algorithm for the unweighted case. This algorithm
uses an algorithm of Alon and Kahale [1] as a black box, which by itself uses an algo-
rithm of Karger, Motwani, and Sudan [18] as a black box. We present an algorithm
which uses a more direct approach. Furthermore, our result extends to the weighted
case. Recently, a similar result for the weighted case was obtained independently by
Halldórsson [10].

To sum up, the following are the main improvements achieved in this paper:

• A polynomial time randomized algorithm for the weighted vertex cover prob-
lem in graphs which achieves a ratio of 2−(1−o(1)) 2 ln ln ∆

ln ∆ for large ∆, where
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∆ is the maximal degree in the graph (see Theorem 2.1). This substantially
improves the previous ratio of 2 − log ∆

∆ [13]. In particular, for large n, this

gives a ratio of 2− (1−o(1)) 2 ln lnn
lnn for general graphs, where n is the number

of vertices in the graph, which slightly improves the known 2 − ln lnn
2 lnn ratio

[2, 21].
• For every fixed k, a polynomial time randomized algorithm for the weighted
vertex cover problem in k-uniform hypergraphs which achieves a ratio of

k − (1 − o(1))k(k−1) ln ln ∆
ln ∆ , for large ∆, where ∆ is the maximal degree in

the hypergraph (see Theorem 4.1). In general k-uniform hypergraphs, the
algorithm achieves a ratio of k − (1− o(1))k ln lnn

lnn , where n is the number of
vertices in the hypergraph and n is large. (Note that the maximum degree
in this case is at most nk−1.) These results substantially improve the former

ratios of k(1− c/∆
1

k−1 ) and k(1− c/n
k−1
k ) [20].

• In section 5 we introduce a randomized Ω( log ∆
∆ log log ∆ )-approximation algo-

rithm for the independent set problem in weighted graphs, matching a recent
bound of Halldórsson [10].

The rest of the paper is organized as follows. In section 2 we describe an approx-
imation algorithm for the weighted vertex cover problem in bounded degree graphs,
p-claw free graphs, and sparse graphs. In section 4 we describe an approximation
algorithm for the weighted vertex cover problem in bounded degree hypergraphs, and
in section 5 we describe an approximation algorithm for the weighted independent set
problem in bounded degree graphs.

2. Vertex cover in graphs. We first need some notations and definitions. Let
G = (V,E) be a weighted graph with n vertices and m edges. Assume V = {1, . . . , n}
and that for every i ∈ V we have a positive weight wi. For a set S ⊆ V , let e(S) be
the set of edges in the subgraph induced by S. Let w(S) be the total weight of S,
i.e., w(S) =

∑
i∈S wi. Let ∆ denote the maximal degree in G. A p-claw in G is an

induced subgraph of G isomorphic to K1,p. G is a p-claw free graph if G does not
contain a p-claw. Let vc(G) denote the size of the minimal vertex cover in G.

2.1. Relaxations of the vertex cover problem. The minimum vertex cover
can be formulated using the following integer linear program:

Minimize
∑

wi · xi,
xi + xj ≥ 1 , (i, j) ∈ E,
xi ∈ {0, 1} , i ∈ V.

(1)

As solving integer programs is known to be NP-hard, this formulation of the
problem cannot help us directly in finding a good approximation algorithm. On the
other hand, a 2-approximation algorithm is obtained by using the following relaxation
to the integer program (1):

Minimize
∑

wi · xi,
xi + xj ≥ 1 , (i, j) ∈ E,
0 ≤ xi ≤ 1 , i ∈ V.

(2)

Let us denote the optimum of relaxation (2) by lp(G). It is clear that lp(G) ≤
vc(G), and it is easy to see that the set S = {i : xi ≥ 1

2} is a cover for G and that its
size is no more than 2 · lp(G). Solving relaxation (2) can be done in polynomial time
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using the ellipsoid method [8, 23], and therefore solving relaxation (2) and taking S
as a cover is a polynomial 2-approximation algorithm for the problem [16].

For the complete graph of n vertices with all weights equal to 1, the integrality
ratio of relaxation (2) is (2− 2

n ), i.e., the ratio vc(Kn)/lp(Kn) is at least (2− 2
n ), and

this ratio is attained when all variables are equal to 1
2 . In order to eliminate this case,

we define the following semidefinite relaxation:

Minimize
n∑
i=1

wi · 1 + v0 · vi
2

,

vi ∈ Rn, ‖vi‖ = 1 , i ∈ V,
(vj − v0) · (vi − v0) = 0 , (i, j) ∈ E.

(3)

Let us denote the optimum of relaxation (3) by sd(G). In [19] it is proved that
this is indeed a relaxation to the vertex cover problem. Moreover, they show that the
integrality gap of relaxation (3) is at least 2− ε for every constant ε > 0; i.e., for every
ε > 0 there is a graph Gε such that vc(Gε)/sd(Gε) is at least 2 − ε. They also show
that sd(G) ≤ lp(G) for every G, and therefore relaxation (3) is tighter.

By assigning every dot product vi · vj a variable yij , relaxation (3) can be formu-
lated as minimizing a linear function of the variables yij , subject to linear constraints
on the variables and the constraint that the matrix Y = {yij}1≤i,j≤n is positive
semidefinite; i.e., for every v ∈ Rn, vtY v ≥ 0. For every ε > 0, this program can
be solved within an additive error of ε in polynomial time in log 1

ε and n using the
ellipsoid method [8, 23]. Using Choleski decomposition, one can find the vectors vi
from the matrix Y in polynomial time.

Using relaxation (3), one can easily attain a 2-approximation algorithm for the
vertex cover problem by solving the relaxation and considering the set S = {i ∈ V |v0 ·
vi ≥ 0} as the cover. It can be easily verified that this is indeed a 2-approximation
algorithm, and that its worst case occurs when all vectors are orthogonal to v0.

The intuition for our algorithm is that whenever two vectors corresponding to
adjacent vertices are very close to being orthogonal to v0, they are close to being
opposite to each other and therefore a large independent set can be found among
those vertices. Thus, subtracting the independent set from the set of those vertices
gives a relatively small vertex cover.

2.2. The approximation algorithm. We are now ready to describe an ap-
proximation algorithm for the minimum vertex cover. The input of the algorithm is
a graph G = (V,E) with |V | = n, and |E| = m, and a weight function w. Let x be
a small positive number to be determined later. In Figure 1, we give the flow of the
algorithm. The algorithm first solves the semidefinite program (3), then partitions
the vertices of the graph into three parts, finds a large independent set in one of them,
and outputs a result using this partition.

We now give an intuition as to why the algorithm finds a large independent set
inside S2. I

′ is the set of vertices whose vectors are relatively close to r. In section 2.3
we show how to choose c such that the expectation of the sum

∑
(i,j)∈e(I′)(wi + wj)

is less than a constant factor of the expected total weight of I ′. We thus do not have
many vertices in I ′ which are not isolated in the subgraph induced by I ′, and therefore,
if we remove the nonisolated vertices from I ′, we are left with an independent set I
of total weight which is a constant factor of w(I ′). We choose c such that w(I ′) is
maximal and thus get a large independent set.

It is easy to see that the algorithm finds a vertex cover. To show this, we have
to show that, for every (i, j) ∈ E, i or j are in the cover. If i ∈ S1 or j ∈ S1, we are
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Algorithm. VC-G

Input: A weighted graph G = (V,E).
Output: A vertex cover of G.

1. Solve relaxation (3).
2. Let S1 = {i | v0 · vi ≥ x}, S2 = {i | −x ≤ v0 · vi < x}.
3. Find a large independent set I in S2, using the following procedure

(see [18]). Let c be a positive number to be determined later.
(a) Choose an n-dimensional random vector r, and let I ′ = {i ∈

S2 | vi · r ≥ c}.
(b) Remove vertices from I ′ which are nonisolated in the subgraph

induced by I ′. The remaining vertices form an independent set
I.

4. Output S1 ∪ (S2 \ I).

Fig. 1. Algorithm VC-G for finding a small vertex cover in a graph.

done. If i ∈ V \ (S1 ∪ S2), then v0 · vi < −x and therefore

vj · v0 = 1 + vi · vj − v0 · vi ≥ x.

Thus, j ∈ S1 and is therefore in the cover. We are left with the case that i, j ∈ S2.
However, as I is independent, at least one of i and j is not in I and is therefore in
the cover.

2.3. Analysis of the algorithm. The main result we prove in this section is
the following theorem.

Theorem 2.1. Let G = (V,E) be a weighted graph with maximal degree at most
∆. The randomized algorithm VC-G achieves a performance ratio of

2− 2 ln ln∆

ln∆
+ o

(
ln ln∆

ln∆

)
.

In order to prove Theorem 2.1, we need some known results about n-dimensional

probability space. Recall that φ(x) = 1√
2π
e

−x2

2 is the density function of a standard

normal random variable. Let N(x) be the tail of the standard normal distribution,
i.e., N(x) =

∫∞
x

φ(x)dx. We will use the following bounds on N(x) (see Lemma VII.2
of Feller [7]).

Lemma 2.2. For every c ≥ 1, φ(c)( 1
c − 1

c3 ) < N(c) < φ(c)
c .

A random vector r = (r1, . . . , rn) is said to have the n-dimensional standard
normal distribution if the components ri are independent random variables, each one
having the standard normal distribution. In this paper a random n-dimensional vector
will always denote a vector chosen from the n-dimensional standard distribution. We
will use the following (see Theorem IV.16.3 in [24]).

Lemma 2.3. Let u be any unit vector in Rn. Let r be a random n-dimensional
vector. The projection of r on u, given by the product r ·u, is distributed according to
the standard normal distribution.

We now prove a lemma which bounds the size of the independent set I found in
algorithm VC-G. This lemma is derived from Lemma 7.1 of [18].
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Lemma 2.4. Let G = (V,E) be a weighted graph with maximal degree ∆ and
weight function w. Let x be a number such that x = Θ( ln ln ∆

ln ∆ ). Assume V =
{1, . . . , n} and that for every i ∈ V there corresponds an n-dimensional unit vector
vi such that for every (i, j) ∈ E, vi · vj ≤ −1 + 2x. Then there is a constant C such

that, for ∆ sufficiently large, an independent set of total weight at least C · w(V )

∆x·√x·ln ∆
can be found by a randomized algorithm in polynomial time.

Proof. As explained in section 2.2, we let c be a positive number to be determined
later, and we let r be a random n-dimensional vector. Let I ′ = {i ∈ V | vi · r ≥ c}.
By the linearity of the expectation,

E(w(I ′)) =
∑
i∈V

wi ·N(c) = w(V ) ·N(c).

Let X =
∑

(i,j)∈e(I′)(wi + wj). We upper bound the expectation of X as follows. By
the linearity of the expectation, the expectation of X is

∑

(i,j)∈E
(wi + wj) · Pr(i, j ∈ I ′).

Thus, in order to upper bound the expectation of X, it is sufficient to bound the
probability that a given edge will be in the subgraph induced by I ′.

By the terms of the lemma, for every (i, j) ∈ E, vi · vj ≤ −1 + 2x, and hence
‖vi + vj‖ ≤ 2

√
x. We now bound the probability that i and j are both in I ′.

Pr(vi · r ≥ c ∧ vj · r ≥ c)

≤ Pr((vi + vj) · r ≥ 2c)

= Pr

(
vi + vj
‖vi + vj‖ · r ≥

2c

‖vi + vj‖
)

= N

(
2c

‖vi + vj‖
)
≤ N

(
c√
x

)
.

We therefore get that the expectation of X is at most

N

(
c√
x

)
·
∑

(i,j)∈E
(wi + wj) ≤ N

(
c√
x

)
· w(V ) ·∆.

We are now ready to determine c. We need the following claim.

Claim 2.5. Let c =
√

2x
1−x · ln∆. If x = ω( 1

ln ∆ ), then, for sufficiently large ∆,
the expectation of X is at most (1 + o(1))

√
x fraction of the expected total weight of

I ′.
Proof. As x = ω( 1

ln ∆ ), we have that c = ω(1), and therefore by Lemma 2.2 we
get

N
(
c√
x

)

N(c)
≤

φ
(
c√
x

)√
x

φ(c)(1− 1
c2 )

≤
(1 + o(1))

√
xφ
(
c√
x

)

φ(c)
=

(1 + o(1))
√
x

∆
.

Thus, we get that

N

(
c√
x

)
≤ (1 + o(1))

√
xN(c)

∆
.
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As the expectation of X is at most w(V ) ·∆ ·N( c√
x
), and the expected total weight

of I ′ is w(V ) ·N(c), the claim follows.
Let αw(V ) be the expectation of w(I ′)−X. By Claim 2.5, α ≥ N(c)(1− 2

√
x).

Furthermore, w(I ′) − X ≤ w(V ). Consider the variable w(V ) − w(I ′) + X. It is
nonnegative with expectation (1 − α)w(V ), and therefore, by applying the Markov
inequality to w(V )− w(I ′) +X, we get

Pr(w(I ′)−X ≥ αw(V )

2
) ≥ α

2− α
.

For each i ∈ I ′ let dI′(i) be the degree of i in the subgraph induced by I ′. In the
induced subgraph by I ′ we get that

∑

dI′ (i)>0

wi ≤
∑

(i,j)∈e(I′)
(wi + wj) = X.

Therefore, if we take I = I ′ \ {i : dI′(i) > 0} we are left with an independent set of

weight at least w(I ′)−X, which is at least αw(V )
2 with probability at least α

2−α . By
Lemma 2.2 we have

α ≥ N(c)

2
≥ C ′

∆
x

1−x · √x · ln∆ ≥
C

∆x · √x · ln∆ ,(4)

where C and C ′ are some constants. The last inequality holds since x = Θ( ln ln ∆
ln ∆ ). It

is easy to see that 2−α
α is only polylogarithmic in ∆, and therefore, if we repeat this

process a polylogarithmic number of times, with very high probability, one of those

times, we will get an independent set of size at least αw(V )
2 , and by (4) the lemma is

proved.
We are now ready to prove Theorem 2.1. Let

x =
ln ln∆− 3

2 ln ln ln∆ + ln(C/2)

ln∆
.

Clearly, x = ln ln ∆
ln ∆ (1 − o(1)). For i = 1, 2, let value(Si) =

∑
i∈Si

wi
1+v0·vi

2 ; that is,
value(Si) is the contribution of the vertices in Si to the semidefinite program. Clearly,
it is sufficient to show that

w(S1) + w(S2)− w(I)

value(S1) + value(S2)
≤ 2− 2 ln ln∆

ln∆
+ o

(
ln ln∆

ln∆

)
.

As value(S1) ≥ w(S1)(1 + x)/2, then

w(S1)

value(S1)
≤ 2

1 + x
= 2− 2x+ o(x).(5)

Moreover, as x = Θ( ln ln ∆
ln ∆ ), then by Lemma 2.4 we have that

w(S2)− w(I) ≤ w(S2)

(
1− C

∆x
√
x ln∆

)

= w(S2)

(
1− 2 ln ln∆

ln∆

)
= w(S2)(1− 2x+ o(x)),
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and, as value(S2) ≥ w(S2)(1− x)/2, we get that

w(S2)− w(I)

value(S2)
≤ 2− 4x+ o(x)

1− x
= 2− 2x+ o(x).(6)

By (5) and (6), we get that the performance ratio of the algorithm is at most
2− 2x+ o(x), which proves Theorem 2.1.

3. Vertex cover in p-claw free graphs. In this section we show that the same
algorithm gives a better performance for p-claw free graphs.

We first note that in the proof of Theorem 2.1, ∆ can be replaced by the maximal
degree in S2, since we needed only an upper bound on the degrees of S2 to obtain the
bound on X. We thus have the following claim.

Claim 3.1. Let G = (V,E) be a weighted graph. Let ∆(S2) be the maximal
degree of the subgraph induced by S2 in algorithm VC-G running on G. Algorithm
VC-G achieves a ratio of

2− 2 ln ln∆(S2)

ln∆(S2)
+ o

(
ln ln∆(S2)

ln∆(S2)

)
.

We now prove that our algorithm gives a better ratio for p-claw free graphs.
Theorem 3.2. Let G = (V,E) be a weighted (p+ 1)-claw free graph. Algorithm

VC-G achieves a performance ratio of

2− 2 ln ln p

ln p
+ o

(
ln ln p

ln p

)
.

Proof. We first show that S2 contains no triangles. Assume the opposite. Let
i, j, k ∈ S2 be a triangle in S2. By definition of S2, we have

0 ≤ (vi + vj + vk)
2 ≤ −3 + 12x < 0.

Therefore, the set of neighbors of every vertex in S2 is an independent set. As G is a
(p+1)-claw free graph, we have that the largest degree in S2 cannot exceed p. Thus,
by Claim 3.1 we get the desired ratio.

4. Vertex cover in hypergraphs. For a given k, let H = (V,E) be a hyper-
graph, with m edges and with n vertices, in which every edge is of size at most k.
Assume V = {1, . . . , n} and that for every vertex i there is a positive weight wi. We
consider the minimum vertex cover problem in H. Again, let vc(H) denote the weight
of the minimum vertex cover in H. Let ∆ be the maximal degree in H. For a set
S ⊆ V , let e(S) denote the set of edges in the subhypergraph induced by S, and let
w(S) denote the total weight of S. We assume for simplicity that the hypergraph is
k-uniform. Our results can be easily extended to the nonuniform case.

4.1. Relaxations for the vertex cover problem in hypergraphs. Consider
the next semidefinite relaxation to the problem:

Minimize
n∑
i=1

wi · 1 + v0 · vi
2

,

∑
i,j∈e,i<j

vi · vj ≤
∑
i∈e

v0 · vi + (k − 4)(k − 1)

2
+ k − 2 , e ∈ E,

∑
i∈e

v0 · vi ≥ −k + 2 , e ∈ E,

vi · vi = 1 , i ∈ V.

(7)
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Algorithm. VC-H

Input: A weighted graph G = (V,E).
Output: A vertex cover of G.

1. Solve the semidefinite program (7).
2. Let S1 = {i | v0 · vi ≥ b} and S2 = {i | a ≤ v0 · vi < b}.
3. Project all the vectors in S2 to the space orthogonal to v0 and nor-

malize the vectors. For every i ∈ S2, let v
′
i be the projected vector.

4. Choose a random n-dimensional vector r, and let I ′ = {i ∈ S2 |
v′i · r ≥ c}.

5. Remove vertices with positive degree from I ′ until there is no edge
in I ′. Let I be the remaining independent set.

6. Output S1 ∪ (S2 \ I).

Fig. 2. Algorithm VC-H for finding a small vertex cover in a hypergraph.

We first claim that this is indeed a relaxation; i.e., for every vertex cover C of
H, there are vectors satisfying the constraints of relaxation (7) which also satisfy∑n
i=1 wi · 1+v0·vi

2 = w(C). Let C ⊆ V be a vertex cover of H. Let v0 be an arbi-
trary unit vector. Assign vi to be v0 if i ∈ C and −v0 otherwise. It is clear that∑n
i=1 wi · 1+v0·vi

2 = w(C). We still have to show that the constraints of the relax-
ation are satisfied. Consider an edge e ∈ E. By the definition of the vectors, not all
i ∈ e equal −v0, and therefore the second constraint holds trivially; i.e., we have that∑
i∈e

v0 · vi ≥ −k + 2. It is easy to see that if not all vectors in e equal v0, we have

∑
i,j∈e,i<j

vi · vj ≤ (k − 4)(k − 1)

2
,

and therefore

∑
i,j∈e,i<j

vi · vj ≤
∑
i∈e

v0 · vi + (k − 4)(k − 1)

2
+ k − 2.

If all vectors in e equal v0, the above trivially holds. Therefore all constraints are
satisfied and this is indeed a relaxation.

4.2. The approximation algorithm. We are now ready to describe our al-
gorithm. The algorithm is an extension of algorithm VC-G given in Figure 1. The
input of the algorithm is H = (V,E), and the weight function is w. Let x be a small
positive number to be determined later. Let c be a positive number to be determined
later. Moreover, let a = −− 1 + 2

k − (k − 1)x and b = −1 + 2
k + x. The algorithm is

given in Figure 2.
It is easy to see that S1 ∪ (S2 \ I) is a cover for the following reason: Assume

the opposite. Let e ∈ E be an edge which is not covered by S1 ∪ (S2 \ I), i.e.,
e ⊆ I ∪ (V \ (S1 ∪S2)). If there exists i ∈ (V \ (S1 ∪S2))∩ e, then there is j ∈ S1 ∩ e;
otherwise, we have

∑
j∈e

v0 · vi < a+ (k − 1) · b = −k + 2,
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which is a contradiction. We can therefore assume that all i ∈ e are in I, but I is
independent, which is a contradiction. Therefore, algorithm VC-H finds a cover to
the hypergraph.

4.3. Analysis of the algorithm. In this section we prove the following theo-
rem:

Theorem 4.1. Let k be an integer such that k3 = o( ln ln ∆
ln ln ln ∆ ). Let H = (V,E)

be a weighted k-uniform hypergraph with maximal degree ∆. There is a proper choice
of x and c such that the randomized algorithm VC-H achieves a performance ratio of

k − k(k − 1)
ln ln∆

ln∆
+ o

(
ln ln∆

ln∆

)
.

In order to prove Theorem 4.1, we first have to bound the weight of I. We
need the following lemma, which bounds the probability that a given edge in the
subhypergraph induced by S2 will be in I ′.

Lemma 4.2. Let e ∈ E be an edge in the subhypergraph induced by S2. If
x = Θ( ln ln ∆

ln ∆ ), then, for sufficiently large ∆, the probability that e will be an edge in

the subhypergraph induced by I ′ is at most N( c√
dk·x ), where dk = k

2(k−1) .

Proof. For a given i ∈ e, let ui be the projection of vi to the space orthogonal to
v0. Let ai = v0 · vi. We therefore have that vi = ai · v0 + ui. As i ∈ S2, we know that
a ≤ ai < b, and thus a2 ≥ a2

i > b2. Let v′i =
ui

‖ui‖ be the normalized projection of vi.

By the definition of ai, ui,

ui · uj = vi · vj − ai · aj
and

‖ui‖ =
√
1− a2

i ≥
√
1− a2.

Now, by the constraints of relaxation (7) we have

∑
i,j∈e,i<j

vi · vj ≤ (k − 4)(k − 1)

2
+ kx.

Considering all the above we get

∑
i,j∈e,i<j

v′i · v′j =
∑

i,j∈e,i<j

ui · uj
‖ui‖ · ‖uj‖

=
∑

i,j∈e,i<j

vi · vj − ai · aj√
(1− a2

i )(1− a2
j )

≤
∑
i,j∈e,i<j(vi · vj − ai · aj)

1− a2

≤ (k − 4)(k − 1)/2 + kx− (k2
)
b2

1− a2

= −k
2
+
k2 · dk

2
· x− k4x2

4(k − 1)(2 + kx)
≤ −k

2
+
k2 · dk

2
· x.

The last equality follows by assigning a = −1 + 2
k − (k − 1)x , b = −1 + 2

k + x, and
using some simple, though cumbersome, calculations. We can therefore bound the
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norm of the sum of the projected vectors v′i for i ∈ e:
∥∥∥∥
∑
i∈e

v′i

∥∥∥∥
2

≤ k3 · x
2(k − 1)

= k2 · dk · x.

The probability that all i ∈ e will be in I ′ is bounded by

Pr

((∑
i∈e

v′i

)
· r ≥ k · c

)
= N

(
k · c

‖∑i∈e v
′
i‖
)
≤ N

(
c√
dk · x

)
,

and the lemma follows.
For every vertex, the probability that this vertex will be in I ′ is N(c). Therefore,

the expected total weight of I ′ is w(S2) ·N(c). Let X =
∑
e∈e(I′)

∑
i∈e wi. We want

to find c such that X will be smaller than w(I ′) by at least a constant factor.

Lemma 4.3. Let c =
√

2dk·x
1−dk·x · ln∆. If x = Θ( ln ln ∆

ln ∆ ), then, for sufficiently large

∆, the expectation of X is at most
√
2x fraction of the expected weight of the vertices

in I ′.
Proof. As x = ω( 1

ln ∆ ), we have that c = ω(1), and therefore by Lemma 2.2 we
have that

N

(
c√
dk · x

)
≤ φ

(
c√
dk · x

)
·
√
dk · x
c

= φ(c) ·
√
dk · x
∆ · c

≤ N(c)

∆
·
√
dk · x

1− 1/c2
≤
√
2xN(c)

∆
.(8)

Now, the expected total weight of I ′ is w(S2)·N(c). By the linearity of the expectation
and by Lemma 4.2, the expectation of X can be bounded as follows:

E(X) =
∑

e∈E(S2)

∑
i∈e

wi · Pr(e ∈ e(I ′))

≤ N

(
c√
dk · x

)
·
∑
e∈E

∑
i∈e

wi

≤ N

(
c√
dk · x

)
·
∑
i∈V

∆ · wi

= N

(
c√
dk · x

)
·∆ · w(S2).

Thus, by (8), the lemma follows.
Let αkw(S2) be the expectation of w(I ′)−X. w(I ′)−X ≤ w(S2), and therefore,

by the Markov inequality applied to w(S2)−w(I ′)+X, the probability that w(I ′)−X
is at least αkw(S2)

2 is lower bounded by αk

2−αk
. By the definition of αk, for some constant

C,

αk ≥ (1−
√
2x)N(c) ≥ 2C

∆dk·x√dkx ln∆
.(9)
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We are now ready to prove Theorem 4.1. Once again, for i = 1, 2, let value(Si) =∑
i∈Si

1+v0·vi
2 . We first determine x. Set

x =
ln ln∆− 3

2 ln ln ln∆ + ln(Cdk)− ln(k2)

dk ln∆
.

Notice that, by the terms of the lemma, k is very small, and

x ≤ ln ln∆

dk ln∆
,(10)

k3x = o(1).(11)

By the definition of x,

∆dkx =
dk ln∆

k2
√
π(ln ln∆)3/2

,

and thus by (9) and (10)

αk
2

=
k2x

2

(
ln ln∆

xdk ln∆

)3/2

≥ k2x

2
.

Therefore, as 2−αk

αk
is only logarithmic in ∆, if we repeat the process a polylogarithmic

number of times, then with high probability, in at least one of these times, we will

get an independent set I of total weight at least k2xw(S2)
2 . Therefore, in this case

w(S2)− w(I) ≤ w(S2)

(
1− k2x

2

)
.

On the other hand, value(S2) ≥ w(S2)(
1
k − (k−1)x

2 ). Combining these facts with (11),
we get

w(S2)− w(I)

value(S2)
≤ 1− k2x

2

1
k − (k−1)x

2

= k − k2x

2
+
k3x2

2
= k − k2x

2
+ o(x).(12)

From (10) and (11), and as value(S1) ≥ w(S1)(
1
k +

x
2 ), we get that

w(S1)

value(S1)
≤ 2k

2 + kx
= k − k2x

2
+ o(x).(13)

By (12) and (13) we get that the performance ratio of the algorithm is at most

k − k2x

2
+ o(x) = k − k(k − 1)

ln ln∆

ln∆
+ o

(
ln ln∆

ln∆

)
,

and thus Theorem 4.1 is proved.
It is straightforward that our algorithm can be extended to hypergraphs with

maximal edge size k. This can be obtained in the following way: Given a hypergraph
H with maximal edge size k, take every edge e of size l, where l < k, add new k − l
vertices to H, and replace e by a new edge containing the new k − l vertices and the
vertices of e. It is obvious that the new hypergraph is a k-uniform hypergraph and
that ∆ remains the same; thus Theorem 4.1 can be used.

It is easy to see that for k which satisfy k3 = o( ln lnn
ln ln lnn ), for hypergraphs with

maximal edge size k, algorithm VC-H achieves a ratio of k − (1− o(1))k ln lnn
lnn , as the

maximal degree ∆ cannot exceed nk−1.
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Algorithm. IS

Input: A weighted graph G = (V,E).
Output: An independent set of G.

1. Solve relaxation (14).
2. Let S0 = {i ∈ V | v0·vi+1

2 < 1
p}, S1 = {i ∈ V | 1

p ≤ v0·vi+1
2 < 1

2},
and I2 = S2 = {i ∈ V | 1

2 ≤ v0·vi+1
2 }.

3. Use the greedy algorithm on the set S0 to find an independent set
I0 ⊆ S0.

4. Project all vectors vi corresponding to vertices in S1 to the space
orthogonal to v0 and normalize them. The projected vectors will be
denoted by v′i.

5. Choose a random n-dimensional vector r, and let I ′ = {i ∈ S1 |
v′i · r ≥ c}.

6. Remove all nonisolated vertices in the subgraph induced by I ′. The
remaining set is I1.

7. Return the set with the largest total weight between I0, I1, I2.

Fig. 3. Algorithm IS for finding a large independent set on a graph.

5. Independent set approximation. In this section we consider a simple ap-
plication of our methods to the independent set problem. Recently, the same result
was derived independently by Halldórsson [10], using a different approach.

Let G = (V,E) be a weighted graph. Assume V = {1, . . . , n} and that for every
1 ≤ i ≤ n there is a positive weight wi. Let ∆ be the maximal degree in G. Consider
the following semidefinite relaxation for the independent set problem:

Maximize

n∑
i=1

wi · 1 + v0 · vi
2

,

(vi + v0) · (vj + v0) = 0 , (i, j) ∈ E,
‖vi‖ = 1 , i ∈ V.

(14)

It is easy to see that this is indeed a relaxation to the independent set problem.
It can be derived from relaxation (3) by replacing v0 by −v0.

Let p ≥ 3 and c be parameters to be chosen later. Consider the algorithm
presented in Figure 3. We show that this algorithm achieves the desired ratio. In
the next lemma, we show that partitioning the problem into three parts reduces the
performance of the algorithm by a factor of three.

Lemma 5.1. Assume Z = Z0 +Z1 +Z2, where Zk, for k = 0, 1, 2, is the value of
the relaxation restricted to the set Sk. For k = 0, 1, 2, let Ik ⊆ Sk be an independent
set which satisfies w(Ik) ≥ β · Zk. Let m be such that w(Im) is maximized. Then
w(Im) ≥ β ·α(G)/3, where α(G) is the maximum weight of an independent set in G.

Proof. It is clear that Z ≥ α(G). Therefore, we have the following inequalities:

w(Im) ≥ w(I0) + w(I1) + w(I2)

3
≥ β(Z0 + Z1 + Z2)

3
=

β

3
· Z ≥ β

3
· α(G).

Therefore, the lemma follows.
We now show that algorithm IS finds an independent set of total weight at least

Θ( log ∆
∆·log log ∆ · α(G)). We use Lemma 5.1 with β = log ∆

∆ log log ∆ .
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For S0, we know that Z0 ≤ w(S0)
p and that the greedy algorithm produces an

independent set I0 of total weight at least w(S0)/(∆ + 1). Therefore, we get that
w(I0) is of total weight at least

p
∆+1 · Z0.

For S2, by the constraints of relaxation (14), we have that S2 is an independent
set, and therefore I2 is an independent set, and thus w(I2) = w(S2) = Z2.

We now analyze the case of S1. For this we need the following lemma.

Lemma 5.2. The randomized algorithm IS produces with a nonnegligible proba-

bility a set I1 of total weight at least Ω(
∆2/p·Z1

∆
√

ln ∆
).

Proof. As in section 4.3, for every i ∈ S1, let ai = v0 ·vi and assume vi = aiv0+ui,
where ui · v0 = 0. For i ∈ S1, we have that −1 + 2

p ≤ ai < 0. Now,

‖ui‖ =
√
1− a2

i , ui · uj = vi · vj − aiaj .

For i ∈ S1, let v′i = ui

‖ui‖ be the normalized projection of vi. We thus have the

following for (i, j) ∈ E:
ui · uj
‖ui‖‖uj‖ =

vi · vj − aiaj√
(1− a2

i )(1− a2
j )

=
−1− ai − aj − aiaj√

(1− a2
i )(1− a2

j )

= −
√

(1 + ai)(1 + aj)

(1− ai)(1− aj)

≤ − 1

p− 1
.

Let x = p−2
2p−2 . As p ≥ 3, x ≥ 1

4 . We thus have that for every (i, j) ∈ e(S2),

v′i · v′j ≤ −1 + 2x. Let

X =
∑

(i,j)∈e(I′)
(wi + wj).

As x ≥ 1
4 , we have that x = ω( 1

ln ∆ ), and thus, by choosing c =
√

2x
1−x ln∆, the terms

of Claim 2.5 are fulfilled, and, for sufficiently large ∆, the expectation of X is at most
(1 + o(1))

√
x fraction of the expected total weight of I ′. As x ≤ 1

2 , we get that the
expectation of X is at most (1+ o(1)) 1√

2
fraction of the expectation of I ′. Therefore,

the expectation of w(I ′) − X is Ω(w(S1)N(c)). By applying the Markov inequality
to nonnegative random variable w(S1)− w(I ′) +X, we get that the probability that

w(I ′)−X is less than half its expectation is lower bounded by Ω(N(c)) = Ω( ∆2/p

∆
√

ln ∆
).

Clearly, by repeating this process a polynomial number of times, with high probability,
in at least one of the iterations w(I ′)−X is at least half its expectation. By the fact
that

∑
dI′ (i)>0 wi ≤ X, by taking off vertices with positive degree from the subgraph

induced by I ′, we are left with an independent set of total weight at least

w(I ′)−X = Ω(w(S1) ·N(c)) = Ω

(
∆2/pw(S1)

∆
√
ln∆

)
.
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Now, Z1 ≤ w(S1)
2 , and so

w(I1) ≥ Ω

(
∆2/p · Z1

∆
√
ln∆

)
.

Altogether, we have the following:

w(I0) ≥ p
∆+1Z0,

w(I1) ≥ Ω
(

∆2/p

∆
√

ln ∆
· Z1

)
,

w(I2) = Z2.

By Lemma 5.1, setting p = 4 ln ∆
3 ln ln ∆ gives a ratio of Ω( ln ∆

∆ ln ln ∆ ), as desired.

6. Concluding remarks. We obtained improved algorithms for finding small
vertex covers in bounded degree graphs and hypergraphs. On graphs with maximum
degree at most ∆, we presented an algorithm which achieves a performance ratio of
2−(1−o(1)) 2 ln ln ∆

ln ∆ . For general graphs, we get a ratio of 2−(1−o(1)) 2 ln lnn
lnn . It will be

interesting if an approximation algorithm with a ratio of 2−f(∆) will be introduced for
the vertex cover problem in bounded degree graphs, where f(n) = ω( ln lnn

lnn ). It is also
interesting if, for such a function f , an approximation algorithm with a ratio of 2−f(n)
exists for general graphs. It will also be interesting if a (k − f(n))-approximation
algorithm will be found for k-uniform hypergraphs, with such a function f .
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[13] M. M. Halldórsson and J. Radhakrishnan, Greed is good: Approximating independent sets
in sparse and bounded-degree graphs, Algorithmica, 18 (1997), pp. 145–163.



ALGORITHMS FOR THE VERTEX COVER PROBLEM 1623
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Abstract. We consider the problem of enumerating all minimal integer solutions of a monotone
system of linear inequalities. We first show that, for any monotone system of r linear inequalities
in n variables, the number of maximal infeasible integer vectors is at most rn times the number
of minimal integer solutions to the system. This bound is accurate up to a polylog(r) factor and
leads to a polynomial-time reduction of the enumeration problem to a natural generalization of the
well-known dualization problem for hypergraphs, in which dual pairs of hypergraphs are replaced
by dual collections of integer vectors in a box. We provide a quasi-polynomial algorithm for the
latter dualization problem. These results imply, in particular, that the problem of incrementally
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1. Introduction. Consider a system of r linear inequalities in n integer variables

Ax ≥ b, x ∈ C = {x ∈ Zn | 0 ≤ x ≤ c},(1.1)

where A ∈ Rr×n is a given r×n-matrix, b ∈ Rr is an r-vector, c ∈ Rn+ is a nonnegative
n-vector, some or all of whose components may be infinite, and Z, R, and R+ denote,
respectively, the set of integers, the set of reals, and the set of nonnegative reals. A
vector x ∈ C is called a feasible solution of (1.1) if Ax ≥ b. We shall assume that (1.1)
is a monotone system; i.e., if x ∈ C is feasible, then all vectors y ∈ C with y ≥ x are
also feasible. For instance, (1.1) is monotone if the matrix A is nonnegative, though
the nonnegativity of A is not necessary; e.g., if r = 1, n = 2, and c = (1, 2), then the
system 5x1 − x2 ≥ 3 is monotone.

Let us denote by FA,b,c the set of all minimal feasible solutions for the monotone
system (1.1):

FA,b,c =


y

∣∣∣∣∣∣
y ∈ C, Ay ≥ b, and

� feasible solution x of (1.1)
such that x ≤ y and x �= y



 .
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In this paper, we are concerned with the problem of generating all vectors of
FA,b,c for a monotone system (1.1). Since the number of minimal feasible solutions
of a monotone system may be exponential in the size of the input, the efficiency of
such generation is measured customarily in terms of the sizes of both the input and
the output (see, e.g., [19]). More precisely, we focus on the problem of generating a
“next” element of FA,b,c sequentially.

GEN(A, b, c,X ). Given a monotone system (1.1) defined by (A, b, c) and a
subset X ⊆ FA,b,c of its minimal feasible vectors, either find a new minimal integral
vector x ∈ FA,b,c \ X or show that no such vector exists; i.e., X = FA,b,c.

Clearly, the entire set FA,b,c can be generated by initializing X = ∅ and iteratively
solving the above problem |FA,b,c| + 1 times. Accordingly, we say that the family
FA,b,c can be generated in incremental q-time if the problem GEN(A, b, c,X ) can
be solved in q(n, r, |X |) operations for every subset X ⊆ FA,b,c. In particular, we
say that FA,b,c can be generated in incremental polynomial or quasi-polynomial time
if q is a polynomial or quasi-polynomial expression, respectively. These complexity
notions are stated here for the unit-cost model of computation, in which the q(n, r, |X |)
bound applies to the number of comparisons (≤,≥) and the arithmetic and rounding
operations (+,−,×, /, � �) required to solve problem GEN(A, b, c,X ) for real input
(A, b, c). All of our results in this paper will also be valid, with the same bound for
the number of operations, for rational input (A, b, c) in the bit model of computation,
where the number of bits used in the operations depends linearly on the binary size
of the input data.

Let us note here that the above definition for the complexity of sequential genera-
tion, based on GEN(A, b, c,X ), does indeed grasp the essence of sequential generation
correctly. Namely, if there is any algorithm A generating all the elements of FA,b,c
sequentially, say, in the order FA,b,c = {x1, x2, . . . , xK} and xK+1 = “STOP” such
that {x1, . . . , xk} is generated by q(n, r, k− 1) operations for every k = 1, . . . ,K +1,
then, using the same algorithm A, problem GEN(A, b, c,X ) can also be solved in
O(q(n, r, |X |)) operations for every subset X ⊆ FA,b,c.

The problem of generating the family FA,b,c of all minimal feasible solutions to
a monotone system (1.1) includes, as special cases, several well-known problems from
the literature.

First, if A is integral and c = +∞, the generation of FA,b,c can be regarded as the
computation of the Hilbert basis for the polynomial ideal which has {x ∈ Zn | Ax ≥ b,
x ≥ 0} as its Newton polyhedron.

If A is a binary matrix, b = er, and c = en, where ed denotes the vector
of all ones of dimension d, then FA,b,c is the set of (characteristic vectors of) all
minimal transversals to the hypergraph defined by the rows of A. In this case,
problem GEN(A, b, c,X ) turns into the well-known hypergraph dualization problem,
that is, the incremental enumeration of all minimal transversals (or, equivalently,
all maximal independent sets) of a given hypergraph (see, e.g., [12]). For several
special classes of hypergraphs, GEN(A, er, en,X ) can be solved efficiently, includ-
ing 2-monotonic, threshold, matroid, read-bounded, and acyclic hypergraphs (see
[4, 8, 9, 11, 13, 16, 21, 23, 24, 26, 27]), and, most notably, when the hyperedges are all of
size 2, that is, when the hypergraph is the edge set of a graph (see [19, 20, 29]). The lat-
ter result has been extended to an incremental polynomial solution for all hypergraphs
with bounded edge sizes (see, e.g., [6, 12, 13]), in which case even an efficient parallel
solution exists (see [5]). There is no incremental polynomial-time algorithm known for
the dualization of an arbitrary hypergraph. The best known result is an incremental
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quasi-polynomial-time algorithm, proposed by Fredman and Khachiyan [14], which
solves GEN(A, er, en,X ) in O(nt) + to(log t) time, where t = max{r, |X |}. Recent
improvements on this procedure can be found in [15, 28].

If A is binary, c = en, and b = Ac − er, then the vectors in FA,b,c correspond
(in a one-to-one way) to the maximal matchings of the hypergraph, formed by the
columns of A. It was shown in [20] that GEN(A, b, c,X ) can be solved in this case
in polynomial time, thus providing an efficient generation of all maximal matchings.
More generally, if A is binary, c = en, and b is arbitrary, then the vectors in FA,b,c
are the characteristic vectors of the so-called multiple transversals of the hypergraph
formed by the rows of A, and an incremental quasi-polynomial generation is provided
in [7] for this case.

If c = en and r = 1, then (1.1) is also known as a binary knapsack problem,
for which FA,b,c can be generated in incremental polynomial time with an amortized
complexity of O(n2) time per element as shown by Lawler, Lenstra, and Rinnooy
Kan [20]. Improving on this result, Uno [30] showed recently that, in this special
case, FA,b,c can be generated in O(n) time per element in the worst case.

More generally, Lawler, Lenstra, and Rinnooy Kan considered the case of a non-
negative matrix A with b arbitrary and c = en and conjectured that no efficient
generation of FA,b,en is possible in this case unless P = NP.

As our main result, we shall show that problem GEN(A, b, c,X ) can in fact be
solved in quasi-polynomial time for any monotone system (1.1); that is, all minimal
integer solutions of (1.1) can be generated in incremental quasi-polynomial time, both
in the unit-cost and the bit models of computation.

Theorem 1.1. Problem GEN (A, b, c,X ) can be solved in to(log t) time, where
t = max{n, r, |X |}.

This result implies that GEN(A, b, c,X ) cannot be NP-hard unless all NP-com-
plete problems can be solved in quasi-polynomial time. We mention in passing that,
if c is bounded and the number of nonzero coefficients per inequality in (1.1) is fixed,
the results of [5] also imply that problem GEN(A, b, c,X ) can be efficiently solved in
parallel.

2. Uniformly dual-bounded monotone systems. Let us note first that,
without any loss of generality, the finiteness of C can always be assumed. Namely,
defining J∗ = {j | cj =∞}, J∗ = {1, . . . , n} \ J∗, and

cj =

{
maxi:aij>0

⌈
bi−

∑
k∈J∗ min{0,aik}ck

aij

⌉
for j ∈ J∗ and

cj for j ∈ J∗,
(2.1)

we have FA,b,c = FA,b,c. To see this equality, let us consider an arbitrary vector
x = (x1, . . . , xn) ∈ FA,b,c such that xj > 0 for some j ∈ J∗. We claim that xj ≤ cj .
For this, let us observe first that the restriction of A on J∗ must be nonnegative:
aij ≥ 0 for all i ∈ {1, . . . , r} and j ∈ J∗; otherwise, the monotonicity of (1.1) could
be violated by sufficiently increasing xj , the jth component of x. Thus we have

aijxj +
∑
k∈J∗

min{0, aik}ck ≤ aijxj +
∑
k∈J∗

min{0, aik}xk

≤ aijxj +
∑
k∈J∗

aikxk

≤
∑
k∈J∗

aikxk +
∑
k∈J∗

aikxk = aix
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since the restriction of A on J∗ is nonnegative, where ai denotes the ith row of A.
Let us consider now the vector x′ obtained from x by decreasing its jth component
by 1. Then x′ ∈ C, and, by the minimality of x, x′ is infeasible for (1.1). Hence
bi− aij ≤ aix− aij = aix′ < bi for some i ∈ {1, . . . , r}, implying aix < bi+ aij . Thus
we can conclude that

aijxj +
∑
k∈J∗

min{0, aik}ck < bi + aij ,

from which our claim follows.
Since the bounds in (2.1) are easy to compute and since appending these bounds

to (1.1) does not change the set FA,b,c by the above observation, we shall assume in
what follows that all components of the nonnegative vector c are finite, even though
this may not be the case for the original system. This assumption does not entail any
loss of generality and allows us to consider FA,b,c as a system of integral vectors in a
finite box.

Let us also note that the input monotone system (1.1) can be assumed to be fea-
sible and nontrivial; that is, FA,b,c �= ∅ and FA,b,c �= {0}. For a finite and nonnegative
c, this is equivalent to Ac ≥ b and 0 �≥ b.

Generalizing systems of monotone inequalities, we shall consider arbitrary mono-
tone subsets of the finite integral box C. For a collection of integral vectors A ⊆ C, let
us denote, respectively, by A+ = {x ∈ C | x ≥ a for some a ∈ A} and A− = {x ∈ C |
x ≤ a for some a ∈ A} the ideal and filter generated by A. Generalizing standard
terminology of the theory of hypergraphs, elements in C \ A+ will be called indepen-
dent of A, and let us denote by I(A) the set of all maximal independent elements of
A. Then, for a finite box C, we have

A+ ∩ I(A)− = ∅ and A+ ∪ I(A)− = C.(2.2)

In particular, if A = FA,b,c is the set of all minimal feasible integral vectors
for (1.1) and C is finite, then the ideal F+

A,b,c is the set of all feasible solutions of

(1.1), while the filter C \ F+
A,b,c is the collection of all infeasible vectors. This filter

is generated by the set I(FA,b,c) consisting of all maximal infeasible integral vectors
for (1.1):

C \ F+
A,b,c = I(FA,b,c)− = {x ∈ C | Ax �≥ b} =

⋃

y∈I(FA,b,c)

{y}−.

Let us return finally to the generation of minimal feasible solutions of a monotone
system (1.1). Our approach for the solution of this problem will be based on the joint
generation of the union FA,b,c ∪ I(FA,b,c). The following statement, ensuring the
efficiency of such an approach, is instrumental in our proofs and may also be of
independent interest.

Theorem 2.1. If the monotone system (1.1) is feasible, then, for any nonempty
subset X ⊆ FA,b,c, we have

|I(X ) ∩ I(FA,b,c)| ≤ rn|X |.(2.3)

In particular, for X = FA,b,c, this implies the inequality

|I(FA,b,c)| ≤ rn|FA,b,c|.
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Using the terminology introduced in [7], the above statement claims that FA,b,c
for a monotone system (1.1) is uniformly dual-bounded. This property, more precisely
inequality (2.3), guarantees that, if we manage to generate the elements of the union
FA,b,c∪I(FA,b,c) one-by-one in some efficient way, then, at any given moment during
this generation, the number of produced maximal infeasible vectors is polynomially
limited by the number of obtained minimal feasible vectors. Thus, by simply disre-
garding the maximal infeasible vectors in this process, we get an efficient algorithm
for the generation of minimal feasible vectors.

Let us remark here that such an approach would certainly be too wasteful for the
generation of maximal infeasible solutions, as the following example shows. Let us
consider the monotone system (A, b, c) consisting of the r inequalities x1 + x2 ≥ 1,
x3 + x4 ≥ 1, . . . , x2r−1 + x2r ≥ 1 in n = 2r variables, with c = e2r. This system has
2r minimal feasible binary vectors and only r maximal infeasible ones, i.e.,

|FA,b,c| ≥ 2|I(FA,b,c)|.

Thus |FA,b,c| cannot be bounded by a polynomial in r, n, and |I(FA,b,c)| in general.
Therefore, in the joint generation process, we may get unlucky in the worst case
and get first exponentially many minimal feasible vectors before obtaining the first
maximal infeasible one.

In fact, not only is such a joint generation approach inefficient for the generation of
maximal infeasible vectors, but, more generally, a result analogous to that of Theorem
1.1 is highly unlikely to hold.

Proposition 2.2. Let us consider a monotone system (1.1), where A is an
r × n binary matrix, c = en, and all of the r components of b but one are equal to 1.
Further, let X ⊆ I(FA,b,c). Then it is NP-complete to decide if I(FA,b,c) \ X �= ∅.

Proof. We can use arguments analogous to those of [22]. Consider the well-
known NP-hard problem of determining whether a given graph G = (V,E) contains
an independent set of size t, where t ≥ 2 is a given threshold. Let us introduce |V |
binary variables xv, v ∈ V , and write |E| inequalities xv + xv′ ≥ 1, one for every
edge e = (v, v′) ∈ E, followed by the inequality

∑
v∈V xv ≥ |V | − t. It is easily

seen that, if x is the characteristic vector of an edge e ∈ E, then e− x is a maximal
infeasible binary vector for the above system of inequalities. Deciding whether there
are other such vectors is equivalent to determining whether the given graph G has an
independent set of size at least t.

According to our earlier remark, Proposition 2.2 implies that no incrementally
efficient generation of maximal infeasible vectors is possible, regardless of the order of
their generation, unless all NP-hard problems can be solved with the same efficiency.
On the other hand, it is easy to see that, if the right-hand side vector b is bounded
by a constant and the matrix A is integral and nonnegative, then listing all maximal
infeasible binary vectors of (1.1) can be done in polynomial time.

Note also that the enumeration of all maximal infeasible binary vectors to a system
of nonnegative linear inequalities a1x ≥ b1, . . . , a

rx ≥ br, with integer coefficients,
is equivalent to the enumeration of all maximal solutions satisfying at least one of r
knapsack inequalities a1x ≤ b1 − 1, . . . , arx ≤ br − 1. An exponential algorithm for
the latter problem and its relation to the facet enumeration for some 0, 1-polytopes
[1] are discussed in [20].

Let us remark finally that the bounds in Theorem 2.1 are sharp for r = 1: for
instance, the single inequality x1 + · · · + xn ≥ n in binary variables has only one
maximal infeasible vector and exactly n minimal feasible ones. For larger values of
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r, these bounds are accurate up to a factor polylogarithmic in r. To see this, let us
consider the input (A, b, c) consisting of r = 2k inequalities of the form

xi1 + xi2 + · · ·+ xik ≥ 1, i1 ∈ {1, 2}, i2 ∈ {3, 4}, . . . , ik ∈ {2k − 1, 2k},
in n = 2k variables, where x = (x1, . . . , xn) ∈ C = {x ∈ Zn | 0 ≤ x ≤ c}. For any
positive integer vector c, we have 2k maximal infeasible integer vectors and only k
minimal feasible integer vectors in this system; that is,

|I(FA,b,c)| = rn

2(log r)2
|FA,b,c|.

3. Joint generation and dualization. As we have indicated, maximal infea-
sible vectors play a crucial role in our analysis. More precisely, for X ⊆ FA,b,c, we
shall use the equivalence

X = FA,b,c ⇐⇒ X+ ∪ I(FA,b,c)− = C
to verify the “completeness” of X . In other words, our generation of minimal feasible
solutions will in fact involve all maximal infeasible solutions as well. For this reason,
we shall consider the joint generation of minimal feasible and maximal infeasible
vectors by repeatedly solving the following problem.

GEN(A, b, c,X ,Y). Given a monotone system (1.1) defined by (A, b, c) and
subsets X ⊆ FA,b,c and Y ⊆ I(FA,b,c), either find a new integral vector x ∈ (FA,b,c ∪
I(FA,b,c)) \ (X ∪ Y) or show that no such vector exists; i.e., X = FA,b,c and Y =
I(FA,b,c).

Extending the results of [3] and [17] from the Boolean case C = {0, 1}n to ar-
bitrary integer boxes, we show that, for a monotone system, GEN(A, b, c,X ,Y) is
polynomially equivalent to the following dualization problem.

DUAL(C,A,B). Given a family of vectors A ⊆ C and a subset B ⊆ I(A)
of its maximal independent vectors, either find a new maximal independent vector
x ∈ I(A) \ B or prove that no such vector exists; i.e., B = I(A).

More specifically, we present a simple algorithm which, given a proper subset Z
of the (disjoint) union FA,b,c ∪ I(FA,b,c), finds a new vector in the union by perform-
ing poly(n, r) comparisons and operations +,−,×, /, � � and by solving, if necessary,
problem DUAL(C,A,B) for A = Z ∩ FA,b,c and B = Z ∩ I(FA,b,c).

Next, by invoking Theorem 2.1, which we shall prove separately in section 5,
we can argue that, since the number of maximal infeasible integer vectors for (1.1)
is relatively small, we can efficiently generate all elements of FA,b,c by generating
all vectors in the union FA,b,c ∪ I(FA,b,c) and discarding the elements belonging to
I(FA,b,c). This leads to the following result.

Theorem 3.1. Problem GEN (A, b, c,X ) can be reduced in strongly polynomial
time to DUAL(C,A,B).

To complete the proof of Theorem 1.1, we need to show that DUAL(C,A,B), the
dualization problem over integer boxes, can indeed be solved efficiently. As mentioned
earlier, for C = {0, 1}n, problem DUAL(C,A,B) turns into the well-known hypergraph
dualization problem. In section 7, we extend the hypergraph dualization algorithms
of [14] to problem DUAL(C,A,B) and show that the latter problem can be solved in
quasi-polynomial time.

Theorem 3.2. Given two sets A and B ⊆ I(A) in an n-dimensional box C =
{x ∈ Zn | 0 ≤ x ≤ c}, problem DUAL(C,A,B) can be solved in poly(n) +mo(logm)

time, where m = |A|+ |B|.
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As before, Theorem 3.2 is stated in the unit-cost model of computation: the bound
of the theorem applies to the number of comparisons between components of A and
B required to solve the dualization problem. Other applications of the dualization
problem on boxes can be found in [2, 10, 25].

Clearly, Theorem 1.1 follows from Theorems 3.1 and 3.2. The special cases of
Theorems 2.1 and 3.1 for Boolean systems can be found in [7].

4. Bounded number of inequalities. Even though generating all maximal
infeasible vectors for (1.1) is NP-hard by Proposition 2.2, this problem can be solved
efficiently if the number of inequalities in (1.1) is a fixed constant. Specifically, for r =
const, |FA,b,c| can be bounded by a polynomial in n and |I(FA,b,c)|, and, consequently,
all elements of I(FA,b,c) can be generated in quasi-polynomial time. In fact, for
r = const, the problem of generating I(FA,b,c) as well as the problem of generating
FA,b,c can be solved separately in incremental polynomial time.

For a subset Y ⊆ C, let I−1(Y) denote the set of all minimal integral vectors of
the ideal C \ Y−.

Theorem 4.1. Suppose that the monotone system (1.1) is nontrivial; i.e., 0 �∈
FA,b,c. Then, for any nonempty subset Y ⊆ I(FA,b,c), we have

∣∣I−1(Y) ∩ FA,b,c
∣∣ ≤ (n|Y|)r.(4.1)

In particular, for Y = I(FA,b,c), we get
|FA,b,c| ≤

(
n|I(FA,b,c)|

)r
.

Generalizing the results of [20, 30] for knapsack problems, we can show that both
minimal feasible and maximal infeasible solutions can be generated efficiently if the
number of inequalities in the input monotone system is fixed.

Theorem 4.2. If the number of inequalities in (1.1) is bounded, then both FA,b,c
and I(FA,b,c) can be generated in incremental polynomial time.

The remainder of the paper consists of the proofs of Theorems 2.1, 3.1, 3.2, 4.1,
and 4.2 in sections 5, 6, 7, 8, and 9, respectively.

5. Proof of Theorem 2.1. We first need some notation and definitions.
Let C = {x ∈ Zn | 0 ≤ x ≤ c} be a box, and let f : C → {0, 1} be a discrete

binary function. The function f is called monotone if f(x) ≥ f(y) whenever x ≥ y
and x, y ∈ C. We denote by T (f) and F (f) the sets of all true and all false vectors of
f ; i.e.,

T (f) = {x ∈ C|f(x) = 1} = (MIN[f ])+, F (f) = {x ∈ C|f(x) = 0} = (MAX[f ])−,

where MIN[f ] and MAX[f ] are the sets of all minimal true and all maximal false
vectors of f , respectively.

Let σ ∈ Sn be a permutation of the coordinates, and let x, y be two n-vectors.
We say that y is a left-shift of x and write y �σ x if the inequalities

k∑
j=1

yσj ≥
k∑
j=1

xσj

hold for all k = 1, . . . , n. A discrete binary function f : C → {0, 1} is called 2-
monotonic with respect to σ if f(y) ≥ f(x) whenever y �σ x and x, y ∈ C. Clearly,
y ≥ x implies y �σ x for any σ ∈ Sn so that any 2-monotonic function is monotone.
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The function f will be called regular if it is 2-monotonic with respect to the
identity permutation σ = (1, 2, . . . , n). Any 2-monotonic function can be transformed
into a regular one by appropriately reindexing its variables. To simplify notation, we
shall state Lemma 5.1 below for regular functions; i.e., we fix σ = (1, 2, . . . , n) in this
lemma.

For a given subset A ⊆ C, let us denote by A∗ all of the vectors which are left-
shifts of some vectors of A; i.e., A∗ = {y ∈ C | y � x for some x ∈ A}. Clearly,
T (f) = (MIN[f ])∗ for a regular function f . (In fact, the subfamily of right-most
vectors of MIN[f ] would be enough to use here.)

Given monotone discrete functions f and g, we call g a regular majorant of f if
g(x) ≥ f(x) for all x ∈ C and g is regular. Clearly, T (g) ⊇ (MIN[f ])∗ must hold
in this case, and the discrete function h defined by T (h) = (MIN[f ])∗ is the unique
minimal regular majorant of f .

For a vector x ∈ C and for an index 1 ≤ k ≤ n, let the vectors x(k] and x[k) be
defined by

xj(k] =

{
xj for j ≤ k,
0 otherwise

and

xj [k) =

{
xj for j ≥ k,
0 otherwise.

Let us denote by ej the jth unit vector in Rn for j = 1, . . . , n, and let p(x) denote
the number of positive components of the vector x ∈ C.

Lemma 5.1. Given a monotone discrete binary function f : C → {0, 1} such that
f �≡ 0 and a regular majorant g ≥ f , we have the inequality

|F (g) ∩MAX[f ]| ≤
∑

x∈MIN[f ]

p(x).(5.1)

Proof. Let us denote by h the unique minimal regular majorant of f . Then we
have F (g)∩MAX[f ] ⊆ F (h)∩MAX[f ], and hence it is enough to show the statement
for g = h, i.e., when T (g) = (MIN[f ])∗.

For a vector y ∈ C \ {c}, let us denote by l = ly the index of the last component
which is less than cl; i.e., l = max{j | yj < cj} ∈ {1, . . . , n}. We claim that, for every
y ∈ F (h) ∩MAX[f ], there exists an x ∈ MIN[f ] such that

y = x(l − 1] + (xl − 1)el + c[l + 1),(5.2)

where l = ly. To see this claim, first observe that y �= c because y ∈ F (f) and f �≡ 0.
Second, for any j with yj < cj , we have y+ ej ∈ T (f) by the definition of a maximal
false point. Hence there exists a minimal true vector x ∈ MIN[f ] such that x ≤ y+el

for l = ly. We must have x(l − 1] = y(l − 1] since, if xi < yi for some i < l, then
y ≥ x + ei − el � x would hold, i.e., y � x would follow, implying y ∈ (MIN[f ])∗

and yielding a contradiction with y ∈ F (h) = C \ (MIN[f ])∗. Finally, the definition of
l = ly implies that y[l + 1) = c[l + 1). Hence our claim and the equality (5.2) follow.

The above claim implies that

F (h) ∩MAX[f ] ⊆ {x(l − 1] + (xl − 1)el + c[l + 1) | x ∈ MIN[f ], xl > 0},
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and hence (5.1) and thus the lemma follow.
Lemma 5.2. Let f : C → {0, 1} be a monotone discrete binary function such that

f �≡ 0 and

x ∈ T (f) ⇒ αx
def
= α1x1 + · · ·αnxn ≥ β,(5.3)

where α = (α1, . . . , αn) is a given real vector and β is a real threshold. Then

|{x ∈ C | αx < β} ∩MAX[f ]| ≤
∑

x∈MIN[f ]

p(x).

Proof. Suppose that some of the weights α1, . . . , αn are negative, say, α1 <
0, . . . , αk < 0, and α[k + 1) ≥ 0. Since αx ≥ β for any x ∈ T (f) and since f is
monotone, we have x ∈ T (f) ⇒ α[k + 1)x ≥ β − α(k]c(k]. By the negativity of
the weights α1, . . . , αk, we also have {x ∈ C | αx < β} ⊆ {x ∈ C | α[k + 1)x <
β−α(k]c(k]}. Hence it suffices to prove the lemma for the nonnegative weight vector
α[k + 1) and the threshold β − α(k]c(k]. In other words, we can assume without loss
of generality that the original weight vector α is nonnegative.

Let σ ∈ Sn be a permutation such that ασ1 ≥ ασ2 ≥ · · · ≥ ασn ≥ 0. Then the
threshold function

g(x) =

{
1 if αx ≥ β,
0 otherwise

is 2-monotonic with respect to σ. By (5.3), we have g ≥ f for all x ∈ C; i.e., g is a
majorant of f . In addition, F (g) = {x ∈ C | αx < β}, and hence Lemma 5.2 follows
from Lemma 5.1.

Proof of Theorem 2.1. We are now ready to show inequality (2.3) and finish
the proof of Theorem 2.1. For this, we shall prove, in fact, the following stronger
inequality:

|I(X ) ∩ I(FA,b,c)| ≤ r
∑
x∈X

p(x).(5.4)

Given a nonempty set X ⊆ FA,b,c, consider the monotone discrete function f : C →
{0, 1} defined by the condition MIN[f ] = X . Since (1.1) is monotone, any true vector
of f also satisfies (1.1):

x ∈ T (f) ⇒ ak1x1 + · · ·+ aknxn ≥ bk

for all k = 1, . . . , r. In addition, f �≡ 0 because X �= ∅. Thus, by Lemma 5.2, we have
the inequalities

|{x | ak1x1 + · · ·+ aknxn < bk} ∩MAX[f ]| ≤
∑
x∈X

p(x)(5.5)

for each k = 1, . . . , r. Now, from MAX[f ] = I(X ), we deduce that

I(FA,b,c) ∩ I(X ) ⊆
r⋃

k=1

{x | ak1x1 + · · ·+ aknxn < bk} ∩MAX[f ],

and hence (5.4) follows by (5.5), thus implying (2.3) and completing the proof of the
theorem.
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6. Generating minimal feasible solutions. As mentioned in the introduc-
tion, the proof of Theorem 3.1 has two ingredients. First, we show that, given a
monotone system (1.1), the sets I(FA,b,c) and FA,b,c can be jointly enumerated by
iteratively solving the dualization problem DUAL(C,A,B). Second, we argue that,
due to Theorem 2.1, the number of maximal infeasible vectors for (1.1) is relatively
small, and hence the generation of FA,b,c polynomially reduces to the joint generation
of I(FA,b,c) and FA,b,c.

6.1. Joint generation of dual subsets in an integral box. As was observed
in [3, 17], for c = en, problem GEN(A, b, c,A,B) can be reduced in polynomial time
to the dualization problem DUAL(C,A,B). Extending this observation, we prove it
here for any integral vector c.

Proposition 6.1. Problem GEN (A, b, c,A,B) can be solved in poly(n, |A|, |B|)+
T ∗ time, where T ∗ denotes the time required to solve problem DUAL(C,A,B).

Proof. In fact, we can prove a more general statement. Let us consider an
arbitrary antichain F ⊆ C (i.e., a family F of vectors such that x �≤ y for any two
distinct elements x, y ∈ F), assume that there is a polynomial-time membership oracle
O(F+) for the monotone set F+, and consider the following problem.

GEN(O(F+),A,B). Given subsets A ⊆ F and B ⊆ I(F), either find a new
element x ∈ (F ∪I(F)) \ (A∪B) or show that no such vector exists, i.e., A = F and
B = I(F).

We can show that this more general problem also reduces in polynomial time to
DUAL(C,A,B).

Our proof uses two subroutines, the first of which takes as input a vector x ∈ F+

and returns a minimal vector x∗ in F+ ∩ {x}−. Such a vector x∗ = minF (x) can, for
instance, be computed by coordinate descent:

x∗1 ← min{y1 | (y1, y2, . . . , yn−1, yn) ∈ F+ ∩ {x}−},
x∗2 ← min{y2 | (x∗1, y2, . . . , yn−1, yn) ∈ F+ ∩ {x}−},

· · ·
x∗n ← min{yn | (x∗1, x∗2, . . . , x∗n−1, yn) ∈ F+ ∩ {x}−}.

The second subroutine is to compute, for a given vector x ∈ I(F)−, a maximal vector
x∗ ∈ I(F)− ∩ x+. Similarly, this problem can be done by coordinate descent. Note
that each of the n coordinate steps in the above procedures can be reduced via binary
search to at most log(‖c‖∞ + 1) membership queries for the monotone family F+.
Though this bound depends on the size of the box C, in general, in our case, when
F = FA,b,c is the set of minimal integer solutions for an explicitly given monotone
system (1.1), both of the above coordinate descents can be clearly performed in O(nr)
comparisons (≤,≥) and arithmetic operations (+,−,×, /, � �), regardless of the box
size.

Using these subroutines, our proof of Proposition 6.1 can now be completed by
the following algorithm.

Algorithm J .
Input: An oracle O(F+) and subsets A ⊆ F and B ⊆ I(F).
Step 1. Check whether B ⊆ I(A). Since B ⊆ I(F) and A ⊆ F , each vector

x ∈ B is independent of A, and we have only to check the maximality of x for I(A).
In other words, we have to check whether or not x+ ej ≥ y for some unit vector ej ,
j ∈ {1, . . . , n}, and some vector y ∈ A. Since both A and B are explicitly given, this
can be done in poly(n, |A|, |B|) comparisons. If there is an x ∈ B \I(A), then x �∈ F+

because x ∈ B ⊆ I(F). This and the inclusion A ⊆ F imply that x �∈ A+. Since
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x �∈ I(A), we can find a coordinate j ∈ {1, . . . , n} for which y = x + ej �∈ A+. By
the maximality of x in C \ F+, y belongs to F+. Now, using the first subroutine and
letting y∗ = minF (y), we can conclude that y∗ ∈ F \ A; i.e., y∗ is a new minimal
integral vector in F . Otherwise, if B ⊆ I(A), we continue with the next step.

Step 2. Similar to the previous step, we check whether A ⊆ I−1(B), where
I−1(B) denotes the set of integral vectors which are minimal in C \B−. If A contains
an element that is not minimal in C \ B−, we can find a new vector in I(F) \ B and
stop. Otherwise, we continue with the next step.

Step 3. In this case, we have B ⊆ I(A) and A ⊆ I−1(B), and thus the following
equivalence holds:

(A,B) = (F , I(F)) ⇔ B = I(A).

To see this, assume that B = I(A), and suppose, on the contrary, that there
is an x ∈ F \ A. Since x �∈ A = I−1(B) and x �∈ B− ⊆ I(F)−, there must exist
a y ∈ I−1(B) = A ⊆ F such that y ≤ x. Hence we get two distinct elements
x, y ∈ F such that y ≤ x, which contradicts the definition of F . The existence of an
x ∈ I(F) \ B leads to a similar contradiction.

To check the stopping criterion B = I(A), we solve problem DUAL(C,A,B). If
B �= I(A), we obtain a new point x ∈ I(A)\B. By (2.2), either x ∈ F+ or x ∈ I(F)−,
and we can decide which of these two cases holds by asking the oracle O(F+) or, in
our special case, by checking the feasibility of x for (1.1). In the first case, we conclude
that x∗ = minF (x) is a new vector in F\A. In the second case, we can extend I(F)\B
by using the second subroutine to compute a maximal vector in x+ ∩ I(F)−.

As we noted, the above procedure can be used for any antichain F ⊆ C de-
fined by a polynomial-time membership oracle for F+ since the coordinate descend
subroutines used by the algorithm can always be implemented in n log(‖c‖∞ + 1)
membership tests. Accordingly, Proposition 6.1 also holds for an arbitrary antichain
defined by a polynomial-time membership oracle, provided that the polynomial term
in the proposition includes a multiplicative factor of log(‖c‖∞ + 1).

6.2. Uniformly dual-bounded antichains. Let F ⊆ C be an antichain defined
by a polynomial-time membership oracle O(F+) for F+. Given an input description
D of F and a vector x ∈ C, such an oracle checks the membership of x in F+ in time
bounded by a polynomial in the size of x and the length |D| of the input description
of F . For instance, the antichain FA,b,c of minimal feasible integer vectors for (1.1) is
defined by the triple D = (A, b, c), and the membership test for a given x ∈ C simply
checks if Ax ≥ b. The generation problem can thus be considered more generally for
arbitrary antichains.

GEN(O(F+),X ). Given an antichain F ⊆ C defined by a polynomial-time
membership oracle O(F+) and a subset X ⊆ F , either find a new vector x ∈ F \ X
or show that no such vector exists; i.e., X = F .

Extending the notion of dual-bounded hypergraphs defined in [7], we say that an
antichain F ⊆ C with an input description D is uniformly dual-bounded if there exists
a polynomial q(x, y) such that

|I(F) ∩ I(X )| ≤ q(|D|, |X |)

for any nonempty subset X ⊆ F (see [7] for further details and examples). As we
show below, the uniform dual-boundedness of an antichain is a sufficient condition to
be able to reduce polynomially generation to dualization.
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Proposition 6.2. Suppose F is uniformly dual-bounded and defined by a poly-
nomial-time membership oracle O(F+) for F+. Then problem GEN (O(F+),X )
is polynomial-time reducible to at most q(|D|, |X |) + 1 instances of problem DUAL
(C,A,B).

Proof. Given a set X ⊆ F , we repeatedly run Algorithm J , starting with A = X
and B = ∅, until it either produces a new element in F \ X or proves that X = F by
generating the entire family I(F). By Step 1, either B ⊆ I(X ) is maintained during
the execution of the algorithm or a new element x ∈ F can be found. Thus, as long
as Algorithm J outputs elements of I(F), these elements also belong to I(X ), and
hence the total number of such elements does not exceed q(|D|, |X |).

Proof of Theorem 3.1. By Theorem 2.1, the antichain F = FA,b,c of minimal
integer solutions to the monotone system (1.1), for which we have D = (A, b, c), is
uniformly dual-bounded with q(|D|, |X |) = rn|X |. Furthermore, the reduction of
Proposition 6.2 is strongly polynomial. For this reason, Theorem 3.1 follows from
Theorem 2.1 and Proposition 6.2.

7. Dualization in products of chains. In this section, we prove Theorem

3.2. Let C def
= C1 × · · · × Cn be an integer box defined by the product of n chains

Ci = [li : ui], where li, ui ∈ Z are, respectively, the lower and upper bounds of
chain Ci. For given antichains A ⊆ C and B ⊆ I(A), we say that B is dual to A
if B = I(A); i.e., B contains all the maximal elements of C \ A+. If C is the unit
cube, we obtain the familiar notion of dual hypergraphs, where I(A) corresponds to
the family of complementary sets of the minimal transversals of A. In the following
two subsections, we will show how to extend the hypergraph dualization algorithms
of [14] to arbitrary antichains A of integral vectors in a box C. Note that, by (2.2),
our problem can be stated as of checking whether C = A+ ∪ B−, and, if not, find an
element x ∈ C \ (A+ ∪ B−).

As in [14], we shall analyze the running time of the algorithms in terms of the

volume v = v(A,B) def
= |A||B| of the input problem. In general, a given problem will

be decomposed into a number of subproblems of smaller volume, which we will solve
recursively. Since we have assumed that B ⊆ I(A), (2.2) implies that the following
condition holds for the original problem and all subsequent subproblems:

a �≤ b for all a ∈ A, b ∈ B.(7.1)

Let C(v) = C(v(A,B)) denote the number of subproblems that have to be solved
in order to solve the original problem (the maximum number of recursive calls on a

problem of volume ≤ v), and let m
def
= |A|+ |B| and [n]

def
= {1, . . . , n}. We start with

the following proposition that provides the base case for recursion.
Proposition 7.1. Suppose min{|A|, |B|} ≤ const; then problem DUAL(C,A,B)

is solvable in time poly(n,m).
Proof. Let us assume without loss of generality that B = {b1, . . . , bk} for some

constant k. Then C = A+ ∪ B− if and only if, for every t = (t1, . . . , tk) ∈ [n]k for
which

bjtj �= utj for all j ∈ [k],(7.2)

there exists an a ∈ A such that

ai ≤ max({bji + 1 | j ∈ [k], tj = i} ∪ {li}) for all i ∈ [n].(7.3)
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To see this, assume first that C = A+ ∪B−, and consider any t ∈ [n]k such that (7.2)
holds. Let x ∈ C be defined by taking xi = max({bji + 1 | j ∈ [k], tj = i} ∪ {li}) for
i = 1, . . . , n. Then x ∈ C \ B−, and hence x ∈ A+, implying that there is an a ∈ A
satisfying (7.3). On the other hand, let us assume that, for every t ∈ [n]k satisfying
(7.2), there is an a ∈ A for which (7.3) holds. Consider an arbitrary x ∈ C \ B−.
Then there must exist an index tj ∈ [n] for every j ∈ [k] such that xtj ≥ bjtj + 1.

The vector t = (t1, . . . , tk) ∈ [n]k constructed in this way then satisfies (7.2), and,
therefore, there is an a ∈ A such that ai ≤ max({bji + 1 | j ∈ [k], tj = i} ∪ {li}) ≤ xi
for all i = 1, . . . , n, thus implying x ∈ A+.

The condition given in (7.2) and (7.3) can clearly be checked in poly(n,m) time
for any constant k. If the condition does not hold for some t ∈ [n]k, then the element
x, defined by xi = max({bji + 1 | j ∈ [k], tj = i} ∪ {li}) for i = 1, . . . , n, belongs to
C \ (A+ ∪ B−).

Note that, to complete the solution of the dualization problem, we need to find an
elementmaximal in C\(A+∪B−). This can easily be done in polynomial time and even
independently of the chain sizes, as shown in the next proposition. Therefore, in the
following subsections, we shall only show how to obtain an element x ∈ C \(A+∪B−),
when such an element exists.

Proposition 7.2. Given an x ∈ C \ (A+ ∪B−), it can be extended to a maximal
element with the same property in O(nm) time.

Proof. Note that, for i = 1, . . . , n, the ith component of any maximal element in
C \ A+ must belong to the set {ai − 1 | a ∈ A} ∪ {ui}. Thus a new element x′ ≥ x
maximal in C \(A+∪B−) can be found as follows. For i = 1, . . . , n, we find iteratively

the set Ai def
= {a ∈ A | a1 ≤ x′1, . . . , ai−1 ≤ x′i−1, ai > xi, ai+1 ≤ xi+1, . . . , an ≤ xn}

and then set x′i ← min({ai − 1 | a ∈ Ai} ∪ {ui}).
7.1. Algorithm A. Assume that A,B satisfy (7.1), and let C = C1 × · · · × Cn,

where Ci = [li : ui]. We say that a coordinate i ∈ [n] is essential for a point a ∈ A
(b ∈ B) if ai > li (respectively, bi < ui). Let us denote by E(x) the set of essential
coordinates of a point x ∈ A∪B. The following lemma generalizes a well-known fact
for dual Boolean functions (cf. [14]).

Lemma 7.3. Let A,B ⊆ C be given subsets. Then either (i) there exists an
element y ∈ A∪B with few essential coordinates |E(y)| ≤ logm, where m = |A|+ |B|,
or (ii) if no such element y exists, then B �= I(A), and an element x ∈ C \ (A+ ∪B−)
can be found in poly(n,m) time.

Proof. Let z ∈ C be the vector obtained by picking each coordinate zi randomly

from {li, ui}, i = 1, . . . , n, and consider the random variable N(z)
def
= |{a ∈ A | z ≥

a}|+ |{b ∈ B | z ≤ b}|. Then the expected value of N(z) is given by

E[N(z)] =
∑
a∈A

Pr{z ≥ a}+
∑
b∈B

Pr{z ≤ b}

=
∑
a∈A

∏

i∈E(a)

Pr{zi = ui}+
∑
b∈B

∏

i∈E(b)

Pr{zi = li}

=
∑
a∈A

(
1

2

)|E(a)|
+
∑
b∈B

(
1

2

)|E(b)|
.

(7.4)

If we have E[N(z)] ≥ 1, then, by letting r = min{|E(z)| : z ∈ A ∪ B}, we get by
(7.4) that

1 ≤ E[N(z)] ≤ (|A|+ |B|)
(
1

2

)r
= m

(
1

2

)r
,
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from which part (i) of the lemma follows.
On the other hand, if E[N(z)] < 1, then we can find an element x ∈ C \(A+∪B−)

(in fact a corner of the finite box C) in polynomial time, proving part (ii) of the lemma.
To see this, let us consider, for each i = 1, . . . , n, the variables zj ∈ {lj , uj} random
for j > i, as above, compute the expectations of N(x1, . . . , xi−1, li, zi+1, . . . , zn)
and N(x1, . . . , xi−1, ui, zi+1, . . . , zn) analogously to (7.4), and select the value for
xi ∈ {li, ui} so as to minimize the corresponding expectation. Clearly, N(x) < 1 will
hold in this case; thus N(x) = 0, implying that x �∈ A+ ∪ B−.

Next we show that, for any dual pair (A,B), an essential coordinate with high
frequency exists for either A or B.

Lemma 7.4. Let A,B ⊆ C be a pair of dual subsets, B = I(A), for which
|A||B| ≥ 1. Then there exists a coordinate i ∈ [n], which is essential in A or in B
with frequency at least 1/ logm, where m = |A|+ |B|.

Proof. By Lemma 7.3, the set A∪B must contain an element y with a logarithmi-
cally small number of essential coordinates. Suppose, without loss of generality, that
y ∈ A. From our assumptions and condition (7.1), we know that, for every b ∈ B,
there is an i ∈ E(b) ∩ E(y) such that bi < yi. Letting Byi def

= {b ∈ B | bi < yi} for
i ∈ E(y), we conclude that

|B| =
∣∣∣∣∣
⋃

i∈E(y)

Byi
∣∣∣∣∣ ≤

∑

i∈E(y)

|Byi |,

and therefore there is an i ∈ [n] which is essential for at least |B|/|E(y)| ≥ |B|/ logm
many elements of B.

We are now ready to state the first dualization algorithm. Given an integral box C
and subsets A,B ⊆ C that satisfy (7.1), in time poly(n,m)+mO(log2m) the algorithm
will either prove that C = A+ ∪ B− or find an x ∈ C \ (A+ ∪ B−).

Step 1. If |A||B| ≤ 1, then the dualization problem can be solved in O(n) time.
Step 2. For each k ∈ [n], if ak < lk for some a ∈ A (bk > uk for some b ∈ B),

set ak ← lk (respectively, set bk ← uk). (Note that A,B ⊆ C holds initially but might
not hold after decomposing C; see Step 4 below.) Note that condition (7.1) continues
to hold after such replacements. Thus, in O(nm) time, we can ensure that A,B ⊆ C
hold.

Step 3. Check if there is a y ∈ A ∪ B with at most logm essential coordinates.
If no such y can be found, a new point in C \ (A+ ∪B−) can be obtained as described
in the proof of Lemma 7.3 (ii). Otherwise, assume, without loss of generality, that
y = ao ∈ A, and find an i ∈ E(ao) for which |{b ∈ B | bi < aoi }| ≥ |B|/ logm. Let
us suppose, again without any loss of generality, that i = 1 and set C′1 ← [ao1 : u1],
C′′1 ← [l1 : a

o
1 − 1]. Let, further,

A′′ = {a ∈ A | a1 < ao1}, B′ = {b ∈ B | b1 ≥ ao1}.

Observe that |A′′| ≤ |A| − 1 since ao �∈ A′′ and that |B′| ≤ (1 − 1/ logm)|B| by our
choice of ao and i.

Step 4. Denoting by C′ = C′1×C2× · · · × Cn and C′′ = C′′1 ×C2× · · · × Cn the two
subboxes of C induced by the above partitioning, it is then easy to see that A and B
are dual in C if and only if

A,B′ are dual in C′(7.5)
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and

A′′,B are dual in C′′.(7.6)

Thus, by applying the algorithm recursively to these two subproblems, we reduce
the computation on a problem of size v = |A||B| to computing the solution for two
subproblems (7.5)–(7.6) of volumes

v(A,B′) = |A||B′| ≤ |A|(1− ε)|B| = (1− ε)v and

v(A′′,B) = |A′′||B| = (|A| − 1)|B| ≤ v − 1,

where ε = 1/ logm. This leads to the recurrence

C(v) ≤ 1 + C((1− ε)v) + C(v − 1),

which was shown in [14] to evaluate to C(v) ≤ (3 + 2vε)log v/ε, implying that the

running time of the algorithm is poly(n) +mO(log2m).

In the next subsection, we shall give an algorithm that solves the problem in
poly(n,m) +mo(logm) time.

7.2. Algorithm B. Algorithm A of the previous subsection decomposes prob-
lem DUAL(C,A,B) into two subproblems, (7.5) and (7.6). As we shall see below,
subproblems (7.5) and (7.6) are not independent, and we can utilize their dependence
to get a more efficient dualization algorithm. Given an integral box C = C1×· · ·×Cn,
where Ci = [li : ui], and subsets of integral vectors A,B that satisfy the necessary
condition (7.1), we proceed as follows.

Step 1. If min{|A|, |B|} ≤ 2, the duality of A and B can be tested in O(n3m)
using Proposition 7.1.

Step 2. For each k ∈ [n],

2.1. if ak > uk for some a ∈ A (bk < lk for some b ∈ B), then a (respectively, b)
can clearly be discarded from further consideration;

2.2. if ak < lk for some a ∈ A (bk > uk for some b ∈ B), we set ak ← lk
(respectively, bk ← uk).

Thus we may assume for the next steps that A,B ⊆ C.
Step 3. Let ao ∈ A, bo ∈ B. By (7.1), there exists an i ∈ [n] such that aoi > boi .

Let us assume, without any loss of generality, that i = 1 and set C′1 ← [ao1 : u1],
C′′1 ← [l1 : ao1 − 1]. (Alternatively, we may set C′′1 ← [l1 : bo1] and C′1 ← [bo1 + 1 : u1].)
Let C′ and C′′ be the two resulting subboxes as defined in Step 4 of the previous
subsection. Define, further,

A′′ = {a ∈ A | a1 < ao1}, A′ = A \ A′′, εA1 =
|A′|
|A| ,

B′ = {b ∈ B | b1 ≥ ao1}, B′′ = B \ B′, εB1 =
|B′′|
|B| .

Observe that εA1 > 0 and εB1 > 0 since ao ∈ A′ and bo ∈ B′′.
Step 4. Define

ε(v) = 1/χ(v), where χ(v)χ(v) = v = v(A,B).
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If min{εA1 , εB1 } > ε(v), we use the decomposition rule given above, which amounts to
solving recursively two subproblems, (7.5), (7.6), of respective volumes:

v(A,B′) = |A||B′| = |A|(1− εB1 )|B| = (1− εB1 )v(A,B),
v(A′′,B) = |A′′||B| = (1− εA1 )|A||B| = (1− εA1 )v(A,B).

This gives rise to the recurrence

C(v) ≤ 1 + C((1− εB1 )v) + C((1− εA1 )v) ≤ 1 + 2C((1− ε(v))v).(7.7)

Step 5. Let us now suppose that εB1 ≤ ε(v). In this case, we begin by solving
subproblem (7.5). If A,B′ are not dual in C′, we get a point x maximal in C′ \ [A+ ∪
(B′)−], and we are done. Otherwise, we claim that

A′′,B are dual in C′′ ⇐⇒ for all a ∈ Ã : A′′,B′′ are dual in C′′(a),(7.8)

where Ã = {a ∈ A | a1 ≤ ao1} and C′′(a) = C′′1 × [a2 : u2]× · · · × [an : un].
Proof of (7.8). The forward direction does not use (7.5). Suppose that there is

an a ∈ Ã such that A′′ and B′′ are not dual in C′′(a); i.e., there is an x ∈ C′′(a) \
[(A′′)+ ∪ (B′′)−]. Then xi ≥ ai for i = 2, . . . , n. If x ∈ (B′)−, i.e., x ≤ b, for some

b ∈ B′, then, by the definition of B′, b1 ≥ ao1. On the other hand, a ∈ Ã implies that
a1 ≤ ao1. However, then,

(a1, a2, . . . , an) ≤ (ao1, x2, . . . , xn) ≤ (b1, b2, . . . , bn),

which contradicts the assumed condition (7.1). This shows that x ∈ C′′ \ [(A′′)+ ∪
(B′ ∪ B′′)−], and hence A′′ and B are not dual in C.

For the other direction, let x ∈ C′′ \ [(A′′)+ ∪ B−]. Since x �∈ (B′)− and x =

(x1, x2, . . . , xn) < y
def
= (ao1, x2, . . . , xn), the vector y also satisfies y ∈ C′ \ (B′)−. We

conclude, therefore, assuming (7.5), that y ∈ A+; i.e., there is an a ∈ A such that

a ≤ y. However, this implies that a ∈ Ã and hence that x ∈ C′′(a) \ [(A′′)+ ∪ (B′′)−]
for some a ∈ Ã.

It follows by (7.8) that, once we discover that (7.5) holds, we can reduce the

solution of subproblem (7.6) to solving |Ã| subproblems, each of which has a volume
of v(|A′′|, |B′′|) ≤ εB1 v(A,B). Thus we obtain the recurrence

C(v) ≤ 1 + C((1− εB1 )v) + |A|C(εB1 v).(7.9)

Step 6. Finally, if εA1 ≤ ε(v) < εB1 , we solve subproblem (7.6), and, if we discover
that A′′,B are dual in C′′, we obtain the following decomposition rule, symmetric
to (7.8):

A,B′ are dual in C′ ⇐⇒ for all b ∈ B̃ : A′,B′ are dual in C′(b),

where B̃ = {b ∈ B | b1 ≥ ao1 − 1} and C′(b) = C′1 × [l2 : b2] × · · · × [ln : bn]. This

reduces our original problem into one subproblem of volume ≤ (1 − εA1 )v, plus |B̃|
subproblems, each of volume at most εA1 v, thus giving the recurrence

C(v) ≤ 1 + C((1− εA1 )v) + |B|C(εA1 v),(7.10)

which is the symmetric version of (7.9).
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Using induction on v ≥ 9, it can be shown that recurrences (7.7), (7.9), and
(7.10) imply C(v) ≤ vχ(v) (see [14]). As χ(m2) < 2χ(m) and v(A,B) < m2, we get
χ(v) < χ(m2) < 2χ(m) ∼ 2 logm/ log logm. Let us also note that every step above
can be implemented in O(n3m) time, independently of the sizes of the chains |Ci|.
This establishes the bound stated in Theorem 3.2.

8. Bounding the size of FA,b,c. To prove inequality (4.1) of Theorem 4.1, let
us consider an arbitrary nonempty antichain Y ⊆ I(FA,b,c). For any y ∈ I(FA,b,c), we
can find an index i = ρ(y) ∈ [r]

def
= {1, . . . , r} such that y violates the ith inequality

of the system; i.e., aiy < bi, where ai and bi denote the ith row and component of A
and b, respectively.

Consider a vector x ∈ I−1(Y) ∩ FA,b,c, and let xl be a positive component of x.
Then there exists a vector yl ∈ Y such that yl ≥ x − el. Let i = ρ(yl), and assume,
without loss of generality, that

ai1 ≥ ai2 ≥ · · · ≥ ain.(8.1)

We claim that x(l] = zl(l], where

zl = yl(l] + el.(8.2)

It follows from yl ≥ x − el that zl(l] ≥ x(l]. If zll > xl, then yll ≥ xl, which implies
yl ≥ x, which is a contradiction. Thus zll = xl holds. Moreover, if zlj > xj for some

j < l, then we have ylj ≥ xj + 1. By (8.1), ai(yl − ej + el) < bi; i.e., y
l − ej + el is

infeasible for (1.1). However, yl−ej+el ≥ x by yl ≥ x−el, and hence yl−ej+el must
be feasible. This shows that x(l] = zl(l] and consequently leads to the representation

x =
∨

l∈[n]: xl>0

zl,(8.3)

where, for vectors v, u ∈ C, we let v ∨ u denote the componentwise maximum of v
and u.

Not all of the vectors zl are necessary for this representation. Suppose that
ρ(yl) = ρ(yl

′
) = i for some positive components xl and xl′ of x and for l′ < l. Then

(8.3) remains valid if we drop zl
′
, the vector with the smaller index l′. In other words,

by sorting the ith row of A and then selecting from among the vectors yl ∈ ρ−1(i)
the one with the highest l = li, we obtain at most r vectors zli such that

x =
∨

i∈[r]

zli .(8.4)

The latter representation readily implies (4.1).

9. Polynomial generation of FA,b,c and I(FA,b,c). Theorem 4.1 implies
that, for r ≤ const, the antichain I(FA,b,c) is uniformly dual-bounded, and, conse-
quently, I(FA,b,c) can be generated in incremental quasi-polynomial time via Algo-
rithm J presented in section 6. In this section, we show that, for bounded r, the
antichains I(FA,b,c) and FA,b,c can, in fact, be generated in incremental polynomial
time. Since the sizes |FA,b,c| and |I(FA,b,c)| are (uniformly) polynomially related by
Theorems 2.1 and 4.1, the required result will follow from Proposition 6.1, provided
that Step 3 of Algorithm J , the dualization step, can be done in polynomial time.
Thus it is enough to show that problem DUAL(C,A,B) can be solved in polynomial
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time if A ⊆ FA,b,c is a subset of the minimal solutions of a monotone system (1.1)
with bounded r.

For i ∈ [r] = {1, . . . , r}, let σ(i) = (σ(i)1, . . . , σ(i)n) ∈ Sn be a permutation of the
coordinates such that

aiσ(i)1
≥ aiσ(i)2

≥ · · · ≥ aiσ(i)n
.(9.1)

Given A ⊆ FA,b,c and B ⊆ I(FA,b,c), we may assume that 0 �∈ A (otherwise, FA,b,c =
{0} and I(FA,b,c) = ∅) and B �= ∅ (otherwise, Proposition 7.1 can be used to generate
a point x ∈ C \ (A+ ∪ B−)). Now we proceed in two basic steps.

Step 1. For every y ∈ B and for each pair of indices σ(i)j and σ(i)l with yσ(i)j
> 0,

yσ(i)l
< cσ(i)l

, and j < l, check if there exists a y′ ∈ B such that

y′ ≥ y − eσ(i)j + eσ(i)l ,(9.2)

where i = ρ(y) is the index of an infeasible inequality for y, as defined in the previous
section. Note that y− eσ(i)j + eσ(i)l is infeasible and hence is an independent element
of A. If no such y′ can be found, we generate a new maximal independent vector
y′ ∈ I(A) \ B, satisfying (9.2), and halt.

Step 2. For every collection (yi ∈ ρ−1
B (i) | i ∈ [r]), where ρ−1

B (i)
def
= {y ∈ B |

ρ(y) = i}, and for every (li | i ∈ [r], yili < cli) ∈ [n]r, construct the vector x =∨
i∈[r] z

li , where zli is given by (8.2) (according to the permutation σ(i) and using

yl = yli). If x �∈ A+ ∪B−, then a new maximal independent vector can be generated.
Clearly, the above two steps run in poly(n,m) + O((n|B|)r) time, which is poly-

nomially bounded for constant r. It is also clear that, if the algorithm outputs a
point x ∈ C, then x �∈ A+ ∪ B−, so it remains to verify that the algorithm indeed
outputs such a point if A+ ∪ B− �= C. To see this, let x be a minimal vector in
C \ (A+ ∪B−). From our assumptions, it follows that x �= 0, and thus there exists an
index l with xl > 0. By the minimality of x, there exists a vector yl ∈ B such that
yl ≥ x − el. Let i = ρ(yl), assume without any loss of generality that (8.1) holds,
and consider an index j < l. If ylj > xj , we get y

l − ej + el ≥ x, and therefore a new
maximal independent point x′ ≥ x must have been output in Step 1 of the algorithm
(cf. (9.2)). On the other hand, if, for every l ∈ [n] such that xl > 0 and for every
yl ∈ B such that yl ≥ x − el, we have x(l] = zl(l] (in the ordering implied by σ(i),
where i = ρ(yl)), then we can conclude that x satisfies (8.4), and, consequently, it
must have been created in Step 2.

10. Concluding remarks. We mention in closing that, in section 5, we actu-
ally proved Theorem 2.1 for arbitrary systems of 2-monotonic inequalities in integer
variables. Consequently, the set of minimal feasible integer vectors for any system
of 2-monotonic inequalities is uniformly dual-bounded. By Proposition 6.2, this im-
plies that all minimal integer solutions to a system of 2-monotonic inequalities can
be generated in incremental quasi-polynomial time, provided that the system has a
polynomial-time feasibility oracle. Theorems 4.1 and 4.2 also hold for arbitrary sys-
tems of 2-monotonic inequalities. These generalize results known for a single Boolean
2-monotonic inequality discussed in [4, 8, 9, 18, 24, 26, 27].
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Abstract. Collective coin-flipping is the problem of producing common random bits in a dis-
tributed computing environment with adversarial faults. We consider the perfect information model:
all communication is by broadcast and corrupt players are computationally unbounded. Protocols
in this model may involve many asynchronous rounds. We assume that honest players communicate
only uniformly random bits. We demonstrate that any n-player coin-flipping protocol that is resilient
against corrupt coalitions of linear size must use either at least [1/2 − o(1)] log∗ n communication

rounds or at least [log(2k−1) n]1−o(1) communication bits in the kth round, where log(j) denotes the
logarithm iterated j times. In particular, protocols using one bit per round require [1/2−o(1)] log∗ n
rounds. These bounds also apply to the leader election problem. The primary component of this
result is a new bound on the influence of random sets of variables on Boolean functions. Finally, in
the one-round case, using other methods we prove a new bound on the influence of sets of variables
of size βn for β > 1/3.

Key words. perfect information model, collective coin-flipping, leader election

AMS subject classifications. 68Q17, 91A15, 05D40

PII. S0097539700376007

1. Introduction. Collective coin-flipping is the problem of producing a com-
mon random bit in a distributed computing environment with adversarial faults. We
consider the perfect information model introduced by Ben-Or and Linial [5], which
can be informally described as follows. A protocol in this model consists of a sequence
of rounds. In each round, each player privately generates a uniformly random string
of bits of some specified length (possibly 0) and broadcasts the string. Each broad-
cast is received by all players and the identity of the sender is known with certainty.
The round ends after all broadcasts are received. After the completion of all rounds,
the outcome of the protocol is computed separately by each player as a prespecified
function of all the values broadcast during the protocol; for the coin-flipping problem
the outcome is a single bit. A protocol Π is said to be an (n, r, �)-protocol if n is the
number of players, r is the number of rounds, and each player broadcasts at most �
bits in each round.

Faults are modeled by the presence of an unknown set of b corrupt players who
collude in order to bias the outcome. Players are assumed to be computationally
unbounded. In addition, the system is not able to enforce perfect synchrony within a
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round; thus in each round, the corrupt players may wait to see the broadcasts of the
other players before selecting their strings.

While not necessary for previous upper bounds, we strengthen our lower bounds
by assuming that corrupt players may cheat only in ways that are undetectable to
the other players. This means that when the protocol specifies that such a player
broadcast a bit string of a given length, he must do so; however, he may cheat by
broadcasting a string that he chooses rather than a random string.

The simplest protocol is one that designates a single player to flip a coin, the
value of which is the outcome of the protocol; of course, this is unsatisfactory if
that player happens to be faulty. More generally, an (n, 1, 1)-protocol is defined by
a Boolean function f : {0, 1}n → {0, 1}; each player i broadcasts a bit ri and the
outcome is f(r1, . . . , rn). Throughout the paper we use the terms Boolean function
and (n, 1, 1)-protocol interchangeably.

The primary goal in designing a protocol is to ensure that it can tolerate as many
cheaters as possible.

Definition 1.
1 Let Π be a coin-flipping protocol for n players, and let γ ∈ (0, 1/2].

(a) For B ⊆ [n], Π is (B, γ)-resilient if for any strategy of the players in B,

γ ≤ Pr[Π has outcome 1] ≤ 1− γ,

where the probability is taken with respect to the random bits generated
by the players outside of B.

(b) Π is (b, γ)-resilient for an integer b ≤ n if it is (B, γ)-resilient for all B
with |B| ≤ b.

2. Let Π = (Πn : n ≥ 1) be a sequence where Πn is an n-player protocol, and
let b(n) be a function mapping n to an integer b(n) ≤ n. We say that Π is
b(n)-resilient if there exists γ > 0 (independent of n) such that for all n, Πn

is (b(n), γ)-resilient.
For example, in the case of (n, 1, 1)-protocols, the parity function,

∑n
i=1 ri mod

2, is not even 1-resilient, while the majority function is c
√
n-resilient for any pos-

itive c. Ajtai and Linial [1] constructed a Boolean function that is Ω(n/ log2 n)-
resilient. Kahn, Kalai, and Linial, in a 1988 tour de force, proved an upper bound on
the resilience of Boolean functions.

Theorem 2 (see [13]). If b(n) = ω( n
log n ), then no sequence (fn : n ≥ 1) is

b(n)-resilient.
We emphasize that this bound applies only to (n, 1, 1)-protocols. Indeed, Alon

and Naor [2] showed that there are protocols using n rounds that are Ω(n)-resilient,
and this was followed by a sequence of papers giving more efficient protocols with
linear resilience. In what follows log(k)(n) denotes the maximum of 1 and the kth

iterated base 2 logarithm, and log∗ n is the least integer k such that log(k)(n) = 1. The
most efficient known protocol is that of [16], requiring log∗ n + O(1) rounds; players

send messages of length O(log(k) n) during the kth round. The protocol achieves βn-
resilience for any β < 1/2. (As noted in [17] no protocol can be n/2-resilient.) This
protocol can be modified to yield a one bit per round protocol with

[
1 + o(1)

]
log n

rounds. Subsequently, Feige [9] gave a simpler protocol with similar properties.
Despite rapid progress in our understanding of protocols for the problem, very

little beyond Theorem 2 was known on the negative side. The major contribution
of this article is an extension of Theorem 2 to protocols with many rounds. We will
prove the following theorem.
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Theorem 3. Let Π = (Πn : n ≥ 1) be a sequence of protocols, where Πn is an
(n, r(n), 1)-protocol for r(n) ≤ 1

2 log∗ n− log∗ log∗ n. Then
1. Πn is not Ω(n)-resilient and
2. if

b(n) = ω

(
(r(n))2

log(2r(n)−1) n
· n
)

,

then Π is not b(n)-resilient.
For instance, when r(n) = 1 this reduces to Theorem 2, and when r(n) = 2 it

implies that no (n, 2, 1)-protocol can be ω(n/ log log log n)-resilient.
We extend the notation above to describe protocols with variable communication

complexity: a protocol Π is said to be an (n, r, ��)-protocol if n is the number of players,
r is the number of rounds, and no more than �k bits are broadcast by any player in
the kth round, where �� = (�1, . . . , �r). We will prove that the conclusion of Theorem 3
holds even if we relax the requirement that each player sends only one bit per round.

Theorem 4. There is a function η : N→ [0, 1] with η(n) = o(1) so that for any

sequence Π = (Πn : n ≥ 1) of protocols, where Πn is an (n, r(n), ��)-protocol with

r(n) ≤ 1

2
log∗ n− log∗ log∗ n and �k(n) ≤ (log(2k−1) n)1−η(n),

Πn is not Ω(n)-resilient.

Recall that current upper bounds provide (n, log∗ n+O(1), ��)-protocols which are

linearly resilient, where �k = O(log(k) n).
The leader election problem is that of selecting a “leader” among n players so

that the probability that any coalition (of appropriate size) can elect one of its own
members is at most 1 − ε for a constant ε > 0 independent of n. Adopting the
above model, the notion of resilience may be extended to this scenario. Collective
coin-flipping may be reduced to leader election at the cost of an extra round: the
leader may flip a fair coin. Our bounds shall then naturally apply to this problem as
well. For a more detailed discussion of coin-flipping, leader election, and the perfect
information model, see [7, 14].

Section 2 gives definitions, notation, and preliminary facts. The two main theo-
rems are proved in section 3 and section 4. In section 5 an observation is made about
the behavior of large linear sized coalitions. We conclude with some open questions.

2. Preliminaries.

2.1. General notation. Throughout, lnx denotes the natural logarithm and
log x the logarithm base 2. To avoid logarithms of negative numbers, iterated loga-
rithms are defined inductively as follows: for x ≥ 1, log(0)(x) = x, and for k ≥ 1,

log(k) x =

{
1 if log(k−1) x < 2,

log
(

log(k−1) x
)

otherwise.

For x ≥ 1, define log∗(x) to be the smallest natural number k for which log(k) x = 1.
For a positive real number y and integer k the tower function T(k; y) is defined

by

T(0; y) = y, and

T(k; y) = 2T(k−1;y) for k > 0.
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Observe that for any y ≥ 1, k ≤ �, log(k)(T(�; y)) = T(�− k; y).
For an integer n, we denote the set {1, . . . , n} by [n]. For J ⊆ [n], a finite set

X, and α ∈ XJ , C(α) denotes the set of all points x ∈ Xn such that xj = αj for all
j ∈ J . If α ∈ XJ and β ∈ X [n]\J , then [α : β] denotes the unique point of {0, 1}n
belonging to C(α) ∩ C(β).

If S is a set, the notation x ∈U S indicates that x is selected uniformly at random
from S.

2.2. Coin-flipping protocols and influence. We want to formalize the defi-
nition of protocol given in the introduction. We below define (n, r, ��)-protocols and a
number of related notions; (n, r, �)-protocols, where communication is constant across
rounds, are covered as a special case. For an (n, r, 1)-protocol Π we suppress the third
index and simply say that Π is an (n, r)-protocol.

Formally, an (n, r, ��)-protocol is a function

Π : ({0, 1}
1)n × · · · × ({0, 1}
r )n → {0, 1} .

Such a protocol is executed in r rounds. In the presence of a set B ⊂ [n] of bad
players, the protocol operates as follows. In round i, the players in [n] \ B select

αi ∈ ({0, 1}
i)[n]\B uniformly at random. Then, depending on α1, . . . , αi, the players

in B choose their values. Formally, an (n, r, ��)-strategy for B is a sequence S =
(S1, S2, . . . , Sr) of functions where

Si :
(
{0, 1}
1

)[n]\B
× · · · ×

(
{0, 1}
i

)[n]\B
→
(
{0, 1}
i

)B

.

The function Si specifies the choices of the bad players in round i as a function of the
choices of the good players in the first i rounds. The outcome of protocol Π, with bad
player set B playing strategy S, is a function of the sequence

�α = (α1, . . . , αr) ∈ ({0, 1}
1)[n]\B × · · · ×
(
{0, 1}
r

)[n]\B

of the random coins of the good players, which is denoted Π(�α;S) and is defined to
be

Π
(
[α1 : S1(α1)], . . . , [αr : Sr(α1, . . . , αr)]

)
.

Definition 5. For a protocol Π, B ⊆ [n], and strategy S,
• p1

Π(B;S) denotes the probability that Π(�α;S) = 1 if

�α ∈U

({0, 1}
1)[n]\B × · · · × ({0, 1}
r)[n]\B
;

• p1
Π(B) is the maximum of p1

Π(B;S) over all strategies S;
• p1

Π = p1
Π(∅), the natural probability of Π, is the probability that the outcome

is 1 if there are no bad players;
• I1

Π(B), the influence of B towards 1, is defined to be p1
Π(B)− p1

Π;
• p0

Π(B;S), p0
Π(B), p0

Π, and I0
Π(B) are defined analogously;

• IΠ(B), the influence of B on Π, is defined to be

I1
Π(B) + I0

Π(B).
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An (n, 1)-protocol corresponds to a Boolean function f : {0, 1}n → {0, 1}, and
we typically use the letter f (instead of Π) for such a protocol. It is not hard to see
that p1

f (B) is the probability, with respect to α ∈U {0, 1}[n]\B , that 1 ∈ f(C(α)) and
that If (B) is the probability that f is not constant on C(α). Furthermore, if |B| = 1,
then I1

f (B) = I0
f (B).

The following result, observed in [6] (cf. Proposition 2.2 of [13]), implies that the
most resilient one-round protocols are given by Boolean functions that are monotone.

Proposition 6. For any Boolean function f , there exists a monotone Boolean
function g on the same set of variables for which

1. p1
f = p1

g and

2. for all B ⊂ [n], I1
f (B) ≥ I1

g (B) and I0
f (B) ≥ I0

g (B).
Finally, we need a variant of a fact first noted in [10] and based on a result in

[13], which asserts that if no variable in a Boolean function has large influence, then
the average influence of a variable cannot be too small. For completeness, we include
a proof.

Lemma 7. Let γ ∈ (0, 1
2 ) and θ ∈ (0, 1

8 ). Let f : {0, 1}n → {0, 1} be a Boolean
function with p1

f ∈ (γ, 1− γ). If If ({i}) ≤ θ for each i ∈ [n], then

∑

i∈[n]

If ({i}) ≥ γ log( 1
θ )

20
.

Proof. Let v̄ ∈ Rn denote the vector with vi = If ({i}). For p > 0, the lp norm
of v̄, denoted ‖v̄‖p, is defined to be (Sp)1/p, where Sp =

∑ |vi|p.
By complementing if necessary, we may assume that p1

f ≤ 1/2. Since the function

f is Boolean and p1
f ≥ γ, [13, eq. (3.4.1)] asserts that for any δ ∈ (0, 1) and t ≥ 1,

δ−tS 2
1+δ

+ t−1S1 ≥ γ

2
.(2.1)

Inequality (2.10.1) of Hardy, Littlewood, and Pólya [11] asserts that

Sr ≤ (Sq)
s−r
s−q (Ss)

r−q
s−q

for 0 < q < r < s, which is equivalent to

(Sr)
s−q
s ≤ (Sq)

s−r
s (‖v‖s)r−q.

Setting q = 1 and r = 2
1+δ and letting s tend to ∞, we obtain

S 2
1+δ
≤ S1θ

1−δ
1+δ .

Substituting this into the inequality (2.1) and setting δ = 1/2 we get
(

2tθ
1
3 +

1

t

)
S1 ≥ γ

2
.

Choose t such that θ = 2−3t/t3 (noting that t > 1 since θ < 1/8). Then the previous
inequality implies S1 ≥ tγ/4. Since 2−3t/t3 ≥ 2−5t for t ≥ 1, we have

t ≥ 1

5
log

(
1

θ

)
,

and therefore

S1 ≥
γ log 1

θ

20
.
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2.3. A tail bound for submartingales. Our main theorems are proved by
considering a certain stochastic process which, for a Boolean function, selects a set of
variables likely to have large influence. Our analysis of this stochastic process involves
a tail bound for submartingales, which we record below.

Definition 8. A submartingale is a sequence of real valued random variables
Z0, Z1, . . . for which E [Zi | Zi−1] ≥ Zi−1.

We were unable to find the exact form of the following tail bound in the literature,
so we have included a proof. The basic method is developed in [8, 4, 12]. Our
treatment follows [3, 15].

Lemma 9. Let (Zi : i ∈ {0, . . . , n}) form a submartingale with Z0 = 0. Define
Xi = Zi − Zi−1 for i ∈ {1, . . . , n} and assume that Xi ∈ [0, 1] and E[Xi | Zi−1] ≥ µi.
Setting µ =

∑
i µi and Z = Zn,

Pr[Z < (1− δ)µ] < e−
δ2µ
2

for all δ > 0.
Proof. Observe that for any α > 0,

Pr[Z < (1− δ)µ] = Pr
[
e−αZ > e−α(1−δ)µ

]
<

E
[
e−αZ

]

e−α(1−δ)µ
.

Letting �(x) = 1 + x(e−α − 1), we have e−αx ≤ �(x) for all x ∈ [0, 1] because the
exponential function is convex. For any [0, 1] valued random variable Y ,

E
[
e−αY

] ≤ E [�(Y )] = 1 + E[Y ](e−α − 1).

By induction, we compute

E
[
e−αZk

]
= E

[
e−αZk−1 · e−αXk

]

= E

[(
e−αZk−1

)
E

[
e−αXk Zk−1

]]

≤ E

[(
e−αZk−1

) (
1 + E

[
Xk Zk−1

]
(e−α − 1)

)]

≤
∏

i

(1 + µi(e
−α − 1)) < e

∑k
i µi(e

−α−1).

Hence

Pr
[
Z < (1− δ)µ

]
<

eµ(e−α−1)

e−α(1−δ)µ
.

Setting α = ln( 1
1−δ ), we have

Pr
[
Z < (1− δ)µ

]
<

(
e−δ

(1− δ)(1−δ)

)µ

≤ e−
δ2µ
2 ,

since (1− δ)(1−δ) > e−δ+ δ2

2 .

3. Proof of Theorem 3. We begin by considering (n, r)-protocols; each round
consists of a single bit broadcast by each player. Fix the integer r. We say that a
protocol Π is α-nontrivial if the natural probability of Π is at least α, i.e., p1

Π ≥ α,
terminology that we apply also in the multibit case. By complementing the output
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if necessary, we may assume that the protocol is 1/2-nontrivial. We want to show
that if Π is an (n, r)-protocol, then for n sufficiently large there is a set B of b � n
players so that B can almost always force the outcome to 1. For r = 1 this follows
from Theorem 2.

We illustrate the ideas for r > 1 by looking at the two round case. By separating
the inputs associated with each round, a two round protocol may be viewed as a
function to functions:

Π : {0, 1}n → {g : {0, 1}n → {0, 1}} .
As Π is 1/2-nontrivial, many g’s will be 1/4-nontrivial (any constant less than 1/2
would do) and by Theorem 2, for each such g there is a sublinear set of players B2

that can force this g to be 1 with high probability. Also by Theorem 2, there is a
sublinear set of players B1 that can likewise force the output of Π to be one of these
g’s. A natural strategy is to choose B = B1 ∪B2.

The problem with this plan is that B2 depends on g; we really need one B2

that works for many g’s. We show this by proving that a random B2 will work with
significant probability for any 1/4-nontrivial g. It follows that a random B2 will
work for many g’s. For general r, we will proceed by induction, with our inductive
assumption being that a random sublinear set of players can control the protocol with
significant probability.

To make these ideas rigorous, we begin with some definitions. For β ∈ [0, 1], we
say that a subset B is β-powerful in Π if p1

Π(B) ≥ 1− β.
Definition 10. Let Cn(r;α, β) (written Cn(r; γ) when α = β = γ) denote the

collection of pairs 〈δ, b〉 so that for any (n, r)-protocol Π that is α-nontrivial, at least
a δ fraction of sets B ⊂ [n] of size b are β-powerful in Π.

In this notation, we are aiming to show that for some δ > 0 and b � n, (δ, b) ∈
Cn(r; 1/2, o(1)) for sufficiently large n. We prove the somewhat stronger statement
that (δ, b) ∈ Cn(r; o(1)).

The basis case of the induction on r is provided by the following result for one-
round protocols.

Lemma 11. Let n ∈ N and γ ∈ (0, 1
2 ) and b ≤ n, and assume γb ≥ 400n/ log n.

Then 〈δ(n, b, γ), b〉 ∈ Cn(1; γ), where

δ(n, b, γ) =
1

2

(
b

4n

)2
80n
bγ

.

The induction step is provided by the following lemma.
Lemma 12. Fix n. If 〈δ1, b1〉 ∈ Cn(r1; γ1) and 〈δ2, b2〉 ∈ Cn(r2; γ2), then

〈
δ1δ2

2
, b1 + b2

〉
∈ Cn

(
r1 + r2;

2γ1

δ2
+ γ2

)
.

These two lemmas are combined to prove the following lemma.
Lemma 13. Let b ≤ n ∈ N and γ ∈ (0, 1

2 ). Define λ0 = 1
2 and for r ≥ 1 define

λr = 4λr−1

(
4n

b

)2
160n
bγ

λr−1

.

Then for all r ≥ 1 such that γb ≥ 800λr−1n/ log n,
〈

1

λr
, rb

〉
∈ Cn(r; rγ).
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An immediate consequence of this lemma is the following corollary.

Corollary 14. Let n, b, γ, and λi be as in Lemma 13 and suppose that r is an
integer such that

γb log n

800n
≥ λr−1.

Then if Π is an (n, r)-protocol that is rγ-nontrivial, there exists at least one subset B
of size rb that is rγ-powerful.

We first deduce the main theorem from this corollary.

Proof of Theorem 3. We prove the second part of the theorem first.

Let r(n) be an integer valued function with r(n) ≤ (1/2 − ε) log∗ n and let Π =
(Πn : n ≥ 1) be a sequence where Πn is an (n, r(n))-protocol. Let

b(n) =
(r(n))2n

log(2r(n)−1) n
a(n),

where a(n) is any function tending to infinity. Let n be sufficiently large, and sup-
pose for contradiction that for some γ > 0, Π is (b(n), γ)-resilient. Without loss of
generality we may assume that p1

Πn
≥ 1/2. Let b′(n) = b(n)/r(n) and

γ′ = γ′(n) =
γ

2r(n)
.

By the previous corollary applied to b′ and γ′, if

γa(n) log n

1600 log(2r−1) n
≥ λr−1,(3.1)

then there is at least one subset of size r(n)b′(n) = b(n) that is (r(n)γ′(n) = γ/2)-
powerful, which would contradict our assumption. So it suffices to show that inequal-
ity (3.1) hold When r = 1 inequality (3.1) holds, for large enough n, by inspection.

Otherwise, taking log(2r−2) of both sides, the left-hand side is at least 1
2 log(2r−1) n for

large enough n and so it suffices to show that this is an upper bound on log(2r−2) λr−1.
In the following proposition, T denotes the tower function, as defined in section 2.1.

Proposition 15. Let b ≤ n and γ ∈ (0, 1). For all integers r ≥ 0, λr ≤ κr where

κr =
bγ

320n
T

(
2r;

640n

bγ

)
.

Proof. κr satisfies the recurrence

κ0 = 2,

κr =

(
bγ

320n

)
22

320n
bγ

κr−1

,

so it suffices to show that

λr ≤
(

bγ

320n

)
22

320n
bγ

λr−1

,
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which follows from

λr = 4λr−1

(
4n

b

)2
160n
bγ

λr−1

=

(
bγ

320n

)(
1280nλr−1

bγ

)(
4n

b

)2
160n
bγ

λr−1

≤
(

bγ

320n

)(
5120n2λr−1

b2γ

)2
160n
bγ

λr−1

=

(
bγ

320n

)
2
log

(
5120n2λr−1

b2γ

)
2

160n
bγ

λr−1

≤
(

bγ

320n

)
22

320n
bγ

λr−1

.

Using the proposition, and the assumption about b, for n sufficiently large we
have

log(2r−2) λr−1 ≤ 640n

bγ
≤ 640

a(n)γ
log(2r(n)−1) n <

1

2
log(2r(n)−1) n,

as required to complete the proof of the second part of the theorem.

For the first part of the theorem, it suffices to note that if r(n) ≤ 1
2 log∗ n−∆ for

∆ = log∗ log∗ n, then r(n)2 = o(log(2r(n)−1) n). This follows by taking log(∆) of both

sides: log(∆)(r(n)2) ≤ 2 while log(∆)(log(2r(n)−1) n) ≥ T(∆; 2). Hence we can choose
b(n) = o(n) so that it satisfies the hypothesis and, hence, the conclusion of the second
part of the theorem.

So it remains to prove Lemmas 11, 12, and 13.

3.1. Proof of Lemma 11. Let f be a γ-nontrivial function on n variables. We
want to show that for b in the given range, a “large” fraction of the sets of size b are
γ-powerful. In light of Proposition 6, we may assume that f is monotone.

Fix γ ∈ (0, 1/2). We first describe a stochastic process for selecting a sequence of
variables v1, v2, . . . , vd for an integer d to be specified, and show that with probability
at least 1/2, the process produces a set of variables that is γ-powerful. The process
depends on a parameter s, which we will also specify later. Having selected the first k
of these variables v1, . . . , vk, let fk denote the (monotone) Boolean function on n− k
variables obtained by setting each vi to 1. We then select vk+1 as follows:

1. If there is a variable v whose influence in fk is at least 2−s, let vk+1 be such
a variable of lowest index.

2. Otherwise, choose vk+1 uniformly at random from among the remaining n−k
variables.

We will establish the following claim.

Claim A. Let n be sufficiently large and let d ∈ [n] and γ ∈ (0, 1/2), and suppose
that γd ≥ 160n

log n . Let s, the parameter of the process, be 80n
γd . Then

Pr
[
{v1, . . . , vd} is γ-powerful in f

]
≥ 1/2.
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Define random variables Xk and Zk, for i = 0, . . . , d, by

Xk =

{
1 if p1

fk−1
≥ 1− γ,

I1
fk−1

(vk) otherwise,

Zk =

k∑
i=1

Xi.

Claim A is easily deduced from the following two claims. In both claims, n, d, γ,
and s are as in Claim A.

Claim B. If Zd ≥ 1− 2γ, then {v1, . . . , vd} is γ-powerful in f .
Claim C. Suppose 3 ≤ s ≤ log(20n)− log log(20n). For each k = 1, . . . , d,

E

[
Xk X0, . . . , Xk−1

]
≥ sγ

20n
.

Assume Claims B and C. Let s = 80n/γd. Since γd ≥ 160n/ log n, and d ≤ n,
s satisfies the hypothesis of Claim C and therefore

E[Zd] ≥ dsγ

20n
≥ 4.

Applying Lemma 9 with µ = 4 and δ = 3/4 gives

Pr[Zd < 1] ≤ e−9/8;

now applying Claim B yields the conclusion of Claim A.
To prove Claim B, assume that Zd ≥ 1− 2γ. It suffices to show that p1

fd
≥ 1− γ,

since this is equivalent to {v1, . . . , vd} being γ-powerful. Since p1
fk

is nondecreasing in

k, we may assume that p1
fk

< 1− γ for k < d. Then, recalling the definition of Zd,

Zd =

d∑
k=1

Ifk−1(vk).

Now for each k ≥ 1, p1
fk

= p1
fk−1

+ I1
fk−1

(vk), and hence p1
fd

= p1
f + Zd. Since p1

f ≥ γ

by hypothesis, p1
fd
≥ 1− γ, as required for Claim B.

Since v1, v2, . . . , vk−1 determine X0, . . . , Xk−1, Claim C follows if we show

E[Xk|v1, . . . , vk−1] ≥ sγ

20n
.

If pfk−1
≥ 1−γ, then Xk is identically 1. Otherwise, Xk = Ifk−1

(vk). If vk was selected
by rule 1, then Xk ≥ 2−s, which is at least sγ/(20n) for s ≤ log(20n)− log log(20n).
If rule 2 was used to select vk, Lemma 7 gives the desired conclusion. This establishes
Claim C and thus Claim A.

We now complete the proof of Lemma 11. The idea is that there are few variables
chosen by rule 1, so with nonnegligible probability a random set of variables will
contain them all.

More specifically, the hypothesis of the lemma implies that if we set d = �b/2�,
then d and γ satisfy the hypothesis of Claim A. We will use Claim A to show
that a random subset of size b is γ-powerful with the required probability. Choose
s = 80n/(γd) in accordance with Claim A, and observe that s ≤ 1

2 log n.
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First, we reformulate the selection process for v1, v2, . . . , vd in such a way that all
random selections are made at the beginning of the process. We select a pair (S, σ),
where S is a set of d variables chosen uniformly at random and σ is a bijection from [d]
to S chosen uniformly at random from the d! such maps. Then �v(S, σ) = (v1, . . . , vd)
is selected as above, except that rule 2 is replaced by “let i be the least integer such
that σ(i) is not a member of {v1, . . . , vk−1} and set vk = σ(i).” It is easy to see that
this process generates the same distribution over sequences v1, . . . , vd as the original
process. Let R1(S, σ) be the set of vi’s chosen according to rule 1, and let R2(S, σ)
be the set of those vi’s chosen according to rule 2. Obviously, R2(S, σ) ⊆ S. Also,

|R1(S, σ)| ≤ 2s, since Ifk−1
(vk) ≥ 2−s if vk ∈ R1(S, σ) and

∑d
k=1 Ifk−1

(vk) ≤ p1
fd
≤ 1.

Now, consider a randomly chosen set B of size b. We view the probability space
for B as consisting of triples (S, σ, T ), where S and σ are as above and T is a random
subset of size b− d of [n] \ S. The set B is S ∪ T . For B to be γ-powerful, it suffices
that (i) �v(S, σ) is γ-powerful and (ii) R1(S, σ) − S ⊆ T , since then B contains the
γ-powerful set R1(S, σ) ∪R2(S, σ). By Claim A, event (i) occurs with probability at
least 1/2. Now, for any S0 ⊂ [n] of size b, we may estimate the probability of event
(ii) conditioned on S = S0: since R1(S, σ) − S has size at most 2s = 280n/γd ≤ b/4,
and T is a random subset of [n]\S of size b−d ≥ b/2, the probability that T contains
R1(S, σ)− S is at least

(
b− d

n− d

)(
b− d− 1

n− d− 1

)
· · ·
(

b− d− �2s�+ 1

n− d− �2s�+ 1

)
≥
(

b

4n

)2s

≥
(

b

4n

)280n/γd

.

Then Pr[event (ii) | event (i)] ≥ ( b
4n

)280n/γd

, from which follows the statement of the
lemma.

This completes the proof of Lemma 11.

3.2. Proof of Lemma 12. We first give a modified (and slightly more general)
formulation of the lemma which will make the exposition a bit clearer.

Lemma 16. Fix n. If 〈δ1, b1〉 ∈ Cn(r1; α1δ2

2 , β1) and 〈δ2, b2〉 ∈ Cn(r2;α2, β2),
then

〈
δ1δ2

2
, b1 + b2

〉
∈ Cn(r1 + r2;α1 + α2, β1 + β2).

To deduce Lemma 12 from this, suppose that δ1, b1, r1, γ1, δ2, b2, r2, and γ2 are
given satisfying the hypotheses of Lemma 12. Apply the above lemma with the same
δi, bi, and ri, and with α1 = 2γ1/δ2, β1 = γ1, and α2 = β2 = γ2.

So we prove Lemma 16.
Proof. Let Π : ({0, 1}n)

r1+r2 → {0, 1} be an (n, r1 + r2)-protocol with p1
Π ≥

α1 + α2. We want to lower bound the probability that a (uniformly) random subset
B of [n] of size b1 + b2 is β1 + β2-powerful in Π.

A random subset B of size b1 + b2 can be selected by selecting subsets B1, B2, C,
where B1 is a uniformly random subset of size b1, B2 is a uniformly random subset of
size b2, and C is a uniformly random subset of n−(B1∪B2) of size b1 +b2−|B1∪B2|.
Clearly, the probability that B = B1 ∪ B2 ∪ C is β1 + β2-powerful is at least the
probability that B1∪B2 is β1 +β2-powerful, so we lower bound this latter probability.

To do this, we define an event V that implies that B1 ∪ B2 is β1 + β2-powerful
and such that PrB1,B2 [V ] can be analyzed.

The input to Π is a vector in ({0, 1}n)r1+r2 . Fixing the outcome of the first r1

rounds to �σ ∈ ({0, 1}n)
r1 gives rise to an (n, r2)-protocol Π[�σ] : ({0, 1}n)

r2 → {0, 1}
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by assigning

Π[�σ](�τ) = Π(σ1, . . . , σr1 , τ1, . . . , τ r2).

Then p1
Π[!σ] can be viewed as a function of �σ. Let E be the set of those �σ for which

p1
Π[!σ] ≥ α2.

For B2 ⊂ [n], let EB2 be the set of all �σ ∈ E such that B2 is β2-powerful with
respect to the protocol Π[�σ], i.e.,

EB2
=
{
�σ ∈ E : p1

Π[!σ](B2) ≥ 1− β2

}
.

For each B2 ⊆ [n] of size b2, let Π̂B2
be the (n, r1)-protocol Π̂ = Π̂B2 given by

Π̂B2(�σ) =

{
1 if �σ ∈ EB2

,

0 otherwise.

We now define V to be the event (depending on B1 and B2) that B1 is β1-powerful
in Π̂B2 .

First we show that V implies that B1 ∪B2 is β1 +β2-powerful in Π. Consider the
following two-step strategy for B1 ∪B2: (i) For the first r1 rounds, B1 plays so as to
maximize the probability that �σ ∈ EB2 . Assuming this is successful then (ii) during
the next r2 rounds, B2 tries to force the outcome of Π to be 1. The probability that
this strategy fails is at most the sum of the probability that (i) fails and that (ii) fails
given that (i) succeeds. The probability that (i) fails is at most β1 by the definition
of V . Assuming that (i) succeeds, the probability that (ii) fails is at most β2 by the
definition of the relation EB2 . Thus, given V , B1 ∪B2 is β1 + β2-powerful.

It remains to show that Pr[V ] ≥ δ1δ2/2. To do this we consider, for η > 0, the
event Uη (depending on B2 alone) that Pr!σ[�σ ∈ EB2 ] ≥ η. We will show that when
η = α1δ2

2 , Pr[Uη] ≥ δ2/2 and Pr[V |Uη] ≥ δ1, which immediately gives the desired
lower bound on Pr[V ].

First we lower bound Pr[Uη]. For fixed B2 we have

Pr
!σ

[�σ ∈ EB2 ] = Pr
!σ

[�σ ∈ E ]× |EB2 |
|E| .(3.2)

By the definition of E ,

E
!σ

[p1
Π[!σ]] ≤ Pr

!σ
[�σ ∈ E ] + (1− Pr

!σ
[�σ ∈ E ])α2 ≤ Pr

!σ
[�σ ∈ E ] + α2.

We also have E!σ[p1
Π[!σ]] = p1

Π ≥ α1 + α2, and thus

Pr
!σ

[�σ ∈ E ] ≥ α1.(3.3)

Letting W = W (B2) denote the random variable |EB2
|/|E| and combining (3.3)

and (3.2), we have

Pr
B2

[Uη] ≥ Pr
B2

[W ≥ η/α1].
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So we lower bound this latter probability. For σ ∈ E , the protocol Π[�σ] is an
(n, r2) protocol that is α2-nontrivial. Thus, by the hypothesis of the lemma, for any
�σ ∈ E ,

Pr
B2⊂[n]
|B2|=b2

[
�σ ∈ EB2

]
≥ δ2.

Summing over σ ∈ E and dividing by |E| we obtain EB2
[W ] ≥ δ2. Since W ∈ [0, 1],

we also have EB2 [W ] ≤ PrB2 [W ≥ η/α1] + η/α1, which implies PrB2 [W ≥ η/α1] ≥
δ2 − η/α1. Setting η = α1δ2/2 we have PrB2

[Uα1δ2/2] ≥ PrB2 [W ≥ δ2/2] ≥ δ2/2 as
required.

Finally, we lower bound Pr[V |Uη]. V is the event that B1 is β1-powerful in Π̂B2 .

The event Uη implies that the protocol Π̂B2 is η-nontrivial, and for η = α1δ2/2, the
hypothesis of the lemma implies that the probability that V occurs is at least δ1.

3.3. Proof of Lemma 13. Fix b, n, and γ as hypothesized. Let H(r) denote
the hypothesis γb ≥ 800nλr−1/ log n, and let C(r) denote the conclusion

〈
1

λr
, rb

〉
∈ Cn(r; rγ).

We want to show that H(r) implies C(r) for all r ≥ 1. We proceed by induction on r.

The basis case is immediate from Lemma 11. For the induction step, let r ≥ 1,
and suppose that H(r) implies C(r). Assume H(r + 1) is true; we want to show
C(r + 1) holds. Now H(r + 1) implies H(r) since λr ≥ λr−1, and hence C(r) holds.
If γ′ ∈ (0, 1/2) is such that γ′b ≥ 400n/ log n, then Lemma 11 implies

〈δ(n, b, γ′), b〉 ∈ Cn(1; γ′).

Combining this and C(r) using Lemma 12, and setting γ′ = γ
2λr

, gives

〈
δ(n, b, γ′)

2λr
, (r + 1)b

〉
∈ Cn(r + 1, (r + 1)γ),

which is equivalent to C(r + 1).

This completes the proof of Lemma 13 and the proof of the main theorem.

4. Extensions to protocols with longer messages. We now indicate how to
generalize the bounds proven above to protocols which permit players to send longer
messages. Recall that for n, r ∈ N and �� = (�1, . . . , �r) ∈ Nr, we say that Π is a

(n, r, ��)-protocol if n is the number of players, r is the number of rounds, and no more
than �k bits are broadcast by each player in the kth round.

We extend Definition 10 to account for variable message lengths.

Definition 17. Let C
!

n(r;α, β) (written C

!

n(r; γ) when α = β = γ) denote the

collection of pairs 〈δ, b〉 so that for any (n, r, ��)-protocol Π that is α-nontrivial, at least
a δ fraction of sets B ⊂ [n] of size b are β-powerful in Π.

We begin by considering a single-round protocol f : ({0, 1}
)n → {0, 1} in which
each player broadcasts � bits. Simply treating f as a function on n� Boolean variables
and examining the stochastic process of Section 3.1 yields the following version of
Claim A.
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Claim D (cf. Claim A). Let n� be sufficiently large and let d ∈ [n] and γ ∈
(0, 1/2), and suppose that γd ≥ 160n


log(n
) . Let s, the parameter of the process, be 80n

γd .

Then

Pr
[
{v1, . . . , vd} is γ-powerful in f

]
≥ 1/2.

If the Boolean variables {v1, . . . , vd} are γ-powerful in f : {0, 1}n
 → {0, 1}, then
the {0, 1}
-valued variables {x | ∃i, vi is a component of x} are γ-powerful in f , again
viewed as a function on ({0, 1}
)n. Observe that applying Claim A in this way does
not exploit the fact that each player controls many bits of the function f . The proof
of Lemma 11 now yields the following lemma.

Lemma 18 (cf. Lemma 11). Let n, � ∈ N and γ ∈ (0, 1
2 ) and b ≤ n, and assume

γb ≥ 400n�/ log(n�). Then 〈δ, b〉 ∈ C
(
)
n (1; γ), where

δ = δ(n, b, �, γ) =
1

2

(
b

4n

)2
80n�
γb

.

The number of bits broadcast per round is immaterial to the proof of Lemma 12;
restating that lemma for multibit protocols yields the following lemma.

Lemma 19 (cf. Lemma 12). Fix n. If 〈δ1, b1〉 ∈ C
!

n(r1; γ1) and 〈δ2, b2〉 ∈

C !m
n (r2; γ2), then

〈
δ1δ2

2
, b1 + b2

〉
∈ C(!
,!m)

n

(
r1 + r2;

2γ1

δ2
+ γ2

)
,

where (��, �m) denotes the vector (�1, . . . , �r1 ,m1, . . . ,mr2).
We combine these to prove the following lemma.
Lemma 20 (cf. Lemma 13). Let b ≤ n, γ ∈ (0, 1/2), and li ∈ {1, 2, . . . } for each

i ≥ 0. Define λ0 = 1
2 , and for r ≥ 1 define

λr = 4λr−1

(
4n

b

)2
160nlr−1

γb
λr−1

.

Assume that for each r ≥ 1, λrlr ≥ λr−1lr−1. Then, if γb ≥ 800nlr−1λr−1/ log n,

〈
1

λr
, rb

〉
∈ C

!

n(r; rγ),

where �i = lr−i, so �� = (�1, . . . , �r) = (lr−1, . . . , l0).
Proof. Fix b, n, γ, and li as hypothesized. Let H(r) denote the hypothesis γb ≥

800nlr−1λr−1/ log n, and let C(r) denote the conclusion

〈
1

λr
, rb

〉
∈ C

!

n(r; rγ),

where �� = (lr−1, . . . , l0). We want to show that H(r) implies C(r) for all r ≥ 1. We
proceed by induction on r.

The basis case is immediate from Lemma 18. For the induction step, let r ≥ 1,
and suppose that H(r) implies C(r). Assume H(r + 1) is true; we want to show that
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C(r + 1) holds. Now H(r + 1) implies H(r) since, by assumption, λrlr ≥ λr−1lr−1,
and hence C(r) holds. If γ′ ∈ (0, 1/2) is such that γ′b ≥ 400nlr/ log n, then Lemma 18
implies that

〈δ(n, b, lr, γ
′)), b〉 ∈ C(lr)

n (1; γ′).

Combining this and C(r) using Lemma 19, and setting γ′ = γ
2λr

, gives
〈
δ(n, b, lr, γ

′)
2λr

, (r + 1)b

〉
∈ C

!

n(r + 1, (r + 1)γ),

where �� = (lr, . . . , l0), which is equivalent to C(r + 1).
This may be applied to prove Theorem 4.
Proof of Theorem 4. Fix n. Set α = 1

log∗ n and define γ = α2, b = �α2n�, and, for

i ∈ {0, . . . , r − 1},

li = max

(
1,

⌊
αγb(log(2(r−i)−1) n)1−α

800n

⌋)
.(4.1)

Note that

lo ≥ α5(log(2r−1) n)1−α

800
=

(log(log∗ n−2 log∗ log∗ n−1) n)1−α

800(log∗ n)5

=
(T (2 log∗ log∗ n− 1; 1))1−o(1)

800(log∗ n)5
= (log∗ n)ω(1)

so that, when n is sufficiently large, γ < 1
2 and lr−1 ≥ · · · ≥ l0 > 1. In this case, with

λi defined as in Lemma 20,

λi = 4λi−1

(
4n

b

)2
160nli−1λi−1

bγ

= 2log 4+log λi−1+2

(
160nli−1λi−1

bγ
+log log 4n

b

)

≤ 22
160nli−1λi−1

bγ
+log log 4+log log λi−1+log log 4n

b

and, as max(log log 4, log log λi−1, log log(4n/b)) < 160nli−1λi−1/γb,

λi ≤ 22
640nli−1λi−1

bγ ≤ 22α(log(2(r−i)+1) n)1−αλi−1
.

As noted above, these li are monotonically increasing (in i) and therefore satisfy the

hypothesis of Lemma 20. We show that for sufficiently large n, λi ≤ (log(2(r−i)−1) n)α.
Since this is clearly true for λ0, by induction

λi ≤ 22α(log(2(r−i)+1) n)1−αλi−1 ≤ 22α(log(2(r−i)+1) n) ≤ (log(2(r−i)−1) n)α,(4.2)

where we have applied the inequality xε ≤ εx, valid when, for example, x ≥ 4 and
ε ∈ [1/

√
x, 1]. (We apply the inequality with ε = α and x = log(2(r−i)) n; both these

requirements are met for sufficiently large n.)
Finally, from (4.1) and (4.2) above,

800nlr−1λr−1

log n
≤ αγb ≤ γb,

so that Lemma 20 applies. This asserts the existence of an rγ = o(1)-powerful set of
rb = o(n) players for any protocol Π under the following assumptions:
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• Π is rγ = o(1)-nontrivial,
• Π lasts for r rounds, with r ≤ 1

2 log∗ n− log∗ log∗ n, and
• Π calls for no more than

lr−k = Ω

(
(log(2k−1) n)(1−α)

poly(log∗ n)

)
= (log(2k−1) n)(1−O(α))

communication bits in the kth round.

5. The influence of large coalitions. Applying the results of [13], one can
show that, for a Boolean function f with p1

f = 1/2 and b(n) = Θ(n), there is always

a coalition L of size b(n) for which p0
f (L) ≥ 1 − 1/nc for some appropriate constant

c (depending on b). When b(n) ≥ n/2, however, the following observation from [17]
may be applied.

Proposition 21. Let X be a finite probability space and f : Xn → {0, 1}. Let
A1, A2 ⊂ [n] be a partition of the variables on which f is defined (so that A1∪A2 = [n]
and A1 ∩A2 = ∅). Then for at least one of these two sets, Ai,

p1
f (Ai) = 1 or p0

f (Ai) = 0.

Below we observe that near this n
2 threshold (specifically, for b(n) > (1/3 + ε)n),

the above bound of [13] may be improved to 1− 1/ exp(Ω(n)).

In preparation for the lemma, we record a Chernoff bound (see, e.g., [3]).

Lemma 22. Let Xi, i = 1, . . . , n, be independent random variables, each uniformly
distributed in {0, 1}. Then

Pr

[∑
i

Xi − n

2
> a

]
< exp

(
− a2

2n

)
.

Theorem 23. Let γ > 1
3 . Let f : {0, 1}n → {0, 1} be a Boolean function and

let B = {B ⊂ [n] : |B| = �γn�}. If p1
f (B) < 1 for all B ∈ B, then for all B ∈ B,

p0
f (B) ≥ 1− ε, where

ε = exp

(
− (1− 3γ)2

8(1− γ)
n

)
.

Proof. Assume that f is monotone. Recall that a min-term of a monotone func-
tion f is a minimal subset of variables which, if set to 1, ensures that f = 1. If f has a
min-term of cardinality at most γn, then clearly there is B ∈ B for which p1

f (B) = 1.
Otherwise all min-terms have cardinality larger than γn. Fix B ∈ B and consider an
input �x = x1 . . . xn, where each xi, for i �∈ B, is chosen independently at random in
{0, 1}, and xi = 0 for i ∈ B. Then E[

∑
i xi] ≤ 1−γ

2 n, so that by applying the above
Chernoff bound,

Pr

[∑
i

xi > γn

]
< exp

(
− (3γ − 1)2

8(1− γ)
n

)
.

Then p0
f (B) > 1− exp

(
− (3γ−1)2

8(1−γ) n
)

, as desired.
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6. Open problems. We summarize the known results concerning protocols that
are resilient against a linear number of corrupt players:

1. By [16] there is an (n,
[
1 + o(1)

]
log n, 1)-protocol which is Ω(n)-resilient. By

Theorem 3, there is no (n, (1/2− ε) log∗ n, 1)-protocol that is Θ(n)-resilient.

2. By [16], there is an (n, log∗ n+O(1), ��)-protocol, where �k = O(log(k) n), that

is Ω(n)-resilient. By Theorem 4, there is no (n, (1/2−o(1)) log∗ n, ��)-protocol

that is Θ(n)-resilient for some �k = (log(2k−1) n)1−o(1).
3. It is not difficult to show that Theorem 2 actually implies that there can be

no (n, 1, o(log n))-protocol that is Θ(n)-resilient.

These suggest several avenues of investigation:

1. In the case where each player sends a single bit per round (item 1 above),[
1 + o(1)

]
log n rounds are sufficient to guarantee Ω(n)-resilience,

[
1/2 −

o(1)
]

log∗ n rounds are necessary—what is the right answer?
2. In the general case (item 2 above), can Theorem 4 be strengthened to show

any Ω(n)-resilient protocol has some round k during which Ω(log(k) n) com-
munication occurs?

3. From (3) above, no one-round protocol using o(log n) bits per player can be
Ω(n)-resilient. Even abandoning all constraints on the number of bits sent
per round, is there a one (or even constant) round Ω(n)-resilient protocol?

4. We have focused on protocols where honest players flip a fair coin; what can
be said when the honest players’ coin flips are biased?

Acknowledgments. We thank Nati Linial for pointing out the failure of iterative
methods in the multibit case and several illuminating discussions. We also thank Uri
Feige for suggesting our last open question and for useful discussions.
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HARDNESS OF APPROXIMATE HYPERGRAPH COLORING∗
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Abstract. We introduce the notion of covering complexity of a verifier for probabilistically
checkable proofs (PCPs). Such a verifier is given an input, a claimed theorem, and an oracle,
representing a purported proof of the theorem. The verifier is also given a random string and decides
whether to accept the proof or not, based on the given random string. We define the covering
complexity of such a verifier, on a given input, to be the minimum number of proofs needed to
“satisfy” the verifier on every random string; i.e., on every random string, at least one of the given
proofs must be accepted by the verifier. The covering complexity of PCP verifiers offers a promising
route to getting stronger inapproximability results for some minimization problems and, in particular,
(hyper)graph coloring problems. We present a PCP verifier for NP statements that queries only four
bits and yet has a covering complexity of one for true statements and a superconstant covering
complexity for statements not in the language. Moreover, the acceptance predicate of this verifier is
a simple not-all-equal check on the four bits it reads. This enables us to prove that, for any constant
c, it is NP-hard to color a 2-colorable 4-uniform hypergraph using just c colors and also yields a
superconstant inapproximability result under a stronger hardness assumption.

Key words. graph coloring, hypergraph coloring, hardness of approximations, PCP, covering
PCP, set splitting
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1. Introduction. The study of probabilistically checkable proof (PCP) systems
has led to major breakthroughs in theoretical computer science in the past decade. In
particular, this study has led to a surprisingly clear understanding of the complexity
of finding approximate solutions to optimization problems. A recurring theme in this
study is the association of new complexity measures to verifiers of PCP systems and
construction of efficient verifiers under the new measure. The new measures are then
related to some special subclass of optimization problems to gain new insight about
the approximability of problems in this subclass of optimization problems. This paper
presents yet another such complexity measure, the covering complexity of a verifier,
and relates it to a subclass of optimization problems, namely, hypergraph coloring
problems. Below we elaborate on some of the notions above such as PCPs, approx-
imability, and hypergraph coloring, and we introduce our new complexity measure.

PCPs. The centerpiece of a PCP system is the probabilistic verifier. This verifier
is a randomized polynomial time algorithm whose input is a “theorem” and who is
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also given oracle access to a “proof.” Using the traditional equivalence associated
with randomized algorithms, it is convenient to think of the verifier as having two
inputs: the “theorem” and a “random string.” Based on these two inputs, the verifier
settles on a strategy to verify the proof; namely, it decides on a sequence of queries
to ask the oracle and prepares a predicate P . It then queries the oracle, and, if it
receives as response bits a1, . . . , aq, it applies the predicate P (a1, . . . , aq) and accepts
iff the predicate is satisfied.1 The quality of the PCP system is roughly related to its
ability to distinguish valid proofs (true “theorems” with correct “proofs”) from invalid
theorems (incorrect “theorems” from any purported “proof”). Hopefully the verifier
accepts valid proofs with much higher probability than it does invalid theorems.

To study the power of PCP systems in a complexity-theoretic setting, we quantify
some of the significant resources of the verifier above and then study the resources
needed to verify proofs of membership for some hard language. Fix such a language
L, and consider a verifier V whose goal is to verify proofs of membership in L. The
above paragraph already hints at four measures we may associate with such a verifier,
and we define them in two steps. For functions r, q : Z+ → Z+, we say that a V is
(r, q)-restricted if, on input x (implying the theorem x ∈ L) of length n, V requires
a random string of length r(n) and makes q(n) queries to the proof oracle. We say
that V verifies L with completeness c and soundness s if (1) for every x ∈ L, there
exists an oracle Π such that V , on input x and oracle access to Π, outputs accept with
probability at least c, and (2) for every x �∈ L and every oracle Π, V outputs accept
with probability at most s. The class of all languages L that have an (r, q)-restricted
verifier verifying it with completeness c and soundness s is denoted PCPc,s[r, q].

Covering complexity. In the variant of PCPs that we consider here, we stick
with (r, q)-restricted verifiers but alter the notion of completeness and soundness.
Instead of focusing on the one proof that maximizes the probability with which the
verifier accepts a given input, here we allow multiple proofs to be provided to the
verifier. We say that a set of proofs {Π1, . . . ,Πk} covers a verifier V on input x if, for
every random string, there exists one proof Πi such that V accepts Πi on this random
string. We are interested in the smallest set of proofs that satisfy this property, and
the cardinality of this set is said to be the covering complexity of the verifier on this
input. Analogous to the class PCP, we may define the class cPCPc,s[r, q] (for covering
PCP) to be the class of all languages for which there exist (r, q)-restricted verifiers that
satisfy the following conditions: (Completeness) If x ∈ L, the covering complexity of
V on x is at most 1/c. (Soundness) If x �∈ L, then the covering complexity of V on x
is at least 1/s.

Notions somewhat related to covering complexity have been considered in the
literature implicitly and explicitly in the past. Typically these notions have been
motivated by the approximability of minimization problems, such as graph coloring,
set cover, and the closest vector problem. Our specific notion is motivated by graph
and hypergraph coloring problems. We describe our motivation next. We defer the
comparison with related notions to later in this section.

Hypergraph coloring, approximability, and inapproximability. An
l-uniform hypergraph H is given by a set of vertices V and a set of edges E, where
an edge e ∈ E is itself a subset of V of cardinality l. A k-coloring of H is a map

1This description of a verifier is somewhat restrictive. More general definitions allow the verifier
to be adaptive, deciding on later queries based on responses to previous ones. For this paper, the
restricted version suffices.
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from V to the set {1, . . . , k} such that no edge is monochromatic. The hypergraph
coloring problem is that of finding, given H, the smallest k for which a k-coloring
of H exists. When l = 2, then the hypergraph is just a graph, and the hypergraph
coloring problem is the usual graph coloring problem.

Graph and hypergraph coloring problems have been studied extensively in the
literature from both the combinatorial and algorithmic perspectives. The task of
determining if an l-uniform graph is k-colorable is trivial if l = 1 or k = 1, and almost
so if l = k = 2. Every other case turns out to be NP-hard. The case of l = 2,
k ≥ 3 is a classical NP-hard problem, while the case of k = 2, l ≥ 3 was shown to be
NP-hard by Lovász [23]. Thus even the property of a hypergraph being 2-colorable
is nontrivial. This property, also called Property B, has been studied in the extremal
combinatorics literature for a long time. Much work has been done on determining
sufficient conditions under which a hypergraph family is 2-colorable and on solving
the corresponding algorithmic questions [11, 6, 7, 25, 26, 29, 27].

The hardness of the coloring problem motivates the study of the approximability
of the graph and hypergraph coloring problems. In the context of these problems,
an (l, k, k′)-approximation algorithm is one that produces (in polynomial time) a
k′-coloring of every k-colorable l-uniform hypergraph for some k′ > k, with the “ap-
proximation” being better as k′ gets closer to k. Even this problem turns out to be
nontrivial, with the best known algorithms for coloring even 3-colorable graphs requir-
ing nΩ(1) colors [9, 19], where n is the number of vertices. Similarly, inspired in part
by the approximate graph coloring algorithms, several works [1, 10, 22] have provided
approximation algorithms for coloring 2-colorable hypergraphs. The best known re-
sult for 2-colorable 4-uniform hypergraphs is a polynomial time coloring algorithm
that uses Õ(n3/4) colors [1, 10].

To justify the intractability of the approximation versions of the hypergraph col-
oring problem, one looks for inapproximability results. Inapproximability results show
that it is NP-hard to achieve the goals of an (l, k, k′)-approximation algorithm by pro-
ducing a polynomial time computable reduction from, say, satisfiability (SAT) to a
“gap” problem related to hypergraph coloring. Here we assume a conservative defini-
tion of such a reduction, namely, the many-one reduction. The many-one version of
such a reduction would reduce a formula ϕ to an l-uniform hypergraph H such that H
is k-colorable if ϕ is satisfiable and H is not k′-colorable if ϕ is not satisfiable. Since
the existence of an (l, k, k′)-approximation algorithm now gives the power to decide
if ϕ is satisfiable or not, this shows that the approximation problem is NP-hard. In
what follows, when we say that an (l, k, k′)-approximation problem is NP-hard, we
always implicitly mean that the “gap version” of the problem is NP-hard.

This methodology combined with the PCP technique has been employed heavily
to get hardness results of graph coloring problems. This approach started with the
results of [24] and culminates with the essentially tight results of [12], which show that
the (2, nε, n1−ε)-approximation problem is NP-hard under randomized reductions.
However, for graphs whose chromatic number is a small constant, the known hardness
results are much weaker. For example, for 3-colorable graphs, the best known hardness
result rules out only coloring using four colors [20, 16]. This paper is motivated
by the quest for strong (superconstant) inapproximability for coloring graphs whose
chromatic number is a small constant. We do not get such results for graph coloring
but do get such inapproximability results for hypergraph coloring and, in particular,
for coloring 4-uniform hypergraphs.



1666 V. GURUSWAMI, J. HÅSTAD, AND M. SUDAN

Graph coloring and covering PCPs. In examining the reasons why the cur-
rent techniques have been unable to show strong hardness results for inapproximability
of coloring 3-colorable graphs, a natural question arises: Are PCPs really necessary
to show such hardness results, or would something weaker suffice? To date there are
no reasons showing that PCPs are necessary. And while the first result showing the
intractability of coloring 3-colorable graphs with four colors [20] did use the PCP
technique, [16] shows that PCPs are not needed in this result. The starting point
of our work is the observation that covering PCPs are indeed necessary for showing
strong hardness results for graph coloring. Specifically, in Proposition 2.1, we show
that, if the (2, c, ω(1))-approximation problem for coloring is NP-hard for c <∞, then
NP ⊆ cPCPγ,o(1)[log, 2] for some γ > 0. (Similar results can also be derived from
hardness results for coloring hypergraphs, though we don’t do so here.)

Previous approaches have realized this need implicitly but have relied on deriv-
ing the required results via PCPs. In particular, they use the trivial containment
PCP1,s[r, q] ⊆ cPCP1,s[r, q] and build upon the latter result to derive hardness for
coloring. (Notice that we do not have such a simple containment when the complete-
ness parameter is not equal to 1. This special case of c = 1 is important in general
and is referred to as perfect completeness.) For our purposes, however, this trivial
containment is too weak. In particular, it is known that PCPc,s[log, q] ⊆ P for ev-
ery c, s, q such that c > s2q (cf. [8, Lemma 10.6]). Thus it is not possible to show
NP ⊆ cPCPγ,o(1)[log, O(1)] for any constant γ > 0, using the trivial containment
mentioned above (and such a covering PCP is essential for superconstant hardness
results for coloring hypergraphs). Thus it becomes evident that a direct construction
of covering PCPs may be more fruitful, and we undertake such constructions in this
paper.

Related notions. Typically, every approach that applies PCP to minimization
problems has resulted, at least implicitly, in some new complexity measures. Two
of those that are close to, and likely to be confused with, the notion of covering
complexity are the notions of “multiple assignments” [2] and the “covering parameter”
of [12]. Here we clarify the distinctions.

In the former case, the multiple assignments of [2], the proof oracle is expected
to respond to each query with an element of a large alphabet (rather than just a bit).
When quantifying the “quality” of a proof, however, the oracle is allowed to respond
with a subset of the alphabet, rather than just a single element, and the goal of the
prover is to pick response sets of small sizes so that, on every random string, the
verifier can pick one element from each response set to the different queries so that it
leads to acceptance. Once again, we have a notion of covering all random strings with
valid proofs, but this time the order of quantifiers is different. The notion of multiple
assignments is interesting only when the alphabet of the oracles responses are large,
while our notion remains interesting even when the oracle responds with an element
of a binary alphabet.

The second related notion is the covering parameter of Feige and Kilian [12].
Since the names are confusingly similar (we apologize for not detecting this at an
early stage), we refer to their notion as the FK-covering parameter. In a rather
simplified sense, their parameter also allows multiple proofs to be presented to the
verifier. However, their notion of coverage requires that, on every random string
and every possible accepting pattern of query responses for the verifier, there should
exist a proof which gives this accepting pattern (and is hence accepted). For any
fixed verifier and input, the FK-covering number is always larger than ours since
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we do not need every accepting pattern to be seen among the proofs. Though the
notions appear close, the motivation, the application, and the technical challenges
posed by the FK-covering parameter and ours are completely different. Both notions
arise from an attempt to study graph coloring, but their focus is on general graphs
(with high chromatic number), while ours is on graphs of small chromatic number.
In their case, separation of the FK-covering parameter is sufficient but not necessary
to give inapproximability of coloring. For our parameter, separation is necessary but
not sufficient to get the same. Finally, in their constructions, the challenge is to
take a traditional PCP and enhance it to have small FK-covering completeness, and
they use the PCP directly to argue that the soundness is not large. In our case, the
completeness is immediate, and the soundness needs further analysis.

Gadgets and covering complexity. Returning to our notion of covering com-
plexity, while it seems essential to study this to get good hardness results on coloring,
the reader should also be warned that this notion is somewhat less robust than usual
notions that one deals with in PCPs. Specifically, prior notions were not very sensi-
tive to the predicate applied by the verifier in deciding its final output. They could
quantify the power of the verifier by simple parameters such as number of bits read
or number of accepting configurations. Here we are forced to pay attention to the
verifier’s computations and restrict these to get interesting results. It is reasonable to
ask why this happens, and we attempt to give some justification below.

In standard PCPs, it is often possible to use “gadgets” (whenever they are avail-
able) to convert the acceptance predicate of the verifier from one form to another for
only a small loss in the performance. For example, suppose one has a PCP verifier
V1 that reads three bits of a proof and accepts if they are not all equal (NAE). Such
a verifier would directly prove the hardness of the “Max NAE-3SAT” problem. How-
ever, by application of a gadget, the same verifier can be transformed into one that
proves the hardness of the “Max 3SAT” problem. The gadget notices that the func-
tion NAE(a, b, c) for three Boolean variables a, b, c is simply (a∨b∨c)∧(¬a∨¬b∨¬c),
which is a conjunction of two 3SAT clauses. Thus a transformed verifier V2 which
picks three bits of the proof as V1 does and then picks one of the two clauses implied
by the check performed by V1 and verifies just this one clause is now a verifier whose
acceptance predicate is a 3SAT condition. Furthermore, if the acceptance probability
of V1 on the same proof is 1−α, then the acceptance probability of V2 on some given
proof is exactly 1 − α/2. Thus, if V1 proves inapproximability of Max NAE-3SAT,
then V2 proves inapproximability of Max 3SAT.

Unfortunately, a similar transformation does not apply in the case of covering
complexity. Notice that two proofs, the oracle that always responds with 0 and
the one that responds with 1, always suffice to cover any verifier whose acceptance
predicate is 3SAT. Yet there exist NAE 3-SAT verifiers that cannot be covered by
any constant number of proofs. (For example, the verifier that picks three of the n
bits of the proof uniformly and independently at random and applies the NAE 3-SAT
predicate to them needs Ω(log n) proofs to be covered.) Thus, even though a gadget
transforming NAE 3SAT to 3SAT does exist, it is of no use in preserving covering
complexity of verifiers. This nonrobust behavior of covering PCP (cPCP) verifiers
forces us to be careful in designing our verifiers, and our two results differ mainly in
the predicate applied by the verifier.

Our results. Our first result is a containment of NP in the class cPCP1,ε[O(log n),
4] for every ε > 0. If the randomness is allowed to be slightly superlogarithmic, then
the soundness can be reduced to some explicit o(1) function. Technically, this result
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is of interest in that it overcomes the qualitative limitation described above of passing
through standard PCPs. Furthermore, the proof of this result is also of interest in
that it shows how to apply the (by now) standard Fourier-analysis-based techniques
to the studying of covering complexity as well. Thus it lays out the hope for applying
such analysis to other cPCPs as well.

Unfortunately, the resulting cPCP fails to improve inapproximability of graph
coloring or even hypergraph coloring. As noted earlier, covering PCPs are only nec-
essary but not sufficient to get hardness results for hypergraph coloring. In order to
get hardness results for hypergraph coloring from covering PCPs, one needs verifiers
whose acceptance condition is an NAE SAT predicate (though, in this case, it is also
reasonable to allow the responses of the queries to be elements of a nonbinary alpha-
bet, and a result over a q-ary alphabet will give a result for q-colorable hypergraphs).

Keeping this objective in mind, we design a second verifier (whose query complex-
ity is also 4 bits) whose acceptance predicate simply checks if the four queried bits are
not all equal. The verifier has perfect completeness, and its covering soundness can be
made an arbitrarily large constant (Theorem 4.2). This result immediately yields a
superconstant lower bound on coloring 2-colorable 4-uniform hypergraphs: we prove
that c-coloring such hypergraphs is NP-hard for any constant c (Theorem 4.4), and,
moreover, there exists a constant c0 > 0 such that, unless NP ⊆ DTIME(nO(log log n)),
there is no polynomial time algorithm to color a 2-colorable 4-uniform hypergraph
using c0

log log n
log log log n colors (Theorem 4.6). A similar hardness result also holds for col-

oring 2-colorable k-uniform hypergraphs for any k ≥ 5 by reduction from the case of
4-uniform hypergraphs (Theorem 4.7). Prior to our work, no nontrivial inapproxima-
bility results seem to be known for coloring 2-colorable hypergraphs, and, in fact, it
was not known if 3-coloring a 2-colorable 4-uniform hypergraph is NP-hard.

We note that we do not have analogous results for the hardness of coloring 2-
colorable 3-uniform hypergraphs. The difficulty in capturing the problem stems from
the difficulty of analyzing the underlying maximization problem. The natural max-
imization version of hypergraph 2-coloring is the following: color the vertices with
two colors so that a maximum number of hyperedges are nonmonochromatic. For
l-uniform hypergraphs, this problem is known as Max l-Set Splitting. For l = 4 (the
case we study here), a tight hardness result of 7/8 + ε is known [17], and this fact
works its way into our analysis. For k = 3, a tight hardness result is not known for
the maximization version (see [14]), and, in fact, nontrivial approximation algorithms
exist [13], and our inability to show hardness results for 3-uniform hypergraphs seems
to stem from this fact.

Organization. In section 2, we go over some of the definitions more formally and
relate covering complexity to approximability of hypergraph coloring. In section 3, we
analyze a simple cPCP verifier that makes four queries and has perfect completeness
and o(1) soundness. In section 4, we analyze a more complicated cPCP verifier with
similar parameters whose acceptance condition is NAE SAT. This yields the hardness
result for coloring 2-colorable, 4-uniform hypergraphs.

This is the complete version of the conference paper [15].

2. Preliminaries. In this section, we introduce covering PCPs formally and
establish a connection (in the wrong direction) between covering PCPs and inapprox-
imability of hypergraph coloring.

2.1. PCPs. We first give a formal definition of a PCP. Below verifiers are
probabilistic oracle Turing machines whose output, on input x and random string r
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with oracle O, is denoted V O(x, r). The output is a bit with 1 denoting acceptance
and 0 denoting rejection.

Definition 1. Let c and s be real numbers such that 1 ≥ c > s ≥ 0. A proba-
bilistic polynomial time oracle Turing machine V is a PCP verifier with soundness s
and completeness c for a language L iff

• for x ∈ L there exists oracle Π such that Probr[V
Π(x, r) = 1] ≥ c,

• for x �∈ L, for all Π, Probr[V
Π(x, r) = 1] ≤ s.

Two parameters of interest in a PCP are the number of random bits used by the
verifier and the number of queries it makes to the proof oracle. Most of the time, the
symbols of Π are bits, and whenever this is not the case, this is stated explicitly.

Definition 2. For functions r, q : Z+ → Z+, a verifier V is (r, q)-restricted if,
on any input of length n, it uses at most r(n) random bits and makes at most q(n)
queries to Π.

We can now define classes of languages based on PCPs.
Definition 3 (PCP). A language L belongs to the class PCPc,s[r, q] if there is

an (r, q)-restricted verifier V for L with completeness c and soundness s.
Next we have the definition of covering PCP.
Definition 4 (covering PCP). A language L belongs to the class cPCPc,s[r, q]

if there is an (r, q)-restricted verifier V such that, on input x,
(i) if x ∈ L, then there is a set of proofs {Π1, . . . ,Πk} for k ≤ 1/c such that, for

every random string r, there exists a proof Πi such V Πi(x, r) = 1; and
(ii) if x /∈ L, then for every set of k proofs {Π1,Π2, . . . ,Πk} with k < 1/s, there

is a random string r for which V rejects every Πi, 1 ≤ i ≤ k.
One usually requires “perfect completeness” (c = 1) when seeking PCP charac-

terizations. It is clear from the above definitions that PCP1,s[r, q] ⊆ cPCP1,s[r, q],
and thus obtaining a PCP characterization for a language class is at least as hard as
obtaining a covering PCP characterization with similar parameters.

2.2. Covering PCPs and graph coloring. We now verify our intuition that
“good” covering PCPs (i.e., those which have a large gap in covering complexity
between the completeness and soundness cases) are necessary for strong lower bounds
on approximating the chromatic number. As usual, for a graph G, we denote by
χ(G) its chromatic number, i.e., the minimum number of colors required in a proper
coloring of G.

Below, we use the phrase “it is NP-hard to distinguish f(n)-colorable graphs
from g(n)-colorable graphs” to mean that “the (2, f, g)-approximation problem is
NP-hard.” As mentioned in section 1, note that we are using a conservative definition
of NP-hardness, and hence this statement implies that there is a many-one reduction
from SAT that maps satisfiable instances of SAT to f(n) colorable graphs and maps
unsatisfiable instances to graphs that are not g(n)-colorable. Under this assumption,
we show how to get nice covering PCPs. Below and throughout this paper, the
function log denotes logarithms to base two.

Proposition 2.1. Suppose, for functions f, g : Z+ → Z+, given a graph G on n
vertices, it is NP-hard to distinguish between the cases χ(G) ≤ f(n) and χ(G) ≥ g(n).
Then

NP ⊆ cPCP�log f(n)�−1,�log g(n)�−1

[
O(log n), 2

]
.

Proof. Let the vertex set of G be V = {v1, v2, . . . , vn}. The covering PCP consists
of proofs Π1,Π2, . . . ,Πk that correspond to “cuts” Γ1, . . . ,Γk of G; i.e., each Πi is n-
bits long, with the jth bit being 1 or 0 depending on which side of the cut Γi contains
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vj . The verifier simply picks two vertices vj1 and vj2 at random such that they are
adjacent in G and then checks if the j1th and j2th bits differ in any of the k proofs.
The minimum number k of proofs required to satisfy the verifier for all its random
choices is clearly the cut cover number κ(G) of G, i.e., the minimum number of cuts
that cover all edges of G. It is easy to see that κ(G) = �logχ(G)�, and therefore the
claimed result follows.

One can get a similar result for any base q by letting the proofs be q-ary strings
and letting the verifier read two q-ary symbols from the proof. In light of this, we get
the following.

Corollary 2.2. Suppose that there exists an ε > 0 such that it is NP-hard,
given an input graph G, to distinguish between the cases when G is 3-colorable and
when χ(G) ≥ nε. Then NP ⊆ cPCP1,(ε log3 n)

−1

[
O(log n), 2

]
, where the covering PCP

is over a ternary alphabet, and the verifier’s action is to simply read two ternary
symbols from the proof and check that they are not equal.

In light of the above corollary, very powerful covering PCP characterizations of
NP are necessary in order to get strong hardness results for coloring graphs with small
chromatic number. A result similar to Proposition 2.1, with an identical proof, also
holds for hypergraph coloring and thus motivates us to look for good covering PCP
characterizations of NP in order to prove hardness results for coloring 2-colorable
hypergraphs.

Proposition 2.3. Suppose that there exists a function f : Z+ → Z+ such
that, given an input r-uniform hypergraph on n vertices, it is NP-hard to distinguish
between the cases when it is 2-colorable and when it is not f(n)-colorable. Then
NP ⊆ cPCP1, 1

log f(n)

[
O(log n), r

]
. In particular, if c-coloring 2-colorable r-uniform

hypergraphs is NP-hard for every constant c, then NP ⊆ cPCP1, 1k

[
O(log n), r

]
for

every constant k ≥ 1.

3. PCP construction I. We now move on to the constructions of our proof
systems. For a reader familiar with PCPs, we first give a preview of our constructions.
Both our PCPs (of this section and the next) go through the standard path. We
start with strong 2-prover 1-round proof systems of Raz [28], apply the composition
paradigm [5], and then use the long code of [8] at the bottom level. One warning: in
the literature, it is common to use a variant of the long code—called the “folded long
code”—we do not use the folded version. (Readers unfamiliar with the terms above
will find elaborations in section 3.1.)

As usual, the interesting aspects of the constructions are the choice of the inner
verifiers and the analyses of their soundness. The inner verifiers that we use are
essentially from [17]: The inner verifier in section 4 is exactly the same as the one
used by [17, section 7] to show hardness of Max 4-Set Splitting, while the one in this
section is a small variant. The goals of the analyses are different since we are interested
in the number of proofs required to cover all random strings. Despite the difference,
we borrow large parts of our analysis from that of [17]. In the current section, our
analysis essentially shows that if our verifier, on some fixed input, rejects every proof
oracle with probability at least γ, then on any set of k proofs nearly γk fraction of
random strings end up rejecting all of the proofs. Thus the standard soundness of the
verifier we construct is of interest, and we analyze this using lemmas from [17]. The
analysis of the verifier in section 4 does involve some new components, and we will
comment upon these in the next section.
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3.1. Preliminaries: Label Cover, long codes, proof composition. Our
PCP constructions (also) follow the paradigm of proof composition by composing
an “outer verifier” with an “inner verifier.” In its most modern and easy to apply
form, one starts with an outer proof system which is a 2-Prover 1-Round proof system
(2P1R) construction for NP. We abstract the 2P1R by a graph-theoretic optimization
problem called Label Cover. The specific version of Label Cover we refer to is the
maximization version LabelCovermax discussed in [3] (see [3] for related versions and
the history of this problem).

Label Cover. A LabelCovermax instance LC consists of a bipartite graph H =
(U,W,F ) with vertex set U ∪W and edge set F , “label sets” LU , LW which represent
the possible labels that can be given to vertices in U,W , respectively, and projection
functions πu,w : LW → LU for each u ∈ U and w ∈ W such that (u,w) ∈ F . The
optimization problem we consider is to assign a label +(u) ∈ LU (resp., +(w) ∈ LW )
to each u ∈ U (resp., w ∈ W ) such that the fraction of edges e = (u′, w′) with
+(u′) = πu′,w′(+(w′)) (call such an edge “satisfied”) is maximized. The optimum
value of a LabelCovermax instance LC, denoted OPT(LC), is the maximum fraction of
“satisfied” edges in any label assignment. In the language of LabelCovermax, the PCP
theorem [5, 4], together with the parallel repetition theorem of Raz [28], yields parts
(i)–(iii) of the theorem below. Here we need an additional property that is also used
in [17, sections 6, 7]. First we need a definition: For u ∈ U,w ∈ W , a set β ⊆ LW
and 0 < ε ≤ 1 define

µε(β, u, w) =
∑
x∈LU

min
{
1, ε · ∣∣π−1u,w(x) ∩ β

∣∣} .(1)

The definition above is quite technical (and borrowed directly from [17]), but the
intuition is that β projects mostly onto different elements of LU iff the “measure” µ
is large.

Theorem 3.1 (see [3, 17]). There exist d0, e0 < ∞, and c > 0 and a trans-
formation that, given a parameter δ > 0, maps instances ϕ of SAT to instances
LC = (U,W,F, LU , LW , {πu,w|(u,w) ∈ F}) of LabelCovermax, in time nO(log δ

−1),
such that the following hold.

(i) |U |, |W | ≤ nd0 log δ
−1

, where n is the size of the SAT instance ϕ.
(ii) |LU |, |LW | ≤ δ−e0 .
(iii) If ϕ is satisfiable, then OPT(LC) = 1, while, if ϕ is not satisfiable, then

OPT(LC) ≤ δ.
(iv) For every 0 < ε ≤ 1, w ∈W , and every β ⊆ LW , |β| ≥ ε−1,

E
u∈RN(w)

[
1

µε(β, u, w)

]
≤ (ε|β|)−c,(2)

where N(w) = {u ∈ U |(u,w) ∈ F}.
Remark. As mentioned earlier, conditions (i)–(iii) are standard for LabelCovermax.

The need for condition (iv) is inherited from some lemmas of [17] that we use (specif-
ically, Lemmas 3.3 and 3.4). This condition is shown in Lemma 6.9 of [17].

To use the hardness of Label Cover, we use the standard paradigm of proof
composition. The use of this paradigm requires an error-correcting code, which in our
case is again the long code. We define this next.

The long code. We first remark on some conventions and notation we use
through the rest of this paper: We represent Boolean values by the set {1,−1} with
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1 standing for False and −1 for True. This representation has the nice feature that
Xor just becomes multiplication. For any domain D, denote by FD the space of all
Boolean functions f : D → {1,−1}. For any set D, |D| denotes its cardinality.

We now describe a very redundant error-correcting code called the long code. The
long code was first used in [8] and has been very useful in most PCP constructions
since.

The long code of an element x in a domain D, denoted LONG(x), is simply the
evaluations of all the 2|D| Boolean functions in FD at x. If A is the long code of
a, then we denote by A(f) the coordinate of A corresponding to function f so that
A(f) = f(a).

We note that most of the proofs used in the literature use the “folded long code,”
which is a code of half the length of the long code, involving evaluations of the elements
x at exactly one of the functions f or −f (but not both). For reasons that will become
clearer later, we cannot use the folded long code here and work with the actual long
code.

Constructing a “composed” PCP. Note that Theorem 3.1 implies a PCP
where the proof is simply the labels of all vertices in U,W of the LabelCovermax
instance, and the verifier picks an edge e = (u,w) ∈ F at random and checks if the
labels of u and w are “consistent”; i.e., πu,w(+(w)) = +(u). An alternative is to choose
a random neighbor w′ of u and instead check that πu,w(+(w)) = πu,w′(+(w′)). By
defining +(u) to be the most common value of πu,w′(+(w′)), it is easy to see that the
probability of acceptance in the latter PCP (that uses w,w′ for the check) is at most
the probability of acceptance in the former PCP (that uses u,w for the check).

By the properties guaranteed in Theorem 3.1, either PCP uses O(log n log δ−1)
randomness and has perfect completeness and soundness of at most δ. While the
soundness is excellent, the number of bits it reads from the proof in total (from
the two “locations” it queries) is large (namely, O(log δ−1)). In order to improve the
query complexity, one “composes” this “outer” verification with an “inner” verification
procedure. The inner verifier is given as input a projection function π : LW → LU
and has oracle access to purported encodings, via the encoding function Enc of some
error-correcting code, of two labels a ∈ LU and b ∈ LW , and its aim is to check
that π(b) = a (with “good” accuracy) by making very few queries to Enc(a) and
Enc(b). The inner verifiers we use have a slightly different character: they are given
input two projections π1 and π2 (specifically πu,w and πu,w′) and have oracle access
to purported encodings Enc(b) and Enc(c) of two labels b, c ∈ LW , and the aim is to
test whether π1(b) = π2(c). This interesting feature was part of and necessary for
H̊astad’s construction for set splitting [17], and our PCPs also inherit this feature.

In our final PCP system, the proof is expected to be the encodings of the labels
+(w) of all vertices w ∈ W using the encoding Enc. For efficient constructions, the

code used is the long code of [8], i.e., Enc
def
=LONG. We denote the portion of the

(overall) proof that corresponds to w by LP(w), and, in a “correct” proof, LP(w)
would just be LONG(+(w)). (The notation LP stands for “long proof.”)

The construction of a PCP now reduces to the construction of a good inner verifier
that, given a pair of strings B,C which are purportedly long codes and projection
functions π1 and π2, checks if these strings are the long codes of two “consistent”
strings b and c whose respective projections agree (i.e., satisfy π1(b) = π2(c)). Given
such an inner verifier IV, one can get a “composed verifier” Vcomp using standard
techniques as follows (given formula ϕ the verifier first computes the LabelCovermax
instance LC in polynomial time and then proceeds with the verification):
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1. Pick u ∈ U at random and w,w′ ∈ N(u), at random.
2. Run the inner verifier with input πu,w and πu,w′ and oracle access to LP(w)

and LP(w′).
3. Accept iff the inner verifier IV accepts.

We denote by Vcomp(IV) the composed verifier obtained using the inner verifier IV.
The (usual) soundness analysis of the composed PCP proceeds by saying that, if there
is a proof that causes the verifier Vcomp to accept with large, say, (s+ ε), probability,
where s is the soundness we are aiming for, then this proof can be “decoded” into labels
for U ∪W that “satisfy” more than a fraction δ of the edges in the LabelCovermax
instance, and by Theorem 3.1, therefore, the original formula ϕ was satisfiable. In
our case, we would like to make a similar argument and say that, if at most k proofs
together satisfy all tests of Vcomp, then these proofs can be “decoded” into labels for
U ∪W that satisfy more than δ fraction of edges of LC.

3.2. The inner verifier. We now delve into the specification of our first “inner
verifier,” which we call Basic-IV4. This inner verifier is essentially the same as the
one for 4-set splitting in [17] but has a different acceptance predicate. Recall that the
inner verifier is given input two projection functions π1, π2 : LW → LU , has oracle
access to two tables B,C : FLW

→ {1,−1}, and aims to check that B (resp., C) is
the long code of b (resp., c) which satisfies π1(b) = π2(c).

Inner Verifier Basic-IV4B,Cp (π1, π2)
Choose uniformly at random f ∈ FLU

, g1, h1 ∈ FLW

Choose at random g′, h′ ∈ FLW
such that ∀b ∈ LW ,

Pr[g′(b) = 1] = p and Pr[h′(b) = 1] = p
Set g2 = −g1(f ◦ π1 ∧ g′); h2 = −h1(−f ◦ π2 ∧ h′).
Accept iff (B(g1) �= B(g2)) ∨ (C(h1) �= C(h2))

For a technical reason, as in [17], the final inner verifier needs to run the above
inner verifier for the bias parameter p chosen at random from an appropriate set of
values. The specific distribution we use is the one used by H̊astad [17]. (The constant
c used in its specification is the constant from (2) in the statement of Theorem 3.1.)

Inner Verifier IV4B,Cγ (π1, π2)

Set t = �1/γ�, ε1 = γ, and εi = γ1+2/cεi−1 for 1 < i ≤ t.
Choose p ∈ {ε1, . . . , εt} uniformly at random.

Run Basic-IV4B,Cp (π1, π2).

Note that the inner verifier above has perfect completeness. Indeed, when B,C
are long codes of b, c, where π1(b) = π2(c) = a (say), then, for each f ∈ FLU

, if
f(a) = 1, then B(g1) = g1(b), while B(g2) = B(−g1(f ◦ π1 ∧ g′)) = −g1(b), and so
these are not equal, and similarly for the case when f(a) = −1.

3.3. Covering soundness analysis. LetX(γ) be the indicator random variable
for the rejection of a particular proof Π = {LP(w) : w ∈W} by the composed verifier
Vcomp(IV4γ) (henceforth V1(γ)). The probability that V1(γ) rejects Π taken over its
random choices is clearly the expectation

E
u,w,w′,p,f,g1,h1,g2,h2

[
X(γ)

]
= E

[(
1 +B(g1)B(g2)

2

)(
1 + C(h1)C(h2)

2

)]
.(3)
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Here B,C are shorthand for LP(w) and LP(w′), respectively, and equal LONG(+(w))
and LONG(+(w′)), respectively, in a “correct” proof. We wish to say that no k proofs
can together satisfy all of the tests which V1(γ) performs. Now, if Xk(γ) is the
indicator random variable for the rejection of a set of k proofs {LPi(w) : w ∈ W},
1 ≤ i ≤ k, by the verifier V1(γ), then the overall probability that V1(γ) rejects all of
these k proofs, taken over its random choices, is exactly

E
u,w,w′,p,f,g1,h1,g2

[Xk(γ)] =
1

4k

(
E

[
k∏
i=1

(
1 +Bi(g1)Bi(g2)

)(
1 + Ci(h1)Ci(h2)

)
])

,(4)

where we use the shorthand Bi, Ci for LPi(w), LPi(w
′), respectively.

We now argue (see Lemma 3.2 below) that, if this rejection probability is much
smaller than 4−k, then there is a way to obtain labels +(u) for u ∈ V ∪W by “de-
coding” Π1 such that more than δ fraction of the edges (u,w) are satisfied by this
labeling; i.e., +(u) = πu,w(+(w)). Together with Theorem 3.1, this implies that the
rejection probability (from (4)), for any set of k proofs for a false claim of satisfiability
(of ϕ), can be made arbitrarily close to 1

4k
and, in particular, is nonzero, and thus the

covering soundness of the composed verifier is at most 1/k.
Lemma 3.2. There exists a′ < ∞ such that, for every integer k ≥ 1, every ε,

0 < ε < 4−k, and all γ ≤ ε/8, if E[Xk(γ)] <
1
4k
− ε, then OPT(LC) > γ−a

′γ−1

.
Before presenting the formal proof of Lemma 3.2, we first highlight the basic

approach. The power of arithmetizing the rejection probability for a set of k proofs
as in (4) is that one can expand the product and analyze the expectation of

1

4k

∑

S,T⊆[k]
BS(g1)BS(g2)CT (h1)CT (h2),(5)

where BS =
∏

i∈S Bi and CT =
∏

i∈T Ci, where empty products are defined to be
1. A special term is S = T = ∅, which is the constant 1. We analyze the rest of
the terms individually. We can now imagine two new proofs B̃ = BS and C̃ = CT

which are exclusive-ors of subsets of the k given proofs. Now one can apply existing
techniques from [17] to analyze terms involving the tables B̃ and C̃ and show that
B̃(g1)B̃(g2) and C̃(h1)C̃(h2) cannot be too negative, and similarly if the expectation
of B̃(g1)B̃(g2)C̃(h1)C̃(h2) is too much below zero; then, in fact, OPT(LC) is quite
large. In short, at a high level, we are saying that, if there exist k proofs such that the
verifier accepts at least one of them with good probability, then some exclusive-or of
these proofs is also accepted by the verifier with good probability, and we know that
this cannot happen by the soundness analysis of [17] for the case of a single proof.
This intuition is formalized via the next two lemmas from [17].

Before stating the lemmas, we make a slight digression to point out the relevance
of not employing folding here. Folded long codes are typically used as follows: Given
a table A = LP(w) supposedly giving the long code of the encoding of the label
assigned to w, conceptually we assume that we have a long proof A′ = FoldedLP(w)
which respects the constraints A′(f) = −A′(−f). We generate such an A′ for ourselves
from A′ by setting A′(f) = A(f) if f(x0) = 1 and A′(−f) = −A(f) if f(x0) = −1,
where x0 is some fixed element of the concerned domain (i.e., LU or LW as the case
might be). Such a table A′, which satisfies A′(−f) = −A′(f) for every function f ,
is said to be folded. We then pretend that the verifier works with the long code but
carry out the soundness analysis only for folded tables. In our case, we could also
do the same to analyze the acceptance of a single proof. However, when faced with
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multiple proofs, the intermediate tables we consider, such as BS above, need not be
folded even if the original proofs we were given were folded; in particular, this will be
the case when S has even cardinality. Thus our analysis needs to work with nonfolded
tables as well. This is why we work with the long code directly.

Now we go back to the technical lemmas.
Lemma 3.3 (see [17]). For every γ > 0 and for all B : FLW

→ {1,−1} and all
w ∈W ,

E
p,v∈N(w),f,g,g′

[
B(g1)B(g2)

] ≥ −4γ,

where the distribution of p, f, g1, g2 is the same as the one in IV4γ .
This lemma is Lemma 7.9 in [17] combined with the calculation in the first half of

Lemma 7.14 in the same paper. Similarly, the next lemma follows from Lemma 7.12
of the same paper and a similar calculation.

Lemma 3.4 (see [17]). There exists a < ∞ such that, for every γ > 0 and all
proof tables {Bw} and {Cw}, indexed by w ∈ W with Bw, Cw : FLW

→ {1,−1}, we
have that E

[
Bw(g1)Bw(g2)Cw′(h1)Cw′(h2)

]
is at least

−7γ − OPT(LC)γ−aγ−1

,

where the expectation is taken over p, u, w,w′, g1, h1, g2, h2, and where the distribution
of p, g1, g2, h1, h2 is the same as the one in IV4γ .

We are now ready to prove Lemma 3.2.
Proof of Lemma 3.2. The proof is actually simple given Lemmas 3.3 and 3.4. We

pick a γ > 0 that satisfies γ < ε
8 . By (4), if E[Xk(γ)] < 4−k − ε, then there exist

subsets S1, S2 of {1, 2, . . . , k}, S1 ∪ S2 �= ∅, such that

E
[
BS1

(g1)BS1
(g2)CS2

(h1)CS2
(h2)

]
< −ε,(6)

where BS1 (resp., CS2
) denotes Πj∈S1Bj (resp., Πj∈S2Cj).

Suppose one of S1, S2 is empty (say, S2 = ∅). Lemma 3.3 applied to BS1 (which is
a function mapping FLW

→ {1,−1}) gives E[BS1(g1)BS1(g2)] ≥ −4γ, which, together
with (6) above, yields γ > ε

4 , which is a contradiction since γ ≤ ε/8.
Now suppose that both S1 and S2 are nonempty. Now we apply Lemma 3.4 to

BS1
and CS2

to get that the expectation in (6) is at least −7γ − OPT(LC)γ−aγ−1

.
Together with (6), this yields (using ε ≥ 8γ)

OPT(LC) > γγaγ
−1

> γa
′γ−1

for some absolute constant a′.
We are now ready to state and prove the main theorem of this section.
Theorem 3.5. For every constant k, NP ⊆ cPCP1, 1k

[log, 4].

Proof. The theorem follows from Lemma 3.2 and Theorem 3.1. Let ε = 1
2 · 4−k

and γ = ε/8, and pick δ > 0 small enough so that γ−a
′γ−1

> δ. By Lemma 3.2,
we have that E[Xk(γ)] <

1
4k
− ε = 1

2·4k implies OPT(LC) > δ. Consider the PCP
with verifier Vcomp(IV4γ). Using Theorem 3.1, we get that, if the input formula ϕ is
not satisfiable, then the verifier Vcomp(IV4γ) rejects any k proofs with probability at
least 1

2·4k . Since it clearly has perfect completeness and makes only four queries, the
claimed result follows.

Remark on tightness of the analysis. In fact, Lemma 3.2 can be used to show
that, for any ε > 0, there exists a (covering) PCP verifier that makes four queries, has
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perfect completeness, and rejects any set of k proofs with probability at least 1
4k
− ε.

Note that this analysis is in fact tight for the verifier Vcomp(IV4) since a random set of
k proofs is accepted with probability 1− 4−k. It would have been sufficient to prove
that, for any k proofs, the set of verifier coins causing the verifier to reject all k proofs
is nonempty. We do not know a simpler proof of this weaker statement.

4. PCP construction II and hardness of hypergraph coloring. In the
previous section, we gave a PCP construction which made only four queries into the
proof and had covering soundness smaller than any desired constant. This is already
interesting in that it highlights the power of taking the covering soundness approach
(since, as remarked in the introduction, one cannot achieve arbitrarily low soundness
using classical PCPs with perfect completeness that make some fixed constant number
of queries). We next turn to applying this to get a strong inapproximability result for
hypergraph coloring.

The predicate tested by the inner verifier IV4γ is F (x, y, z, w) = (x �= y) ∨ (z �=
w), and, to get a hardness result for hypergraph coloring, we require the predi-
cate to be NAE(x, y, z, w), which is true unless all of x, y, z, w are equal. Note that
NAE(x, y, z, w) is true whenever F (x, y, z, w) is true, so one natural approach is to
simply replace the predicate F tested by IV4γ by NAE without losing perfect com-
pleteness. The challenge, of course, is to prove that the covering soundness does not
suffer in this process, and this is exactly what we accomplish. For completeness, we
describe the inner verifier below.

Inner Verifier IV-NAE4B,Cγ (π1, π2)
Pick p as in IV4γ .
Pick f, g1, h1, g

′, h′, g2, h2 as in Basic-IV4p.
Accept iff not all of B(g1), B(g2), C(h1), C(h2) are equal.

To analyze the soundness of the resulting composed verifier, we need to under-
stand the not-all-equal predicate NAE. Note that NAE(x, y, z, w) rejects iff

1

8
(1 + xy + xz + xw + yz + yw + zw + xyzw) = 1,

and this sum equals zero otherwise. With similar notation as in the previous section,
this implies that, for a given choice of g1, g2, h1, h2, the verifier rejects all k proofs iff

8−k
∑

S1,S2,S3,S4,S1⊕S2⊕S3⊕S4=∅
BS1(g1)BS2(g2)CS3(h1)CS4(h2) = 1,(7)

where ⊕ denotes the exclusive-or of characteristic vectors or, worded differently, the
symmetric difference of sets. If the verifier accepts one of the proofs, then the right-
hand side of (7) must equal zero. Hence we study the expected value of this quantity.

Before proceeding with the analysis, we shed some insight into the analysis and
explain what is new this time. Let T = S1 ⊕ S2 = S3 ⊕ S4. The terms corresponding
to T , being the empty set, are exactly the terms that appeared in the analysis of
the verifier of section 3. Let us turn our attention to terms where T �= ∅. Typically,
when a sum such as the above appears, we would just analyze the individual terms.
Unfortunately, it turns out that we are unable to do this in our case. To see why, con-
sider a typical summand above, namely, BS1(g1)BS1⊕T (g2)CS3(h1)CS3⊕T (h2). These
are more general than the terms analyzed in section 3, which were of the form
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BS(g1)BS(g2)CS′(h1)CS′(h2). The first two elements of such a product come from an
identical distribution, and similarly for the last two elements of the product. This in
turn enabled a certain “pairing” up of terms from which a good solution to the Label
Cover instance could be extracted (see the analysis in Lemma 7.12 of [17] for more
details). But now, since T �= ∅, the first two tables, BS1 and BS1⊕T , are different,
and so are the last two. Therefore, we now have to deal with individual terms which
are the product of four elements, each of which comes from a different distribution.
It does not seem possible to analyze such a term by itself and extract meaningful
solutions to the Label Cover instance.

To cope with this problem, we now bunch together termsBS1(g1)BS1⊕T (g2)CS3(h1)
CS3⊕T (h2) that involve the same T but different S1 and S3. (Alternatively, one could
think of this as fixing T and then picking S1 and S3 as random subsets of [k] and
considering the expectation of the terms over S1, S3 as well.) This makes the distri-
bution of the first pair as a whole identical to that of the second pair and allows us
to analyze the terms above. More formally, for each nonempty T ⊆ [k], we define

BT (g1, g2) =
∑
S

BS(g1)BS⊕T (g2),(8)

and similarly for C. Using this notation, the sum in (7) equals

8−k


1 +

∑
S

BS(g1)BS(g2) +
∑
S

CS(h1)CS(h2)

+
∑
S

BS(g1)BS(g2)CS(h1)CS(h2) +
∑

T =∅
BT (g1, g2)C

T (h1, h2)


 ,(9)

where the first four terms correspond to the case where T = ∅. Lemma 3.3 can
be used to lower bound the expectation of the first two sums over g1, g2, h1, h2, and
Lemma 3.4 can be used to lower bound the expectation of the third sum as a function
of the optimum of the Label Cover instance. Thus we need only to study the last
sum.

We show that, if the last term is too negative, then one can extract an assignment
of labels to the provers. The intuition behind the proof is as follows. BT and CT are
two functions chosen independently from the same distribution. Further, the queried
pairs (g1, g2) and (h1, h2) are also chosen from the same distribution but are not
independent of each other (and are related via f). If we ignore this dependence for a
moment, then we get

E[BT (g1, g2)C
T (h1, h2)] = E[BT (g1, g2)]E[CT (h1, h2)]

= E[BT (g1, g2)]E[BT (g1, g2)] ≥ 0,

and this would be good enough for us. Unfortunately, (g1, g2) and (h1, h2) are not
independent. The intuition behind the proof of the next inequality is that, if this
correlation affects the expectation of E[BT (g1, g2)C

T (h1, h2)], then there is some cor-
relation between the tables for BT and CT , and so a reasonable strategy for assigning
labels to w and w′ can be extracted. Specifically, we get the following lemma.

Lemma 4.1. There exists a′ < ∞ such that the following holds: Let T �= ∅,
0 < ε < 2−k, and γ ≤ ε/8 be such that

E
[
BT (g1, g2)C

T (h1, h2)
] ≤ −ε,
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where the expectation is taken over the distribution of u,w,w′, p, g1, h1, f, g′, h′, g2, h2
as in IV-NAE4γ . Then OPT(LC) ≥ γa

′γ−1

.

As usual, we postpone the proof of the lemma and instead prove the resulting
theorem.

Theorem 4.2. For every constant k, NP ⊆ cPCP1, 1k
[log, 4], where, moreover,

the predicate verified by the PCP upon reading bits x, y, z, w is NAE(x, y, z, w).

Proof. We have only to analyze the soundness of the verifier. Let a be the constant
from Lemma 3.4 and a′ be the constant from Lemma 4.1. Let b = max{a, a′}. Let

γ = 2−(k+5), and let δ < γbγ
−1

. To create a verifier for an instance of SAT, reduce
the instance of SAT to an instance of Label Cover using Theorem 3.1 with parameter
δ, and then use the verifier based on using IV-NAE4γ as the inner verifier. To show
soundness, we need to show that, if this verifier is covered by k proofs, then the
instance of Label Cover has an optimum greater than δ.

Suppose we have k proofs such that the verifier always accepts one of the proofs.
This implies that the expectation, over u,w,w′, p, f, g1, g2, h1, h2, of (9) is 0. This
implies that at least one of summands in (9) is less than or equal to −2−(k+2) in
expectation (since there are at most 4 · 2k summands in the expression). If it is a
summand in one of the first two sums, then this contradicts Lemma 3.3. If it is a
summand in the third sums, then, by Lemma 3.4, we get that OPT(LC) ≥ γaγ

−1

> δ.
If it is a summand in the last sum, then, by Lemma 4.1, we get that OPT(LC) ≥
γa

′γ−1

> δ. Thus, in the last two cases, we get that the optimum is more than δ as
desired.

Before going on to the proof of Lemma 4.1, we discuss the consequences of The-
orem 4.2 to hypergraph coloring. Before doing so, we just note that, in fact, one can
prove a stronger claim in Theorem 4.2 that, given any k proofs, the probability that
the verifier rejects all of them is at least 1

8k
− ε for ε > 0 as small as we seek. The

proof is really the same as that of Theorem 4.2 since we have argued that all terms
in the expansion (9) are arbitrarily small in the case when the optimum value of the
Label Cover instance is very small. Once again, this soundness analysis is tight since
a random set of k proofs will, in expectation, satisfy a fraction 1− 1

8k
of the verifier’s

checks.

4.1. Hardness results for hypergraph coloring. Since the predicate used
by the PCP of Theorem 4.2 is that of 4-set splitting, we get the following corollary.

Corollary 4.3. For every constant k ≥ 2, given an instance of 4-set splitting,
it is NP-hard to distinguish between the case when there is a partition of the universe
that splits all of the 4-sets and when, for every set of k partitions, there is at least
one 4-set which is not split by any of the k partitions.

The above hardness can be naturally translated into a hardness result for coloring
4-uniform hypergraphs, and this gives us our main result.

Theorem 4.4 (main theorem). For any constant c ≥ 2, it is NP-hard to color a
2-colorable 4-uniform hypergraph using c colors.

Proof. The proof follows from the above corollary since a 4-set splitting instance
can be naturally identified with a 4-uniform hypergraph whose hyperedges are the 4-
sets, and it is easy to see that the minimum number of partitions k needed to split all
4-sets equals �log c�, where c is the minimum number of colors to color the hypergraph
such that no hyperedge is monochromatic.

In light of the discussion after the proof of Theorem 4.2, we in fact have the
following stronger result.
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Theorem 4.5. For any constant c ≥ 2 and every ε > 0, it is NP-hard to
color a 2-colorable 4-uniform hypergraph using c colors such that at least a fraction(
1− 1

8�log c� + ε
)
of the hyperedges are properly colored (i.e., are not monochromatic).

Theorem 4.6. Assume NP �⊆ DTIME(nO(log log n)). Then there exists an abso-
lute constant c0 > 0 such that there is no polynomial time algorithm that can color a
2-colorable 4-uniform hypergraph using c0

log log n
log log log n colors, where n is the number of

vertices in the hypergraph.

Proof. This follows since the covering soundness of the PCP in Theorem 4.2 can be
made an explicit o(1) function. Indeed, nothing prevents having a k that is a function

of n. We need to have γ = 2−(k+5) and to reach a contradiction δ < γO(γ
−1). The

proof size we need is nO(log δ
−1)2δ

−O(1)

. We can thus have nO(log log n) size proofs by
letting δ−1 = (logn)b for some small enough constant b. The value of k can then satisfy
2k = Ω(γ−1) = Ω( log log n

log log log n ). Similarly to Theorem 4.4, this implies that 2k-coloring

a 2-colorable 4-uniform hypergraph is hard unless NP ⊆ DTIME(nO(log log n)).

We now show that a hardness result similar to Theorem 4.4 also holds for 2-
colorable k-uniform hypergraphs for any k ≥ 5.

Theorem 4.7. Let k ≥ 5 be an integer. For any constant + ≥ 2, it is NP-hard
to color a 2-colorable k-uniform hypergraph using + colors.

Proof. The proof works by reducing from the case of 4-uniform hypergraphs, and
the claimed hardness then follows using Theorem 4.4.

Let H be a 4-uniform hypergraph with vertex set V . Suppose that k = 4s + t,
where 1 ≤ t ≤ 4. Construct a k-uniform hypergraph H′ as follows. The vertex set
of H′ is V (1) ∪ V (2) ∪ · · · ∪ V (s&+1), where the sets V (j) are independent copies of
V . On each V (j), take a collection F (j) of 4-element subsets of V (j) that correspond
to the hyperedges in H. A hyperedge of H′ (which is a (4s + t)-element subset of⋃
j V

(j)) is now given by the union of s 4-sets belonging to s different F (j)’s, together

with t vertices picked from a 4-set belonging to yet another F (j). More formally, for
every set of (s+1) distinct indices j1, j2, . . . , js+1, every choice of elements eji ∈ F (ji)

for i = 1, . . . , s + 1, and every t-element subset fjs+1 of ejs+1 , there is a hyperedge
(ej1 ∪ · · · ∪ ejs ∪ fjs+1

) in H′.
If H is 2-colorable, then clearly any 2-coloring of it induces a 2-coloring of H′,

and hence H′ is 2-colorable as well.

Suppose H is not +-colorable and that we are given an +-coloring of H′. Since H
is not +-colorable, each F (j), for 1 ≤ j ≤ s+ + 1, must contain a monochromatic set
gj . By the pigeonhole principle, there must be a color c such that (s + 1) different
gj ’s have color c. The hyperedge of H′ constructed from those (s + 1) sets is then
clearly monochromatic (all its vertices have color c), and we conclude that H′ is not
+-colorable.

Since the reduction runs in polynomial time when k and + are constants, the proof
is complete.

4.2. Discrete Fourier transforms. Before going on to the proof of Lemma 4.1,
we now introduce a tool that has been crucial in the analysis on inner verifiers. This
was hidden so far from the reader but already used in the proofs of Lemmas 3.3 and
3.4 in [17]. Now we need to introduce them explicitly.

In general, we consider functions mapping D to {1,−1}. For α ⊆ D and f ∈ FD,
let χα(f) =

∏
x∈α f(x). Notice that χ{x} is the long code of x. For any function A
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mapping FD to the reals, we have the corresponding Fourier coefficients

Âα = 2−2
|D| ∑

f

A(f)χα(f),

where α ⊆ D. We have the Fourier inversion formula given by

A(f) =
∑
α

Âαχα(f)

and Plancherel’s equality that states that

∑
α

Â2
α = 2−2

|D| ∑
f

A(f)2.

In the case when A is a Boolean function, the latter sum is clearly 1.
We think of an arbitrary table A as being somewhat close to (or coherent with) the

long code of x if there exists a small set α containing x such that Âα is nonnegligibly
large. Thus, when viewing the long proofs of w and w′, our goal is to show that the
LP(w) and LP(w′) have coherence with the long codes of strings x and y such that
πu,w(x) and πu,w′(y) are equal.

4.3. Proof of Lemma 4.1. Fix T ⊆ [k]. Throughout this section, the quantities
that we define depend on T , but we do not include it as a parameter explicitly.

Recall that we need to show that, if the expectation, over u,w,w′, p, g1, g2, h1, h2
of BT (g1, g2)C

T (h1, h2), is too negative (less than −ε), then we can assign labels to
the Label Cover problem with acceptance probability more than δ. Recall that g2 =
g1(f ◦ π1 ∧ g′) is defined in terms of other random variables f and g′ and similarly h2
in terms of f and h′. For brevity, we let X denote the quantity BT (g1, g2)C

T (h1, h2).
Notice that X is a random variable depending on all of the variables above. We first
analyze the expectation of X over g1 and h1 (for fixed choice of u,w,w′, p, f, g′, and
h′). Next we calculate the expectation over f , g′, and h′. In both stages, we get exact
expressions. Finally, we make some approximations for the expectation over u,w,w′.
(The careful reader may observe that we do not take expectations over p—in fact, the
lemma holds for every choice of p of the inner verifier IV-NAE4γ .)

The crux of this proof is the functions B∗, C∗ : FLW
→ {1,−1}, defined as follows:

We let

B∗(g) = E
h

[∑
S

BS(h)BS⊕T (gh)

]

and

C∗(g) = E
h

[∑
S

CS(h)CS⊕T (gh)

]
.

Note that, for a fixed choice of f and g′, we have Eg1 [B
T (g1, g2)] = B∗(−((f◦π1)∧g′)).

We get a similar expression for CT , and thus we get

E
g1,h1

[X] = B∗(−((f ◦ π1) ∧ g′))C∗(−((−f ◦ π2) ∧ h′)).

Let us call the above quantity Y .
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In what follows, we rely crucially on the properties of the Fourier coefficients of
B∗ and C∗. Let F̂β and Ĝβ denote the Fourier coefficients of B∗ and C∗, respectively.
From the definitions and some standard manipulation, we get

F̂β =
∑
S

B̂β,SB̂β,S⊕T and Ĝβ =
∑
S

Ĉβ,SĈβ,S⊕T .

Using simple Fourier expansion, we can rewrite the quantity we are analyzing as

Y = B∗(−((f ◦ π1) ∧ g′))C∗(−((−f ◦ π2) ∧ h′))

=
∑
β,β′

F̂βĜβ′χβ(−((f ◦ π1) ∧ g′))χβ′(−((−f ◦ π2) ∧ h′))

=
∑
β,β′

F̂βĜβ′
∏
y∈β

(−(f(π1(y)) ∧ g′(y)))
∏
z∈β′

(−(−f(π2(z)) ∧ h′(z))).

The main property about the Fourier coefficients of B∗ and C∗ is that their L1 norm
is bounded. Specifically, we have

∑
β

|F̂β | ≤
∑
β,S

|B̂β,SB̂β,S⊕T | ≤
∑
S


∑

β

B̂2
β,S



1/2
∑

β

B̂2
β,S⊕T



1/2

≤ 2k.(10)

We start by defining the strategy we use to assign labels and prove that, if the
expectation (of Y ) is large, then the labels give an assignment to the Label Cover

instance with objective of at least δ = γa
′γ−1

.

Strategy. Given w ∈ W and tables B1, . . . , Bk corresponding to LP(w) in k
different proofs, compute BS for every S ⊆ [k], B∗ and its Fourier coefficients. Pick a
nonempty set β ⊆ LW with probability 2−k|F̂β |, and assign as label to w, an element

x ∈ β chosen uniformly at random. With remaining probability, since
∑

β =∅ |F̂β | may

be less than 2k, assign no label to w.

Preliminary analysis. We now give a preliminary expression for the success
probability of the strategy. Consider picking u,w, and w′ (and the associated π1 and
π2) at random and checking for the event π1(+(w)) = π2(+(w

′)). The probability of
this event is lower bounded by the probability that π1(β) and π2(β

′) intersect, and we
assign the elements corresponding to this intersection to w and w′. The probability
of these events is at least

E
u,w,w′


 ∑

β,β′:π1(β)∩π2(β′) =∅

2−2k

|β| · |β′| |F̂β ||Ĝβ′ |

 .(11)

Below we show that this quantity is large if the expectation of Y is too small. We
now return to the expectation of Y .

An exact expression for the expectation of Y . We start with some notation.
Fix u,w,w′, p, and π1 and π2. For x ∈ LU and β, β′ ⊆ LW , let sx(β) = |β ∩ π−11 (x)|,
and let tx(β

′) = |β′∩π−12 (x)|. Since the argument of sx is always β and the argument of
tx is always β′, we use the shorthand sx for sx(β) and tx for tx(β

′). Further, for real p
and nonnegative integers s, t, let α(p, s, t) = 1

2 ((−1)s(1− 2p)t + (1− 2p)s(−1)t), and
let η(p, s) = 1

2 ((−1)s + (1− 2p)s). Next we show that

E
f,g′,h′

[Y ] =
∑
β,β′

F̂βĜβ′
∏
x∈LU

α(p, sx, tx).(12)
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To prove the above, it suffices to show that

E
f,g′,h′


∏
y∈β

[−(f(π1(y)) ∧ g′(y))
] ∏
z∈β′

[−(−f(π2(z)) ∧ h′(z))
]

 =

∏
x∈LU

α(p, sx, tx).

Factors corresponding to y and z with different projections on LU are independent,
and thus the expectation can be broken down into a product of expectations, one for
each x ∈ LU . Fix x ∈ LU , and consider the term

E
f,g′,h′


 ∏

y∈β∩π−1
1 (x)

(−(f(π1(y)) ∧ g′(y)))
∏

z∈β′∩π−1
2 (x)

(−(−f(π2(z)) ∧ h′(z)))




= E
f,g′,h′


 ∏

y∈β∩π−1
1 (x)

(−(f(x) ∧ g′(y)))
∏

z∈β′∩π−1
2 (x)

(−(−f(x) ∧ h′(z)))


 .

If f(x) = 1 (or “false”), the first product equals (−1)sx , and the second equals (1 −
2p)tx . Similarly, if f(x) = −1, the first product equals (1 − 2p)sx , and the second
equals (−1)tx . The events happen with probability 1/2 each and thus give that the
expectation above (for fixed x) equals

1

2

(
(−1)sx(1− 2p)tx + (1− 2p)sx(−1)tx) = α(p, sx, tx).

Taking the product over all x’s gives (12).

Inequalities on E[Y ]. For every u, we now show how to lower bound the ex-
pectation of Y over w,w′, f, g′, h′ in terms of a sum involving only β’s and β′ that
intersect in their projections. This brings us much closer to the expression derived in
our preliminary analysis of the success probability of our strategy for assigning labels,
and we lower bound a closely related quantity. Specifically, we now use the inequality

Ew,w′,f,g′,h′ [Y ] ≤ −ε (as guaranteed by the lemma statement) to show

E
u,w,w′


 ∑

β,β′|π1(β)∩π2(β′) =∅
2|F̂βĜβ′ |e−µp(β)/2


 ≥ ε,(13)

where µp(β) = µp(β, u, w) =
∑

xmin{1, psx} is the quantity defined in (1). (A similar
inequality with µp(β

′) in the exponent follows by symmetry.)
To prove the above, consider the following expression, which is closely related to

the expectation of Y as given by (12):

Y1 =


∑

β

F̂β
∏
x

η(p, sx)




∑

β′
Ĝβ′

∏
x

η(p, tx)


 .

First we note that Ew,w′ [Y1] = (Ew[(
∑

β F̂β
∏

x η(p, sx))])
2 ≥ 0. (Here we are using

the fact that the tables BT and CT are chosen from the same distribution.) Next we
note that the difference between Y and Y1 arises only from terms involving β, β′ such
that π1(β) ∩ π2(β

′) �= ∅. To verify this, note that, if s = 0 or t = 0, then α(p, s, t) =
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η(p, s) · η(p, t). Since either sx or tx equals 0 for every x, if π1(β)∩π2(β′) = ∅, we get
that terms corresponding to such pairs of β, β′ vanish in Y − Y1. We conclude that

E
w,w′,f,g′,h′

[Y ] = E
w,w′

[Y1]

+
∑

β,β′:π1(β)∩π2(β′) =∅
F̂βĜβ′

(∏
x

α(p, sx, tx)−
∏
x

(η(p, sx) · η(p, tx))
)
.

Using Ew,w′,f,g′,h′ [Y ] ≤ −ε, E[Y1] ≥ 0 and taking absolute values, we get

ε ≤
∣∣∣∣∣∣

∑

β,β′:π1(β)∩π2(β′) =∅
F̂βĜβ′

(∏
x

α(p, sx, tx)−
∏
x

(η(p, sx) · η(p, tx))
)∣∣∣∣∣∣

≤
∑

β,β′:π1(β)∩π2(β′) =∅
|F̂βĜβ′ |

(∏
x

|α(p, sx, tx)|+
∏
x

|η(p, sx)|
)
,(14)

where the last inequality uses |η(p, t)| ≤ 1 for every t ≥ 0.
Next we simplify the terms of the left-hand side above. First we show that, for

every t ≥ 0,

|α(p, s, t)|, |η(p, s)| ≤ e−min{1,ps}/2.(15)

First we note that both |α(p, s, t)| and |η(p, s)| are upper bounded by 1
2 (1+(1−2p)s) ≤

1
2 (1+ e−2ps). If p ≥ s−1, then we have 1

2 (1+ e−2ps) ≤ 1
2 (1+ e−2) ≤ e−1/2 as required.

If p ≤ 1
s , let us set λ(z) = 2e−z/2 − (1 + e−2z). To show (15), we need to prove that

λ(z) ≥ 0 for z ∈ [0, 1]. We have λ′′(z) = 1
2e
−z/2 − 4e−2z, and hence λ′′(z) ≤ 0 in the

interval in question, and we have only to check the inequality at the end points. We
have λ(0) = 0 and λ(1) = 2e−1/2 − (1 + e−2) > 0.

Using (15), we conclude that

∏
x

|α(p, sx, tx)|+
∏
x

|η(p, sx)| ≤ 2
∏
x

e−min{1,psx} = 2e−µp(sx).

Substituting the above into (14) gives (13).
Based on (13), we want to prove that the strategy for assigning labels is a good

one. First we prove that large sets β do not contribute much to the left-hand side of
the sum in (13). Define

K = p−1(ε−122k+4(4k + 8 + 2 log ε−1))1/c.

We have the following lemma.
Lemma 4.8. We have

E


 ∑

π(β)∩π(β′) =∅,|β|≥K
2|F̂βĜβ′ |e−µp(β)/2


 ≤ ε/4.

Proof. By property (iv) of Theorem 3.1, we have that the probability that µp(β) ≤
(4k+8+2 log ε−1) is at most ε2−(2k+4). A similar chain of inequalities to (10) shows
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that
∑ |Ĝβ′ | ≤ 2k. The sum in the lemma can hence be estimated as

2k+1
∑

|β|≥K
|F̂β |E

u
[e−µp(β)/2] ≤ 2k+1

∑

|β|≥K
|F̂β |

(
2−(2k+4)ε+ e−(2k+4+log ε

−1)
)

≤ 22k+1(2−(2k+4)ε+ 2−(2k+4)ε)
≤ ε/4,

and the lemma follows.
By the same argument applied to β′ of size at least K, together with (13), we get

E


 ∑

π(β)∩π(β′) =∅,|β|,|β′|≤K
2|F̂βĜβ′ |


 ≥ ε/2.(16)

We now relate to the probability of success of our strategy for assigning labels.
From (11) we know this quantity is at least

E
u,w,w′


 ∑

β,β′:π1(β)∩π2(β′) =∅

2−2k

|β| · |β′| |F̂β ||Ĝβ′ |



≥ E
u,w,w′


 ∑

π1(β)∩π2(β′) =∅,|β|,|β′|≤K

2−2k

K2
|F̂β ||Ĝβ′ |




≥ ε2−(2k+2)

K2
,

where the last inequality uses (16). (It is easy to convert this randomized strategy
for assigning labels to a deterministic one that does equally well.) The dominating
factor in the expression is the term p−O(1) (from the definition of K), which can be

calculated to be γO(γ
−1), and the proof of Lemma 4.1 is complete.

4.3.1. Comparison to previous proof of Theorem 4.4. We point out that
the conference version of this paper [15] contained a different proof of Theorem 4.4.
The current proof is significantly simpler, and, furthermore, it is only a minor ad-
justment of similar proofs in [17]. The key observation to make the current proof
possible is the insight that we should treat the terms of (7) in the collections given
by BT (g1, g2)C

T (h1, h2), as it does not seem possible to handle them one by one
in an efficient manner. The previous proof did not make this observation explicitly
and ended up being significantly more complicated. This “simplicity” in turn has
already enabled some further progress on the hypergraph coloring problem; in partic-
ular, using this style of analysis, Khot [21] shows a better superconstant hardness for
a-colorable 4-uniform hypergraphs for a ≥ 7.

4.3.2. Subsequent related work. In a very recent work, Holmerin [18] showed
that the vertex cover problem considered on 4-uniform hypergraphs is NP-hard to
approximate within a factor of (2 − ε) for arbitrary ε > 0. (A subset S of vertices
of a hypergraph H is said to be a vertex cover if every hyperedge of H intersects S.)
He proves this by modifying the soundness analysis of H̊astad’s 4-set splitting verifier
(which is also the verifier we use in section 4) to show that any proof which sets only
a fraction ε of bits to −1 will cause some 4-tuple tested by the verifier to consist
of only 1’s. This in turn shows that, for every constant ε > 0, given a 2-colorable
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4-uniform hypergraph, it is NP-hard to find an independent set that consists of a
fraction ε of vertices. Note that this result is stronger, as a small independent set
implies a large chromatic number, and it thus immediately implies the hardness of
coloring such a 2-colorable 4-uniform hypergraph with 1/ε colors, and hence our main
result (Theorem 4.4). We stress that the verifier in Holmerin’s paper is the same as
the one in this paper; however, the analysis in [18] obtains our result without directly
referring to covering complexity.
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Abstract. We characterize all limit laws of the quicksort-type random variables defined re-
cursively by L(Xn) = L(XIn + X∗

n−1−In
+ Tn) when the “toll function” Tn varies and satisfies

general conditions, where (Xn), (X∗
n), (In, Tn) are independent, In is uniformly distributed over

{0, . . . , n − 1}, and L(Xn) = L(X∗
n). When the “toll function” Tn (cost needed to partition the

original problem into smaller subproblems) is small (roughly lim supn→∞ logE(Tn)/ logn ≤ 1/2),
Xn is asymptotically normally distributed; nonnormal limit laws emerge when Tn becomes larger.
We give many new examples ranging from the number of exchanges in quicksort to sorting on a
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1. Quicksort recurrence. Quicksort, invented by Hoare [37], is one of the most
widely used general-purpose sorting algorithms and was selected to be among the top
ten most influential algorithms in science and engineering in the 20th century; see JaJa
[41]. For more information on the practical implementation and recent development
of quicksort, see, for example, [5, 49, 75]. Assume that the input comes from a
sequence of independent and identically distributed random variables with a common
continuous distribution, the cost measures, say, Xn, on quicksort can generally be
described by X0 = 0, and, for n ≥ 1,

Xn
d
= XIn +X∗n−1−In + Tn,(1)

where (Xn), (X
∗
n), (Tn, In) are independent, Xn

d
= X∗n, and In is uniformly distributed

over {0, . . . , n − 1}. Here the symbol
d
= denotes equivalence in distribution, and

Tn is either a deterministic function of n or a random variable depending on In or
not. Throughout this paper, we call Tn the toll function. Note that this description
implicitly assumes that the randomness is preserved for each subfile after partitioning,
a property enjoyed by many partitioning schemes but easily violated if carelessly
implemented; see Sedgewick [71] for a detailed discussion. Our aim in this paper is
to develop a distribution theory for Xn based on the stochastic behavior of Tn.

The motivation of such a study is multifold. First, the model is simple yet pro-
totypical of many sophisticated divide-and-conquer schemes. Viewing this recurrence
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from an equally important binary search tree perspective, we can study a large num-
ber of extensions and variants (see Devroye [19] and Gonnet and Baeza-Yates [31]).
Second, the inherent phase change of the limit laws from normal to nonnormal is
a new, interesting phenomenon, which should also occur in many other structures.
Third, how sensitive is the limit law of the cost with respect to the toll function? For
such a simple structure, a certain “robustness” is expected. Also, the extent to which
the normal law persists is helpful in giving a deeper understanding of the associated
algorithms; roughly, the variance is increasing as the toll function grows, and the algo-
rithms become less useful in practice if the variance is too large. Fourth, a complete
characterization of the limit law under varying toll functions is still lacking in the
literature. Fifth, the diverse examples we collected were the catalysts that stimulated
our study.

The most studied special case is Tn = n+O(1), which corresponds to the number
of comparisons used by quicksort to sort a random input or, equivalently, to the total
path length of a random binary search tree. It is known that

Xn − E(Xn)

n

d−→ Y,

where “
d−→” denotes convergence in distribution. Here Y satisfies

Y
d
= UY + (1− U)Y ∗ + 2U logU + 2(1− U) log(1− U) + 1,(2)

where Y
d
= Y ∗, U is a uniform random variable over the unit interval, and Y , Y ∗,

and U are independent; see Rösler [66], Régnier [64], and Fill and Janson [26].
Other known cases leading to a normal limit law are
• the number of leaves in a random binary search tree for which Tn = δn1,
the Kronecker symbol (see Devroye [18, 20] and Flajolet, Gourdon, and
Mart́ınez [28]);
• the log-product of subtree sizes for which Tn = log n (see Fill [25]);
• the number of occurrences of any fixed pattern with Tn equal to the proba-
bility of the pattern when n is equal to the size of the pattern (see Flajolet,
Gourdon, and Mart́ınez [28]);

• the number of occurrence of subtrees of a given fixed size (see Aldous [1] and
Devroye [18, 20]);
• the number of nodes whose subtree sizes are larger than a given page size
b ≥ 1 (see Flajolet, Gourdon, and Mart́ınez [28]).

The case when Tn = nα, where α > 1, was studied by Neininger [54]; this case
leads again to nonnormal limit laws.

The rough picture reflected by these sporadic examples is that, if the toll function
is small such as log n or O(1), then the limit law of the total cost is normal, and that
for the large toll function such as n it is nonnormal. However, when does the limit
law of the total cost fail to be normal? We show, under general conditions, that√
n is roughly the separating line between normal and nonnormal limit laws; this is

intuitively in accordance with the classical law of errors. For, from a structural point
of view, if the toll function is small, then the contribution from each subproblem is
not dominating so that the normal limit law is quite expected. (In vivid terms, the
situation resembles the democratic system.) On the other hand, if the toll function
is large, then the main contribution comes from a few subproblems of large size,
rendering large variance and thus nonnormal law in the limit (totalitarian system?).
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An even more intuitive guess is that, if Var(Tn) = o(Var(Xn)), then Xn would be
asymptotically normally distributed; otherwise, the limit law would be nonnormal.
This guess, although false in general, is true for the conditions we consider.

These examples will turn out to be special cases of our general results. We will
discuss more new examples in section 6.

We give two different approaches, based, respectively, on the contraction method
(see Rösler and Rüschendorf [69]) and the method of moments, to prove the different
limit laws for several reasons. First, we propose the two approaches in a consistent
and synthetic way so that they are likely to be applied to other algorithmic prob-
lems. Indeed, almost all asymptotic properties of the moments are encapsulated into
an “asymptotic transfer” lemma, which relates the asymptotic behavior of the toll
function Tn to that of the total cost Xn. Such a transfer also clarifies the sensitivity
of the total cost with respect to the toll function (see also Devroye [20]). Second,
each approach has its own advantages and inconveniences; we give them for more
methodological interests. Third, both approaches can more or less be classified as
“computational,” in contrast to the “probabilistic” approach used by Devroye in the
companion paper [20].

The contraction method, first introduced by Rösler [66] for the analysis in dis-
tribution of the quicksort algorithm (namely, (1) with Tn = n − 1), starts from a
recursive equation satisfied by the random variable in question. Then one computes
the first or the second moments, scales properly, proves that the scaled recurrence
stabilizes in the limit, and chooses a suitable probability metric so that the stabi-
lized equation defines a map of measures that is a contraction in this metric and has
a unique fixed-point in some space of probability measures. The weak convergence
of the scaled random variables to this fixed-point then follows from the contraction
properties; see Rösler [67], Rachev and Rüschendorf [62], and Rösler [68] for more
information and Rösler and Rüschendorf [69] for a survey. This approach is especially
simple if the limiting map has contraction properties in the minimal L2 metric. In
this case, only knowledge of the first moment is required for the application of the
method. This property will become clear in the case of “large” toll functions (very
roughly, E(Tn)�

√
n ). For “small” toll functions, the limiting equation necessitates

the use of a probability metric that is ideal of order larger than two as well as infor-
mation on the variance. In either case, a feature of the contraction method is that
the dependence between Tn and In can be succinctly handled. For other applications
of the contraction method, see [17, 50, 52, 56].

The method of moments, one of the most classical ways of deriving limit dis-
tributions, has been widely applied to problems in diverse fields (see, for example,
Billingsley [8, section 30] and Diaconis [21]). It consists in first computing the mean
and variance, properly scaling the random variable, computing by induction the higher
moments of the scaled random variable, applying Carleman’s criterion to justify the
unicity of the limit law, and then concluding the convergence in distribution and of
all moments (or convergence in Lp for all p > 0) by the Fréchet–Shohat moment
convergence theorem (see Loève [44]). While the method of moments is usually used
as the “last weapon” for proving limit laws, it does have some advantages: first, it
provides more information than weak convergence; second, it is more transparent
and self-contained and requires less advanced theory. We systematize the use of this
method so that all major tasks boil down to the asymptotic transfer from the toll
function to the total cost. Previously, this method was applied by Hennequin in his
Ph.D. thesis [36, section IV.4] to characterize the limit laws of his generalized quick-
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Fig. 1. Main steps used by the contraction method and the method of moments. Here RV
denotes “random variable,” and MGF denotes “moment generating function.”

sort (covering, in particular, the quicksort with median-of-(2k + 1)). His proof is,
however, incomplete in that his Abelian lemma [36, p. 79] gives only an estimate
inside the unit circle for the generating function in question so that his application of
the singularity analysis (see Flajolet and Odlyzko [29]) is not fully justified. We use
a different approach, more elementary in nature, to link the asymptotics of the toll
function and that of the total cost. For recent applications of the method of moments
to similar problems, see Fill [25], Flajolet, Poblete, and Viola [30], Dobrow and Fill
[22], and Schachinger [70].

A schematic diagram illustrating the two approaches is given in Figure 1.
Typically, the method of moments requires more assumptions on the moments of

the toll function than the contraction method, and the results obtained are stronger.
On the other hand, it is also possible to obtain the convergence of all moments by
the contraction method based on moment generating functions; see Rösler [66] for
details. For another approach to recursive random variables, which we might term
the “inductive approximation approach,” see Pittel [58] and the references therein.
See also [14, 56] for an interesting example for which the method of moments applies
but the contraction method fails (the space requirement of random m-ary search trees
when m > 26).

Viewing our results as bridging the transition from normal to “the quicksort
law” (2), we can investigate other kinds of transitions by looking at different recur-
rences (or algorithms). A closely related recurrence to (1) is the one-sided quicksort
recurrence

Xn
d
= XIn + Tn,(3)

for which we can vary the toll function to bridge the normal law and the Dickman
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distribution; see [40]. Roughly, our results say that, if the toll function is of logarithmic
order, then the limit law is normal; the limit law is nonnormal for larger toll functions;
see section 7 for more precise results and examples.

For the class of problems we study in this paper and many others, an important
feature distinguishing normal and nonnormal limit laws is the effect of cancellation
caused by centering the random variable. Roughly, the more cancellations of higher
moments, the more likely the limit law is normal. Since our settings cover almost all
practical variations of the toll functions, the cancellation effect will be more “visible”
in different cases, especially in the method of moments.

We give the main asymptotic transfer results in the next section. Then we prove
the phase change of the limit laws in sections 3 and 4. We first give a more straight-
forward proof by the method of moments under stronger assumptions; then we apply
the contraction method under more general settings. Continuities of the variation of
the limit laws are discussed in section 5. We discuss many examples in section 6.
In particular, the number of exchanges used by quicksort gives an intriguing exam-
ple of Tn depending on In. Section 7 addresses a similar distribution theory for the
recurrence (3); this is included because it is closely related.

Notation. Throughout this paper, Xn and Tn are related by (1). We use con-
sistently the following notation: xn := E(Xn), tn := E(Tn), Pn(y) := E(eXny),
Qn(y) := E(eTny), Hn :=

∑
1≤k≤n 1/k. The symbols U and N(0, 1) always represent

a uniform [0, 1] and a standard normal random variable, respectively. The symbol n0

denotes a suitable nonnegative integer whose value may vary from one occurrence to
another. All unspecified limits (including O, o, ∼) are taken to be n→∞.

Slowly varying functions. A nonnegative function L(n) defined for n ≥ n0 ≥ 0
and not identically zero is called slowly varying if, for all real λ > 0,

L(n) ∼ L(�λn�) (n→∞).

If n0 > 0, we define L(n) = 0 for 0 ≤ n < n0. Typical slowly varying functions

include any powers of logn and log logn, e(log n)α(log log n)β , where 0 ≤ α, β < 1, and
elogn/ log log n.

2. Mean and asymptotic transfers. We develop the main elementary tools
in this section that will be used later. While the same results can be obtained via
differential equations and suitable analytic tools, we content ourselves with the ele-
mentary approach due to the simplicity of the recurrence. See [15] for more general
recurrences of quicksort type.

The mean xn := E(Xn) satisfies, by (1), x0 = 0 and

xn =
2

n

∑
0≤k<n

xk + tn (n ≥ 1),(4)

where tn := E(Tn).
Lemma 1. Let {bn}n≥1 be a given sequence, and define an by a0 := 0, and

an =
2

n

∑
0≤k<n

ak + bn (n ≥ 1).(5)

Then, for n ≥ 1,

an = bn + 2(n+ 1)
∑

1≤k<n

bk
(k + 1)(k + 2)

.(6)
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Proof. Take the difference (n+ 1)an − nan, and then iterate the resulting recur-
rence.

From this lemma, we obtain the exact solution for E(Xn),

E(Xn) = tn + 2(n+ 1)
∑

1≤k<n

tk
(k + 1)(k + 2)

,(7)

for n ≥ 1; see Devroye [20] for a concrete interpretation of each term on the right-hand
side of (7).

The main tool we need is the following lemma linking the asymptotic behavior of
the toll function to that of the total cost.

Lemma 2 (asymptotic transfers). Assume that an satisfies (5). (i) The conditions
bn = o(n) and

∑
k bk/k

2 <∞ are both necessary and sufficient for

an ∼ Υ[b]n, Υ[b] := 2
∑
k≥1

bk
(k + 1)(k + 2)

;

(ii) if bn ∼ nL(n), then

an ∼





Υ[b]n if
∑

k≥1 L(k)/k <∞,

2n
∑
k≤n

L(k)

k
if
∑

k≤n L(k)/k →∞;

(iii) if bn ∼ nαL(n), where α > 1, then

an ∼ α+ 1

α− 1
nαL(n).

Proof. The sufficiency part of (i) follows directly from the exact solution (6). For
the necessary part, assume that an ∼ cn for some constant c. Then, by (4),

bn = an − 2

n

∑
0≤k<n

ak = o(n).

From this and (6), we deduce that c = Υ[b] <∞.
Part (ii) also results from (6) and the estimate (see Bingham, Goldie, and Teugels

[9, Proposition 1.5.9a])

L(n) = o


∑
k≤n

L(k)

k


 .(8)

For part (iii), we have

an ∼ nαL(n) + 2n
∑

1≤k≤n
kα−2L(k).

However,

∑
1≤k≤n

kα−2L(k) ∼ L(n)
∑

1≤k≤n
kα−2 ∼ nα−1

α− 1
L(n);
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see Proposition 1.5.8 of Bingham, Goldie, and Teugels [9, p. 26].
Remarks. 1. If bn = o(

√
n ), then an = Υ[b]n+ o(

√
n ).

2. If bn ∼ nαL(n), where α ≥ 1/2, α �= 1, then

an = Υ[b]n+
α+ 1

α− 1
nαL(n)(1 + o(1)).(9)

3. If we replace the two ∼’s for bn in the lemma by O(.) (or o(.)) in cases (ii)
and (iii), then the same results hold by replacing ∼ for an by O(.) (or o(.)).

3. Limit laws. I. Method of moments. We study the limit laws of Xn.
Briefly, we derive weak convergence and convergence of all moments of Xn (prop-
erly normalized) to some Y when estimates for moments of Tn are available. We
consider mainly the case when Tn is independent of In. The case when Tn depends
on In requires a straightforward extension of the method; we will discuss briefly the
dependence extension for small toll functions; the large toll functions will be discussed
via examples in section 6.

Let Pn(y) := E(eXny). Then from (1) and independence

Pn(y) =
Qn(y)

n

∑
0≤k<n

Pk(y)Pn−1−k(y) (n ≥ 1),

with P0(y) := 1, where Qn(y) := E(eTny).
Before going further, we need to discard the special case when Tn = c for n ≥ 1,

which yields Xn = cn for n ≥ 1.
Lemma 3. Assume that In and Tn are independent for n ≥ 1. The variance

of Xn is zero for n ≥ 1 iff Tn = c for n ≥ 1 and for some constant c.
Proof. Let φn(y) := e−xnyPn(y). Then φ′n(0) = 0, and

φ′′n(0) = Var(Xn) =
2

n

∑
0≤k<n

φ′′k(0) + ψn (n ≥ 2),

where, defining ∆n,k = xk + xn−1−k − xn,

ψn = Q′′n(0) +
2

n
tn

∑
0≤k<n

∆nk +
1

n

∑
0≤k<n

∆2
nk

= E(T 2
n)− (E(Tn))

2 +
1

n

∑
0≤k<n

∆2
nk −


 1

n

∑
0≤k<n

∆nk




2

.(10)

The assertion of the lemma follows from the Cauchy–Schwarz inequality and induc-
tion.

Define Yα = Yα(T ) by

Yα
d
=

{
UαYα + (1− U)αY ∗α + T if α > 1/2, α �= 1,

UY + (1− U)Y ∗ + h(T,U) if α = 1,
(11)

where Y
d
= Y ∗ and Y, Y ∗, T, U are independent and h(T,U) = 2U logU + 2(1 −

U) log(1 − U) + T . Here T is essentially the limit distribution of Tn/tn. It will turn
out that Yα is the limit law of Xn after properly normalized. From this defining
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equation, it follows that the mth moment of Yα, denoted by ηm, satisfies, if it exists,
the recurrence η0 = 1 and, for m ≥ 1,

ηm =





∑
a+b+c=m

(
m

a, b, c

)
τaηbηcB(bα+ 1, cα+ 1) if α > 1/2, α �= 1,

∑
a+b+c+d=m

(
m

a, b, c, d

)
τaηbηc

∫ 1

0

xbα(1− x)cαΛ(x)d dx if α = 1,

(12)

where τm = E(Tm), Λ(x) := 2x log x + 2(1 − x) log(1 − x), and B(u, v) denotes the
beta integral

B(u, v) :=

∫ 1

0

xu−1(1− x)v−1 dx =
Γ(u)Γ(v)

Γ(u+ v)
(u, v > 0),

Γ being the Gamma function. Also, the moment generating function η(z) := E(eYαz)
satisfies

η(z) =

{
τ(z)

∫ 1

0
η(xαz)η((1− x)αz) dx if α > 1/2, α �= 1,

τ(z)
∫ 1

0
η(xαz)η((1− x)αz)eΛ(x)z dx if α = 1,

provided that both η(z) and τ(z) := E(eTz) exist.
Lemma 4. Assume that α > 0. If the moment generating function of T exists,

then {ηm}m characterizes uniquely the distribution L(Yα).
Proof. Assume that the series

∑
m τmz

m/m! converges for |z| ≤ δ for some δ > 0.
We show that |ηm| ≤ m!Km for a sufficiently large K. By induction, using (12), we
have

|ηm|
m!
≤ mα+ 1

mα− 1

∑
0≤b<m

∫ 1

0

xbα
∑

0≤a≤m−b

|τa|
a!

Km−a(1− x)(m−a−b)α dx

≤ Km


∑
a≥0

|τa|
a!

K−a


 mα+ 1

mα− 1

∑
0≤b<m

∫ 1

0

xbα(1− x)(m−b)α dx

≤ Km


∑
a≥0

|τa|
a!

K−a


 mα+ 1

mα− 1

(
1

mα+ 1
+ (m− 1)

∫ 1

0

xα(1− x)(m−1)α dx

)

= Km


∑
a≥0

|τa|
a!

K−a



[

1

mα− 1
+

(mα+ 1)(m− 1)Γ(α+ 1)Γ(mα+ 1− α)

(mα− 1)(mα+ 1)Γ(mα+ 1)

]
.

Take first K so large that the series
∑

a |τa|K−a/a! converges. Then, since the terms
in brackets tend to zero as m→∞, there exists an m0 > 0 such that


∑
a≥0

|τa|
a!

K−a



[

1

mα− 1
+

(mα+ 1)(m− 1)Γ(α+ 1)Γ(mα+ 1− α)

(mα− 1)(mα+ 1)Γ(mα+ 1)

]
< 1

form > m0. On the other hand, |ηm| ≤ m!Km form ≤ m0 ifK was chosen sufficiently
large. We conclude that |ηm| ≤ m!Km, and the required assertion then follows from
Carleman’s criterion stating that the moment sequence {ηm}m uniquely characterizes
a distribution if

∑
m η
−1/(2m)
2m =∞.
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The condition we impose (that τ(z) exists) is certainly far from optimal but is
sufficient for practical applications.

Define

Υ[t] := 2
∑
k≥1

tk
(k + 1)(k + 2)

.

Theorem 1 (large toll functions). Let (Xn) be given by (1), where Tn is inde-
pendent of In. If

E(Tn) ∼ nαL(n) and E

(
Tn
tn

)m
→ τm (m = 2, 3, . . . ),(13)

where α > 1/2, and τ(z) :=
∑

m τmz
m/m! exists, then

Xn − ξn
nαL(n)

d−→ Yα,

with convergence of all moments, where Yα = Yα(T ) is defined as above and

ξn =





Υ[t]n if 1/2 < α < 1,
E(Xn) if α = 1,
0 if α > 1.

For small toll functions, we distinguish two overlapping cases: (i)

tn = O(
√
n/(log n)1/2+ε) and E(Tm

n ) = O(tmn )(14)

for m = 2, 3, . . . ; and (ii)

tn ∼
√
nL(n), E(T 2

n) ∼ τ2t
2
n, and E(Tm

n ) = O(tmn )(15)

for m = 3, 4, . . . . More general conditions can be studied, but we content ourselves
with these two for simplicity of presentation.

In the first case, define

s2(n) := σ2n, σ2 := Υ[ψ] = 2
∑
k≥1

ψk
(k + 1)(k + 2)

,(16)

where ψk is given in (10). In the second case, define s(n) as in (16) if
∑

k≥1 L
2(k)/k <

∞ and

s2(n) :=

(
9

2
π − 16 + 2τ2

)
n
∑
k≤n

L2(k)

k
(17)

if
∑

k≤n L
2(k)/k → ∞. Note that σ > 0 by (10) and (16), and the leading constant

9
2π − 16 + 2τ2 is positive since 9

2π > 14 and τ2 ≥ 1 by E(T 2
n) ≥ t2n.

Theorem 2 (small toll functions). Let (Xn) be given by (1), where Tn is inde-
pendent of In. If Tn satisfies either (14) or (15), then

Xn −Υ[t]n

s(n)

d−→ N(0, 1),

with mean and variance satisfying E(Xn) ∼ Υ[t]n and Var(Xn) ∼ s2(n). The limit
holds with convergence of all moments.

The proof uses the method of moments and the asymptotic transfer lemma.
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3.1. Large toll functions. For simplicity of presentation, we split the proof of
Theorem 1 into three cases, 1/2 < α < 1, α = 1, and α > 1, although we can easily
encapsulate them into one.

Case L1. 1/2 < α < 1. In this case, ξn = Υ[t]n, and, by (7),

E(Xn) ∼ Υ[t]n+
α+ 1

α− 1
nαL(n).

Shift the mean by Υ[t]n by defining Πn(y) := Pn(y)e
−Υ[t]ny. Then Π0(y) = 1,

and

Πn(y) =
Qn(y)e

−Υ[t]y

n

∑
0≤k<n

Πk(y)Πn−1−k(y) (n ≥ 1).(18)

Taking m times derivatives with respect to y on both sides and then substituting

y = 0, we have, by defining Πn,m := Π
(m)
n (0) = E((Xn −Υ[t]n)m),

Πn,m =
2

n

∑
0≤k<n

Πk,m +Rn,m (n ≥ 1),(19)

with Π0,m = 0, where

Rn,m :=
∑

a+b+c+d=m
b,c<m

(
m

a, b, c, d

)
Q(a)
n (0)

(−Υ[t])d

n

∑
0≤k<n

Πk,bΠn−1−k,c.

By assumption (13),

Q(m)
n (0) = E(Tm

n ) ∼ τmn
mαLm(n) (m ≥ 1).

For convenience, define τ0 = τ1 = 1. We proceed by induction. Assume

Πn,m ∼ gmn
mαLm(n).(20)

This holds true for m = 1 by (9) with g1 = (α + 1)/(α − 1). By induction and slow
variation of L(n), we deduce that, for m ≥ 2,

Rn,m

∼
∑

a+b+c=m
b,c<m

(
m

a, b, c

)
τagbgcn

aα−1La(n)
∑

0≤k<n
kbαLb(k)(n− 1− k)cαLc(n− 1− k)

∼ Lm(n)
∑

a+b+c=m
b,c<m

(
m

a, b, c

)
τagbgcn

aα−1
∑

0≤k<n
kbα(n− 1− k)cα

∼ nmαLm(n)
∑

a+b+c=m
b,c<m

(
m

a, b, c

)
τagbgcB(bα+ 1, cα+ 1).

It follows, by the asymptotic transfer lemma, that

Πn,m ∼ mα+ 1

mα− 1
nmαLm(n)

∑
a+b+c=m
b,c<m

(
m

a, b, c

)
τagbgcB(bα+ 1, cα+ 1) (m ≥ 2).
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Thus, if we define gm recursively by

gm =
mα+ 1

mα− 1

∑
a+b+c=m
b,c<m

(
m

a, b, c

)
τagbgcB(bα+ 1, cα+ 1) (m ≥ 2),

then (20) holds for all m ≥ 1. Note that gm = ηm for m ≥ 1; see (12). We con-
clude, by the Fréchet–Shohat moment convergence theorem (see [44]) and Lemma 4,
that {ηm} is the sequence of moments of some distribution function and that (Xn −
Υ[t]n)/(nαL(n)) converges in distribution to Yα.

Case L2. α = 1. Define this time Πn(y) := Pn(y)e
−xny, where xn = E(Xn).

Then Π0(y) = 1, and

Πn(y) =
Qn(y)

n

∑
0≤k<n

Πk(y)Πn−1−k(y)e∆n,ky (n ≥ 1),

where ∆n,k = xk + xn−1−k − xn. Observe first, by (7), that

∆n,k = tk + tn−1−k − tn − 2(k + 1)
∑

k≤j<n

tj
(j + 1)(j + 2)

− 2(n− k)
∑

n−k<j<n

tj
(j + 1)(j + 2)

;

from this and tn ∼ nL(n), we deduce that, for k = �xn�,

∆n,k ∼ Λ(x)nL(n), Λ(x) := 2x log x+ 2(1− x) log(1− x),(21)

uniformly for 0 ≤ x ≤ 1.

Write as above Πn,m = Πn,m(0). Then Πn,m satisfies (19) with

Rn,m :=
∑

a+b+c+d=m
b,c<m

(
m

a, b, c, d

)
Q

(a)
n (0)

n

∑
0≤k<n

Πk,bΠn−1−k,c∆d
n,k.

Note that Πn,1 = 0. We prove by induction that

Πn,m ∼ gmn
mLm(n).(22)

The case m = 1 is true with g1 = 0. For m ≥ 2, we have, similarly as above,

Rn,m ∼
∑

a+b+c+d=m
b,c<m

(
m

a, b, c, d

)
τagbgcn

a−1La(n)

×
∑

0≤k<n
kbLb(k)(n− 1− k)cLc(n− 1− k)∆d

n,k

∼ nmLm(n)
∑

a+b+c+d=m
b,c<m

(
m

a, b, c, d

)
τagbgc

∫ 1

0

xb(1− x)cΛd(x) dx.
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It follows, by Lemma 2, that (22) holds with

gm =
m+ 1

m− 1

∑
a+b+c+d=m

b,c<m

(
m

a, b, c, d

)
τagbgc

∫ 1

0

xb(1− x)cΛd(x) dx (m ≥ 2).

Thus convergence in distribution follows as in Case L1.
Note that Var(Xn) ∼ g2n

2L2(n), where

g2 = 7− 2

3
π2 + 3Var(T ).(23)

Case L3. α > 1. In this case, no centering is needed since ξn = 0. We apply
mutatis mutandis the same argument in Case L1 for Pn(y). The proof is similar and
is omitted here.

3.2. Small toll functions. When tn is small, namely, tn = O(
√
nL(n)), E(Xn)

is linear, so we center Xn as in Case L1 above by defining Πn(y) := Pn(y)e
−Υ[t]ny.

Write again Πn,m := Π
(m)
n (0). Then Πn(y) satisfies (18) and

Πn,1 = Π′n(0) = tn − 2n
∑
j≥n

tjj
−2 +O(1).

Variance. By (18), the sequence Πn,2 satisfies (19) with

Rn,2 = Q′′n(0)− t2n + (tn −Υ[t])(2Πn,1 − tn +Υ[t]) +
2

n

∑
0≤k<n

Πk,1Πn−1−k,1

(the recurrence of Πn,1 being used to simplify).
Thus, by the asymptotic transfer lemma, if

∑
k Rk,2/k

2 <∞, then

Var(Xn) ∼ σ2n, σ2 := 2
∑
k≥1

Rk,2

(k + 1)(k + 2)
.(24)

However, the condition
∑

k Rk,2/k
2 <∞ is not so transparent. We thus consider

two simple overlapping cases.
Case S1. tn = O(

√
n(log n)−1/2−ε). In this case, we have

Πn,1 = O(
√
n(log n)−1/2−ε)

and, by (14),

Rn,2 = O(n(log n)−1−2ε);

thus

Var(Xn) ∼ σ2n.

Case S2. tn ∼
√
nL(n). By (9),

Πn,1 ∼ −3
√
nL(n),

from which we deduce, using (15), that

Rn,2 ∼
(
9

4
π − 8 + τ2

)
nL2(n).
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Applying Lemma 2 yields

Var(Xn) ∼





σ2n if
∑

k L
2(k)/k <∞,(

9

2
π − 16 + 2τ2

)
n
∑
k≤n

L2(k)

k
if
∑

k L
2(k)/k =∞.

Note that the definition of σ2 in (24) can be shown to be identical to (16).
Asymptotic normality. For higher moments, we again use (19) but split Rn,m

into two parts: Rn,m = R
(1)
n,m +R

(2)
n,m, where

R(1)
n,m :=

∑
1≤b<m

(
m

b

)
1

n

∑
0≤k<n

Πk,bΠn−1−k,m−b,

R(2)
n,m :=

∑
a+b+c+d=m

a+d≥1
b,c<m

(
m

a, b, c, d

)
Q(a)
n

(−Υ[t])d

n

∑
0≤k<n

Πk,bΠn−1−k,c.

Case S1. tn = O(
√
n(log n)−1/2−ε). Assume that, for m ≥ 1,

{
Πn,2m ∼ gmn

m,
Πn,2m−1 = o(nm−1/2).

This is true for m = 1 with g1 = σ2. By induction, we have

R(2)
n,m = O(nm/2(log n)−1/2−ε).

The main contribution for even moments comes from R
(1)
n,m.

R
(1)
n,2m ∼

∑
1≤j<m

(
2m

2j

)
1

n

∑
0≤k<n

Πk,2jΠn−1−k,2m−2j

∼
∑

1≤j<m

(
2m

2j

)
gjgm−j

1

n

∑
0≤k<n

kj(n− 1− k)m−j

∼ nm

m+ 1

∑
1≤j<m

(
2m
2j

)
(
m
j

) gjgm−j .

By Lemma 2,

Πn,2m ∼ nm

m− 1

∑
1≤j<m

(
2m
2j

)
(
m
j

) gjgm−j (m ≥ 2).

Thus we take gm so that g1 = σ2 and

gm =
1

m− 1

∑
1≤j<m

(
2m
2j

)
(
m
j

) gjgm−j (m ≥ 2).

The solution is given by

gm =
(2m)!

2mm!
σ2m (m ≥ 1),
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which denotes the 2mth moment of the normal distribution with mean zero and
variance σ2.

Similarly, for m ≥ 2,

R
(1)
n,2m−1 = o(mm−1/2),

and thus, by the o-version of Lemma 2,

Πn,2m−1 = o(nm−1/2).

The asymptotic normality follows.
Case S2. tn ∼

√
nL(n). In this case, noting that L2(n) is also slowly varying, we

have (see (8))

Q′′n(0) ∼ τ2t
2
n ∼ τ2nL

2(n) = o


n

∑
k≤n

L2(k)

k


 .

In particular, if
∑

k L
2(k)/k <∞, then tn = o(

√
n ). The proof then follows the same

line of argument as in Case S1.

3.3. Tn depends on In. In this case, we have P0(y) = 1 and

Pn(y) =
1

n

∑
0≤k<n

Pk(y)Pn−1−k(y)Qn,k(y) (n ≥ 1),

where Qn,k(y) is the moment generating function of Tn conditioned on In = k.
First, Lemma 3 still holds since ψn satisfies

ψn =
1

n

∑
0≤k<n

(
Q′′n,k(0)−Q′n,k(0)

2
)
+

1

n

∑
0≤k<n

(
Q′n,k(0) + ∆n,k

)2
,(25)

and the same argument applies.
A full extension of the limit laws of Xn to this case requires more assumptions

on the asymptotic behavior of Qn,k(y). There is, however, a special case for which
the extension is trivial: Case S1, namely, when Tn satisfies (14). The asymptotic
normality holds without any additional assumptions. Intuitively, this is the case
when each toll summand has only limited contribution to the total cost; thus whether
Tn depends on In or not does not change the “democratic” nature of the problem,
rendering the same law of errors to take effect. Case S2 needs one more condition (26),
and the extension is also straightforward.

Define s(n) as in (16) with ψk replaced by (25) when Tn satisfies (14). In the case
when tn ∼

√
nL(n), we need, in addition to (15), the following estimate:

E(Tn
√
InL(In)) + E(Tn

√
n− 1− InL(n− 1− In)) ∼ τ ′2nL

2(n).(26)

Define s(n) by

s2(n) :=

(
2τ2 − 6τ ′2 +

9

2
π

)
n
∑
k≤n

L2(k)

k

if
∑

k L
2(k)/k diverges and s2(n) := σ2n otherwise.
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Theorem 2′ (small toll functions—Tn dependent on In). Let (Xn) be given
by (1). If Tn satisfies either (14) or the two estimates (15) and (26), then

Xn −Υ[t]n

s(n)

d−→ N(0, 1),

with mean and variance satisfying E(Xn) ∼ Υ[t]n and Var(Xn) ∼ s2(n). In either
case, convergence of all moments holds.

The proof of Theorem 2 requires only minor modifications, and the Rn,2 there
should be replaced by

Rn,2 =
1

n

∑
0≤k<n

Q′′n,k(0)− 2Υ[t]Πn,1 −Υ[t]2

+
2

n

∑
0≤k<n

Q′n,k(0) (Πk,1 +Πn−1−k,1)

+
2

n

∑
0≤k<n

Πk,1Πn−1−k,1.

We leave aside the discussions of large toll functions since (i) such cases can be
succinctly incorporated in the settings by the contraction method, (ii) Theorem 2′

covers most practical applications, and (iii) we will describe one such example in
section 6.

4. Limit laws. II. Contraction method. We consider the limit laws of Xn

using the contraction method in this section. An advantage of this approach is that
dependence of Tn on In can be easily handled.

4.1. Outline of the method. According to our discussions in the previous
section, we first introduce the standardized versions (Yn) of (Xn) by Y0 := 0 and

Yn :=
Xn − xn
s(n)

(n ≥ 1),

where s(n) > 0 is an appropriate scaling to be defined later.
We first sketch the method of proof. The first step is to transform the original

recurrence (1) into a modified recurrence for the scaled quantities (Yn),

Yn
d
= A

(n)
1 YIn +A

(n)
2 Y ∗n−1−In + bn (n ≥ 1),(27)

where, for n ≥ 1, A
(n)
1 = s(In)/s(n), A

(n)
2 = s(n− 1− In)/s(n), and

bn =
1

s(n)

(
xIn + xn−1−In − xn + Tn

)
=: hn(Tn, In).(28)

According to (1), (Yn), (Y
∗
n ), and (A

(n)
1 , A

(n)
2 , bn) are independent, and Yn

d
= Y ∗n for

all n ≥ 0. Note that the value s(0) can be chosen arbitrarily since Y0 = 0.

If the coefficients A
(n)
1 , A

(n)
2 , and the additive term bn converge as n→∞, say, to

A1, A2, and b, respectively, and we expect that (Yn) converges in distribution, then
the weak limit Y of (Yn) should satisfy the limiting equation corresponding to (27):

Y
d
= A1Y +A2Y

∗ + b,(29)
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where Y , Y ∗, and (A1, A2, b) are independent and Y
d
= Y ∗.

The contraction method then proceeds by showing that a fixed-point equation
like (29) has exactly one solution in a certain space of probability measures and that
the scaled random variables under consideration converge in distribution to this fixed-
point.

Usually, the existence and uniqueness of a fixed-point of the limiting equation in a
subspace of probability distributions is shown by endowing the subspace with a metric
and by proving that the limiting equation defines a contraction map on this space.
Then the existence of a unique fixed-point is implied by Banach’s fixed-point theorem
in the case of a complete metric or an appropriate substitute in the incomplete case.

In particular, the minimal L2-metric 72 is often used, where 7r-metrics are defined
on the spaces Mr of probability measures on the Borel σ-algebra of R with finite
absolute rth moment by

7r(ν, :) := inf{‖X − Y ‖r : X
d
= ν, Y

d
= :} (ν, : ∈Mr)

for r ≥ 1. We denote by Mr(0) ⊂ Mr the subspace of the centered probability
measures in Mr. The metric spaces (Mr, 7r) and (Mr(0), 7r) are complete, and
convergence in the 7r-metric is equivalent to weak convergence and convergence of
the rth absolute moment. For simplicity, we write 7r(X,Y ) := 7r(L(X),L(Y )). The
infimum in the definition of 7r is attained for all ν, : ∈ Mr, and (X,Y ) are called
optimal couplings of ν, : if 7r(ν, :) = ‖X − Y ‖r; see Bickel and Freedman [7], Rachev
[60], and Rachev and Rüschendorf [63] for more properties of the minimal Lr-metric.

The existence of a unique fixed-point L(Y ) inM2(0) for (29) and the convergence
in 72 of (Yn) given by (27) to Y holds particularly if the following properties are
satisfied (see Rösler [68]):

(a) E(bn) = E(b) = 0, E(b2) <∞.

(b) ‖(A(n)
1 , A

(n)
2 , bn)− (A1, A2, b)‖2 → 0.

(c) E(A2
1) + E(A2

2) < 1.

(d) For all n1 ∈ N, E[1{In≤n1}(A
(n)
1 )2] + E[1{n−1−In≤n1}(A

(n)
2 )2]→ 0.

This is the line we will follow for large toll functions Tn. In the case of small
toll functions, we will end up with a well-known limiting equation that is not a con-
traction on (M2(0), 72) and has the normal distributions as solutions. In this case,
asymptotic normality will be derived by a change of the metric as used in Rachev
and Rüschendorf [62]. The metric used later is ideal of order larger than two, which
implies the contraction properties of the limiting equation with respect to this metric
on the appropriate space.

4.2. Large toll functions. Assume that

E(Tn) ∼ nαL(n) and

(
Tn

E(Tn)
,
In
n

)
L2−→ (T,U),

where α > 1/2, L(n) is slowly varying, and T is square-integrable. In particular, Tn
may depend on In, and T may depend on U . For our applications to quicksort and
binary search trees, this U comes up (essentially) as the first partitioning element
of quicksort (or the root of the associated binary search tree). Therefore, In has,
conditioned on U = u, the binomial B(n − 1, u) distribution, and In/n → U holds
in Lp for all p > 0.
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For the scaling factor, we assume at the moment that the variance of Xn admits
an expansion of the form

Var(Xn) ∼ σ2 n2αL2(n),

where σ = σ(α, (T,U)) is a positive constant given later in Corollary 1. This will
later turn out to be true (up to degenerate cases). Therefore, we use the scaling
s(n) := nαL(n) and define Y0 := 0 and

Yn :=
Xn − xn
nαL(n)

(n ≥ 1).

Note that the initial values of L have to be chosen such that L(n) > 0 for all n ≥ 1.
We have, for n ≥ 1,

Yn
d
=

(
In
n

)α
L(In)

L(n)
YIn +

(
n− 1− In

n

)α
L(n− 1− In)

L(n)
Y ∗n−1−In

+ hn(α, (Tn, In)),(30)

where hn(α, (Tn, In)) := (xIn + xn−1−In − xn + Tn)/(n
αL(n)).

Observe that our formal L2-convergence assumption on In/n is equivalent to
In/n→ U in Lp for all p ≥ 0. Using this and the estimate

L(In)

L(n)

L2−→ 1,

we obtain
∥∥∥∥
(
In
n

)α
L(In)

L(n)
− Uα

∥∥∥∥
2

≤
∥∥∥∥
(
In
n

)α
− Uα

∥∥∥∥
2

+

∥∥∥∥
(
In
n

)α(
L(In)

L(n)
− 1

)∥∥∥∥
2

= o(1) +

∥∥∥∥
L(In)

L(n)
− 1

∥∥∥∥
2

→ 0.(31)

Analogously,

∥∥∥∥
(
n− 1− In

n

)α
L(n− 1− In)

L(n)
− (1− U)α

∥∥∥∥
2

→ 0.

Finally, hn(α, (Tn, In)) also converges:

hn(α, (Tn, In))
L2→ h(α, (T,U)),(32)

where, for α > 1/2,

h(α, (T,U)) :=





α+ 1

α− 1
(Uα + (1− U)α − 1) + T if α �= 1,

2U logU + 2(1− U) log(1− U) + T if α = 1.

(33)

For α = 1, (32) is proved by the relation (see (21))

xIn + xn−1−In − xn
nL(n)

L2−→ 2U logU + 2(1− U) log(1− U)
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and our assumption Tn/tn → T in L2. The case α �= 1 is established by using the
asymptotic expansions (9) for 1/2 < α < 1 and Lemma 2 for α > 1, respectively:

1

nαL(n)
(xIn + xn−1−In − xn + Tn)

=
1

nαL(n)

α+ 1

α− 1
(IαnL(In) + (n− 1− In)

αL(n− 1− In)− nαL(n) + Tn) + o(1)

→ α+ 1

α− 1
(Uα + (1− U)α − 1) + T in L2,

where o(1) depends on the randomness but the convergence is uniform. This estab-
lishes the stabilization of the modified recursion (30) to the limiting equation

Y
d
= UαY + (1− U)αY ∗ + h(α, (T,U)).(34)

Note that this equation coincides for independent T,U with (11) in the case α = 1; for
α > 1/2, α �= 1, (34) is a translated version of (11) in the sense that Y is a fixed-point
of (34) iff Y + (α+1)/(α− 1) is a fixed point of (11). This is because, in Theorem 1,
the random variable is not centered for α �= 1 by the exact mean so that the mean
of Yα there equals (α+ 1)/(α− 1), while our Y has mean zero.

The limiting equation (34) defines a map Sα,(T,U) onM2:

Sα,(T,U) :M2 →M2, ν �→ L(UαZ + (1− U)αZ∗ + h(α, (T,U))),(35)

where Z,Z∗, (T,U) are independent, Z
d
= Z∗ d

= ν, and h(α, (T,U)) is given by (33).
Theorem 3. Let (Xn) be given by (1). Assume that

E(Tn) ∼ nαL(n) and

(
Tn

E(Tn)
,
In
n

)
L2−→ (T,U),

where α > 1/2, and that T is square-integrable. Then

72

(
Xn − E(Xn)

nαL(n)
, Yα,(T,U)

)
→ 0,

where L(Yα,(T,U)) is the unique fixed-point in M2(0) of the map Sα,(T,U) defined
in (35).

Proof. First, we show that the restriction of Sα,(T,U) to M2(0) is a map into
M2(0). Let ν ∈ M2(0). Then Sα,(T,U)(ν) has a finite second moment because of
independence and the same property of the coefficients. The assumption Tn/E(Tn)→
T in L2 implies that E(T ) = 1, and, therefore, E(h(α, (T,U))) = 0 for all α > 1/2.
This implies E(Sα,(T,U)(ν)) = 0, and thus Sα,(T,U)(ν) ∈M2(0).

By Theorem 3 in Rösler [67] or Lemma 1 in Rösler and Rüschendorf [69], Sα,(T,U)

is Lipschitz continuous on (M2(0), 72), where the Lipschitz constant lip(Sα,(T,U))
satisfies

lip(Sα,(T,U)) ≤ (E(U2α) + E((1− U)2α))1/2.

Since α > 1/2, we have lip(Sα,(T,U)) ≤
√
2/(2α+ 1) < 1; thus Sα,(T,U) is a contrac-

tion on M2(0). By Banach’s fixed-point theorem, Sα,(T,U) has a unique fixed-point
L(Yα,(T,U)) inM2(0).
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By (30) and (34), the standardized variables Yn = (Xn − E(Xn))/n
αL(n) and

Yα,(T,U) satisfy, respectively,

Yn
d
= A

(n)
1 YIn +A

(n)
2 Y ∗n−1−In + bn

and

Yα,(T,U)
d
= A1Yα,(T,U) +A2Y

∗
α,(T,U) + b.

It remains to check the conditions (a)–(d).
First, by taking expectations in (30) and (34), respectively, we obtain E(bn) =

E(b) = 0; also, E(b2) <∞ since T is square-integrable. Thus (a) is satisfied. Condi-
tion (b) is established in (31) and (32), and condition (c) is the contraction property
of Sα,(T,U). Finally, condition (d) follows from |s(In)/s(n)|, |s(n − 1 − In)/s(n)| < 1
since

E(1{In≤n1}(A
(n)
1 )2) + E(1{n−1−In≤n1}(A

(n)
2 )2)

≤ P (In ≤ n1) + P (n− 1− In ≤ n1)

=
2n1

n
→ 0

for all n1 ∈ N. We complete the proof by applying Rösler’s theorem [68].
Note that, if h(α, (T,U)) = 0, then the limit distribution L(Yα,(T,U)) is degener-

ate, namely, Yα,(T,U) = 0 almost surely. In this case, more knowledge on the asymp-
totics of Tn is necessary, and a scaling other than nαL(n) should be used. (Our limit
law yields merely Var(Xn) = o(nαL(n)).)

Corollary 1. If h(α, (T,U)) �= 0 (see (33)), then the sequence (Xn) of Theo-
rem 3 satisfies

Var(Xn) ∼ σ2 n2αL2(n),

where σ2 = σ2(α, (T,U)) is defined by

σ2 =





α(α+ 1)2B(α, α) + 2(α2 − 2α− 1)

(2α− 1)(α− 1)2
+ C if α �= 1,

7− 2π2

3
+ C if α = 1,

with C = C(α, (T,U)) given by

C =





2α+ 1

2α− 1

(
Var(T ) + 2

α+ 1

α− 1
E [T (Uα + (1− U)α)]− 4

α− 1

)
if α �= 1,

3(Var(T ) + 4E[T (U logU + (1− U) log(1− U))] + 2) if α = 1.

Proof. By Theorem 3, Var(Xn) = Var(nαL(n)Yn) ∼ E(Y 2
α,(T,U))n

2αL2(n); thus

σ2 = E(Y 2
α,(T,U)). Since Yα,(T,U) solves (34), we deduce, by taking squares and ex-

pectations, that

E(Y 2
α,(T,U)) =

2α+ 1

2α− 1
E(h2(α, (T,U))),

which leads to the expressions in the corollary.
If T is independent of U , then C = (2α + 1)Var(T )/(2α − 1), which coincides

with (23) for α = 1. Moreover, C = 0 if T = 1, which holds particularly if the toll
functions (Tn) are all deterministic.
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4.3. Small toll functions. In this section, we consider small toll functions by
the contraction method, assuming again that Tn and In may be dependent. We choose
the scaling s(n) :=

√
Var(Xn). As in the analysis by the method of moments, we

consider two cases:

tn = O(
√
n/(log n)1/2+ε), E(T 2

n) = O(t2n), and E

(
Tn
s(n)

)2+δ

→ 0,(36)

where 0 < δ ≤ 1; and





tn ∼
√
nL(n), E(T 2

n) ∼ τ2nL
2(n), E

(
Tn
s(n)

)2+δ

→ 0, and

E(Tn
√
InL(In)) + E(Tn

√
n− 1− InL(n− 1− In)) ∼ τ ′2nL

2(n).

(37)

In particular, if we assume (14) or (15), then (36) or (37) hold, respectively.
We first look for convergence in (27) in order to derive a limiting equation. In

the case (36), we have (see (16)) s(n)2 ∼ σ2n; thus

A
(n)
1 =

s(In)

s(n)
→ U1/2 in L2+δ.(38)

Similarly,

A
(n)
2 =

s(n− 1− In)

s(n)
→ (1− U)1/2 in L2+δ.(39)

For the additive term in (27), we obtain (xIn + xn−1−In − xn)/s(n) → 0 in L2+δ by
the expansion E(Xn) = Υ[t]n+ o(

√
n ). This, together with Tn/s(n)→ 0, gives

xIn + xn−1−In − xn + Tn
s(n)

→ 0 in L2+δ.(40)

The recursion (27) for Yn = (Xn −E(Xn))/s(n) and Yn = 0 if s(n) = 0 now leads to
the limiting equation

Y
d
= U1/2Y + (1− U)1/2Y ∗.(41)

The conditions (38)–(40) are also satisfied in the case of (37) using the correspond-
ing expansions for s(n). Briefly, the conditions (38) and (39) are proved by
(
∑

k≤In L
2(k)/k)/(

∑
k≤n L

2(k)/k) → 1. For (40), if
∑

k L
2(k)/k < ∞, then L(k) →

0, implying that (xIn + xn−1−In − xn)/s(n) → 0 in L2+δ. If
∑

k L
2(k)/k = ∞, the

same L2+δ convergence follows from L2(n) = o(
∑

k≤n L
2(k)/k); see (8).

In all cases, we obtain the limiting equation (41). Therefore, we cannot follow the
line as for large toll functions since (41) has no contraction properties on (M2(0), 72)
and is not a contraction for any 7r-metric. This is well known and is discussed in
Rachev and Rüschendorf [62] and Rösler and Rüschendorf [69]. Thus we have to
choose a metric that is (r,+)-ideal, where r > 2, and to refine the work spaceM2(0)
in order to obtain contraction properties for (41).

The situation here is similar to the size of random tries discussed in Rachev and
Rüschendorf [62]. We obtain weak convergence of (Yn) to a normal distribution by
applying similar arguments; see also Rösler and Rüschendorf [69].
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We define, for r = m+ 1/p with m ∈ N and p ∈ [1,∞),

Fr := {f ∈ Cm+1 : ‖f (m+1)‖q ≤ 1},

where 1/p + 1/q = 1 and f (m+1) denotes the (m + 1)st derivative of the function
f : R→ R. Then we will use the metric

µr(X,Y ) := sup
f∈Fr

|E[f(X)− f(Y )]|,

which was introduced and studied in Maejima and Rachev [46]; see also Rachev and
Rüschendorf [61].

We briefly state the properties of µr, which are used subsequently. The metric µr
is (r,+)-ideal; i.e., µr(cX, cY ) = |c|rµr(X,Y ) for c �= 0 and µr(X + Z, Y + Z) ≤
µr(X,Y ) if Z is independent of X,Y . An upper estimate for µr in Zolotarev’s met-
ric ζr and corresponding properties for the metric ζr (see Zolotarev [76]) imply that
µr(X,Y ) < ∞ if E(Xj) = E(Y j) for all j = 1, . . . ,m and E(|X|r), E(|Y |r) < ∞.
Convergence in µr implies convergence in distribution since a lower estimate in Levy’s
metric L is valid: (L(X,Y ))r+1 ≤ C(r)µr(X,Y ) for some constant C(r) < ∞. We
will also use the fact that convergence in 7r implies convergence in µr. This follows
from the upper estimate µr(X,Y ) ≤ C ′(r)κr(X,Y ) with some constant C ′(r) < ∞
and the difference pseudomoment κr and the fact that κr and 7r are topologically
equivalent (see Rachev [60, p. 301]).

The following proof of asymptotic normality is based on the approach used in
Rachev and Rüschendorf [62] mentioned above. The differences here are that we
derive convergence in µ2+δ rather than only weak convergence and that the estimate
of the additive term hn(Tn, In) is simplified. These improvements are due to the fact
that more information on the moments is known in our case.

Theorem 4. Let (Xn) be given by (1). If Tn satisfies either (36) or (37), then,
for 0 < δ ≤ 1,

µ2+δ

(
Xn − E(Xn)√

Var(Xn)
, N(0, 1)

)
→ 0.

Proof. Let r := 2+ δ, and denote Yn := (Xn − xn)/s(n) if s(n) =
√
Var(Xn) > 0

and Yn := 0 otherwise. The key idea of the proof is to introduce a mixed quantity
that combines the structure of the modified recursion with the normal distribution;
see [62] and [69, section 6]. We denote by N,N∗ two independent standard normal
random variables that are also independent of all other quantities.

Then we define the distributions of our mixtures Mn by Mn := 0 if s(n) = 0 and,
for s(n) > 0, by

Mn
d
:=

s(In)

s(n)
N +

s(n− 1− In)

s(n)
N∗ + hn(Tn, In)

d
=

[(
s(In)

s(n)

)2

+

(
s(n− 1− In)

s(n)

)2
]1/2

N + hn(Tn, In),(42)

with hn(Tn, In) given in (28). A comparison with (27) shows that E(Mn) = 0,
E(M2

n) = 1, and E|Mn|r < ∞ if s(n) > 0; thus µr-distances between Yn, Mn,
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and N(0, 1) are finite. We have s(n) > 0 for all n sufficiently large, say, for all n ≥ n0.
For these n, we estimate

µr(Yn, N(0, 1)) ≤ µr(Yn,Mn) + µr(Mn, N(0, 1)).

By (38) and (39), the factor between the brackets in (42) converges to 1 in Lr; this,
together with the Lr-convergence of hn(Tn, In) to 0, yields 7r(Mn, N(0, 1))→ 0 and,
therefore, µr(Mn, N(0, 1))→ 0. Here we used the estimates (38)–(40).

For the estimate of the term µr(Yn,Mn), we have, for n ≥ n0,

Yn
d
=

s(In)

s(n)
YIn +

s(n− 1− In)

s(n)
Y ∗In + hn(Tn, In).

We denote by λn the joint distribution of (Tn, In). By the (r,+)-ideality of µr, we
have, for n ≥ n0,

µr(Yn,Mn) = sup
f∈Fr

|E(f(Yn)− f(Mn))|(43)

= sup
f∈Fr

∣∣∣∣∣
∫

E

[
f

(
s(k)

s(n)
Yk +

s(n− 1− k)

s(n)
Y ∗n−1−k + hn(t, k)

)

− f

(
s(k)

s(n)
N +

s(n− 1− k)

s(n)
N∗ + hn(t, k)

)]
dλn(t, k)

∣∣∣∣∣

≤
∫

µr

(
s(k)

s(n)
Yk +

s(n− 1− k)

s(n)
Y ∗n−1−k + hn(t, k),

s(k)

s(n)
N +

s(n− 1− k)

s(n)
N∗ + hn(t, k)

)
dλn(t, k)

≤ 1

n

n−1∑
k=0

(
µr

(
s(k)

s(n)
Yk,

s(k)

s(n)
N

)

+ µr

(
s(n− 1− k)

s(n)
Y ∗n−1−k,

s(n− 1− k)

s(n)
N∗
))

≤ 2

n

n−1∑
k=0

(
s(k)

s(n)

)r

µr(Yk, N).

Thus we obtain the reduction inequality

µr(Yn, N(0, 1)) ≤ 2

n

n−1∑
k=0

(
s(k)

s(n)

)r

µr(Yk, N(0, 1)) + o(1).

By (38) and (39),

2

n

n−1∑
k=0

(
s(k)

s(n)

)r
= 2E

(
s(In)

s(n)

)r
→ 2E(Ur/2) =

2

r/2 + 1
< 1.

From this and the reduction inequality, we deduce by a bootstrapping argument (see
Rösler [66, p. 94] or Rachev and Rüschendorf [62, p. 786]) that µr(Yn, N(0, 1)) →
0. (First prove that µr(Yn, N(0, 1)) remains bounded; then refine the approxima-
tion.)
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5. Continuous change of limits. The limit distributions L(Yα,(T,U)) in The-
orem 3 are continuous in the parameters (α, (T,U)) as α > 1/2. This continuity still
holds as α ↓ 1/2 in the case of deterministic toll functions and in the random case
under appropriate assumptions.

Theorem 5. Let α→ β > 1/2 and T = T (α)→ V in L2 for a square-integrable
V . Then

72(Yα,(T,U), Yβ,(V,U))→ 0.

Let α ↓ 1/2 and T = T (α) satisfy ‖T‖2+δ = o(σ(α, (T,U))) as α ↓ 1/2 with 0 < δ ≤ 1.
If T is independent of U , then

µ2+δ

(
Yα,(T,U)

σ(α, (T,U))
, N(0, 1)

)
→ 0.

The property still holds if T,U are dependent, provided that (i) h(α, (T,U)) �= 0 for h
given in (33) and (ii) σ(α, (T,U)) in Corollary 1 is properly divergent.

Proof (sketch). Consider the special case β = 1. For α > 1/2, we have, by
definition,

Yα,(T,U)
d
= UαYα,(T,U) + (1− U)αY ∗α,(T,U) +

α+ 1

α− 1
(Uα + (1− U)α − 1) + T,

Y1,(V,U)
d
= UY1,(V,U) + (1− U)Y ∗1,(V,U) + 2U logU + 2(1− U) log(1− U) + V,

where (Yα,(T,U), Y1,(V,U)), (Y
∗
α,(T,U), Y

∗
1,(V,U)), (T,U, V ) are independent, and the vari-

ates (Yα,(T,U), Y1,(V,U)), (Y
∗
α,(T,U), Y

∗
1,(V,U)) are optimal couplings of L(Yα,(T,U)) and

L(Y1,(V,U)). To match these two fixed-point equations, we use the Taylor expansion

xα = x+ (α− 1)x log x+

∫ α

1

(α− y)(xy−1 + xy(log x)2) dy,(44)

where x ∈ (0, 1) and α > 0. Using the representations of Yα,(T,U), Y1,(V,U) given in
the coupled fixed-point equations in the estimate 72(Yα,(T,U), Y1,(V,U)) ≤ ‖Yα,(T,U) −
Y1,(V,U)‖2, we obtain, after tedious calculations, that

72(Yα,(T,U), Y1,(V,U))� max{|α− 1|,
√
|α− 1|‖T − V ‖2, ‖T − V ‖2}(45)

as α→ 1 and T → V in L2. In particular, we used the expansion

B(α, α) = 1− 2(α− 1) + (4− π2/6)(α− 1)2 +O((α− 1)3)(46)

to derive σ(α, (T,U)) → σ(1, (V,U)) as α → 1 and T → V in L2. This implies the
assertion for β = 1. The general case β > 1/2 can be treated by the same approach
and is indeed simpler since the expansions (44) and (46) are not needed.

For the second part, we denote r := 2 + δ and Zα,(T,U) := Yα,(T,U)/σ(α, (T,U)).
These rescaled quantities satisfy the fixed-point equation

Zα,(T,U)
d
= UαZα,(T,U) + (1− U)αZ∗α,(T,U)

+
1

σ(α, (T,U))

[
α+ 1

α− 1
(Uα + (1− U)α − 1) + T

]
,
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where Zα,(T,U), Z
∗
α,(T,U), (U, T ) are independent and Zα,(T,U)

d
= Z∗α,(T,U). We denote

by N,N∗ two independent standard normal distributed random variables independent
of the other quantities. Then

N(0, 1)
d
= U1/2N + (1− U)1/2N∗.

Moreover, we define, similarly to (42), the mixtures

Mα,(T,U)
d
= UαN + (1− U)αN∗

+
1

σ(α, (T,U))

[
α+ 1

α− 1
(Uα + (1− U)α − 1) + T

]
.

Then E(Mα,(T,U)) = 0, E(M2
α,(T,U)) = 1, and E|Mα,(T,U)|r < ∞; thus the µr dis-

tances between Zα,(T,U), N(0, 1), and Mα,(T,U) are finite. It follows that

µr(Zα,(T,U), N(0, 1)) ≤ µr(Zα,(T,U),Mα,(T,U)) + µr(Mα,(T,U), N(0, 1)).

A calculation similar to (43) implies, for α > 1/2, that

µr(Zα,(T,U),Mα,(T,U)) ≤ 2E(Urα)µr(Zα,(T,U), N(0, 1))

≤ 2

1 + r/2
µr(Zα,(T,U), N(0, 1)).

Note that the assumptions (i) and (ii) for the dependent case are also satisfied in the
case when T and U are independent (see Corollary 1). The asymptotic normality
for dependent and independent cases can be derived under conditions (i) and (ii) by
proving µr(Mα,(T,U), N(0, 1)) = o(1) as α ↓ 1/2. This follows from the convergence
in 7r, which is obtained using the fixed-point equations for N(0, 1), Mα,(T,U), ‖T‖r =
o(σ(α, (T,U))) and that σ(α, (T,U)) is properly divergent, giving

7r(Mα,(T,U), N(0, 1))

≤ 2 ‖U1/2 − Uα‖r‖N‖r
+

1

σ(α, (T,U))

[∥∥∥∥
α+ 1

α− 1
(Uα + (1− U)α − 1)

∥∥∥∥
r

+ ‖T‖r
]
,

which tends to zero as α ↓ 1/2 under our assumptions. It follows that

µr(Zα,(T,U), N(0, 1)) ≤ 2

1 + r/2
µr(Zα,(T,U), N(0, 1)) + o(1);

thus 2/(1 + r/2) < 1 implies µr(Zα,(T,U), N(0, 1))→ 0.

Note that, in the case α ↓ 1/2 and T = 1, which holds especially for deterministic
toll functions, all conditions of the theorem are satisfied.

We may endow (1/2,∞) × L2 with the metric d((α, T ), (β, V )) := |α − β| +
‖T − V ‖2. Then, for fixed U , the map Y : (1/2,∞) × L2 → M2(0), (α, T ) �→
L(Yα,(T,U)) is locally Lipschitz continuous with respect to d and 72. This follows by
making all the constants explicit in the estimate (45) and in the corresponding one
for general β > 1/2.
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6. Examples. In this section, we discuss many examples, most of which are
new.

The number of exchanges of quicksort. The number of exchanges used by quicksort
satisfies (1) with Tn dependent on In. While Theorem 1 does not apply, its proof does.
The starting point is the recurrence P0(y) = 1 and, for n ≥ 1,

Pn(y) =
1

n

∑
0≤k<n

Pk(y)Pn−1−k(y)
∑

0≤j≤min{k,n−1−k}
πn,k,je

jy,

where πn,k,j denotes the probability that there are exactly j exchanges when the rank
of the pivot element is k + 1 so that (see Sedgewick [71, p. 55])

πn,k,j =

(
k
j

)(
n−1−k

j

)
(
n−1
k

) .(47)

Note that the exact number of exchanges used depends on implementation details,
and we count only the essential random part.

Using the identity

∑
j≥1

πn,k,jj(j − 1) · · · (j − v + 1) =
(n− v − 1)!k!(n− 1− k)!

(n− 1)!(k − v)!(n− k − 1− v)!
,(48)

valid for v = 0, 1, 2, . . . and (7), we easily obtain

E(Xn) =
n+ 1

3
Hn − 7

9
n+

1

18
(n ≥ 2).

For higher moments, we proceed as in section 3 (α = 1) by defining Πn(y) :=

Pn(y)e
−xny and Πn,m := Π

(m)
n (0). Then, by the same approach, we deduce that

Πn,m ∼ gmn
m (n ≥ 2),

where g0 = 1, g1 = 0, and, for n ≥ 2,

gm =
∑

a+b+c=m

(
m

a, b, c

)
gagb

×
∫ 1

0

xa(1− x)b
(
x

3
log x+

1− x

3
log(1− x) + x(1− x)

)c
dx.

Thus

Xn − xn
n

d−→ Y

as well as convergence of all moments, where

Y
d
= UY + (1− U)Y ∗ +

U

3
logU +

1− U

3
log(1− U) + U(1− U),

with Y
d
= Y ∗ and Y, Y ∗, U independent.

On the other hand, Theorem 3 applies by establishing

Tn
n/6

L2−→ 6U(1− U).
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Fig. 2. The histogram of P (X60 = k) for k from 30 to 68 and the corresponding normal curve

e−(k−E(X60)−1/2)2/(2Var(X60))/
√

2πVar(X60). We shifted the normal density by 1/2; otherwise,
the two curves will be almost indistinguishable.

This follows from (48).
In particular, by the recurrence of gm or by Corollary 1, we obtain Var(Xn) ∼

( 11
60 − π2

54 )n
2.

Note that, by (48),

E(T k
n ) ∼ E(Tn(Tn − 1) · · · (Tn − k + 1))

=
k!k!(n− k − 1)!

(2k + 1)!(n− 2k − 1)!

∼ k!k!

(2k + 1)!
nk

for k ≥ 1. Thus Tn/n has in the limit a beta distribution:

P

(
Tn
n

< x

)
→ 1−√1− 4x (0 < x < 1/4).

Unlike the number of comparisons, which has quadratic worst-case behavior, the
number of exchanges is at most of order n log n. Also, it is interesting to note that
the histograms of P (Xn = i) are very close to normal curves for n small; see Figure 2.
An explanation of this phenomenon is that the leading constant of the variance (as

well as g3) is very small: 11
60 − π2

54 ≈ 0.00056288. The “nonnormality character” of Y
will emerge for large enough n.

The limit law (49) is different from that of the number of comparisons (2); how-
ever, the limit distributions are related by their defining fixed-point equations. Indeed,
the correlation of the number of comparisons and the number of exchanges is asymp-
totic to

√
5(39− 4π2)

2
√
(21− 2π2)(99− 10π2)

≈ −0.864042 . . . .

This can be proved by the bivariate limit law of both variates that can be derived
by a multivariate extension of the contraction method (see Neininger [53] for details).
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Thus the number of comparisons and the number of exchanges are highly negatively
correlated. Intuitively, when the shape of the corresponding binary search tree is very
skewed, few key exchanges are needed; on the other hand, the number of exchanges
reaches its maximum when the pivot element is around n/2 (see (47)). Roughly, the
more “balanced” the permutation, the more exchanges are needed. The situation
here is more or less the same when one uses the median-of-(2t + 1) quicksort: while
the number of comparisons decreases with t, the number of exchanges increases. We
might say that we trade off the number of exchanges for the number of comparisons.

Note that the same limit law (2) for Tn = n + O(1) persists for Tn = n + ω(n),
where ω(n) = o(n) and

∑
n ω(n)/n

2 < ∞; this reflects the “robustness” of the limit
laws.

Paged trees. Fix a page (or bucket) size b ≥ 1. Cut all nodes with subtree
sizes ≤ b. The resulting tree is called the b-index of the tree; see Flajolet, Gourdon,
and Mart́ınez [28] and Mahmoud [48]. What is the size of a random b-index? And
what is the total path length? Obviously, both random variables satisfy (1) (with
different initial conditions). The asymptotic normality of the size was established for
fixed b by Flajolet, Gourdon, and Mart́ınez [28] with mean equal to 2(n+1)/(b+2)−1.
The variance is equal to (the expression given in [28] being wrong)

2

(
4H2b+2 − 4Hb+1 − (b+ 1)(5b+ 2)

(2b+ 3)(b+ 2)

)
n+ 1

b+ 2
(n ≥ 2b+ 2).

Indeed, we can prove that the asymptotic normality holds for 2 ≤ b = o(n). This
does not follow directly from our results but is easily amended by truncating the
first b terms in our exact and asymptotic expressions (6) and by applying the same
arguments.

If we vary b such that 2 ≤ b = o(n), then the path length of the b-index gives an
interesting example with mean of order n/b, which varies from linear to any function
tending to infinity. Thus the limit laws change from nonnormal to normal when b
increases.

This variation of path length suggests in turn a variation of quicksort: stop subfiles
of size less than or equal to b, where b can vary with n. We can show that the limit
law of the total number of comparisons used in the quicksort partitioning stages does
not change as long as b = o(n). This images another “robustness” of the limit laws.

Leaves and patterns in binary search trees. Our Theorem 2 can be applied to the
number of times a given pattern appears in a random binary search tree; see Devroye
[18] and Flajolet, Gourdon, and Mart́ınez [28]. The number of times a subtree of
size k appears is also asymptotically normally distributed; see Aldous [1] and Devroye
[20]. By the correspondence between increasing trees (or binary recursive trees) and
permutations, some patterns on trees like the number of leaves also lead to well-
known distributions in random permutations; see Bergeron, Flajolet, and Salvy [6]
and Flajolet, Gourdon, and Mart́ınez [28].

Analysis of tree traversal algorithms. Binary search trees can be implemented
in several different ways: two-pointers, threaded with or without flag, triply linked
(with a pointer to parent), etc.; and the nodes can be traversed in different orders:
inorder, preorder, postorder, breadth-first, depth-first, etc.; see [2, 10, 11, 12, 13, 23,
24, 32, 51, 65] and [31]. The analysis of the cost of these algorithms then reduces to
the calculation of certain parameters on trees such as the number of nodes with null
(or nonnull) left (or right) branches, the number of nodes with both nonnull left and
right branches, and the number of nodes that are a left child and whose right branch
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is not empty. All these quantities can be systematically analyzed by applying our
results; see Brinck and Foo [11] and Brinck [10] for analysis of the mean of some cost
measures.

For example, the major cost (number of pointer operations) needed to traverse
a threaded binary search tree in preorder and in inorder is essentially given by (ne-
glecting minor parameters)

Xn
d
= XIn +X∗n−1−In + TIn ,

where

Qn(y) := E(eTny) =
∏

1≤k≤n

k − 1 + ey

k
(n ≥ 1),(49)

essentially the Stirling numbers of the first kind (enumerating the number of records
in independent and identically distributed sequences, the number of cycles in random
permutations, etc.). The distribution of Xn is asymptotically normal. Likewise, the
moment generating function Pn(y) of the cost for postorder traversal satisfies

Pn(y) =
ey

n

∑
0≤k≤n−2

Pk(y)Pn−1−k(y)Q2
k(y)Vk(y) +

ey

n
Pn−1Q

2
n−1(y),

where Qn(y) is defined as in (49) and Vn(y) denotes the moment generating function
for the depth of the first node in postorder; see (53). The mean was derived by Brinck
[10]. Indeed, the exact forms of these generating functions are immaterial because our
results are strong enough to prove the asymptotic normality of the cost within a large
range of variation for the toll function; see also section 7 for the asymptotic normality
of the depth of the first node in postorder.

Secondary parameters of quicksort. If we always sort smaller files first, then the
number of stack pushes and pops used to sort a random input satisfies Pn(y) = 1 for
n ≤ 4 and

Pn(y) =
ey

n

∑
0≤k<n

Pk(y)Pn−1−k(y) +
2

n
(1− ey) (Pn−1(y) + Pn−2(y)) (n ≥ 5).

Our results apply, and the number of stack pushes is asymptotically normally dis-
tributed. If we stop sorting subfiles of sizes less than a certain given value and then
use a final insertionsort to complete the sorting, then the number of comparisons and
exchanges used by the insertionsort is again normal in the limit. For more information
on analysis of quicksort, see Sedgewick [71], Hennequin [35], and Chern and Hwang
[14].

Sorting on a broadcast communication model. The model consists of n processors
sharing a common channel for communications, allowing one processor to broadcast
at each time epoch. To each processor a certain number is attached. (The numbers
are distinct.) The sorting problem is to order these numbers in increasing order. The
algorithm proposed in Shiau and Yang [72] is as follows. Select first a loser (a prefer-
able term being “a leader”) by the coin-flipping procedure in Prodinger [59]. Split the
processors into two subsets containing, respectively, smaller and larger numbers; then
sort recursively by the same approach; see Shiau and Yang [72] for details. The num-
ber of rounds of coin-tossings (in order to resolve the conflict for using the channel)
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satisfies (1) with Tn given by (Qn(y) := E(eTny))

Qn(y) =
ey

2n

∑
1≤k≤n

(
n

k

)
Qk(y) +

ey

2n
Qn(y) (n ≥ 2),

with Q1(y) = 1. The mean of Xn is studied by Grabner and Prodinger [33]. By
the results of Fill, Mahmoud, and Szpankowski [27], our results apply, and Xn is
asymptotically normal.

In-situ permutation algorithm. The problem in question is as follows: Given a se-
quence of numbers {a1, . . . , an} and a permutation {π1, . . . πn}, output {aπ1 , . . . , aπn

}
using at most O(1) space. An algorithm was given by MacLeod [45] and analyzed by
Knuth [43]. Kirschenhofer, Prodinger, and Tichy [42] showed that the major cost Xn

of the algorithm satisfies the quicksort recurrence (1) with Tn = In. They extended
Knuth’s analysis of the first two moments by computing the asymptotics of all mo-
ments (noncentered).

Theorem 3 applies, and we obtain

Xn − E(Xn)

n

d−→ Y,(50)

where Y
d
= UY + (1− U)Y ∗ + U logU + (1− U) log(1− U) + U . Note that

E(Xn) ∼ n log n, Var(Xn) ∼ σ2(1, (2U,U))n2 =

(
2− π2

6

)
n2.

We can indeed prove convergence of all moments using the same approach in section 3
starting from P0(y) = 1 and

Pn(y) =
1

n

∑
0≤k<n

ekyPk(y)Pn−1−k(y) (n ≥ 1).(51)

Note that Xn can also be viewed as the left path length of random binary search
trees (by counting only left branches). In general, one may consider weighted path
length by assigning weight α to each left branch and β to each right branch in a
random binary search tree; our tools apply.

Recursive trees. Interestingly, the limit distribution (50) also appears as the limit
distribution of the total path length of random recursive trees; see Dobrow and Fill
[22] and Mahmoud [47]. This can be explained in two ways. First, by a well-known
transformation from multiway trees to binary trees (see Cormen, Leiserson, and Rivest
[16]), we can actually prove a bijection between the total path length of a recursive
tree of n nodes and the left path length of a random binary search tree of n−1 nodes,
the latter having the same distribution as the major cost of the in-situ permutation
algorithm.

Second, the underlying recurrence for total path length of recursive trees is almost
identical to (51)

Xn
d
= XJn +Xn−Jn + Jn,

where Jn is uniformly distributed over {1, 2, . . . , n− 1}.
This connection makes it possible to derive the limit laws of other parameters

on recursive trees by our approaches (up to minor modifications) like the number of
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leaves, the number of nodes with a specified degree, etc.; see Smythe and Mahmoud
[73] for a survey of recursive trees. Note that the number of leaves satisfies P0(y) = 1,
P1(y) = ey, and

Pn(y) =
1

n− 1

∑
1≤k≤n−2

Pk(y)Pn−1−k(y) +
Pn−1(y)

n− 1
(n ≥ 2),

the underlying distribution being essentially the Eulerian numbers; see Bergeron,
Flajolet, and Salvy [6].

Superlinear toll functions. The Wiener index of a graph is defined as the sum
of the distances between all pairs of nodes. This index plays an important role in
connection with physico-chemical properties (like boiling point, heat of information,
crystal defects) of chemical structures; see Gutman, Klavzar, and Mohar [34] and
Trinajstić [74]. The Wiener index of a random binary search tree satisfies, neglecting
the independence assumptions, (1) with

Tn = 2In(n− 1− In) + Zn + InZ
∗
n−1−In + (n− 1− In)Z

′
In ,

where Zn denotes the total path length, which satisfies (1) with Tn = n − 1. The
mean is easily seen to be

E(Xn) = 2n2Hn − 6n2 + 8nHn − 10n+ 6Hn (n ≥ 1).

However, our results fail since Zn and Xn are not independent. The variance satisfies
Var(Xn) ∼ ( 20

3 − 2
3π

2)n4, and the characterization of the limit law of Xn necessitates
a multivariate extension of our approach; see Neininger [55] for details.

Other examples. For other examples of the quicksort type leading to an asymp-
totically normal distribution, see Fill [25], Hofri and Shachnai [38], Panholzer and
Prodinger [57], and Chern, Hwang, and Tsai [15].

7. One-sided quicksort recurrence. In this section, we briefly discuss the
recurrence (3). Assume that Tn is independent of In. Then the moment generating
function of Xn satisfies P0(y) = 1 and, for n ≥ 1,

Pn(y) =
Qn(y)

n

∑
0≤k<n

Pk(y),

which, by considering the difference nPn(y)− (n− 1)Pn−1(y)Qn(y)/Qn−1(y), can be
easily solved, giving

Pn(y) = Qn(y)
∏

1≤k<n

k +Qk(y)

k + 1
(n ≥ 1).

Thus Xn − Tn is the sum of independent mixed random variables. The asymptotic
transfer from the toll function to the total cost in this case is much simpler.

Lemma 5. Define a0 = 0 and, for n ≥ 1,

an = bn +
1

n

∑
0≤k<n

ak.(52)

Then

an = bn +
∑

1≤k<n

bk
k + 1

(n ≥ 1).
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Proof. The proof is omitted.
Lemma 6 (asymptotic transfer). Assume an satisfies (52). If bn ∼ nαL(n),

where L(n) is slowly varying, then

an ∼





∑
1≤k<n

L(k)

k + 1
if α = 0,

α+ 1

α
nαL(n) if α > 0.

Proof. The proof is omitted.
For the limit laws, we have roughly

Pn(y)

Qn(y)
=

∏
1≤k<n

(
1 +

Qk(y)− 1

k + 1

)

≈ exp


 ∑

1≤k<n

Qk(y)− 1

k + 1




≈ exp


y

∑
1≤k<n

Q′k(0)
k + 1

+
y2

2

∑
1≤k<n

Q′′k(0)
k + 1

+O


|y|3

∑
1≤k<n

|Q′′′k (0)|
k + 1




 .

Thus, for small toll functions, if

∑
1≤k<n

Q′′k(0)
k + 1

→∞

and

 ∑

1≤k<n

Q′′k(0)
k + 1



−3/2 ∑

1≤k<n

|Q′′′k (0)|
k + 1

→ 0,

then Xn is asymptotically normally distributed.

On the other hand, for larger toll functions, if Tn/tn
d−→ T , then roughly

Pn(y)

Qn(y)
≈ exp


 ∑

1≤k≤n

Qk(y)− 1

k + 1




≈ exp

(∫ x

0

Q(v)− 1

v
dv

)
,

where Q(y) denotes the moment generating function of T .
Instead of making these heuristics rigorous, we state a simpler result, describing

mainly the phase change from normal to nonnormal laws.
Theorem 6. Let Xn satisfy (3), where Tn is independent of In. Assume that

E(Tn) ∼ nαL(n) and E

(
Tn
tn

)m
→ τm (m ≥ 1),

where α > 0, and that Q(z) :=
∑

m≥0 τmz
m/m! has a nonzero radius of convergence.

Then

Xn

nαL(n)

d−→ X,
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with convergence of all moments, where G(z) := E(ezX) satisfies

G(z) =

∫ 1

0

exp

(
1

α

∫ wαz

0

Q(v)− 1

v
dv

)
dw

for sufficiently small z. On the other hand, if

tn ∼ L(n) and E(|Tn|m) = O(tmn ) (m = 2, 3)

and

s2(n) :=
∑

1≤k<n

Q′′k(0)
k + 1

→∞,

then

Xn −
∑

1≤k<nQ
′
k(0)/(k + 1)

s(n)

d−→ N(0, 1).

Proof (sketch). The proof of the asymptotic normality follows from the above
argument using moment generating functions and Curtiss’s continuity theorem. For
large toll functions, we use the method of moments as above by proving

P (m)
n (0) ∼ gmn

mαLm(n),

where g0 = 1 and, for m ≥ 1,

gm =
∑

0≤j≤m

(
m

j

)
gj

jα+ 1
τm−j .

The required result follows from the same arguments we used for (1).
When α > 0, the contraction method gives another access to the limit law, where

Tn may depend on In.
Theorem 7. Let (Xn) be given by (3). Assume that

E(Tn) ∼ nαL(n) and

(
Tn

E(Tn)
,
In
n

)
L2−→ (T,U),

where α > 0 and T is square-integrable. Then

72

(
Xn

nαL(n)
, Xα,(T,U)

)
→ 0,

where L(Xα,(T,U)) is the unique fixed-point of the map

Sα,(T,U) :M2 →M2, ν �→ L(UαZ + T ),

with Z, (T,U) independent and L(Z) = ν.
Proof. The proof is omitted.
If T �= (α+ 1)(1− Uα)/α, then

Var(Xn) ∼ σ2n2αL2(n),
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where σ = σ(α, (T,U)) is defined by

σ2 =
1

2α
+

2α+ 1

2α

(
Var(T ) +

2(α+ 1)

α
E(TUα)− 2

α

)
.

When T = (α+ 1)(1− Uα)/α, Var(Xn) = o(n2αL2(n)).
Tree traversals. The simplest example is when Tn = 1 for n ≥ 1. The distribution

is essentially the Stirling numbers of the first kind; see (49). This classical example
also appears in a large number of problems; see Bai, Hwang, and Liang [3] for some
examples. This distribution also has another concrete interpretation: the depth of
the first node in inorder traversal.

Interestingly, the depth of the first node in postorder traversal of a random binary
search tree satisfies a slightly different recurrence: P0(y) = P1(y) = 1, and, for n ≥ 2,

Pn(y) =
ey

n

∑
1≤k<n

Pk(y) +
ey

n
Pn−1(y),(53)

which can be asymptotically solved as

Pn(y) =
ne

y−1

Γ(y)
H(ey)

(
1 +O(n−1)

)
+O(n−1),

uniformly for |y| ≤ δ, where

H(y) = ey +

∫ 1

0

wyeyw
(
1− y − yw−1

)
dw.

This is derived by applying singularity analysis (see [29]) to the generating function
P (z, ey) =

∑
n Pn(y)z

n, which satisfies

P (z, y) = (1− z)−yez + (1− z)−ye−y(1−z)
∫ 1

1−z
wyeyw

(
1− y − yw−1

)
dw.

Therefore, the distribution of Xn is asymptotically Poisson with parameter logn and
thus asymptotically normal; see [39]. The mean was discussed by Brinck [10].

Quickselect. The number of comparisons and exchanges used by quickselect to find
the smallest (or the largest) elements satisfies (3) with toll functions of linear mean.
Our theorems apply and, in particular, the limit law of the number of comparisons
is Dickman. The same limit law actually persists for selecting the mth smallest (or
largest) element when m = o(n); see Hwang and Tsai [40] for more details.

The Stirling distribution also naturally appears as the number of partitioning
stages used by quickselect to find the smallest or the largest element. This gives yet
another addition to the large list of concrete interpretations of the Stirling numbers
of the first kind.

Logarithmic product of cycle sizes in random permutation. Permutations can be
decomposed into a set of cycles. Given a random permutation of n elements, let
σ1 ≤ · · · ≤ σk denote the cycle sizes. Define Xn :=

∑
1≤j≤k log σj , which appeared as

a good approximation to the logarithmic order of a random permutation. Then Xn

satisfies (1) with Tn = log n and

E(eXny) =
∏

1≤k≤n

(
1 +

yk − 1

k

)
.

Our result gives the well-known asymptotic normality of Xn with mean 1
2 log

2 n and

variance 1
3 log

3 n; see Barbour and Tavaré [4] for further information.
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Abstract. We study the static membership problem: Given a set S of at most n keys drawn
from a universe U of size m, store it so that queries of the form “Is u in S?” can be answered by
making few accesses to the memory. We study schemes for this problem that use space close to the
information theoretic lower bound of Ω(n log(m

n
)) bits and yet answer queries by reading a small

number of bits of the memory.
We show that, for ε > 0, there is a scheme that stores O( n

ε2
logm) bits and answers membership

queries using a randomized algorithm that reads just one bit of memory and errs with probability at
most ε. We consider schemes that make no error for queries in S but are allowed to err with probability
at most ε for queries not in S. We show that there exist such schemes that store O((n

ε
)2 logm) bits

and answer queries using just one bitprobe. If multiple probes are allowed, then the number of bits
stored can be reduced to O(n1+δ logm) for any δ > 0. The schemes mentioned above are based on
probabilistic constructions of set systems with small intersections.

We show lower bounds that come close to our upper bounds (for a large range of n and ε): Schemes
that answer queries with just one bitprobe and error probability ε must use Ω( n

ε log(1/ε)
logm) bits

of storage; if the error is restricted to queries not in S, then the scheme must use Ω( n2

ε2 log(n/ε)
logm)

bits of storage.
We also consider deterministic schemes for the static membership problem and show tradeoffs

between space and the number of probes.

Key words. data structures, set membership problem, bit probe model, set systems
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1. Introduction. In this paper, we study the static membership problem: Given
a subset S of at most n keys from a universe U = {1, 2, . . . ,m}, store it so that queries
of the form “Is u in S?” can be answered by making few accesses to the memory. This
is a fundamental data structure problem with a long history. Yao [37] showed that, if
the data structure consists of a table with n cells, where the keys are stored explicitly
and the universe from which the set S is chosen is large enough, then the sorted table
with binary search is optimal. In order to study data structures where elements of
the set S are not stored explicitly, Yao (in the same paper) proposed the cell probe
model. In this model, the set S is stored as a table of cells, each capable of holding
one element of the universe; that is, if the universe has size m, where m is a power
of two, then each cell holds logm bits. Queries are to be answered by probing the
table adaptively; that is, each probe can depend on the results of earlier probes and
the query element u. The goal is to process membership queries with as few probes
as possible and, at the same time, keep the size of the table small.
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Fredman, Komlós, and Szemerédi [16] gave a solution for the static membership
problem in the cell probe model that used a constant number of probes and a table
of size O(n). We shall refer to this scheme as the FKS scheme. Note that, if one is
required to store sets of size at most n, then there is an information theoretic lower
bound of �log∑i≤n

(
m
i

)� on the number of bits used. For n ≤ m1−Ω(1), this implies
that the data structure must store Ω(n logm) bits (and must, therefore, use Ω(n)
cells). Thus, up to constant factors, the FKS scheme uses optimal space and number
of cell probes. In fact, Fiat et al. [12], Brodnik and Munro [5, 6], and Pagh [25] obtain
schemes that use space (in bits) that is within a small additive term of �log∑i≤n

(
m
i

)�
and yet answer queries by reading at most a constant number of cells.

An important variation of the cell probe model is the bitprobe model, where each
cell holds just a single bit rather than an element of the universe. Thus, in this
model, the query algorithm is given bitwise access to the data structure. Arguably,
the bitprobe complexity of a data structure problem is a fundamental measure; this,
in particular, applies to decision problems such as the membership problem, where
the final answer to a query is a single bit. The bitprobe model is older than the cell
probe model. The membership problem was studied in the bitprobe model already
by Minsky and Papert in their 1969 book Perceptrons [24]. They were interested in
average-case upper bounds for this problem and did not study worst-case bounds.
Although the bitprobe complexity of several other static and dynamic data structure
problems has been studied since then [9, 13, 14, 15, 22, 36], the bitprobe complexity
of the static membership problem has received very little attention since the work of
Minsky and Papert.1 In this paper, we study worst-case bounds for the membership
problem. Thus our goal is to answer queries using the minimum number of bitprobes
and, at the same time, keep the number of bits stored in the table small.

1.1. Randomized schemes. We investigate the complexity of the static mem-
bership problem when the query processing algorithm tosses coins to decide which bits
of the memory to read and is allowed to answer incorrectly with a certain small prob-
ability. Though using Las Vegas–style randomization to construct data structures is a
well-known and established technique (used, for instance, in many hashing-based data
structures, such as the FKS scheme), Monte Carlo–style randomization in the query
algorithm has been used in the field of data structures only very recently [23, 19].
We consider two kinds of randomized schemes: (a) those that make one-sided errors,
where the errors are restricted to negative instances alone (that is, these schemes never
say “No” when the query element u is in the set S); (b) schemes that are allowed to
make two-sided errors (that is, errors are allowed for positive as well as negative in-
stances). It is also possible to consider schemes that make errors on positive instances
alone; but for the important case of one-probe schemes, we show that such schemes
cannot do better than deterministic schemes.

1.1.1. Randomized schemes with two-sided error. Our main result says
that there are randomized schemes that use just one bitprobe and yet use space close
to the information theoretic lower bound of Ω(n logm) bits.

Theorem 1. For any 0 < ε ≤ 1
4 , there is a scheme for storing subsets S of

size at most n of a universe of size m using O( nε2 logm) bits so that any membership

1The only exception that we are aware of is a remark by Yao and Yao [36] stating without proof
that, if one ignores constant factors, the FKS scheme is optimal in the bitprobe model as well: that
is, every scheme that uses O(n logm) bits of storage must use Ω(logm) bitprobes (assuming n� m).
For justification and generalization of this remark, see Theorem 6 of this paper.
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query “Is u ∈ S?” can be answered with error probability at most ε by a randomized
algorithm which probes the memory at just one location determined by its coin tosses
and the query element u.

In contrast, deterministic schemes that answer queries using a single bitprobe
need m bits of storage (see Theorem 11). By allowing randomization, we can reduce
this bound (for constant ε) to O(n logm) bits. This is within a constant factor of the
space used by a sorted table or a hash table; for n ≤ m1−Ω(1), it is within a constant
factor of the information theoretic minimum number of bits needed to store the data.
Yet membership queries can be answered with small error probability by looking at a
single bit of the data structure. Note that we allow randomization only in the query
algorithm; it is still the case that, for each set S, there is exactly one associated data
structure φ(S). Also, the probability of error is at most ε for all sets and all queries.

Many of the previous results for the membership problem have been based on
hashing [16, 37, 36]. We depart from this tradition. The proof of Theorem 1 is
based on two-colorings of set systems. The set systems we use are related to those
considered by Erdős, Frankl, and Füredi [10] in their study of r-cover-free families of
sets. Similar set systems have been used to great advantage in the construction of
pseudorandom generators and extractors, starting with the papers of Nisan [26] and
Nisan and Wigderson [27] (for recent applications, see [35, 31, 30, 2]); we refer to
them as NW-designs.

The properties of NW-designs are, unfortunately, not strong enough for our proof.
So we construct an appropriate set system ourselves. In section 3, we describe this set
system in more detail and relate it to the existence of a certain kind of strong expander
graphs. Although we believe that such schemes can have practical uses, our proof
relies on an existential argument, which we have not been able to make constructive.
Subsequently, Ta-Shma [32], using recent developments in pseudorandomess [33, 34],
has obtained an explicit one-probe randomized scheme with two-sided error ε for a
certain range of n and ε. This scheme uses less space than the scheme in Theorem 9.

Is the result of Theorem 1 the best possible? As remarked above, Ω(n logm) bits
of space are necessary if n ≤ m1−Ω(1). So let us concentrate on the dependence of
the size on the error probability ε. Unfortunately, our construction does not permit
us to have subconstant error probability and still use optimal space. We show that
this limitation is unavoidable: if ε is made subconstant, then we must use more than
n logm space.

Theorem 2. Suppose n
m1/3 ≤ ε ≤ 1

4 . Then any two-sided ε-error randomized
scheme which answers queries using one bitprobe must use space Ω( n

ε log(1/ε) logm).

Interestingly, the proof uses upper bounds as well as lower bounds for r-cover-free
families [10].

1.1.2. Randomized schemes with one-sided error. As stated above, we do
not use NW-designs in our proof of Theorem 1 but instead use a related set system.
If we use NW-designs, then we do not get the same savings in space. However, we
can now ensure that the error made while processing the query is one-sided.

Theorem 3. For any 0 < ε ≤ 1
4 , there is a scheme for storing subsets S of size

at most n of a universe of size m using O((nε )
2 logm) bits so that any membership

query “Is u ∈ S?” can be answered with error probability at most ε by a randomized
algorithm which makes a single bitprobe to the data structure. Furthermore, if u ∈ S,
the probability of error is 0.

Note that the dependence on n is now quadratic, unlike in the two-sided scheme,
where it was linear. Though this scheme does not operate with optimal space, it still
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uses significantly less space than a bitvector. We also show that the scheme we have is
essentially optimal: there is necessarily a quadratic dependence on n

ε for any scheme
with one-sided error.

Theorem 4. Suppose n
m1/3 ≤ ε ≤ 1

4 . Consider the static membership problem for
sets S of size at most n from a universe of size m. Then any scheme with one-sided

error ε that answers queries using at most one bitprobe must use Ω( n2

ε2 log(n/ε) logm)

bits of storage.
To prove this theorem, we again use the lower bounds for r-cover-free families.
Remarks.
1. The proof of Theorem 3 is nonconstructive. We also show that there is an

explicit one-sided error randomized scheme that uses O((n logm
ε )2) bits of

storage and answers queries using one bitprobe. This result uses the explicit
NW-designs (see Theorem 9).

2. One might also consider one-probe one-sided error schemes where no error is
made for query elements not in the set S. In this case, we show (Theorem 11)
that randomness does not help at all: such a scheme must use m bits of
storage.

Thus there is no one-sided error, one-probe scheme that uses optimal space. How-
ever, the space requirement can be reduced if we allow more probes.

Theorem 5. Suppose 0 < δ < 1. There is a randomized scheme with one-
sided error n−δ that solves the static membership problem using O(n1+δ logm) bits of
storage and O( 1

δ ) bitprobes.
To prove this, we combine a two-sided scheme obtained from Theorem 1 with

ideas for one-sided schemes from Theorem 3.
Connection with communication complexity. Theorems 1–4 can also be viewed

in the communication complexity setting: Alice gets u ∈ {1, . . . ,m}, Bob gets S ⊆
{1, . . . ,m} of size at most n, and Alice sends a single message to Bob after which Bob
announces whether u ∈ S. Indeed, as was pointed out in [23], this communication
game characterizes the data structure problem in the following way: If s is the opti-
mal number of bits in the data structure that can be queried with one bitprobe and a
particular bound on the error on positive and negative instances, then log s± o(log s)
is the number of bits sent from Alice to Bob in an optimal protocol for the communi-
cation problem with the same error bounds. Thus Theorems 1–4 give bounds for the
communication problem which are optimal within a low order term.

Connection with coding theory. The membership problem in the bitprobe model
has an interesting coding theoretic interpretation: We are trying to give an encod-
ing φ(u) of any m-bit string u with at most n 1’s so that the length of the encoding
is close to the first order entropy of u and so that any bit of u can be retrieved by
looking at a few bits of φ(u). Thus we are trying to construct a locally decodable
source code analogous to the locally decodable channel codes of [4, 21].

1.2. Deterministic schemes. As noted previously, the FKS hashing scheme
is a data structure for storing sets of size at most n from a universe of size m using
O(n logm) bits so that membership queries can be answered using O(logm) bitprobes.
We show that the FKS scheme makes an optimal number of bitprobes, within a
constant factor, for this amount of space. This fact follows from the following general
time-space tradeoff.

Theorem 6. Suppose a deterministic scheme stores subsets of size n from a
universe of size m using s bits of storage and answers membership queries with t
bitprobes to memory. Then

(
m
n

) ≤ maxi≤nt
(
2s
i

)
.
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Corollary 1.1. Let ε > 0, c ≥ 1 be any constants. There is a constant δ > 0
so that the following holds. Let n ≤ m1−ε, and let a scheme for storing sets of size
at most n of a universe of size m as data structures of at most cn logm bits be given.
Then any deterministic algorithm answering membership queries using this structure
must make at least δ logm bitprobes in the worst case.

While the FKS scheme makes an optimal number of probes, the probes made are
adaptive. In fact, adaptiveness seems to be quite inherent in hashing-based schemes.
Somewhat surprisingly, as a corollary to the proof of Theorem 1, we can prove that
there is a scheme that uses O(n logm) bits and answers membership queries with
O(logm) nonadaptive bitprobes. Thus adaptive probes do not help much when we
consider deterministic schemes that use O(n logm) space.

More generally, from Theorem 6, it follows that any deterministic scheme that
answers queries using t bitprobes must use space at least ntmΩ(1/t) in the worst case.
We show the existence of schemes which almost match the lower bound.

Theorem 7.

1. There is a nonadaptive scheme that stores sets of size at most n from a

universe of size m using O(ntm
2

t+1 ) bits and answers queries using 2t + 1
bitprobes. This scheme is nonexplicit.

2. There is an explicit adaptive scheme that stores sets of size at most n from
a universe of size m using O(m1/tn logm) bits and answers queries using
O(log n + log logm) + t bitprobes.

Thus, somewhat surprisingly, if we care only about space up to a polynomial,
adaptive schemes are not more powerful than nonadaptive ones.

Finally, we turn our attention to deterministic two-probe schemes and ask if they
can do better than one-probe schemes, where bitvectors are optimal. We have not
been able to answer this question in general. We can show that this is the case if
the two bitprobes made are nonadaptive. Thus the second bitprobe is useless for
nonadaptive schemes. However, we show that there is a scheme with two adaptive
bitprobes that does better than any scheme with two nonadaptive bitprobes for n = 2.
We do not know whether a second adaptive probe helps for values of n greater than 2.

Theorem 8.

1. Any scheme for storing subsets S of size at most n (n ≥ 2) of a universe
of size m such that membership queries can be answered by two nonadaptive
bitprobes uses space s ≥ m bits.

2. Let m ≥ 2, and let n = 2. Then there is a scheme with two adaptive bitprobes
and space s = O(m3/4).

1.3. Organization of the paper. We start with the formal definitions in the
next section. In section 3, randomized schemes with one-sided error and two-sided er-
ror are presented. In section 4, we prove lower bound results for randomized schemes.
We end with results on deterministic schemes in section 5.

2. Notation and definitions.

Notation. Unless mentioned explicitly, all logarithms in this paper are to the
base 2. We use [m] to denote the set {1, 2, . . . ,m}. For a set A,

(
A
n

)
denotes the set of

all subsets of A of size n, and
(
A
≤n
)
denotes the set of all its subsets of size at most n.

Definition 2.1 (storing schemes). An (n,m, s)-storing scheme is a method for
representing any subset of size at most n of a universe of size m as an s-bit string.
Formally, an (n,m, s)-storing scheme is a map φ from

(
[m]
≤n
)
to {0, 1}s.
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Definition 2.2 (deterministic query schemes). A deterministic (m, s, t)-query
scheme is a family {Tu}u∈[m] of m Boolean decision trees of depth at most t. Each
internal node in a decision tree is marked with an index between 1 and s, indicating
the address of a bit in an s-bit data structure. For each internal node, there is one
outgoing edge labeled “ 0” and one labeled “ 1.” The leaf nodes of every tree are marked
“Yes” or “No.” Such a tree Tu induces a map from {0, 1}s to {Yes, No}; this map
will also be referred to as Tu.

Definition 2.3 (deterministic schemes). An (n,m, s)-storing scheme φ and
an (m, s, t)-query scheme {Tu}u∈[m] together form an (n,m, s, t)-scheme if, for all

S ∈ ([m]
≤n
)
, for all u ∈ [m] : Tu(φ(S)) = Yes if and only if u ∈ S.

In a nonadaptive scheme, the next probe to be made depends only on the input
query q. It does not depend on the results of the previous probes.

Definition 2.4 (nonadaptive query schemes). A nonadaptive query scheme is a
deterministic scheme where, in each decision tree, all nodes on a particular level are
marked with the same index between 1 and s (but nodes on the same level in different
trees may be marked differently).

In a randomized scheme, the storing scheme is deterministic as before. However,
the query algorithm is allowed to make random coin tosses to decide the next location
to be probed.

Definition 2.5 (randomized schemes). A randomized (m, s, t)-query scheme is a
family {πu}u∈[m] of probability distributions on the set of all Boolean decision trees of
depth at most t. We answer the query “Is u in S?” by picking a decision tree according
to the distribution πu and return the answer it gives. An (n,m, s)-storing scheme and
a randomized (m, s, t)-query scheme together form an (n,m, s, t)-randomized scheme.
We say that a randomized scheme has positive one-sided error ε if, for u 
∈ S, the
error probability on queries “Is u in S?” is 0, i.e., the answer “No” is always returned,
while, if u ∈ S, the error probability on the query “Is u in S?” is at most ε. Similarly,
a randomized scheme has negative one-sided error ε if, for u ∈ S, the error probability
on queries “Is u in S?” is 0, i.e., the answer “Yes” is always returned, while, if u 
∈ S,
the error probability on the query “Is u in S?” is at most ε. We say that a randomized
scheme has two-sided error ε if, on query “Is u in S?,” the scheme returns the wrong
answer with probability at most ε.

We will be interested in one-probe randomized schemes where, in particular, πu
will be a probability distribution on Boolean decision trees that make at most one
probe.

We say that a scheme is explicit if there are efficient algorithms that can simulate
the storing scheme and the query scheme.

Definition 2.6 (explicit storing schemes). A family of storing schemes, indexed
by (n,m, s), is explicit if there is a Turing machine, running in time sO(1), which,
given S ⊆ {0, 1}m of size n, outputs the representation φ(S).

Definition 2.7 (explicit query schemes). A family of (randomized) query
schemes, indexed by (m, s, t), is explicit if there is a (probabilistic) Turing machine,
running in time (t + logm)O(1), which, on input u and with oracle access to φ(S),
executes the correct sequence of probes according to the query scheme and accepts or
rejects accordingly.

Definition 2.8 (explicit schemes). A family of schemes is explicit if the associ-
ated storing and query schemes are explicit.

3. Upper bounds for randomized schemes. In this section, we show that
there exist randomized one-probe schemes that use small space. We first describe the
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randomized scheme with one-sided error; the scheme with two-sided error can then
be seen as a generalization. Randomized multiprobe schemes with one-sided error
will be obtained by combining one-probe schemes with one-sided error and one-probe
schemes with two-sided error.

All of our schemes will be based on set systems with small intersections. In
particular, we will use a set system of the form {Γu}u∈[m], where Γu ⊆ [s]. The query
algorithm, on receiving the query “Is u in S?,” will probe a location in Γu uniformly
and answer “Yes” if and only if it finds a 1 there.

We will describe our schemes using a bipartite graph with vertex sets U and V :
U is the universe from which the set S to be stored is drawn, and V is the set of
locations in the memory. We connect u ∈ U to v ∈ V if, on query “Is u in S?,” the
cell v in the memory is probed by the algorithm (for some outcome of coin tosses).
Thus, when the query element is u, the algorithm probes the memory locations in the
neighborhood Γ(u) of u with uniform distribution.

3.1. Randomized scheme with one-sided error.
Proof of Theorem 3. Our randomized scheme is based on a bipartite graph with

vertex sets U and V , where U = [m] and |V | = O((nε )
2 logm). Any instance of

the data structure corresponds to a coloring of V using colors from the set {0, 1}.
Hence, if the set S ⊆ U is to be stored correctly, then all locations in

⋃
u∈S Γ(u)

must be colored 1. This is because the algorithm is not allowed to say “No” when the
query element u is in S. Furthermore, since the error probability is at most ε, for all
u′ 
∈ S, at most ε|Γ(u′)| locations in Γ(u′) can be colored 1. Thus we get the following
condition on the bipartite graph:

∀S ∈
(

U

≤ n

)
, ∀u′ ∈ U − S,

∣∣∣∣Γ(u′)−
⋃
u∈S

Γ(u)

∣∣∣∣ ≥ (1− ε)|Γ(u′)|.(1)

We are thus required to pick neighborhoods for vertices u ∈ U so that the resulting
bipartite graph satisfies (1). An NW-design allows us to do this.

Definition 3.1. A family of sets F is an (m, �, a)-design if F has m sets each
of size � and two different sets in F have at most a elements in common.

Lemma 3.2 (Erdős, Frankl, and Füredi [10, Theorem 2.1]). If m ≤ (
s
a

)
/
(
�
a

)2
,

then there is an (m, �, a− 1)-design all of whose elements are subsets of [s].
We will use an (m, �, a)-design with a = �logm� and � = �na/ε�. If s = �2e2�2/a�

(which is O((nε )
2 logm)), then

(
s
a

)
(
�
a

)2 ≥ ( sa )
a

( e�a )2a
≥ ( 2e2�2

a2 )a

( e�a )2a
≥ 2a ≥ m,

and, by the above lemma, there is an (m, �, a)-design (in fact, an (m, �, a−1)-design),
all of whose elements are subsets of [s]. Let {Γ1,Γ2, . . . ,Γm} be such a design.
Storing scheme. Suppose the set to be stored is {u1, . . . , uk}, k ≤ n. Store a

bitstring T of size s with 1’s in all locations in M = Γu1
∪Γu2∪· · ·∪Γuk

and 0
elsewhere.

Query scheme. On query “Is u in S?,” do the following:
Step 1. Pick a random location i uniformly from Γu.
Step 2. If T (i) is 1, say “Yes,” otherwise say “No.”

Correctness. If u ∈ S, then every location in Γu has a 1, and hence we say “Yes.”
On the other hand, if u 
∈ S, then |M ∩Γu| ≤ na. Hence the probability that
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the algorithm says “Yes” when we choose a random location in Γu is at most
na
|Γu| =

na
� ≤ ε.

The following theorem gives a slightly weaker bound than the one stated in Theo-
rem 3, but it has the advantage that the scheme is explicit. It is based on the explicit
version of Lemma 3.2 (see [10, Example 3.2] or [27]).

Theorem 9. For any ε > 0 and any n,m, there is an (n,m, s)-storing scheme
with s = O((n logm

ε )2) and an associated randomized one-probe query scheme with a
negative one-sided error at most ε. This scheme is explicit.

Proof. Let F be a finite field of size q, where q is the smallest power of two which
is at least (n logm)/ε. If d = �logm� − 1, then the number of univariate polynomials
of degree at most d is qd+1 ≥ m. We will associate with the element u ∈ [m] a unique
polynomial

pu(X)
def
=

�logm	∑
i=1

uiX
i−1,

where ui is the ith bit in the binary representation of u. Now we store S as a q × q
bitmap, indexed by F×F, with bit (x, y) on if and only if pu(x) = y for some u ∈ S.
The size of the data structure is as claimed. To answer the query “Is u in S?,” we
pick x ∈ F at random and say “Yes” if and only if bit (x, pu(x)) of the bitmap is 1.
Clearly, if u ∈ S, we always say “Yes.” If u 
∈ S, then, for all u′ ∈ S, the graphs of
pu and pu′ have at most d points in common. Thus at most nd locations of the form
(x, pu(x)) of the bitmap will contain a 1. Note that nd/q ≤ ε.

Remark. By choosing parameters more carefully in the above proof, we can reduce
the space requirement in the above theorem to O( n logm

ε log((n logm)/ε) )
2.

3.2. Randomized scheme with two-sided error. We now present a scheme
that uses space O( nε2 logm) and answers queries using a single-bit probe, making an
error with probability at most ε. The space needed depends linearly on n, and, when
ε is a constant, it is within a constant factor of a sorted table or a hash table.

Proof of Theorem 1. We may assume that m is large, say, m ≥ 100. We first
describe the main ideas of our randomized scheme using the bipartite graph G =
(U, V,E), where U = [m] and V = [s]. On query “Is u in S?,” the query algorithm
probes a random location in Γ(u) and says “Yes” if and only if the location probed
contains 1. Now suppose that we need to store the set S ⊆ U (|S| ≤ n). Then we need
a coloring χS : V → {0, 1}, such that, for all u ∈ S, at least (1 − ε)|Γ(u)| elements
of Γ(u) are colored 1, and, for all u′ 
∈ S, at least (1− ε)|Γ(u′)| elements of Γ(u′) are
colored 0. Thus we need to find neighborhoods for the vertices so that the system
of sets {Γ(u)}u∈U admits such a coloring χS for all S ∈ ( U≤n

)
. This motivates the

following definition.
Definition 3.3. Let C1, C0 ⊆ 2V . We say that (C1, C0) is ε-two-colorable if there

exists χ : V → {0, 1}, such that
1. for all T ∈ C1, |χ−1(0) ∩ T | ≤ ε|T |, and
2. for all T ∈ C0, |χ−1(1) ∩ T | ≤ ε|T |.

We say that C ⊆ 2V is (n, ε)-two-colorable if (C1, C0 = C − C1) is ε-two-colorable for
all C1 ∈

( C
≤n
)
.

In this terminology, our goal can be stated as follows: find a bipartite graph
G = (U, V,E), with U = [m] and V = [s], such that {Γ(u)}u∈U is an (n, ε)-two-
colorable collection of m distinct nonempty sets. We will show that such a graph
exists with |V | = O( nε2 logm). For this, we first identify a sufficient condition, which
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we call the (n, ε)-intersection property, for a collection to be (n, ε)-two-colorable. We
then observe that, if G has a certain expansion property, then {Γ(u)}u∈U has the (n, ε)-
intersection property. Finally, using a probabilistic argument, we show that graphs
with the required expansion property exist. To outline the main steps of our proof, we
show the following implications and the existence of an (m, s, n, d, ε)-expander with
s = O( nε2 logm).

G = (U, V,E) is an (m, s, n, d, ε)-expander Definition 3.8

‖
‖ Lemma 3.9
⇓

{Γ(u)}u∈U has the (n, ε)-intersection property Definition 3.5

‖
‖ Lemma 3.6
⇓

{Γ(u)}u∈U is (n, ε)-two-colorable Definition 3.3

‖
‖Claim 3.4
⇓

(n,m, s, 1)-randomized scheme with error ε Definition 2.5

Colorable families and randomized schemes.
Lemma 3.4. Suppose the bipartite graph G = (U, V,E), with U = [m] and

V = [s], is such that {Γ(u)}u∈U is an (n, ε)-two-colorable collection of m nonempty
sets. Then there is a randomized scheme for the membership problem that uses s bits
to store sets S ∈ ( U≤n

)
and answers membership queries using one bitprobe, and with

error probability at most ε.
Proof.

The storing scheme. To store the set S ∈ (
U
≤n
)
, consider the collections C1 =

{Γ(u)}u∈S and C0 = {Γ(u)}u �∈S . Since {Γ(u)}u∈U is an (n, ε)-two-colorable
collection, (C1, C0) is ε-two-colorable. Let χ : V → {0, 1} be a coloring satis-
fying the two conditions of Definition 3.3. We store χ as a table of s = |V |
bits.

The query scheme. Given a query “Is u in S?,” pick i uniformly at random from
Γ(u), and return “Yes” if χ(i) = 1, and return “No” if χ(i) = 0.

Correctness. If u ∈ S, then Γ(u) ∈ C1, and |χ−1(0) ∩ Γ(u)| ≤ ε|Γ(u)|. Thus
Pr[χ(i) = 0] ≤ ε. Similarly, if u 
∈ S, Γ(u) ∈ C0 and Pr[χ(i) = 1] ≤ ε.

Intersection property and coloring. Suppose that we wish to ε-two-color
(C1, C0). The first thing to try would be to color all of the elements in

⋃
S∈C1 S with 1

and the rest with 0. Unfortunately, some sets in C0 might get more than an ε fraction
of their elements colored 1, and our coloring might not be proper. So we need to
first identify those sets in C0 that might be badly colored in this method: these are
precisely the sets that have large intersection with the union of the sets in C1. Let
C′0 be the collection of these sets. We will now modify our coloring method to pay
special attention to sets in C′0. For now, ignore the sets in C0 − C′0, for they are at no
risk of being badly colored while ensuring that the sets in C1 are properly colored. So
we are left with the problem of ε-two-coloring (C1, C′0). If |C′0| < |C1|, this is a smaller
problem, and we can use induction for this. This motivates the following definition
of the ε-intersection property. That this definition is sufficient for ε-two-colorability
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is the main observation of this section, which we state formally in Lemma 3.6 below.
Definition 3.5. Suppose C1 and C0 are collections of sets. We say that (C1, C0)

has the ε-intersection property if

∀ C′1 ⊆
( C1

≤ n

)
(C′1 
= ∅),

∣∣∣∣
{

S ∈ C0 :

∣∣∣∣T ∩
( ⋃

T ′∈C′1
T ′
)∣∣∣∣ > ε|T |

}∣∣∣∣ < |C′1| and(2)

∀ C′0 ⊆
( C0

≤ n

)
(C′0 
= ∅),

∣∣∣∣
{

T ∈ C1 :

∣∣∣∣T ∩
( ⋃

T ′∈C′0
T ′
)∣∣∣∣ > ε|T |

}∣∣∣∣ < |C′0|.(3)

We say that a collection of sets C has the (n, ε)-intersection property if (C1, C0 =
C − C1) has the ε-intersection property for all C1 ∈

( C
≤n
)
.

Lemma 3.6. Suppose C1, C0 ⊆ 2V . If |C1| ≤ n and (C1, C0) has the (n, ε)-
intersection property, then (C1, C0) is ε-two-colorable.

Corollary 3.7. If C has the (n, ε)-intersection property, then C is (n, ε)-two-
colorable.

Proof of Lemma 3.6. We use induction on |C1| + |C0|. The base case, when
either C1 or C0 is empty, is obvious. For the induction step, consider a pair (C1, C0)
of nonempty collections, with |C1| ≤ n, that has the (n, ε)-intersection property. We
may assume that |C1| ≤ |C0|; otherwise, interchange the roles of 0 and 1. Let

C′0 def
=

{
T ∈ C0 :

∣∣∣∣T ∩
( ⋃
T ′∈C1

T ′
)∣∣∣∣ > ε|T |

}
.

Since (C1, C0) has the (n, ε)-intersection property and 1 ≤ |C1| ≤ n, |C′0| < |C1| ≤ |C0|.
By induction, there exists a two-coloring χ : V → {0, 1} such that

∀ T ∈ C1, |χ−1(0) ∩ T | ≤ ε|T | and(4)

∀ T ∈ C′0, |χ−1(1) ∩ T | ≤ ε|T |.(5)

We may assume that, if χ(v) = 1, then v ∈ ⋃T∈C1 T (otherwise, change χ(v) to 0—this
cannot hurt (4) and can only help (5)), that is,

χ−1(1) ⊆
⋃
T∈C1

T.(6)

We claim that χ is also an ε-two-coloring of (C1, C0). For, if T ∈ C1, this follows
from (4), if T ∈ C′0, then it follows from (5), and, if T ∈ C0 − C′0, then

|χ−1(1) ∩ T | ≤
∣∣∣∣T ∩

⋃
T ′∈C1

T ′
∣∣∣∣ ≤ ε|T |,

where the first inequality follows from (6) and the second follows from the definition
of C′0.

Expanders and the intersection property. We now relate the (n, ε)-inter-
section property of {Γ(u)}u∈U to a certain expansion property of G = (U, V,E).

Definition 3.8. We say that G = (U, V,E) is an (m, s, n, d, ε)-expander if
U = [m], V = [s], each vertex in U has degree d, and the following condition holds:

∀S ∈ ( U
≤2n

)
, |Γ(S)| ≥

(
1− ε

2

)
|S|d.(7)
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Lemma 3.9. Suppose ε < 1 and G = (U, V,E) is an (m, s, n, d, ε)-expander
with d ≥ 1. Then {Γ(u)}u∈U is a collection of m nonempty sets and has the (n, ε)-
intersection property.

Proof. Since ε < 1, we have from (7) that |Γ({u, u′})| > d for distinct u, u′ ∈
U . Thus Γ(u) 
= Γ(u′), and there are m nonempty sets in {Γ(u)}u∈U . Suppose
{Γ(u)}u∈U does not have the (n, ε)-intersection property; then there exists a set S =
{u1, . . . , uk, v1, . . . , vk} ⊆ U of 2k (for some k ∈ [n]) distinct elements such that, for
j = 1, . . . , k,

∣∣∣∣Γ(vj) ∩
k⋃
i=1

Γ(ui)

∣∣∣∣ > εd.

However, then |Γ(S)| < 2kd− kεd ≤ (1− ε
2 ) · 2kd = (1− ε

2 )|S|d, violating (7).
Existence of expanders. Finally, we show that the required expander graph

exists.
Lemma 3.10. For ε > 0, m ≥ 8, and n ≤ m/2, there is an (m, � 200n logm

ε2 �, n,

� logm
ε �, ε)-expander.
Proof. We show the existence of the expander graph G = (U, V,E), where U = [m]

and V = [s], using a standard probabilistic argument.2 For each vertex u in U , we
independently choose its set of neighbors in V , Γ(u) by picking without replacement
d = � logm

ε � elements from V at random. We wish to show that, with nonzero proba-

bility, the resulting graph is an expander (satisfying (7)). For T ∈ ( U
≤2n

)
, let

E(T )
def≡ |Γ(T )| <

(
1− ε

2

)
|T |d.

We wish to show that, with nonzero probability, we can (simultaneously) avoid E(T )
for all T ∈ ( U

≤2n

)
.

Claim 3.11. Pr[E(T )] ≤ ( 2
m

)2|T |
.

Proof. Let t
def
= |T |. We prove the claim under the assumption that the neighbors

of u ∈ U are chosen by sampling with replacement. This will imply the claim even for
sampling without replacement: to pick a random set of size d, first pick d elements
with replacement, resulting in d′ distinct elements (say), and then add d − d′ new
elements randomly. Suppose T = {u1, u2, . . . , ut}. Let N

def
= td. With the choice

of elements for Γ(u1), . . . ,Γ(ut), where Γ(uj) = {e(j−1)d+1, . . . , ejd}, we associate N
random variables X1, . . . , XN , such that

Xi
def
=

{
1 if ei ∈ {e1, . . . , ei−1},
0 otherwise.

2The argument we use is different from what is usually used for showing the existence of expander
graphs. Consider the random graph G obtained by choosing d random neighbors from V (with
replacement) for each vertex in U . We wish to avoid the event ∃S ⊆ U (|S| ≤ 2n) : |Γ(S)| ≤
(1− ε

2
)d|S|. One usually [3, p. 331] bounds the probability of this event by

2n∑
i=1

(
m
i

) ( |V |
(1− ε

2
)di

)( (1− ε
2
)di

|V |
)di

.

For our choice of parameters, d = � logm
ε
� and |V | = 	 200n logm

ε2

, this quantity is not less than 1 (for

example, consider the term with i = n), although, in Lemma 3.10, we show that G has the required
expansion property with high probability.
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Thus

E(T ) ≡
N∑
i=1

Xi >
ε

2
N.(8)

Now, for all i ∈ [N ] and σ ∈ {0, 1}i−1,

Pr[Xi = 1 | X1X2 · · ·Xi−1 = σ] ≤ (i− 1)

s
≤ 2nd− 1

s
≤ ε

100
.

Let p
def
= ε

100 , and define N independent random variables Y1, . . . , YN such that

Yi =

{
1 with probability ε

100 ,
0 otherwise.

Then, for all k,

Pr

[ N∑
i=1

Xi ≥ k

]
≤ Pr

[ N∑
i=1

Yi ≥ k

]
.(9)

We will use the following form of Chernoff’s bound (see, for example, Alon and
Spencer [1, Theorem A.12]):

Pr

[ N∑
i=1

Yi ≥ (p + δ)N

]
≤
(

ep

p + δ

)(p+δ)N

.(10)

Thus

Pr

[ N∑
i=1

Yi ≥ ε

2
N

]
≤
(

eε/100

ε/2

)εN/2

≤
(
1

4

)εtd

≤
(
1

4

)εt( log m
ε −1)

≤
(

2

m

)2t

.

Claim 3.11 now follows from (8) and (9).

Since Pr[E(∅)] = 0, Claim 3.11 implies that

Pr

[ ∨

T∈( U
≤2n)

E(T )

]
≤

2n∑
t=1

(
m

t

)(
2

m

)2t

≤
2n∑
t=1

(
4

m

)t
< 1,

where we use our assumption, m ≥ 8, to justify the last inequality. Thus, with nonzero
probability, G is an expander.
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3.3. Multiprobe randomized scheme with one-sided error. We now show
that the space requirement for schemes with one-sided error can be reduced if more
bitprobes are allowed.

Proof of Theorem 5. Our scheme will have two tables. The first table, T1, will
come directly from Theorem 1 (with an appropriate choice of ε); the second table
will be based on ideas used in Theorem 3. Our multiprobe query algorithm will,
correspondingly, have two phases. In the first phase, it will probe T1 several times
(to reduce the error). In the second phase, it will probe T2 just once. The scheme
is nonadaptive: the locations to be probed are completely determined by the query
element and the random string but do not depend on the actual values read.

We will view the first half of our scheme as a randomized multiprobe scheme with
small two-sided error.

Lemma 3.12. There is a randomized (n,m,O( nε2 logm), t)-scheme that makes an

error of at most (2eε)t/2.

Proof. We use the randomized (n,m, s, 1)-scheme of Theorem 1 but run the query
algorithm t times (with independent coin tosses) and say “Yes” if and only if at least
t/2 of the t runs give the answer “Yes.” Using Chernoff’s bound (see (10) above), we
conclude that

Pr[Error] ≤ (2eε)t/2.

We will use the above lemma with ε = n−δ/2/(2e) and t = �4/δ�. This will
give us an (n,m,O(n1+δ logm), �4/δ�)-scheme Π with error probability at most n−2.
We use Π to construct our multiprobe scheme Π̂. The first table, T1, of our scheme
is exactly what Π uses; it has s = O(n1+δ logm) bits. The second table, T2, has
s′ = �2n1+δ logm� bits. To see how the contents of T2 are decided, let us first
describe how the query algorithm uses T2.

The query algorithm. Suppose the query algorithm of Π uses random strings
of length �. In our query algorithm, for each u ∈ [m], we have a sequence σu =
〈r1, r2, . . . , rs′〉 of strings ri ∈ {0, 1}�. On receiving the query “Is u in S?,” the algo-
rithm first chooses i uniformly at random from [s′] and then uses the query algorithm
of scheme Π with the ith element of σu (that is, ri above) as the random string and
T1 as its table. If the answer returned by Π is “Yes,” we say “Yes.” If the answer
is “No,” we move on to table T2, probe the location i there, and say “Yes” if and
only if we read a 1. Thus, to completely specify the query algorithm, we must fix
sequences σu for each u ∈ [m]. We will show later how suitable sequences σu can be
found. First, let us determine the contents of table T2.

The table T2. Once the query algorithm is specified, there is a natural choice
for the contents of T2. Let ErrorΠ(S, u, r) denote the event “after storing the set S in
its table, the protocol Π gives a wrong answer for the query ‘Is u in S?’ when it uses
the random string r.” For S ∈ ([m]

≤n
)
, let

R(S, u)
def
= {i : ErrorΠ(S, u, σu(i))} and

R(S)
def
=
⋃
u∈S

R(S, u).

Since we allow no error for query elements u ∈ S, T2(i) must be 1 for all i ∈ R(S)
when we store the set S in our tables. Let the remaining bits of T2 be 0. This clearly
ensures that Pri[ErrorΠ̂(S, u, i)] = 0 for all S ∈ ([m]

≤n
)
and u ∈ S. It remains only to
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ensure that Pri[ErrorΠ̂(S, u, i)] ≤ n−δ when u 
∈ S. For this, we need to choose σu
carefully.

Choosing σu. For u 
∈ S, we have ErrorΠ̂(S, u, i) ≡ ErrorΠ(S, u, σu(i))∨i ∈ R(S).
Thus

Pr
i
[ErrorΠ̂(S, u, i)] ≤ Pr

i
[ErrorΠ(S, u, σu(i))] + Pr

i
[i ∈ R(S)].(11)

To bound the first term on the right, we show

∀u, S, |R(S, u)| ≤ n logm;(12)

to bound the second, we show

∀S, |R(S)| ≤ n logm.(13)

Since n logm ≤ s′
2nδ , using these bounds in (11), we obtain Pri[ErrorΠ̂(S, u, i)] ≤ n−δ.

Thus we need to choose σu such that (12) and (13) hold. Let each σu be a
sequence of s′ randomly (uniformly and independently) chosen strings from {0, 1}�.
Now

Pr
r∈{0,1}


[ErrorΠ(S, u, r)] ≤ 1

n2
.

Since σu is obtained by picking s′ = �2n1+δ logm� strings from {0, 1}� independently,
we get, using Chernoff’s bound (see (10) above), that

Pr
{σu}

[|R(S, u)| > n logm] ≤
(

e/n2

1/(4nδ)

)n logm

≤
(
4e

n

)n logm

.

(Note that (n logm)/s′ ≥ 1/(4nδ).) Thus

Pr
{σu}

[
∃u ∈ [m], S ∈

(
[m]

≤ n

)
|R(S, u)| > n logm

]
≤ mn+1

(
4e

n

)n logm

<
1

2
.

Thus (12) holds with probability more than 1
2 .

To ensure (13), we first observe that, for each i ∈ [s′],

Pr[i ∈ R(S)] ≤
∑
u∈S

Pr[i ∈ R(S, u)] ≤ n× 1

n2
=

1

n
.

Furthermore, the events “i ∈ R(S)” are independent for different i ∈ [s′]. Thus, using
Chernoff’s bound (see (10) above), we obtain

Pr
{σu}

[|R(S)| > n logm] ≤
(

e/n

1/(4nδ)

)n logm

≤
(

4e

n1−δ

)n logm

,

and

Pr
{σu}

[
∃S ∈

(
[m]

≤ n

)
|R(S)| > n logm

]
≤ mn

(
4e

n

)n logm

<
1

2
.

Thus (13) holds with probability more than 1
2 .

Since (12) and (13) both hold with probability more than 1
2 , they hold simultane-

ously for some choice {σu}u∈[m]. We fix one such choice in our query algorithm.
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4. Lower bounds for randomized schemes. Consider a scheme that uses
space s and just one bitprobe. In general, on receiving a query, the algorithm does
one of three things based on the outcome of its coin tosses and the query element.

1. It decides to answer “Yes,” regardless of what is stored in the table (which it
may or may not read).

2. It decides to answer “No,” regardless of what is stored in the table.
3. It computes, based on the coin tosses and the query element, an index i ∈ [s]

and
(a) answers “Yes” if and only if the ith bit of the table is 1 or
(b) answers “Yes” if and only if the ith bit of the table is 0.

It will be convenient if our query algorithm has the following standard form: it always
reads some bit of the table and answers “Yes” if and only if it reads a 1. A scheme
with a general query algorithm can be modified easily so that the new query algorithm
is in standard form. This modification will roughly double the space required but will
keep the error probability the same. Suppose the original algorithm used the table
T : [s] → {0, 1}. The new algorithm will use a table T ′ : [s + 1] × {0, 1} → {0, 1},
whose contents are defined by

T ′(i, b) def
=





T (i) if i ∈ [s] and b = 1,
¬T (i) if i ∈ [s] and b = 0,
b if i = s + 1.

The query algorithm is then modified as follows: in case 1 above, when the old
algorithm always said “Yes,” the new algorithm reads the bit T ′(s + 1, 1); in case 2,
the new algorithm reads T ′(s + 1, 0); in case 3(a), it reads T ′(i, 1); and, in case 3(b),
it reads T ′(i, 0). In all cases, the answer is “Yes” if and only if the bit read is 1.

Our lower bounds for randomized one-probe schemes are based on bounds for
r-cover-free families.

Definition 4.1. A family of sets F is r-cover-free if, for T0, T1, . . . , Tr ∈ F such
that T0 
∈ {T1, T2, . . . , Tr}, T0 
⊆ T1 ∪ · · · ∪ Tr.

Theorem 10 (Füredi [17]). If F is an r-cover-free family of sets and r ≤ |F|1/3,
then

∣∣∣∣
⋃
T∈F

T

∣∣∣∣ ≥
r2

4 log r + O(1)
log |F|.

(Similar bounds have been shown in [8, 29, 7].)

4.1. Randomized schemes with one-sided error.
Proof of Theorem 4. Suppose there is a randomized (n,m, s, 1)-scheme with

negative one-sided error ε. As discussed earlier, this implies that there is a randomized
(n,m, 2s + 2, 1)-scheme with negative one-sided error ε, whose query algorithm is
in standard form. Consider the bipartite graph G = (U, V,E), where U = [m],
V = [2s + 2], and (u, v) ∈ E if and only if location v is probed (with nonzero
probability) on query “Is u in S?” In particular, on query “Is u in S?,” the algorithm
picks an element v ∈ Γ(u) at random, according to some distribution Du, and answers
“Yes” if and only if there is a 1 in location v of the table.

Let r
def
= �nε � − 1; note that r < n

ε .
Claim 4.2. {Γ(u)}u∈U is an r-cover-free family.
Proof. Suppose the claim is false. Then there exist distinct u, u1, u2, . . . , ur ∈ U

such that Γ(u) ⊆ ⋃ri=1 Γ(ui). Let S be a random subset of {u1, u2, . . . , ur} of size n.
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Then, for each i ∈ Γ(u), Pr[i ∈ Γ(S)] ≥ n
r . For T ⊆ V , let Du(T )

def
=
∑
i∈T Du(i). By

linearity of expectation,

E[Du(Γ(S))] =
∑

i∈Γ(u)

Du(i) Pr[i ∈ Γ(S)] ≥ n

r

∑

i∈Γ(u)

Du(i) =
n

r
> ε.

Fix a choice for S with Du(Γ(S)) > ε. When S is stored, all locations in Γ(S) must
contain a 1 (because the error is negative one-sided). Then, on query “Is u in S?,” the
query algorithm answers “Yes” with probability more than ε, but the error allowed is
at most ε.

Claim 4.2 and Theorem 10 imply that, if r ≤ m1/3, then

|V | ≥ r2

4 log r + O(1)
logm.

Thus s = Ω( n2

ε2 log(n/ε) logm).

We next consider positive one-sided error and observe that bitvectors are optimal
in this case.

Theorem 11. Let ε < 1 and m ≥ 1. Any randomized (1,m, s, 1)-scheme with
positive one-sided error ε must have s ≥ m.

Proof. Since ε < 1, for each u ∈ [m], there must be a coin toss sequence ru for
which the query algorithm says “Yes” when the set {u} is stored and the query “Is
u in S?” is posed. In this case, the algorithm must probe some location of the table,
for otherwise it would say “Yes” with nonzero probability even when the empty set
is stored. Let �u ∈ [s] be the location probed, and let bu ∈ {0, 1} be the bit read. We
claim that �u 
= �u′ for u 
= u′. For, suppose u 
= u′ and �u = �u′ . We have two cases.
bu = bu′ . Store S = {u}. On query “Is u′ in S?” and coin toss sequence ru′ , the

algorithm will answer “Yes,” which is not allowed.
bi �= bj. Store the empty set. Either on query “Is u in S?” with coin toss sequence ru

or on query “Is u′ in S?” with coin toss sequence ru′ , the answer will be
“Yes.” However, when the empty set is stored, the answer should be “No”
with probability 1 for all queries.

Thus �u 
= �u′ when u 
= u′, implying s ≥ m.

4.2. Randomized schemes with two-sided error. To prove the lower bound
for randomized schemes with two-sided error, we need to use upper bounds on r-cover-
free families together with the lower bound.

Proof of Theorem 2. Fix a randomized (n,m, s, 1)-scheme that answers queries
with probability of error at most ε. We assume that the query algorithm is in standard
form, and, as before, we model it using the bipartite graph (U, V,E), where U = [m]
and V = [s]: on query “Is u in S?,” the algorithm probes a random location in [s]
according to a distribution Du (Du(i) 
= 0 if and only if i ∈ Γ(u)) and answers “Yes”
if and only if the location contains a 1.

For our lower bound, we will need an r-cover-free family F ⊆ ([m]
≤n
)
, where r = � 1

ε �.
We first present the argument assuming such a family; later we will obtain our lower
bound by choosing a suitably large F . For S ∈ F , let TS ⊆ [s] be the set of locations
of the table that contain a 1 when S is stored. Let � = � 1

2ε�. Since ε ≤ 1
4 , we have

� ≥ 1.
Claim 4.3. {TS : S ∈ F} is �-cover-free.
Proof. Suppose TS0 ⊆ TS1 ∪TS2 ∪ · · · ∪TS


for some S0, S1, . . . , S� ∈ F , such that
S0 
∈ {S1, S2, . . . , S�}. We will derive a contradiction.
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Since F is r-cover-free and r ≥ �, we have S0 
⊆
⋃�
i=1 Si; let u ∈ S0 −

∑�
i=1 Si.

Since u ∈ S0, Du(TS0) ≥ 1 − ε. Thus Du(
⋃�
i=1 TSi) ≥ 1 − ε and Du(TSi) ≥ 1−ε

� for
some i ∈ [n]. Fix one such i. Now, when the scheme stores the set Si and receives
the query “Is u in Si?,” it says “Yes” with probability at least 1−ε

� ≥ 2ε(1 − ε) > ε.
However, this is not possible.

Using the above claim and Theorem 10, we obtain that, if � ≤ |F|1/3, then

s ≥ �2

4 log � + O(1)
log |F|.(14)

To prove our lower bound, we need to find an r-cover-free family of large size. If
ε ≥ 1

n , we use Lemma 3.2 to obtain F ⊆ ([m]
n

)
of size at least

(
m
�εn	
)

(
n
�εn	
)2 ≥

(mε

e2n

)εn
,

where the pairwise intersection of sets is of size at most �εn�−1. Such a family is � 1
ε �-

cover-free, for otherwise some pair of sets would intersect on at least � n
�1/ε�� ≥ �εn�

elements. Then (14) gives us (using our assumption n ≤ m1/3)

s ≥ (1/ε)2

4 log(1/ε) + O(1)
log
(mε

e2n

)εn
= Ω

(
n

ε log(1/ε)
logm

)
.

If ε < 1
n , we use the r-cover-free family

(
[m]
1

)
and use (14) to obtain

s ≥ (1/ε)2

4 log(1/ε) + O(1)
logm = Ω

(
n

ε log(1/ε)
logm

)
.

5. Deterministic schemes. We now show a time-space tradeoff result for de-
terministic schemes.

Proof of Theorem 6. Recall that the bitstring used to store the set S ∈ ([m]
n

)
is

called φ(S). Let

TS
def
= {〈�, φ(S)(�)〉 : location � of φ(S) is probed on query

“Is u in S?” for some u ∈ S}.
We now observe that the sets TS have to be incomparable for different S. For, if
TS1

⊇ TS2 for S1 
= S2, store the set S1, and ask the query “Is u in S1?” for an
element u ∈ S2 − S1. The scheme will err on this query, which is a contradiction.
Now each TS is a subset of size at most nt of the set [s] × {0, 1}. It follows, from
the Lubell, Yamamoto, and Meshalkin (LYM) inequality (see, for example, Alon and
Spencer [1, p. 183]), that

(
m
n

) ≤ maxi≤nt
(
2s
i

)
.

We now study deterministic schemes when the number of probes allowed is small.
Proof of Theorem 7, part 1. We will obtain our deterministic scheme from a

randomized (m,n,O(tnm2/(t+1)), 1)-scheme with error probability less than 1
2 . The

randomized scheme we use will be in the standard form: on query “Is u in S?,” the
query algorithm will pick a location randomly from a set Γ(u) and say “Yes” if and
only if a 1 is stored there. The size of Γ(u) will be exactly 2t + 1. To obtain the
deterministic scheme, we read all locations in Γ(u) and say “Yes” if a majority (at
least t + 1) of them contains 1.
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To construct the randomized scheme, we use the method of Theorem 1. Using
calculations similar to those in the proof of Lemma 3.10, one can show that there is
a graph G = (U, V,E), where U = [m] and V = [s], such that s = O(tnm2/(t+1)) and
|Γu| = 2t + 1 for u ∈ U , such that {Γ(u)}u∈U has the (n, t

2t+1 )-intersection property.

By Lemmas 3.6 and 3.4, it follows that there is an (m,n,O(tnm2/(t+1)), 1)-scheme
with error probability less than 1

2 .

Proof of Theorem 7, part 2. Our adaptive scheme uses a combination of the FKS
scheme and the bitvector scheme.

Storing scheme. Given a set T , do the following.
Step 1. Find a prime p < n2 logm such that, if x 
= y, x, y ∈ T , then

x mod p 
= y mod p. The fact that such a prime exists has been shown by
Fredman, Komlós, and Szemerédi [16]. Store p using O(log n+log logm)
bits.

Step 2. Now the set T mod p consists of n elements, each less than n2 logm.
Store this set using the FKS data structure. This requires space
O(n(log n + log logm)).

Step 3. For every x ∈ T , do the following: divide the string x into t blocks
B1, . . . , Bt, each of size logm/t. For each such block Bi, construct a
look-up table of size 2logm/t with a 1 in the index given by Bi. Space
required is nt2logm/t bits.

Space used by the storing scheme is O(n(log n + log logm) + nt2logm/t).

Query scheme. Given a query u, do the following.
Step 1. Read the prime p. This requires O(log n + log logm) bitprobes.
Step 2. Find u mod p. Now check if there is an element y in T such that

u mod p = y mod p using the FKS structure. This requires O(log n +
log logm) bitprobes.

Step 3. If there is no such y, say “No.”
Step 4. If there is such a y, retrieve a pointer to it using O(log n) bitprobes.

Then divide u into t blocks, and check if x = y block by block. This
requires t bitprobes.

The time used by the query scheme is O(log n + log logm) + t.

Finally, we consider deterministic schemes that use two bitprobes. We show that
two nonadaptive probes do not help even for n = 2. We also show that adaptiveness
helps for n = 2.

Proof of Theorem 8, part 1. There are 16 different functions mapping {0, 1}2
to {0, 1}. We will divide them into 3 classes.

1. Degenerate functions. These are the functions depending on at most one
variable. There are 6 such functions, namely, 0, 1, u, y, x̄, ȳ.

2. Inflexible functions. These are the functions f , so that there is a value
of f(x, y) which determines the value of u as well as the value of y. For
instance, x ∧ y = 1 ⇒ x = y = 1. There are 8 such functions, namely,
x ∧ y, x̄ ∧ y, x ∧ ȳ, x̄ ∧ ȳ, x ∨ y, x̄ ∨ y, x ∨ ȳ, x̄ ∨ ȳ.

3. Flexible functions. These are functions which are neither degenerate nor
inflexible. There are 2 such functions, namely, x⊕ y and x̄⊕ y.

Suppose the theorem fails. Fix m at the smallest value for which this happens.
Note that the theorem is trivially true for m = 1. Let U be a universe of size m. The
corresponding scheme associates with each z ∈ U two locations uz and vz in {1, . . . , s}
and a Boolean function fz : {0, 1}2 → {0, 1}. Clearly, if, for some z, fz is constant,
the scheme is incorrect. Now assume that, for some z, fz is degenerate. Assume that
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it depends on its first variable. We can get a scheme for a universe of size m − 1 by
fixing the value of uz, yielding a structure of size s− 1. This is a contradiction. Thus
we can assume that all functions fz are inflexible or flexible. Now assume, to the
contrary, that s < m. Let the multigraph G = (V,E) be given by V = {1, . . . , s} and
E = {ez = (uz, vz) : z ∈ U}. Let an edge ez be denoted flexible if the corresponding
function fz is flexible, and let it be denoted inflexible otherwise. As |E| = m, |V | = s,
and s < m, G contains a cycle C. (As G is a multigraph, it may be the case that C
consists of exactly two identical edges.)

Now there are two cases.

1. The cycle C contains only flexible edges. Let Z be the elements corresponding
to the edges in C. Fix any setting τ of the bits in the data structure. Each
edge ez on the cycle corresponds to an element z ∈ Z, and we can see if z ∈ S
by adding, modulo 2, the setting τ(uz) of the bit uz and the setting τ(vz) of
the bit vz or the setting τ(uz) of the bit uz and the setting τ(vz) of the bit vz.
This quantity summed over all z in Z uniquely determines the parity of the
number of elements of S ∩ Z. But this sum is zero or one depending on the
number of z of the second type. As the sum determines the parity of |Z ∩S|,
either ∅ or {z}, where z is any element of Z, has no valid representation.

2. The cycle C contains an inflexible edge. Let this edge be ez. There is a choice
of z ∈ S or z 
∈ S which makes only one configuration of the values of the bits
uz, vz possible. Fix this choice. Let us assume that it is z ∈ S. (The case
z 
∈ S is similar.) Now let z1 be the other edge on C, adjacent to vz. Having
already fixed vz = uz1 , there are two possibilities: having thus fixed uz1 either
determines whether z1 ∈ S or it does not. If it does, either {z} or {z, z1} has
no valid representation, and we are done. If it does not, we fix the setting
of vz1 in the unique way so that z1 
∈ S. Now let z2 be the other edge on C,
adjacent to vz1 . Having already fixed vz1 = uz2 , there are two possibilities:
fixing uz2 in this manner either determines whether or not z2 ∈ S or it does
not. If it does, either {z} or {z, z1} has no valid representation, and we are
done. If it does not, we fix the setting of vz2 in the unique way so that z2 
∈ S.
Now let z3 be the other edge on C, adjacent to vz2 , etc. Thus, working our
way around the cycle, we finally come to an edge ezl , adjacent to uz. Thus we
have fixed uzl as well as vzl = uz, and we conclude that either {z} or {z, zl}
has no valid representation.

Thus we have arrived at a contradiction, and we conclude s ≥ m.

It is easy to get a three probe nonadaptive scheme for sets of size at most 2
using space O(m1/2). Such a scheme can be obtained, for instance, from the explicit
one-sided error scheme by setting the parameters appropriately.

Proof of Theorem 8, part 2. The structure of the proof is as follows. We will
first define a certain combinatorial object. We then show that the existence of this
object implies the two-probe scheme claimed in the theorem. Then we show, using
the probabilistic method (in particular, the alteration technique), that the desired
object exists.

Thus let U = {1, 2, . . . ,m}. Let an augmented s-partition of U be a system
consisting of

1. a partition of U into classes U1, U2, . . . , Us,
2. a set system M1,M2, . . . ,Ms on {1, 2, . . . , s},
3. a set system N1, N2, . . . , Ns on {1, 2, . . . , s},
4. a family of one-to-one maps fi : Ui → Mi,
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5. a family of one-to-one maps gi : Ui → Ni,

with the following property.

For all Ui 
= Uj , x ∈ Ui, and y ∈ Uj , we have either fi(x) 
∈ Mj and fj(y) 
∈ Mi

or gi(x) 
∈ Nj and gj(y) 
∈ Ni.

Claim 5.1. If an augmented s-partition exists, there is an adaptive two-probe
scheme using 3s bits solving the membership problem.

Proof.

Storing scheme. The scheme will make use of three tables T , T0, and T1, each of
size s. Given a set S = {x, y}, there are three cases.

1. u and y are in the same class, Ui. We let T [i] = 0 and T [j] = 1 for all j 
= i.
We let T0[fi(x)] = T0[fi(y)] = 1 and T0[j] = 0 for all j 
∈ {fi(x), fi(y)}. We
let T1[j] = 0 for all j.

2. u and y are in different classes, x ∈ Ui and y ∈ Uj. Furthermore, fi(x) 
∈ Mj

and fj(y) 
∈ Mi. We let T [i] = T [j] = 0 and T [k] = 1 for all k 
∈ {i, j}. We
let T0[fi(x)] = T0[fj(y)] = 1 and T0[j] = 0 for all j 
∈ {fi(x), fj(y)}. We let
T1[j] = 0 for all j.

3. x and y are in different classes, x ∈ Ui and y ∈ Uj. Furthermore, gi(x) 
∈ Nj

and gj(y) 
∈ Ni. We let T [i] = T [j] = 1 and T [k] = 0 for all k 
∈ {i, j}. We
let T1[gi(x)] = T1[gj(y)] = 1 and T0[j] = 0 for all j 
∈ {gi(x), gj(y)}. We let
T0[j] = 0 for all j.

Query scheme. Given a query q in class Ui, do the following:

1. Read T [i].
2. If it is 0, read T0[fi(q)]. If 1 is seen, say “Yes.” Otherwise, say “No.”
3. If it is 1, read T1[gi(q)]. If 1 is seen, say “Yes.” Otherwise, say “No.”

It is easily seen that the augmented partition property ensures that the scheme
is correct.

The theorem now follows from the following claim.

Claim 5.2. For any m, an augmented O(m3/4)-partition exists.

Proof. Let U ′ = {1, 2, . . . , 2m}. We shall construct a “blemished” augmented
partition of U ′ and then alter it so that it has the right property.

We assume, without loss of generality, that s = 2(2m)3/4 is an integer and di-
vides 2m. Thus we can partition U ′ evenly into U1, U2, . . . , Us, each of size 1

2 (2m)1/4.
Now we choose Mi and Ni independently at random from among all subsets of size
1
2 (2m)1/4 of {1, 2, . . . , s}. We choose fi and gi independently at random from all
one-to-one functions.

Now consider fixed x ∈ Ui, y ∈ Uj for i 
= j. We will bound the probability that
the property fails for this particular pair. Clearly,

Pr[fi(x) ∈ Mj ] =
|Mj |

s
=

1
2 (2m)1/4

2(2m)3/4
=

1

4(2m)1/2
.

By the union bound,

Pr[fi(x) ∈ Mj ∨ fj(y) ∈ Mi] ≤ 1

2(2m)1/2
,

and, similarly,

Pr[gi(x) ∈ Nj ∨ gj(y) ∈ Ni] ≤ 1

2(2m)1/2
.
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As the two events are independent, we get

Pr[(fi(x) ∈ Mj ∨ fj(y) ∈ Mi) ∧ (gi(x) ∈ Nj ∨ gj(y) ∈ Ni)] ≤ 1

8m
.

Therefore, the expected number of pairs (x, y) for which the desired property
does not hold is less than

(
2m
2

)
1

8m < m. Hence there is a choice of Mi, Ni, fi, gi, such
that the number of bad pairs (x, y) is at most m. Now, from each such bad pair,
remove one of the elements. We remove at most m elements, yielding a universe of
size at least m, as desired. For the remaining elements, the property holds, and we
are done.

The bound of O(m3/4) in the above claim has been improved to O(m2/3) by
Radhakrishnan, Raman, and Rao (see [28]).
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ON THE BOUNDARY COMPLEXITY OF THE UNION OF
FAT TRIANGLES∗
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Abstract. A triangle is said to be δ-fat if its smallest angle is at least δ > 0. A connected
component of the complement of the union of a family of triangles is called a hole. It is shown that

any family of n δ-fat triangles in the plane determines at most O
(
n
δ
log 2

δ

)
holes. This improves

on some earlier bounds of Efrat, Rote, Sharir, and Matoušek, et al. Solving a problem of Agarwal
and Bern, we also give a general upper bound for the number of holes determined by n triangles
in the plane with given angles. As a corollary, we obtain improved upper bounds for the boundary
complexity of the union of fat polygons in the plane, which, in turn, leads to better upper bounds
for the running times of some known algorithms for motion planning, for finding a separator line for
a set of segments, etc.

Key words. holes, boundary complexity, fat objects
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1. Introduction and main results. Many basic problems in computational
geometry related to motion planning [SS83, SS83b, SS89, SS90], range searching
[K97, GJ97], computer graphics [AK94], and geographic information systems (GIS)
[BK97] lead to questions about the complexity of the boundary of the union of certain
geometric objects. When the boundary is simple, these problems can usually be solved
more efficiently [GS93]. This was the motivation behind a lot of research during the
past fifteen years, establishing upper bounds for the complexity (or, equivalently, for
the description size) of the union of various objects.

Perhaps the first results of this kind were the following. Given n simply connected
regions in the plane, any two of which share at most two (resp., at most three)
boundary points, the boundary of their union consists of at most 6n−12 (resp., at most
nα(n)) simple arcs, i.e., connected pieces whose interior belongs to the boundary of a
single region [KL86] (resp., [EG89]; here α(n) denotes the extremely slowly growing
inverse of Ackermann’s function). In some sense, this result is the best possible: if
two regions are allowed to cross at four boundary points, then the boundary of their
union may consist of Ω(n2) simple arcs. Indeed, consider n very “skinny” pairwise
crossing triangles, no three of which have a point in common.

However, it was discovered by Matoušek et al. [MP94] that, if we restrict how
skinny our triangles can be, we can still establish a nearly linear upper bound on the
complexity of their union. For any δ > 0, a triangle is said to be δ-fat if each of its
angles is at least δ. (The reciprocal of the smallest angle of a triangle is often called
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its aspect ratio.) It turned out that, for any fixed δ > 0, the boundary of the union of
n δ-fat triangles in the plane consists of at most n log log n/δ3 simple arcs.

The boundary complexity of the union of a family T of triangles (or simply con-
nected regions) is defined as the number of simple arcs along Bd(∪T ), the boundary
of the union of T . A connected component of the complement of ∪T is called a hole.
The heart of the argument in [MP94] was the following statement.

Theorem 0 (Matoušek et al.). Any family of n δ-fat triangles in the plane
determines O

(
n/δ3

)
holes.

The concept of δ-fatness, as well as the above theorem, has been extended to
arbitrary polygons by van Kreveld [K98]. For other extensions and generalizations,
see [SH93], [S94], [ES97], [EK98], and [E99].

For wedges (i.e., cones) in place of triangles, a somewhat better upper bound
was found by Efrat, Rote, and Sharir [ER93]. They proved that the number of holes
determined by n wedges in the plane (and the boundary complexity of their union) is
O
(
n
δ2 log

2
δ

)
.

Our first theorem generalizes and strengthens this result.
Theorem 1. Any family of n δ-fat triangles in the plane determines O

(
n
δ log

2
δ

)
holes. This bound is tight up to the logarithmic factor.

Theorem 1 can be used to establish a more general upper bound for the number
of holes determined by a family of triangles with given angles.

Theorem 2. Let T = {T1, . . . , Tn} be a family of n > 1 triangles in the plane,
and let αi denote the smallest angle of Ti (1 ≤ i ≤ n). Suppose 0 < α1 ≤ α2 ≤ · · · ≤
αn, and let k ≤ n be the largest integer satisfying

∑k
i=1 αi < π.

Then T determines O(nk log k) holes. Furthermore, there exists a family T ′ =
{T ′1, . . . , T ′n}, where T ′i and Ti are congruent for all i, and T ′ determines Ω(nk)
holes.

Of course, the same result applies to wedges, provided that their angles are sep-
arated from π. Moreover, in this case, an almost identical upper bound holds for the
boundary complexity of the union.

Theorem 3. Let T be a family of n wedges in the plane with angles 0 < α1 ≤
· · · ≤ αn < π. Let k ≤ n be the largest integer satisfying

∑k
i=1 αi < π.

If k ≥ 2, then the boundary complexity of ∪T is O(nk log k). Furthermore, there
exists a family of n wedges with angles α1, . . . , αn which determines Ω ((π − αn)nk)
holes.

Notice that Theorem 3 bounds the boundary complexity instead of the number of
holes. The bound in Theorem 2 for the number of holes in families of triangles cannot
be extended to boundary complexity as there are families of equilateral triangles (for
which k = 2) with superlinear boundary complexities (at least Ω(nα(n)); cf. [WS88]).

In some applications, e.g., the overlay of triangulated environments in GIS, we
cannot assume that all of the participating triangles are fat (have bounded aspect
ratios). However, very often most of them satisfy this condition [ZS99]. To deal
with these situations, Agarwal and Bern [AB99] asked whether Theorem 0 can be
generalized as follows. Let T be a family of n triangles in the plane, whose average
aspect ratio is bounded by a constant. That is,

∑n
i=1

1
αi
= O(n), where αi denotes

the smallest angle of the ith triangle. Is it then true that T determines only O(n)
(or nearly a linear number of) holes? Theorems 2 and 3 answer this question in the
negative. Indeed, let

αi =

{ 1√
n

if 1 ≤ i ≤ √n,
1 if

√
n < i ≤ n.
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Then we have
∑n
i=1

1
αi
< 2n, but, according to the second statement of Theorem 2,

the number of holes can be as large as Ω(n3/2). This is true even for wedges (see
Theorem 3). The first statement of Theorem 2 shows that this bound is tight, apart
from the logarithmic factor.

In the case when some of the wedges have angles very close to π, Theorem 3
is not sufficiently tight. A more careful analysis can account more precisely for the
contribution of the convex wedges with angles close to π.

Theorem 4. Let T be a family of n wedges in the plane with angles 0 < α1 ≤
· · · ≤ αn < 2π. Let l ∈ [0, n] be the largest integer satisfying αl < 3π/4, and let
m ∈ [l, n] be the largest integer satisfying αm < π. (We set l = 0 if α1 ≥ 3π/4, and

we set l = m = 0 if α1 ≥ π.) Let k be the largest integer with
∑k
j=1 αj < π, and, for

any 1 ≤ i ≤ m, let ki ∈ [0, i) be the largest integer such that
∑ki
j=1 αj < π − αi.

Then the boundary complexity of ∪T is O(n +
∑l
i=1 ki log ki +

∑m
i=l+1 ki) =

O(n+lk log k+
∑m
i=l+1 ki), where the sum is taken over all i with ki �= 0. Furthermore,

there is a family of n wedges with angles α1, . . . , αn which determines
∑m′

i=1 ki+m
′+1

holes, where m′ = min{m,n− 1}.
The rest of the paper is organized as follows. The proofs of Theorems 1, 2–3, and

4 are presented in sections 2–3, 4, and 5, respectively. The last section contains some
combinatorial and algorithmic consequences of the main results.

2. Reduction to rhombs and assignment of holes. By a polygon we mean
a simply connected (bounded or unbounded) region in the plane, whose boundary
consists of a finite number of straight-line segments and possibly two half-lines. A
family of polygons is said to be in general position if no three lines supporting different
sides of the polygons pass through the same point. We say that a point is incident to
a hole H if it lies on the boundary of H.

Given a family P of polygons in the plane, let h(P) and H(P) denote the number
of holes determined by P and the minimum number of nonoverlapping convex poly-
gons the union of these holes can be partitioned into, respectively. Furthermore, let
c(P) stand for the number of concave angles of 2 \ ∪P, the union of the holes.

Lemma 2.1. For any family P of polygons in the plane, we have

h(P) ≤ H(P) ≤ h(P) + c(P).

Proof. The lower bound on H(P) follows from the fact that, to cover each hole,
we need at least one convex set. To establish the upper bound, we show that every
hole with k concave vertices can be partitioned into k + 1 convex sets. In the case
when k = 0, the hole itself is convex. For k > 0, it is enough to observe that the total
number of concave vertices decreases by cutting the hole into two along the angular
bisector at a concave vertex.

Lemma 2.2. Let P and P ′ be two families of polygons in the plane such that
∪P ′ ⊆ ∪P and any segment connecting two points of 2 \ ∪P which intersects ∪P
also intersects ∪P ′.

Then H(P) ≤ H(P ′).
Proof. For any partition of 2\∪P ′ into a family C of convex sets, {C\∪P | C ∈ C}

forms a partition of 2 \ ∪P into convex sets. Note that we needed the condition in
the lemma to guarantee that each member of the latter family is convex.

For the rest of this section, we fix an angle δ ≤ π/3 and set k := �2π/δ�. Clearly,
we have k ≥ 6. Fix any straight line �0 in the plane. We say that a segment (line,
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Fig. 1. Substituting three canonical rhombs for a triangle.

half-line) is canonical if the angle between its supporting line and �0 is an integer
multiple of π/k. A rhomb is called canonical if (i) all of its sides are canonical, and
(ii) two of its angles are equal to π/k.

Next we show that Theorem 1 can be reduced to the following theorem.
Theorem 2.3. Any family R of n canonical rhombs in the plane determines

O(nk log k) holes.
Proof of Theorem 1 (using Theorem 2.3). Let T be a family of n δ-fat triangles

in the plane. Consider a vertex A of a triangle ABC ∈ T . By the choice of k, there
are at least two canonical half-lines emanating from A, whose initial segments belong
to ABC. Therefore, we can pick a point A′ on the segment BC and two other points,
D and D′, in ABC such that RA = ADA′D′ is a canonical rhomb whose angles at A
and A′ are equal to π/k. Let RA denote such a rhomb. Similarly, we can define two
other canonical rhombs, RB and RC , within the triangle ABC. (See Figure 1.)

Let T ′ denote the family obtained from T by replacing every triangle ABC ∈ T
by the three corresponding canonical rhombs, RA, RB , and RC . By Theorem 2.3,
T ′ determines O(nk log k) holes, i.e., h(T ′) = O(nk log k). Now Lemmas 2.1 and 2.2
imply that

h(T ) ≤ H(T ) ≤ H(T ′) ≤ h(T ′) + c(T ′).

In other words, the number of holes determined by T may be larger than the number
of holes determined by T ′, but the difference cannot exceed the total number of
concave corners (vertices) in all holes determined by T ′. However, every such corner
corresponds to a vertex of one of the 3n rhombs defined above, so the difference is at
most 12n.

In the rest of this section and the next section, we establish Theorem 2.3. We
may and will assume without loss of generality that the rhombs in R are in general
position. We use the term edge only for the sides of the rhombs in R. We call two
edges homothetic if they are corresponding sides of two homothetic rhombs. We orient
every edge e of a rhomb toward its vertex of angle π/k. This vertex is called the apex
of e. The subsegments of e inherit the orientation of e.
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Let e be an edge, and let S be a homothecy class of edges not containing e. There
may be several holes whose boundaries contain a piece of e next to a piece of some
element of S. The first and last such holes along e are said to be extreme. Since there
are 4n edges in at most 4k homothecy classes, the number of extreme holes is at most
32kn. We call the nonextreme holes intermediate. Clearly, it is sufficient to bound
the number of intermediate holes. As every hole incident to a vertex of a rhomb is
extreme, the intermediate holes are convex.

Let H be an intermediate hole. Consider two consecutive segments, a and b, on
the boundary of H, belonging to the edges e and f , respectively, and denote their
common endpoint by X. Let P and Q denote the apices of e and f , respectively.
Suppose that b is oriented away from X. We say that H is a hole assigned to e if we
have |X − P | ≤ |X − Q|. The distance |X − P | is called the depth of H along e or,
if it leads to no confusion, simply the depth of H. We say that H is an in-hole or an
out-hole assigned to e, depending on whether a is oriented toward X or away from
X. See Figure 2.

Lemma 2.4. Every intermediate hole is assigned to at least one edge.
Proof. Let H be an intermediate hole. If the segments bounding H are not

cyclically oriented, we find two consecutive segments, both oriented away from their
common endpoint. In this case, H is an out-hole assigned to one of the edges con-
taining these two segments.

Suppose that the segments forming the boundary of H are cyclically oriented. Let
X1, X2, . . . , Xk = X0 denote the vertices of H in this cyclic order, and let Pi denote
the apex of the edge containing Xi−1Xi (1 ≤ i ≤ k). Set Pk+1 := P1 and Xk+1 := X1.
For every 1 ≤ i ≤ k, if H is not an in-hole assigned to the edge containing Xi−1Xi,
then we have

|Xi − Pi| > |Xi − Pi+1| = |Xi −Xi+1|+ |Xi+1 − Pi+1|.
Summing up these inequalities, we obtain

k∑
i=1

|Xi − Pi| >
k∑
i=1

|Xi − Pi|+ Per(H),

where Per(H) stands for the perimeter of H. This contradiction proves that H is an
in-hole assigned to an edge supporting one of its sides.

Next we show that the depths of the in-holes along an edge are Ω(1/k) apart in a
logarithmic scale, and the same is true for the depths of the out-holes. (The depth of
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an in-hole can be arbitrarily close to the depth of an out-hole though.) More precisely,
we have the following lemma.

Lemma 2.5. Let H be an in-hole (out-hole) assigned to an edge e, whose depth
is d. Then the depth of no other hole assigned to e is between d and

(
1− 1

k

)
d (resp.,

between d and
(
1 + 1

k

)
d).

Proof. Let a and b be two consecutive segments of the boundary of H causing H
to be assigned to e. Let X be their common endpoint, let f be the edge containing
b, and let P and Q be the apices of e and f , respectively. Clearly, a is on e oriented
toward X, and b is oriented away from X. The depth of H is d = |X − P |. Since H
is not an extremal hole, e must cut through the rhomb belonging to the edge f . The
length of the piece of XP covered by this rhomb is at least

|X −Q| sin π
k
≥ |X − P | sin π

k
>
d

k
.

Thus the depth of no hole along e can belong to the interval ((1 − 1/k)d, d). The
corresponding statement for out-holes can be proved similarly.

3. Base points. Theorem 2.3 would immediately follow from Lemma 2.5 if we
could show that the ratio of the largest and smallest depths of an in-hole (and out-
hole) along the same edge is bounded by a polynomial of k. It is not hard to see that
this holds for wedges rather than rhombs (and this can be used to give a direct proof
of Theorem 3), but the general statement is false. We prove instead that the depths
of the intermediate holes (in-holes and out-holes) assigned to a given edge fall into a
small number of short intervals.

To formulate our result precisely, we need some preparation. We assign at most
three so-called base points to each edge, according to the following definition.

Definition 3.1 (base points). Let e = NP be an edge of a rhomb ∆ = NPSU ∈
R, and let e be oriented toward P . Let Y denote the point of e closest to N that does
not belong to the interior of any member of R. Let both P and Y be assigned to e
as base points. Further, let h denote the oriented half-line (ray) starting at N and
passing through U . Consider all edges homothetic to e that either intersect h beyond U
or intersect both h and the edge SP . If there is no such edge, then no other base point
is assigned to e. Otherwise, let e′ denote the edge with this property that intersects h
closest to N . If e′ intersects h beyond U , then we say that e′ is far from e and set
Y ′ := e′ ∩ h. If e′ intersects the segment PS, then we say that e′ is close to e and
set Y ′ := e′ ∩PS. In both cases, Y ′ is the third base point assigned to e which will be
referred to as the base point forced by e. Note that this third point is not on e. (See
Figure 3.)

The depth of a base point Y sitting on an edge e is defined as the distance between
Y and the apex of e.

Using the above notation, no point of the open interval Y N can be incident to a
hole. Thus the depth of a hole assigned to e cannot exceed the depth of the base point
Y on e. Consequently, the depth of each hole assigned to e is between the depths of
some pair of consecutive base points on e. Although there may be many base points
along the same edge, the total number of base points is at most 12n.

Lemma 3.2. If there are two consecutive base points on an edge e with depths d1
and d2 > k

2d1, then there is at most one intermediate hole assigned to e with depth
belonging to the interval (d1, d2/k

2).
Proof. Let e = NP be an edge oriented toward P . Choose two consecutive

base points on e with depths d1 < d2, respectively. Let H be an (intermediate) hole
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assigned to e with depth d satisfying d > d1. We prove that, for every other hole
assigned to e, whose depth d′ is larger than d, d′ ≥ d2/k2 holds.

As before, let a and b be the two consecutive segments on the boundary of H
causing H to be assigned to e. Let the segment b belong to the edge f with apex Q.
Let X be the common endpoint of a and b. Clearly, a is on e, and b is oriented away
from X.

The proof is based on the following claim.

Claim. There is a base point Y on e of depth at least the depth of H such that
the angle PY Q is at least π

2k .

Proof. We assume without loss of generality that e is vertical and that its upper
endpoint is P . As b is oriented away from X, and H is not an extreme hole, we
find another edge e0, homothetic to e, which intersects XQ. Consider the sequence
of edges e0, e1, e2, . . . , et, where ei is the edge homothetic to e, containing the base
point forced by ei−1 (1 ≤ i ≤ t). The last edge of this sequence, et, forces no base
point. (See Figure 4.) Let ei be the edge of the rhomb ∆i = NiPiSiUi ∈ R with
ei = NiPi oriented toward Pi, and let hi be the half-line starting at Ni and passing
through Ui (0 ≤ i ≤ t). Notice that hi intersects ei+1 for i < t, and denote this point
of intersection by Xi+1. The intersection of f and e0 is denoted by X0. Let Π be the
directed polygonal path QX0N0X1N1 . . . XtNt followed by the half-line ht. Since all
segments of Π (except maybe QX0) are pointing downward and are at least as steep
as f , X must lie above Π.

We distinguish two cases.

Case I. e = ei0 for some 1 ≤ i0 ≤ t. The point Xi0 ∈ Π lies below X on the same
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vertical edge e. Let Y denote the base point on e forced by ei0−1. If e is far from
ei0−1, the point Y coincides with Xi0 , so it is below X. If e is close to ei0−1, the open
interval Xi0Y belongs to the interior of ∆i0−1, and the point X incident to H cannot
lie on this interval. Therefore, in this case, Y cannot be above X either.

For 0 ≤ i ≤ t, denote by σi the strip between the parallel lines containing PiSi
and NiUi. Notice that, if ei is close to ei−1 (1 ≤ i ≤ t), then σi contains σi−1.

Let 1 ≤ j1 < j2 < · · · < js be the sequence of indices 1 ≤ j ≤ i0 for which ej is
far from ej−1, and let j0 = 0. For 1 ≤ i ≤ s, the portion of Π between Xji−1 and Xji
is contained in σji−1. Thus Xji−1 is below the line Pji−1Uji−1, while Xji is above the
same line. This implies that the angle Xji−1XjiPji is larger than π/(2k). If js = i0,
we have Xjs = Xi0 = Y . Otherwise, Xjs ∈ σi0−1, while Y is on the upper boundary
of this strip, so the angle XjsY P is at least π/k. Since we have bounded the slope of
each portion of Π, combining these bounds, it follows that the angle PY Q is at least
π/(2k). This completes the proof of the claim in case I.

Case II. e �∈ {ei : 1 ≤ i ≤ t}. The path Π now cannot cross e. Otherwise,
let X ′ be this point of intersection, and suppose X ′ lies on the half-line hi (i ≤ t).
When determining the base point forced by ei, we must consider the edge e, since the
interval X ′P contains the point X incident to the hole H and thus cannot be entirely
covered by ∆i. So we have that either e = ei+1 or Xi+1 lies between Ni and X

′. Both
are contradictory to our assumptions—the latter since X ′ is not on Π in this case.

So e must lie entirely above Π. Let l denote the line containing e, and let Z be
the intersection point l ∩Π. Suppose that Z belongs to the nonvertical segment of Π
starting at the point Ni0 for some i0 ≤ t.

Let j be the largest index between (and including) 1 and i0 for which ej is far
from ej−1. If there is no such index, set j = 0. It follows in exactly the same way as
in the previous case that the angle QXjPj is at least π/(2k). Let Y denote the point
of e closest to N that does not belong to the interior of any rhomb in R. Recall that,
according to Definition 3.1, Y is a base point, and notice that it does not lie above X.

If l intersects ∆i0 , the point Xj is below the line Pi0Si0 , while Y
′ is on this line

or above it. Therefore, in this case, the angle XjY P is at least π/k. If l does not
intersect ∆i0 , consider the portion of Π between Xj to Z, and notice that it lies in
the strip between the lines Pi0Si0 and Ni0Ui0 . Thus Xj is below the line Pi0Ui0 , but
Z (and thus Y ) is above the same line. This implies that, in this case, the angle
XjY P is also at least π/(2k). Combining this with the same lower bound for the
angle QXjPj , we obtain that the angle PY Q is at least π/(2k). This completes the
proof of the claim.

Now we finish the proof of Lemma 3.2:

The depth of the base point Y is larger than d1; thus we have |P −Y | ≥ d2. Using
the law of sines for the triangle QYX, we obtain |Y −X| ≤ |Q−X|/ sin π

2k . Since H
was assigned to e, we have that |P −X| ≤ |Q−X|. Therefore,

d2≤ |P − Y | = |P −X|+ |X − Y |
≤
(
1 +

1

sin π
2k

)
|Q−X| ≤ k|Q−X|.

Note that the rhomb in R belonging to the edge f covers an interval of e, whose
length is at least |Q−X| sin(π/k) ≥ d2/k2. As X is an endpoint of this interval, any
hole assigned to e, whose depth d′ is larger than the depth d = |P −X| of H, must
satisfy the inequality d′ > d2/k2; hence the lemma is true.
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Proof of Theorem 2.3. According to Lemma 2.5, the depths of the intermediate
holes assigned to an edge are separated from each other by Ω(1/k) in a logarithmic
scale. By Lemma 3.2, if an edge has c + 1 base points, then the depths of all holes
assigned to this edge, except for at most c of them, fit in c intervals, each of length
2 log k in logarithmic scale. Thus this edge has O(ck log k) holes assigned to it. Thus,
by Lemma 2.4, the total number of intermediate holes isO(nk log k). Since the number
of extreme holes is O(nk), Theorem 2.3 follows.

4. Generalizations—proofs of Theorems 2 and 3.
Proof of Theorem 2. Obviously, the triangles Tk+1, . . . , Tn are π/(k + 1)-fat. By

Theorem 1, they determine O(nk log k) holes. By adding the first k triangles, we
increase the number of intersection points and, therefore, the number of holes by
O(nk).

As for the construction, let l = �k/2�, and arrange T ′1, . . . , T ′l so that any two
intersect in a single point v, and all of them are contained in a right angle wedge W
with apex v. This is possible because we have

∑l
i=1 αi < π/2. Let ε be the distance

of v from the nearest other vertex of T ′1, . . . , T
′
l . We place T

′
i for i > l so that

• T ′i meets both rays bounding W but does not contain v;
• T ′i ∩W is contained in the ball of radius ε around v;
• the sets T ′i ∩W are pairwise disjoint for i > l.

All of these conditions can be satisfied by placing the triangles one by one so that we
put a vertex of the next triangle, corresponding to an acute angle, sufficiently close to
v. The obtained configuration has (l− 1)(n− l+ 1) holes inside W . This quantity is
Ω(nk), as required, unless l = 1. In the latter case, we arrange the triangles T ′i (i > 1)
so that all of them have a point in common outside T ′1, and their intersections with
T ′1 are distinct single points. These triangles determine at least n− 1 holes.

We continue with Theorem 3. (Notice that it is a simple special case of Theo-
rem 4.)

Proof of Theorem 3. First we prove the O(nk log k) bound for the number of
holes determined by the convex wedges in T . As we have indicated before, the direct
proof of this bound along the lines described in section 2 is simpler than the proof of
Theorem 1. However, at this point, it is more convenient to deduce it from Theorem
2. Let h be the number of holes determined by the wedges. First, we split each wedge
with an obtuse angle into two congruent wedges. Then we replace each wedge by a
triangle, intersecting it with a half-plane that contains all intersection points between
the boundaries of the original wedges. We make sure that all new angles introduced
exceed π/4. Following this procedure, we obtain a family of at most 2n triangles that
determine at least h − n + 1 holes. The value k for this new family (as defined in
Theorem 2) is at most 3 larger than the corresponding value for the original family
of wedges. Applying Theorem 2 to the triangles, we obtain the desired bound for
wedges.

To prove the same upper bound for the boundary complexity, notice that αi ≥
π/(k + 1) for i > k. As in the proof of Theorem 2, we can disregard the first k
wedges because their contribution to the boundary complexity is at most 4kn. We
proceed as in [MP94]. We partition the remaining wedges into 2k + 2 classes so that
all wedges belonging to the ith class contain in their interior a half-line having a
2πi/(2k+2) positive angle from a reference direction. Now every vertex of the union
of all wedges in a given class is either the apex of a wedge or is the last vertex along
one of the open half-lines bounding the wedges. Thus the boundary complexity of
this union is linear in the number of wedges in the class. Using the combination
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lemma of [EG90] (see also Lemma 2.1 in [MP94]) to merge the classes in a binary
tree-like fashion, it follows that the boundary complexity of the union of all wedges in
all classes is O(nk log2 k). To get rid of the extra log k factor, we consider the family
of wedges T ′ we obtain at an intermediate step through the combination process. It
is the union of some j of the original 2k + 2 families. We can make sure that these
are j consecutive families. Applying an affine transformation, if necessary, we can
achieve that the angle of every wedge belonging to these families is Ω(1/j). Since
such a transformation does not change the number of holes, we obtain the better
bound O(mj log j) for the number of holes determined by T ′, where m is the number
of wedges in T ′. Using the combination lemma with this better bound, we conclude
that the boundary complexity of T is O(nk log k).

To verify the last statement of Theorem 3, we use almost the same construction
as in the proof of Theorem 2. The only difference is that now we have to start with a
wedge W whose angle is smaller than π − αn; otherwise, no wedge of angle αn could
intersect it in the required manner. Let l ∈ [0, n/2] be the largest integer satisfying∑l
i=1 αi < π − αn. Clearly, we have l ≥ min{�(1− αn/π)k�, n/2}. Select l wedges in

W with angles α1, . . . , αl such that the intersection of any two is the apex v of W .
Then choose n− l wedges of angles αl+1, . . . , αn such that

• each of them intersects both boundary half-lines of W ;
• none of them contains v;
• their intersections with W are pairwise disjoint bounded sets.

The resulting family determines (l− 1)(n− l+ 1) holes in W . This is Ω((π − αn)nk)
unless l ≤ 1. In the latter case, we use a trivial construction similar to the one
described at the end of the proof of Theorem 2: we pick n− 1 wedges that intersect
the remaining wedge in distinct single points. This family determines at least n − 1
holes.

5. Wedges of angles close to π—Theorem 4. This section is devoted to the
proof of Theorem 4.

First we establish the upper bound O(B) for the number of holes in T , where
B = m+lk log k+

∑m
i=l+1 ki. The same bound on the boundary complexity then follows

directly from the combination lemma of [EG90]: by Theorem 3, and the boundary
complexity of the subfamily consisting of the l smallest wedges in T is O(lk log k),
and the boundary complexity of the subfamily consisting of the next m− l wedges of
T is O(m), while the boundary complexity of the family of the n−m largest wedges
of T (whose angles are at least π) is clearly O(m), as it determines a single convex
hole.

We proceed as in the proof of Theorem 1, but now we have to deal with different
angles.

Fix a reference direction, and say that a wedge is small if its angle is π/2s for
some integer s ≥ 2 and if the angles between its boundary rays and the reference
direction are integer multiples of π/2s. A wedge is large if its angle is π − 2π/2s for
some integer s ≥ 2 and if the angles between its boundary rays and the reference
direction are integer multiples of π/2s.

Let Wi be the wedge in T of angle αi, and let Pi be its apex. For i ≤ l, define W ′i
to be the maximal small wedge with apex Pi that is contained in Wi. For l < i ≤ m,
let W ′i be the maximal large wedge with apex Pi that is contained in Wi. Let T ′ =
{W ′i |1 ≤ i ≤ m}. By Lemmas 2.1 and 2.2, we have

h(T ) ≤ H(T ) ≤ H(T ′) ≤ h(T ′) +m.
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Thus, when passing from T to T ′, the number of holes cannot decrease by more
than m.

Let α′i denote the angle of the wedge W
′
i (i ≤ m), and let k′ and k′i be defined

for T ′ in exactly the same way as k and ki were defined for T (1 ≤ i ≤ m). Notice
that αi/4 < α′i ≤ αi, so k′ ≤ 4k + 3. Furthermore, we have π − α′i < 4(π − αi),
which implies that k′i ≤ 16ki + 15. Thus it is sufficient to prove the desired upper
bound on the number of holes determined by the modified family T ′. For notational
convenience, from now on, we assume that T ′ = T , i.e., that T consists of l small and
m− l large wedges.

We use the terms wedge, apex, ray, and hole only for the wedges in T , their apices,
their rays, and the holes determined by them. Assume without loss of generality that
no three rays have a point in common. We say that two rays are homothetic if they
are corresponding sides of two wedges that are translates of each other.

A triplet (X, r1, r2) is called a vertex if X is the intersection point of two distinct
rays, r1 and r2, and it lies on the boundary of a hole. Our plan is to define several
special types of vertices, to bound the number of vertices of each type separately, and
finally to bound the number of holes by showing that each hole has a point on its
boundary that appears in a vertex of some special type. A vertex (X, r1, r2) is said
to be small (large) if both of the wedges supporting r1 and r2 are small (resp., large)
wedges. The number of small and large vertices can be bounded by the boundary
complexity of the family consisting of all small or all large wedges in T , and, by
Theorem 3, we have the following claim.

Claim 5.1. There are O(lk log k) small and O(m) large vertices.

In what follows, when we consider a vertex (X, r1, r2), the wedges supporting r1
and r2 will be denoted by W1 and W2, respectively. The apices of W1 and W2 will be
denoted by P1 and P2, respectively. If a vertex is neither small nor large, then it is
said to be hybrid. For a hybrid vertex (X, r1, r2), one of W1 and W2 is small, and the
other is large. In this case, let i and j denote the indices of the corresponding small
and large elements of T , respectively, with angles αi = π/2s and αj = π − 2π/2t,
respectively, where 1 ≤ i ≤ l, l + 1 ≤ j ≤ m, s ≥ 2, and t ≥ 2.

A vertex (X, r1, r2) is called strongly extremal if it is the first or last vertex along
r1 or r2. Obviously, we have the following claim.

Claim 5.2. There are at most 4m strongly extremal vertices.

A hybrid vertex (X, r1, r2) is said to be blunt if s < t. Considering the canonical
properties of the wedges in T , we see that, if a blunt vertex (X, r1, r2) is not strongly
extremal, then the boundaries of the wedges meet in three vertices, and X is the
middle one (along either boundary). Furthermore, if W1 is large, we find that r2 is
perpendicular to the angular bisector of W1 (see Figure 5).

We claim that, along a ray bounding a large vertex, there is at most one blunt
vertex that is not strongly extremal. Suppose, for contradiction, that (X, r1, r2) and
(X, r1, r

′
2) are both blunt and not strongly extremal and W1 is a large wedge with

apex P1. We may also assume that X belongs to the interval X ′P1. Here the ray r
′
2

is parallel to r2, so the wedges W1 and W2 together cover the part of r
′
2 on one side

of X ′ (see Figure 5). Therefore, (X ′, r1, r′2) must be strongly extremal, which is a
contradiction. Therefore, the number of blunt vertices that are not strongly extremal
is at most 2m, which implies the following claim.

Claim 5.3. The total number of blunt vertices is O(m).

A hybrid vertex (X, r1, r2) is said to be sharp if s > t+ log k.

Claim 5.4. The number of sharp vertices is O(
∑m
j=l+1 kj).
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Fig. 5. Blunt vertices.

Proof. Let (X, r1, r2) be sharp. We have i ≤ kj , for otherwise none of the angles
of the first kj + 1 wedges in T would exceed π/2s < π/2t+log k, and their sum would
be less than π−αj = 2π/2t, contradicting the definition of kj . Thus there are at most
O(kj) sharp vertices involving the jth wedge in T (j > l), and Claim 5.4 follows.

A vertex (X, r1, r2) is called extremal if it is the first or the last vertex along r1
among all vertices of the form (X ′, r1, r′2) with r

′
2 being homothetic to r2.

Claim 5.5. The number of extremal vertices is O(B).
Proof. It is sufficient to establish this bound for those hybrid extremal vertices

which are neither strongly extremal nor blunt nor sharp. Fix such a vertex (X, r1, r2).
We distinguish two cases.

Case i. W1 is small, and W2 is large. For a given small wedge W1 (which
determines s), there are at most log k + 1 possible values for t, without the vertex
being sharp or blunt. For a given t, there are at most four homothecy classes possible
for W2 without the vertex being strongly extremal. Thus each ray of a small wedge
is involved in at most 8 log k + 8 extremal vertices satisfying the condition of case i.
Therefore, the total number of extremal vertices of this type is O(l log k).

Case ii. W1 is large, and W2 is small. Fix W1 to be the jth wedge in T . This
determines the value of t. For a given value s > t, there are less than 2s−t+2 possible
homothecy classes for W2 without the vertex being strongly extremal. Notice that,
if z among these classes for all s > t are nonempty, then the sum of �z/2� of the
smallest angles is less than π − αj = 2π/2t. This implies that z = O(kj). The total
number of extremal vertices involving r1 that satisfy the condition in case ii is O(kj),
and the total number of all extremal vertices of this type is O(

∑m
i=l+1 ki).

A vertex (X, r1, r2) is called covered if the interval XP1 is at least as long as the
interval XP2 and P1 and W2 lie on different sides of r2.

Claim 5.6. The number of covered vertices is O(B).
Proof. It is enough to consider those hybrid covered vertices that are neither

extremal nor sharp nor blunt. Let (X, r1, r2) be such a covered vertex. As (X, r1, r2)
is not extremal, there exists another vertex (X ′, r1, r′2) for which X

′ belongs to the
interval XP1 and the ray r

′
2 is homothetic to r2. Here the wedgeW

′
2, whose boundary
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ray is r′2, covers all of r2 except an interval P2Q. Our goal is to show that W1

covers a sufficiently large subinterval XY of P2Q. Considering these intervals XY
for different covered vertices involving r2, we find that they cover any point at most
twice. Therefore, any lower bound on the lengths of these intervals yields an upper
bound on their number. As in the proof of the previous claim, we distinguish two
cases.

Case i. W1 is small, and W2 is large. By the relative position of the wedges
W1, W2, and W

′
2, we have |P2Q| = O(|XY |/2s−t). This implies that r2 appears in

O(kj + 1) covered vertices that satisfy the condition of case i. Therefore, the total
number of covered vertices of this type is O(m+

∑m
j=l+1 kj).

Case ii. W2 is small, and W1 is large. Here we have to use that (X, r1, r2) is not
sharp so that s ≤ t+log k. As in case i, one can show that |P2Q| = O(k|XY |). Hence
r2 appears in O(k) covered vertices satisfying the condition of case ii, and the total
number of covered vertices of this type is O(lk).

The proof of the upper bound in Theorem 4 can now be completed by showing
that each hole determined by T has a point on its boundary that appears as the
leading term of a strongly extremal or a covered vertex. Indeed, if no such strongly
extremal vertex exists, then the hole must be a (bounded) convex polygon. Consider
the orientation of the edges inherited from the rays oriented toward their apices. If it
is not cyclic, we find a vertex X with two outgoing edges. Obviously, either (X, r1, r2)
or (X, r2, r1) is covered, where r1 and r2 are the two rays containing X. We deal with
the cyclically oriented case in exactly the same way as in the proof of Theorem 1:
assuming that no vertex around the hole is covered, we obtain several inequalities,
whose sum gives a contradiction. This concludes the proof of the upper bound in
Theorem 4 on the number of holes as well as on the boundary complexity of T .

It remains to describe a construction for the lower bound. Choose an ε > 0 such
that ε < (π − αi −

∑ki
j=1 αj)/n for all i, and let �0 be a fixed horizontal line. By

the direction of a half-line h from a point P on �0, we mean the angle between the
half-lines h and the part of �0 to the right of P . We place the wedges Wi with angles
αi (i = 1, . . . ,m

′) one by one, according to the following rules.
1. The apex of Wi is on �0 sufficiently to the right so that all intersection points
of boundaries of wedges already placed are outside Wi and to the left of it.

2. Wi is above �0.
3. The direction of the right ray of Wi is ε larger than the direction of the left
ray of Wki , or it is simply ε if ki = 0.

By the choice of ki and ε, all of the above requirements can be satisfied. The
value H = H({W1, . . . ,Wm′}) of the resulting family (see the beginning of section 2
for the definition) is the bound in Theorem 4 for the number of holes. For i > m′, we
place a wedge of angle αi such that it does not contain any intersection point between
boundaries of Wj for j ≤ m′, but one of its boundary rays is on �0 and contains the
apices of all Wj (j ≤ m′).
6. Concluding remarks and applications. As in [MP94], Theorems 1 and 2

yield the following upper bounds for the boundary complexity of a family of triangles.
Corollary 6.1. The boundary complexity of any family of n δ-fat triangles in

the plane is O(nδ (log log n log
2
δ + log

2 2
δ )). Moreover, the boundary of the union can

be computed in time O(n logn
δ (log log n log 2

δ + log
2 2
δ )).

Corollary 6.2. Let T = {T1, . . . , Tn} be a family of n > 1 triangles in the
plane, and let αi denote the smallest angle of Ti (1 ≤ i ≤ n). Suppose 0 < α1 ≤ α2 ≤
· · · ≤ αn, and let k ≤ n be the largest integer such that

∑k
i=1 αi < π.
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Then the boundary complexity of T cannot exceed O(nk(log log n log k+log2 k)).

Plugging Theorem 3 into the analysis of the running time of the algorithm de-
scribed in [ER93], we obtain the following two results.

Corollary 6.3. The union of a family of n δ-fat wedges in the plane can be
computed in time O

(
n
δ log

2 2
δ + n log n

)
.

A line � is called a separator for a family S of pairwise disjoint segments in the
plane if � avoids all members of S and there is at least one member of S on both of
its sides.

Corollary 6.4. Given a family S of n line segments in the plane such that the
ratio between the length of the shortest segment in S and the diameter of ∪S is at
least δ > 0, there is an algorithm which determines whether S admits a separator,
and finds one if it exists, in O

(
n
δ log

n
δ log

2 1
δ

)
time and O

(
n
δ log

2 1
δ

)
space.

Van Kreveld [K98] extended the definition of fatness to a (not necessarily convex)
simple polygon. He proved that every δ-fat simple polygon of k vertices can be covered
by O(k) δ-fat triangles, and such a covering can be constructed in O(k log k) time.
Therefore, Theorem 1 generalizes to δ-fat simple polygons whose total number of sides
is n.

Efrat [E99] introduced another generalization of the notion of fatness to com-
pact connected regions of “constant description complexity” depending on two real
parameters. He established an upper bound on the boundary complexity of a system
of “fat” objects according to this definition. The dependence of his bounds on the
parameters can be improved by using Theorem 1 instead of the results in [MP94].
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Verita, Switzerland, 1999.

[AK94] P. K. Agarwal, M. J. Katz, and M. Sharir, Computing depth orders and related prob-
lems, in Algorithm Theory—SWAT ’94, Lecture Notes in Comput. Sci. 824, Springer-
Verlag, Berlin, 1994, pp. 1–12.

[AF92] H. Alt, R. Fleischer, M. Kaufmann, K. Mehlhorn, S. Näher, S. Shirra, and C.
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Abstract. We give two algorithms for finding all approximate matches of a pattern in a text,
where the edit distance between the pattern and the matching text substring is at most k. The first

algorithm, which is quite simple, runs in time O(nk3

m
+n+m) on all patterns except k-break periodic

strings (defined later). The second algorithm runs in time O(nk4

m
+ n + m) on k-break periodic

patterns. The two classes of patterns are easily distinguished in O(m) time.

Key words. algorithms, string matching, edit distance
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1. Introduction. The approximate string matching problem is to find all of
those positions in a given text which are the left endpoints of substrings whose edit
distance to a given pattern is at most a given number k. Here, the edit distance
between two strings is the minimum number of insertions, deletions, and substitutions
needed to convert one string to the other. It is convenient to say that such a substring
matches the pattern.

This problem is of significant importance, especially in the context of identifying
sequences similar to a query sequence in a protein or nucleic acid database. In this
case, however, the insertions, deletions, and substitutions need to be appropriately
weighted. This variant of the problem is touched on only briefly in this paper for
there are other issues to resolve.

Let n be the length of the text and m the length of the pattern. Then an O(nm)
algorithm is easy to obtain. This algorithm is a dynamic programming algorithm
that finds the edit distance between every prefix of the pattern and every prefix of
the text, not counting any cost for characters in the text which are to the left of the
pattern. (We will refer to this as the local edit distance.) The number of text-pattern
prefix pairs is O(nm), and each pair can be processed in constant time, provided the
pairs are processed in a certain natural order. The way to think about this order is
to consider an array with columns associated with text prefixes of increasing length
ordered toward the right and rows associated with pattern prefixes of increasing length
ordered downward. Each entry in this array represents the local edit distance of a
text-pattern prefix pair. These entries are computed in an order such that all entries
in rows 1 . . . i are computed before row i + 1 is computed, and the entries within a
row are processed in order from left to right.

Landau and Vishkin [LV89] obtained an O(nk) algorithm for this problem. This
algorithm was based on the above dynamic programming paradigm as well. However,
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their order of computing the array entries was a clever one. They observed that,
in each 45-degree top-left to bottom-right diagonal, the entries are nondecreasing
downward and that one need compute only k entries in each diagonal, namely, those
entries whose value is different from the value of the preceding entry in the same
diagonal. They show how these entries can be computed in constant time per entry,
using a suffix tree of the pattern and the text.

Some other early work on this problem is described in [LV85, LV86, LV88, GG88,
GP90].

The question that then arose was whether an O(n + m) time algorithm was
possible, at least for the case when k is small, e.g., O(mε), for some ε between 0 and 1.
The intuition which suggests that this would be possible is that most of the pattern
must match exactly when k is small.

An algorithm with an average case performance of O(nk logm
m ) time on random

strings when k < m
logm+O(1) was given by Chang and Lawler [CL90]. While linear

(sublinear, actually) on the average, the worst case performance of this algorithm was
still Θ(nk). The assumption of the text being random is a strong one as random
strings do not match with very high probability, but this algorithm may work well
even on somewhat less random strings.

Baeza-Yates and Navarro [BN96] gave an algorithm with a running time of O(n)
for the case whenmk = O(log n). In addition, they obtained another algorithm whose
performance in the average case is O(n) for medium k/m ratios. They also report
finding this algorithm to be faster than previous algorithms experimentally, especially
in the case when the pattern has moderate size, the error ratio k/m is not too high,
and the alphabet size is not too small.

Recently, the above question was answered positively by Sahinalp and Vishkin
[SV97], who obtained an algorithm with the following performance. Their algorithm

takes O(nk3+ 1
log 3 ( log∗ n

m )
1

log 3 + n+m) time when there is no periodicity anywhere in
the text or the pattern. Here, “no periodicity” means that even very local periodicity,
e.g., two repeated characters, is not allowed. When there exists any periodicity in

the text, the time taken by their algorithm is O(nk8+ 1
log 3 ( log∗ n

m )
1

log 3 + n+m). Their
algorithm uses the technique of deterministic coin tossing in order to sparsify the
set of diagonals which need to be processed in the above array and then processes
only these diagonals using the Landau–Vishkin algorithm. This technique and the
associated proofs of complexity and correctness, especially when there is periodicity
present, are fairly involved.

Our contribution in the paper is twofold.
1. We give a very simple way of sparsifying the set of diagonals which need to be

processed in the above matrix. This method is completely different from the Sahinalp–
Vishkin algorithm and does not use deterministic coin tossing. All it requires is finding
all occurrences of a number of aperiodic pattern substrings1 of suitable length in the

text. This immediately gives us an O(nk
3

m + n+m) time algorithm, except when the
pattern and the text are k-break periodic. By k-break periodic, we mean that there
are O(k) substrings of size k2, each such that the portions of the text and the pattern
between these substrings (or breaks, as we call them) are all periodic. We believe
that k-break periodic is a rather strict property and k-break periodic strings would
be quite rare in practice.

1“Aperiodic,” here and throughout, refers to the usual notion of periodicity; i.e., the largest
proper suffix of the substring which is also a prefix has a length of less than half that of the substring.
This notion of aperiodicity is much weaker than that required by the Sahinalp–Vishkin algorithm.
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2. We show how to process k-break periodic texts and patterns in O(nk
4

m +n+m)

time. While processing such strings in O(nk
6

m + n +m) and even O(nk
5

m + n +m) is

quite easy, the O(nk
4

m +n+m) time algorithm is nontrivial. The technical difficulties
we face in obtaining this algorithm include the fact that the various periodic stretches
between breaks need not have the same period and that periodic stretches in the
pattern and the text need not align in a match of the pattern. Of course, there
cannot be too many misalignments since only k mismatches are allowed.

Thus this paper gives an algorithm for approximate string matching which is
not only faster and simpler than the Sahinalp–Vishkin algorithm but also helps us
understand what kinds of text and patterns are hard to handle for this problem and

why. We conjecture that the right bound is O(nk
3

m + n + m) even for the k-break
periodic case but have been unable to obtain an algorithm with this performance. We

also believe that obtaining an algorithm which takes o(nk
3

m +n+m) time will be hard.
The rest of this paper is organized as follows. Section 2 gives some necessary

definitions. Section 3 gives an overview of our algorithm, and section 4 describes our

sparsification algorithm and how it gives an O(nk
3

m + n +m) time algorithm for the
case when either the text or the pattern is not k-break periodic. One of the tools used
in this algorithm is a simple modification of the Landau–Vishkin algorithm [LV89]
and is described in section 5. (This modification is also used in [SV97].) Section 6
describes how to process the text when the pattern is k-break periodic but the text
is not. Section 7 describes the first attempt at handling k-break periodic patterns

and texts and obtains an O(nk
6

m + n +m) time algorithm. Section 8 gives our more

sophisticated scheme to handle such patterns and texts in O(nk
4

m + n + m) time.
Section 9 gives some intuition regarding the difficulties to be overcome in obtaining

an O(nk
3

m + n+m) time algorithm. Section 10 briefly discusses the weighted version
of the problem.

2. Definitions and preliminaries. We assume that suffix trees for the pattern
and the text can be constructed in linear time [CR94, F98].

We will assume that m, the pattern length, is at least 5k3. The Landau–Vishkin

O(nk +m) = O(nk
4

m + n+m) time algorithm is used for shorter patterns.
We will also assume that the text has length 2m−2k and the pattern has lengthm.

If the text is longer, then it is partitioned into pieces of length 2m−2k, with adjacent
pieces overlapping inm+k−1 characters. The reason this suffices is that any substring
of the text which matches the pattern has length in the range [m − k,m + k]. Thus
all matches of the pattern are completely contained within some piece.

Periodicity. The period length of a string is defined to be the smallest i such
that two instances of the string, one shifted i to the right of the other, match wherever
they overlap. A string is said to be aperiodic if its period length is more than half
the string length and periodic otherwise. A string is cyclic if it can be written as ui,
i ≥ 2. A periodic string can be written as uiv, where u is acyclic, i ≥ 2, and v is a
prefix of u. The following properties of periodic strings are well known (see [CR94])
and will be used implicitly throughout this paper.

1. The period length of a string can be determined in linear time, and so can
its lexicographically least cyclic shift.

2. An acyclic string is not identical to any of its cyclic shifts. Therefore, a string
s cannot be written as uiv and as u′iv′, where u �= u′, u, u′ are acyclic, v is a
prefix of u, v′ is a prefix of u′, and |u|+ |u′| ≤ |s|.

3. If u is acyclic, then every cyclic shift of u is acyclic as well.
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w

not a prefix of u
not a prefix of v

not a prefix of w

u u u u u u v v v v vv w w w w w w

s

Fig. 1. A k-break periodic string. Thick regions correspond to aperiodic substrings of length k2.
u, v, w are all at most k2/2 in length.

4. If string s has period length u but string sa (a is a single character) does not
have period length u, then any suffix of sa of length at least 2u is aperiodic.

k-break periodic strings. The pattern is said to be k-break periodic if it
contains at most 2k − 1 disjoint aperiodic substrings of length k2. The text is said
to be k-break periodic if it contains at most 10k − 2 disjoint aperiodic substrings of
length k2.

Lemma 2.1. It can be determined in O(m) time if the text and the pattern are
k-break periodic. Further, if the pattern is not k-break periodic, then 2k disjoint
aperiodic substrings of the pattern of length k2 each can be found in O(m) time.
Similarly, if the text is not k-break periodic, then 10k−1 disjoint aperiodic substrings
of the text of length k2 each can be found in O(m) time.

Proof. We consider only the pattern here. The text is processed similarly.

We process the pattern from left to right, performing various rounds. In each
round, a new aperiodic length k2 substring disjoint from all previously found sub-
strings is determined. The stretches between any two consecutive substrings deter-
mined above will have period length at most k2/2. Finally, if the collection of aperiodic
strings constructed above has size less than 2k, then the pattern is k-break periodic.
The time taken by all rounds together will be O(m).

A round is performed as follows. The portion of the pattern to the right of
the last aperiodic length k2 substring determined earlier is considered in this round.
(If this is the first round, then the pattern is considered starting from its leftmost
character.) The shortest prefix s of this portion (see Figure 1) of the pattern with the
following properties is determined: |s| ≥ k2, and the length k2 suffix of s is aperiodic.
This computation will take O(|s|) time and is described in the next paragraph. The
length k2 suffix of s is added to the collection of disjoint aperiodic strings being
constructed. The total time taken over all rounds is clearly O(m).

It remains to show how s is determined in O(|s|) time. Let s′ denote the length k2

prefix of the above portion of the pattern. First, the period length δ of s′ is determined
in O(k2) time (see property 1 above). If δ > k2/2, then s = s′. Otherwise, the
leftmost pattern character p[i] to the right of s′ with the property that p[i] �= p[i− δ]
is determined; s is the extension of s′ up to and including p[i]. The time taken above is
clearly O(|s|). By property 4, the length k2 suffix of s is aperiodic, as required.

Canonical periods. Consider a periodic string uiv, where v is a prefix of u,
i ≥ 2, and u is not cyclic. Note that all cyclic shifts of u are distinct since u is
not cyclic. The canonical period of uiv is the string y which is the lexicographically
smallest circular shift of u. Note that uiv can be written in a unique way as xyjz,
where x is a suffix of y and z is a prefix of y. Also note that, given u, y can be
determined in O(n) time (see property 1 above) and that y is acyclic as well (see
property 3 above).
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The following lemma about edit distance between periodic strings will be instru-
mental in the design of our algorithm.

Lemma 2.2. Consider two strings ui and xwjy of the same length, where x is
a suffix of w, y is a prefix of w, and u,w are canonical periods of their respective

strings. If |ui| = |xwjy| ≥ k3 + k2 and |u|, |w| ≤ k2

2 , then the edit distance between
these two strings is at least k + 1 unless u = w.

Proof. Suppose u �= w. Note that i ≥ 2(k + 1). There are two cases.
First, suppose |u| = |w|; u and w cannot be cyclic shifts of each other as they are

both canonical periods. It follows that each occurrence of u must incur at least one
mismatch. The lemma follows in this case.

Second, suppose |u| �= |w|. Partition ui into disjoint substrings of length |u|+ |w|.
There must be at least k + 1 such substrings. In addition, there must be at least
one insertion/deletion/substitution in each such substring by property 2 above. The
lemma follows.

3. Overview. The algorithm first determines if the pattern is k-break periodic.
More specifically, it determines whether there is a collection of 2k disjoint aperiodic
length k2 substrings in the pattern. Two cases are considered next, depending upon
whether or not such a collection of substrings exists.

The sparse case. If such a collection exists, then section 4 describes a sparsi-
fication procedure that determines O(mk2 ) windows in the text, each of size k, which
are the only locations where pattern matches can possibly begin. The matches start-
ing in these windows are then found in O(m) time by a simple modification of the
Landau–Vishkin algorithm described in section 5.

The k-break periodic case. On the other hand, if no such collection exists, then
the pattern is k-break periodic. In this case, in section 6, we show that all matches of
the pattern in the text must occur in a portion of the text which is k-break periodic.
We also show how this portion can be found in O(m) time. In section 7, we show
how to find all occurrences of k-break periodic patterns in k-break periodic texts in
O(k6) time. This is improved to O(k4) time in section 8. This leads to an overall

complexity of O(nk
4

m + n+m) for this case.

4. Sparsification. In this section, we assume that the pattern has 2k disjoint
aperiodic length k2 substrings and that these substrings have been found. We call
these substrings breaks. We show how to determine O(mk2 ) text windows, each of
size k, in which potential matches of the pattern can begin. This will take O(m)
time.

First, we find all exact occurrences of each of these 2k breaks in the text. Note
that these breaks have equal length. The time taken for this procedure is O(m), using
a standard multiple pattern matching algorithm [AC75].

Next, we partition the text into disjoint pieces of size k2. Consider a particular
piece t[i . . . j]. We partition it into disjoint windows of size k each. We will show how
to determine at most 12 windows such that any pattern match beginning in this piece
must begin in one of these windows.

Note that at least k of the breaks must match exactly in any match of the pattern.
Consider one particular break x. As x is aperiodic, any two occurrences of x in the

text are at least a distance of k2+1
2 apart. It is not hard to show that any pattern

match beginning in t[i . . . j] with x matching exactly must begin in one of six size k
windows in t[i . . . j] (see Figure 2). We can represent this fact by putting a mark
for x on each of these windows. For a match to begin in a particular window, it must
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x
x

x

≥ k2+1
2

k2

Fig. 2. Windows which are marked for x. Filled circles indicate marks. Each instance of the
pattern shown has x matching exactly.

receive a mark from each of at least k breaks. Since each break marks at most six
windows, there are at most 12k marks in all and therefore at most 12 windows in
which matches can begin.

The verification of matches beginning in these windows is described next. It
shows how all pattern matches beginning in a particular text window of length l can
be found in time O(k(k+ l)). Thus all matches beginning in a particular text window
of length k can be found in O(k2) time. Then the time taken over all O(mk2 ) windows
will be O(m).

5. The Landau–Vishkin algorithm and sparse match verification. First,
we give an overview of the Landau–Vishkin algorithm. Subsequently, we show how
to find all pattern matches beginning in a particular text window of length l in
time O(k(k+ l)). We assume that the suffix tree of the pattern and the text combined
has been constructed and processed for least common ancestor queries [SV88] so that
the longest common prefix of any two suffixes in the text/pattern can be determined
in O(1) time.

5.1. The Landau–Vishkin algorithm. We review the Landau–Vishkin algo-
rithm in this section. The classical approach to solving approximate string matching
is to model it as a shortest paths problem on a graph defined on the entries of the
following matrix.

Consider a matrix A[0 . . .m, 0 . . . 2m − 2k]. A[i, j] will be the value of the best
match of p[1 . . . i] with any suffix of t[1 . . . j] for 1 ≤ i ≤ m, 1 ≤ j ≤ 2m − 2k. The
0th row and column are dummies put in for technical reasons which will become clear
shortly.

The dependency graph. To determine the entries of A, we define a dependency
graph G with weighted edges as follows. For each i ≥ 1 and j ≥ 1, there is a directed
edge from A[i, j] to each of A[i, j − 1], A[i − 1, j], A[i − 1, j − 1], with weights 1, 1, y,
respectively, where y is 0 if t[j] = p[i] and 1 otherwise. In addition, there is an edge
from A[i, 0] to A[i − 1, 0] with weight 1 and another from A[0, j] to A[0, j − 1] with
weight 0 for each i ≥ 1 and each j ≥ 1.

It is easy to see that the value of A[i, j] is the weight of the shortest path from
A[i, j] to A[0, 0].

The algorithm. This algorithm takesO(k) time for each diagonal in A. Consider
a diagonal A[0 + ∗, j + ∗] (here , ∗ takes values from 1 to m). For each l = 1 . . . k, it
computes the bottommost vertex on this diagonal whose shortest path has weight l.
This is done for each l in sequence, each point taking constant time to compute.

Suppose the above has been done for a particular value of l for all diagonals.
Consider l + 1 now and the diagonal A[0 + ∗, j + ∗]. The bottommost vertex with
shortest path l + 1 on this diagonal is computed in constant time as follows. Let
A[0 + a, j − 1 + a], A[0 + b, j + b], A[0 + c, j + 1 + c] be the bottommost vertices on
their respective diagonals whose shortest paths have weight l (see Figure 3).
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1

1

0

0

1

A[0, j]

A[0 + c, j + 1 + c]

A[0 + b, j + b]

A[0 + e, j + e]

A[0 + a, j − 1 + a]

Fig. 3. Finding the bottommost point on A[0 + ∗, j + ∗] with shortest path value l + 1.

Consider the three points A[0+a, j+a], A[0+b+1, j+b+1], A[0+c+1, j+c+1], and
take the bottommost of these three points; call this bottommost point A[0+ d, j+ d].
Next, find the bottommost point A[0 + e, j + e] such that all the edges on the path
from A[0+e, j+e] to A[0+d, j+d] have weight 0. A[0+e, j+e] is the required point.
The longest 0 weight path along a diagonal starting at any particular point on the
diagonal can be found in constant time using a longest common prefix computation.

5.2. Sparse match verification. We show how to find all pattern matches
beginning in a particular text window t[i . . . i+ l− 1] of length l in time O(k(k + l)).
In fact, our description will show how to find pattern matches ending in a particular
text window t[i . . . i+ l−1] of length l in time O(k(k+ l)). Pattern matches beginning
in the above window can be found using an analogous procedure. (Imagine reversing
the pattern and the text.)

Note that in order to determine pattern matches ending in the above text window,
it suffices to determine the bottommost points whose shortest paths have weight k
on each of the diagonals A[0 + ∗, i − m + ∗] . . . A[0 + ∗, i − m + l − 1 + ∗]. Let B
denote the band formed by these diagonals. Let B′ denote the band formed by the
diagonals A[1 + ∗, i−m− k + ∗] . . . A[1 + ∗, i−m+ l − 1 + k + ∗]. The algorithm is
based on the following simple observation.

Observation. If the shortest path of a point in B has weight at most k, then this
shortest path stays entirely within B′. This is true because horizontal and vertical
edges have weight 1 in G. The shortest path of a point in B′ − B might leave B′.
However, to compute shortest paths for points in B, it is not necessary to compute
shortest paths of points in B′ − B correctly; rather, it suffices to compute shortest
paths using only edges in B′.

There are O(k+ l) diagonals in B′. Running the Landau–Vishkin procedure takes
O(k) time per diagonal, giving O(k(k + l)) time overall.

Remark. Suppose we are given two strings s1, s2, which are substrings of the
pattern/text. Then note that the above procedure can easily be generalized to find
the edit distances of s2 with each of the Θ(k) longest suffixes of s1 in time O(k2).
Each such distance is determined correctly only if it is at most k. If it exceeds k, then
the fact that it exceeds k is determined as well.
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Further, note that the above procedure can also be generalized to find, for each of
the Θ(k) longest suffixes of s2, the edit distances with each of the Θ(k) longest suffixes
of s1 in time O(k2). As in the previous paragraph, each such distance is determined
correctly if it is at most k; otherwise, the fact that it exceeds k is determined.

6. Text processing for k-break periodic patterns. We assume that the
pattern has at most 2k− 1 breaks, i.e., disjoint substrings of length k2, such that the
stretches in between these breaks are periodic with period at most k2/2. We show
how to obtain a substring z of the text such that z is k-break periodic (i.e., has at
most 10k−2 breaks) and all potential matches of the pattern lie completely within z.
This is done in O(m) time.

Let x be the shortest text substring with its right end coinciding with the middle
of the text and having 2(2k − 1) + k + 1 = 5k − 1 disjoint aperiodic substrings of
length k2. If no such x exists, then x is just the first half of the text. Let y be
the shortest substring beginning in the middle of the text and having 5k − 1 disjoint
aperiodic substrings of length k2. If no such y exists, then y is just the second half of
the text. We claim that all pattern matches must lie within z = xy.

Suppose a match of the pattern has its left end to the left of x. Recall that the
text has length 2m − 2k. Then this pattern occurrence must touch or overlap the
boundary of x and y, and, therefore, it must overlap the whole of x. (Otherwise,
more than k insertions/deletions would be required.) However, x has 5k − 1 disjoint
aperiodic substrings of length k2, and at most 2(2k−1) of them can overlap breaks in
the pattern; the remaining k+1 (or more) aperiodic text substrings of length k2 must
incur at least one mismatch each (because an aperiodic substring of length k2 when
aligned with a periodic stretch with period length at most k2/2 must incur at least
one mismatch; see also Figure 1). Therefore, the pattern cannot match in the above
configuration, which is a contradiction. Similarly, it can be shown that the pattern
cannot match with its right end to the right of y.

Determining x, y. This is done in O(m) time using an algorithm similar to the
algorithm in Lemma 2.1.

7. Finding matches of k-break periodic patterns. In this section, we as-
sume that both the text and the pattern are k-break periodic. Recall that there are
at most 2k − 1 (10k − 2, respectively) disjoint aperiodic length k2 substrings in the
pattern (text, respectively) such that the stretches between them are periodic with

period length at most k2

2 . Recall that these substrings are called breaks.

7.1. The O(k6) algorithm. First, we classify all potential matches into two
categories. The first category contains potential matches in which some break in the
pattern or some endpoint in the pattern is within distance 2(k3 + k2) + k2 from the
beginning or end of some break or endpoint in the text. The remaining potential
matches are in the second category.

7.1.1. The first category. Note that matches in the first category must begin
in one of O(k2) windows, each of size O(k3). All matches in these windows can be
found using the algorithm in section 5 in O(k6) time. It remains to find matches in
the second category.

7.1.2. The second category. Note that all potential matches in the second
category also begin in one of O(k2) windows. Within each window, the order in
which the various text and pattern intervals appear from left to right remains the
same. The problem is that these windows could be long. Consider one such window.
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vu w

breaks

Fig. 4. An interval.

a break

an interval

Fig. 5. Placement of a portion of the pattern in the second category.

Definitions. We need to form intervals in the text and the pattern before pro-
ceeding. First, we form groups of breaks in the pattern and the text. A group is a
maximal sequence of breaks such that the periodic stretch between neighboring breaks
has length less than 2(k3 + k2) + k2. An interval is a substring which includes all
breaks in a group and extends on either side by a further distance described below.
Let u denote the canonical period of the stretch to the left, and let w denote the
canonical period of the stretch to the right. On the left side, the interval extends to

the least distance between k3 + k2 and k3 + k2 + k2

2 so as to have an integral number
of occurrences of u (see Figure 4). On the right side, the interval extends to the

least distance between k3 + k2 and k3 + k2 + k2

2 so as to have an integral number of
occurrences of w. Note that there are at least 2(k + 1) occurrences of the canonical
period on either side. Thus each interval can be written in canonical form as uivwj ,
where |ui|, |wj | ≥ k3 + k2, i, j ≥ 2(k + 1), and u,w are not cyclic. We call u the left
canonical period (lcp) of this interval and w the right canonical period (rcp).

Note that there are potentially two exceptions to the rules above, namely, the first
and the last intervals in the pattern/text. The leftmost interval may be terminated by
the left end of the pattern/text and therefore may not satisfy |ui| ≥ k3+k2. Similarly,
the rightmost interval may be terminated by the right end of the pattern/text and
therefore may not satisfy |wj | ≥ k3 + k2. Prematurely terminated intervals are called
incomplete; others are called complete.

The case when the pattern has only one interval which is incomplete on both the
left and the right needs to be treated as a special case. We will address this case later.
Until then, assume that each interval in the pattern is complete either on the right or
on the left.

Properties of second category matches. Note that in all matches in this
category, an interval or endpoint in the pattern (text, respectively) cannot overlap or
touch an interval in the text (pattern, respectively). (See Figure 5.) This is because

the period length of any periodic stretch is at most k2

2 , and, if such an overlap occurs,
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Fig. 6. Locked intervals.

then some break or endpoint in the text would be distance at most 2(k3+k2)+k2 from
some break or endpoint in the pattern. Further, in all matches in this category, the
endpoints of an interval will be locked, i.e., in alignment with the canonical periods in
the overlapping periodic stretch (see Figure 6), as is proved in the following lemmas.
This property enables us to process this category efficiently.

Lemma 7.1. The pattern has a second category match only if the lcps and rcps of
all pattern intervals (except possibly the lcp of the first interval, in case it is incomplete
on the left, and the rcp of the last interval, in case it is incomplete on the right)
and of all text intervals overlapping the pattern are identical (denoted by, say, u).
In addition, in any second category match of the pattern, all periodic stretches in
the text (pattern, respectively) overlapping intervals in the pattern (text, respectively)
must have canonical period u.

Proof. First, consider the first part of the lemma. Order the intervals involved in
this match (i.e., all pattern intervals and all text intervals overlapping the pattern)
from left to right in order of occurrence. We show that the rcp of one interval s1 in
this sequence is identical to the lcp of the next interval s2 in this sequence. Further,
if interval s in this sequence is either complete or in the text, we show that the lcp
and rcp of s are identical. The first part of the lemma follows.

Let u denote the rcp of s1 and w denote the lcp of s2. Note that |u|, |w| ≤ k2

2 .
Further, the suffix of s1 which is cyclic in u has length at least k3 + k2 and likewise
for the prefix of s2 which is cyclic in w.

There are two cases for showing that the rcp of s1 is identical to the lcp of s2.
First, suppose both intervals are in the pattern. Then they are both overlapped by
a periodic stretch in the text with canonical period, say, x. However, by Lemma 2.2,
x = u and x = w. Therefore, u = w, as required. Second, suppose that s1 is in the
text and s2 is in the pattern. (The case when s1 is in the pattern and s2 is in the
text is symmetric.) Then s1 is overlapped in the pattern by a stretch with canonical
period w. By Lemma 2.2, u = w, as required.

Next, suppose s is in the text or is complete. We show that its lcp and rcp are
identical. First, note that s will be complete in either case (i.e., if the pattern overlaps
the first/last text interval and this interval is incomplete, then this match is in the
first category). Assume that s is a complete interval in the text. (The case when s
is a complete interval in the pattern is similar.) Let u be the lcp of s and v the rcp.
Since s is complete, the prefix of s which is cyclic in u has length at least k3 + k2 as

does the suffix of s which is cyclic in v. Note that |u|, |v| ≤ k2

2 . The portion of the
pattern overlapping s is periodic with canonical period, say, x. Then, by Lemma 2.2,
x = v = u, as required.

Now consider the second part of the lemma. Consider a periodic stretch in the
text having canonical period, say, w, which overlaps an interval s in the pattern.
Assume that s is complete on the right. (A similar proof holds for the case when s
is complete on the left; any interval must be complete either on the right or on the

left, by our assumption above.) Note that |u|, |w| ≤ k2

2 . Further, the suffix of s which
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is cyclic in u has length at least k3 + k2. It follows from Lemma 2.2 that u = w. A
similar proof holds for the case of a periodic stretch with canonical period w in the
pattern overlapping an interval s in the text. (As stated earlier in this proof, s is
necessarily complete in this case.)

Lemma 7.2. Consider a match of the pattern in the second category. Consider
any interval s involved in this match (i.e., all pattern intervals and all text intervals
overlapping the pattern). If s is complete on the left and has lcp u, then the portions
of the text and pattern between s and the next interval (text or pattern; if there is no
such interval, then consider the endpoint) to the left have suffix u and incur no cost
for edits. If s is complete on the right and has rcp u, then the portions of the text and
pattern between s and the next interval (text or pattern; if there is no such interval,
then consider the endpoint) to the right have prefix u and incur no cost for edits.

Proof. We show that, if s is complete on the left and has lcp u, then the portions
of the text and pattern between s and the next interval (text or pattern; if there is no
such interval, then consider the endpoint) to the left have suffix u and incur no cost
for edits. The other case is symmetric. We assume that s occurs in the pattern. The
case when it occurs in the text is similar.

Recall from the definition of intervals that there are at least 2(k+1) occurrences
of u at the beginning of s. Some instance of u in s amongst the rightmost k + 1
instances must match the text exactly. There are two cases now.

First, suppose there are no intervals to the left of s involved in the above second
category match. Then the portion of the pattern to the left of (and including) the
above exact match of u has the form vui, where v is a suffix of u. Therefore, the
portion of the text which overlaps the above portion of the pattern is also periodic
with canonical period u (for an exact match of u occurs within s, and the portion
of the text overlapping s is part of a periodic stretch with canonical period u by
Lemma 7.1). The lemma follows from the fact that u is a prefix of s.

Next, suppose there is an interval to the left of s involved in the above second
category match. Let s′ be the rightmost such interval. By Lemma 7.1, the rcp of s′

must also be u. As before, some instance of u in s amongst the rightmost k + 1
instances must match the pattern exactly. Similarly, some instance of u in s′ amongst
the leftmost k + 1 instances must match the pattern exactly. The portions of the
pattern and the text between the above two exact matches of u are both cyclic in u.
The number of edit operations in these portions is at least the difference in their
lengths and is at most k. This number only reduces if all of these edits are transferred
so that they occur at the right end of these portions. Since there are at most k
such edits, all of them will now appear either within s or within the portion of the
text overlapping s. It follows that the portion of the text starting from the above
matching instance of u in s′ and extending up to (but not including) the location
aligned with the starting character of s matches the pattern exactly and is cyclic in u,
as required.

Definition. For each interval of length l, define its locked edit distance to be the
minimum over all g, h′ ≤ g ≤ h, of the edit distance between this interval and ug.
Here h is the number such that |u|(h− 1) < l + k ≤ |u|h, and h′ is the number such
that |u|(h′− 1) < l−k ≤ |u|h′. We compute the locked edit distance for each interval
in the text and the pattern. Here, note that this distance is needed only if it is at
most k. So we will only compute this distance if it is at most k. This computation
takes O(k3) time as there are O(k) intervals, and, for each interval, the algorithm
given in section 5 will take O(k2) time. (Essentially, the shortest paths from certain
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points lying on some of at most 2k+1 diagonals need to be determined if these paths
have cost at most k.)

We need special handling for incomplete intervals. Note that incomplete intervals
in the text do not play a role in second category matches (i.e., if the pattern overlaps
the first/last text interval and this interval is incomplete, then this match is in the
first category). For the up to two incomplete intervals in the pattern, we need to
redefine locked edit distance as follows.

If the rightmost interval in the pattern is incomplete on the right, its locked edit
distance is the minimum edit distance between this interval and some prefix of uh,
where h is the number such that |u|(h − 1) < l + k ≤ |u|h. If the leftmost interval
in the pattern is incomplete on the left, its locked edit distance is the minimum edit
distance between this interval and some suffix of uh, where h is the number such that
|u|(h− 1) < l+ k ≤ |u|h. As before, these locked edit distances need to be computed
only if they do not exceed k. This can be done in O(k2) time using the algorithm in
section 5 (see the remarks at the end of that section).

Corollary 7.3. The edit distance between the pattern and the text for a second
category match is just the sum of the locked edit distances over all pattern intervals
and all text intervals overlapped by the pattern.

Proof. Consider any second category match. By Lemma 7.1, each interval in the
pattern is aligned with a periodic stretch in the text which is cyclic in u. Similarly,
each interval in the text overlapped by the pattern is aligned with a periodic stretch
in the pattern which is cyclic in u. From Lemma 7.2, it follows that each complete
interval in the pattern (text, respectively) is aligned with a string in the text (pattern,
respectively) which is cyclic in u. Further, an incomplete interval in the pattern which
is complete on the right (left, respectively) is aligned with a string in the text which
is periodic with period u and has suffix (prefix, respectively) u. (Note that if the
endpoint of the text were closer, preventing a suffix of u, this would be a first category
match.) The corollary follows from the definition of locked edit distance.

Remark. Our aim is to determine all locations in the text where matches of the
pattern begin. Consider any second category match. Recall from the last paragraph
of the proof of Lemma 7.2 that edits in this match can be transferred to within
pattern and text intervals (or to within portions in the text and pattern, respectively,
overlapping these intervals) without increasing the edit distance. This transfer will not
change the starting point of the match in the text except when the edits transferred are
to the left of the leftmost interval (pattern or text, whichever is first). Therefore, edits
to the left of the leftmost interval will have to be treated differently while determining
the starting points of the various matches. Next, we show how these starting points
can be determined in time O(k4) plus the number of matches.

Algorithm for second category matches. All locked edit distances are com-
puted in O(k3) time as above. Recall from the beginning of this section that all second
category matches begin in one of O(k2) windows. Consider one such window. The
pattern occurs in this window if and only if the sum of the locked edit distances of the
relevant intervals is at most k. The precise necessary and sufficient conditions for the
pattern to occur starting at a particular text location i in this window are described
next.

Note that fixing the window under consideration also fixes the left to right se-
quence of text and pattern intervals involved in matches in this window. Consider the
leftmost interval (pattern or text, whichever is first). There are two cases, depending
upon whether this interval is in the pattern or in the text. We consider each case in
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turn. In each case, we show that the total time taken to output all matches in this
window is O(k2) plus the number of matches.

Case 1. First, consider the case when this interval is in the pattern. Let x be
the prefix of the pattern up to and including the right end of this interval. Recall
from Lemma 7.2 that x must be aligned with a text substring with period u and
having suffix u, in any match in this window. Let u′ be a proper suffix of u such that
the substring of the text beginning at location i has the form u′ followed by several
occurrences of u. Let leftval be defined as the minimum edit distance between x and
some string y with the following property: y begins with u′, ends with u, and has
canonical period u, and |x| − k ≤ |y| ≤ |x| + k. The pattern occurs starting at text
location i if and only if leftval plus the locked edit distance of all other pattern and
text intervals involved in matches in this window sum to at most k.

It remains to describe how leftval is determined in this case. We compute the
edit distances of x and each of the 2k + 1 longest suffixes of the unique string having
canonical period u, suffix u, and length |x| + k. This takes O(k2) time using the
algorithm in section 5 (see the remarks at the end of that section). For any relevant
location i, leftval is easily determined in constant time from this information.

Case 2. Second, consider the case when the leftmost interval is a text interval.
Let x be the substring of the text starting from location i and extending up to and
including the right end of this interval. Recall from Lemma 7.2 that x must be
aligned with a pattern substring with period u and having suffix u, in any match
in this window. Let u′ be a proper suffix of u such that the pattern begins with u′

followed by several occurrences of u. Let leftval be defined as the minimum edit
distance between x and some string y with the following properties: y begins with u′,
ends with u, and has canonical period u, and |x| − k ≤ |y| ≤ |x| + k. The pattern
occurs starting at text location i if and only if leftval plus the locked edit distance
of all other pattern and text intervals involved in matches in this window sum to at
most k.

leftval is determined as follows for this case. Note that x depends on the value
of i and that there are too many values of i which need to be considered. The key
to fast computation of leftval in this case is that the i’s can be partitioned into
O(k) equivalence classes based on their offsets with respect to the canonical period u.
Specifically, if the left end of the pattern is shifted by distance k, then the edit distance,
if no more than k, is unchanged (so long as the left end of the pattern remains in the
window in question). For the left end of I has at least 2(k + 1) disjoint occurrences
of u; one of them is aligned with a copy of u in the pattern. A shift of the pattern
left end by k units to the right can be thought of as removing this copy of u from the
text, thereby leaving the edit distance unchanged.

We perform the following computation. Let z denote the suffix of u of length
|u′|+k if |u| ≥ |u′|+k and the string u otherwise. Let x′ be formed by concatenating
z with the leftmost interval (which is a text interval in this case). Let y′ denote the
string with canonical period u, suffix u, and length |x′|+ k. For each of the k longest
suffixes of x′, we find the edit distances with each of the 3k longest suffixes of y′.
This takes O(k2) time using the algorithm in section 5. (In fact, we are really only
interested in suffixes of y′ with prefix u′.) For any relevant text location i, leftval is
easily determined in constant time from this information.

Let u′′ be that proper suffix of u such that the text substring starting at location i
has prefix u′′ followed by several occurrences of u. From Lemma 7.2, we note that, if
|u| ≥ |u′| + k and leftval is at most k, then |u′′| ≤ |u′| + k. Consider that suffix x′′



1774 RICHARD COLE AND RAMESH HARIHARAN

of x′ having the form u′′ followed by the leftmost interval. We claim that, if leftval
is at most k, then it equals the minimum edit distance of x′′ with a suffix y′′ of y′

whose size is within k of x′′ and which begins with u′. To see this, the following three
observations suffice. First, x can be obtained from x′′ and y from y′′ by inserting
strings cyclic in u. Second, the leftmost interval is a suffix of both x, x′′ and has at
least 2(k + 1) disjoint occurrences of u at its left end. Third, in any approximate
match of x and y of value at most k, all but k of the various disjoint occurrences of u
must match exactly; the same is true of any approximate match of x′′, y′′ of value at
most k.

The special case. We consider the case when there is only one interval in the
pattern, and it is incomplete in both directions. Thus the whole pattern is a single
interval. In a second category match, the entire pattern is overlapped by a single

periodic stretch in the text with canonical period, say, w, of length at most k
2

2 . Clearly,
in this situation, it suffices to find matches beginning in any window of length |w|; all
second category matches in which the pattern is completely aligned with the periodic
stretch with canonical period w can be interpreted from this information as in the

previous paragraph. All matches beginning in a window of length |w| ≤ k2

2 can be
found in O(k3) time using the algorithm in section 5.

8. The O(k4) algorithm. Recall that the pattern is k-break periodic. However,
the periods of the periodic stretches between various pairs of consecutive breaks could
be different. Suppose the pattern has at most 2k−1 and the text has at most 10k−2
bad segments of length at most 4|u| each such that the stretches between two adjacent
bad segments are cyclic with canonical period u for some string u. Such texts and
patterns are called even more periodic. First, we will show how to handle patterns
and texts which are not even more periodic in O(k4) time. The even more periodic
case is the hardest and is handled in section 8.1.

The following steps are performed to determine whether or not the pattern is
even more periodic and to process it in case it is not.

Step 1. Recall that the periodic stretches in the pattern could have distinct
periods. We choose a multiset U of disjoint substrings u2

1, . . . , u
2
2k+1 of the pattern as

follows. The periodic stretches in the pattern are considered in nonincreasing order of
period length. For a particular stretch with canonical period, say, v, all (or as many
as necessary to achieve the desired cardinality of 2k+1) disjoint occurrences of v2 in
it are added to U . This procedure continues until U has exactly 2k+1 substrings in it.
Since the pattern is assumed to have length at least 5k3 (see beginning of section 2),
2k+1 such substrings always exist. (Recall that all periods have length at most k2/2,
and the total length of breaks is at most 2k3.) Let w denote u2k+1.

There are two cases now. If |w| ≤ k, then nothing is done in this step. Suppose
|w| > k. Then we show how to obtain O( m|w| ) windows, each of size k, in which pattern

matches can begin. In fact, we show something stronger, namely, in any window of
size |w| in the text, there are only a constant number of the above windows of size k
in which pattern matches can begin.

All occurrences of the u2
i ’s in the text are found in linear time using a standard

multiple pattern matching algorithm [AC75]. Next, the text is partitioned into disjoint
windows of size k each. Note that two occurrences of u2

i in the text occur at least
a distance |ui| apart (since ui is a canonical period and therefore not cyclic; see
property 2 in section 2 as well). Pattern matches in which u2

i matches exactly must
therefore begin in O( m

|ui| ) = O( m|w| ) windows; this is represented by putting a mark
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for u2
i on each such window. Over all strings in U , the total number of marks put is

at most (2k + 1) ∗ 2m−2k
|w| (the size of the text is 2m − 2k), and only windows with

at least k + 1 marks can have pattern matches beginning in them. It follows that
pattern matches can begin in only O( m|w| ) windows of size k each. In addition, any

two windows which are more than a distance k apart and which receive k + 1 marks
each must both receive a mark for some u2

i . Since any two occurrences of u2
i occur at

least a distance |ui| ≥ |w| apart, any two windows which are more than a distance k
apart and which receive k+1 marks each must actually be a distance at least w− 2k
apart. It follows that, in any window of size |w| in the text, there is only a constant
number of the above windows of size k in which pattern matches can begin. The total
time taken is O(m).

We now include all occurrences of all ui’s which are not identical to w as breaks
in the pattern. The number of breaks in the pattern is still O(k), each break being
O(k2) in length. In addition, all periodic stretches have period lengths of at most |w|.
In the text, all periodic stretches with period lengths of more than |w| are partitioned
into disjoint substrings of length k2; these substrings are also included as breaks. Note
that one substring in each stretch could have a length less than k2; this substring is
just merged with the next break to the right. So the text has several breaks now,
each of length between k2 and 2k2. Now, as in section 6, the text is trimmed so that
it has only O(k) breaks. The key property used in this trimming is that any break,
when aligned with a periodic stretch in the pattern (which now has period length of
at most |w|), must incur at least one mismatch. Thus both the pattern and the text
now have O(k) breaks of length O(k2) each, with all intervening periodic stretches
having period length at most |w|.

Step 2. We partition p into disjoint pieces of length 2|w|. A piece-substring is
a substring beginning and ending at piece boundaries. A piece-substring is homoge-
neous if at least three-fourths of the pieces in it have the same canonical period; it is
heterogeneous otherwise.

Step 2: Case 1. If there exists a heterogeneous piece-substring of length 2|w| ∗
(4k + 1) in the pattern, then this piece-substring must overlap a break in the text in
any match of the pattern. This is because any alignment of this piece-substring with
a periodic stretch (which now has period length of at most |w|) is guaranteed to give
at least k+1 mismatches. (At least k+1 pieces will have a canonical period different
from the canonical period of the periodic stretch.)

A heterogeneous piece-substring, if one exists, can be found in O(m) time. In
addition, if such a piece-substring exists, then all matches of the pattern must begin
in O(k) windows, each of size O(k2 + k|w|). If |w| ≤ k, then the total size of these
windows is O(k3), and all matches beginning in these windows can be found in O(k4)
time using the algorithm in section 5. If |w| > k, then these windows can be further
refined by taking intersections with the windows obtained in Step 1 (recall that pattern
matches begin in only O(1) length k windows in any length |w| window) to give O(k2)
windows each of size O(k). Thus the total time taken to find all matches using the
algorithm in section 5 is O(k ∗ k2 ∗ k) = O(k4) in this case as well.

Step 2: Case 2. Suppose there is no heterogeneous piece-substring of length
2|w|∗(4k+1) in the pattern. Then three-fourths of the pieces in every piece-substring
of length 2|w| ∗ (4k + 1) have the same canonical period, u, say, |u| ≤ |w|. Any
periodic stretch which has a canonical period different from u has a length less than
2|w|(k + 1) + 4|w| = 2|w|(k + 3); otherwise, there would be at least k + 1 complete
pieces occurring contiguously within this periodic stretch, each having a canonical
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period different from u; any piece-substring of length 2|w| ∗ (4k+ 1) containing these
pieces would then be heterogeneous.

We now make each periodic stretch in the pattern which has a canonical period
different from u and a length at least 2|w| a break. (This is in addition to the existing
breaks.) Periodic stretches in the pattern with canonical periods different from u and
length less than 2|w| are appended to the next breaks to the right. Thus the pattern
now has O(k) breaks, each of length O(|w|k+k2), and all intervening periodic stretches
have period u.

In the text, we redefine the breaks as follows. All existing breaks continue to
be breaks. Recall that each of these has length between k2 and 2k2. Call these
breaks class 1 breaks. All periodic stretches with canonical period different from u
also become breaks now; call these breaks class 2 breaks. Next, both classes of breaks
are together reorganized into a new set of breaks so that each resulting break has
length at least 4|w|k + 2k2 and at most 2(4|w|k + 2k2); this reorganization involves
clubbing together existing breaks to form new breaks by including intervening strings
and extending at the ends, or alternatively, partitioning a break into smaller breaks,
if necessary. The length restrictions on the resulting breaks imply that the above
reorganization allows for each class 1 break to be contained completely inside some
resulting break; further, if a class 2 break is broken down and distributed over several
resulting breaks, then each substring into which it is broken down has length at
least 2|w|. Then each resulting break contains one of the following (below, the first
two cases relate to those resulting breaks which include a class 1 break, and the third
relates to those resulting breaks which are derived from class 2 breaks):

1. A length k2 aperiodic substring (these were the original breaks).
2. A substring with period length more than |w| and having at least two con-

secutive occurrences of the canonical period (see the new breaks defined just

before Step 2; also recall that |w| ≤ k2

2 ). Clearly, this canonical period will
be different from u.

3. A substring of length 2|w| with period length at most |w| and canonical period
different from u, |u| ≤ |w|.

Now, as in section 6, the text is trimmed so that the total number of breaks in
each half of the text is O(k). The key property used in this trimming is that any text
break, when aligned with a periodic stretch with canonical period u in the pattern,
must incur at least one mismatch. This holds because of the properties listed above.
Thus both the pattern and the text now have O(k) breaks of length O(k2 + |w|k)
each, with all intervening periodic stretches having canonical period u.

Now consider those substrings of the pattern of length 2|u| which do not have
canonical period u. There are two subcases now.

First, suppose there are at least 2k such disjoint substrings. Then at least k of
these substrings must match exactly in any match of the pattern. For such a substring
to match exactly, it must be aligned with a text substring which is not a periodic
stretch of u’s. Recall that the text has O(k) breaks and that all intervening periodic
stretches have canonical period u. It follows that there are O(k) windows in which
possible matches of the pattern can begin, each window having length O(|w|k + k2).
If |w| ≤ k, then all these matches can be found in O(k ∗ k2 ∗ k) = O(k4) time using
the algorithm in section 5. And, if |w| > k, then each of the above windows of
size O(|w|k + k2) can be further refined by taking intersections with the windows
obtained in Step 1 to get O(k2) windows of size O(k) each; the O(k4) time bound
follows in this case as well.
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The second subcase arises when there are fewer than 2k disjoint substrings of
length 2|u| with canonical period different from u in the pattern. As in section 6,
the text can now be trimmed so that it has at most 10k − 2 of these. Clearly, all
stretches in the text and in the pattern between the above substrings are periodic with
canonical period u. (This follows from the fact that if two substrings, both having
length 2|u| and canonical period u, overlap in |u| locations, then their union also has
canonical period u by definition.) Next, by extending each substring of length 2|u|
with canonical period different from u on either side, the intervening stretches can
be made cyclic in u (earlier they were just periodic with canonical period u but not
necessarily cyclic); the length of each such substring can go up to 4|u| in the process.
Our text and pattern are now both even more periodic (defined at the beginning of
this section).

8.1. The O(k4) algorithm for the even more periodic case. To get a
faster algorithm, we have to define intervals which have stronger properties than those
defined in section 7. We define an interval in the pattern (text, respectively) to be a set
of disjoint substrings of the pattern (text, respectively). Roughly speaking, intervals
are formed by extending bad segments (substrings of length between 2|u| and 4|u|
which do not have canonical period u) at either end while skipping over other intervals.
Intervals will always have the property that they end in at least one, possibly more,
occurrences of the period u at each end. The span of an interval is the substring
between and including the leftmost and the rightmost characters in the interval. In
contrast to the intervals defined in section 7, spans of intervals defined here could be
nested one inside the other.

Recall the definition of locking from Figure 6. We say that an interval in the
pattern (text, respectively) locks in a particular alignment if the portion of the text
(pattern, respectively), if any, with which this interval is aligned is a cyclic repetition
of u.

Our strategy will be to identify intervals in the pattern and the text with total
length O(k|u|), with each interval having length at least 2|u|. These intervals will
have the following property: in any match of the pattern, either some pattern interval
overlaps some text interval, or all of the pattern and text intervals are locked.

All matches in the first category clearly occur in at most O(k2) windows, each of
length max{k, |u|}. If |u| ≤ k, then the total length of all of these windows is O(k3),
and all matches in these windows can be found in O(k4) time using the algorithm
in section 5. If |u| > k, then recall that |u| ≤ |w|, that potential matches of the
pattern have been determined in Step 1, and that there is only a constant number of
windows of length k within any length |w| window in which these matches can begin.
It follows that all matches must again begin in O(k2) windows, each of length O(k);
these matches can again be found in O(k4) time.

Matches in the second category will also occur in O(k2) windows but of larger
size. Whether or not the pattern matches in one such window will depend upon the
locked edit distance of some of the intervals defined. These matches will be easy to
find. In particular, if the pattern matches at a particular position in this window,
then it will match at all positions which are shifts of multiples of |u| from this position
in this window.

8.2. Defining intervals. We show how the pattern is processed. The text is
processed similarly.

We define intervals to contain all sufficiently small strings that are not repetitions
of string u. More specifically, an interval I will be a string with a 2i-fold repetition of
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string u at either end for a suitable i. The best match of I with a string uk, |uk| ≥ |I|,
for suitable k will be in locked alignment. Intervals are chosen to minimize i in a sense
made precise below. Further, the intervals are chosen so that, in any match in which
the intervals in the text and pattern do not overlap, the intervals are all in locked
alignment.

We define intervals as follows in O(log k) rounds. In each round, a set of partially
formed intervals inherited from the previous round is processed. These intervals will
be disjoint from each other. Some of the intervals being processed in the current round
will be fully formed at the end of this round; these will not be processed in subsequent
rounds. The remaining intervals will be processed further in the subsequent rounds.

The first round begins with a minimal collection of disjoint intervals, called initial
intervals, where each initial interval is just a bad segment (defined at the beginning
of section 8.1). Recall that the portions of the string between the initial intervals are
cyclic in u. The following procedure is performed in each round i, i ≥ 1.

2i-extending interval I. For each partially formed interval I being processed
in the current round i, a 2i-extension is determined as below. Starting from the
left end of I, walk to the left, skipping over any substrings in fully formed intervals,
until either another partially formed interval is reached or 2i instances of u have been
encountered. The same procedure is repeated at the right end. The substrings walked
over in this process (ignore the substrings skipped over) along with the substrings in I
together constitute the 2i-extension of I.

An interval I processed in round i is said to be successful in this round if, after
extension, it does not overlap or touch another extended interval on both the left and
on the right.

Finally, we form new intervals by taking a union of the various extended intervals.
Each new interval comprises maximal collections of extended intervals above such that
consecutive extended intervals in each collection overlap or touch each other. Thus, if
two extended intervals overlap or touch, then they become part of the same interval
now. Each new interval comprises exactly those pattern positions which belong to
one of the extended intervals in the corresponding maximal collection of extended
intervals. Of these new intervals, some will be fully formed, as described in the next
paragraph. Those which are not fully formed will be carried over to the next round.

Condition for full-formedness. Each interval will have an i-nested cost to be
defined below. Those intervals I whose span has locked edit distance (with respect
to u) at most 2i plus the i-nested cost of I will be fully formed at the end of this
round; the remaining intervals will be processed again in the next round.

Definitions. The i-current cost of an interval I which is processed in round i is
the locked edit distance of the span of I with respect to u if it is fully formed by the
end of round i and 2i plus its i-nested cost if it is not yet fully formed at the end of
round i. The final cost of an interval is its current cost at the end of the last round
or its locked edit distance (with respect to u) if it is fully formed. The i-nested cost
of I is the sum of the final costs of the fully formed intervals which were skipped over
while forming I and the (i−1)-current costs of those partially formed intervals which
are nested within I and were unsuccessful in round i. As the base case, we define the
0-current cost of an initial interval to be 1. Lemma 8.1 describes the motivation for
the above definitions.

Lemma 8.1. For all i ≥ 0, the i-current cost of an interval I processed in round i
is a lower bound on the cost of aligning the span s of I with a periodic stretch of u’s.

Proof. Consider a least cost match of s in a periodic stretch of u’s. If i = 0, then
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the lemma follows from the fact that initial intervals have canonical periods different
from u and therefore incur at least one mismatch. So assume that i > 0.

Note that s has 2i occurrences of u at either end, possibly interspersed with
intervals fully formed before round i. Some or all of these occurrences of u in s could
be out of alignment with u’s in text. If all of these occurrences of u at the left end or
at the right end are out of alignment, then the cost of aligning s is at least 2i plus,
inductively, the i-nested cost. On the other hand, if at least one occurrence of u on
either side aligns, then we claim that all occurrences of u further from the extremes
of s from these two occurrences align as well. This is because the portions of s outside
these two occurrences of u consist only of u’s and other fully formed intervals, and
fully formed intervals, by induction, cost at least (and, of course, at most) their locked
edit distance. Therefore, the cost of the best match of s is the same as its locked edit
distance with respect to u. The claim now follows from the fact that the i-current
cost of I is the smaller of this distance and 2i plus the i-nested cost.

Termination conditions for the rounds. The ith round is the last round if the
sum of the i-current costs of those intervals which are obtained in round i and are not
nested inside other intervals and the sum of the final costs of those intervals that are
fully formed earlier and not nested inside other intervals (we call both of these kinds of
intervals together final intervals) exceeds k, or if all intervals are fully formed. When
the sum of the above costs is more than k, all matches of the pattern must have some
interval in the text overlapping or touching some interval in the pattern. Clearly,
the number of rounds is O(log k). The cost of processing a round, i.e., extending
and computing the costs, is O(k3). (Each of up to O(k) intervals requires a locked
edit distance calculation, and each calculation is performed in O(k2) time using the
algorithm described in section 5.) This can be reduced to O(k2) time by performing
the edit distance calculations more carefully, keeping in mind that the collective error
that can be tolerated over all edit distance calculations is k. However, the bound of
O(k3) per round suffices to achieve our final bound of O(k4).

Remark on the text. A similar formation of intervals is done in the text, except
that interval formation continues until either each interval is fully formed or log k+1
rounds are done, whichever is sooner.

Special cases. The above interval formation algorithm needs to be suitably
modified to account for the endpoints of the text and the pattern. We will very briefly
sketch the special handling of intervals which encounter premature termination at
either the left or the right end. Consider an interval which is prematurely terminated
on the left. Intervals prematurely terminated on the right are handled similarly. In
future rounds, this interval will be extended only to the right until it is fully formed.
Recall that full-formedness is related to the locked edit distance of the span of the
interval (with respect to u). The locked edit distance for such intervals is defined as
in section 7 (i.e., the span of this interval need not be aligned with a cyclic string
of u’s but with a string whose canonical period is u and which has suffix u).

Interval lengths. We need the following lemma before describing the remainder
of the algorithm.

Lemma 8.2. The length of the span s of an interval I obtained in round i is at
most 8|u|∗i-current cost of I.

Proof. Consider the various initial intervals J in s. For each such initial interval J ,
consider the interval intj(J) which is the unique interval processed in round j whose
span contains J . There may not be such an interval, of course. J is said to be alive in
round j if it is the leftmost (rightmost, respectively) initial interval in intj(J) at the
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beginning of round j and intj(J) hasn’t yet reached the left endpoint (right endpoint,
respectively). Let the last round in which J is alive be denoted by last(J). The
contribution of J to s is defined to be the sum of the lengths of all of the strings
involved in extending the intervals int1(J), . . . , intlast(J)(J) plus the length of J itself.
Clearly, the length of s is at most the sum of the lengths of the contributions of the
various initial intervals in s.

The contribution of J is at most 2∗ (∑last(J)
l=1 2l)∗ |u|+ |J | ≤ 2(2last(J)+1−2)|u|+

4|u| ≤ 2 ∗ 2last(J)+1 ∗ |u| if last(J) �= 0 and |J | ≤ 4|u| otherwise. The (last(J) − 1)-
current cost of intlast(J)−1(J) is at least 2last(J)−1 plus its (last(J) − 1)-nested cost

if last(J) ≥ 1. We call the quantity 2last(J)−1 the capacity of J (unless last(J) = 0,
in which case the capacity is defined to be 1). It is easy to see that the capacities of
the various initial intervals in s sum to at most the i-current cost of I. The lemma
follows.

The algorithm. First, intervals are formed as above. Next, two minimal sets
of final text intervals, one on either side of the middle of the text, each with total
final cost exceeding k, are chosen. (If either of these two sets does not have final cost
exceeding k, then all of the text intervals in the corresponding half are taken.) By
Lemma 8.2, the total lengths of the spans of these final text intervals and the final
pattern intervals will be O(k|u|). Ignore the remaining text intervals for the moment.
Each match in the span of one of these text intervals that overlaps or touches the span
of one of the final pattern intervals is found. In addition, matches in which one of the
endpoints of the pattern is aligned with one of these text intervals is found. These
matches occur in O(k2) windows, each of size O(max{k, |u|}). If |u| > k, then each
of the above windows can be further refined by taking intersections with the windows
obtained in Step 1 to get O(k2) windows of size O(k) each. All such matches can then
be found in O(k4) time using the algorithm in section 5.

Next, we consider the remaining matches of the pattern. Note that the spans
of the final intervals in the pattern cannot overlap with the spans of the above final
intervals chosen in the text. In addition, the text can be trimmed so as to contain
only the above final intervals, by an argument similar to the one used in section 6.
The reason for this is that, by Lemma 8.1, the above final intervals in the left half
of the text will incur more than k mismatches if all of them are overlapped by the
pattern (note that they must all be aligned with periodic stretches having canonical
period u in the matches being considered) and likewise for the above final intervals
in the right half. It follows that the spans of the final intervals in the pattern cannot
overlap with the spans of any of the final intervals in the text in any of the remaining
matches.

The remaining matches occur in O(k2) windows as well. Consider one such win-
dow. Consider the final costs of the final intervals in the pattern and the final costs
of those final intervals in the text which overlap the pattern. If any one of these text
intervals is partially formed, then the pattern cannot match the text because the final
cost of this text interval is more than k, and Lemma 8.1 implies that the span of this
interval must incur more than k edit operations when aligned with a periodic stretch
of u’s. Similarly, if any of the pattern intervals is partially formed, then, again, the
sum of the final costs of these pattern intervals exceeds k, and the pattern cannot
match. So suppose that all of these text and pattern intervals are fully formed. Then
the final cost of each such interval is its locked edit distance. If the sum of these
final costs is at most k, then the pattern matches at intervals of |u| in this window
with all of these final intervals locked, and otherwise it does not match anywhere in
this window. The precise locations where matches occur can be determined as in the



APPROXIMATE STRING MATCHING 1781

algorithm for second category matches described toward the end of section 7.1.2.

9. Is O(nk3

m
+n+m) running time possible? The following text and pattern

appear to form a hard case for our problem. They are defined in terms of an acyclic
string u. Apart from Θ(k) substrings, each of length equal to |u| = Θ(k), the text
and the pattern are periodic with period u. Suppose these bad substrings appear at
intervals of Θ(k2) in the text and at intervals of Θ(k) in a length Θ(k2) prefix of
the pattern. There are Θ(k2) windows, each of size k, in which one of these pattern
substrings overlaps some text substring. Exactly one bad pattern substring overlaps
a bad text substring in any of the pattern placements in these windows. Our current
O(k4) algorithm will take Θ(k2) time to determine matches, if any, in each window,
giving an Θ(k4) time algorithm for this case. However, it is conceivable that an
algorithm which takes O(k) amortized time per window can be obtained by observing
that the average edit distance between pairs of text-pattern substrings must be O(1);
otherwise, there can be few matches. The difficulty we face is that the occurrences
of u among the bad substrings of the pattern need not align with occurrences of u in
the text.

10. The weighted case. In the weighted case, deletions of different characters
and the various substitutions may have differing costs, but, by way of normalization,
all will be required to have cost at least 1.

The approximate matches with cost ≤ k can be found using essentially the same
algorithm; the only change needed is to the Landau–Vishkin algorithm to take into
account the differing costs. The details are left to the reader.

A important application in the weighted case is to match a pattern against a
database of strings. We would like to apply the above algorithm. For efficiency, one
approach would be to have a precomputed suffix tree for the database of strings. This
suffix tree would then need to be incremented to incorporate the pattern string so
as to enable the above algorithm to be used. Following the match calculation, the
modification to the suffix tree would need to be undone. It would also be useful to
support both insertions and deletions to the database. We leave this topic as an open
problem.
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Abstract. In this paper, we present a new bicriteria approximation algorithm for the degree-
bounded minimum spanning tree problem. In this problem, we are given an undirected graph, a
nonnegative cost function on the edges, and a positive integer B∗, and the goal is to find a minimum-
cost spanning tree T with maximum degree at most B∗. In an n-node graph, our algorithm finds
a spanning tree with maximum degree O(B∗ + logn) and cost O( optB∗ ), where optB∗ is the
minimum cost of any spanning tree whose maximum degree is at most B∗. Our algorithm uses ideas
from Lagrangean duality. We show how a set of optimum Lagrangean multipliers yields bounds on
both the degree and the cost of the computed solution.

Key words. approximation algorithms, network algorithms, bicriteria approximation, spanning
trees, degree-bounded spanning trees, Lagrangean relaxation
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1. Introduction.

1.1. Motivation and formulation. In the design of computer networks a fun-
damental problem is that of transmitting a single information packet from a given
source-host to a set of recipient-hosts. This problem is widely known as the broadcast
or multicast problem, depending on whether we want to transmit the packet to all
other hosts or to a specific subset of recipients. Both problems have been widely
studied [3, 6, 15]. In particular, it is believed that the multicast problem will play an
increasingly important role in data networks.

A naive solution to the multicast problem would be to implement it as a series
of unicasts. In other words, the source sends a single packet to every recipient host.
The routing is done independently for each of the unicasts. However, the cost of this
approach in terms of bandwidth consumption becomes unacceptable if the number of
hosts in the multicast group grows.

Graph theoretic ideas have turned out to be essential in the design of efficient
network routing protocols. A physical network can be modeled as a complete graph
where each host is associated with a node, and an edge represents the virtual link
between the corresponding hosts. Usually, edges of that graph are annotated by
the transmission delay of the corresponding virtual link. A standard solution to
broadcasting and multicasting problems then is to send packets along the edges of a
minimum spanning tree (MST) rooted at the source node [15]. Every internal node
duplicates the incoming message and sends it to its children.

However, a spanning tree might have a high fan-out at certain internal nodes.
Switches in point-to-point networks may vary in their ability to support multicasting.
That is, some routers may not support multicasting at all and others may support
only a limited number of copies they can make of an incoming packet [17]. Bauer
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1784 J. KÖNEMANN AND R. RAVI

and Varma [1] show that it is natural to model switch capabilities by node degrees in
graphs.

The preceding discussion suggests that a solution to the multicasting problem
should minimize the total transmission delay and the maximum degree of a vertex
in the computed solution. Traditional approaches for this kind of bicriteria problem
often compute the minimum-cost solution under a linear combination of the two cost
measures [12, 14]. However, in the case of very disparate objectives, these techniques
usually do not produce useful solutions.

In this paper, we address a natural budgeted version of the degree-bounded min-
imum spanning tree (BMST) problem. Here, we are given an undirected graph
G = (V,E), a cost function c : E → R+, and a positive integer B ≥ 2. We would like
to find a spanning tree T of maximum vertex degree at most B and minimum cost.
This formulation was first introduced in [14] and can be modeled by the following
integer linear program:

optB = min
∑
e∈E

cexe(IP)

s.t. x(δ(v)) ≤ B ∀v ∈ V,(1.1)

x ∈ SPG ,

x integer.

Here, δ(v) denotes the set of all edges of E that are incident to v and SPG is
the spanning tree polyhedron, that is, the convex hull of edge-incidence vectors of
spanning trees of G. We note that complete descriptions of SPG are known in the
literature [2, 4].

1.2. Previous work and our result. Ravi et al. [14] showed how to com-
pute a spanning tree T of maximum degree O(B log ( nB )) and total cost at most
O(log n) optB . They generalize their ideas to Steiner trees, generalized Steiner forests,
and the node-weighted case.

Another result that is related to our work is given in a paper by Khuller, Ragh-
avachari, and Young [9]. The authors show how to compute a spanning tree of n
points in the plane that has degree at most 3 (4) and cost at most 1.5 (1.25)—that
of a minimum-cost spanning tree (without any degree constraints).

While the approximation factor of O(log n) on the cost of the solution cannot
be improved substantially (via reductions from the set covering problem [10]) in the
node-weighted case, improvements for the edge-weighted case were left open in [14].
Our main result is such an improvement and is stated in the following theorem. We
denote the degree of a node v in tree T by δT (v). Let the maximum node degree in
a tree T be denoted by ∆(T ).

Theorem 1.1. There is a polynomial-time approximation algorithm that, given
a graph G = (V,E), a nonnegative cost function c : E → R+, a constant B∗ ≥ 2, and
a parameter ω > 0, computes a spanning tree T s.t.

1. ∆(T ) ≤ (1 + ω)bB∗ + logb n for any arbitrary constant b > 1, and
2. c(T ) < (1 + 1/ω) optB∗ .

For instance, choosing ω = 1/2 and b = 2 would yield a tree with degree at most
3B∗ + log2 n and cost at most 3 optB∗ .

1.3. Technique: Lagrangean duality. Our algorithm builds on the Lagran-
gean dual of (IP) resulting from dualizing the degree constraints. We denote its value
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by optLD(B) .

optLD(B) = max
λ≥0

min
T∈SPG

{
c(T ) +

∑
v∈V

λv(δT (v)−B)

}
.(LD(B))

For any fixed λ ≥ 0, an optimum integral solution to (IP) is a feasible candidate
for attaining the inner minimum above. Since the maximum degree of such a solution
is at most B and λ ≥ 0, it follows that optLD(B) is a lower bound on optB .

Proposition 1.2 (see [13]). optLD(B) ≤ optB .
The interesting fact is that optLD(B) can be computed in polynomial time [13].

The result is a vector λB of optimum Lagrangean multipliers on the nodes and a set of
optimum trees OB, all of which achieve the inner minimum for this set of multipliers.
In other words, every tree TB ∈ OB minimizes the following objective:

c(TB) +
∑
v∈V

λBv (δTB (v)−B).

Given λB , the task of finding a tree T that minimizes the above objective function is
called the Lagrangean subproblem of (LD(B)).

Using cλ
B

(uv) = c(uv) + λBu + λBv , the last expression can be restated as

cλ
B

(TB)−B
∑
v∈V

λBv .(1.2)

Notice that for a given λB and B, the second term is a constant. Hence, any MST of

G under cost cλ
B

, denoted by MST(G, cλ
B

), is a solution for T .
An important feature of our algorithm is to relax the degree constraints slightly

from B to (1 + ω)B for some fixed ω > 0 and show that there is a tree T ∈ O(1+ω)B

that satisfies the conditions of Theorem 1.1.
This paper is organized as follows: in section 2 we review results on the related

minimum degree spanning tree problem. In particular, we present the fundamental
ideas from [5, 7]. In section 3, we state our algorithm. Finally, we give the analysis
of our procedure in section 4.

2. Minimum degree spanning trees. Related to the BMST problem is the
problem of minimizing the maximum degree of a spanning tree (MDST) in some graph
G. This problem is NP-hard since the Hamiltonian path problem is a special case.
In fact, it is NP-complete to decide for any k ≥ 2 whether G contains a spanning
tree of maximum degree k [8].

Fürer and Raghavachari presented an approximation algorithm with an additive
performance guarantee of one [7]: i.e., they describe a polynomial-time algorithm that
finds a spanning tree T of G s.t. ∆(T ) ≤ ∆∗ + 1, where ∆∗ denotes the minimum
possible maximum degree over all spanning trees. In the same paper the authors also
give a local search algorithm for the MDST problem. This approach yields a tree
with maximum degree at most b∆∗ + logb n for any constant b > 1. Later, Fischer
noted that this procedure can be adapted to find a minimum-cost spanning tree of
approximately minimum maximum degree in an edge-weighted graph [5].

The local search algorithms from [5, 7] play an important role in this paper. In
this section we show a minor strengthening of these results that is crucial to the
analysis of our algorithm.
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2.1. A local improvement algorithm. In this section, we explain the basic
ideas from the local search algorithm for the MDST problem. We state the algorithm
since we use it later. The procedure starts with a spanning tree T and tries to improve
it by swapping nontree edges against tree edges.

Definition 2.1. Given a tree T and a nontree edge uv, let C(uv) be the unique
cycle in T ∪ {uv} and let wz ∈ C(e). We call the swap 〈uv,wz〉 an improvement for
w if

max{δT (u), δT (v)}+ 1 < δT (w).

If an edge swap 〈uv,wz〉 is an improvement step for either w or z, then the maximum
degree of the nodes u, v, w, and z decreases as a result of the swap; we call such a
swap simply an improvement.

The algorithm in [7] performs improvement steps as long as possible. In fact,
it is not hard to see that, starting with an arbitrary tree, the number of possible
improvements is finite. We end up with a locally optimal tree.

Definition 2.2. A tree T is called a locally optimal tree (LOT) if no vertex
degree can be decreased by applying an improvement swap.

Computing a LOT might be too ambitious a goal, however. In fact, it is not
known how to do this in polynomial time. However, the analysis in [7] shows that it
is enough to compute a pseudo-optimal tree.

Definition 2.3. A tree T of maximum degree ∆(T ) is called a pseudo-optimal
tree (POT) if for all vertices v with ∆(T )−�logb n� ≤ δT (v) ≤ ∆(T ), no improvement
step for v is applicable. Here b is an arbitrary constant bigger than one.

Fischer’s adaptation [5] of the algorithm from [7] computes a minimum-cost span-
ning tree of approximately minimum maximum degree. To obtain his algorithm we
have to make two small changes to the procedure from [7]. First, instead of starting
with an arbitrary spanning tree, we start with a minimum-cost spanning tree. Second,
an improvement step must be cost neutral. That is, for an improvement step 〈uv,wz〉
to be applicable, we must have cuv = cwz. Algorithm 1 states the procedure.

Algorithm 1. The algorithm PLocal computes a POT.

1: Given graph G = (V,E) and cost function c : E → R+

2: T ← MST(G, c)
3: while T is not pseudo optimal do
4: Identify cost neutral improvement 〈uv,wz〉
5: T ← T − wz + uv
6: end while

2.2. Analysis and running time. In what follows, we highlight and strengthen
the major ideas of the analysis from [5, 7]. The strengthening is due to Éva Tardos
[16] and leads to a shorter and simpler proof of Lemma 4.5 than the one that appeared
in the extended abstract [11].

The fundamental underlying proof idea for the unweighted problem is based on
an averaging argument that we present here. Let a set W ⊆ V be s.t. for a given
graph G = (V,E), the graph G[V −W ] has t connected components. A spanning tree
of G has to connect these t components and the nodes from W . We need exactly
t + |W | − 1 edges going between the nodes of W and the t connected components
to accomplish this. Each of these edges must be incident to a node from W . Hence
averaging yields a lower bound of (t+ |W |−1)/|W | on the maximum degree ∆∗ of T .

Proposition 2.4 (see [7]). Let W be a set of size w whose removal splits G into
t components. Then ∆∗ ≥ ⌈w+t−1

w

⌉
.
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We now turn to the weighted case, i.e., the minimum degree minimum-cost span-
ning tree problem. The above-mentioned strengthening of the results from [5] is based
on the following definitions.

Definition 2.5. Given an undirected graph G = (V,E) and a nonnegative cost
function c on the edges, let Oc be defined as

Oc = {T : T is an MST under cost c}.

In the following we will be talking about convex combinations of spanning trees.
Hence we introduce some further simplifying notation.

Definition 2.6. Let Tαc =
∑
T∈Oc αTT be a convex combination of minimum-

cost spanning trees of G with respect to cost function c, i.e., αT ≥ 0 for all T and∑
T∈Oc αT = 1. We denote the fractional degree of vertex v in Tαc by

δαc (v) =
∑
T∈Oc

αT δT (v).

Finally we define the minimum maximum degree of convex combinations of span-
ning trees.

Definition 2.7. Given G = (V,E) and a nonnegative cost function c on the
edges, let ∆∗c denote the minimum maximum degree of any convex combination of
minimum-cost spanning trees, i.e.,

∆∗c = min
convex comb. α

max
v∈V

δαc (v).

The following easy proposition will be used in the later analysis.
Proposition 2.8 (see [7]). For any constant b > 1 and a tree T , let Sd be the

set of nodes that have degree at least d in T . Then, there is a

d ∈ {∆T − �logb n�+ 1, . . . ,∆T }

s.t. |Sd−1| ≤ b|Sd|.
The main theorem is the following.
Theorem 2.9 (see [5, 7]). If T is a pseudo-optimal MST, then ∆T < b∆∗c +

�logb n� for any constant b > 1. Moreover, a pseudo-optimal MST can be computed
in polynomial time.
Proof. Given a constant b > 1, choose d as in Proposition 2.8. That is, we have

|Sd−1| ≤ b|Sd|. Recall that Sd contains the nodes of degree at least d in the tree T .

Removing Sd from T leaves us with a forest F . Let Ĝ be obtained from G
by contracting each connected component of F . It is now easy to see that every
minimum-cost spanning tree of G contains a minimum-cost spanning tree of Ĝ (e.g.,
every edge added by Kruskal’s algorithm for finding a minimum-cost spanning tree
for G is feasible for a minimum-cost spanning tree of Ĝ if it were not contracted in
the formation of Ĝ).

Let (u, v) ∈ E−T be an edge that connects two components of F s.t. u, v �∈ Sd−1,
i.e., both u and v have degree at most d− 2. We claim that such an edge cannot be
included in any MST of Ĝ. To see that, let PTu,v be the edges of the unique u, v-path

in T and let P̂Tu,v be the subset of the edges of PTu,v that are in Ĝ.
It follows from the pseudo optimality of T that the cost of edge (u, v) must be

higher than the cost of each edge from P̂Tu,v. Otherwise, (u, v) can be swapped in place
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of another edge of the same or higher cost in P̂Tu,v, and all such edges are incident to
at least one node in Sd−1, leading to an improvement. This means (u, v) cannot be

a part of any MST of Ĝ. Equivalently, a minimum-cost spanning tree of G must use
edges incident to Sd−1 to connect the components of F and the nodes of Sd.

By the definition of Sd, we know that F has at least

|Sd|d− 2(|Sd| − 1) = |Sd|(d− 2) + 2

trees. This follows from an easy counting argument after observing that every node
in Sd has degree at least d in T and there are at most |Sd| − 1 edges going between
nodes of Sd.

This means that we need at least

|Sd|(d− 2) + 2 + |Sd| − 1 = |Sd|(d− 1) + 1

edges to connect up the components of F and the nodes of Sd in any spanning tree.
By the preceding argument, each of these edges has to be incident to at least one
node of degree at least d− 1 in an MST. Hence the average degree of a node of Sd−1

in any MST is

|Sd|(d− 1) + 1

|Sd−1| .

Moreover, the average degree of a node in Sd−1 in any convex combination of MSTs
is also at least the above ratio. Since ∆∗c denotes the minimum possible maximum
degree of any fractional MST, it follows, using our choice of index d from Proposition
2.8, that

∆∗c >
d− 1

b
.

Using the range of d, we obtain ∆(T ) < b∆∗c + �logb n�. The results in [5, 7] show
a lower bound on the degree of any MST. The extension to fractional MSTs is the
mentioned strengthening [16] of the previous ideas.

For the running time we follow [7]. Note that each improvement step can be
implemented in polynomial time. We need to bound the number of iterations. The
proof uses a potential function argument. Define the potential of a vertex v as

Φ(v) = 3δT (v),

where T is the current tree. The total potential is the sum over all vertex potentials,
that is,

Φ(T ) =
∑
v∈V

Φ(v).

Now, an improvement step in Algorithm 1 improves the degree of a vertex v ∈ Sd
with δT (v) = d and d ≥ ∆(T )− �logb n�+ 1. Hence, the reduction in the potential is
going to be at least

(3d + 2 · 3d−2)− 3 · 3d−1 = 2 · 3d−2.

Using the range of d, we can lower bound the right-hand side of the last equality by

3∆(T )−logb n−1 = Ω

(
3∆(T )

n

)
.
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The potential Φ(T ) of the tree T is at most n3∆(T ). This implies that the overall
decrease of the potential due to the improvement step is

Ω

(
Φ(T )

n2

)
.

In other words, we reduce the potential by at least a polynomial factor in each itera-
tion. In O(n2) iterations the reduction is by a constant factor. Hence, the algorithm
needs O(n3) improvement steps in total.

3. The BMST algorithm. In this section, we describe our algorithm for the
BMST problem. It uses the Lagrangean formulation (LD(B)) from the introduction
and Algorithm 1.

The input to our algorithm consists of a graph G, a nonnegative cost function c,
a degree bound B∗, and a positive constant ω. Let B = (1 + ω)B∗.
Algorithm 2. Our algorithm for the BMST problem.

1: Given graph G = (V,E), a cost function c : E → R+, a degree bound B∗ ≥ 2,
and a parameter ω > 0

2: B ← (1 + ω)B∗

3: λB ← Solve(LD(B))

4: T ← PLocal(G, cλ
B

)

Since the optimum Lagrange multipliers and pseudo-optimal MSTs can be com-
puted in polynomial time [7, 13], Algorithm 2 runs in polynomial time.

Recall that cλ
B

denotes the original cost function c augmented by the Lagrangean

multipliers λB , i.e., cλ
B

uv = cuv+λu+λv. We use OB to denote the set of all minimum-

cost spanning trees of G for cost function cλ
B

.

4. Analysis. In this section we prove Theorem 1.1. First, we show that the cost
c(T ) of the tree output by Algorithm 2, T , is small. Then, we prove that T has low
maximum degree. Our proofs rely on techniques from Lagrangean duality.

4.1. The cost of T . Recall that optLD(B) ≤ optB from Proposition 1.2.
Unfortunately, optLD(B) = optB is not true in general. There might be a duality
gap. However, it can be shown that optLD(B) equals the optimum objective function
value of the relaxation of (IP). The proof is insightful, and hence we present it here.

Theorem 4.1 (see [13]). optLD(B) = min{c(T ) : T ∈ SPG ∀v ∈ V : δT (v) ≤ B}.
Proof. We can restate (LD(B)) as the following linear program in variables η and

λ. Recall that we denote its maximum objective function value by optLD(B) .

max η(4.1)

s.t. η ≤ c(T )−
∑
v∈V

λv(B − δT (v)) ∀T ∈ SPG ,

λ ≥ 0.

The first block of constraints states that η is at most the cost of any spanning tree
T of G with respect to the Lagrangean function (1.2). The maximization objective
of (4.1) forces η to attain the best possible cost. Writing down the dual of the last
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program yields

min c


 ∑

T∈SPG

αTT


(4.2)

s.t.
∑

T∈SPG

αT = 1,

∑

T∈SPG

αT δT (v) ≤ B,
∑

T∈SPG

αT = B ∀v ∈ V,

α ≥ 0.

Note that Tα =
∑
T∈SPG

αTT is a convex combination of trees in SPG . Also, observe
that

∑
T∈SPG

αT δT (v) is precisely the degree δα(v) of this fractional tree at node v.
These observations yield the theorem.

The theorem has two nice corollaries that we use. In the following, let λB denote
the vector of optimum Lagrangean multipliers for (LD(B)). Recall that OB is the set

of minimum-cost spanning trees under cλ
B

.
Corollary 4.2. There exists a convex combination Tα =

∑
T∈OB αTT s.t.

1. ∀v ∈ V, δα
cλB (v) ≤ B and

2. λBv > 0 only if δα
cλB (v) = B.

Proof. This follows from complementary slackness applied to the optimum solu-
tions of the dual linear programs (4.1) and (4.2).

The second corollary gives a bound on ∆∗
cλB .

Corollary 4.3. ∆∗
cλB ≤ B.

Proof. By Corollary 4.2, we know that there is a convex combination Tα of trees
from OB s.t. δα

cλB (v) ≤ B for all v. Hence

∆∗
cλB = min

α
max
v∈V

δα
cλB (v) ≤ B.

We now prove that c(T ) is small.
Lemma 4.4. For all trees T ∈ OB we have c(T ) < (1 + 1/ω) optB∗ .
Proof. Recall that we defined B = (1 + ω)B∗.
The following inequality holds for every T ∈ OB :

∑
v∈V

λBv (δT (v)−B∗) ≤ c(T ) +
∑
v∈V

λBv (δT (v)−B∗)(4.3)

≤ opt LD(B∗).

In the first inequality we just added c(T ). Note that the right-hand side of the first
line is just the Lagrangean objective function (1.2) for B∗. Recall that T is an MST

with respect to cλ
B

. Moreover, λB is a feasible set of multipliers for (LD(B∗)). Hence,
the second inequality follows.

We also have

c(T ) = c(T ) +
∑
v∈V

λBv (δT (v)−B∗) +
∑
v∈V

λBv (B
∗ − δT (v))

≤ opt LD(B∗) +
∑
v∈V

λBv (B
∗ − δT (v)),
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where the inequality follows from (4.3). Applying Proposition 1.2 and the fact that
δT (v) ≥ 1 for all v ∈ V leads to

c(T ) < optB∗ +B∗
∑
v∈V

λBv .

In the remainder of this proof we will derive the inequality B∗
∑
v∈V λ

B
v ≤ optB∗/ω.

This yields the lemma. From Corollary 4.2, we know that there is a convex combina-
tion

Tα =
∑

T∈OB

αTT

s.t. λBv > 0 only if δα
cλB (v) = B.

We derive a new inequality by summing over all T ∈ OB , αT times the inequality
(4.3) for each T . We obtain

∑

T∈OB

αT

(∑
v∈V

λBv (δT (v)−B∗)
)
≤ opt LD(B∗)

∑

T∈OB

αT .(4.4)

The right-hand side is equivalent to opt LD(B∗) because
∑
T∈OB αT = 1. Reordering

the left-hand side yields

∑
v∈V

λBv

(( ∑

T∈OB

αT δT (v)

)
−B∗

)
.

Instead of summing over all v ∈ V , it suffices to sum over v, where λBv > 0. For such
v, we have that

δα
cλB =

∑

T∈OB

αT δT (v) = B

by Corollary 4.2. Using B = (1 + ω)B∗, it follows that the left-hand side of (4.4) is
equivalent to

ωB∗
∑
v∈V

λBv ,

and this finishes the proof of the lemma.

4.2. The maximum degree of T .

Lemma 4.5. ∆T ≤ (1 + ω)bB∗ + �logb n� for constants b > 1 and ω.

Proof. T is a pseudo-optimal minimum-cost spanning tree with respect to cost

function cλ
B

. From Theorem 2.9 we know that

∆T ≤ b∆∗cλB + �logb n�.

An application of Corollary 4.3, noting that B = (1 + ω)B∗, yields the lemma.
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5. Conclusions.

5.1. Summary and remarks. In this paper we developed an improved ap-
proximation algorithm for the degree-bounded minimum spanning tree problem. For
a positive constant B∗ and an n-node graph, our method computes a spanning tree
whose cost is at most a constant factor worse than the cost of the optimum degree-B∗-
bounded minimum spanning tree. Additionally, we proved that the maximum degree
of the resulting tree is O(B∗+log n). Our procedure solves a Lagrangean relaxation of
the BMST integer program for slightly relaxed degree constraints ((1 + ω)B∗ instead
of B∗). We showed how this slack helps to prove low cost of the resulting tree. Our
algorithm also makes use of a local search technique from [5, 7]. We showed how a
slight strengthening of the results in [5, 7] can be used to prove low maximum degree
of the resulting tree.

5.2. Extensions and open questions. An interesting open question is whether
our results extend to the case of Steiner trees and general Steiner networks. The
central difficulty of such an extension stems from the fact that, in the Steiner case,
the subproblem that arises from dualizing the degree constraints (the minimum-cost
Steiner tree problem) itself is NP-hard.

Another avenue for extending our work is to examine if our approach is capable
of handling individual node degrees. In the current version, node degrees are assumed
to be uniform. Lemma 4.5 relies on the pseudo optimality of tree T from Algorithm 2
and on results from [5, 7]. These results do not apply to nonuniform degrees. Is there
an extension of the known MDST algorithms to handle individual degree bounds?

We believe that the techniques used in this paper can be generalized to apply to
a broader class of multicriteria problems. A central point in the development of a
more general framework is the identification of key properties of suitable optimization
problems; in the BMST problem, the dualization of the degree constraints yields a
tractable subproblem. Furthermore, the compact form of the objective function of
this subproblem proved to be a key for the analysis.

Acknowledgment. We thank Éva Tardos for permitting us to include her sim-
pler proof of Lemma 4.5 in the paper.
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Abstract. We consider the problem of maintaining aggregates and statistics over data streams,
with respect to the last N data elements seen so far. We refer to this model as the sliding window
model. We consider the following basic problem: Given a stream of bits, maintain a count of the
number of 1’s in the last N elements seen from the stream. We show that, using O( 1

ε
log2N) bits

of memory, we can estimate the number of 1’s to within a factor of 1 + ε. We also give a matching
lower bound of Ω( 1

ε
log2N) memory bits for any deterministic or randomized algorithms. We extend

our scheme to maintain the sum of the last N positive integers and provide matching upper and
lower bounds for this more general problem as well. We also show how to efficiently compute the Lp

norms (p ∈ [1, 2]) of vectors in the sliding window model using our techniques. Using our algorithm,
one can adapt many other techniques to work for the sliding window model with a multiplicative
overhead of O( 1

ε
logN) in memory and a 1 + ε factor loss in accuracy. These include maintaining

approximate histograms, hash tables, and statistics or aggregates such as sum and averages.
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1. Introduction. Traditional database management systems (DBMSs) expect
all data to be managed within some form of persistent data sets. For many recent
applications, the concept of a data stream, possibly infinite, is more appropriate than
a data set. By nature, a stored data set is appropriate when significant portions
of the data are queried again and again, and updates are small and/or relatively
infrequent. In contrast, a data stream is appropriate when the data is changing
constantly (often exclusively through insertions of new elements), and it is either
unnecessary or impractical to operate on large portions of the data multiple times.

One of the challenging aspects of processing over data streams is that, while the
length of a data stream may be unbounded, making it impractical or undesirable to
store the entire contents of the stream, for many applications, it is still important to
retain some ability to execute queries that reference past data. For example, in order
to detect fraudulent credit card transactions, it is useful to be able to detect when the
pattern of recent transactions for a particular account differs significantly from the
earlier transactional history of that account. In order to support queries of this sort
using a bounded amount of storage (either in memory or in a traditional DBMS), it
is necessary to devise techniques for storing summary or synoptic information about
previously seen portions of data streams. Generally there is a tradeoff between the
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size of the summaries and the ability to provide precise answers to queries involving
past data.

We consider the problem of maintaining statistics over streams with regard to
the last N data elements seen so far. We refer to this model as the sliding window
model. We identify a simple counting problem whose solution is a prerequisite for
efficient maintenance of a variety of more complex statistical aggregates: Given a
stream of bits, maintain a count of the number of 1’s in the last N elements seen from
the stream. We show that, using O( 1

ε log
2 N) bits of memory, we can estimate the

number of 1’s to within a factor of 1 + ε. We also give a matching lower bound of
Ω( 1

ε log
2 N) memory bits for any deterministic or randomized algorithm. We extend

our scheme to maintain the sum of the last N positive integers and provide matching
upper and lower bounds for this more general problem as well.

We also show how to efficiently compute the Lp norms (p ∈ [1, 2]) of vectors in
the sliding window model using our techniques. Using our algorithm, one can adapt
many other techniques to work for the sliding window model with a multiplicative
overhead of O( 1

ε logN) in memory and a 1 + ε factor loss in accuracy. These in-
clude maintaining approximate histograms, maintaining hash tables, and maintaining
statistics and aggregates such as sum and average. Our techniques are simple and
easy to implement. We expect that it will be an attractive choice of implementation
for streaming applications.

1.1. Motivation, model, and related work. Several applications naturally
generate data streams as opposed to data sets. In telecommunications, for example,
call records are generated continuously. Typically, most processing is done by exam-
ining a call record once or operating on a “window” of recent call records (e.g., to
update customer billing information), after which records are archived and not exam-
ined again. For example, Cortes et al. [2] report working with AT&T long distance
call records, consisting of 300 million records per day for 100 million customers. A
second application is network traffic engineering, in which information about current
network performance—latency, bandwidth, etc.—is generated online and is used to
monitor and adjust network performance dynamically [7, 16]. In this application, it is
generally both impractical and unnecessary to process anything but the most recent
data.

There are other traditional and emerging applications in which data streams play
an important and natural role, e.g., web tracking and personalization (where the data
streams are web log entries or click-streams), medical monitoring (vital signs, treat-
ments, and other measurements), sensor databases, and financial monitoring, to name
but a few. There are also applications in which traditional (nonstreaming) data is
treated as a stream due to performance constraints. In data mining applications,
for example, the volume of data stored on disk is so large that it is only possible to
make one pass (or perhaps a very small number of passes) over the data [12, 11]. The
objective is to perform the required computations using the stream generated by a
single scan of the data, using only a bounded amount of memory and without re-
course to indexes, hash tables, or other precomputed summaries of the data. Another
example along these lines occurs when data streams are generated as intermediate
results of pipelined operators during evaluation of a query plan in an SQL database;
without materializing some or all of the temporary results, only one pass on the data
is possible [3].

In most of these applications, the goal is to make decisions based on the statistics
or models gathered over the “recently observed” data elements. For example, one
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might be interested in gathering statistics about packets processed by a set of routers
over the last day. Moreover, we would like to maintain these statistics in a continuous
fashion. This gives rise to the sliding window model : Data elements arrive at every
instant; each data element expires after exactly N time steps; and the portion of
data that is relevant to gathering statistics or answering queries is the set of the last
N elements to arrive. The sliding window refers to the window of active data elements
at a given time instant.

Previous work [1, 5, 13] on stream computations addresses the problems of approx-
imating frequency moments and computing the Lp differences of streams. There has
also been work on maintaining histograms [14, 10]. While Jagadish et al. [14] address
the off-line version of computing optimal histograms, Guha and Koudas [10] provide
a technique for maintaining near optimal time-based histograms in an on-line fash-
ion over streaming data. The queries that are supported by histograms constructed
in the latter work are range or point queries over the time attribute. In the earlier
work, the underlying model is that all of the data elements seen so far are relevant.
Recent work by Gilbert et al. [8] considers, among other things, the problem of main-
taining aged aggregates over data streams. For a data stream . . . , a(−2), a(−1), a(0),
where a(0) is the most recently seen data element, the λ-aging aggregate is defined
as λa(0) + λ(1 − λ)a(−1) + λ(1 − λ)2a(−2) + · · · . Aged aggregate queries tend to get
asked in the context of telecommunications data. While aging is one technique to
discount for the staleness of certain data elements, we believe that the sliding window
model is also important since, for most applications, one is not interested in gather-
ing statistics over outdated data. For instance, in network management, depending
upon the specific application, we may not want data that is a month old or a year
old to affect our decisions. Maintaining statistics like sum/average, histograms, hash
tables, frequency moments, and Lp differences over sliding windows is critical to most
applications. To our knowledge, there has been no previous work that addresses these
problems for the sliding window model.

1.2. Summary of results. We focus completely on the sliding window model
for data streams. We formulate a basic counting problem whose solution can be used
as a building block for solving most of the problems mentioned earlier.

Problem 1 (BasicCounting). Given a stream of data elements, consisting of
0’s and 1’s, maintain at every time instant the count of the number of 1’s in the last
N elements.

It is easy to verify that an exact solution requires Θ(N) bits of memory. (Note that
we measure space complexity in terms of the number of bits rather than the number
of memory words.) For most applications, it is prohibitive to use Ω(N) memory. For
instance, consider the network management application, where a large number of data
packets pass through a router every second. However, in most applications, it suffices
to produce an approximate answer. Thus our goal is to provide a good approximation
using o(N) memory.

It is interesting to observe why näıve schemes do not suffice for producing approx-
imate answers with low memory requirement. For instance, consider the scheme in
which we maintain a simple counter which is incremented upon the arrival of a data
element, which is 1. The problem is that an old data element expires at every time
instant, but we have no way of knowing whether that was a 0 or 1 and whether we
should decrement the counter. It is also natural to consider random sampling. Just
maintaining a sample of the window elements will fail in the case where the 1’s are
relatively sparse.
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Another approach is to maintain histograms. While this is the approach that we
follow, we argue that the known histogram techniques will not work. A histogram
technique is characterized by the policy used to maintain the bucket boundaries. We
would like to build time-based histograms in which every bucket represents a contigu-
ous time interval and maintains the number of 1’s that arrived in that interval. As
with all histogram techniques, when a query is presented, we may have to interpolate
in some bucket to estimate the answer because a proper subset of the buckets’ ele-
ments may have expired. Let us consider some schemes of bucketizing and see why
they will not work. The first scheme that we consider is that of dividing into k equi-
width buckets. The problem is that the distribution of 1’s in the buckets may be
nonuniform. We will incur large error when the interpolation takes place in buckets
with a majority of the 1’s. This suggests another scheme, in which we use buckets of
nonuniform width, so as to ensure that each bucket has a near-uniform number of 1’s.
The problem is that the total number of 1’s in the sliding window could change dra-
matically with time, and the current buckets may turn out to have more or less than
their fair share of 1’s as the window slides forward. Our solution is a form of a his-
togram which avoids these problems by using a set of well-structured and nonuniform
bucket sizes.

In section 2, we provide a solution for BasicCounting which uses O( 1
ε log

2 N)
bits of memory (equivalently, O( 1

ε logN) buckets of size O(logN)) and provides an
estimate of the answer at every instant that is within a 1 + ε factor of the actual
answer. Moreover, our algorithm does not require an a priori knowledge of N and
caters to the possibility that the window size can be changed dynamically. Our
algorithm is guaranteed to work with O(log2 N) memory as long as the window size
is bounded by N . The algorithm takes O(logN) worst-case time to process each
new data element’s arrival but only O(1) amortized time per element. Count queries
can be processed in O(1) time. The algorithm itself is relatively simple and easy to
implement.

Section 3 presents a matching lower bound. We show that any approximation
algorithm (deterministic or randomized) for BasicCounting with relative error 1+ε
must use Ω( 1

ε log
2 N) bits of memory. This proves that our algorithm is optimal in

terms of memory usage.

In section 4, we extend the technique to handle data elements with positive integer
values, instead of just binary values; this is referred to as the Sum problem. We
provide matching upper and lower bounds on the memory usage for this general
problem as well.

In section 5, we show how our schemes extend to a model which is more suited
for real-life applications and also explore some ideas for reducing the memory require-
ments.

In section 6, we show that we can use our techniques along with the sketching
techniques of [13] to efficiently maintain the Lp (p ∈ [1, 2]) norms of vectors in the
sliding window model.

Finally, section 7 provides a brief discussion of the application of the Basic-
Counting and Sum algorithms to adapting several other problems in the sliding
window model, such as maintaining histograms, hash tables, and statistics or aggre-
gates such as averages/sums. The reduction of these problems to BasicCounting
entails a multiplicative overhead of O( 1

ε logN) in memory and a 1 + ε factor loss in
accuracy. This serves to illustrate the usefulness of focusing on the BasicCounting
problem. We also discuss upper and lower bounds for other problems such as main-



1798 M. DATAR, A. GIONIS, P. INDYK, AND R. MOTWANI

taining min/max, distinct values estimation, and maintaining sum in the presence of
positive and negative values.

2. Algorithm for BasicCountingBasicCountingBasicCounting. Our approach toward solving the Basic-
Counting problem is to maintain a histogram that records the timestamp of selected
1’s that are active in that they belong to the last N elements. We call this histogram
the exponential histogram (EH) for reasons that will be clear later. Before getting
into the details of our algorithms, we need to introduce some notation.

We follow the conventions illustrated in Figure 1. In particular, we assume that
new data elements are coming from the right and the elements at the left are ones
already seen. Note that each data element has an arrival time, which increments by
one at each arrival, with the leftmost element considered to have arrived at time 1.
But, in addition, we employ the notion of a timestamp, which corresponds to the
position of an active data element in the current window. We timestamp the active
data elements from right to left, with the most recent element being at position 1.
Clearly, the timestamps change with every new arrival, and we do not wish to make
explicit updates. A simple solution is to record the arrival times in a wraparound
counter of logN bits, and then the timestamp can be extracted by comparison with
the counter value of the current arrival. As mentioned earlier, we concentrate on the
1’s in the data stream. When we refer to the kth 1, we mean the kth most recent 1
encountered in the data stream.

  41    42    43   44   45      .  .  .  .  .     49    50         .  .  .  .   . Arrival time

Increasing time

.  .  .Elements

Current time instance

0     1     1     1     0     0     0     1     0     1     0     0     1     0     1     1  .  .  . 

Increasing ordering of data elements, 
histogram buckets, active 1’s

Data elements that will be seen in future

Timestamps

Window of active elements

               7     6     5       .  .  .  .  .      1

Fig. 1. An illustration for the notation and conventions followed.

For an illustration of this notation, consider the situation presented in Figure 1.
The current time instant is 49, and the most recent arrival is a zero. The element
with arrival time 48 is the most recent 1 and has timestamp 2 since it is the second
most recent arrival in the current window. The element with arrival time 44 is the
second most recent 1 and has timestamp 6.

We will maintain histograms for the active 1’s in the data stream. For every bucket
in the histogram, we keep the timestamp of the most recent 1 (called timestamp), and
the number of 1’s (called bucket size). For example, in our figure, a bucket with
timestamp 2 and size 2 represents a bucket that contains the two most recent 1’s with
timestamps 2 and 6. Note that the timestamp of a bucket increases as new elements
arrive. When the timestamp of a bucket expires (reaches N + 1), we are no longer
interested in data elements contained in it, so we drop that bucket and reclaim its
memory. If a bucket is still active, we are guaranteed that it contains at least a single
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1 that has not expired. Thus, at any instant, there is at most one bucket (the last
bucket) containing 1’s which may have expired. At any time instant, we may produce
an estimate of the number of active 1’s as follows. For all but the last bucket, we add
the number of 1’s that are in them. For the last bucket, let C be the count of the
number of 1’s in that bucket. The actual number of active 1’s in this bucket could be
anywhere between 1 and C, and so we estimate it to be C/2. We obtain the following
fact.

Fact 1. The absolute error in our estimate is at most C/2, where C is the size
of the last bucket.

Note that, for this approach, the window size does not have to be fixed a priori
at N . Given a window size S, we do the same thing as before except that the last
bucket is the bucket with the largest timestamp less than S.

2.1. The approximation scheme. We now define the EHs and present a tech-
nique to maintain them so as to guarantee count estimates with relative error at
most ε for any ε > 0. Define k = � 1ε �, and assume that k

2 is an integer; if k2 is not an

integer, we can replace k
2 by �k2 � without affecting the basic results.

As per Fact 1, the absolute error in the estimate is C/2, where C is the size
of the last bucket. Let the buckets be numbered from right to left with the most
recent bucket being numbered 1. If Ci is the size of the ith bucket, we know that
the true count is at least 1 +

∑m−1
i=1 Ci since the last bucket contains at least one 1,

and the remaining buckets contribute exactly their size to the total count. Note
that m is the index of the last bucket. Thus the relative estimation error is at most
(Cm/2)/(1 +

∑m−1
i=1 Ci). We will ensure that the relative error is at most 1/k by

maintaining the following invariant.
Invariant 1. At all times, the bucket sizes C1, . . . , Cm are such that, for all

j ≤ m, we have Cj/2(1 +
∑j−1
i=1 Ci) ≤ 1

k .
Let N ′ ≤ N be the number of 1’s that are active at any instant. Then the bucket

sizes must satisfy
∑m
i=1 Ci ≥ N ′. In order to satisfy this and Invariant 1 with as few

buckets as possible, we maintain buckets with exponentially increasing sizes so as to
satisfy the following second invariant.

Invariant 2. At all times, the bucket sizes are nondecreasing, i.e., C1 ≤ C2 ≤
· · · ≤ Cm−1 ≤ Cm. Further, the bucket sizes are constrained to the following:
{1, 2, 4, . . . , 2m′} for some m′ ≤ m and m′ ≤ log 2N

k + 1. For every bucket size other

than the size of the last bucket, there are at most k
2 +1 and at least k

2 buckets of that
size.

Let Cj = 2r be the size of the jth bucket. If Invariant 2 is satisfied, then we
are guaranteed that there are at least k

2 buckets, each of sizes 1, 2, 4, . . . , 2r−1, which

have indexes less than j. Consequently, Cj ≤ 2
k (1 +

∑j−1
i=1 Ci). It follows that, if

Invariant 2 is satisfied, then Invariant 1 is automatically satisfied. If we maintain
Invariant 2, it is easy to see that, to cover all the active 1’s, we would require no more
than m ≤ (k2 +1)(log(2N

k + 1)+1) buckets. Associated with the bucket is its size and
a timestamp. The bucket size takes at most logN values, and hence we can maintain
them using log logN bits. Since a timestamp requires logN bits, the total memory
requirement of each bucket is logN + log logN bits. Therefore, the total memory
requirement (in bits) for an EH is O( 1

ε log
2 N). It is implied that, by maintaining

Invariant 2, we are guaranteed the desired relative error and memory bounds.
The query time for the EH is O(1). We achieve this by maintaining two counters:

one for the size of the last bucket (Last) and one for the sum of the sizes of all buckets
(Total). The estimate itself is Total minus half of Last. Both counters can be



1800 M. DATAR, A. GIONIS, P. INDYK, AND R. MOTWANI

updated in O(1) time for every data element. The following is a detailed description
of the update algorithm.

Algorithm Insert.
1. When a new data element arrives, calculate the new expiry time. If the

timestamp of the last bucket indicates expiry, delete that bucket, and update
the counter Last containing the size of the last bucket and the counterTotal
containing the total size of the buckets.

2. If the new data element is 0, ignore it; otherwise, create a new bucket with
size 1 and the current timestamp, and increment the counter Total.

3. Traverse the list of buckets in order of increasing sizes. If there are k
2 + 2

buckets of the same size, merge the oldest two of these buckets into a single
bucket of double the size. (A merger of buckets of size 2r may cause the
number of buckets of size 2r+1 to exceed k

2 + 1, leading to a cascade of such
mergers.) Update the counter Last if the last bucket is the result of a new
merger.

Example 1. We illustrate the execution of the algorithm for 10 steps, where, at
each step, the new data element is 1. The numbers indicate the bucket sizes from left
to right, and we assume that k

2 = 1.
32, 32, 16, 8, 8, 4, 2, 1
32, 32, 16, 8, 8, 4, 4, 2, 1, 1 (new 1 arrived)
32, 32, 16, 8, 8, 4, 4, 2, 1, 1, 1 (new 1 arrived)
32, 32, 16, 8, 8, 4, 4, 2, 2, 1 (merged the older 1’s)
32, 32, 16, 8, 8, 4, 4, 2, 2, 1, 1 (new 1 arrived)
32, 32, 16, 8, 8, 4, 4, 2, 2, 1, 1, 1 (new 1 arrived)
32, 32, 16, 8, 8, 4, 4, 2, 2, 2, 1 (merged the older 1’s)
32, 32, 16, 8, 8, 4, 4, 4, 2, 1 (merged the older 2’s)
32, 32, 16, 8, 8, 8, 4, 2, 1 (merged the older 4’s)
32, 32, 16, 16, 8, 4, 2, 1 (merged the older 8’s)

Merging two buckets corresponds to creating a new bucket whose size is equal to
the sum of the sizes of the two buckets and whose timestamp is the timestamp of the
more recent of the two buckets, i.e., the timestamp of the bucket that is to the right. A
merger requires O(1) time. Moreover, while cascading may require Θ(log 2N

k ) mergers
upon the arrival of a single new element, standard arguments allow us to argue that
the amortized cost of mergers is O(1) per new data element. It is easy to see that the
above algorithm maintains Invariant 2. We obtain the following theorem.

Theorem 1. The EH algorithm maintains a data structure which can give an
estimate for the BasicCounting problem with relative error at most ε using at
most (k2 + 1)(log(2N

k + 1) + 1) buckets, where k = � 1ε �. The memory requirement
is logN + log logN bits per bucket. The arrival of each new element can be processed
in O(1) amortized time and O(logN) worst-case time. At each time instant, the data
structure provides a count estimate in O(1) time.

If, instead of maintaining a timestamp for every bucket, we maintain a timestamp
for the most recent bucket and maintain the difference between the timestamps for the
successive buckets, then we can reduce the total memory requirement to O(k log2 N

k ).

3. Lower bounds. We provide a lower bound which verifies that the EH al-
gorithm is optimal in its memory requirement. We start with a deterministic lower
bound of Ω(k log2 N

k ).
Theorem 2. Any deterministic algorithm that provides an estimate for the

BasicCounting problem at every time instant with relative error less than 1
k for
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some integer k ≤ 4
√
N requires at least k

16 log
2 N
k bits of memory.

The proof argument will go as follows: We will show that there are a large number
of arrangements of 0’s and 1’s such that any deterministic algorithm which provides
estimates with small relative error has to differentiate between every pair of these
arrangements. The number of memory bits required by such an algorithm must
therefore exceed the logarithm of the number of arrangements. The above argument
is formalized by the following lemma.

Lemma 1. For k/4 ≤ B ≤ N , there exist L =
(
B
k/4

)�log N
B � arrangements of

0’s and 1’s of length N such that any deterministic algorithm for BasicCounting
with relative error less than 1

k must differentiate between any two of the arrange-
ments.

Proof. We partition a window of size N into blocks of size B, 2B, 4B, . . . , 2jB,
from right to left, for j = �log NB �−1. Consider the ith block of size 2iB, and subdivide

it into B contiguous subblocks of size 2i. For each block, we choose k
4 subblocks and

populate them with 1’s, placing 0’s in the remaining positions. In every block, there
are

(
B
k/4

)
possible ways to place the 1’s, and therefore the total number of distinct

arrangements is L =
(
B
k/4

)�logN/B�
.

We now argue that any deterministic algorithm for BasicCounting with relative
error less than 1

k must differentiate between any pair of these arrangements. In
other words, if there exists a pair of arrangements Ax, Ay such that a deterministic
algorithm does not differentiate between them, then, after some time interval, the two
arrangements will have different answers to the BasicCounting problem, and the
algorithm will give a relative error of at least 1

k for one of them. To this end, we will
assume that the algorithm is presented with one of these L arrangements of length N ,
followed by a sequence of all 0’s of length N .

rel error > 1/6

Block 0Block 1Block 2

Ax

Ay

m = 4, k/4 = 2.

0

1

Fig. 2. A pair of arrangements that should be differentiated by any deterministic algorithm
with relative error less than 1/8.

Refer to Figure 2 for an illustration of a pair of arrangements that should be
differentiated by any deterministic algorithm with relative error less than 1

8 .
Consider an algorithm that does not differentiate between two of the above ar-

rangements Ax and Ay. We will use the numerical sequences x0, x1, . . . , xj and
y0, y1, . . . , yj for j = �log NB � − 1 to encode the two arrangements. The ith number
in the sequence specifies the choice of the k/4 subblocks from the ith block which are
populated with 1’s. The two sequences must be distinct since the two arrangements
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being encoded are distinct. Let d be an index of a point where the two sequences dif-
fer, i.e., xd = yd. Then the two arrangements have a different choice of k/4 subblocks
in the dth block. Number the subblocks within block d from right to left, and let h be
the highest numbered subblock that is chosen for one of the arrangements (say, Ax)
but not for the other (Ay). Consider the time instant when this subblock h expires. At
that instant, the number of active subblocks in block d for arrangement Ax is c, where
c+1 ≤ k/4, while the number of active subblocks in block d for Ay is c+1. Since the
arrangements are followed by a sequence of 0’s, at this time, the correct answer for Ax
is c2d + k

4 (2
d − 1), while, for Ay, the correct answer is (c + 1)2d + k

4 (2
d − 1). Thus

the algorithm will give an absolute error of at least 2d−1 for one of the arrangements,
which translates to a relative error of 1

k at that point in time.

To prove Theorem 2, observe that, if we choose B =
√
Nk, then logL ≥ k

16 log
2 N
k .

We also extend the lower bound on the space complexity to randomized algorithms.
As a reminder, a Las Vegas algorithm is a randomized algorithm that always

produces the correct answer, although the running time of the algorithm may vary
with the different random choices that the algorithm makes. On the other hand,
a Monte Carlo algorithm is a randomized algorithm that sometimes produces an
incorrect solution. We obtain the following lower bounds for these two classes of
algorithms.

Theorem 3. Any randomized Las Vegas algorithm for BasicCounting with
relative error less than 1

k for some integer k ≤ 4
√
N requires at least k

16 log
2 N
k bits

of memory.
Proof. Define an algorithm A to be ε-correct for an input instance I if the value

returned by A on input I has relative error less than ε. The Yao minimax principle [15]
implies that the expected space complexity of the optimal ε-correct deterministic
algorithm for an arbitrarily chosen input distribution p is a lower bound on the
expected space complexity of the optimal ε-correct Las Vegas randomized algorithm.
Consider the uniform distribution over the input arrangements in Lemma 1. Then any
deterministic algorithm that is ε-correct for all of these instances must differentiate
between any two distinct arrangements. As a result, the expected space complexity
of an optimal deterministic algorithm on this distribution is at least equal to the
optimal coding length for the probability distribution. Since the coding length is at
least equal to the entropy of the distribution, we get the same lower bound (logarithm
of the number of instances) as in the case of a deterministic algorithm. This proves
the generalization of Theorem 2 to Las Vegas randomized algorithms.

Theorem 4. Any randomized Monte Carlo algorithm for BasicCounting with
relative error less than 1

k for some integer k ≤ 4
√
N with probability at least 1 − δ

(for δ < 1
2) requires at least

k
64 log

2 N
k − log(1− δ) bits of memory.

Proof. We use the analogous version of Yao’s minimax principle for Monte Carlo
randomized algorithms [15] to establish the lower bound for Monte Carlo algorithms.
Consider a deterministic algorithm that is ε-correct with probability at least 1 − δ
for some δ < 1

2 . As before, the input distribution p that we consider is the uniform
distribution over all of the arrangements defined in Lemma 1. Since the deterministic
algorithm is ε-correct with probability at least 1− δ, it is ε-correct for at least a 1− δ
fraction of the inputs. Thus, by arguments similar to those in the previous theorem, we
get the same lower bound except for an additive loss of log(1−δ) and a multiplicative
loss of 1

4 . Asymptotically, the lower bound does not change.

4. Beyond 0’s and 1’s. Consider now the extension of BasicCounting to the
case where the elements are positive integers.
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Problem 2 (Sum). Given a stream of data elements that are positive integers in
the range [0 . . . R], maintain at every time instant the sum of the last N elements.

One obvious way to solve the above problem would be to separately maintain
a sliding window sum for each of the logR bit positions using an EH from sec-
tion 2. As before, let k = � 1ε �. The memory requirement for this approach would

be O(k log2 N logR) bits. Next, we present a technique that has a smaller space
requirement.

We assume that logR = o(N). This is a realistic assumption which simplifies
our calculations. We generalize the EH to this setting as follows. View the ar-
rival of a data element of value v as the arrival of v data elements with value 1 all
at the same time, and employ the same insertion procedure as before. Note that
the algorithm in section 2 does not require distinct timestamps; they are required
only to be nondecreasing. While earlier there could be at most N active 1’s, now
there could be as many as NR. The results in section 2 imply that the EH will
require at most (k2 + 1)(log(2NR

k + 1) + 1) buckets. Now each bucket will require
logN + log(logN + logR) bits of memory to store the timestamp and the size of
the bucket. Note that there are N distinct timestamps at any point (as before) but
that the bucket sizes could take on logN + logR distinct values. Thus the number of
memory bits required is

(
k

2
+ 1

)(
log

(
2NR

k
+ 1

)
+ 1

)
(logN + log(logN + logR))

= O

(
1

ε
(logN + logR)(logN)

)
.

The only catch appears to be that we need Ω(R) time per insertion. The rest of the
section is devoted to devising a scheme that requires only O( logR

logN ) amortized time

and O(logN + logR) worst-case time per insertion. Note that, if R = O(poly(N)),
then the amortized insertion time becomes O(1), and the worst-case time becomes
O(logN).

Let S be the total size of the buckets at some time instant. For j ≤ log( 2NR
k + 1),

let k0, k1, . . . , kj be a sequence in which ki denotes the number of buckets of size 2
i.

Then S =
∑j
i=0 ki2

i. By Invariant 2, we have l ≤ ki ≤ l+1 for i < j and 1 ≤ kj ≤ l+1,

where l = k
2 =

� 1ε �
2 ≥ 1. Given l ≥ 1 and S, a sequence k0, k1, . . . , kj satisfying the

above conditions is called an l-canonical representation of S. The algorithm represents
every valid sum in its l-canonical form. We claim that the l-canonical representation
of any sum S is unique and can be computed in time O(logS).

Lemma 2. The l-canonical representation of any positive number S is unique.
Proof. We give a proof by contradiction. Assume that k = (k0, k1, . . . , kj) and

k′ = (k′0, k
′
1, . . . , k

′
j′) are two distinct l-canonical representations of S. Without loss

of generality, assume that j ≤ j′. Let d be the smallest index where the sequences
differ. We have d ≤ j since it cannot happen that they agree on all of the indices
less than or equal to j and the second sequence has nonzero components for indices
greater than j, given that they have the same sum.

Case 1 (d < j). Since l ≤ kd, k
′
d ≤ l + 1, we have |∑d

i=0 ki2
i −∑d

i=0 k′i2
i| = 2d.

However, |∑j
i=d+1 ki2

i −∑j′

i=d+1 k′i2
i| = c2d+1 for some integer c ≥ 0, which is a

contradiction since |∑j
i=0 ki2

i −∑j′

i=0 k′i2
i| = 0.

Case 2 (d = j). The sequence k′ must have nonzero indices greater than j;
otherwise, the two representations cannot give the same sum. Moreover, it cannot
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happen that kj ≤ k′j since otherwise k
′ will have a strictly greater sum. Thus kj > k′j ,

and kj ≤ l+1. Since k′j is not the last index, we have k′j ≥ l. Therefore, |k′j−kj | ≤ 1,

which implies |∑j
i=0 ki2

i −∑j
i=0 k′i2

i| ≤ 2j . However,
∑
i≥j+1 2

i ≥ k′i2
j+1, which

gives a contradiction.

The following procedure computes the l-canonical representation of S in time
O(logS).

Procedure l-Canonical. Given S, find the largest j such that 2j ≤ S
l +1, and

let S′ = S − (2j − 1)l. If S′ ≥ 2j , find m such that m2j ≤ S′ < (m + 1)2j , and

set kj = m; we are guaranteed that m < l. Let Ŝ = S′ −m2j < 2j . Let b0, . . . , bj−1

be the binary representation of Ŝ. Set ki = l + bi for i < j.

Given S and l, the l-canonical representation of S tells us the exact positions of
all of the 1’s where the buckets will start. Note that, since multiple 1’s “belong” to
the same data element, we may have multiple buckets starting at a single data ele-
ment, implying that multiple buckets could have the same timestamp. The following
observation is critical to the incremental maintenance of the buckets. The algorithm
in section 2 guarantees that, if a certain data element (which in that case was some
active 1) is not “indexed” at a certain time interval, then it will never be “indexed”
in the future. By “indexed” we mean that it is the first element of some bucket,
and hence its timestamp is maintained as the timestamp of that bucket. As time
progresses, buckets may get merged, and some data elements may not be indexed any
more. However, it never happens that an element that was not indexed at some time
gets indexed later.

The preceding observation allows us to devise the following scheme to incremen-
tally maintain the buckets with small amortized update time. Let us assume that
we know the buckets at a certain time instant. We think of each data element as a
series of 1’s. We buffer B new elements separately and maintain the sum for these
elements; that is, the EH is not updated for B steps. During this period, any query
can be answered using a combination of the EH and the buffer sum. When the
buffer gets full, we first delete any expired buckets in the EH. After the expired
buckets are deleted, let S1 be the sum of the sizes of the active buckets. Let S2 be
the sum of the elements in the buffer. We calculate the l-canonical (l = k

2 ) repre-
sentation of S1 + S2 to determine the positions of the new buckets. This requires
O(log(S1 + S2)) = O(logN + logR) time since S1 + S2 = O(NR). We then create
the new buckets using the timestamps and values of the elements in the buffer and
the timestamps and sizes of the old buckets. The total time required to process the
B elements in buffer is O(B+ logN + logR) since O(B) time suffices to maintain the
buffer sum and the number of buckets in the new histogram is O(logN+logR). Since
the time required to construct the new histogram is O(logN + logR+B), the amor-
tized update time per element is O(1 + logN+logR

B ). Choosing B = Θ(logN) makes

the amortized update time O( logR
logN ) and the worst-case time O(logN + logR). The

buffer needs O(logN(logN + logR)) memory bits, which is the same as the memory
requirement of the EH. Note that, if R is poly(N), then the amortized update time is
O(1) and the worst-case time is O(logN). We have obtained a memory upper bound
of O( 1

ε (logN + logR)(logN)) bits, as summarized in the following theorem.

Theorem 5. The generalized EH for the Sum problem maintains a data structure
which provides estimates with relative error at most ε using at most (k2 +1)(log(2NR

k +
1)+1) buckets, where k = � 1ε �. The memory requirement is logN+log(logN+logR)

bits per bucket. The arrival of each new element can be processed in O( logR
logN ) amortized
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time and O(logN + logR) worst-case time. At each time instant, the data structure
provides a sum estimate in O(1) time.

We now prove a lower bound of Ω(1
ε (logN + logR)(logN)) bits. If logN =

Ω(logR), then the lower bound from section 3 applies. Thus we need only to con-
sider the case when R > N . We will assume that logR ≤ N

k ; in fact, we assume
logR = o(N). Consider the following arrangements. We break the window of size N
into logR blocks, each of size � N

logR�. Consider the ith block for 0 ≤ i < logR.

We choose k/4 of the � N
logR� positions and place an element with value 2i there,

setting all other elements to 0. By an argument similar to the one in section 3,
any deterministic algorithm with relative error less than 1

k must differentiate be-
tween any two of these arrangements. The total number of these arrangements

is
(
N/ logR
k/4

)logR ≥ ( 4N
k logR )

k
4 logR. The number of memory bits required is at least

k
4 logR log( 4N

k logR ) = Ω( 1
ε (logN + logR)(logN)). We assume that R > N and that

logR = O(N δ) for some δ < 1. Note that the lower bounds also apply for randomized
algorithms that provide an approximate answer.

5. Timestamps. In our model (given in section 2), we have assumed that data
items arrive at regular time intervals and arrival time increases by one with every
new data item that we have seen. However, in most real-life applications, this is
not the case, and arrival rates of data items may be bursty. Moreover, we would
like to define the sliding window based on real time. In other words, we may want
to compute statistics based on the data items that arrived over the last hour, day,
etc. It is easy to see that our algorithm can be easily adapted to do this by defining
the arrival time based on real time; i.e., the arrival time increases by one with every
clock-tick.1 We define N (size of the sliding window) as the number of clock-ticks
in the interval over which we want our sliding window to work. For example, N is
3600 if we want statistics based on the last hour, and clock-ticks occur every second.
Note that the algorithm does no work except when it sees a data item, and hence
it need not do anything during the clock-ticks for which no data items arrive. The
invariants are automatically maintained during this period, and the algorithm never
uses any extra space during this time. Hence it need not bother to delete the expired
buckets until a new data item arrives since its memory requirement does not change.
The memory requirement of the algorithm is O( 1

ε (logN)(logN + logR)), where the
second term (logN + logR) is the logarithm of the maximum sum (NR) that can
occur over N clock-ticks. Thus, if we are guaranteed that much less than N data
items arrive over any sliding window, then the memory requirement would be less.
This may happen for bursty arrival rates. In other words, our algorithm adapts its
memory requirements with the amount of data that we observe.

5.1. Approximate timestamps. The EHs developed in section 2 and sec-
tion 4 have a memory requirement of O(logN) for every bucket of the histogram.
The timestamp that we maintain with each bucket requires logN bits and domi-
nates the memory requirement of every bucket. We now explore the idea of main-
taining a coarser timestamp with every bucket which requires only log logN bits
of memory and reduces the memory requirement for the EH from O( 1

ε (log
2 N))

to O( 1
ε (logN)(log logN)). In the case of generalized EH, the memory requirement

drops to O( 1
ε (logN + logR)(log(logN + logR))). The effect of maintaining a coarser

1Equal length intervals, into which we partition time, that are assumed small enough so that no
two data items are observed within a single interval.
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timestamp is that, instead of answering the query over the last N data elements
(sliding window size), we may answer the query over the last N/c elements, where
1 ≤ c ≤ 2. In other words, we are approximating the window size to within a fac-
tor of 2. Note that this does not contradict the lower bound presented before. We
no longer guarantee that the answer that we provide has relative error at most ε as
compared to the correct answer over the last N elements. Instead, we guarantee that
the answer will have error at most ε as compared to the correct answer over the last
N/c data elements, where 1 ≤ c ≤ 2. The factor 2 can be further improved to 1+τ for
0 < τ ≤ 1, and the memory requirement for the timestamp is log logN + log( 1

τ ). The
generalization is obvious, and we explain the idea below for a factor 2 approximation.

We will explain the idea in terms of timestamps. However, as mentioned in
section 2, we do not explicitly maintain the timestamp for every bucket and instead
maintain the arrival time of the most recent (rightmost) element and calculate the
timestamp using the arrival time of the current element. The idea translates to
maintaining coarser arrival times. In sections 2 and 4, we maintained the exact
timestamp with every bucket. Instead, here we maintain the timestamp to the closest
power of 2. Thus, if the timestamp is t, where 2l−1 < t ≤ 2l (1 ≤ l ≤ �logN�),
we maintain the timestamp as 2l. In other words, we approximate the timestamp
to the closest power of 2 greater than the timestamp. Since the timestamps now
take logN distinct values, they can be stored using log logN bits. The effect of this
approximation is as follows: At any time instance, a bucket is active iff its timestamp
is less than N . Any bucket whose exact timestamp is less than N/2 will still be
considered active since the timestamp will be approximated to a value less than N/2.
On the other hand, buckets whose timestamps are greater than N/2 may be wrongly
considered inactive and hence deleted as their timestamp will be approximated to a
value no less than N . Thus, in the worst case, we are answering the query over the
last N/2 elements instead of N . If, instead, we approximate the timestamp to the
closest power of 2 less than the exact timestamp, we get that we will be answering
the query over the last cN elements, where 1 ≤ c ≤ 2.

6. Computing Lp norms for vectors. We now extend the EH technique and
combine it with the sketching technique from Indyk [13] to compute the Lp norms
of vectors in the sliding window model. Assume that the window is broken into
smaller contiguous buckets. These are numbered right to left and are denoted by
B1, B2, . . . , Bm. Consider a function f , defined over the intervals, with the following
properties:

P1. f(Bi) ≥ 0.
P2. f(Bi) ≤ poly(|Bi|).
P3. f(B1 + B2) ≥ f(B1) + f(B2), where B1 + B2 denotes the concatenation of

adjacent buckets B1 and B2.
P4. f(B1 +B2) ≤ Cf (f(B1) + f(B2)), where Cf ≥ 1 is a constant.
P5. The function f(B) admits a “sketch” which requires gf (|B|) space and is

composable; i.e., the sketch for f(B1 +B2) can be composed efficiently from
the sketches for f(B1) and f(B2).

If the function f admits these properties, then we can efficiently estimate it for sliding
windows using the EH technique. We maintain buckets with the following two invari-
ants; we also associate with every bucket a timestamp and the sketch. For now, we
assume that the sketches provide the exact value of the function f . We will shortly
relax this requirement and show that our technique works even if the sketches provide
only an approximation to the actual function value.
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Invariant 3. f(Bn+1) ≤ Cf

k

∑n
i=1 f(Bi).

Invariant 4. f(Bn+2) + f(Bn+1) >
1
k

∑n
i=1 f(Bi).

Observation 1. We estimate the function f for the current window by composing
the sketches of all but the earliest (leftmost) bucket. The leftmost bucket may have
certain expired data elements along with a suffix of data elements which are active.
Let Bx be the part (suffix) of the leftmost bucket that is active and was ignored (i.e.,
did not contribute to the estimate). Let By be the concatenation of all of the other
buckets whose sketch we compose using the sketches of the individual buckets. Then
Bx + By is the current window, and the exact answer is f(Bx + By). However, we
estimate the answer as f(By); thus we always underestimate. The relative error Er

is
f(Bx+By)−f(By)

f(Bx+By) > 0 by P1 and P3. Also, we have

Er ≤ f(Bx +By)− f(By)

f(By)
(P1, P3)

≤ Cf (f(Bx) + f(By))− f(By)

f(By)
(P4)

=
Cff(Bx)

f(By)
+ Cf − 1

≤ Cff(Bn+1)∑n
i=1 f(Bi)

+ Cf − 1 (P1, P3)

≤ C2
f

k
+ Cf − 1 (Invariant 3).

Observation 2. Invariant 4 and property P2 imply that the number of buck-
ets will be O(k logN), where N is the size of the window. Thus the memory re-
quired to maintain the timestamp and the sketches for all of the buckets will be
O(k logN(logN + gf (N))).

Hence, if we maintain the invariants along with the timestamp and the sketches,

we can estimate the function f with relative error 0 ≤ Er ≤ C2
f

k + Cf − 1 using
O(k logN(logN + gf (N))) memory bits. We can maintain the invariants along with
the timestamp and the sketches as new data elements are added. The algorithm to
do this is very similar to that for the EH.

1. When a new data element arrives, calculate the new expiry time. If the
timestamp of the last bucket indicates expiry, delete that bucket.

2. Create a new bucket with just the new data element.
3. Traverse the list of buckets from right to left. If Invariant 4 is violated for

a pair of buckets (Bn+1, Bn+2), merge them into a new bucket B′n+1. The
sketch for this bucket is composed from the sketches for Bn+1 and Bn+2. We
may need to do more than one merge.

We argue that the algorithm maintains Invariants 3 and 4. Adding a new bucket
does not violate Invariant 3, as we increase only the size of the suffix. Whenever Invari-
ant 4 is violated, the two buckets involved satisfy f(Bn+2)+f(Bn+1) ≤ 1

k

∑n
i=1 f(Bi).

When we merge them, property P4 guarantees that f(B′n+1) ≤ Cf (f(Bn+2)+f(Bn+1)) ≤
Cf

k

∑n
i=1 f(Bi), and hence Invariant 3 is valid for the new bucket B′n+1. The algorithm

may need to do a lot of merges—as many as the number of buckets (i.e., O(k logN)).
However, the amortized time is O(1). We omit details dealing with the fact that the
function f for a window of size 1 may be greater than 1 although bounded by some
constant R.
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Theorem 6. A function f with properties P1–P5 can be estimated over sliding

windows with relative error 0 ≤ Er ≤ C2
f

k +Cf−1 using O(k logN(logN+gf (N))) bits
of memory.

So far we have assumed that the sketches compute the function value f exactly.
Instead, in most sketching techniques, the sketches provide a 1+ ε̂ approximation s(B)
of the actual function value f(B), i.e., (1 − ε̂)f(B) ≤ s(B) ≤ (1 + ε̂)f(B). In that
case, we maintain buckets with Invariants 3 and 4, replacing f with s. Invariant 4,
property P2, and the fact that s(B) ≤ (1 + ε̂)f(B) guarantee that the number of
buckets will be O(k logN) as before. We will now analyze the effect of approximation
due to sketches on the error.

Maintaining the invariant s(Bn+1) ≤ Cf

k

∑n
i=1 s(Bi) guarantees that f(Bn+1) ≤

(1+ ε̂)2
Cf

k

∑n
i=1 f(Bi). We will use the same technique (please refer to Observation 1)

to estimate the function f using sketch estimates s instead of f . Thus, instead of
providing the exact answer f(Bx + By), we provide the estimate as s(By). The

relative error Er is
f(Bx+By)−s(By)

f(Bx+By) . We have

Er =
f(Bx +By)− s(By)

f(Bx +By)

≤ f(Bx +By)− f(By) + f(By)− s(By)

f(By)
(P1, P3)

≤ f(Bx +By)− f(By)

f(By)
+

f(By)− s(By)

f(By)

≤ Cff(Bn+1)∑n
i=1 f(Bi)

+ Cf − 1 + ε̂ (proved earlier)

≤ (1 + ε̂)2
C2
f

k
+ Cf − 1 + ε̂.

This gives the following theorem.
Theorem 7. A function f with properties P1–P5 can be estimated over sliding

windows with relative error 0 ≤ Er ≤ (1+ ε̂)2
C2

f

k +Cf −1+ ε̂ using O(k logN(logN+
gf (N))) bits of memory, where ε̂ is the bound on relative error of the sketches.

If ε̂ can be made arbitrarily close to 0, keeping the space requirement for the
sketches (i.e., gf (|B|)) small, we can get the same error as in the previous theorem by
increasing k by a small constant factor.

6.1. Lp norms. We now argue that Lp norms (for p ∈ [1, 2]) of vectors under a
restricted model admit the properties P1–P5 and hence can be efficiently computed for
sliding windows. Consider the restricted model [13] in which the jth data element is a
pair (ij , aj), where ij ∈ [d] = {0 . . . d− 1} and aj ∈ {0 . . .M} represents an increment
to the ijth dimension of an underlying vector. Every window B represents a vector,
and its Lp(B) norm is given by Lp(B) = (

∑
i∈[d] |si|p)1/p, where si =

∑
ij=i,j∈B aj is

the sum of unexpired increments to the ith dimension.
Note that the case in which p = 1 is the same as the Sum problem. If the dimen-

sion d of the underlying vector is small, one obvious way to maintain the Lp norm is to
maintain the approximate sum for each dimension using the techniques in section 4.
It would require O( 1

ε (logN + logM)(logN)d) bits of memory and give a relative er-
ror of ε. However, for high dimensional vectors, we propose the use of sketches. We
denote (Lp(B))p by fp and estimate fp for p ∈ [1, 2]. The function fp clearly admits
properties P1–P4, assuming M ≤ NO(1). For P5, fp(B) admits a sketching technique
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which requires O(logM log(1/δ)/ε̂2) memory bits per sketch and is composable. The
technique also requires O(logM log(d/δ) log(1/δ)/ε̂2) random bits, which are common
to all sketches. (See Theorem 2 in [13].) The sketches for computing the function are
not exact; instead, they provide an approximation with relative error less than ε̂ with
probability 1− δ.

From Theorem 7, we have that, under the restricted model, we can compute fp
(i.e., (Lp(B))p) with relative error at most (1 + ε̂)2 4

k + 1+ ε̂ using O(k logN(logN +
logM log(1/δ)/ε̂2)) bits of memory. As mentioned before, an additionalO(logM log(d/δ)
log(1/δ)/ε̂2) bits of memory, which are common to all the sketches, are required.
The estimate is approximately correct with high probability. Note that computing
(Lp(B))p with a small relative error translates to computing Lp(B) with a small
relative error.

6.2. Lower bounds. The BasicCounting and Sum problems are the special
cases of computing Lp norms, where the underlying vector has a single dimension.
Thus the lower bounds for these problems apply to the problem of computing the
Lp norm. Note that the upper bounds obtained in this section match the lower bounds
asymptotically. The Lp norm for p = 0 is defined as the distinct value problem, and
we deal with this problem in section 7.

7. Applications. We briefly discuss how the EH algorithm for BasicCounting
can be used as a building block to adapt several techniques to the sliding window
model with a multiplicative overhead of O( 1

ε logN) in memory and a 1+ ε factor loss
in accuracy. The basic idea is that, to adapt to the sliding window setting a scheme
relying on exact counters for positive integers, we will use an EH to play the role
of a counter. A counter would have required Ω(logN) bits of memory, while an EH
requires O( 1

ε log
2 N) bits of memory and maintains the count with 1 + ε error.

7.1. Hash tables. This is the simplest case. Every data element gets hashed to a
bucket, and the goal is to maintain the count of elements in each hash bucket. Instead
of maintaining a counter for each bucket, we use the EH to maintain approximate
counts of the number of data elements hashed into the bucket from the last N data
elements in the stream.

7.2. Sums and averages. In section 4, we showed how to maintain the sum of
positive integer data elements using the generalized version of the EHs. This requires
O( 1

ε logN(logR + logN)) bits of memory. Since maintaining the sum would require
logN + logR bits, the multiplicative overhead is O( 1

ε logN). Maintaining averages
is similar. The average of the most recent N data elements is just the sum divided
by N . If the items are inserted irregularly in real time and we want the average
value to represent the sum divided by the number of insertions in the last N clock-
ticks, an easy solution would be to use a second instance of the EH that maintains
the count (number of insertions) approximately. Since both the sum and count have
small relative error, so will their quotient.

7.3. Histograms. Given the bucket boundaries in a histogram, we can maintain
the sum, average, and other statistics corresponding to each bucket using generalized
EH. Finding the optimal bucket boundaries to optimize the memory requirement
is an orthogonal problem. Also, equiwidth histograms are a natural choice of his-
tograms for which the bucket boundaries are fixed. Note that, unlike the histograms
discussed in [10], these are not time-based histograms but instead could be based on
any attribute of the data.
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7.4. Min and max. We prove a lower bound for the memory requirement of
an algorithm that maintains min or max over a sliding window. While we argue the
lower bound for the case of min, the argument for max is similar. The lower bound is
based on a counting argument like the one used to prove the lower bound for Basic-
Counting in Lemma 1. Let the data elements be drawn from a set of R distinct
numbers. Consider all nondecreasing arrangements of N numbers. The number of
such arrangements is

(
N+R−1

N

)
. Consider an algorithm that has seen one of these ar-

rangements. We claim that any deterministic algorithm that gives the correct answer
at every time instance henceforth must differentiate between any two such arrange-
ments. To this end, we assume that we will present the algorithm with a sequence
consisting of the highest number in the set, similarly to how we present the algorithm
with a sequence of 0’s in Lemma 1. Since the numbers presented to the algorithm
were nondecreasing, at any time instance, the correct answer is the value of the oldest
or least recent element which will expire in the next step. As a result, for every pair of
arrangements, there will be a time when their oldest elements differ, and hence they
have different correct answers. This proves our claim and establishes a lower bound
on the number of memory bits required, which is log

(
N+R−1

N

) ≥ N log(R/N). This
lower bound is also valid for any randomized algorithm by arguments similar to the
one in section 3. If R = poly(N), then the lower bound says that we have to store
all of the last N elements. The easiest way to maintain the exact minimum over slid-
ing windows is to do the following: Keep the subsequence of data elements in which
the leftmost item is the current minimum and the right neighbor or any element (in
the subsequence) is the minimum of the elements to the right of the element in the
stream. Such a subsequence can be maintained as a list of pairs (value, timestamp),
where the list satisfies the property that both the value and the timestamp are strictly
increasing. This scheme has a worst-case space requirement of O(N logR) bits. If
the data elements arrive in a random order, then the list that we would maintain is
analogous to the right spine of a “treap” where the timestamps are fully ordered and
the values of the data elements are heap-ordered. In that case, the expected length
of the list is O(logN), and the space complexity is given by O(logN logR).

7.5. Distinct values. It is easy to adapt the technique of Flajolet and Martin [6]
to estimate the number of distinct elements in the last N data elements. Their
probabilistic counting technique2 maintains a bitmap of size O(logR), where R is an
upper bound on the number of distinct values in the data set. In the case of sliding
windows, R ≤ N , and a bitmap of size O(logN) suffices. We also maintain with each
bit a timestamp of size O(logN). Whenever a bit is (re)set by a data element, we
update the timestamp to that of the data element. This enables us to keep track of the
bits that were set by the lastN elements. Consequently, we can estimate the number of
distinct elements with an expected relative accuracy of O( 1√

m
) using O(m log2 N) bits

of memory. Note that the lower bound for the BasicCounting problem applies to
the distinct value problem. Given an instance of the BasicCounting problem, we
can create an input where a 0 is mapped to 0 while every 1 is mapped to some
distinct value (the arrival time of the element, for instance). Then the number of
distinct values is one more than the number of 1’s. This reduction shows that the
lower bounds for the BasicCounting problem apply to the distinct value problem.

Consider the problem of estimating the number of distinct values over sliding

2The technique assumes perfect hash functions. However, it suffices to use hash functions which
do not have complete independence.
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windows in the presence of deletions. We prove a space lower bound of Ω(N) bits,
where N is the window size. Every data element consists of a value and a bit that
indicates if the value is being “inserted” or “deleted.” Consider the last N elements
that form the current window. These define a collection of values and multiplicities.
The multiplicity of a value is the number of times it is inserted in the current window
minus the number of times it is deleted from the current window. It is possible for
a value to have negative multiplicity since it may have been deleted more times than
it was inserted. The number of distinct values is the number of values that have
multiplicity greater than zero. Our lower bound holds even if we define the number
of distinct values as those with nonzero multiplicity. Given this model we claim the
following.

Claim 1. An algorithm that estimates the number of distinct values within a
factor 2 of the correct answer, over sliding windows and in the presence of deletions,
requires Ω(N) bits of space, where N is the size of the sliding window.

Proof. Consider an algorithm A that estimates the number of distinct values to
within a factor of 2, over sliding windows and in the presence of deletions. Given
any arbitrary bit vector X = {x1, x2, . . . , xN}, we present the algorithm with the
following input. Every bit xi is mapped to a value yi as follows: If xi is 1, then
yi is set to i. Otherwise, yi is set to 0. These values are input to the algorithm in
the order y1 to yN along with the additional bit that represents that these values
are being inserted. After the N values have been inserted, let S be the state of the
algorithm. We claim that we can recover the last N/2 bits of the vector X (i.e.,
{xN/2+1, xN/2+2, . . . , xN}) using the state S of the algorithm. This proves that the
information content of the state S is at least N/2 bits, and hence it would require
Ω(N) bits of space. Given the state S, we recover the last bit (xN ) as follows: We
insert N − 1 elements with value 0. The current window now contains N − 1 inserts
of value 0 and an insert of value yN , which, depending upon the value of xN , is either
0 or N . The correct answer (i.e., number of distinct values) in that case is either
1 or 2, depending upon whether xN is 0 or 1. Since the algorithm A estimates to
within a factor of 2, it will distinguish between the two cases, and we can infer the
last bit xN . If the algorithm estimates the number of distinct values to be less than 2,
then xN = 0; otherwise, xN = 1. Having inferred the last bit xN , we can infer the
previous bit xN−1 as follows: We “rewind” to the state S (state after inserting y1

to yN ). In other words, we run the algorithm from state S again, by storing the
state S. We input an element with value equal to yN and bit set to delete, followed
by N − 3 elements with value equal to 0 and bit set to insert. In other words, we
are deleting the value yN that was inserted last. The current window now consists of
N − 3 inserts of value 0 and an insert of value yN−1, which, depending on xN−1, is
either 0 or N − 1. Note that the current window also contains a pair of elements that
insert and delete the value yN . By similar arguments as before, we can now infer the
bit xN−1 since the algorithm A gives a factor 2 approximation. We can proceed this
way to infer the last N/2 bits in the order xN , xN−1, . . . , xN/2+1. To infer the xN−ith
bit (having inferred xN−i+1, . . . , xN ), start with the state S again. Input elements
with values yN−i+1, yN−i+2, . . . , yN and bit set to delete, followed by N−2i−1 inserts
of value 0. The current window will then contain N−2i−1 inserts of value 0, an insert
of value yN−i, and i pairs of inserts and deletions of values yN−i+1, yN−i+2, . . . , yN .
Again, we can infer the bit xN−i. We can do this for i < N/2.

The argument above proves that the state S essentially encodes the last N/2 bits
and probably more, proving the lower bound for the space requirement of S.
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7.6. General sum. Consider the problem of maintaining the sum of the last
N integers when the integers could be positive or negative. We prove that, even if
we restrict the set of integers to {1, 0,−1}, to approximate the sum within a constant
factor requires Ω(N) bits of memory. Moreover, it is easy to maintain the sum by
storing the last N integers, which requires O(N) bits of memory. We assume that
the storage required for every integer is a constant independent of the window size N .
This proves that the complexity of the problem in the general case (i.e., allowing
positive and negative integers) is Θ(N). We now argue the lower bound of Ω(N).
Consider an algorithm A that provides a constant factor approximation to the problem
of maintaining the general sum. Given a bit vector of size N/2, we present the
algorithm A with the pair (−1, 1) for every 1 in the bit vector and the pair (1,−1)
for every 0. Consider the state (i.e., time instant) after we have presented all of the
N/2 pairs to the algorithm. We claim that we can completely recover the original
bit vector by presenting a sequence of 0’s henceforth and querying the algorithm on
every odd time instant. If the current time instant is T (after having presented the
N/2 pairs), then it is easy to see that the correct answer at time instant T + 2i − 1
(1 ≤ i ≤ N/2) is 1 iff the ith bit was 1 and −1 iff the ith bit was 0. Since the
algorithm A gives a constant factor approximation, its estimate would be positive if
the correct answer is 1 and negative if the correct answer was −1. Since the state of
the algorithm after feeding the N/2 pairs enables us to recover the bit vector exactly
for any arbitrary bit vector, it must be using at least N/2 bits of memory. This proves
the lower bound. We can state the following theorem.

Theorem 8. The space complexity of any algorithm that gives a constant factor
approximation, at every instant, to the problem of maintaining the sum of last N in-
tegers, which appear as a stream of data elements and could be positive or negative,
is equal to Θ(N).

8. Conclusion. In conclusion, this paper takes the first step toward computing
over data streams in the sliding window model. We consider the problem of main-
taining statistics over sliding windows and provide upper and lower space bounds for
various problems. It remains to consider problems like maintaining other statistics
(for instance, variance), clustering (maintaining k-medians), etc. in the sliding window
model.
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Abstract. Let B be a point robot moving in the plane, whose path is constrained to have
curvature at most 1, and let P be a convex polygon with n vertices. We study the collision-free,
optimal path-planning problem for B moving between two configurations inside P. (A configuration
specifies both a location and a direction of travel.) We present an O(n2 logn) time algorithm for
determining whether a collision-free path exists for B between two given configurations. If such a
path exists, the algorithm returns a shortest one. We provide a detailed classification of curvature-
constrained shortest paths inside a convex polygon and prove several properties of them, which are
interesting in their own right. For example, we prove that any such shortest path is comprised of at
most eight segments, each of which is a circular arc of unit radius or a straight-line segment. Some
of the properties are quite general and shed some light on curvature-constrained shortest paths amid
obstacles.
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1. Introduction. The path-planning problem, a central problem in robotics, in-
volves planning a collision-free path for a robot moving amid obstacles and has been
widely studied (see, e.g., the book by Latombe [21] and the survey papers by Schwartz
and Sharir [31] and Halperin, Kavraki, and Latombe [17]). In the simplest form, given
a moving point robot B, a set of obstacles, and a pair of configurations I and F speci-
fying locations for B, we wish to find a continuous, collision-free path for B from I to
F . This formulation, however, does not take into account the so-called nonholonomic
constraints (for instance, bounds on acceleration or curvature) imposed on a robot by
its physical limitations (see [21] for a more detailed discussion). Although there has
been considerable recent work reported in the robotics and nonlinear-control literature
on nonholonomic motion-planning problems (see [3, 5, 19, 20, 22, 24, 32, 42, 43] and
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references therein), relatively little theoretical work has been done in this important
area from an algorithmic perspective.

In this paper, we study the path-planning problem for a point robot whose config-
urations are specified by giving both a location and a direction of travel. This means
that any solution to the path-planning problem for given initial and final configura-
tions I and F must respect the directions of travel specified by I and F as well as
the locations they specify. Furthermore, we require the path of the robot to have
curvature at most 1. This curvature constraint arises naturally when the point robot
models a real-world robot with a minimum turning radius; see, for example, [21].
Recently, Reif and Wang [29] confirmed that the problem of deciding whether there
exists a collision-free curvature-constrained path for B between two given configu-
rations amid polygonal obstacles is NP-hard. As a first step toward understanding
which environments admit an efficient solution to this NP-hard problem, we study
curvature-constrained path planning inside convex polygons.

We establish several new properties of shortest paths inside convex polygons and
use them to characterize shortest paths in such environments. Using these properties
and some geometric data structures [10], we present an efficient algorithm that, given
initial and desired final configurations I and F in a convex polygon P, determines
whether there exists a curvature-constrained path from I to F that lies inside P and
if so, computes a shortest one.

1.1. Previous results. Dubins [15] was perhaps the first to study curvature-
constrained shortest paths. He proved that, in the absence of obstacles, a curvature-
constrained shortest path from any start configuration to any final configuration con-
sists of at most three segments, each of which is either a straight-line segment or
an arc of a circle of unit radius, assuming that the curvature of the path is upper
bounded by 1. Using ideas from control theory, Boissonnat, Cérézo, and Leblond [5]
and, at the same time, Sussmann and Tang [38] gave an alternative proof. Further
characterizations of shortest paths in an obstacle-free environment have been made
by Boissonnat and Bui in [4] and Bui, Souères, Boissonnat, and Laumond in [8].

In the presence of polygonal obstacles, Jacobs and Canny [18] proved that, if
there exists a curvature-constrained path between two configurations, there exists in
the closed free space a curvature-constrained shortest path between these two con-
figurations. Fortune and Wilfong [16] gave a 2poly(n,m) time algorithm that decides
whether a path exists, without finding one, where n is the total number of vertices
in the polygons defining the obstacles and m is the number of bits of precision with
which all points are specified. Jacobs and Canny [18], Wang and Agarwal [41], and
Sellen [33, 34] gave approximation algorithms for computing an ε-robust path. (Infor-
mally, a path is ε-robust if it may be deformed by ε in a certain way while remaining
feasible.) For the restricted case of pairwise disjoint moderate obstacles, i.e., convex
obstacles whose boundaries have curvature upper bounded by 1, Agarwal, Raghavan,
and Tamaki [1] gave efficient approximation algorithms. Boissonnat and Lazard [6]
gave an O(n2 log n) time algorithm for computing an exact shortest path for the case
when the edges of the pairwise disjoint moderate obstacles consist of n segments that
are circular arcs of unit radius or line segments. Their algorithm can be used to com-
pute an optimal curvature-constrained path inside a convex polygon in time O(n7).
Recently, Ahn, Cheong, Matoušek, and Vigneron [2] characterized the region of all
points that can be reached from a given configuration in a convex polygon. Wil-
fong [42, 43] studied a restricted problem in which the robot must stay on one of m
line segments (thought of as “lanes”) except to turn between lanes. For a scene with
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n obstacle vertices, his algorithm preprocesses the scene in time O(m2(n2 + logm)),
following which queries are answered in time O(m2).

There has also been work on characterizing shortest curvature-constrained paths
when B is allowed to make reversals, that is, to back up. Reeds and Shepp [28] were
the first to compute the characterization of such shortest paths in an obstacle-free envi-
ronment. Boissonnat, Cérézo, and Leblond [5] and Sussmann and Tang [38] presented
an alternative proof using ideas from control theory. Souères and Laumond refined the
characterization of shortest paths [36]. In the presence of obstacles, Desaulniers proved
that a shortest path does not necessarily exist even when paths exist [13]. Finally,
much work has been done on computing curvature-constrained paths in the presence of
obstacles when reversals are allowed; see, e.g., [3, 19, 20, 21, 22, 23, 24, 25, 32, 39, 40].

Other more general dynamic constraints have been considered in [3, 11, 12, 14, 26].
In particular, Sussmann [37] extended the characterization of curvature-constrained
shortest paths to the 3-dimensional case.

1.2. Our model and results. Let B be a point robot and P a closed convex
polygon with n vertices. For simplicity, we assume that the edges of P are in the
general position: no two edges are parallel and no unit-radius circle (in R2) is tangent
to three edges of P. We believe that our techniques can be extended to carry through
without this general-position assumption, although the technical details would be
daunting. A configuration X for B is a pair (loc(X), ψ(X)), where loc(X) is a point
in the plane representing the location of the robot and ψ(X) is an angle between 0
and 2π representing its orientation. When the meaning is clear, we generally write X
instead of loc(X).

The image of a differentiable function Π : [0, l]→ R2 is called a path. We denote
by Π both the function and the path it defines. We regard a path Π as oriented from
Π(0) to Π(l). We assume a path Π is parameterized by its arc length, and we let
‖Π‖ denote its length. We say that Π is a path from a configuration X to another
configuration Y if Π(0) = loc(X), Π(l) = loc(Y ), and the oriented angles (with
respect to the positive x-axis) of Π′(0) and Π′(l) are ψ(X) and ψ(Y ), respectively. A
path is called moderate if its average curvature is at most 1 in every positive-length
interval.1 This implies that the curvature is defined almost everywhere and that it
is at most 1 wherever it is defined. Indeed, the derivative of a moderate path Π
satisfies a Lipschitz condition, and therefore the derivative is differentiable almost
everywhere [30, Theorem 8.19].

Any curve that lies entirely within the closed polygon P is called free. A path
is feasible if it is moderate and free. A path Π from a configuration X to another
configuration Y is optimal if it is feasible and its length is minimum among all feasible
paths from X to Y . (If a feasible path from X to Y exists, then an optimal such path
also exists [18].)

Throughout the paper, we say that we compute an object as a short way of
saying that we compute such an object if one exists and return a flag of nonexistence
otherwise.

Main results. Let P be an n-vertex convex polygon in the plane, and let I and
F be two configurations inside P.

(i) We give a classification of optimal paths from I to F .
(ii) We prove that an optimal path from I to F consists of at most eight maximal

segments, each of which is either a line segment or a circular arc of unit radius.

1The average curvature of a path Π in the interval [s1, s2] is defined by ‖Π′(s1)−Π′(s2)‖/|s1−s2|.
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(iii) We give an O(n2 log n) time algorithm to determine whether a feasible path
from I to F exists. If such a path exists, then the algorithm returns an
optimal path from I to F . If there are only k edges of P at a distance of at
most 6 from both I and F , then the running time of our algorithm becomes
O((n + k2) log n).

Note that result (ii) above is actually quite surprising. Indeed, it means that the
complexity of optimal paths inside a convex polygon is constant and does not depend
on the number of edges of the polygon.

Note also that our algorithm for computing optimal paths is significantly faster
than the algorithm implicit in the work of Boissonnat and Lazard [6] on computing
an optimal path amid overlapping moderate obstacles, whose running time would be
O(n7).

Some of the properties of moderate paths we prove are interesting in their own
right. For example, one of these properties identifies a type of narrow region, called a
“pocket,” from which a moderate path cannot escape once it enters from outside. The
conclusion will highlight this and another of these properties, which require technical
definitions from later sections to describe in detail.

Our paper is organized as follows. In section 2, we present basic definitions,
notation, and useful known results. In section 3, we give a classification of the optimal
paths. In sections 4 and 5, we describe our algorithm. We conclude in section 6 with
a discussion and some open problems.

2. Geometric preliminaries. Given a configuration X, let LX denote the ori-
ented line passing through loc(X) with orientation ψ(X). A configuration X belongs
to an oriented path (or curve) Π if loc(X) ∈ Π and LX is the oriented tangent line
to Π at loc(X). Note that a configuration X belongs to two oriented unit-radius
circles. We will use C+X and C−X to denote the two circles of unit radius, oriented
counterclockwise and clockwise, respectively, to which the configuration X belongs.

If X and Y are two points on a simple closed curve γ, then γ+[X,Y ] (respectively,
γ−[X,Y ]) denotes the portion of γ from X to Y in the counterclockwise (respectively,
clockwise) direction, including X and Y ; we will use γ+(X,Y ), γ−(X,Y ) to denote
portions excluding X,Y . Similarly, for a path Π and two configurations X,Y ∈ Π,
we will use Π[X,Y ] to denote the portion of Π from X to Y .

Segments and Dubins paths. Let Π be a feasible path. We call a nonempty
subpath of Π a C-segment (respectively, S-segment) if it is a circular arc of unit radius
(respectively, line segment) and maximal; i.e., it is not strictly contained in a longer
circular arc (respectively, line segment) of the path. A segment is either a C-segment
or an S-segment. A C-segment on a path Π is called a C+-segment (respectively,
C−-segment) if Π induces a counterclockwise (respectively, clockwise) orientation on
it. Suppose Π consists of a C-segment, an S-segment, and a C-segment; then we
will say that Π is of type CSC or C1SC2 or C1S2C3 if, for ease of reference, we
want to number segments in order of their appearance in the sequence; superscripts
+ and − will be used to specify the orientations of C-segments of Π. Abusing the
notation slightly, we often use the same symbol to denote both the type of a segment
and the segment itself. Thus we may denote the first C-segment occurring in some
path of type C1SC2 by C1. The above notation can be generalized to an arbitrarily
long sequence. Recall that, throughout the paper, C-segments and S-segments have
positive length. Dubins [15] proved the following result.

Lemma 2.1 (Dubins [15]). In an obstacle-free environment, an optimal path
between any two configurations is of type CCC or CSC or is a substring thereof.
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Fig. 2.1. Different types of Dubins paths.

We will refer to paths of type CCC or CSC or substrings thereof as Dubins
paths (see Figure 2.1). In the presence of obstacles, Jacobs and Canny [18] observed
that any subpath of an optimal path that does not touch any obstacle except at the
endpoints is a Dubins path. In particular, they proved the following.

Lemma 2.2 (Jacobs and Canny [18]). Let Ω be a closed polygonal environment,
I an initial configuration, and F a final configuration. Then an optimal path from I
to F in Ω consists of a sequence Π1 · · ·Πk of feasible paths, where each Πi is a Dubins
path from a configuration Xi−1 to a configuration Xi, such that X0 = I, Xk = F,
and, for 0 < i < k, loc(Xi) ∈ ∂Ω.

The above lemma implies that an optimal path in a closed polygonal environment
consists of C- and S-segments. In the following, we will consider only those paths
that are formed by C- and S-segments. We will refer to circles and circular arcs of
unit radius simply as circles and circular arcs. Notationally, we distinguish between
a C-segment and its supporting circle, that is, the circle on which the circular arc
lies, by using the calligraphy font C for the latter. While the symbols C and C are
similar in appearance, it will be clear from the context whether we are referring to a
supporting circle (denoted C) or to a circular arc (denoted C).

Terminal and nonterminal segments. A segment of a feasible path Π is called
terminal if it is the first or the last segment of Π; otherwise, it is called nonterminal.
We apply the adjectives terminal and nonterminal to subpaths as well. If the first or
last segment in Π is a C-segment, we will refer to it as a CI -segment or a CF -segment,
respectively. Circles C+I , C−I , C+F , and C−F are called terminal circles (see Figure 2.3).

The following lemma states some basic known properties of optimal paths; see [1,
15, 18].

Lemma 2.3. In an optimal path inside a convex polygon P,
(i) any nonterminal C-segment has length greater than π,
(ii) any nonterminal C-segment is tangent to ∂P or to a terminal circle in at

least one point, and
(iii) no nonterminal subpath has type CCC.
Next we prove a property of a CS-subpath in an optimal path, which will be

useful for our analysis.
Lemma 2.4. Let Π be an optimal path that contains a subpath of type CS, where

the C-segment is not terminal. Then the C-segment is tangent to ∂P, and the length
of C between its first point and its last point of tangency with ∂P is greater than π.

Proof. Let Π be an optimal path containing a subpath Π′ of type C1C2S3 or
S1C2S3. See Figure 2.2. Let X be the common endpoint of the first and second
segments of Π′, let Y be the last point of tangency of C2 with ∂P along Π, and let
X ′ be the point antipodal to X on C2. (X ′ ∈ C2 because the length of C2 is greater
than π by Lemma 2.3(i).)

Dubins [15] proved that the perturbations shown in Figure 2.2 (transforming paths
C1C2S3 and S1C2S3 into paths of type CCCS and SCCS by reducing the length of
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Fig. 2.2. Length-reducing perturbations.
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Fig. 2.3. PC-anchored (C1) and PP-anchored (C2) circles.

the first segment by any arbitrarily small value) shorten the paths in an obstacle-
free environment. These shortenings can be done unless an obstacle obstructs the
shortcut, i.e., unless ∂P is tangent to C2 after X ′ (along Π). Thus, if ‖Π[X,Y ]‖ � π,
then Π can be shortened in P, which contradicts the optimality of Π.

Anchored segments. We define here the notion of anchored segments in a way
that is similar to the notion introduced in [1]. A C-segment or circle is called anchored
if it has at least two points of tangency with ∂P and the terminal circles. The terminal
circles are not considered anchored. An anchored C-segment is denoted by ¯̄C. By
our general-position assumption on P, there are a finite number of anchored circles.
A C-segment with at least one point of tangency with ∂P is denoted by C̄.

An anchored C-segment or circle is PP-anchored if it is tangent to ∂P at two
points and PC-anchored if it is tangent to ∂P at one point and tangent to a terminal
circle at another point; see Figure 2.3.

A circular arc is called long if its length is greater than π; otherwise, it is called
short. A PP-anchored C-segment is called strongly PP-anchored if it contains the long
arc defined by the points of tangency of its supporting circle with ∂P (see Figure 2.4b).
Similarly, a PC-anchored C-segment is called strongly PC-anchored if it contains the
long arc between a point of tangency of its supporting circle C with ∂P and a point
of tangency of C with a terminal circle (see Figure 3.1a).

Closed moderate paths. We state here the following results about closed mod-
erate paths.

Proposition 2.5. The region bounded by a simple moderate path Π whose initial
and final locations coincide (the initial and final orientations may differ) contains
at least one disk of unit radius. Moreover, if the initial and final orientations also
coincide and if Π is not a circle of unit radius, then the region bounded by Π contains
at least two distinct (but possibly overlapping) disks of unit radius.
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Fig. 2.4. Pockets.

The second statement in the proposition above was proved by Pestov and Ionin [27]
for the restricted class of closed C2 continuous curves (i.e., twice differentiable curves
with continuous second derivative) whose curvatures are bounded everywhere. At the
time we submitted this paper, Ahn et al. [2] presented a simple generalization of Pestov
and Ionin’s result, which yields the first statement of Proposition 2.5; furthermore,
it appears straightforward to generalize their proof to obtain the second statement.
Rather than carrying out that generalization here, we include in the appendix the
proof we gave in the original version of this paper.

Pockets. We introduce here the notion of pockets. Let C be a circle intersecting
∂P at two or more points, and let X,Y be two consecutive2 intersection points of ∂P
with C so that the short arc of C joining X and Y lies inside P. If C+[X,Y ] is the
short arc and the turning angle3 of ∂P+(X,Y ) is less than π, then the closed region
bounded by ∂P+[X,Y ] and C+[X,Y ] is called a pocket (see Figure 2.4) and is denoted
by ΛC [X,Y ]. Similarly, we define the pocket ΛC [X,Y ] for the case in which C−[X,Y ]
is the shorter arc. We will mostly be interested in pockets for which C is tangent to
∂P at X.

We first prove the following simple property of pockets.
Lemma 2.6. A pocket cannot contain a unit circle.
Proof. Any pocket is contained in an open strip of width 2 (see Figure 2.4c) which

does not contain any circle of unit radius. Thus there is no room for a unit circle in
a pocket.

We prove the following lemma, which will be crucial for characterizing the optimal
paths containing a strongly anchored C-segment.

Lemma 2.7. If a feasible path enters the interior of a pocket, then it cannot
escape the pocket.

Proof. For a contradiction, let Π be a feasible path that enters the interior of a
pocket ΛC at X and escapes it at Y . See Figure 2.5. Let C denote the circle defining
the pocket ΛC , and let D be the closed disk whose boundary is C. If C intersects C+X
at exactly two points, let them be denoted by X and X+. If C = C+X , let X+ denote
the point on C antipodal to X. If the intersection of the two circles consists of exactly
one point, denote this point by X = X+. We define X−, Y +, and Y − similarly. Let
O+
X , O

−
X , and O be the centers of the circles C+X , C−X , and C, respectively.

We first prove that the segments X+X− and Y +Y − are diameters of C. See

2Since C and ∂P are both convex, two consecutive intersection points of ∂P and C are consecutive
on both ∂P and C.

3The turning angle of a convex polygonal chain is
P

i(π − θi), where θi is the interior angle at
vertex i.
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Fig. 2.5. Illustration of the proof of Lemma 2.7.

Figure 2.5. The quadrilaterals O+
XXOX+ and O−XXOX− are parallelograms. (These

parallelograms flatten to line segments when C is equal to C+X or C−X , but then X+X−

is a diameter of C by definition.) Since the two parallelograms share the edge XO
and the edges O+

XX and XO−X are collinear, the two parallelograms are congruent.
Therefore, O is the middle point of the segment X+X−. Similarly, Y +Y − is also a
diameter of C.

Let γX be the union of the arcs of C+X and C−X in D, i.e., γX = (C+X ∪ C−X) ∩ D,
and let γY be defined similarly. The set γX either is equal to C or consists of two
unit-radius circular arcs XX− and XX+; the same is true for γY . The set γX belongs
to D, and segments X+X− and Y +Y − are diameters of C; thus γX separates (not
necessarily strictly) Y + and Y − in D. Since γY also belongs to D, γX and γY intersect
by the Jordan curve theorem.

First, note that the region ΛC ∪D cannot contain any unit-radius disk except D;
this is because O is the only point in ΛC ∪D that is a distance of at least 1 from the
boundary of ΛC ∪D.

Second, note that Π must be simple. Otherwise, Π would contain a simple, mod-
erate subpath Π′, lying in ΛC , with equal initial and final locations. This contradicts
Proposition 2.5 since, by Lemma 2.6, a pocket cannot contain a unit disk.

Third, locations X and Y cannot be equal. Otherwise, Π would be simple, moder-
ate, and lying in ΛC , with equal initial and final locations. As before, this contradicts
Proposition 2.5.

Now we describe how to obtain a path Π′ that leads to a contradiction. Consider
first the case in which γX and γY each consist of two unit-radius circular arcs XX+,
XX− and Y Y +, Y Y −, respectively. Let I be the intersection point between γX and
γY that is the closest to X on γX (see Figure 2.5). This ensures that the circular
arcs IX ⊂ γX and Y I ⊂ γY intersect only at I. Let Π′ be the concatenation of the
circular arc IX ⊂ γX , the path Π, and the circular arc Y I ⊂ γY . Path Π′ is simple
because Π is simple and the arcs IX and IY intersect only at I. Thus Π′ is simple,
moderate, and contained in the region ΛC∪D, which does not contain any unit-radius
disk except D. Thus, by Proposition 2.5, Π′ encloses D. It follows that the circular
arcs IX and IY defining Π′ cannot intersect the interior of D. Thus the arcs IX and
IY are reduced to a point I = X = Y , which is a contradiction.

Consider now the case in which exactly one of γX , γY is equal to C. Assume
without loss of generality that γX = C and γY consists of two unit-radius circular
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Fig. 2.6. Illustration of the proof of Lemma 2.7.

arcs Y Y + and Y Y −. See, for example, Figure 2.6a and b. Since γX = C, circle C
is equal to C+X or C−X ; assume without loss of generality that C = C+X . Let I be the
point in γX ∩ γY = {Y −, Y, Y +} such that C+[I,X] has minimum length. It follows
that the arc C+[I,X] intersects the arc Y I ⊂ γY only at I. As before, we define Π′

as the concatenation of C+[I,X], Π, and Y I, and, again, Π′ is simple and moderate
and must enclose D. It follows that the circular arc Y I defining Π′ cannot intersect
the interior of D, and thus I = Y . Thus path Π′ is the concatenation of C+[I,X]
and Π. Path Π lies in ΛC , and ΛC ∩ D is an arc of C of length smaller than π. Thus,
since Π′ must enclose D, the arc C+[I,X] is the long arc of C joining I and X. Since
Y +Y − is a diameter of C, the arc C+[I,X] strictly contains Y + or Y −, contradicting
the definition of I.

The remaining case is when both γX and γY are equal to C. Let Π′ be the
concatenation of Π and the arc XY of C joining X to Y such that, if possible, Π′ is
moderate everywhere (see, for example, Figure 2.6c), or if not possible, XY is the
short arc (see Figure 2.6d). In the first case, Π′ encloses at least two unit-radius disks
by Proposition 2.5, contradicting the fact that ΛC ∪D contains Π′ and only one unit-
radius disk D. In the second case, Π′ encloses one unit-radius disk by Proposition 2.5
and lies in ΛC because the short arc of C joining X and Y lies in ΛC . Thus ΛC contains
a unit disk, contradicting Lemma 2.6.

3. Classification of optimal paths. The goal of this section is to prove the
first of our main results, namely, a detailed characterization of optimal paths in convex
polygons. We show that any optimal path is of type CICSCCSCCF or a subsequence
of this form. However, not every subsequence of the above sequence can form an
optimal path. The following theorem gives a more refined description of optimal path
types. Recall that a segment has nonzero length by definition. In the following, we
use · to denote a subpath of zero length.

Theorem 3.1. An optimal path Π inside P either is a Dubins path or is one
of the types listed below. Except in case (B.i), all of the C-segments labeled ¯̄C are
strongly anchored.

(A) If Π has no nonterminal CC subpath, then Π is one of the following types:

(A.i) ΠIS
¯̄CSΠF , where ΠI ∈ {CI , ·} and ΠF ∈ {CF , ·} (see Figure 2.4b),

(A.ii) ΠISΠF , where ΠI ∈ {CI ¯̄C,CI , ·} and ΠF ∈ { ¯̄CCF , CF , ·} (see Fig-
ure 3.1a).

(B) If Π has a nonterminal CC subpath, then Π is one of the following types:

(B.i) CIC
¯̄CCF or CI

¯̄CCCF ,

(B.ii) ΠIS
¯̄CCCF or CIC

¯̄CSΠF , where ΠI ∈ {CI , ·} and ΠF ∈ {CF , ·},
(B.iii) ΠIC̄C̄ΠF , where ΠI ∈ {CI ¯̄CS,CIS,CI , S} and ΠF ∈ {S ¯̄CCF , SCF , CF , S}

(see Figures 3.1b, c).
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Fig. 3.1. Examples of shortest paths.

Remark 3.2. We informally checked by a case analysis on figures that, for the
polygon and configurations I and F shown in Figure 3.1c, no path of type (A) or (B)
is feasible except paths of type CICSC̄C̄SCCF . This leads us to believe that the
type CICSC̄C̄SCCF , having eight segments, does occur as an optimal path type.

The proof of Theorem 3.1 is based on the following lemmas.
Lemma 3.3 (Agarwal, Raghavan, and Tamaki [1]). An optimal path has at most

one nonterminal CC subpath. Moreover, any nonterminal C-segment that precedes
(respectively, follows) a C1C2 subpath is oriented the same way as C1 (respectively, C2).

Next we state a lemma whose proof we postpone until section 3.1.
Lemma 3.4. (i) If an optimal path has a subpath of type SCS, then the C-segment

in that subpath is strongly PP-anchored.
(ii) If an optimal path has a subpath of type C1C2C3S (or SC3C2C1) so that the

C-segment C2 does not touch ∂P, then C3 is strongly PP-anchored (see Figure 3.5).
We next characterize some optimal paths that contain a strongly anchored C-

segment.
Lemma 3.5. (i) If an optimal path Π contains a strongly PP-anchored C-segment

¯̄C, then Π = ΠI
¯̄CΠF , where ΠI and ΠF lie in some pockets defined by

¯̄C.
(ii) If an optimal path Π contains a strongly PC-anchored C-segment ¯̄C whose

supporting circle is not free, then Π is of type CI
¯̄CΠF or ΠI

¯̄CCF , where ΠI and ΠF
lie in some pockets defined by ¯̄C.
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Fig. 3.2. Illustration of the proof of Lemma 3.5. In (a), an optimal path containing a strongly
PP-anchored C-segment must start and end in a pocket.

Proof. In case (i), the segment ¯̄C is strongly PP-anchored, so it is tangent to ∂P
at two points. Let X be the first point of tangency encountered along ¯̄C, and let Y be
the second point of tangency. See Figure 3.2a. By the general-position assumption,
¯̄C does not touch ∂P at any point other than X and Y . Without loss of generality,
let ¯̄C be oriented counterclockwise. Let ¯̄C be its supporting circle, and define X ′ as
the first point of intersection between ¯̄C and ∂P encountered moving clockwise along
¯̄C from X. Notice that X ′ belongs to ¯̄C−(X,Y ] since the intersection between ¯̄C and
∂P contains Y .

Segment ¯̄C is strongly anchored, so ‖Π[X,Y ]‖ = ‖ ¯̄C+[X,Y ]‖ > π. Point X ′ is

on the short arc ¯̄C+[Y,X], so ‖ ¯̄C+[X ′, X]‖ < π. The turning angle of ∂P+[X,Y ] is
equal to ψ(Y )−ψ(X) (mod 2π), which, in turn, is equal to ‖Π[X,Y ]‖ > π. The total

turning angle around ∂P is 2π, so the turning angle of ∂P+[X ′, X] < π. Finally, ¯̄C is

tangent to ∂P at X, so ¯̄C+[X ′, X] lies inside the polygon. Thus arc ¯̄C+[X ′, X] forms
the pocket Λ ¯̄C [X

′, X].
The pocket Λ ¯̄C [X

′, X] contains Π[I,X] and thus ΠI , by Lemma 2.7. Indeed,

otherwise, the path ΠI contains ¯̄C+[X ′, X], and ∂P is tangent to ¯̄C at X ′. This
contradicts either the optimality of Π (if X ′ = Y ) or the fact that X is the first point

of tangency between ¯̄C and ∂P encountered along Π (if X ′ �= Y ).
Similarly, ΠF is contained in a pocket Λ ¯̄C [Y, Y

′], where Y ′ is the first point of

intersection between ¯̄C and ∂P encountered moving counterclockwise along ¯̄C from Y .
For case (ii), we assume that Π = ΠI

¯̄CCF ; the case in which Π = CI
¯̄CΠF is

symmetrical. Let X be the first point along ¯̄C that is tangent to ∂P, and let Y be
the last point of ¯̄C. See Figure 3.2b. Then the proof is exactly the same as in (i),

once noting that X ′ always exists on ¯̄C−(X,Y ] because ¯̄C is not free by assump-
tion.

Lemma 3.6. Let Π be an optimal path that contains a subpath of type C1S
¯̄C

or ¯̄CSC1, where
¯̄C is either a strongly PP-anchored C-segment or a strongly PC-

anchored C-segment whose supporting circle is not free. Then C1 is terminal.
Proof. We consider the case in which Π contains a subpath of type C1S

¯̄C; the
case of a subpath of type ¯̄CSC1 is symmetrical. Suppose that C1 is not terminal. If
¯̄C is strongly PP-anchored or is a strongly PC-anchored C-segment whose supporting
circle is not free, then ¯̄C defines one or more pockets. By Lemma 3.5, C1 belongs to
one of the pockets defined by ¯̄C, say, Λ ¯̄C .
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Fig. 3.3. Illustration of the proof of Lemma 3.6.

We claim that the circle C1 supporting the C-segment C1 is not free. Indeed,
otherwise, there would exist a feasible path that enters Λ ¯̄C on C1 (since no circle of
unit radius is entirely contained in a pocket by Lemma 2.6) and escapes the pocket

on ¯̄C, contradicting Lemma 2.7.
Since C1 is not terminal, its length is greater than π by Lemma 2.3(i). The length

of ¯̄C is also greater than π because anchored circles are not terminal by definition.
Suppose first that the C-segments C1 and ¯̄C have the same orientation along Π.

Since the lengths of C1 and ¯̄C are greater than π, the convex hull of C1 and ¯̄C contains
C1. By convexity of P, the convex hull of C1 and ¯̄C and thus C1 lies inside P, which
contradicts the above claim that C1 is not free.

Suppose now that the C-segments C1 and ¯̄C have opposite orientation along Π (see
Figure 3.3). Let A and B be the first and last points of the S-segment, respectively,

in the subpath C1S
¯̄C. Let U be the last point of tangency along Π between C1 and

∂P, and let U ′ be the point antipodal to U on C1. By Lemma 2.4, U ′ belongs to C1.
Note that the arc on C1 joining U ′ and A is longer than π. Let � be the line tangent
to C1 at U ; � contains an edge of P.

If � does not intersect ¯̄C, then the line tangent to C1 at U ′ (which is parallel to �)

intersects the subpath S ¯̄C at a point Z (see Figure 3.3a). It follows that the convex
hull of Π[U ′, Z] contains C1. Thus C1 is free, again contradicting the claim that C1 is

not free. On the other hand, if � intersects ¯̄C, then let V, V ′ ∈ ¯̄C such that
−−→
V V ′ =

−−→
UU ′

(see Figure 3.3b). Points B and V lie on opposite sides of �, and P lies in one of the
half-planes bounded by �. Since B ∈ Π ⊂ P, we conclude that V �∈ P. Recall that
‖ ¯̄C‖ � π; therefore, V ′ ∈ ¯̄C. The point on ¯̄C that is antipodal to the last point of ¯̄C

lies on Π[B, V ′]. Thus, by Lemma 2.4 applied on the reversed path of Π, ¯̄C is tangent

to ∂P at a point on Π[B, V ′]. Since the line tangent to ¯̄C at V ′ separates U ′ and A,
any line tangent to Π[B, V ′] separates U ′ and A. Thus U ′ �∈ P, which in turn implies
that U ′ �∈ C1, thereby contradicting the claim that U ′ ∈ C1.

We now prove Theorem 3.1.

Proof of Theorem 3.1. The proof proceeds by considering how a nonterminal
C-segment may appear in Π. If there is no nonterminal C-segment in Π, then Π is of
type CISCF or a substring thereof; i.e., Π is a Dubins path.

Assume now that there is a nonterminal C-segment in Π. Then such a segment
belongs to a subpath of Π of type either SCS or CC. Suppose Π contains a subpath
of type SCS. By Lemma 3.4, the C-segment in SCS must be strongly PP-anchored.
Thus, by Lemma 3.6, Π is of type CIS

¯̄CSCF or substrings (containing S ¯̄CS) thereof.
In other words, Π is of type (A.i).
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If Π contains a nonterminal C-segment but not a subpath of type SCS, we know
it must contain a subpath of type CC. There are two cases to consider, depending
on whether the CC subpath is terminal.

Case 1. Π does not contain any nonterminal subpath of type CC. Thus one of the
C-segments in any CC subpath must be a terminal segment. Either Π is of type CICF
or CICCF , or any nonterminal C-segment of Π is also adjacent to an S-segment. Π
must then be of type CICSCCF or any substring thereof containing S and a terminal
CC. By Lemma 2.4, the nonterminal C-segments are strongly PC-anchored. All of
these types of paths are thus either Dubins paths or paths of type (A.ii).

Case 2. Π contains a nonterminal subpath of type CC. By Lemma 3.3, it is the
unique nonterminal CC-subpath in Π. Thus Π has the form ΠICCΠF , where ΠI ,ΠF
do not contain a nonterminal subpath of type CC. Thus any nonterminal C-segment
in ΠI must be followed by an S-segment; otherwise, ΠICC will contain a nonterminal
CCC-subpath, which contradicts the optimality of Π (Lemma 2.3(iii)). Furthermore,
since we have no SCS subpath in Π, a nonterminal C-segment must be preceded
by a terminal C-segment. This means that ΠI = CICS or a subsequence of it. The
subsequence cannot be empty, for otherwise the middle CC-subpath of Π would in fact
be terminal; nor can it be simply CC, as noted above. Thus ΠI ∈ {CICS,CIS,CI , S}.
Similarly, ΠF ∈ {SCCF , SCF , CF , S}.

If ΠI = CICS or ΠF = SCCF , then the nonterminal C-segment in ΠI or ΠF is
strongly anchored by Lemma 2.4.

If both ΠI and ΠF contain an S-segment, then the nonterminal CC-subpath in Π
is preceded and followed by an S-segment. Thus both C-segments of the nonterminal
CC-subpath in Π touch ∂P. Indeed, otherwise Π contains a subpath of type SCC or
CCS that does not touch ∂P, which contradicts Lemma 2.2. Hence, if both ΠI and
ΠF contain an S, then Π is of type (B.iii).

If neither ΠI nor ΠF contains an S-segment, then the path is of type CICCCF .
By Lemma 2.2, one of the nonterminal C-segments must touch ∂P. This C-segment
is also tangent to a terminal circle and is therefore PC-anchored. Thus the path is of
type (B.i). Note that, if both nonterminal C-segments touch ∂P, then the path is of

type CI
¯̄C ¯̄CCF , which can be considered as type (B.i) or (B.iii).

The last case to consider is when exactly one of ΠI or ΠF contains an S-segment.
Say ΠI = CI and ΠF �= CF . The path has the form CIC1C2ΠF , where ΠF starts
with an S-segment. We know that C2 must touch ∂P by Lemma 2.3(ii). If C1 also
touches ∂P, then the path Π is of type (B.iii). Otherwise, if C1 does not touch ∂P,
then, by Lemma 3.4(ii), C2 must be strongly PP-anchored. Lemma 3.6 then restricts
the path Π to be of type (B.ii). Similarly, if ΠI �= CI and ΠF = CF , the path Π is of
type (B.ii) or (B.iii).

3.1. Proof of Lemma 3.4.

3.1.1. Proof of Lemma 3.4(i). Here we prove Lemma 3.4(i), which states
If an optimal path has a subpath of type SCS, then the C-segment in
that subpath is strongly PP-anchored.

Consider an optimal path Π = S1C3S5 from configuration I to configuration F .
We show that the path Π can be shortened unless the C-segment C3 is strongly PP-
anchored. Assume without loss of generality that the C3 is oriented counterclockwise,
and refer to Figure 3.4.

First perturbation. We first apply the perturbation shown in Figure 3.4a which
transforms the path Π = S1C3S5 into a path Π′(ε1) = S′1C

′
2C
′
3S
′
5 by reducing the
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Fig. 3.4. For the proof of Lemma 3.4(i).

length of S5 by a small value ε1 (i.e., ‖S′5‖ = ‖S5‖ − ε1), such that the new segment
C ′2 is oriented clockwise and is smaller than π. (Segment C ′3 is naturally oriented
counterclockwise.) For simplicity, in what follows, we denote Π′(ε1) by Π′.

Claim 3.7 (Dubins [15]). In an obstacle-free environment, path Π′ is shorter
than Π for any ε1 > 0 small enough.

This directly yields that, if the optimal path S1C3S5 is tangent to ∂P at the
junction between C3 and S5, then the perturbed path Π′ has shortened in P unless
C3 is strongly PP-anchored. By symmetry, we get the same result if the path Π is
tangent to ∂P at the junction between S1 and C3. Therefore, we can assume in the
following that neither S1 nor S5 is touching ∂P.

Second perturbation. We now transform (see Figure 3.4b) the path Π′ =
S′1C

′
2C
′
3S
′
5 into a path Π′′(ε1, ε2) = S′′1C

′′
2C
′′
3C
′′
4 S
′′
5 by reducing the length of S′1 by a

small value ε2 (i.e., ‖S′′1 ‖ = ‖S′1‖ − ε2), such that the length of C ′2 does not change
(i.e., ‖C ′′2 ‖ = ‖C ′2‖) and the new segment C ′′4 is oriented clockwise and is smaller
than π. (Segments C ′′2 and C ′′3 are naturally oriented clockwise and counterclockwise,
respectively.) For simplicity, we denote Π′′(ε1, ε2) by Π′′.

Claim 3.8. In an obstacle-free environment, path Π′′ is shorter than Π′ for any
ε2 > 0 small enough.

Proof. Refer to Figure 3.4b. Let Y ′ be the first point of C ′3, and let Z ′ be
the first point on C ′3 such that the tangent to C3 at Z ′ is parallel to the line seg-
ment S1. Point Z ′ exists on C ′3 because, by construction, ‖C ′2‖ < π and ‖C ′3‖ > π.
Furthermore, ‖C ′2‖ = ‖C ′3[Y ′, Z ′]‖. We define similarly points Y ′′ and Z ′′ on C ′′3 .
Then it follows from ‖C ′2‖ = ‖C ′′2 ‖ that ‖C ′3[Y ′, Z ′]‖ = ‖C ′′3 [Y ′′, Z ′′]‖. Thus, if
X ′ and X ′′ denote the first point of the segments C ′2 and C ′′2 , respectively, we get
‖Π′[X ′, Z ′]‖ = ‖Π′′[X ′′, Z ′′]‖.

Now let Ĩ be the point defined by
−→
ĨZ ′ =

−−→
IX ′ (or

−→
IĨ =

−−→
X ′Z ′ =

−−−→
X ′′Z ′′). Let Π̃′ be

the path from Ĩ to F that is the concatenation of the line segment ĨZ ′ and Π′[Z ′, F ].
Similarly, let Π̃′′ be the path from Ĩ to F that is the concatenation of the line segment
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ĨZ ′′ and Π′′[Z ′′, F ]. We get, by construction, that ‖Π̃′‖ = ‖Π′‖ − ‖Π′[X ′, Z ′]‖ and
‖Π̃′′‖ = ‖Π′′‖ − ‖Π′′[X ′′, Z ′′]‖. Since ‖Π′[X ′, Z ′]‖ = ‖Π′′[X ′′, Z ′′]‖, ‖Π̃′‖ − ‖Π̃′′‖ =
‖Π′‖ − ‖Π′′‖. However, we know that Π̃′′ is shorter than Π̃′ because Π̃′′ is obtained
by the Dubins’ length-reducing perturbation, shown in Figure 3.4a, applied on the
reversed path of Π̃′, which is of type SCS. Thus Π′′ is shorter than Π′ in an obstacle-
free environment for any ε2 > 0 small enough.

Claim 3.9. If the C-segment C3 in the optimal path Π = S1C3S5 is not strongly
PP-anchored, then we can choose ε1 and ε2 arbitrarily small such that Π′′ is free
in P.

Proof. Let �u be the unit vector whose direction is opposite the direction of S1,
and let �v be the unit vector whose direction is the same as the direction of S5. See
Figure 3.4a.

In the two perturbations described above, the lengths of C3 and C ′3 increase. More
precisely, the translated copy of C3 by vector ε1�v is part of C ′3, and the translated copy
of C ′3 by vector ε2�u is part of C ′′3 . Thus, if Z ′′ and T ′′ are the translated copies of the
endpoints of C3 by vector ε1�v+ε2�u, Π′′ is the concatenation of Π′′[I, Z ′′], Π′′[Z ′′, T ′′],
and Π′′[T ′′, F ], where Π′′[Z ′′, T ′′] is the translated copy of C3 by vector ε1�v + ε2�u.
On the other hand, any arbitrarily small neighborhood around S1 (respectively, S5)
contains Π′′[I, Z ′′] (respectively, Π′′[T ′′, F ]) for any ε1 and ε2 small enough. Thus,
since we assumed that neither S1 nor S5 touches ∂P, neither Π′′[I, Z ′′] nor Π′′[T ′′, F ]
touches ∂P for any ε1 and ε2 small enough. Thus it is sufficient to show that, if C3 is
not strongly PP-anchored, then we can choose ε1 and ε2 arbitrarily small such that
the translated copy of C3 by vector ε1�v + ε2�u is free.

Let A be the last point of tangency on C3 with ∂P. Let �w be the unit vector
tangent to C3 at A (with direction corresponding to the orientation of C3). If C3 is
not strongly PP-anchored, then, for any µ > 0 small enough, the translated copy of
C3 by µ�w is free. On the other hand, for λ1 and λ2 such that �w = λ1�v + λ2�u, the λ1
and λ2 are nonnegative because, by Lemma 2.4, the distance on C3 between the first
point of C3 and A is greater than π. Therefore, if C3 is not strongly PP-anchored,
then, for any µ > 0 small enough, the path Π′′ defined with ε1 = µλ1 and ε2 = µλ2
is free in P.

By Claims 3.7, 3.8, and 3.9, if the C-segment C3 in the optimal path Π = S1C3S5
is not strongly PP-anchored, then we can choose ε1 and ε2 arbitrarily small so that
Π′′ is free and shorter than Π. This concludes the proof of Lemma 3.4(i).

3.1.2. Proof of Lemma 3.4(ii). We prove Lemma 3.4(ii), which states
If an optimal path has a subpath of type C1C2C3S (or SC3C2C1)
so that the C-segment C2 does not touch ∂P, then C3 is strongly
PP-anchored.

Consider an optimal path Π = C1C2C3S from configuration I to configuration F
so that the C-segment C2 does not touch ∂P. We prove that the C-segment C3 is
strongly PP-anchored. Assume without loss of generality that C1 is oriented coun-
terclockwise. We assume, for a contradiction, that C3 is not strongly PP-anchored
and show that the path Π can be shortened in P.

Notation. Let Oi, i = 1, 2, 3, denote the center of the circle supporting the C-
segment Ci of Π. See Figure 3.5a. Let X denote the point of tangency between the
C-segments C2 and C3, and let Y denote the antipodal point of X on C3 (‖C3‖ > π
by Lemma 2.3). Let Z be the point of tangency between the C-segment C3 and the
S-segment. Let T be the last point of tangency with ∂P on the (oriented) circular arc
Π[Y,Z]; such a point exists by Lemma 2.4. Let T ′ be the antipodal point of T on C3.



CURVATURE-CONSTRAINED SHORTEST PATHS 1829

(b)

�U

(a)

X

Y
Z

T

T ′

C1

C2

C3

S

�U

F (ε)

A(ε)

�V

�V

O2

OF
2 (ε)

O3
OF

3 (ε)

O1

O2

O3

O1
�V

�V

ΠR

I
F

I

F

Π
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By definition, the circular arc Π(T,Z] does not touch ∂P. Furthermore, the circular
arc Π[X,T ′) does not touch ∂P because otherwise C3 would be strongly PP-anchored.

Let �U be a unit vector tangent to Π at T , and let �V be a unit vector tangent to Π at
any point on the S-segment of Π. Finally, let ray(O3, �U) and ray(O3, �V ) denote the

rays starting at O3 in the directions �U and �V , respectively.

First perturbation. Consider the perturbation shown as a thick solid path in
Figure 3.5b, where Π has been perturbed into a path F (ε) of type CCCCS. We
define this perturbed path F (ε) by specifying the position of the center OF3 (ε) of

the supporting circle of its third circular arc, namely, OF3 (ε) = O3 + ε�U . The path
F (ε) is well defined for any ε small enough because the unit circle centered at OF3 (ε)

intersects the S-segment of Π (by definition of �U); thus the fourth circular arc of F (ε)
is defined. Also, since the second C-segment of Π and the arcs Π[X,T ′) and Π(T,Z]
do not touch ∂P, F (ε) is free for any sufficiently small values of ε > 0.

Second perturbation. To prove that the length of F (ε) is a decreasing function
of ε, we define a path Kh(k) with two perturbation steps. The first step perturbs Π
to a path H(h), and the second step then perturbs H(h) to a path Kh(k). As we will
show later, ε, h, and k can be chosen so that F (ε) = Kh(k). Furthermore, we will
show that Kh(k) is shorter than Π.

Below, let OHi (h), OKi (k), i = 1, 2, 3, 4, denote the center of the circle supporting
the ith C-segment of paths H(h) and Kh(k), respectively.

First step. The path H(h) (see Figure 3.6a) is of type CCCS joining I to F such

that OH1 (h) is identically equal to O1, O
H
3 (h) = O3+h�V , and the length of the second

circular arc is greater than π. For any h small enough, H(h) is well defined.
Second step. The path Kh(k) (see Figure 3.7) is defined as follows. For a given

H(h) and for a sufficiently small k > 0, path Kh(k) is of type CCCCS from I to
F such that OK1 (k) and OK2 (k) are identically equal to O1 and OH2 (h), respectively,
OK3 (k) is at distance k counterclockwise from OH3 (h) along the circular arc of radius
2 centered at OK2 (k), and the fourth circular arc has length less than π.
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Claim 3.10. For a given sufficiently small ε > 0, h and k can be chosen such
that F (ε) = Kh(k).

Proof. Let R be the open strip bounded by two lines perpendicular to the line
O2O3 and passing through O2 and O3, respectively (see Figure 3.5a). Since the
lengths of the circular arcs Π[X,T ] and Π[X,Z] are greater than π by Lemmas 2.4

and 2.3(i), respectively, ray(O3, �U) and ray(O3, �V ) are directed into R. Thus, for
any sufficiently small ε, OF3 (ε) belongs to R, and the distance between OF3 (ε) and
O2 is less than 2. Consequently, it can be shown that OF2 (ε) must lie outside R on
the circle of radius 2 centered at O1. It follows that, for any open neighborhood N
of O3, any choice of ε sufficiently small ensures that the circle of radius 2 centered at
OF2 (ε) intersects ray(O3, �U) and ray(O3, �V ) in N (see Figure 3.5b). Let A(ε) denote

the intersection of that circle with ray(O3, �V ) in N ; recall that the intersection, in

N , of that circle with ray(O3, �U) is OF3 (ε). The polar angle of ray(O3, �V ) is bigger

than the polar angle of ray(O3, �U) by an amount smaller than π. Thus, for ε small
enough, the counterclockwise oriented arc, denoted arc(A(ε), OF3 (ε)), of the circle of
radius 2 centered at OF2 (ε) starting at A(ε) and ending at OF3 (ε) is also contained in
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the neighborhood N ; indeed, since A(ε) and OF3 (ε) converge to O3 when ε tends to 0,
arc(A(ε), OF3 (ε)) also tends to O3 when ε tends to 0. Therefore, we can choose ε such
that the line segment [O3, A(ε)] and the circular arc arc(A(ε), OF3 (ε)) are arbitrarily
small.

Choose h equal to the length of the line segment [O3, A(ε)], and choose k equal
to the length of the circular arc arc(A(ε), OF3 (ε)). Then OH3 (h) = A(ε) and OK3 (k) =
O3(ε), and therefore K(k) = F (ε). Moreover, we have shown that we can choose ε
small enough such that h and k are arbitrarily small.

Claim 3.11. The length of Kh(k) is strictly smaller than the length of Π for any
h and k sufficiently small.

Proof. The length of Kh(k) has been shown by Dubins [15] to be strictly shorter
than the length of Kh(0) = H(h) for any fixed h and for any small enough k > 0.
Furthermore, the length of Kh(0) = H(h) has been shown in [7] to be strictly shorter
than the length of Π. For completeness, we give the proof here. Consider a path of
type CCCS such that the length of the second circular arc is greater than π. With the
notation of Figure 3.6b, the length of the path is equal to L = 2(u1 +u2)− γ + d−x,
where γ and d are some constants. Furthermore, we have

{
sin(u1) + sin(u2) = x/2,
cos(u1)− cos(u2) = (y − 1)/2.

By computing the derivative of each equation with respect to x and solving the
system, we obtain the following solution (which is defined, since (u1 + u2) ∈ (π, 2π),
by hypothesis):





∂u1
∂x

=
sin(u2)

2 sin(u1 + u2)
,

∂u2
∂x

=
sin(u1)

2 sin(u1 + u2)
.

Therefore,

∂L

∂x
=

sin(u1) + sin(u2)

sin(u1 + u2)
− 1 =

cos
(
u1−u2

2

)− cos
(
u1+u2

2

)

cos
(
u1+u2

2

) .

Since u1 and u2 are positive and (u1 + u2) ∈ (π, 2π), 0 � |u1−u2|
2 < |u1+u2|

2 < π, and
thus cos

(
u1−u2

2

)
> cos

(
u1+u2

2

)
. Furthermore, cos

(
u1+u2

2

)
< 0 since u1+u2

2 ∈ (π2 , π).
Therefore, ∂L/∂x is negative, which means that, as long as H(h) is of type CCCS
with the second circular arc greater than π, the length of H(h) is a decreasing function
of h. Hence we have shown that the length of Kh(k) is smaller than the length of Π
for any h and k sufficiently small.

To complete the proof of Lemma 3.4(ii), recall that F (ε) is free in P for any ε
small enough. By Claims 3.10 and 3.11, there exist arbitrarily small values of ε, h, k
such that F (ε) = Kh(k), where the length of Kh(k) is strictly less than the length of
Π. This contradicts the optimality of Π and completes the proof.

4. A simple algorithm. Theorem 3.1 can be used to obtain the following simple
algorithm for computing an optimal path inside P. We enumerate candidate paths
of types described in Theorem 3.1. Our candidate set is guaranteed to contain an
optimal path, if any exist. For each such path, we check whether it is feasible and, if
so, compute its length. Finally, we either return the shortest feasible path or report
that no feasible path exists.
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In order to determine whether a path is feasible, we rely on the circle-shooting
data structure by Cheng et al. [10] that preprocesses P in O(n log n) time into a data
structure of linear size that makes it possible to determine in O(log n) time whether a
given circular arc of unit radius intersects ∂P. This immediately implies the following
lemma.

Lemma 4.1. P can be preprocessed in O(n log n) time into a data structure
of linear size that enables us to determine in O(m log n) time whether a given path
consisting of m C- and S-segments is feasible.

To bound the running time of this simple algorithm, we must count the number of
candidate paths to check. We note that, once a path type is given and the supporting
circles for C-segments are known, there are O(1) candidate paths. These are deter-
mined by the choices of the orientations for the C-segments. Hence we are interested
in the number of possible supporting circles for each path type. Note that there may
be Ω(n2) PP-anchored circles (see Lemma 5.3) and Ω(n) PC-anchored circles.

There are O(1) Dubins path candidates. For paths of types (A.i) and (B.ii), once
the PP-anchored circle is chosen, there are O(1) choices for other supporting circles
and hence O(1) candidate paths. Since there are O(n2) PP-anchored circles, there
are O(n2) candidate paths for these two path types.

A path of type (A.ii) may have up to two PC-anchored segments. Once their sup-
porting circles are chosen, there are O(1) path candidates. There are O(n) potential
PC-anchored circles. If both anchored segments are present, we have O(n2) paths to
check; otherwise, we have only O(n). Paths of type (B.i) are also determined by a
PC-anchored circle; hence there are O(n) of them.

Paths of type (B.iii), i.e., of type CI
¯̄C1SC̄2C̄3S

¯̄C4CF , present a special problem.
If we know the supporting circles of the C̄C̄ subpath, the rest of the path is deter-
mined by a pair of PC-anchored circles C1, C4, for which there are O(n2) possibilities.
Unfortunately, there is an infinite family of supporting circles for the C̄C̄ subpath.
The following result by Boissonnat and Lazard [6] allows us to consider only a finite
set of C̄C̄ subpaths.

Lemma 4.2 (Boissonnat and Lazard [6]). Given two configurations X and Y and
two edges e, e′ of P, we can compute4 in O(1) time a finite set of paths from X to
Y of type C1SC̄2C̄3SC4, where C̄2 and C̄3 are tangent to edges e and e

′, respectively.
This set contains all optimal paths from X to Y of type C1SC̄2C̄3SC4.

Given a pair of edges e, e′ and a pair of PC-anchored circles C1, C4, tangent to
CI and CF , respectively, we choose X to be the configuration determined by the
intersection of CI and C1 and Y to be the configuration determined by CF and C4. By
the above lemma, we can compute in O(1) time a constant number of candidate paths
for this pair of edges and anchored circles. Doing this for all possible pairs of edges
(e, e′) and pairs of supporting circles (C1, C4), we determine O(n4) path candidates of
type (B.iii) in O(n4) time.

In summary, the simple algorithm examines O(n4) candidate paths and, for each,
spends O(log n) time checking feasibility, by Lemma 4.1 with m � 8. Therefore, the
overall running time is O(n4 log n).

Proposition 4.3. Given a convex polygon P, an initial configuration I, and a
final configuration F, an optimal path from I to F inside P can be computed in time
O(n4 log n).

4The computation is performed by solving four algebraic systems of three equations in three
indeterminates.
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Fig. 5.1. The free circle C is centered on the retracted polygon of P.

5. An efficient algorithm. In this section, we prove additional properties of
optimal paths that significantly reduce the number of candidates to examine. We
have already shown that we need to consider only O(1) Dubins paths and O(n) can-
didates for paths of type (B.i). We will show that it suffices to consider only O(1)
candidate paths of types (A.i) and (B.ii), O(n) candidate paths of type (A.ii), and
O(n2) candidate paths of type (B.iii).

5.1. Computing paths of types (A.i) and (B.ii). The paths of types (A.i)

and (B.ii) contain a strongly PP-anchored C-segment ¯̄C. The circle ¯̄C supporting
¯̄C defines one or two pockets that contain a point of tangency of ¯̄C with ∂P (see
Figures 2.4b and 3.2). By Lemma 2.7, we know that I and F must belong to these
pockets. The following lemma states that there exist at most two circles with these
properties and that they can be computed efficiently.

Lemma 5.1. For a fixed pair of locations I, F, there exist at most two circles that
can support a strongly PP-anchored C-segment appearing in an optimal path from I
to F, and they can be computed in O(n) time.

Proof. Consider a strongly PP-anchored segment that lies in an optimal path.
Let X and Y denote its points of tangency with ∂P, and let C denote its supporting
circle. Assume without loss of generality that the short arc on C joining X and Y is
C−[X,Y ] (see Figure 5.1). The proof of the lemma is divided into two cases, which
depend on whether or not C is free.

Case 1. C is free. The center of C lies at a vertex of the retracted polygon of
P (i.e., the set of points p such that the unit circle centered at p lies inside P). By
computing the retracted polygon of P in linear time, we get (in linear time) the set
of the O(n) free PP-anchored circles which contains C. Each of these circles defines
one pocket, and all of these pockets are pairwise disjoint (see Figure 5.1). Thus only
one of these pockets contains I and F ; hence, by Lemma 2.7, C must be the circle
defining this pocket. For each of the O(n) free PP-anchored circles, we can easily
check, in O(1) time, whether I and F belong to the corresponding pocket. Indeed
(see Figure 5.1), I, F ∈ P belong to the pocket if and only if I and F are outside the
circle and are in the small wedge defined by the rays emanating from the center of
the circle and passing through the points of tangency of the circle with ∂P.

Case 2. C is not free. C defines two pockets ΛC [X,X ′] and ΛC [Y, Y ′] (see Fig-
ure 5.2). By Lemma 2.7, one of these pockets contains I, and the other contains F .
Thus I �= F , and the line LIF through I and F is defined. Let A and B denote the
intersection points of LIF with ∂P.
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Fig. 5.2. The nonfree circle C is centered on the retracted chain of ∂P+[A,B].

With no loss of generality, suppose I ∈ ΛC [X,X ′] and F ∈ ΛC [Y, Y ′]. The segment
[I, F ] must pass through C twice since I and F are in distinct pockets. Thus the

ray emanating from I in the direction
−→
FI cannot intersect C and therefore leaves

ΛC [X,X ′] through ∂P−[X,X ′]. Thus A ∈ ∂P−[X,X ′]. A similar argument shows
that B ∈ ∂P+[Y, Y ′]. Hence X ′, Y ′ �∈ ∂P+[A,B], and X,Y ∈ ∂P+[A,B].

The chain ∂P+[A,B] does not properly intersect C. Indeed (see Figure 5.2), it
properly intersects neither the long arc C+[X,Y ], by assumption, nor the small arc
C−[X,Y ] because the first intersection between C−[X,Y ] (respectively, C+[Y,X]) and
∂P is X ′ (respectively, Y ′), which does not belong to ∂P+[A,B]. It then follows from
X,Y ∈ ∂P+[A,B] that the circle C is a free anchored circle in the polygon P ′ obtained
by extending the two edges of ∂P+[A,B] that end at A,B (see Figure 5.2). Moreover,
the pocket defined by C in P ′ contains the two pockets ΛC [X,X ′] and ΛC [Y, Y ′] and
thus contains I and F . As before, at most one free anchored circle in P ′ defines a
pocket containing I and F , and, given P ′, it can be computed in O(n) time.

Note finally that polygon P ′ can be determined in O(n) time. This is because I
and F determine the points A and B, and the turning angle of ∂P+[A,B] is bigger
than π. Thus, independent of any assumption about the orientation of the short arc
on C joining X and Y, whether P ′ is the polygon obtained by extending the two edges
(ending at A,B) of ∂P+[A,B] or of ∂P−[A,B] can be determined simply by checking
which of the turning angles of ∂P+[A,B] and ∂P−[A,B] is bigger than π.

Hence we have proved that, for a fixed pair of locations I and F , there exist at
most two PP-anchored circles (one free and the other nonfree) that can appear in an
optimal path from I to F , and they can be computed in O(n) time.

By the above lemma, we can compute, in O(n) time, a set of O(1) candidate
paths of types (A.i) and (B.ii). The candidate paths may be checked for feasibility in
O(log n) time. Therefore, we have the following lemma.

Lemma 5.2. An optimal path of type (A.i) or (B.ii) can be computed in O(n)
time.

The following proposition shows that Lemma 5.1 is essential for establishing the
linear running time given in Lemma 5.2; indeed, an algorithm that checked all can-
didate strongly PP-anchored circles to produce candidate paths would have running
time Ω(n2).

Proposition 5.3. There exist convex n-polygons that have Ω(n2) strongly PP-
anchored circles.



CURVATURE-CONSTRAINED SHORTEST PATHS 1835

1 + ε

ε

(0, 0)

t0
t1

t2

t3

s0

s1

s2

s3

p1 p2 p3

C2
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Fig. 5.3. The circles Ci centered at pi, i = 1, 2, 3 = n
4
, are strongly PP-anchored: They are

tangent to s0 and si, and their long arcs are free.

Proof. Let n � 8 be a multiple of 4, and let 0 < ε < tan(π/n) be a real parameter.
Let P be an n-regular polygon centered at the origin with in-radius (1 + ε); i.e., the
distance from the origin to each side of P is (1 + ε). We assume that one of the edges,
say, s0, of P is parallel to the x-axis and lies below the x-axis; see Figure 5.3. The
coordinates of the right endpoint of s0 are (a, 0), where a = (1 + ε) tan(π/n). Let the
edges of P in the counterclockwise sense be s0, s1, s2, . . . , sn−1.

The retracted polygon of P (i.e., the set of points p such that the unit circle
centered at p lies inside P) is an n-regular polygon with radius ε. Denote its sides
by t0, t1, . . . , tn−1, where ti is the retraction of si for 0 � i < n. For i = 1, . . . , n/4,
denote by pi = (xi,−ε) the intersection point of the lines supporting ti and t0 and by
Ci the unit circle centered at pi. It is easily seen that 0 < x1 < · · · < xn/4 � ε.

Since the x-coordinate of the point at which Ci touches the line supporting s0 is
xi and xi < ε < tan(π/n) < a, Ci is tangent to s0 for any 1 � i � n/4. A symmetric
argument shows that Ci is tangent to si.

Therefore, we can assign n/4 PP-anchored circles to every side of P, and the
number of PP-anchored circles of P is Ω(n2). It remains to show that these PP-
anchored circles are strongly PP-anchored.

As can be seen from Figure 5.3, the point pi is a vertex of the polygon defined
by the two lines through t0 and ti and the edges ti+1, . . . , tn−1. Thus pi is in the
retracted polygon of the polygon formed by the two lines through s0 and si and the
edges si+1, . . . , sn−1. Therefore, Ci does not properly intersect any of si+1, . . . , sn−1,
and its long arc is free, so Ci is indeed a strongly PP-anchored circle.
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5.2. A monotonicity property of CCSC paths. Subpaths of type CCSC
occur in both (A.ii) and (B.iii) path types. In this subsection, we ignore the polygon P
and study paths from X to Y of type C1C2SC3, with specified orientations on C1 and
C3; the orientation of C1 fixes the orientation of C2; namely, if C1 is oriented clockwise
(respectively, counterclockwise), then C2 is oriented counterclockwise (respectively,
clockwise).

The positions of circles C1 and C3, supporting C1 and C3, respectively, are con-
sidered fixed, while the position of circle C2 is determined by M , its point of tangency
with C1. The orientations of these three circles are fixed by the orientations of the
corresponding C-segments. The S-segment is determined by the appropriate tangent
line, given the orientations on C2 and C3. This tangent, if it exists, is unique.

For each M ∈ C1, there is at most one path, denoted Π(M), from X to Y of
type C1C2SC3 with the specified orientations on the C1- and C3-segments. We are
interested in how the path length ‖Π(M)‖ changes as M moves along C1 in the same
direction as the segment C1.

For certain positions of M , one or more of the segments of Π(M) may vanish. For
example, when M = X, the length of the first segment C1 changes discontinuously
from 2π to 0. At such points, the path length may change discontinuously, so these
positions of M are called singular points of Π(M).

Lemma 5.4. Given two configurations X and Y, the paths Π(M) of type C1C2SC3
from X to Y with specified orientations on the C1- and C3-segments admit at most
six singular points, and their locations can be computed in O(1) time.

Proof. We enumerate the possibilities for a segment to vanish in the paths Π(M).
Figure 5.4 illustrates the six singular points in a path of type C+

1 C
−
2 SC

+
3 .

Segment C1 vanishes if and only if M = X, so X is the only singular point such
that C1 vanishes.

Segment C2 vanishes if and only if the path type degenerates to C1SC3. Then
the point M on C1 is also on the S-segment. Since there is at most one S-segment
tangent to C1 and C3 that respects their specified orientations, there is at most one
singular point M1 ∈ C1 such that C2 vanishes.

Segment S vanishes if and only if the path type degenerates to either C1C2C3 if
C2 and C3 have opposite orientations or C1C2 otherwise. Thus there are at most two
singular points M2,M3 ∈ C1 (common point of C1 and C2) such that S vanishes.

Segment C3 vanishes if and only if the path type degenerates to C1C2S. This
means that LY , the line passing through the configuration Y , is tangent to C2. There
are at most two circles C2 tangent to C1 and LY that respect the orientations of C1
and LY . Thus there are at most two singular points M4, M5 such that C3 vanishes.

In total, there are no more than six singular points, and they can clearly be
computed in O(1) time.

We next state the monotonicity property of the paths Π(M).
Lemma 5.5. ‖Π(M)‖ strictly increases as M moves along the oriented circle C1

between singular points, except when C1 and C3 are identical with the same orientation,
in which case ‖Π(M)‖ is constant as M moves between singular points.

Proof. There are four possible orientation assignments for the circles: C+
1 C
−
2 SC

+
3 ,

C+
1 C
−
2 SC

−
3 , C−1 C

+
2 SC

−
3 , and C−1 C

+
2 SC

+
3 . We prove the claim for the first two cases;

the other two cases can be proved using a symmetric argument.
Consider a path Π(M). Let α1 = ‖C+1 [X,M ]‖ be the length of the first C-segment.

Since there is a one-to-one mapping between α1 and M , we can parameterize Π by
α1. Let α2 = α2(α1), α3 = α3(α1) be the length of the second and third C-segments
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(a): C1 vanishes (b): C2 vanishes

(d): C3 vanishes(c): S vanishes

Fig. 5.4. Paths of type C+
1 C

−
2 SC

+
3 from X to Y and the six singular points X, M1, M2, M3,

M4, and M5 on C+X .

of Π(α1), and let 2s = 2s(α1) be the length of the S-segment of Π(α1). Let Oi be the
center of the circle Ci supporting Ci, i = 1, 2, 3. Although O1 and O3 are fixed, O2

depends on α1. By definition,

L(α1) = ‖Π(α1)‖ = α1 + α2 + 2s + α3.(5.1)

As M moves continuously on C1, the length of every segment in path Π(M)
changes continuously, except at singular points and at points for which Π(M) is not
defined (i.e., when C2 and C3 have opposite orientation and properly intersect). It
follows that the segment lengths are piecewise differentiable functions of α1 and that
L is a piecewise differentiable function of α1 on the intervals of [0, 2π) where the path
Π(α1) is defined. For a function f(α1), we will use f ′(α1) to denote ∂f/∂α1. Then

L′(α1) = 1 + α′2 + 2s′ + α′3.(5.2)

We call a value of α1 singular if the corresponding point M on C1 is singular.
The lemma can now be restated as follows: In the open intervals between singular
points, L′ > 0 almost everywhere (i.e., at all but a finite number of points) except
when O1 = O3 and Π(M) is of type C+

1 C
−
2 SC

+
3 , in which case L′ = 0 everywhere.

The proof is divided into two cases depending on whether O1 and O3 are equal.
Case 1. O1 is distinct from O3. Consider the triangle �O1O2O3. See Figure 5.5.

We have ‖O1O2‖ = 2; let d = ‖O1O3‖, and let 2t = ‖O2O3‖. We also define two
(counterclockwise) oriented angles α = ∠O3O1O2 and β = ∠O1O2O3. Both angles
depend on α1. Since C1 is oriented counterclockwise, α1 − α is a constant, and
therefore α′ = 1.
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Fig. 5.5. Paths Π(M) of types (a) C+
1 C

−
2 SC

+
3 and (b) C+

1 C
−
2 SC

−
3 .

In view of the above discussion, it is sufficient to prove that L′(α1) > 0 for any
nonsingular value of α1 such that the path Π(α1) is defined and α �≡ 0 (mod π);
indeed, there are only a finite number of values α1 such that α ≡ 0 (mod π). Since
α1 is not singular, we can assume in the following that t �= 0.

By applying the cosine law to �O1O2O3, we obtain

4t2 = 4 + d2 − 4d cosα.

By differentiating the above equality and noting that α′ = 1, we get 2tt′ = d sinα.
Applying the sine law to �O1O2O3 gives 2t sinβ = d sinα, because α and β have the
same sign, by definition (see Figure 5.5). It follows that

t′ = sinβ.(5.3)

We first consider the case when Π(M) is of type C+
1 C
−
2 SC

−
3 . Recall that ψ(X)

is the polar angle of the tangent vector for configuration X. This angle is constant
for all configurations along an S-segment. On the other hand, the angle increases by
δ after traversing a C+-segment of length δ and decreases by the same amount upon
traversing a C−-segment of the same length. We therefore have the following:

ψ(Y ) ≡ ψ(X) + α1 − α2 − α3 (mod 2π).(5.4)

Since X and Y are fixed, we have 1− α′2 − α′3 = 0 or α′2 + α′3 = 1. Substituting this
into (5.2) gives

L′ = 2 + 2s′.

The S-segment is a translation of the segment O2O3 (see Figure 5.5b). Thus s = t,
and hence s′ = t′ = sinβ by (5.3). Thus L′ = 2 + 2 sinβ. Since Π(M) is of type
C+C−SC−,

β + π/2 + α2 ≡ 0 (mod 2π)

(see Figure 5.5b); indeed, β = ∠O1O2O3, π/2 = ∠O3O2P , and α2 = ∠PO2O1. Thus
β ≡ 3π/2 (mod 2π) if and only if α2 ≡ 0 (mod 2π), which occurs only at a singular
point (by definition of singular points). Therefore, L′(α1) > 0 for any nonsingular
value of α1 for which the path Π(α1) is defined.
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We now turn to the case in which Π(M) is of type C+
1 C
−
2 SC

+
3 . Then (5.4) is

replaced by

ψ(Y ) ≡ ψ(X) + α1 − α2 + α3 (mod 2π),

so α′3 = α′2 − 1. Substituting this into (5.2) gives

L′ = 2(s′ + α′2).

In order to find an expression for α′2, it is convenient to define the oriented angle
γ = ∠O3O2P , where P is the common point between the segments C2 and S (see
Figure 5.5a). Recall that α2 = ∠PO2O1 and β = ∠O1O2O3. Thus γ + α2 + β ≡ 0
(mod 2π), which implies that γ′ + α′2 + β′ = 0 and

L′ = 2(s′ − γ′ − β′).(5.5)

We now find expressions for s′ − γ′ and β′.
With P and Q denoting, respectively, the first and last points of the S-segment,

it is easy to see that the segments O2O3, PQ, O2P , and O3Q form two congruent
right triangles (see Figure 5.5a). Thus we have s2 + 1 = t2, whence ss′ = tt′ = t sinβ,
using (5.3). Further, tan γ = s, so γ′ = s′ cos2 γ. Combining the two results,

s′ − γ′ = s′ sin2 γ = s′
(s
t

)2
=

s

t
sinβ.(5.6)

The final derivative needed is β′, which again follows from the cosine law applied
to triangle �O1O2O3 (see Figure 5.5a):

d2 = 4 + 4t2 − 8t cosβ.

After a differentiation and rearrangement, this yields tβ′ sinβ = t′(cosβ − t). Sub-
stituting for t′ using (5.3) and noting that α �≡ 0 (mod π) implies sinβ �= 0, we
obtain

β′ =
1

t
(cosβ − t).(5.7)

Combining (5.5), (5.6), and (5.7) yields

L′ =
2

t
(s sinβ + t− cosβ).

Π(α1) is defined only when C2 and C3 do not properly intersect. Thus t � 1 wherever
L is defined, thereby implying that (t− cosβ) � 0 and that

L′ � 0⇔ t− cosβ � −s sinβ

⇒ t2 − 2t cosβ + cos2 β � s2 sin2 β = (t2 − 1) sin2 β

⇒ t2 cos2 β − 2t cosβ + 1 � 0

⇒ (t cosβ − 1)2 � 0

⇒ cosβ =
2

2t
.

Hence L′ � 0 only if ∠O3O1O2 = α ≡ π/2 (mod π) (see Figure 5.5a). Therefore,
L′ > 0 almost everywhere it is defined.
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Fig. 5.6. When O1 = O3: (a) Π(M) is of type C+
1 C

−
2 SC

−
3 ; (b) Π(M) of type C+

1 C
−
2 SC

+
3

degenerates to a single C-segment for any M ∈ C1.

Case 2. O1 and O3 are equal. When Π(M) is of type C+
1 C
−
2 SC

−
3 (see Figure 5.6a),

α2 = 3π/2 and s = 2; thus L′ = 1 + α′3. Equation (5.4) still holds, and thus α′3 = 1.
Therefore, L′ = 2 > 0 everywhere it is defined.

When Π(M) is of type C+
1 C
−
2 SC

+
3 (see Figure 5.6b), the circles C1 and C3 coincide

and have the same orientation. Thus both segments C2 and S vanish, Π(M) degen-
erates to a C-segment, and, consequently, L′ = 0 everywhere except when M = X or
Y , where L is not differentiable.

5.3. Computing type (A.ii) paths. As mentioned in section 4, we can com-
pute in O(n log n) time the feasible candidates of type (A.ii) paths with at most one

PC-anchored segment. If the path is of type CI
¯̄CS ¯̄CCF , a naive analysis gives O(n2)

candidates to check. Using Lemma 5.5, we reduce the number of candidates to O(n)
and compute them in O(n log n) time, as follows.

Fix the orientations of the terminal C-segments, and let CI and CF denote the
circles supporting CI and CF , respectively. Let us assume that CI is oriented counter-
clockwise. Let KI be the sequence of PC-anchored circles that touch CI and that are
free, sorted by their points of tangency with CI . The set KF is defined analogously
for PC-anchored circles tangent to CF . The sets KI and KF can be computed in
O(n log n) time, and they have O(n) elements.

By Lemma 3.6, the circles ¯̄C1 and ¯̄C2 supporting the ¯̄C-segments in an optimal
path Π of type CI

¯̄C1S
¯̄C2CF are free. (Otherwise, ¯̄C1 or ¯̄C2 would be a terminal C-

segment.) Therefore, the ¯̄C1-segment of Π lies on a circle of KI , and the ¯̄C2-segment

lies on a circle of KF . Suppose C2 ∈ KF supports the ¯̄C2-segment of Π. This fixes
the terminal configuration of the subpath CI

¯̄C1S
¯̄C2. By Lemma 5.4, there are at

most six singular points, say, Σ0 = I, . . . ,Σ5, on CI with respect to C2, sorted in the
counterclockwise sense.

For 0 � i � 5, let KI(i) ⊆ KI be the contiguous subsequence of circles that touch
CI at a point in the arc CI [Σi,Σi+1]. By Lemma 5.5, only the first circle of KI(i) is
a candidate for C1. Hence at most six circles in KI are candidates for C1. For each
0 � i � 5, by performing a binary search on KI , we can find, in O(log n) time, the
first circle of KI whose point of tangency with CI lies after Σi in the counterclockwise
sense. Obviously, this is the first circle of KI(i). We can therefore compute in O(log n)
time at most six candidate paths for a fixed C2 ∈ KF . By examining each C2 ∈ KF
in turn, we compute O(n) candidate paths in O(n log n) time. We repeat a similar
procedure for all possible orientations of CI and CF . We can therefore conclude the
following.

Lemma 5.6. An optimal path of type (A.ii) can be computed in O(n log n) time.

5.4. Computing type (B.iii) paths. Let Π be an optimal path of the form
ΠIC̄2C̄3ΠF , i.e., of type (B.iii). Suppose we know the edges e, e′ that are tangent to
C̄2 and C̄3, respectively.
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Fig. 5.7. Illustration of the proof of Lemma 5.7.

If Π does not contain any ¯̄C-segment in ΠI or ΠF , then Π is of type CISC̄2C̄3SCF .
We can compute Π in O(log n) time using Lemmas 4.1 and 4.2.

Next consider the case in which ΠI and ΠF each contain a ¯̄C-segment, i.e., Π is
of type CI

¯̄CSC̄2C̄3S
¯̄CCF . We show that, given e and e′, we can compute, in O(log n)

time, a set of O(1) candidate circles that contains the ¯̄C-segments of Π. Given this
set, we can compute in O(log n) time the shortest feasible path of the above type,
using Lemmas 4.1 and 4.2. Thus, by considering all Θ(n2) pairs of edges of P, we can
compute in O(n2 log n) time a set of O(n2) candidate paths for this case. However,
we will see later (in Lemma 5.15) that it suffices to consider fewer pairs of edges of P
in some cases.

5.4.1. Properties of paths. We first establish some simple properties of an
optimal path Π of type CI

¯̄C1SC̄2C̄3S
¯̄C4CF . Assume without loss of generality that C̄2

and C̄3 are oriented clockwise and counterclockwise, respectively. By Lemma 3.3, the
¯̄C1-segment is oriented clockwise, and the ¯̄C4-segment is oriented counterclockwise;
i.e., Π is of type C+

I
¯̄C−1 SC̄

−
2 C̄

+
3 S

¯̄C+
4 C
−
F . Let ¯̄C1, C̄2, C̄3, and ¯̄C4 denote the circles

supporting the C-segments ¯̄C1, C̄2, C̄3, and ¯̄C4, respectively.
Lemma 5.7. If an optimal path is of type CI

¯̄C1SC̄2C̄3S
¯̄C4CF , then the circles

¯̄C1, C̄2, C̄3, and ¯̄C4 are free.
Proof. Lemma 3.6 directly yields that ¯̄C1 and ¯̄C4 are free. Suppose now, for a

contradiction, that C̄3 is not free. As before, we assume that the orientations are such
that Π = C+

I
¯̄C−1 SC̄

−
2 C̄

+
3 S

¯̄C+
4 C
−
F . Let T be the point of tangency between C̄2 and

C̄3. Moving along C̄+
3 , let X be the last point of tangency between C̄3 and ∂P (see

Figure 5.7). Starting at X and moving along C̄+3 , let Y be the first proper intersection
point between C̄3 and ∂P.

By Lemma 2.4, the length of C̄3 between T and X is greater than π; i.e.,
‖C̄+

3 [T,X]‖ > π. It follows that C̄3, X, and Y define a pocket ΛC̄3 [X,Y ] (see Fig-
ure 5.7). By Lemma 2.7, this pocket contains Π[X,F ] and therefore contains the

C-segment ¯̄C4. However, the pocket does not contain the circle ¯̄C4, by Lemma 2.6.
The path C̄3S

¯̄C4 enters the pocket at X, and, since ¯̄C4 is free, it is possible to escape
the pocket by extending segment ¯̄C4. This contradicts Lemma 2.7, establishing that
C̄3 is free. A symmetric argument shows that circle C̄2 is free.

We now introduce the following simple definitions. Given a circle C, a point
M ∈ C is called free on C if and only if the circle tangent to C at M is free. Given
a circle C and a point X ∈ C, a point M ∈ C is called the first free point after X
along C+ if and only if M is free on C and no point on the arc C+[X,M) is free. In
Figure 5.8, M∗ is the first free point after ML along C+I . Note that M and X might
coincide. The circle tangent to C at the first free point after X is called the first free
circle after X along C+.
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Fig. 5.8. Definition of C′ and C′′.
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Fig. 5.9. Illustration of the proof of Lemma 5.8.

We now show that, given I, F , e, and e′, we can compute in O(log n) time a set

of O(1) candidate circles that contain the ¯̄C-segments of any optimal path from I

to F of type C+
I

¯̄C−1 SC̄
−
2 C̄

+
3 S

¯̄C+
4 C
−
F such that C̄−2 and C̄+

3 are tangent to e and e′,
respectively. We show how to compute candidate circles for ¯̄C1; computing candidate
circles for ¯̄C4 is similar.

5.4.2. Computing ¯̄C1. We identify two circles C′ and C′′ that are the can-
didate circles for ¯̄C1. See Figure 5.8. C′ is the first free circle after I along C+I .
Such a circle C′ exists, by Lemma 5.7, if the optimal path from I to F is of type
C+
I

¯̄C−1 SC̄
−
2 C̄

+
3 S

¯̄C+
4 C
−
F . For simplicity, we define C′′ in the local frame where the line

L through e is horizontal and below P. If the distance between L and C+I is greater
than 2, then C′′ is not defined. Otherwise, there exist two circles that are above L
and tangent to both C+I and L. Let CL be the leftmost of these two circles, and let
ML be its point of tangency with C+I . Let C′′ be the first free circle after ML along
C+I . Note that C′ depends only on I and P and that C′′ depends only on I, e, and P.

Lemma 5.8. After preprocessing P in O(n log n) time, for a given edge e, C′ and
C′′ can be computed in O(log n) time.

Proof. Let Γ be the circle of radius 2 concentric with C+I (see Figure 5.9). Let R
be the retracted polygon of P with respect to a unit circle, i.e., R is the set of points
p such that the unit circle centered at p lies inside P; R is a convex polygonal region
with at most n edges, and it can be computed in linear time. We preprocess R in
O(n log n) time using the algorithm by Cheng et al. [10] so that, given a unit-radius
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Fig. 5.10. Circles C′ and C′′ with a (supposedly) optimal path Π.

circle C and a point M ∈ C, we can compute in O(log n) time the first intersection
point of C and R as we walk along C in the clockwise (or counterclockwise) direction.

Let IΓ (respectively, MΓ) be the intersection point between Γ and the ray ema-
nating from the center of C+I and going through I (respectively, ML), and let O′ be
the first intersection point between Γ and R starting at IΓ and moving along Γ+.
Note that O′ = IΓ if IΓ lies inside R. The center of C′ is O′. Indeed, by definition of
R, the circle centered at O′ is free, and any circle (of unit radius) centered at a point
on Γ+[IΓ, O

′) is not free. Since C′ does not depend on the edge e, we can compute it
in O(n) time in the preprocessing stage once and for all. The center of C′′ is the first
intersection point between Γ and R starting at MΓ and moving along Γ+, and it can
be computed in O(log n) time.

We now state a key lemma, which we prove in the following section.
Lemma 5.9. If Π is an optimal path of type C+

I
¯̄C−1 SC̄

−
2 C̄

+
3 S

¯̄C+
4 C
−
F , then

¯̄C1 is
supported by C′ or C′′.

5.4.3. Proof of Lemma 5.9. Let T be the configuration on Π at the common
point between C̄2 and C̄3. See Figure 5.10. As before (in section 5.2), any choice of a
point M ∈ C+I defines one path Π(M) of the form C+

I C
−
1 SC

−
2 , which begins at I and

ends at T , and where C+I and C−1 are tangent at M . Since the C-segments C−1 and
C−2 have the same orientation, the path Π(M) always exists, though it might not be
free. Let M∗ ∈ C+I be the point such that Π(M∗) is a subpath of the optimal path Π.
It follows that Π(M∗) is an optimal path from I to T . We will show that M∗ is the
first free point after I or ML.

We consider different cases based on which of the singular points exist on C+I .
See Figure 5.11. We first introduce some notation in order to distinguish different
singular points. Let M1 ∈ CI be the point such that the C-segment C−1 in Π(M)
vanishes (i.e., Π(M) is of type C+

I SC
−
2 ); M1 is only defined when CI and C2 do not

properly intersect. Assume, for simplicity, that T is the lowest point of C−2 , and let
L0 be the horizontal half-line lying to the right of T . Let C̃1 and C̃′1 be the two circles
(if they exist) tangent to CI with center on the horizontal line through the center of
C−2 , and let M2 and M ′2 be their respective common points with CI ; assume without
loss of generality that M2 is left of M ′2. The point M2 (respectively, M ′2) is a singular
point of Π(M) (at which C−2 vanishes) if and only if C̃1 (respectively, C̃′1) touches
L0. Otherwise, the C2-segment of Π(M2) (respectively, Π(M ′2)) has length π (see
Figure 5.11b).

Since C1- and C2-segments of Π(M) have the same orientation, the S-segment
vanishes if and only if the path type C+

I C
−
1 SC

−
2 degenerates to C+

I C
−. Thus, if the
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Fig. 5.11. Singular points of Π(M). In (a), {I,M1,M2,M ′
2}. In (b), {I,M1}. In (c), {I,M ′

2}.

S-segment vanishes, the C1- or C2-segment also vanishes. Therefore, in view of the
discussion in section 5.2, only the following points can be singular points:

• I (C+
I vanishes),

• M1, if CI and C2 do not properly intersect (C−1 vanishes),
• M2, if C̃1 exists and touches L0 (C−2 vanishes), and
• M ′2, if C̃′1 exists and touches L0 (C−2 vanishes).

There are three cases to consider, depending on the relative positions of C1 and C2.
(i) The distance between CI and the line supporting L0 is at most 2, and C2 lies

to the left of C̃1; i.e., both C̃1 and C̃′1 touch L0; see Figure 5.11a. In this case,
C2 does not intersect CI , and therefore M1 also exists. The singular points
are thus {I,M1,M2,M

′
2}.

(ii) Either the distance between CI and the line supporting L0 is greater than 2,
or neither C̃1 nor C̃′1 touches L0; see Figure 5.11b. In both cases, CI and C2
do not intersect, so M1 exists. The singular points are therefore {I,M1}.

(iii) The distance between CI and the line supporting L0 is at most 2, and C2 lies
between C̃1 and C̃′1. In this case, C̃1 does not touch L0, and CI intersects C2,
so the singular points are {I,M ′2}; see Figure 5.11c.

Before proving for each case that M∗ is the first free point along C+I after I or ML,
we state a few claims, which we will need for the proof.

Claim 5.10. M∗ is not a singular point of Π(M).
Proof. If M∗ is a singular point, the type of Π(M∗) degenerates, contradicting

that Π is of type C+
I

¯̄C−1 SC̄
−
2 C̄

+
3 S

¯̄C+
4 C
−
F .

Claim 5.11. M∗ is the first free point along C+I after a singular point of Π(M).
Proof. By Lemma 5.7, M∗ is free on C+I . If there exists M ′ �= M∗ free on C+I

such that C+I (M ′,M∗] does not contain any singular point, then the path Π(M ′) ex-
ists because C−1 and C−2 have the same orientation. Π(M ′) is free because the first
C+
I -segment of Π(M ′) is part of the feasible path Π(M∗), the circle C−1 is free by defi-

nition of M ′, and the circle C−2 is free (by Lemma 5.7). Finally, ‖Π(M ′)‖ < ‖Π(M∗)‖
by the monotonicity property (Lemma 5.5), which contradicts the optimality of
Π(M∗).

Claim 5.12. If M2 and M
′
2 exist, then (i) the length function ‖Π(M)‖ increases

at M = M2, and (ii) M∗ ∈ C+I (M2,M
′
2).

Proof. If M2 is not a singular point, then, by Lemma 5.5, ‖Π(M)‖ increases at
M2. If M2 is a singular point, then ‖Π(M)‖ jumps by 2π at M2 (see Figure 5.11a). As
for (ii), the length of the last C-segment C2 of Π(M) is greater than π if and only if
the center of C1 lies below the center of C2 (see Figure 5.11); that is, M ∈ C+I (M2,M

′
2).

Since C2 is a nonterminal C-segment of the optimal path Π, ‖C2‖ > π, and therefore
M∗ ∈ C+I (M2,M

′
2).
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Fig. 5.12. Some positions of the singular points {I,M1,M2,M ′
2} in (a) and (b), {I,M1} in

(c), and {I,M ′
2} in (d).

Claim 5.13. If M1 exists, then the circular arc C+I [M1,M
∗] contains I or M ′2.

If I �∈ C+I [M1,M
∗], then M ′2 is a singular point.

Proof. If I �∈ C+I [M1,M
∗], then Π(M1) is free because the first C-segment

C+I [I,M1] of Π(M1) is part of Π(M∗), and C−2 is free by Lemma 5.7. Thus Π(M1,M
∗]

contains a singular point, because otherwise ‖Π(M1)‖ < ‖Π(M∗)‖ by the monotonic-
ity property (Lemma 5.5) and Claim 5.10, and thus Π(M∗) is not optimal, which is
a contradiction. If M ′2 also does not lie in C+I [M1,M

∗], then M2 is a singular point
and lies on this arc. By Claim 5.12, ‖Π(M1)‖ < ‖Π(M2)‖ < ‖Π(M∗)‖, which is a
contradiction. Hence either I or M ′2 lies on C+I [M1,M

∗], and M ′2 is a singular point
if I does not lie in this arc.

We now prove for each of the three cases stated above that M∗ is the first free
point after I or ML.

Case (i). The singular points are {I,M1,M2,M
′
2}. Since C2 lies to the left of

C̃1, one can easily show that M1 ∈ C+I [M ′2,M2] (see Figure 5.11a). Refer now to
Figures 5.12a and b. By Claim 5.12, M∗ ∈ C+I (M2,M

′
2). It follows that C+I [M1,M

∗]
does not contain M ′2 and thus contains I (by Claim 5.13). Thus C+I (I,M∗] does not
contain any singular point except possibly M2. If M2 �∈ C+I (I,M∗] (Figure 5.12a), then
M∗ is the first free point after I because, by Claim 5.11, M∗ is the first free point after
a singular point. Even if M2 ∈ C+I (I,M∗] (Figure 5.12b), M∗ is the first free point
after I. Indeed, if the first free point after I along C+I is M ′ ∈ C+I [I,M2), then Π(M ′)
is free because the first arc C+I [I,M ′] of Π(M ′) is part of Π, and the second and third
C-segments of Π(M ′) are free by definition of M ′ and by Lemma 5.7, respectively.
Moreover, by Lemma 5.5 and Claim 5.12, ‖Π(M ′)‖ < ‖Π(M2)‖ < ‖Π(M∗)‖, which is
a contradiction.

Case (ii). The singular points are {I,M1}. See Figure 5.12c. Since M ′2 is not
a singular point, by Claim 5.13, I ∈ C+I [M1,M

∗]. Consequently, C+I (I,M∗] does not
contain any singular point. Therefore, by Claim 5.11, M∗ is the first free point after I.

Case (iii). The singular points are {I,M ′2}. As before, if C+I (I,M∗] does not
contain any singular point, M∗ is the first free point after I. We thus consider
the case in which M ′2 ∈ C+I (I,M∗] (see Figure 5.12d). Since M2 and M ′2 exist, by
Claim 5.12, M∗ ∈ C+I (M2,M

′
2). It thus follows that M∗ is the first free point after M ′2

(by Claims 5.11 and 5.12). Thus, in order to show that M∗ is the first free point after
ML, it is sufficient to prove that ML ∈ C+I [M ′2,M2], which is equivalent to proving
that the length of the last C-segment C2 of Π(ML) is at most π. This can be shown
as follows.

We assume, for simplicity, that the edge e (tangent to the C-segment C−2 ) is
horizontal and below P (see Figure 5.10); to be consistent, we no longer assume that
T is the lowest point of C−2 . By Lemma 2.4, the arc length of C̄2 in Π from its point
of tangency with the edge e to T must be at least π. In other words, T must be in
the right half of C̄2. On the other hand, by definition of ML, CL is the leftmost circle
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of all of the unit circles tangent to L from above that intersect CI . Since C2 is tangent
to L from above and properly intersects CI (because M1 is not defined in this case),
the top point of CL is left of the top point of C2. Thus, since T is on the right half of
C̄2, the arc length of C2 in Π(ML) is less than π (see Figure 5.10).

5.4.4. Computing the overall path. By Lemmas 5.8 and 5.9, we can compute,
in O(log n) time, two candidates for the circle supporting segment ¯̄C1. We can sim-

ilarly compute two candidates for the circle supporting segment ¯̄C4. By Lemma 4.2,
this gives us O(1) candidate paths, for which we may check the feasibility in O(log n)
time. Hence, given two edges e and e′ of P, we can compute in O(log n) time an

optimal path of type CI
¯̄C1SC̄2C̄3S

¯̄C4CF , where C̄2 and C̄3 are tangent to e and e′,
respectively.

If the optimal path is of type (B.iii) with only one ¯̄C-segment in ΠI or ΠF , we

get similar results. For example, if an optimal path is of type CI
¯̄C1SC̄2C̄3SCF , then

¯̄C1 and C̄2 are free, and ¯̄C1 is supported by C′ or C′′ as defined above. Thus we obtain
the following lemma.

Lemma 5.14. Let e, e′ be edges of P. In O(log n) time, we can compute an optimal

path of type ΠIC̄2C̄3ΠF , where ΠI ∈ {CI ¯̄CS,CIS,CI , S}, ΠF ∈ {S ¯̄CCF , SCF , CF , S},
and C̄2 and C̄3 are tangent to e and e

′, respectively.

5.4.5. Finding candidate pairs of edges. Now we describe how to find a
suitable set of pairs of edges E such that, if an optimal path from I to F is of
type (B.iii) (i.e., ΠIC̄2C̄3ΠF ), then the pair of edges (e, e′) tangent to C̄2 and C̄3 is
in the set E .

Agarwal, Raghavan, and Tamaki [1] showed that, if an optimal path from I to
F is of type ΠIC̄2C̄3ΠF such that C̄2 and C̄3 are nonterminal, then CI intersects C̄3
(the circle supporting C̄3), and CF intersects C̄2 (the circle supporting C̄2). Thus the
center of C̄3, which is at most distance 1 from the boundary of the polygon, is at most
at distance 3 from I. Since the centers of C̄2 and C̄3 are distance 2 apart, they are
each at distance less than 5 from I. Thus edges e and e′ are at distance less than 6
from I. By symmetry, they are also at distance less than 6 from F . Therefore, we can
consider E to be the set of pairs of edges of P that are at distance less than 6 from
both I and F . Let k denote the number of edges of P at distance less than 6 from
both I and F . Then |E| = k2, and E can be computed in O(k2) time. Lemma 5.14
then gives the following.

Lemma 5.15. An optimal path of type (B.iii) can be computed in O(k2 log n)
time.

Putting everything together, we obtain the following.
Theorem 5.16. Given a convex polygon P, an initial configuration I, and a

final configuration F , an optimal path from I to F inside P can be computed in time
O((n + k2) log n), where k is the number of edges of P at distance less than 6 from
both I and F .

Proof. We have shown in section 4 and in Lemmas 5.2, 5.6, and 5.15 that the
Dubins paths and the optimal paths of types (A.i), (A.ii), (B.i), and (B.ii) can be com-
puted in O(n log n) time, while paths of type (B.iii) can be computed in O(k2 log n)
time. Choosing the shortest among all of those paths yields an optimal path.

6. Conclusion. For an obstacle-free environment, Dubins’ classification of op-
timal path types yields a constant time algorithm for computing optimal paths [15].
On the other hand, in the presence of general polygonal obstacles, the optimal path-
planning problem is NP-hard [29]. In this paper, we have studied a very simple
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environment, the inside of a convex polygon. We have given a classification of op-
timal path types and an O(n2 log n) algorithm for optimal path planning. We have
found that, surprisingly, the number of straight or circular segments composing op-
timal paths is bounded by a constant, independent of the number n of sides of the
convex polygon.

The running time of the algorithm and the constant bound on the number of
segments in an optimal path lead us to speculate that other simple environments may
also be amenable to polynomial time algorithmic solution. However, we caution that,
although the environment we have considered is simple, our algorithm results from
considerable technical analysis.

Our techniques and results may provide useful tools for further study of these
problems. In particular, we call attention to two properties of moderate paths that
we believe are interesting and possibly useful in their own right:

(i) A feasible path entering the interior of a pocket can never escape the pocket
(Lemma 2.7).

(ii) The length of a path of type CCSC from X to Y is a piecewise strictly
increasing function of the length of the first C-segment (Lemma 5.5).

Note that property (ii) holds regardless of the environment.
The theory of curvature-constrained path planning is relatively unexplored, so

many problems remain. We mention some specific open problems arising from our
work and then conclude with a more general one.

First, we ask whether our classification of optimal path types inside a convex
polygon is tight; that is, does each possible type of optimal path given in our clas-
sification actually arise for some P, I, and F? We believe that the answer is yes,
although we have no formal proof of this (see Remark 3.2 for details). Also, we ask
whether there is a polygon P in which all types arise.

Next, in our optimal path-planning algorithm, the most time-consuming part lies
in the computation of the optimal paths of type (B.iii) (see Theorem 3.1). Indeed, if
we eliminate type (B.iii) from consideration, the complexity of our algorithm drops
to O(n log n). Furthermore, paths of type (B.iii) are rather complex and thus may be
difficult to track by a mobile robot. This situation suggests two lines of investigation.
First, the paths of type (B.iii) should be studied thoroughly in order to understand
when they can be optimal inside a convex polygon (or amid moderate obstacles [1, 6]).
We believe that optimal paths can be of type (B.iii) only if the polygon is “small.”
In other words, it is possible that optimal paths of type (B.iii) arise only as artifacts
of tightly constricted environments (see Figure 3.1c). For example, we know (see
Theorem 5.16) that, if the terminal configurations are at a distance greater than 6
from the boundary of the polygon, then an optimal path cannot be of type (B.iii).
A second approach to handling paths of type (B.iii) is to simply drop them from
consideration. In that case, we ask whether we can preprocess the scene such that,
for any query of terminal configurations, we can compute a shortest path among the
remaining types in sublinear time.

To conclude with a general problem for future research, we ask for the specification
of a realistic notion of feasibility that rejects hard-to-follow paths, such as paths of
type (B.iii), while admitting fast computation of optimal feasible paths.

Appendix. Closed moderate paths. The purpose of this section is to prove
Proposition 2.5, which states

A simple moderate path Π such that the initial and final locations
coincide (the initial and final configurations may differ) bounds a



1848 AGARWAL, BIEDL, LAZARD, ROBBINS, SURI, WHITESIDES

region that contains at least one disk of unit radius. Moreover, if
the initial and final configurations coincide and if Π is not a circle
of unit radius, then the region bounded by Π contains at least two
distinct disks of unit radius.

Proof. We prove these results using some properties of the skeletons. Note that
this is an original approach in the field of nonholonomic motion planning. We first
recall a definition of skeletons for which several variants are considered in the liter-
ature; different terms in use include medial-axis, central set, and cut-locus. We use
here the formulation using maximal disks [35].

Skeletons. Let R be an open set of R2 bounded by a simple closed curve. A
maximal disk is an open disk (of positive radius) included in R but not included in
any other disk contained in R. The skeleton of R, denoted S(R), is the locus of the
centers of all the maximal disks. For any x ∈ R, let ρ(x) denote the intersection
between the closure of the maximal disk centered at x and the boundary of R:

ρ(x) = {y ∈ ∂R | ‖xy‖ = min
z∈∂R

‖xz‖}.
Now let I = F denote the initial and final location on the path Π, and let R be

the open region bounded by Π. Assume that R is not a disk of radius at least 1, as
otherwise the result is obvious.

The underlying idea of the proof is the following. The closure of skeleton S(R)
has at least two distinct endpoints (i.e., nodes of degree 1 of the graph) x and x′;
indeed, S(R) does not contain any cycle since Π is simple. One of these endpoints,
say, x, is necessarily distinct from the terminal location I of Π. The point x cannot
lie on Π because Π is C1 continuous everywhere except (possibly) at I �= x; therefore,
x ∈ R. Since x is an endpoint of the skeleton, ρ(x) is connected (i.e., ρ(x) is a point
or a circular arc). It follows that the maximal disk at x is osculating5 Π at a point
P �= I, and its radius is at least 1. If the initial and final orientations of Π are also
equal, x and x′ are both centers of maximal disks osculating Π, and thus their radii
are greater than or equal to 1.

Formally, we directly show, using a result by Calabi and Riley [9], the following
result.

Claim A.1. There exists a maximal disk in R such that the contact points between
its boundary and Π are connected.

Proof. Let D be any maximal disk in R, and let x be its center, and suppose,
for a contradiction, that ρ(x) is not connected. See Figure A.1. Then there exist
four points y1 �= y2, y

′
1 �= y′2 in ∂D ∩ Π such that the circular arcs ∂D+[y1, y2] and

∂D+[y′1, y
′
2] do not strictly contain any point of ρ(x).

One of the two arcs Π+[y1, y2] and Π+[y′1, y
′
2] is C1 continuous because these two

arcs do not overlap, and Π is C1 continuous everywhere except possibly at I = F .
Say, without loss of generality, that Π+[y1, y2] is C1 continuous, and denote by R′
the open region bounded by Π+[y1, y2] ∪ [x, y1] ∪ [x, y2] (e.g., the shaded region in
Figure A.1). By a result of Calabi and Riley [9, Proposition 10], either R′ contains
a skeleton point x0 ∈ SR for which ρ(x0) is connected, or Π+(y1, y2) (without its
endpoints) contains a point which is the limit of skeleton points contained in R′.

5Two curves are osculating at a point P if and only if they are tangent at P and have the same
signed curvature at P . Here Π is C1 continuous, and piecewise C2 continuous, everywhere except
possibly at I. If Π is C1 but not C2 at P , we say that a disk is osculating Π at P if and only if they
are tangent at P , the signed curvature of the disk is equal to the signed curvature (at P ) of one of
the two portions (C2) of Π ending at P , and the other portion does not properly intersect the disk
in a neighborhood of P .



CURVATURE-CONSTRAINED SHORTEST PATHS 1849

Π+[y1, y2]

I = F

Π+[y′1, y
′
2]

y′2 = y1

y′1

y2

x

R′
D

z

Π(z, π
2 )

Π(z, π
4 )

d
q

Fig. A.1. For the proof of Proposition 2.5.

Suppose, on the contrary, that Π+(y1, y2) contains a point z that is the limit
of skeleton points (zi)i∈N contained in R. Since Π+(y1, y2) is C1, Π is C1 at z.
We get a contradiction because, as we prove below, a point z of ∂R is a limit of
points of the skeleton only if ∂R is not differentiable at z. Indeed, let Π(z, π2 ) be
the arc of Π of length π

2 centered at z (if the length of Π is smaller than π
2 , we

choose a smaller value for the length of Π(z, π2 )), and let Π(z, π4 ) be the arc of Π,
centered at z, of length half the length of Π(z, π2 ), and, finally, let d be the distance
between Π(z, π4 ) and Π \ Π(z, π2 ) (note that d � π

4 < 1). By a result of Dubins [15,
Proposition 6], Π(z, π2 ) does not intersect any open disk of unit radius tangent to
Π(z, π4 ). It follows that Π does not intersect any open disk of radius d/2 tangent to
Π(z, π4 ). Now any point q ∈ R close enough to z belongs to a normal to Π(z, π4 ) at
distance µ < d/2 from Π(z, π4 ). Thus the disk of radius µ centered at q is not maximal
because it is included in a disk of radius d/2 tangent to Π(z, π4 ), which is included inR.
Therefore, any point q ∈ R in a small enough neighborhood of z does not belong to the
skeleton.

By Claim A.1, R contains a point x0 of its skeleton such that ρ(x0) is connected.
Thus ρ(x0) is a circular arc or is reduced to a point. If ρ(x0) is a circular arc, then
the constraint on the average curvature of Π implies that this circular arc of Π has
a radius greater than or equal to 1, and thus the radius of the maximal disk at x0
is greater than or equal to 1. Otherwise, if ρ(x0) is reduced to a point, say, y0, the
maximal disk at x0 osculates Π at y0, and thus its radius is greater than or equal to 1.
(Indeed, recall that the constraint on the average curvature implies that Π is piecewise
C2 continuous, and its curvature is less than or equal to 1 almost everywhere.) This
concludes the proof when the initial and final orientations of Π differ.

If the initial and final configurations are equal, the path Π is C1 continuous
everywhere, and the previous arguments hold for both regions R′ and R′′ bounded,
respectively, by Π+[y1, y2] ∪ [x, y1] ∪ [x, y2] and Π+[y′1, y

′
2] ∪ [x, y′1] ∪ [x, y′2]. (Note,

however, that, when ρ(x) is connected, R′′ is empty, but then the maximal disk
centered at x is of radius at least 1.)
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Abstract. We present a significant improvement for parallel integer sorting. On the EREW
(exclusive read exclusive write) PRAM our algorithm sorts n integers in the range {0, 1, . . . ,m− 1}
in time O(logn) with O(n

q
logn
k

) operations using word length k log(m+ n), where 1 ≤ k ≤ logn.

In this paper we present the following four variants of our algorithm.

(1) The first variant sorts integers in {0, 1, . . . ,m−1} in time O(logn) and in linear space with O(n)
operations using word length logm logn.

(2) The second variant sorts integers in {0, 1, . . . , n − 1} in time O(logn) and in linear space with
O(n
√

logn) operations using word length log n.

(3) The third variant sorts integers in {0, 1, . . . ,m− 1} in time O(log3/2 n) and in linear space with
O(n
√

logn) operations using word length log(m+ n).

(4) The fourth variant sorts integers in {0, 1, . . . ,m − 1} in time O(logn) and space O(nmε) with
O(n
√

logn) operations using word length log(m+ n).

Our algorithms can then be generalized to the situation where the word length is k log(m+ n),
1 ≤ k ≤ logn.

Key words. algorithms, analysis of algorithms, bucket sorting, conservative algorithms, design
of algorithms, integer sorting, parallel algorithms
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1. Introduction. Sorting is a classical problem which has been studied by many
researchers. For elements in an ordered set comparison sorting can be used to sort the
elements. It is well known that comparison sorting has time complexity θ(n log n). In
the case where a set contains only integers both comparison sorting and integer sort-
ing can be used to sort the elements. Since elements of a set are usually represented
by binary numbers in a digital computer, integer sorting can, in many cases, replace
comparison sorting. The only known time lower bound for integer sorting is the trivial
linear bound of Ω(n). Radix sorting does demonstrate an O(n) upper bound for sort-
ing n integers in the range {0, 1, . . . , nt−1}, where t is a constant. Researchers worked
hard trying to show that, for integers in any range, integer sorting can outperform
comparison sorting [4, 13, 19, 21]. Fredman and Willard [13] first showed that n inte-
gers in any range can be sorted in O(n

√
log n) time, thereby demonstrating that in the

sequential case, integer sorting is more efficient than comparison sorting. However,
prior to this paper no deterministic parallel integer sorting algorithm outperformed
the lower bound for parallel comparison sorting on any parallel computation models.
(A detailed explanation is given below.) We show, for the first time, that parallel in-
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teger sorting is more efficient than parallel comparison sorting on the exclusive write
PRAMs.

The parallel computation model we use is the PRAM model [20] which is used
widely by parallel algorithm designers. Usually three PRAM models are used, the
EREW (exclusive read exclusive write) PRAM, the CREW (concurrent read exclusive
write) PRAM, and the CRCW (concurrent read concurrent write) PRAM [20]. In
a PRAM model a processor can access any memory cell. On the EREW PRAM
simultaneous access to a memory cell by more than one processor is prohibited. On the
CREW PRAM, processors can read a memory cell simultaneously, but simultaneous
writing to the same memory cell by several processors is prohibited. On the CRCW
PRAM, processors can simultaneously read or write to a memory cell. The CREW
PRAM is a more powerful model than the EREW PRAM. The CRCW PRAM is the
most powerful model among the three variants.

Parallel algorithms can be measured either by their time complexity and processor
complexity or by their time complexity and operation complexity, which is the time
processor product. A parallel algorithm with small time complexity is regarded as fast
while a parallel algorithm with small operation complexity is regarded as efficient.

In order to outperform parallel comparison sorting on the exclusive write PRAM
models (i.e., CREW PRAM and EREW PRAM), one has to exhibit a parallel al-
gorithm which matches the time lower bound for parallel comparison sorting algo-
rithms and outperforms the operation lower bound for parallel comparison sorting
algorithms. Note that we cannot outperform the time lower bound (only to match
it) because on the CREW and EREW PRAMs the time lower bounds for parallel
comparison sorting and for parallel integer sorting are the same, namely Ω(logn) [11].
The operation lower bound for parallel comparison sorting is Ω(n log n) due to the
time lower bound for sequential comparison sorting. We explain below that known
parallel integer sorting algorithms failed to outperform the lower bound for parallel
comparison sorting.

1. Parallel algorithms are known [2, 4, 12, 19, 25] to have operation complex-
ity of o(n log n) when they are running slower than the θ(log n) time lower bound
for parallel comparison sorting. But they failed to have o(n log n) operations when
achieving the time lower bound. For example, the CREW algorithm given in [2] (the
best prior to this paper) has operation complexity O(n

√
log n) when running at time

O(log n log log n). But the time lower bound for comparison sorting on the CREW
PRAM is Ω(log n) [11]. It is not clear how to make the algorithm in [2] run in O(log n)
time. Also the CRCW algorithm in [4, 19] has operation complexity O(n log log n)
when running at time O(log n). However, the time lower bound for comparison sorting
on the CRCW PRAM using a polynomial number of processors is Ω(logn/ log log n)
[6].

2. Parallel algorithms are known [2, 9, 29] to have operation complexity o(n log n)
running at the time lower bound for parallel comparison sorting when sorting on small
integers. They fail to outperform parallel comparison sorting when sorting on large
integers. For example, the previous best results in [2, 12] showed that n integers

in the range {0, 1, . . . , 2O(
√

logn)} can be sorted on the EREW PRAM in O(log n)
time and linear operations. However, no previous deterministic algorithms showed
that n integers larger than 2O(

√
logn) can be sorted in O(log n) time with o(n log n)

operations on exclusive write PRAMs.

3. Parallel algorithms are known [4, 16] to outperform parallel comparison sorting
by using a nonstandard word length (word length is the number of bits in each word).
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However, they fail to outperform on a standard PRAM where word length is bounded
by O(log(m+n)). For example, in [4] it is shown that sorting n integers in the range
{0, 1, . . . ,m − 1} can be done in O(log n) time with O(n) operations on the EREW
PRAM with a word length of O((log n)2+ε logm). The use of extra bits in word length
in parallel integer sorting is generally regarded as excess. Note that even in this case
(use nonstandard word length) our results are better than all previous results.

In this paper we show for the first time that on the exclusive write PRAMs
parallel integer sorting is more efficient than parallel comparison sorting. For sorting
n integers in the range {0, 1, . . . ,m − 1} our algorithm runs in O(log n) time with

an operation complexity of O(n
√

logn
k ) when using word length k log(m+ n), where

1 ≤ k ≤ log n. When k = 1 our algorithm uses standard word length log(m+ n) and
runs in O(log n) time (which is also the lower bound for integer sorting on the CREW
and EREW PRAM and which matches the time lower bound for parallel comparison
sorting on the CREW and EREW PRAM) with O(n

√
log n) operations (while parallel

comparison sorting has a lower bound Ω(n log n) for the operation complexity due to
the sequential time complexity lower bound). This algorithm outperforms parallel
comparison sorting on the CREW and EREW PRAMs.

There are many previous results on parallel integer sorting [2, 4, 9, 12, 15, 16, 19,
22, 24, 25, 26, 28, 29]. We give a brief comparison of our results with the previous
results.

An important parameter in integer sorting is the word length w, which is the
number of bits in a word. Much effort has been spent toward finding good integer
sorting algorithms which are conservative in the sense that they do not use extra
bits. According to Kirkpatrick and Reisch [21] an integer sorting algorithm sorting
n integers in the range {0, 1, . . . ,m− 1} is said to be conservative if the word length
is bounded by O(log(m + n)). Significant progress has been made recently in this
regard. Andersson et al. [4] and Han and Shen [19] showed conservative integer sort-
ing algorithms that sort n integers in the range {0, 1, 2, . . . ,m − 1} in O(log n) time
with O(n log log n) operations on the CRCW PRAM. This also implies a conserva-
tive sequential algorithm with O(n log log n) time. Although much progress has been
made on parallel integer sorting on the CRCW PRAM [4, 9, 15, 19], which allows
simultaneous read and write to shared memory cells, significant difficulties exist when
parallel integer sorting algorithms are to be designed on PRAMs which do not allow
simultaneous write.

Consider the problem of sorting n integers in the range {0, 1, . . . , n− 1}, which is
the most important and standard case. Previous best conservative parallel algorithms
running in O(log n) time on CREW and EREW PRAMs use O(n log n) operations.
Rajasekaran and Sen [25], Albers and Hagerup [2], and Dessmark and Lingas [12]
were able to reduce the number of operations to o(n log n) on the CREW PRAM
and EREW PRAM but the running time must be over O(log n). Currently the best
result due to Albers and Hagerup [2] sorts in O(log n log log n) time with O(n

√
log n)

operations on the CREW PRAM. On the EREW PRAM the algorithms in [2, 25]
have O(log n log log n) time complexity with O(n log n/ log log n) operations. Very
recently Dessmark and Lingas presented an improved EREW algorithm [12] which

needs O(log3/2 n) time with O(n
√
log n) operations. Thus in regard to the best pre-

vious results one cannot sort better than the comparison sorting algorithm [1, 10]
(which uses O(n log n) operations) if one is to sort as fast as the comparison sorting
algorithm (using O(log n) time) on the CREW and EREW PRAMs.

In this paper we significantly improve on this situation (i.e., sorting n integers
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in the range {0, 1, . . . , n − 1}). Our EREW PRAM algorithm sorts in O(log n) time
with O(n

√
log n) operations. Thus our algorithm uses the same number of operations

(O(n
√
log n)) as the algorithm by Albers and Hagerup [2] and by Dessmark and

Lingas [12] while our algorithm runs faster (in O(log n) time) than their algorithm (in

O(log n log log n) time on the CREW PRAM and in O(log3/2 n) time on the EREW
PRAM). Thus our EREW algorithm is faster by a factor of log logn than the previous

best CREW algorithm and is faster by a factor of log1/2 n than the previous best
EREW algorithm.

Now consider the problem of sorting n integers in the range {0, 1, 2, . . . ,m− 1}.
All previous EREW and CREW conservative algorithms [2, 12, 22, 25, 29] require
O(n log n) operations when m is large, even when the time complexity is allowed to
be polylogarithmic of n. Actually the number of operations of best previous results
is larger than O(n log n), however, we could assume that these algorithms switch to
comparison sorting whenm is at a certain threshold value. Our result is the first which
sorts arbitrarily large integers with o(n log n) operations. Our EREW integer sorting
algorithm sorts in O(log n) time with O(n

√
log n) operations. This is for arbitrarily

large values of m.

We also present an algorithm (Theorem 4.1) which sorts integers in {0, 1, . . . ,m−
1} with O(log3/2 n) time and O(n

√
log n) operations and it runs in linear space. Pre-

viously, Dessmark and Lingas [12] achieved this performance only for sorting integers
in the range {0, 1, . . . , nk} for a constant k. This can also be compared with the
sequential algorithm in [3].

We now turn to nonconservative integer sorting. Consider the problem of sorting
n integers in the range {0, 1, 2, . . . ,m−1} on a computer with word length w. Hagerup
and Shen [16] showed that if w = Ω(n log n logm), the sorting can be done in linear
space and in O(n) sequential time or in O(log n) time on a EREW PRAM with O(n)
operations. Later, Albers and Hagerup [2] and Andersson et al. [4] improved on the
word length. Albers and Hagerup [2] showed that with w = O(log n log log n logm)
the sorting can be done in linear space and in O(log2 n) time with O(n) operations
on the EREW PRAM. The result of Andersson et al. [4] show that the sorting can be
done in linear space and in O(log n) time with O(n) operations on the EREW PRAM
with a word length of O((log n)2+ε logm). Dessmark and Lingas [12] showed that the
sorting can be done on the EREW PRAM in linear space and in O(log n log log n)
time and O(n) operations with a word length of O(logm log n). In this paper we
improve on all these previous results. We show that the sorting can be done in

O(nmε) space and in O(log n) time with O(n
√

log n
k ) operations on the EREW PRAM

with a word length of O(k logm), where k is a parameter satisfying 1 ≤ k ≤ log n.
When k = log n our algorithm shows that the sorting can be done in linear space
and in O(log n) time with O(n) operations. It is this version of the algorithm that
outperforms all previous algorithms. We note that the main focus of this paper is
to present conservative EREW algorithms for integer sorting. The nonconservative
algorithm we designed is to be used as a subroutine in our conservative algorithms,
although our nonconservative algorithm improves on our best previous results.

Algorithms presented in this paper are deterministic algorithms. These algorithms
are stable in the sense that input integers of the same value retain their original relative
order in the output.

2. Nonconservative sorting. We present an EREW algorithm using word
length O(log n logm) to sort n integers in the range {0, 1, . . . ,m − 1} in O(log n)
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time with O(n) operations. The input numbers are assumed in an array. This EREW
algorithm is based on the Ajtia, Komlós, and Szemerédi (AKS) sorting network [1],
Leighton’s column sort [23], Albers and Hagerup’s test bit technique [2], and the
Benes permutation network [7, 8].

The AKS sorting network [1] has O(log n) stages. Each stage has no more than
n/2 comparators. Each comparator has two inputs and two outputs. Each comparator
can compare two input numbers and route the smaller number to the left output and
the larger number to the right output. When the n input numbers are entered into
the AKS sorting network and pass through O(log n) stages of the sorting network
they are sorted at the output of the AKS sorting network.

We will use the principle of Leighton’s column sort [23]. This principle states
that if we put a set S of n numbers into logn columns with each column containing
n/ log n numbers, then the numbers in S will be sorted by a constant number of the
following passes: Sort every column and then perform a fixed permutation among the
numbers in all columns. Therefore the principle of Leighton’s column sort converts
the sorting on n numbers to the sorting on n/ log n numbers (there are logn columns
of them and each of them has to be sorted) and fixed permutations among the n
numbers. A fixed permutation is a permutation known before program execution.
It does not depend on the value of the input numbers. In Leighton’s column sort
these permutations are shuffle, unshuffle, and shift. Also note that if the principle
of column sort is recursively applied we can enlarge the number of columns to nε,
where 0 < ε < 1 is a constant, and the number of passes of sorting on columns and
permutations is still a constant.

Albers and Hagerup’s test bit technique [2] can be used for packed numbers.
When there are k numbers packed into a word, we can use this technique to do
pairwise comparison of the numbers in two words and extract the larger numbers into
one word and smaller numbers into another word. An example will make this clear.
A test bit of 0 or 1 is added between the numbers packed into a word. Suppose we
pack three numbers a1, a2, a3 (each containing t bits) into a word as w1 = 1a11a21a3

and pack another three numbers b1, b2, b3 (each containing t bits) into a word as
w2 = 0b10b20b3. That is, we add a test bit of 0 or 1 between the numbers. By setting
w3 = w1−w2 and then applying a mask we can extract out the test bits of w3. These
test bits tell us which number is larger. By using these test bits we can subsequently
extract out the larger numbers from w1 and w2 and put them into one word. Similarly
we can also extract out the smaller numbers from w1 and w2 and put them into one
word. Note that this operation takes constant time no matter how many numbers are
packed into one word.

The Benes permutation network [7, 8] is a network with O(log n) stages. Each
stage has n/2 switches. Each switch has two inputs and two outputs. When the switch
is unset the left input goes to the left output and the right input goes to the right
output. When the switch is set the left input goes to the right output and the right
input goes to the left output. By setting up the switches in the Benes permutation
network any permutation of the input can be realized. We will use butterfly networks
(explained below) which also have O(log n) stages and each stage has n/2 switches.
Butterfly networks can emulate the Benes network and realize any permutation.

Lemma 2.1. If the word length is O(log n logm), we can pack n integers in
{0, 1, . . . ,m− 1} into n/ log n words in O(log log n) time and O(n) operations on the
EREW PRAM.

Proof. We first pack two integers into one word and we have n/2 words left. We
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then pack the integers in every two words into one word. We repeat this for log logn
times until we have log n integers packed into one word. The time is O(log log n). The
operation is n+ n/2 + n/4 + n/8 + . . . = O(n).

With logn integers packed into one word we can view the n integers in n/ log n
words as forming logn columns. The ith column contains the ith integers in all
n/ log n words.

Lemma 2.2. The n/ log n integers in each of the log n columns can be sorted in
O(log n) time and O(n) operations on the EREW PRAM.

Proof. We build an AKS sorting network on these n/ log n words. On the AKS
sorting network we compare two words at each internal node of the network using
the test bit technique. Thus each node of the AKS sorting network can be used to
compare the log n integers in the word in parallel. At the output of the AKS sorting
network we have sorted log n columns with the ith column containing ith integers in
all n/ log n words. The time is O(log n) since there are O(log n) stages in the AKS
sorting network. The operation is (n/ log n) · O(log n) = O(n) because we have only
n/ log n words and each of them goes through O(log n) stages.

Lemma 2.3. A fixed permutation among n integers packed into n/ log n words
can be done in O(log log n) time and O(n) operations on the EREW PRAM.

Proof. Simply disassemble the integers in the words so that each word con-
tains one integer. Then apply the permutation. Then reassemble the integers into
words.

“log n” in the paper actually stands for the smallest power of 2 no less than logn.
This is achieved without increasing the space to superlinear as follows. Take k to be
the smallest integer which is a power of 2 and which is no less than logn. Pack k
integers into one word. We obtain l = �n/k� words. We take a number l′ which is a
power of 2 and which is the smallest number no less than l. We assume that we have
l′ words. Note that here we do not require that k = log(l′k). The total number of
integers is l′k ≤ 3n.

For our purpose (because we need to sort integers in a linked list) we also need the
following scheme to accomplish the permutation mentioned above. The permutation
also can be done by routing the integers through a network N , which is the butterfly
network in conjunction with a reverse butterfly network (see Figure 2.1). For per-
mutations, N can be used to emulate the Benes permutation network [7, 8]. Each
stage of the butterfly network emulates the processor connection along a dimension
on the hypercube. (That is, at dimension j numbers at position a and a#j are the
input into one switch and the output to positions a and a#j where a#j is obtained
by complementing jth bit of a.) When a and a#j are in different words we switch
integers between the words. (In this case every pair going into a switch is coming
from a different word.) When a and a#j are in the same word (because we pack
integers into words) we switch integers within words. (In this case every pair going
into a switch is coming from the same word. Here we need k to be a power of 2.)
Therefore each stage of the butterfly network can be done in constant time. Because
the butterfly network has O(log n) stages, the permutation can be done in O(log n)
time. Note that since the permutations we performed here are fixed permutations,
the setting of the switches in the butterfly network can be precomputed.

Theorem 2.4. n integers in the range {0, 1, . . . ,m − 1} can be sorted on the
EREW PRAM with word length O(log n logm) in O(log n) time using O(n) operations
and O(n) space.

Proof. By Leighton’s column sort we need only apply Lemmas 2.1, 2.2, and 2.3 a
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Fig. 2.1. A permutation network.

constant number of times.

The principle of Theorem 2.4 can be applied to the case in which we can pack
more than logn integers into one word. However, in order to apply a recursive version
of Leighton’s column sort [23] the number of columns cannot be greater than nε for
a constant 0 ≤ ε < 1. Therefore we cannot pack more than nε integers into one
word and then apply the principle of Theorem 2.4. Also note that we may use more
columns than the number of integers packed in one word. For example, we may use
log2 n columns in the column sort even when the number of integers packed in a word
is only logn. We will use this fact in the appendix.

The following corollary can now be easily shown.

Corollary 2.5. n integers in the range {0, 1, . . . ,m − 1} can be sorted on the
EREW PRAM with word length O(k logm), 1 ≤ k ≤ log n, in O(log n) time using
O(n logn

k ) operations and O(n) space.

This corollary is easily obtained by packing k integers into one word and then by
applying Lemmas 2.1, 2.2, and 2.3 and Theorem 2.4.

Also note that the sorting can be made stable by appending address bits to
each integer. If m ≤ n, we use an observation which says that n input integers
a0, a1, a2, . . . , an−1 can be divided into n/m sets with ith set containing aim, aim+1, . . . ,
a(i+1)m−1 and we need only to sort each set. The results of the sorting on each set
can be combined to yield the sorted sequence of input integers. This combining takes
O(log n) time and linear operations. This observation is made by Rajasekaran and
Sen [25]. Algorithms presented in [2] also make use of this observation. Thus the
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address bits used are always being min{log n, logm}. To add the address bits we can
sort in two passes with each pass sorting on logm/2 bits. Therefore the address bits
can be added because the number of address bits now is min{log n, logm/2}.

3. Sorting integers in {0, 1, . . . , n−1}. We consider the problem of sorting n
integers in the range {0, 1, . . . , n−1} on the EREW PRAM with word length O(log n).
For our purpose we assume that

√
log n is a power of 2. The way this is done is to take

the smallest integer which is a power of 2 and which is no less than
√
log n. There

is no danger of using superlinear space because this quantity does not determine the
space usage.

If input integers with the same value are linked in a linked list in the order they
appear in the input, then additional O(log n) time and O(n) operations suffice for
the sorting. This is because we can use linked list contraction [5] to group integers of
the same value together. Because we are sorting integers from {0, 1, 2, . . . , n− 1} we
can use bucket sorting. The first integer in each linked list drops itself into a bucket.
Because there are only n buckets, integers dropped into the buckets can be collected
in O(log n) time and O(n) operations. Here the computation is as follows:

1. The first integer (representative integer) in each linked list drops itself into a
bucket. This is done for all representative integers in parallel in one step. Because
different representative integers have different values the dropping operation has no
conflicts among integers.

2. Do a parallel prefix computation to pack integers in the buckets into consecutive
locations. This will have all integers dropped into buckets sorted.

Our goal, therefore, is to link integers of the same value into a linked list. Initially,
we put all input integers into one linked list. As the computation proceeds, each linked
list is split into several linked lists. When the computation ends, all integers with the
same value will be linked into a linked list and integers with different values are in
different linked lists.

The basic idea of the sorting algorithm is linked list splitting. Let a0, a1, . . . , an−1

be the input integers. The algorithm has
√
log n stages. In each stage we examine√

log n bits (we say that we reveal
√
log n bits). Initially no bits are revealed. In the

first stage we reveal the most significant
√
log n bits. In the second stage we reveal

the next
√
log n bits, and so on. We maintain the property that all integers are linked

in a linked list if their revealed bits are the same (of the same value). If the revealed
bits for two integers are different, then the two integers are in different linked lists.
Initially, all integers are linked into one linked list with ai+1 following ai in the linked
list. After the first stage, the input linked list is split into at most 2

√
logn linked lists

because
√
log n bits are revealed. After the second stage each linked list further splits

itself into at most 2
√

logn linked lists, and so on.

Now we discuss how each linked list is split in each stage. A linked list is short
if it contains fewer than 24

√
logn elements and is long if it contains at least 24

√
logn

elements. We first group every consecutive S elements (integers) in the linked list
into one group. For a short linked list, S is the number of total elements in the linked
list. For a long linked list, S varies from group to group but is at least 24

√
logn and

no more than 25
√

logn. We can consider a grouping as contracting the S elements into
one node and/or as ranking the S elements along the linked list within the group.
This grouping can be done by linked list contraction algorithms [5, 17, 18]. We then
sort integers in each group in parallel. Because revealed bits for the previous stages
for integers in the linked list are identical and because we reveal additional

√
log n bits

in this stage, we are, in fact, sorting no more than 25
√

log n
√
log n-bit integers in each
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group. By our nonconservative sorting algorithm presented in the previous section,
the sorting can be done in O(

√
log n) time and O(S) operations for the group (or

O(n) operations for all linked lists). Note that if a short linked list contains too few
integers (say t integers), we cannot pack

√
log n integers into one word and then apply

column sort (see the paragraph immediately below Theorem 2.4). In this situation
we pack a smaller number of integers (log t integers) into a word to facilitate column
sorting. For example, if a short linked list contains only

√
log n integers, then we pack

log(
√
log n) integers into a word and then apply column sort.

If the linked list is short, there is only one group in the linked list. The sorting
will then enable us to split the linked list into t ≤ 2

√
logn linked lists such that each

split linked list contains all integers whose revealed bits are the same, where t is the
number of bit patterns for the revealed bits. Here we note that for a short linked list,
t could be less than 2

√
logn. (For example if the revealed bits for all integers are the

same, t will be equal to 1.)

If the linked list is long, we will always split the linked list into exactly 2
√

logn

linked lists no matter how many different bit patterns are revealed by the revealed
bits. After sorting in each group, integers in each group are split into 2

√
log n linked

lists. If a bit pattern among the 2
√

logn bit patterns does not exist in the revealed
bits, we create a linked list containing only one dummy element representing this
pattern. Note that no more than 2

√
logn dummy elements will be created for each

group. For consecutive (neighboring) groups on a long linked list we then join the
split linked lists in the groups such that linked lists with the same revealed bits are
joined together. With the help of those dummy elements we now have split a long
linked list into exactly 2

√
logn linked lists.

With the existence of dummy elements in the linked list, the splitting process
should be modified a little bit. For a short linked list, after the grouping all dummy
elements will be eliminated. For a long linked list, the dummy elements will also
be eliminated after grouping, but new dummy elements could be created because we
need to split each long linked list to 2

√
logn linked lists.

Since each group on a long linked list has at least 24
√

log n elements and since each
such a group creates at most 2

√
logn dummy elements, the total number of dummy

elements created in a stage is at most n/23
√

log n. Dummy elements generated in a
stage are eliminated in the next stage and new dummy elements are generated for
the next stage. For a total of

√
log n stages the total number of dummy elements

generated is no more than cn
√
log n/23

√
logn for a constant c. Here, constant c may

be greater than 1 because as dummy elements are generated we have n′ > n elements
now. In this situation the number of dummy elements generated in the next stage
will be n′/23

√
logn′

.

Let us estimate the complexity. Since each stage takes O(
√
log n) time and O(n)

operations, for a total of
√
log n stages the time complexity of the algorithm is O(log n)

with O(n
√
log n) operations.

Although we have left out several implementation details we hope our presentation
in this section can convince most readers that our algorithm works. We therefore give
the following theorem. The implementation details are very much ad hoc and several
known techniques are adapted to make our implementation fit. The implementation
details are described in Appendix A.

Theorem 3.1. n integers in the range {0, 1, 2, . . . , n−1} can be sorted in O(log n)
time and O(n) space with O(n

√
log n) operations on the EREW PRAM with word

length O(log n).
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4. Sorting integers in {0, 1, . . . ,m − 1}. Consider the problem of sorting
integers in the range {0, 1, . . . ,m − 1}. All known conservative CREW and EREW
parallel algorithms [2, 12, 25], even allowing for polylogarithmic running time, will
eventually use O(n log n) operations when m is sufficiently large. In this section we
present two conservative EREW algorithms which use only O(n

√
log n) operations no

matter how large m is. Our first algorithm runs in O(log3/2 n) time and O(n) space
with O(n

√
log n) operations. This algorithm also serves the purpose of introducing

ideas to be used in our second algorithm. The basic ideas used in both algorithms are
the same. However, the second algorithm is more complicated than the first algorithm.
Our second algorithm is the only algorithm in this paper which uses more than linear
space. This algorithm sorts in O(log n) time and O(nmε), 0 < ε < 1, space with
O(n
√
log n) operations. We note that the linked list splitting idea presented in the

previous section does not apply here and therefore new ideas are needed.

First let us outline our approach. We use bit [i] to denote bits i logm/
√
log n

through (i + 1) logm/
√
log n − 1. (Bits are counted from the least significant bit

starting at 0.) [i : j] is used to denote bits [i], [i + 1], . . . , [j] (or empty if j < i). We
use a[i] to denote bits i logm/

√
log n through (i + 1) logm/

√
log n − 1 of a. a[i:j] is

used to denote bits a[i], a[i+1], . . . , a[j] (or empty if j < i). To sort n integers with each
integer containing logm bits we could use

√
log n passes. The ith pass, 0 ≤ i < √log n,

sorts bit [
√
log n− i− 1]. Note that we are sorting from high order bits to low order

bits. At the beginning of ith pass the input integers are divided into a collection C of
sets such that integers in one set have the same value in bits [

√
log n− i : √log n− 1].

In the ith pass we can sort integers in each s ∈ C independently and in parallel. We
call the sorting problem formed by integers in an s ∈ C an independent (sorting)
problem (or an I-problem for short). The sorting in the ith pass further subdivides
each s ∈ C into several sets with each set forming an I-problem for the next pass.
Note that if a set s1 resulting from the subdivision (sorting in the ith pass) of s ∈ C is
a singleton, then the integer a ∈ s1 needs not to be passed to the next pass because a
has been distinguished from other integers and the final rank of a can be determined.
When we say an I-problem p we refer to the integers passed from the previous pass to
the current pass which form p. When integers in p are sorted in the current pass some
of them will be passed to the next pass and these integers are no longer in p. After the
current pass finishes, p refers to those integers in the singletons which remained and
did not pass to the next pass. Because in a pass we sort logm/

√
log n bits only while

each word has logm bits, each pass can be computed with O(n
√
log n) operations (by

the corollary to Theorem 2.4). This will give us a total of O(n log n) operations for
the algorithm. To reduce the number of operations, we pipeline all passes. Integers
will be passed from the ith pass to the (i + 1)st pass as soon as enough numbers of
integers with the same bits [

√
log n− i− 1 :

√
log n− 1] are accumulated instead of at

the end of the ith pass. The details will be explained in the following subsection.

4.1. Sort in O(log3/2 n) time and O(n
√
logn) operations. We give an

outline which explains the essence of our ideas. Suppose we are sorting n integers. If
we pass these n integers through the AKS sorting network [1], we will get O(log n)
time and O(n log n) operations. This is O(log n) operations per integer. The reason
each integer incurs O(log n) operations is that it must be compared across n integers.
If we sort nt, 0 < t < 1, integers, then each integer compares across nt integers, and
therefore each integer incurs only O(t log n) operations. If we take the most significant
logm/

√
log n bits out of logm bits from each integer to form a small integer, we

can pack
√
log n small integers into one word and therefore we have only n/

√
log n
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words to handle. Sorting these words through the AKS sorting network takes only
O(n
√
log n) operations. However, this sorting may not accomplish the sorting for the

input integers. The problems occur when two integers have the same [
√
log n−1] bits,

i.e., small integers obtained from them are equal. We treat this problem in this way.
We use several levels for sorting. We do not sort all small integers at once. At the
level 0 we divide them into groups with each group containing 2

√
logn integers. In the

first stage we sort integers in each group. This entails constant operations for each
small integer because each small integer has only

√
log n bits. In each next stage we

merge 2
√

logn groups into one group. If the sorting/merging reveals that several small
integers are equal, then we remove all these small integers and replace them with a
dummy. This dummy has the same value as the small integers removed. Removed
integers will participate in sorting at level 1 where their [

√
log n− 2] bits are sorted.

Since removed small integers no longer participate in sorting in level 0, each of them
incurred a few operations. The operations incurred by each integer at levels greater
than 0 depend on when it is passed from level 0. If it is passed down at early stages, it
incurs few operations at level 0, but it will incur more operations at higher numbered
levels. If it is passed down at later stages, it incurs more operations at level 0, but
it will incur less operations at higher numbered levels. This is because if the integer
is passed down at later stages, there are only a few integers with the same bit value
at bits [

√
log n− 1] as itself, and therefore the I-problem formed at higher numbered

levels is of smaller size, and therefore it incurs fewer operations at higher numbered
levels.

In our algorithm the computation is organized into
√
log n levels. Each level

represents a pass explained in the paragraph before this subsection. There are
√
log n

stages in each level and stage i1 at level l1 is executed concurrently with stage i2 at level
l2 > l1, where i1 − i2 = l2 − l1. Each stage takes O(log n) time and O(n) operations.

Because there are a total of 2
√
log n− 1 stages our algorithm takes O(log3/2 n) time

and O(n
√
log n) operations. The computation at level i, 0 ≤ i < √log n, is to work

on bits [
√
log n− i− 1]. We use array I[0 : n− 1] to represent the n input integer and

use I[i : j] to denote I[i], I[i+ 1], . . . , I[j]. Although the computation at each level is
similar, describing the computation at an arbitrary level would be too complicated.
Instead we first give pseudo codes outlining the overall structure of the algorithm and
then describe the computation at levels 0 and 1 and then generalize it to arbitrary
levels.

Sort1(A)
{
a. for i = 0 to n− 1 do in parallel
b. { A[0][i] = A[i]; /* Put integers at level 0 */

c. for k = 0 to 2
√

logn− 2 do /*stage k */
d. {
e. if k <

√
logn, then for l = 0 to k do in parallel B(A, k, l); /* level l */

f. else for l = k −√logn+ 1 to
√

logn− 1 do in parallel B(A, k, l);
g. }
}

B(A, k, l)
{

1. for j = 0 to n/2(k−l+1)
√
logn and i = i(j) = j2(k−l+1)

√
logn to

(j + 1)2(k−l+1)
√
logn − 1 do in parallel

2. /* section j, here i(j) indicates that this i is coming from section j. */
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3. {

4. if Meet[j][(A[l][i(j)])[
√
logn−l,

√
logn−1]][(A[l][i(j)])[

√
logn−l−1]], then

5. /* Integers in the same I-problem (indicated by [(A[l][i(j)])[
√
logn−l,

√
logn−1])

at level l in section j meet if they have the same (A[l][i(j)])[
√
logn−l−1] value. Meet is true

if at lease two integers meet.*/

6. {

7. if l <
√

logn− 1 then

8. {

9. move A[l][i(j)] to A[l + 1][i(j)]; /* move to next level*/

10. make one integer among the meet become a dummy with value A[l][i(j)],
then delete A[l][i(j)];

11. }

12. }

13. }
}

The above procedure outlines the overall process of sorting. The Meet operation
in procedure B is actually done by sorting and merging. The above procedures give the
precise relationship among stage(k), sections(j), levels(l), I-problem (bits [

√
log n −

l,
√
log n− 1]), and the value being sorted on (bits [

√
log n− l − 1]).

The computation at different levels is illustrated in Figure 4.1 and the Meet
operation at different levels is illustrated in Figure 4.2.

The computation at level 0 is to sort the n input integers by their most significant
logm/

√
log n bits. Each stage at level 0 is to merge 2

√
logn sorted sequences. (This

is indicated by the Meet operation in line 4 of procedure B.) That is, the sorting

at level 0 is guided by a complete 2
√

logn-ary tree. Each level of the tree represents
the 2

√
logn-way merge in a stage. After stage s and before stage s + 1 there are

n/2(s+1)
√

logn sorted sequences (which are the sections in the procedure B). Suppose

integer a[
√

logn−1] is in the sorted sequence S. a will remain in level 0 of the algorithm
as long as there are fewer than 2

√
logn integers b[

√
log n−1] in S such that a[

√
logn−1] =

Time

Level  0

Level  1

Level  2

Level  3

Fig. 4.1. Computation at different levels is pipelined.
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level 0

level 0

level 0

level 1

level 1

level 1

level 2

level 2

level 2

stage 0

stage 1

stage 2

stage 3

stage 4

Fig. 4.2. The merging (Meet) process at different stages.

b[
√

logn−1] (which is what we mean by Meet in procedure B). (Note that all these
integers are now consecutive in memory.) Once this condition is not satisfied a will

be moved to level 1. Thus one function of level 0 is to group integers a[
√

logn−1] and
once there are enough integers of the same value grouped together they are sent to
level 1. When enough integers of the same value a[

√
logn−1] are grouped together in a

sorted sequence S and are sent to level 1, we create a dummy with value a[
√

log n−1]

and place this dummy in S in level 0 to replace the integers sent to level 1. If in
a subsequent merge some integers of the same value a[

√
log n−1] are grouped together

with the dummy (again Meet in procedure B), all these integers (no matter how many)
are sent to level 1 and we need only one dummy to represent these integers at level
0. Of course when dummies with the same value a[

√
log n−1] are grouped together by

the merge only one dummy needs to remain while others can be discarded. After the
sorting (i.e., all

√
log n stages) in level 0 finishes, integers remain in level 0 are those

that do not have 2
√

logn or more input integers with the same a[
√

logn−1] value. For
integers with the same a[

√
logn−1] value in level 0 (there are less than 2

√
logn of them)

we sort them by their whole integer value (not just the most logm/
√
log n bits) by

comparison sorting [1, 10]. Because each such comparison sorting is on no more than

2
√

logn elements, the number of operations will be bounded by O(n
√
log n). After this

comparison sorting all integers and dummies at level 0 are sorted. Level 0 has divided
integers passed to level 1 into I-problems. Integers a with the same a[

√
logn−1] value

which are passed to level 1 are in one such I-problem. Now we need to sort integers
in each I-problem independently and in parallel.

Now consider the computation at level 1. We consider only one I-problem. The
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problem is to sort all integer a’s by a[
√

logn−2] value, where the value a[
√

logn−1] for
all a’s are identical. The sorting at level 1 also has

√
log n stages and is also guided

by a conceptual 2
√

logn-ary tree. However, many of the leaves may be empty because
no integer is passed from level 0. Stage s at level 0 and stage s − 1 at level 1 (and
stage s − i at level i) are executed concurrently. Immediately after stage 0 at level

0 all integers a with the same a[
√

logn−1] values in I[i2
√

logn : (i + 1)2
√

logn − 1] are

grouped together, where 0 ≤ i < n/2
√

logn. If there are integers a in I[i2
√

log n :

(i+ 1)2
√

logn − 1] which have the same a[
√

logn−1] value and are passed down to level

1 in stage 0 of level 0, these integers are merged (sorted) by the 2
√

logn-way merge

on the a[
√

logn−2] value in stage 0 at level 1. In stage 1 at level 0 all integers a with
the same a[

√
logn−1] values in I[i22

√
logn : (i + 1)22

√
logn − 1] are grouped together,

where 0 ≤ i < n/22
√

logn. Consider integers a with the same a[
√

logn−1] value in

I[i22
√

logn : (i + 1)22
√

logn − 1]. These integers are grouped into a collection C of at

most 2
√

logn groups (which are sections in procedure B) in stage 0 of level 0 (group j

coming from I[j2
√

logn : (j + 1)2
√

logn − 1], i2
√

logn ≤ j ≤ (i+ 1)2
√

logn − 1). These

2
√

logn groups are further grouped into one group G in stage 1 of level 0. If some
groups in C are passed down to level 1 at stage 0 of level 0, these passed down groups
are sorted in stage 0 at level 1 (which execute in parallel with stage 1 of level 0). Note
the relation between sections and levels in procedure B. If there is at least one group
passed down to level 1, there will be a dummy at level 0 and therefore all integers in
G will be passed down at stage 1 of level 0. By using the dummies at level 0 we will be
able to build a linked list to link integers passed down at stage 0 with integers passed
down at stage 1. And by executing linked list ranking [5] we can then move all integers
in G into consecutive memory locations. Here list ranking takes O(|G|) operations
and O(log n) time. Note that linked list linking and ranking here also maintain the

stable property for sorting. Our intention is to do a 2
√

logn-way merge (one way for
integers in a group in C) at stage 1 of level 1. However, integers in G which are passed

down at stage 1 of level 0 (denote this set by G′) are not sorted by a[
√

log n−2] and

therefore they cannot participate in the 2
√

logn-way merge directly. What we do is
to first sort integers in G′ by bit [

√
log n − 2] and then perform the merge. Because

G′ contains less than 22
√

logn integers and because sorting is performed on integers
each having logm/

√
log n bits, the sorting can be done in O(

√
log n) time and linear

operations by Theorem 2.4.

Thus at level 1 we are forming sorted sequences (sections in procedure B and
sorted by bits [

√
log n−2 : √log n−1]) and repeatedly merge the sorted sequences (to

form larger sections). Suppose integer a[
√

log n−2:
√

logn−1] is in the sorted sequence S.

a will remain in level 1 as long as there are less than 2
√

logn integers b[
√

logn−2:
√

logn−1]

in S such that a[
√

logn−2:
√

logn−1] = b[
√

logn−2:
√

logn−1]. (Note that all these integers
are now consecutive in memory.) Once this condition is not satisfied a will be moved

to level 2 and we will create a dummy with value a[
√

log n−2:
√

logn−1] at level 1 to
replace the integers moved to level 2. As we did in level 0, for integers a stayed in
level 1 and never passed to level 2, there are less than 2

√
logn integers with the same

a[
√

logn−2:
√

logn−1] values and therefore we can sort them by their whole integer value
using parallel comparison sorting after the (

√
log n− 1)st stage at level 1.

The relation of level 2 to level 1 is the same as that of level 1 to level 0. In
general, integers passed to level i are divided to belong to I-problems with each
problem containing integer a’s with the same a[

√
logn−i:√logn−1] value. In each such

problem at level i, integers are either sorted at level i (by a repeated 2
√

logn-way
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merge) or passed down to level i+1. Integers passed to level i+1 are divided at level

i into I-problems such that all integer a’s with the same a[
√

logn−i−1:
√

logn−1] value
are in one I-problem.

There are a total of 2
√
log n − 1 stages executed in our algorithm. After these

stages and after we use parallel comparison sorting to sort integer a’s with the same
a[
√

logn−i−1:
√

logn−1] value at level i, integers at all levels are sorted. We can then
build a linked list. For integers and dummies in each I-problem we simply let each
element point to the next element. We then “insert” integers sorted in each I-problem
p at level i into the position of the corresponding dummy at level i − 1 by using a
pointer from the dummy to point to the first integer in p and using another pointer
from the last integer in p to point to the successor of the dummy. We therefore build a
linked list for all the integers and these integers are in their sorted order in the linked
list. After a linked list ranking [5] we have all the integers sorted.

At the end of each stage of our algorithm we use linked list ranking [5] and
standard parallel prefix computation [20] to move integers and dummies belonging to
each I-problem in consecutive memory locations so that the next stage can proceed.
For example, integers in an I-problem p at level i need to be packed to consecutive
memory locations because some integers in p are passed to level i + 1. When some
integers and dummies in p are grouped into one group by the merging at level i
because they have the same a[

√
logn−i−1:

√
logn−1] value, we build a linked list to link

the integers at level i with the integers already at level i+1. (They are represented by
the dummies at level i.) We use linked list ranking and prefix computation to move
these integers in one group into consecutive memory locations. Because linked list
ranking and prefix computation can be done in O(log n) time and O(n) operations
they are within the time and the number of operations allocated to each stage. Note
here that we generate one dummy for at least 2

√
log n integers in each stage. Thus for

all stages the total number of dummies generated is bounded by 2n
√
log n/2

√
logn.

Now we discuss the x ≤ 2
√

logn-way merge performed on a collection C of x sorted
sequences in each stage at each level. The integers to be merged are in consecutive
memory locations and processors can be easily allocated to them. The integers we
are considering here have only logm/

√
log n bits while each word has logm bits. We

have to accomplish the merge in O(log n) time and a linear number of operations. If

the total number of integers to be merged together is N < 22
√

logn we simply sort
them by using Theorem 2.4. Otherwise, N ≥ 22

√
logn and we sample every 2

√
logn-th

integer from each of the x ≤ 2
√

logn sorted sequences (to be merged). If a sequence

has no more than 2
√

logn integers, we sample its first and last integers. The total
number of sampled integers is no more than 2N/2

√
logn. We sort all sampled integers

into one sequence S using parallel comparison sorting [1, 10]. We make x copies of S.
We then merge one copy of S with one sequence in C. Suppose s1, s2, s1 ≤ s2, are
two consecutive integers in S. Then there are no more than 2

√
logn integers in each

sequence in C which are ≤ s2 and ≥ s1. (For equal integers their order is determined
first by the sequence they are in and then by the position they are in the sequence.)
These integers form a merging subproblem. Because S is merged with each sequence
in C, the original merging problem is now transformed into |S|+1 (|S| is the number
of integers in S) merging subproblems; each of them is to merge x subsequences with

each subsequence containing at most 2
√

logn integers (they come from a sequence in
C). For each merging subproblem we use Theorem 2.4 to sort all integers in the
subproblem.

It can now be checked that the 2
√

logn-way merge in each stage at each level
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takes O(log n) time and linear operations. At the end of each stage we use linked list
ranking and parallel prefix computation to move integers belonging to each I-problem
into consecutive memory locations. This computation takes O(log n) time and O(n)
operations. Therefore each stage takes O(log n) time and O(n) operations.

Theorem 4.1. n integers in the range {0, 1, . . . ,m−1} can be sorted in O(log3/2 n)
time and O(n) space with O(n

√
log n) operations and O(log(m + n)) word length on

the EREW PRAM.

4.2. Sort in O(logn) time and O(n
√
logn) operations. Our second algo-

rithm will run in O(log n) time with O(n
√
log n) operations. This algorithm is more

complicated. To achieve O(log n) time we have to allocate only O(
√
log n) time to

each stage. An immediate problem is the following. Consider an I-problem p at level
1. Integers are passed to p at different stages. Suppose several stages have passed and
each sorted sequence in p is pretty long. Now in the current stage a set S of integers
are passed down from level 0 to p. Although the number of integers in S are few, to
merge integers in S with the sorted sequences in p takes a long time because a sorted
sequence in p contains too many integers. The problem here is that not all integers in
p are passed down in one stage—some are passed down earlier while others are passed
down later. If, for example, all integers in p are passed from level 0 at stage 0 (of
level 0), then we can merge the integers in p. To avoid the problem that integers are
passed down at different stages, we modify our first algorithm (given in Theorem 4.1)
as follows.

We append logn bits to each input integer to indicate the position of each integer
in the input. Note that we can assume logm > 2 log n. To put logn bits into a
integer we could sort in two passes with each pass sorting logm/2 bits. Then in each
pass we can put log n bits into each integer. The process of our sorting is not stable.
Adding the logn address bits stabilizes the sorting. At each level our algorithm
sorts logm/

√
log n bits. In the process of our algorithm execution, an integer a in

a sorted sequence at level i will stay in level i as long as the number of integers b
in the sorted sequence with b[

√
logn−i−1:

√
logn−1] = a[

√
logn−i−1:

√
logn−1] is less than

24
√

logn. Once this condition is not satisfied, a will be passed to level i + 1. We
keep a dummy at level i to replace the integers passed down to level i + 1. If there
are integers c with c[

√
logn−i−1:

√
logn−1] = a[

√
logn−i−1:

√
logn−1] left at level i, they

keep grouping as integers at level i are merged. If dummies and integers of the same
[
√
log n − i − 1 :

√
log n − 1] bit values are grouped together, we view dummies as

smaller than integers and therefore we group dummies with dummies and integers with
integers if they have the same value in bits [

√
log n−i−1 : √log n−1]. Note that here

we do not pass integers to level i+1 when integers are grouped with dummies. Instead
we keep grouping more integers together. Once the new group contains 24

√
logn or

more integers with the same c[
√

logn−i−1:
√

log n−1] value, all integers in the group will
be passed to level i+ 1. Integers which remain at a level to the end of the last stage
will have less than 24

√
logn integers with the same revealed bit values. We can then

sort them by their whole integer value by using comparison sorting.
We define a grouped subproblem of sorting (G-problem for short). The n input

integers are initially in a G-problem p. As computation proceeds, some integers in p
will be passed to level 1 and will no longer be in p. Some dummies will be created
and added to p. All integers at level i+1 which are passed from a G-problem at level
i at stage t of level i form a G-problem.

Consider a G-problem at level i. Integers in different G-problems are sorted
independently even if they have the same value in bits [

√
log n − i − 1 :

√
log n − 1].
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Integers in a G-problem may have different values in bits [
√
log n − i − 1 :

√
log n −

1]. Thus a G-problem is further divided into I-problems such that each I-problem
contains all the integers in the G-problem which have the same bits [

√
log n− i− 1 :√

log n − 1]. Note that here the definition of an I-problem is slightly different than
that which we defined before because now we require integers in an I-problem to
be those within the same G-problem. All I-problems in a G-problem can be solved
independently.

For the G-problem p at level 0 we execute (1/2) log log n − 1 stages. In the ith

stage we sort all 22i+2√logn integers by their bit [
√
log n − 1]. That is, in the ith

stage every array I[j22i+2√logn, (j+1)22i+2√log n−1], 0 ≤ j < n/22i+2√logn, is sorted.
Integers may be passed to level 1 at different stages and form different G-problems at
level 1. Because there are (1/2) log log n− 1 stages at level 0, only (1/2) log log n− 1
G-problems are created at level 1. Consider integers passed to level 1 at the ith stage
which form a G-problem q at level 1. Integers in q with different bit [

√
log n− 1] are

in different I-problems. Consider an I-problem r in q. Because integers are passed

at the ith stage there are at most S = n/2(2(i+1)−4)
√

logn integers in r for i ≥ 1
and there are at most S = n integers in r for i = 0. We can store the integers in
r in an array A of size S as follows. For stage 0, integers in r which are passed
from I[j24

√
logn, (j + 1)24

√
logn − 1], 0 ≤ j < n/24

√
logn, at level 0 are stored in

A[j24
√

logn, (j + 1)24
√

logn − 1], 0 ≤ j < n/24
√

logn. For stage i > 0, integers in r

which are passed from I[j22i+2√logn, (j + 1)22i+2√log n − 1], 0 ≤ j < n/22i+2√logn, at
level 0 are stored in

A

[
j

22i+2√logn

2(2(i+1)−4)
√

logn
, (j + 1)

22i+2√logn

2(2(i+1)−4)
√

log n
− 1

]
, 0 ≤ j < n/22i+2√logn.

Note that although all integers in p can be stored in A there may be many blank cells
in A with no integers stored in them. Also integers passed from I[j22i+2√log n, (j +

1)22i+2√logn − 1] are now in consecutive positions in A and there are at least 24
√

logn

of them. Integers in each I-problem in q can be stored in an array of size S. We say
that the G-problem q has size S.

For each I-problem r in a G-problem of size R we store integers in r in an array A
of size R and execute s stages, where s is the minimum integer satisfying 22s+1√logn ≥
R. In the ith stage, 0 ≤ i < s, we sort integers in A[j22i+2√logn, (j+1)22i+2√logn−1],
0 ≤ j < R/22i+2√logn. As we said before, integers are grouped by the sorting and

if the number of integers of the same revealed bits is at least 24
√

logn, they are sent
to the next level. (They form an I-problem in a new G-problem in the next level.)
We shall use the algorithm of Theorem 2.4 to do the sorting (the details are to be
explained below) and therefore the time expended in the ith stage is c2i

√
log n for a

constant c.
Our sorting algorithm can be summarized in the following coding:

Sort2(A, l, g) /*Sort on a set of integers at level l in the g-th G-problem*/
{

for (i = 1; i ≤ s; i+ +) /* s = min{t|22t+2√logn ≥ |A|}*/
{

Divide integers in A to |A|/22i+2√logn groups and sort every group in parallel on [
√

logn−
l − 1,

√
logn− 1] bits;
if sets S of integers with the same value on bits [

√
logn− l− 1,

√
logn− 1] are detected, do

in parallel
{
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if |S| ≥ 24
√
logn, { remove S from A, replace it with a dummy and call Sort2(S, l+1, g ·

log logn+ i− 1); }
}

}
}

Note that in Sort2 when several sets S’s with the same value in bits [
√
log n −

l − 1,
√
log n− 1] are detected in different groups of A and all these sets have size no

less than 24
√

logn, these sets will be moved into one I-problem of a G-problem. The
fact that they are moved into the same I-problem is affected by placing them in the
same array.

We say that a G-problem (I-problem) p is solved if integers in each I problem at
all levels generated from p are sorted. The time complexity for solving a G-problem
p can now be expressed as follows. Assume that the size of p is S, p is at level l, and
the time complexity of solving p is f(S, l), and let t = min{i|22i+2√logn ≥ S}. We
have

f(S, l) = max{ t
max
i=1

c2i
√
log n+ f(S/2(2(i+1)−4)

√
logn, l + 1),

c
√
log n+ f(S, l + 1)},

f(S,
√
log n) = 0.

Thus the time complexity for solving the G-problem at level 0 is f(n, 0) =
O(log n).

Now let us consider the operation complexity for solving a G-problem. Suppose
the integers in an I-problem p is stored in array A. Suppose at the current stage
(stage i) p has S integers and dummies. (Note that many integers may have already
passed to the next level at earlier stages.) S may be much smaller than the size of A.
However, integers are not scattered around in A. Instead, they are stored as segments
with each segment containing at least 24

√
logn integers stored in consecutive memory

locations if the segment does not contain a dummy. Thus in the current stage (stage

i) we can pack the integers in A[j22i+2√logn, (j + 1)22i+2√logn − 1], j = 0, 1, 2, . . . ,
into consecutive memory locations using O(2i

√
log n) time and O(S + d2i

√
log n)

operations, where d is the number of dummies. Since the number of dummies is a
fraction of the total number of integers, the total number of operations is linear. After
we packed integers we use the corollary to Theorem 2.4 to sort them. The sorting
takes O(2i

√
log n) time and O(S2i) operations. This is to say that if an integer a

stayed in p until stage i it incurs O(2i) operations. However, since a is passed to
the I-problem q at the next level at stage i, the size of q is the size of p divided by

2(2(i+1)−4)
√

logn if i > 0 and is at most the same as that of p if i = 0. Assume that
the size of p is S, p is at level l, and the number of operations incurred by an integer
a in p is g(S, l). Then

g(S, l) = max{ t
max
i=1

c2i + g(S/2(2(i+1)−4)
√

logn, l + 1),

c+ g(S, l + 1)},
g(S,

√
log n) = 0.

Thus the number of operations incurred by each integer in the G-problem at level
0 is g(n, 0) = O(

√
log n). Thus the operation complexity for solving the G-problem

at level 0 is O(n
√
log n).



1870 YIJIE HAN AND XIAOJUN SHEN

Below we will discuss how to have all the input integers sorted after we solve the
G-problem at level 0.

How manyG-problems will be created in the execution of our algorithm? Consider
a G-problem p at level l with size S. p executes log log S√

logn
− 1 stages which generates

log log S√
logn
− 1 G-problems at the next level. The ith G-problem, i > 0, generated has

size S/2(2i+1−4)
√

logn. Let the number of G-problems at all levels which are generated
from p be h(S, l). We have

h(S, l) = h(S, l + 1) + 1 +

log((log S)/(
√

log n))−2∑
i=1

(h(S/2(2i+1−4)
√

logn, l + 1) + 1),

h(S,
√
log n− 1) = 1.

h(n, 0) is the total number of G-problems generated in our algorithm. It is not

difficult to see that h(n, 0) > 2
√

logn. To evaluate the above formula we enlarge it and
obtain the following formula:

h(S, l) ≤ 4

(log S)/(
√

logn)∑
i=0

h(S/2i
√

logn, l + 1),

h(S,
√
log n− 1) = 1,

which can be rewritten as

C(j, l) ≤ 4

j∑
k=0

C(k, l + 1),

C(j,
√
log n− 1) = 1,

where C(j, l) = h(2j
√

logn, l).
The total number of groups generated by our algorithm is h(n, 0), which is

h(n, 0) = C(
√
log n, 0)

= 4

√
logn∑
k1=0

C(k1, 1)

= 4
√

logn

√
logn∑
k1=0

k1∑
k2=0

k2∑
k3=0

· · ·
k√log n−1∑
k√log n=0

1

≤ 2δ
√

logn, where δ < 3.5.

Therefore, there are no more than 2δ
√

logn G-problems generated.
We attach a tag to each integer and dummy to indicate which G-problem it is in.

Although the tag can be implemented by an O(
√
log n)-bit integer because there are

only 2δ
√

logn G-problems, to facilitate the computation of the tag when an integer is
passed from a G-problem at level i to another G-problem at level i + 1, we use an
O(
√
log n log log log n)-bit integer for a tag. If an integer a is in the G-problem p at

level i and its tag is t, and it is passed at stage s of level i to another G-problem p1 at
level i+ 1, we form the new tag for a by appending O(log log logn) bits indicating s
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to t. Dummies created to represent integers passed to the next level inherit the new
tag of the integers after they are passed. Thus all integers in a G-problem have the
same tag. Dummies in a G-problem may have different tags because they represent
integers passed to next level at different stages.

Now consider an I-problem p in a G-problem at level i. As the sorting in p pro-
ceeds, integers of the same value in bits [

√
log n−i−1 : √log n−1] are grouped in each

sorted sequence in p. If the number of integers of the same value a[
√

log n−i−1:
√

logn−1]

is no less than 24
√

logn, these integers will be passed down to a G-problem at the next
level. A dummy will be created in p to represent these integers. The dummy has
the tag which is the same as the new tag those integers obtained after they passed to
the next level. Integers with value a[

√
logn−i−1:

√
logn−1] left in p will keep grouping as

the sorting proceeds. When a new group contains at least 24
√

log n integers they will
be passed to another G-problem and another dummy will be created for them. All
integers in the G-problem which are passed down at a stage form a new G-problem.
When integers and dummies of the same value in bits [

√
log n− i− 1 :

√
log n− 1] are

grouped together in p, we assume that dummies are smaller than integers and this al-
lows integers to be grouped with integers to form new groups with more than 24

√
logn

integers. When dummies with the same bit values and the same tag are grouped
together (they represent integers passed to the same I-problem in a G-problem), all
of them but one can be removed. But dummies with different bit values or different
tags cannot cancel each other.

Now suppose that integers and dummies in each I-problems are sorted and occupy
consecutive memory locations. We need to put all integers in a G-problem together
to form a sorted sequence. If we accomplish this, we will have only 2δ

√
log n sorted

sequences left because there are only 2δ
√

logn G-problems. We first reduce the number
of bits used for a tag to O(

√
log n) (remember we were using O(

√
log n log log log n)

bits). This is accomplished easily by sorting all input integers in the input array by
their tags. Here we are sorting on O(

√
log n log log log n) bits and it can be done by

Theorem 3.1. Thereafter we reduce the value for a tag to be within {0, 1, . . . , 2δ
√

logn−
1} by eliminating unused values. Thus the number of bits used for a tag becomes
δ
√
log n. Then we sort integer and dummies in an I-problem p at level i by their

tag value. Note that integers in p have the same tag value while dummies may
have different tags. Note also that integers and dummies in p were sorted by bits
[
√
log n − i − 1 :

√
log n − 1]. By sorting on their tags we arrange dummies with the

same tag value into consecutive memory locations while dummies with the same tag
value are still in sorted order by their value of bits [

√
log n− i− 1 :

√
log n− 1]. We

then add a pointer for the first and last integers and each dummy in p to point to
the dummy at level i − 1, which represents the integers in p when they are passed
from level i − 1 to level i. We now view that all integers and dummies being stored
in a big array A (of course many cells A are blanks). We allocate 2δ

√
logn arrays

A0, A1, . . . , A2δ
√

log n−1; each of them has the same size as A. Array Ai is used to store
integers in ith G-problem (integers tagged with i). For each integer a in A, if a is in
A[k] and tagged with i, we now move a to Ai[k] in constant time. If a is the first or
last integer in an I-problem (therefore, a has a pointer pointing to A[j], which is a
dummy at the lower numbered level), a moves this pointer to Ai and points to Ai[j].

For each dummy d in A[k] we make 2δ
√

logn copies of it and put one copy in the kth

cell of each Ai, 0 ≤ i < 2δ
√

logn. If the pointer of d (which points to a dummy at
the previous level) points to A[j], we copy the pointer to each Ai and make it point

to Ai[j], 0 ≤ i < 24
√

logn. Note that because each dummy is created at a level for
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at least 24
√

logn integers, we can allocate 2δ
√

logn processors for each dummy. Up to
now we have separated integers in different G-problems into different arrays. The
integers and dummies in each array Ai together with their pointers form a tree. By
using pointer jumping along the Euler tour of the tree [27] we obtain a sorted list of
integers in each G-problem. Consider the pointers allocated to each I-problem. If an
I-problem does not contain a dummy (i.e., no integers in the I-problem are passed to

the next level), then the I-problem has at least 24
√

logn integers. We need to use two
pointers, one at the beginning of the integers and one at the end of the integers, for
linking this I-problem with other I-problems in the same G-problem. If the I-problem
has a dummy, we can always allocate three pointers per dummy. Then one pointer
is used for the dummy and the other two pointers can be used for the integers in the
I-problem. Suppose there are D dummies then the number of pointers used for all
I-problems is O(D + n/24

√
logn) and the time used is O(log n).

Now we have a collection C of ≤ 2δ
√

logn sorted sequences of integers. We need
to merge all sequences in C into one sorted sequence. We first sample every 2δ

√
lognth

integer from each sequence s ∈ C. If a sequence has no more than 2δ
√

logn integers, we
sample its first and last integer. We obtain a collection C ′ of |C| sampled sequences.

There are no more than 2n/2δ
√

logn sampled integers. We merge every pair of sampled

sequences by first making 2δ
√

logn copies of each sampled sequence and merge the
corresponding pair. If integer a is in a sampled sequence s which is merged with
every other sampled sequence, then a knows its rank in every sampled sequence. By
summing these ranks a knows its rank in all sampled integers. Therefore we have
sorted sampled integers into one sequence q. We then make 2δ

√
log n copies of q and

merge q with each sequence in C. This merge divides the original merge problem (of
merging sequence in C) into |q|+ 1 submerge problems with each submerge problem

merging |C| subsequences of no more than 2δ
√

logn integers (one subsequence coming
from one sequence in C). Since the total number of integers in each submerge problem

is no more than |C|2δ
√

logn ≤ 27
√

logn we can use comparison sorting [1, 10] to sort
integers in each submerge problem.

Let us estimate the space complexity. Each I-problem formed at stage 0 or 1
at each level requires O(n) space. The space needed for I-problems formed in later
stages is geometrically decreasing. Thus O(mn

√
log n) space is used for solving all

G-problems. We then allocate 2δ
√

logn arrays of Ai’s. Thus the total space used
is O(mn

√
log n2δ

√
logn). However, space can be reduced to O(nmε) by using radix

sorting.

Theorem 4.2. n integers in the range {0, 1, . . . ,m − 1} (m ≥ n) can be sorted
in O(log n) time and O(nmε) space with O(n

√
log n) operations and O(log(m + n))

word length on the EREW PRAM.

To sort n integers in the range {0, 1, 2, . . . ,m−1} with word length k logm bits, we
modify our algorithm to sort O(logm/

√
log n/k) bits in each level, and in the ith stage

we sort every 22i+2√k logn integers. This will give O(log n) time and O(n
√
log n/k)

operations.

Theorem 4.3. n integers in the range {0, 1, . . . ,m−1} can be sorted in O(log n)
time with O(n

√
log n/k) operations and O(k log(m + n)) word length on the EREW

PRAM.

5. Conclusions. We presented EREW integer sorting algorithms which outper-
form parallel comparison sorting. There are several open questions. An immediate
one is to further improve operation complexity. Another open problem is to reduce
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the space complexity of the algorithm in Theorem 4.2 to linear. Applications of our
algorithm to other problems will also be interesting where the advantage of parallel
integer sorting over parallel comparison sorting can be made use of.

Appendix A. Implementation of the algorithm in section 3. The subtlety
of our algorithm is in how to do grouping, where to place dummy elements, and how to
maintain the space complexity within O(n). Grouping should be done with linked list
contraction. However, we cannot apply any existing linked list contraction algorithms
directly to obtain O(

√
log n) time and O(n) operations for a stage because we need

an algorithm to do partial linked list contraction. The dummy elements generated
need to be placed within O(n) space so that processors can be allocated to them.
For the space complexity consideration, after grouping we need sort integers within
each group and this may seem to require that we place the integers in a group in
consecutive memory locations. If we allocate O(n) memory for placing all integers
such that all integers in a group occupy consecutive memory locations, then we would
need O(log n) time while we can expend only O(

√
log n) time in each stage. What

we could do instead is to allocate a two dimensional array with 25
√

logn rows and n
columns. We place the linked lists in the first row. For each group, we could put the
integers in the group in the jth column of the array if the first integer in the group
is in column j. This scheme facilitates sorting. The only shortcoming of the scheme
is that it uses more than O(n) space. We give schemes from which all the problems
mentioned above can be resolved.

For implementation purposes we reveal
√
log n bits in each stage except the last

stage which reveals 10
√
log n bits. A linked list is very short if it contains no more

than 22
√

logn integers, is short if it contains less than 26
√

log n integers, and is long if it
contains at least 26

√
logn integers. A group on a short linked list contains all integers

in the list. A group on a long linked list contains at least 26
√

logn but fewer than
27
√

logn integers.

A.1. Blocked linked list. We modify our linked list construction. Instead of
linking elements (integers) from memory location to memory location, we require

that every 22
√

logn elements in a linked list occupy consecutive memory locations and
that the first element among these 22

√
logn elements is at a memory cell j where

j mod 22
√

logn = 0. We call such 22
√

logn elements a block. Thus if we walk down the
linked list, we visit 22

√
logn consecutive memory locations, then follow the pointer to

another memory location, then visit another 22
√

logn consecutive memory locations,
and so on. We call such a linked list a blocked linked list. For all the linked lists
split we maintain this property (except for the linked lists split at the end of the last
stage). This property facilitates linked list contraction. The condition on memory

cell j mod 22
√

logn = 0 ensures that processors can be allocated to the elements in
the linked lists. Because we use n/

√
log n processors, one processor is allocated for√

log n elements or integers.

A.2. Linked list contraction. Now consider grouping. Because linked lists are
blocked, the linked list contraction for the bottom 22

√
logn elements are automatically

done. That is, for a linked list l1 of length S, we can view it as being already contracted
to a linked list l2 of length S/2

2
√

logn. For the further contraction of l2, we can allocate
one processor for each node in l2.

Therefore we are now facing the following linked list contraction problem: Con-
tract a linked list in O(

√
log n) time and O(n

√
log n) operations (note that here we

can assign one processor to each node in the linked list) such that every S element on
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the linked list is contracted to a single node, where 2c
√

log n ≤ S ≤ 2(c+1)
√

logn and c
is a constant.

This is a very special linked list contraction problem and no known linked list
contraction algorithm can solve it directly. We use the following scheme to solve this
problem.

We will apply pointer jumping [30] to contract the linked list. For a linked list
of n nodes pointer jumping takes O(log n) time and O(n log n) operations to contract
the whole list. Since we are going to contract every S element on the linked list we
should break the linked list into pieces such that each piece has S nodes of the linked
list and then we apply pointer jumping on each piece. Then the pointer jumping
will take O(logS) = O(

√
log n) time and O(n logS) = O(n

√
log n) operations. This

scheme is a perfect one except that we do not have a scheme to break the linked list
into pieces of S nodes each.

The current best parallel algorithm [17, 18, 14] for breaking the linked list into
pieces (symmetry breaking algorithm) can break the linked list into pieces in O(log d)
time and uses linear operations such that each piece has at least two nodes and at
most log(d) n nodes, where d is a constant. Here we are guaranteed that the linked
list will be broken up into pieces. But we are not guaranteed that each piece contains
between 2c

√
logn and 2(c+1)

√
logn nodes.

Should each broken piece contain about the same number of nodes, say T nodes,
then we could apply pointer jumping on each piece for O(log T ) time to contract each
piece into a single node. The original linked list L1 of n nodes is thus being contracted
into a linked list L2 of n/T nodes. Now we could apply symmetry breaking on L2

and then pointer jumping on the pieces of the linked list after symmetry breaking.
We could repeat this symmetry breaking and pointer jumping process for logS/ log T
times and would have finished linked list contraction in O(logS) time and O(n logS)
operations.

The problem now is that each broken piece of the linked list can contain as few as
two nodes and as many as log(c) n nodes. Thus, the shortest piece takes constant time
to contract and the longest piece takes O(log(c+1) n) time to contract when pointer
jumping is applied. If we let processors working on the shortest piece wait until after
they finish pointer jumping for the processors working on the longest piece, then the
progress of the algorithm will not be fast enough for us to get the O(

√
log n) time for

linked list contraction.
Thus the strategy we use is that when the processors working on a short piece

P finish pointer jumping they check whether the neighboring pieces (the previous
piece and the next piece) have finished contraction (pointer jumping). If both of its
neighboring pieces have not finished contraction, P will wait. If one of P ’s neighbors
N has already finished contraction, then the node P contracts into and the node N
contracts into are linked on a linked list and then symmetry breaking and pointer
jumping can applied to this linked list.

Since no two consecutive nodes can be in a wait state at the same time, every three
nodes are contracted into at most two nodes in a step. Thus the whole contraction
process takes O(

√
log n) time and O(n

√
log n) operations.

A.3. Coping with dummy elements. We first show how we handle short
linked lists. The number of bits we revealed for each integer is ≤ log n − 10

√
log n

before the last stage. Thus we can have at most n/210
√

logn short linked lists before
the last stage. Each short linked list can be indexed by an integer range from 0 to
n/210

√
logn. We can allocate an array A of size n to store only short linked lists.
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A[i27
√

logn . . . (i− 1)27
√

logn − 1] is reserved for the short linked list indexed i. Once
we have a short linked list we sort it with parallel comparison sorting on the whole
integer (not just the revealed bits). This entails O(

√
log n) time for each short list and

O(
√
log n) operations for each integer, and therefore it will not destroy the complexity

analysis for the whole algorithm. Thereafter we consider only long linked lists.

Initially we put all n input integers into a linked list, and therefore we start with
a long linked list. To facilitate the later processing we add n dummy elements to
the initial linked list. We put input integers and dummies alternately in the initial
linked list as a0, d, a1, d, a2, d, . . . , d, an−2, d, an−1, where d is a dummy. Therefore for
every t consecutive integers on the linked list we have t dummies. These dummies will
later be used for keeping the blocking property of the linked list and for representing
missing patterns in a group.

Initially we have one dummy for every two consecutive elements on the linked
list. We use 1/2 to represent this ratio. After several stages this ratio will become
smaller. We assume that at the current stage the ratio is 1/b, i.e., there is a dummy
in every b elements on the linked list.

After sorting integers in a group, integers with the same revealed bits (bit pattern)
are consecutive on the linked list. However, the number of integers with the same
revealed bits may not be a multiple of 22

√
logn. To maintain the blocking property of

the linked list, we make use of dummy elements so that the number of integers and
dummies within each group with the same revealed bit pattern become a multiple of
22
√

logn. For a group G of S integers in a long linked list, we split it into 2
√

logn linked
lists. Let a linked list L split from G have T integers. We put �T/(2b)�+2 ·22

√
logn−

(T + �T/(2b)�)%22
√

logn dummies into L, where % is the modulo operation. Thus

the total number of integers and dummies in L is a multiple of 22
√

logn. Summing
over all split linked lists, the total dummies we used is < S/(2b)+ 3 · 23

√
logn. Thus if

S/b ≥ S/(2b) + 3 · 23
√

logn, i.e., S/(2b) ≥ 3 · 23
√

log n, then we have enough dummies.
The ratio of the dummies to the elements in the split linked list is now 1/(2b). Thus
through one stage the ratio is reduced by at most half. Since there are

√
log n stages

the smallest ratio we have is 1/2
√

logn. Because S ≥ 26
√

logn we can hold S/(2b) ≥
3 · 23

√
logn.

A.4. Sorting each group in linear space. We now show how to sort each
group in linear space. For a short linked list we reveal all remaining bits of the
integers on the list and then sort these integers using comparison sorting [1, 10].

Since there are at most n/210
√

logn very short linked lists (at the beginning of the
last stage), the total number of operations involved in sorting short linked lists is

O((n/210
√

logn) · 27
√

logn · √log n) ≤ O(n√log n/23
√

log n).

The sorting of integers in a group on a long linked list is done directly on integers
on the linked list. For the purpose of sorting we may assume that the number of
integers in a group is a power of 2. Otherwise we simply add some dummy elements
to make it a power of 2 and store these dummy elements along elements of the linked
list so that each memory location on the linked list stores at most two elements.
(This can be realized by an array of two rows.) Note that we use a sorting network
to accomplish the sorting. In order to sort integers on a linked list, an integer on the
linked list has to know the address of the integers that it will compare itself with at
each level of the sorting network. Because the AKS sorting network has O(

√
log n)

levels (because we are sorting at most 27
√

logn integers in the group), and because in
our sorting algorithm we pack O(

√
log n) integers into one word, each word on the
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linked list has to know O(
√
log n) addresses (one address for each level). Let ai be the

word at memory address d(ai) (memory address is an O(log n) bit integer). If ai needs
to be compared with aj at the first level of the sorting network, we need route address
d(ai) to d(aj) and address d(aj) to d(ai). What we need here is a permutation of the
memory addresses, and the permutation is a fixed one (known in advance). Thus we
can route the memory address through the permutation network given in section 2.
Note that a butterfly network has such a “regular” structure that each node (word)
on the linked list can find the address of the nodes it needs to switch with at all
levels of the network through pointer jumping [30]. The regularity we are talking
about here is that each node needs to know the nodes which are 2i, i = 0, 1, 2, . . . ,
positions away from it and this can be done by pointer jumping. The AKS sorting
network, on the other hand, does not have this property. Pointer jumping allows
nodes on a linked list to meet with nodes which are 2i positions (distance) away
along the linked list, i = 0, 1, 2, . . . . Let S be the number of integers in the group.
Then there are S/

√
log n words. Each word has an address to be permuted and the

permutation takes O(
√
log n) time. Thus one permutation uses O(S) operations for

the group (O(n) operations for all linked lists). However, we need to do O(
√
log n)

permutations forO(
√
log n) addresses because the AKS sorting network has that many

levels. And we have to do all these permutations in O(S) operations for the group
(O(n) operations for all linked lists). In order to solve this problem we use a modified
version of our nonconservative sorting algorithm. In each node of the sorting network
we compare

√
log n words with another

√
log n words in parallel instead of comparing

just two words. That is, we use
√
log n · √log n = log n columns in the column sort.

By the blocking property of the linked list these
√
log n words occupy consecutive

memory addresses. Thus for each
√
log n words we need permute only the address of

the first word. When the permutation is done, the addresses of the other words can
be figured out. Therefore the number of operations for each permutation is reduced
to O(S/

√
log n) (O(n/

√
log n) for all linked lists). For all O(

√
log n) permutations

the total number of operations is O(S) (O(n) for all linked lists). In order to keep
O(
√
log n) time for all these O(

√
log n) permutations, we do them in parallel. For the√

log n words, we let the ith word participate in the ith permutation.

The permutations performed among integers after each sort on columns can be
done by routing the integers through the permutation networks given in section 2.
Again, since the butterfly network has such a regular connection structure, a word
can find the word it will switch with through pointer jumping. We therefore showed
that sorting can be done for integers on the linked list.

After sorting we need to move integers to the sorted position. The problem here
is that when we are sorting we are moving

√
log n bits for each integer through the

AKS sorting network. In order for each integer to know the address after sorting the
address which is a log n bit integer should be known to the integer. Note that such an
address has log n bits and we cannot move it through the sorting network (otherwise
it will incur O(n

√
log n) operations in one stage). We cannot move integers through

the sorting network either because each integer has about logn bits (it has fewer bits
in later stages, though) instead of the

√
log n revealed bits.

Since each block has 22
√

logn integers we modify the sorting within each group
first to sort integers in each block and then to sort the whole group. Sorting integers
in each block can be done by Theorem 2.4 and the relative address of the sorted
position of an integer a has only 2

√
log n bits. Therefore the relative address can

be transferred back to a through the AKS sorting network (as we did in the above
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paragraph). Then a can use this address to index into the sorted position. After each
block is sorted the integers with the same revealed bits in a block are in consecutive
memory locations. Because each block has 22

√
logn integers and there are only 2

√
logn

revealed bit patterns, for each bit pattern p we could use a representative integer ap
and let ap find sorted locations (after the sort for the group) for all integers in the
block with bit pattern p. Since the total number of representatives is a fraction of the
total number of integers, the representatives can find the sorted positions by routing
them through the sorting network.

Before the beginning of the last stage (which reveals 10
√
log n bits) we use linked

list ranking [5] to move all integers in a linked list into consecutive memory locations.
Therefore in the last stage the integers to be sorted are based on arrays instead of a
linked list.
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Abstract. We present a randomized algorithm to find a minimum spanning forest (MSF) in an
undirected graph. With high probability, the algorithm runs in logarithmic time and linear work on
an exclusive read exclusive write (EREW) PRAM. This result is optimal w.r.t. both work and parallel
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1. Introduction. We present a randomized parallel algorithm to find a mini-
mum spanning forest (MSF) in an edge-weighted, undirected graph. On an exclusive
read exclusive write (EREW) PRAM [KR90] our algorithm runs in expected logarith-
mic time and linear work in the size of the input; these bounds also hold with high
probability in the size of the input. This result is optimal w.r.t. both work and parallel
time and is the first provably optimal parallel algorithm for this problem under both
measures.

Here is a brief summary of related results. Following the linear-time sequential
MSF algorithm of Karger, Klein, and Tarjan [KKT95] (and building on it) came
linear-work parallel MSF algorithms for the concurrent read concurrent write (CRCW)
PRAM [CKT94, CKT96] and the EREW PRAM [PR97]. The best CRCW PRAM
algorithm known to date [CKT96] runs in logarithmic time and linear work, but
the time bound is not known to be optimal. The best EREW PRAM algorithm
known prior to our work is the result of Poon and Ramachandran which runs in
O(log n log log n2log∗ n) time and linear work. All of these algorithms are randomized.
Recently Chong, Han, and Lam [CHL01] presented a deterministic EREW PRAM
algorithm for MSF, which runs in logarithmic time with a linear number of processors,
and hence with work O((m+n) log n), where n and m are the number of vertices and
edges in the input graph. It was observed by Poon and Ramachandran [PR98] that the
algorithm in [PR97] could be sped up to run in O(log n · 2log∗ n) time and linear work
by using the algorithm in [CHL01] as a subroutine (and by modifying the “contract”
subroutine in [PR97]).

In this paper we improve on the running time of the algorithm in [PR97, PR98]
to O(log n), which is the best possible, and we improve on the algorithm in [CKT96]
by achieving the logarithmic time bound on the less powerful EREW PRAM.
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Our algorithm has a simple 2-phase structure. It makes subroutine calls to the
Chong–Han–Lam (CHL) algorithm [CHL01], which is fairly complex. But outside of
these subroutine calls (which are made to the simplest version of the algorithm in
[CHL01]), the steps in our algorithm are quite straightforward.

In addition to being the first time-work optimal parallel algorithm for MSF, our
algorithm can be used as a simpler alternative to several other parallel algorithms:

1. For the CRCW PRAM we can replace the calls to the CHL algorithm by the
(work inefficient) scheme used in [CKT96]. The resulting algorithm runs in
logarithmic time and linear work but is considerably simpler than the MSF
algorithm in [CKT96] and also is about twice as fast.

2. As modified for the CRCW PRAM, our algorithm is simpler than the linear-
work logarithmic-time CRCW algorithm for connected components given in
[Gaz91].

3. Our algorithm improves on the EREW connectivity and spanning tree algo-
rithms in [HZ96, HZ01] since we compute a minimum spanning tree within
the same time and work bounds. Our algorithm also is simpler than the
algorithms in [HZ96, HZ01].

In the following we use the notation S + T to denote the union of sets S and T ,
and we use S + e to denote the set formed by adding the element e to the set S. We
say that a result holds with high probability (or w.h.p.) in n if the probability that it
fails to hold is less than 1/nc for any constant c > 0.

The rest of this paper is organized as follows. In section 2 we give a high-level
description of our algorithm, which works in two phases. In section 3 we provide the
details of phase 1, whose main purpose is to reduce the number of vertices in the
graph by at least a (log logn)2 factor. Phase 2, given in section 4, finds the MSF
of the reduced-vertex graph using a recursion-free version of the [PR97] algorithm.
In sections 5 and 6 we prove the algorithm runs in logarithmic time and linear work
with high probability. Section 7 gives a simple processor allocation scheme for “tree-
structured” computations (a class containing our MSF algorithm) which is space-
optimal. In section 8 we discuss the adaptability of our algorithm to realistic parallel
models like the bulk-synchronous parallel (BSP) [Val90] and queuing shared memory
models (QSM) [GMR99]. Our conclusions are given in section 9.

2. The high-level algorithm. Our algorithm is divided into two phases along
the lines of the CRCW PRAM algorithm of [CKT96]. In phase 1, the algorithm
reduces the number of vertices in the graph from n to n/k0 vertices, where n is the

number of vertices in the input graph, and1 k0 = (log(2) n)2. To perform this reduction
the algorithm uses the familiar recursion tree of depth log∗ n [CKT94, CKT96, PR97],
which gives rise to O(2log∗ n) recursive calls; however, the time needed per invocation
in our algorithm is well below O(log n/2log∗ n). Thus the total time for phase 1 is
O(log n). We accomplish this by requiring phase 1 to find only a subset of the MSF.
By contracting this subset of the MSF we obtain a graph with O(n/k0) vertices. Phase
2 then uses an algorithm similar to the one in [PR97], but needs no recursion due to
the reduced number of vertices in the graph. Thus phase 2 is able to find the MSF of
the contracted graph in O(log n) time and linear work.

We assume that edge weights are distinct. As always, distinctness can be forced
by ordering the vertices, then ordering identically weighted edges by their end points.

1We use log(r) n to denote the log function iterated r times and log∗ n to denote the minimum
r s.t. log(r) n ≤ 1.
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The high-level algorithm is given in Figure 2.1.

High-Level(G)
(Phase 1) Gt := For all v ∈ G, retain the lightest k0 edges in edge-list(v)

M := Find-k-Min(Gt, log
∗ n)

G′:= Contract all edges in G appearing in M

(Phase 2) Gs:= Sample edges of G′ with prob. 1/
√
k0 = 1/ log(2) n

Fs := Find-MSF(Gs)
Gf := Filter(G′, Fs)
F := Find-MSF(Gf )
Return(M + F )

Fig. 2.1. The high-level algorithm.

Theorem 2.1. With high probability, High-Level(G) returns the MSF of G in
O(log n) time using (m+ n)/ log n processors.

In the following sections we describe and analyze the algorithms for phase 1 and
phase 2 and then present the proof of the main theorem for the expected running
time. We then obtain a high probability bound for the running time and work. When
analyzing the performance of the algorithms in phase 1 and phase 2, we use a time-
work framework, assuming perfect processor allocation. This can be achieved with
high probability (to within a constant factor), using the load balancing scheme in
[HZ96], which requires superlinear space. A linear-space load balancing scheme is
claimed in [HZ01], though it is difficult to extricate the load balancing computation
from the connectivity computation from [HZ01]. In section 7 we give a simple load
balancing scheme based on [HZ96], which uses linear space. Its description is abstract
and fully self-contained.

3. Phase 1. In phase 1, our goal is to contract the input graph G into a graph
with O(n/k0) vertices. We do this by identifying certain edges in the MSF of G and
contracting the connected components formed by these edges. The challenge here is
to identify these edges in logarithmic time and linear work.

Phase 1 achieves the desired reduction in the number of vertices by constructing a
k-Min forest (for k = k0), defined below. This is similar to the algorithm in [CKT96].
However, our algorithm is considerably simpler. We show that a k-Min forest satisfies
certain properties, and we exploit these properties to design a procedure Bor̊uvka-A,
which keeps the sizes of the trees contracted in the various stages of phase 1 very small
so that the total time needed for contracting and processing edges in these trees is
o(log n/2log∗ n). Phase 1 also needs a Filter subroutine, which removes “k-Min heavy”
edges. For this, we show that we can use an MSF verification algorithm on the small
trees we construct to perform this step. The overall algorithm for phase 1, called
Find-k-Min, uses these two subroutines to achieve the stated reduction in the number
of vertices within the desired time and work bounds.

3.1. The k-Min forest. Phase 1 uses the familiar “sample, contract, and
discard edges” framework of earlier randomized algorithms for the MSF problem
[KKT95, CKT94, CKT96, PR97]. However, instead of computing an MSF, we will

construct the k0-Min tree [CKT96] of each vertex (recall that k0 = (log(2) n)2). Con-
tracting the edges in these k0-Min trees will produce a graph with O(n/k0) vertices.

To understand what a k-Min tree is, consider the Dijkstra–Jarnik–Prim minimum
spanning tree algorithm, given in Figure 3.1. This simple algorithm was discovered
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independently by Dijkstra [Dij59], Jarnik [Jar30], and Prim [Prim57], though it is
commonly known as Prim’s algorithm. The edge set k-Min(v) consists of the first k
edges chosen by this algorithm, when started at vertex v. A forest F is a k-Min forest
of G if F ⊆ MSF(G) and for all v ∈ G, k-Min(v) ⊆ F .

Dijkstra–Jarnik–Prim(G)
S := {v} (choose an arbitrary starting vertex v)
T := ∅
Repeat until T contains the MSF of G

Choose minimum weight edge (a, b) s.t. a ∈ S, b �∈ S
T := T + (a, b)
S := S + b

Fig. 3.1. The Dijkstra–Jarnik–Prim algorithm.

We define PT (x, y) to be the set of edges on the path from x to y in tree T , and
maxweight{A} be the maximum weight in a set of edges A.

For any forest F in G, define an edge (a, b) in G to be F -heavy if weight(a, b) >
maxweight{PF (a, b)}, and to be F -light otherwise. If a and b are not in the same
tree in F , then (a, b) is F-light.

This notion of being F -heavy or F -light can be generalized as follows. Suppose
F is a k-Min forest for some graph. We will say an edge (a, b) (not necessarily in the
graph) is k-Min-light if F is not a k-Min forest for the graph F+(a, b), and k-Min-heavy
otherwise. An equivalent definition for k-Min-lightness and heaviness (which is more
suited to proofs) is this: Let M be the k-Min tree of v. We define weightkv(w) to be
maxweight{PM (v, w)} if w appears in M , otherwise weightkv(w) = maxweight{M}.
An edge (a, b) is then k-Min-light iff weight(a, b) ≤ max{weightka(b), weightkb (a)}.
Notice that weightkv(w) implicitly depends on the underlying graph, which if not
clear from the context will be stated explicitly.

Fact 3.1. The two definitions given for “k-Min-light” (and “k-Min-heavy”) are
equivalent.

We claimed earlier that k-Min-lightness is a generalization of F -lightness. To see
this, set k = n− 1 and observe that an edge is k-Min-light iff it is F -light.

Claim 3.1. If an edge (u, v) is k1-Min-heavy w.r.t. G1, it also is k2-Min-heavy
w.r.t. G2, where k2 ≤ k1, V (G1) = V (G2), and E(G1) ⊆ E(G2).

Proof. This follows from two observations: weightkv(w) is nondecreasing in k, and
weightkv(w) is nonincreasing as new edges are added to the underlyinggraph.

In other words, whenever an edge is found to be k-Min-heavy for k ≥ k0 and w.r.t.
some subset of the original graph, this is a certificate that the edge is k0-Min-heavy
in the original graph.

Claim 3.2. For any k, weightkv(w) ≤ maxweight{PMSF (v, w)}.
Proof. There are two cases: when w falls inside the k-Min tree of v and when

it falls outside. If w lies inside k-Min(v), then weightkv(w) must be the same as
maxweight{PMSF (v, w)} since k-Min(v) ⊆MSF . Now suppose that w falls outside
k-Min(v) and weightkv(w) > maxweight{PMSF (v, w)}. There must be a path from
v to w in the MSF consisting of edges lighter than maxweight{k-Min(v)}. However,
at each step in the Dijkstra–Jarnik–Prim algorithm, at least one edge in PMSF (v, w)
is eligible to be chosen in that step. Since w �∈ k-Min(v), the edge with weight
maxweight{k-Min(v)} is never chosen, a contradiction.



OPTIMAL PARALLEL MINIMUM SPANNING FOREST ALGORITHM 1883

Lemma 3.1. Let H be a graph formed by sampling each edge in graph G with
probability p. The expected number of edges in G that are k-Min-light w.r.t. H for
any k is less than n/p.

Proof. We show that any edge that is k-Min-light in G also is F -light where F is
the MSF of H. The lemma then follows from the sampling lemma of [KKT95] which
states that the expected number of F -light edges in G is less than n/p. Let us look at
any k-Min-light edge (v, w). By Claim 3.2, weightkv(w) ≤ maxweight{PMSF (v, w)},
the measure used to determine F -lightness. Thus the criterion for k-Min-lightness,
max{weightkv(w), weightkw(v)}, must also be no more than maxweight{PMSF (v, w)}.
Restating this, if (v, w) is k-Min-light, it must be F -light as well.

We will use the above property of a k-Min forest to develop a procedure Find-k-
Min(G, l). It takes as input the graph G and a suitable positive integer l, and returns
a k0-Min forest of G. For l = log∗ n, it runs in logarithmic time and linear work. In
the next few sections we describe some basic steps and procedures used in Find-k-Min,
and then present and analyze this main procedure of phase 1.

Since phase 1 is concerned only with the k0-Min tree of each vertex, it suffices
to retain only the lightest k0 edges incident on each vertex. Hence, as stated in
the first step of phase 1 in algorithm High-Level from section 2, we will discard all
but the lightest k0 edges incident on each vertex since we will not need them until
phase 2. This step can be performed in logarithmic time and linear work by a simple
randomized algorithm that selects a sample of size

√|L| from each adjacency list L,
sorts this sample, and then uses this sorted list to narrow the search for the k0th
smallest element to a list of size O(|L|3/4).

3.2. Bor̊uvka-A steps. In a basic Bor̊uvka step [Bor26], each vertex chooses
its minimum weight incident edge, inducing a number of disjoint trees. All such trees
are then contracted into single vertices, and the useless edges are discarded. We will
call edges connecting two vertices in the same tree internal and all others external.
All internal edges are useless, and if multiple external edges join the same two trees,
all but the lightest are useless.

Our algorithm for phase 1 uses a modified Bor̊uvka step in order to reduce the
time bound to o(log n) per step. All vertices are classified as being either live or dead;
only live vertices participate in modified Bor̊uvka steps. After such a step, vertex
v’s parent pointer is p(v) = w, where (v, w) is the edge of minimum weight incident
on v. In addition, each vertex has a threshold which keeps the weight of the lightest
discarded edge adjacent to v. The algorithm discards edges known not to be in the k0-
Min tree of any vertex. The threshold variable guards against vertices choosing edges
which may not be in the MSF. A dead vertex v has the useful property (shown below)
that for any edge e in k0-Min(v), weight(e) ≤ weight(v, p(v)), thus dead vertices need
not participate in any more Bor̊uvka steps.

It is well known that a Bor̊uvka step generates a forest of pseudo-trees, where
each pseudo-tree is a tree together with one extra edge that forms a cycle of length 2.
In our algorithm we will assume that a Bor̊uvka step also removes one of the edges in
the cycle so that it generates a collection of rooted trees.

The following three claims refer to any tree resulting from a (modified) Bor̊uvka
step. Their proofs are straightforward and are omitted.

Claim 3.3. The sequence of edge weights encountered on a path from v to root(v)
is monotonically decreasing.

Claim 3.4. If depth(v) = d, then d-Min(v) consists of the edges in the path from
v to root(v). Furthermore, the weight of (v, p(v)) is greater than any other edge in
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d-Min(v).

Claim 3.5. If the minimum-weight incident edge of u is (u, v), k-Min(u) ⊆
(k-Min(v) + (u, v)).

Claim 3.6 may not be as obvious. A similar claim was proved in [CHL01].

Claim 3.6. Let T be a tree induced by a Bor̊uvka step, and let T ′ be a subtree of
T . If e is the minimum weight incident edge on T , then the minimum weight incident
edge on T ′ is either e or an edge of T .

Proof. Suppose, on the contrary, that the minimum weight incident edge on T ′ is
e′ �∈ T , and let v and v′ be the end points of e and e′, which are inside T . Consider the
paths P (P ′) from v (v′) to the root of T . By Claim 3.3, the edge weights encountered
on P and P ′ are monotonically decreasing. There are two cases. If T ′ contains some,
but not all of P ′, then e′ must lie along P ′, a contradiction. If T ′ contains all of P ′, but
only some of P , then some edge e′′ ∈ P is adjacent to T ′. Then w(e′) < w(e′′) < w(e),
also a contradiction.

The procedure Bor̊uvka-A(H, l, F ), given in Figure 3.2, returns a contracted ver-
sion of H with the number of live vertices reduced by a factor of l. Edges designated
as parent pointers, which are guaranteed to be in the MSF of H, are returned in F .
Initially F = ∅.

Bor̊uvka-A(H, l, F )
Repeat log l times: (log l modified Bor̊uvka steps)

F ′ := ∅
For each live vertex v

Choose min. weight edge (v, w)
(1) If weight(v, w) > threshold(v), v becomes dead, stop else

p(v) := w
F ′ := F ′ + (v,p(v))

Each tree T induced by edges of F ′ is one of two types:
If root of T is dead, then

(2) Every vertex in T becomes dead (Claim 3.5)
If T contains only live vertices,

(3) If depth(v) ≥ k0, v becomes dead (Claim 3.4)
Contract the subtree of T made up of live vertices.
The resulting vertex is live, has no parent pointer, and
keeps the smallest threshold of its constituent vertices.

F := F + F ′

Fig. 3.2. The Bor̊uvka-A procedure.

Lemma 3.2. If Bor̊uvka-A designates a vertex as dead, its k0-Min tree has already
been found.

Proof. Vertices make the transition from live to dead only at the lines indicated
by a number. By our assumption that we discard only edges that cannot be in the k0-
Min tree of any vertex, if the lightest edge adjacent to any vertex has been discarded,
we know its k0-Min tree has already been found. This covers line (1). The correctness
of line (2) follows from Claim 3.5. Since (v, p(v)) is the lightest incident edge on v,
k0-Min(v) ⊆ k0-Min(p(v)) + (v, p(v)). If p(v) is dead, then v can also be called dead.
Since the root of a tree is dead, vertices at depth one are dead, implying vertices at
depth two are dead, and so on. The validity of line (3) follows directly from Claim
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3.4. If a vertex finds itself at depth ≥ k0, its k0-Min tree lies along the path from the
vertex to its root.

Lemma 3.3. After a call to Bor̊uvka-A(H, k0 + 1, F ), the k0-Min tree of each
vertex is a subset of F .

Proof. By Lemma 3.2, dead vertices already satisfy the lemma. After a single
modified Bor̊uvka step, the set of parent pointers associated with live vertices induce
a number of trees. Let T (v) be the tree containing v. We assume inductively that
after log i� modified Bor̊uvka steps, the (i−1)-Min tree of each vertex in the original
graph has been found (this is clearly true for i = 1). For any live vertex v let (x, y) be
the minimum weight edge s.t. x ∈ T (v), y �∈ T (v). By the inductive hypothesis, the
(i− 1)-Min trees of v and y are subsets of T (v) and T (y), respectively. By Claim 3.6,
(x, y) is the first external edge of T (v) chosen by the Dijkstra–Jarnik–Prim algorithm,
starting at v. As every edge in (i−1)-Min(y) is lighter than (x, y), (2(i−1)+1)-Min(v)
is a subset of T (v) ∪ {(x, y)} ∪ T (y). Since edge (x, y) is chosen in the (log i�+ 1)st
modified Bor̊uvka step, (2i− 1)-Min(v) is a subset of T (v) after log i�+ 1 = log 2i�
modified Bor̊uvka steps. Thus after log(k0 + 1) steps, the k0-Min tree of each vertex
has been found.

Lemma 3.4. After b modified Bor̊uvka steps, the length of any edge list is bounded

by k0
k0

b

.

Proof. This is true for b = 0. Assuming the lemma holds for b − 1 modified

Bor̊uvka steps, the length of any edge list after that many steps is ≤ k0
k0

b−1

. Since
we contract only trees of height < k0, the length of any edge list after b steps is

< (k0
k0

b−1

)k0 = k0
k0

b

.

It is shown in the next section that our algorithm deals only with graphs that are
the result of O(log k0) modified Bor̊uvka steps. Hence the maximum length edge list

is k0
k0

O(log k0)

.

The costliest step in Bor̊uvka-A is calculating the depth of each vertex. After the
minimum weight edge selection process, the root of each induced tree will broadcast
its depth to all depth 1 vertices, which in turn broadcast to depth 2 vertices, etc.
Once a vertex knows it is at depth k0 − 1, it may stop, letting all its descendents
infer that they are at depth ≥ k0. Interleaved with each round of broadcasting is a
processor allocation step. We account for this cost separately in section 7.

Lemma 3.5. Let G1 have m1 edges. Then a call to Bor̊uvka-A(G1, l, F ) can be

executed in time O(k0
O(log k0) + log l · log n · (m1/m)) with (m+n)/ log n processors.

Proof. Let G1 be the result of b modified Bor̊uvka steps. By Lemma 3.4, the
maximum degree of any vertex after the ith modified Bor̊uvka step in the current call

to Bor̊uvka-A is k0
k0

b+i

. Let us now look at the required time of the ith modified

Bor̊uvka step. Selecting the minimum cost incident edge takes time O(log k0
k0

b+i

),

while the time to determine the depth of each vertex is O(k0 · log k0
k0

b+i

). Summing

over the log l modified Bor̊uvka steps, the total time is bounded by
∑log l

i k0
O(b+i) =

k0
O(b+log l). As noted above, the algorithm performs O(log k0) modified Bor̊uvka steps

on any graph, hence the time is k0
O(log k0).

The work performed in each modified Bor̊uvka step is linear in the number of
edges. Summing over log l such steps and dividing by the number of processors, we
arrive at the second term in the stated running time.

3.3. Filtering edges via the Filter forest. We will maintain, concurrent
with the operation of Bor̊uvka-A, a structure called the Filter forest. This collec-
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tion of rooted trees records which vertices merged together and the edge weights
involved. (This structure appeared first in [K97].) If v is a vertex of the original
graph or a new vertex resulting from contracting a set of edges, there is a corre-
sponding vertex φ(v) in the Filter forest. During a Bor̊uvka step, if a vertex v
becomes dead, a new vertex x is added to the Filter forest, as well as a directed
edge (φ(v), x) having the same weight as (v, p(v)). If live vertices v1, v2, . . . , vj are
contracted into a live vertex v, a vertex φ(v) is added to the Filter forest in addi-
tion to edges (φ(v1), φ(v)), (φ(v2), φ(v)), . . . , (φ(vj), φ(v)), having the weights of edges
(v1,p(v1)), (v2,p(v2)), . . . , (vj ,p(vj)), respectively. We make the simple observation
that the edge weights on the path from φ(u) to root(φ(u)) are exactly the edge weights
of the edges chosen by u (or its representative) in previous Bor̊uvka steps.

It is shown in [K97] that the heaviest weight in the path from u to v in the MSF
is the same as the heaviest weight in the path from φ(u) to φ(v) in the Filter forest
(if there is such a path). We extend this scheme to handle k-Min-lightness.

Let Pf (y, z) be the path from y to z in the Filter forest. If φ(u) and φ(v) are in
the same Filter tree, then let

wu(v) = wv(u) = maxweight{Pf (φ(u), φ(v))}.
If φ(u) and φ(v) are not in the same Filter tree, then let

wu(v) = maxweight{Pf (φ(u), root(φ(u)))},
wv(u) = maxweight{Pf (φ(v), root(φ(v)))}.

In a call to Filter(H,F ) (from the procedure Find-k-Min, section 3.4), we ex-
amine each edge e = (u, v) in H − F and remove or filter e from H if weight(e) >

max{wu(v), wv(u)}. Notice that if wu(v) = weight
k0
u (v) for all v, then we will filter

out edges precisely when they are k0-Min-heavy. We show below that using wu(v)

in lieu of weight
k0
u (v) causes no problems: we retain all k0-Min-light edges without

retaining too many edges in total.
To implement the Filter procedure we use a slight modification to the O(log n)-

time, O(m)-work MSF verification algorithm of [KPRS97]. If e = (u, v) is the
edge being tested and φ(u), φ(v) are not in the same Filter tree, we test the pairs
(φ(u), root(φ(u)) and (φ(v), root(φ(v)) instead and delete e if both of these pairs are
identified to be deleted. This computation actually takes time O(log r) where r is the
size of the largest tree formed.

Lemmas 3.6 and 3.7, proved below, establish the correctness of the filtering pro-
cedure.

Lemma 3.6. Suppose b modified Bor̊uvka steps were applied to a graph; then for
any vertex u and some k ≥ min{k0, 2

b − 1},
maxweight{Pf (φ(u), root(φ(u)))} = maxweight{k-Min(v)}.

Before proving this we first prove a necessary technical lemma.
Lemma 3.7. Let T be a tree of MSF edges after an arbitrary number of Bor̊uvka

steps and let T ′ = T ∪ {(v, w)}, where (v, w), v ∈ T , w �∈ T is the edge chosen by T
in the next Bor̊uvka step. For any u ∈ T , the maximum weight edge in PT ′(u,w) was
chosen by the tree containing u in some Bor̊uvka step.

Proof. Let T be formed after b Bor̊uvka steps. Suppose, without loss of generality,
that the lemma is falsified for the first time after the bth Bor̊uvka step. That is, the
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heaviest edge in PT ′(u,w), say f , was chosen in the bth step. Let g �= f be the edge
chosen by u or u’s representative tree in this step. If f lies between g and the root of
T , then by Claim 3.3 it is lighter than g, and similarly, if it lies between vertex v and
the root of T , then it is lighter than (v, w). Both cases are contradictions.

We are now ready to prove Lemma 3.6.
Proof. Let e(u, b) be the maximum weight edge chosen by u’s tree in the first b

Bor̊uvka steps. Assume inductively that weight(e(u, b − 1)) = maxweight{k(u, b −
1)-Min(u)}, where k(u, b − 1) ≥ 2b−1 − 1 if u is live, k(u, ·) ≥ k0 if u is dead,
and k(u, b − 1)-Min(u) is contained in a tree of MSF edges after b − 1 Bor̊uvka
steps. If u is dead, it already satisfies the inductive claim for b Bor̊uvka steps,
so assume u is alive. Let (z1, z2) be the edge chosen by the tree containing u in
the bth Bor̊uvka step and let P be the MSF path connecting k(u, b − 1)-Min(u)
to z1—see Figure 3.3 for a schematic diagram. We have that weight(z1, z2) >
weight(e(z2, b − 1)), because (z1, z2) was not already chosen by z2 in the first b − 1
steps, and maxweight{e(u, b − 1) + P + (z1, z2)} = weight(e(u, b)). This is true be-
cause weight(e(u, b)) = maxweight{e(u, b−1), (z1, z2)} > maxweight{P}, where the
equality is by definition and the inequality is by Lemma 3.7. Let D be the subgraph

D = k(u, b− 1)-Min(u) + P + (z1, z2) + k(z2, b− 1)-Min(z2)

and k(u, b) be the smallest number such that k(u, b)-Min(u) ⊇ D. It follows that
e(u, b) is the heaviest edge in k(u, b)-Min(u) because when the Dijkstra–Jarnik–Prim
algorithm is started from u, until all edges from D are chosen, there is some eligible
edge from D weighing no more than the edge e(u, b).

P

u z z1 2

k(u,b−1)−Min(u) k(z  , b−1)−Min(z  )22

Fig. 3.3. The larger ovals represent the trees of MSF edges after b−1 Bor̊uvka steps containing
u and z2, respectively. The smaller ovals are the k(u, b−1)-Min(u) tree and the k(z2, b−1)-Min(z2)
tree.

If u and z2 remain live, then k(u, b) ≥ 2 · (2b−1 − 1) + 1 ≥ 2b − 1. On the other
hand, if u becomes dead after the bth Bor̊uvka step, then (z1, z2) is the heaviest edge
at the end of a chain C of length at least k0 and k(u, b) ≥ 2b−1 − 1 + |C| ≥ k0. In
either case our inductive claim is proved for b Bor̊uvka steps.

Lemma 3.8. Suppose the Filter procedure is called only on graphs after performing
at least log(k0 + 1) Bor̊uvka steps. Then no k0-Min-light edges are filtered, and all
unfiltered edges are k-Min-light for some k ≥ k0.

Proof. Consider an edge (u, v) examined by the Filter procedure. Note that if
φ(u) is in the same Filter tree as φ(v), by King’s observation [K97], wu(v) = wv(u) =
maxweight{PMSF (u, v)}. If weight(u, v) is greater than wu(v), then by Claim 3.1
(u, v) is k0-Min-heavy and may be safely filtered. On the other hand, if weight(u, v)
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is less than wu(v), then (u, v) is k-Min-light for k = n. We therefore focus on the case
when φ(u) and φ(v) are in different Filter trees.

By Lemma 3.6, for some k1, k2 we have that wu(v) = maxweight{k1-Min(u)} and
wv(u) = maxweight{k2-Min(v)}. Since maxweight{k-Min(u)} is a nondecreasing
function of k, if (u, v) is not filtered out, then by Claim 3.1 it must be k3-Min-light
where k3 = max{k1, k2}. On the other hand, if (u, v) is filtered out, then it must be
k4-Min-heavy where k4 = min{k1, k2}. Because the Filter procedure is applied only
after performing at least log(k0 + 1) Bor̊uvka steps, by Lemma 3.6 k3, k4 ≥ k0.

Remark. Filter is responsible for updating the threshold variables—see section 3.2.
When an edge (u, v) is discarded, threshold(u) is updated to reflect the weight of the
lightest discarded edge incident to u; threshold(v) is updated similarly.

3.4. Finding a k-Min forest. We are now ready to present the main procedure
of phase 1, Find-k-Min, which is given in Figure 3.4. (Recall that the initial call,
given in section 2, is Find-k-Min(Gt, log

∗ n), where Gt is the graph obtained from G
by removing all but the k0 lightest edges on each adjacency list.)

Find-k-Min(H, i)

Hc := Bor̊uvka-A(H, (log(i−1) n)4, F )
if i = 3, return(F )

Hs := sample edges of Hc with prob. 1/(log(i−1) n)2

Fs := Find-k-Min(Hs, i− 1)
Hf := Filter(Hc, Fs)
F ′ := Find-k-Min(Hf , i− 1)
Return(F + F ′)

Fig. 3.4. The Find-k-Min procedure.

H is a graph with some vertices possibly marked as dead; i is a parameter that
indicates the level of recursion (which determines the number of Bor̊uvka steps to be
performed and the sampling probability). Lemmas 3.9 and 3.10 establish the correct-
ness of this procedure. The performance of Find-k-Min is analyzed in section 3.5.

Lemma 3.9. Let H ′ be a graph formed by sampling each edge in H with probability
p, and let F be a k0-Min forest of H ′ (derived by at least log(k0 + 1) Bor̊uvka steps).
The call to Filter(H,F ) returns a graph containing a k0-Min forest of H, whose
expected number of edges is no more than n/p.

Proof. By Claim 3.1, any edge in the k0-Min forest of H is k0-Min-light w.r.t.
H ′. By Lemma 3.8, no edges k0-Min-light w.r.t. H ′ are filtered; this establishes the
first part of the lemma. By the second part of Lemma 3.8, all edges not filtered are
k-Min-light w.r.t. H ′ for some k. According to Lemma 3.1, the number of edges in
H that are k-Min-light w.r.t. H ′ for any k is no more than n/p. This establishes the
rest of the lemma.

Lemma 3.10. The call Find-k-Min(Gt, log
∗ n) returns a set of edges that includes

the k0-Min tree of each vertex in Gt.

Proof. The proof is by induction on i. For i = 3 (the base case) Find-k-Min(H, 3)
returns F , which by Lemma 3.3 contains the k0-Min tree of each vertex. Now assume
inductively that Find-k-Min(H, i − 1) returns the k0-Min tree of H. Consider the
call Find-k-Min(H, i). By the induction assumption the call to Find-k-Min(Hs, i− 1)
returns the k0-Min tree of each vertex in Hs. By Lemma 3.9, the call to Filter(Hc, Fs)
returns in Hf a set of edges that contains the k0-Min trees of all vertices in Hc.
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Finally, by the inductive assumption, the set of edges returned by the call to Find-
k-Min(Hf , i − 1) contains the k0-Min trees of all vertices in Hf . Since F ′ contains
the (log(i−1) n)-Min tree of each vertex in H, and Find-k-Min(H, i) returns F + F ′,
it returns the edges in the k0-Min tree of each vertex in H.

3.5. Performance of find-k-Min. In this section we bound the time and work
required by the Find-k-Min procedure.

Claim 3.7. The following invariants are maintained at each call to Find-k-Min.
The number of live vertices in H ≤ n/(log(i) n)4, and the expected number of edges

in H ≤ m/(log(i) n)2, where m and n are the number of edges and vertices in the
original graph.

Proof. These hold for the initial call, when i = log∗ n. By Lemma 3.3, the
contracted graph Hc has ≤ n/(log(i−1) n)4 live vertices. Since Hs is derived by sam-

pling edges with probability 1/(log(i−1) n)2, the expected number of edges in Hs is

≤ m/(log(i−1) n)2, maintaining the invariants for the first recursive call.

By Lemma 3.1, the expected number of edges in Hf ≤ n(log(i−1) n)2

(log(i−1) n)4
= n

(log(i−1) n)2
.

Since Hf has the same number of vertices as Hc, both invariants are maintained for
the second recursive call.

Lemma 3.11. Find-k-Min(Gt, log
∗ n) runs in expected O(log n) time and O(m)

work.

Proof. Since recursive calls to Find-k-Min proceed in a sequential fashion, the
total running time is the sum of the local computation performed in each invocation.
Aside from randomly sampling the graph, the local computation consists of calls to
Filter and Bor̊uvka-A.

In a given invocation of Find-k-Min, the number of Bor̊uvka steps performed on
graph H is the sum of all Bor̊uvka steps performed in all ancestral invocations of

Find-k-Min, i.e.,
∑log∗ n

i=3 O(log(i) n), which is O(log(3) n). From our bound on the
maximum length of edge lists (Lemma 3.4), we can infer that the size of any tree

in the Filter forest is k0
k0

O(log(3) n)

, thus the time needed for each modified Bor̊uvka

step and each Filter step is k0
O(log(3) n). Summing over all such steps, the total time

required is o(log n).

The work required by the Filter procedure and each Bor̊uvka step is linear in the
number of edges. By Claim 3.7, the expected number of edges in an invocation at
level i is O(m/(log(i) n)2). Since there are O(log(i) n) Bor̊uvka steps performed in this

invocation, the work required is O(m/ log(i) n). There are 2log∗ n−i invocations with
depth parameter i; therefore the total work is given by

∑log∗ n
i=3 2log∗ n−iO(m/ log(i) n),

which is O(m).

4. Phase 2. Recall the phase 2 portion of our overall algorithm High-Level:

(the number of vertices in Gs is ≤ n/k0)

Gs := Sample edges of G′ with prob. 1/
√
k0 = 1/ log(2) n

Fs := Find-MSF(Gs)
Gf := Filter(G′, Fs)
F := Find-MSF(Gf )

The procedure Filter(G,F ) [KPRS97] returns the F -light edges of G. The pro-

cedure Find-MSF(G1), described below, finds the MSF of G1 in O(m1

m log n log(2) n)
time, where m1 is the number of edges in G1.
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The graphs Gs and Gf each have expected m/
√
k0 = m/ log(2) n edges since

Gs is derived by sampling each edge with probability 1/
√
k0, and, by the sampling

lemma of [KKT95], the expected number of edges in Gf is (m/k0)/(1/
√
k0) = m/

√
k0.

Because we call Find-MSF on graphs having expected size O(m/ log(2) n), each call
takes O(log n) time.

4.1. The Find-MSF procedure. The procedure Find-MSF(H), given in Fig-
ure 4.1, is similar to previous randomized parallel algorithms except it uses no recur-
sion. Instead, a separate BaseCase algorithm is used in place of recursive calls. We
also use slightly different Bor̊uvka steps in order to reduce the work. These modifica-
tions are inspired by [PR97] and [PR98].

As its BaseCase, we use the simplest version of the algorithm of Chong, Han,
and Lam [CHL01], which takes time O(log n) using (m + n) log n processors. By
guaranteeing that it is called only on graphs of expected size O(m/ log2 n), the running
time remains O(log n) with (m+n)/ log n processors. An adaptation of our algorithm
to the CRCW PRAM leads to one roughly twice as fast as [CKT96]. Because of a
more efficient phase 1 we can afford to make only four BaseCase calls in phase 2,
rather than eight calls as in [CKT96].

Find-MSF(H)
Hc := Bor̊uvka-B(H, log4 n, F )
Hs := Sample edges of Hc with prob. p = 1/ log2 n
Fs := BaseCase(Hs)
Hf := Filter(Hc, Fs)
F ′ := BaseCase(Hf )
Return(F + F ′)

Fig. 4.1. The Find-MSF procedure.

After the call to Bor̊uvka-B, the graph Hc has < m/ log4 n vertices. Since Hs is
derived by sampling the edges ofHc with probability 1/ log2 n, the expected number of
edges to the first BaseCase call is O(m/ log2 n). By the sampling lemma of [KKT95],
the expected number of edges to the second BaseCase call is < (m/ log4 n)/(1/ log2 n),
thus the total time spent in these subcalls is O(log n). Assuming the size of H

conforms to its expectation of O(m/ log(2) n), the calls to Filter and Bor̊uvka-B also
take O(log n) time, as described below.

The Bor̊uvka-B(H, l, F ) procedure, shown in Figure 4.2, returns a contracted ver-
sion of H with O(m/l) vertices. It uses a simple growth control schedule, designating
vertices as inactive if their degree exceeds l. We can determine if a vertex is inactive
by performing list ranking on its edge list for log l time steps. If the computation has
not stopped after this much time, then its edge list has length > l.

The last step takes O(log n) time; all other steps take O(log l) time, as they deal
with edge lists of length O(l). Consequently, the total running time is O(log n +
log2 l). For each iteration of the main loop, the work is linear in the number of edges.

Assuming the graph conforms to its expected size of O(m/ log(2) n), the total work is
linear. The edge-plugging technique as well as the idea of a growth control schedule
were introduced by Johnson and Metaxas [JM92].
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Bor̊uvka-B(G, l, F )
Repeat log l times

For each vertex, let it be inactive if its edge list
has more than l edges, and active otherwise.
For each active vertex v

choose min. weight incident edge e
F := F + e

Using the edge-plugging technique, build a
single edge list for each induced tree (O(1) time)

Contract all trees of inactive vertices

Fig. 4.2. The Bor̊uvka-B procedure.

5. Proof of Theorem 2.1. The set of edges M returned by Find-k-Min is a
subset of the MSF of G. By contracting the edges of M to produce G′, the MSF of G
is given by the edges of M together with the MSF of G′. The call to Filter produces
graph Gf by removing from G′ edges known not to be in the MSF. Thus the MSF of
Gf is the same as the MSF of G′. Assuming the correctness of Find-MSF, the set of
edges F constitutes the MSF of Gf , and thus M + F is the MSF of G.

Earlier we have shown that each step of High-Level requires O(log n) time and
work linear in the number of edges. In the next two sections we show that w.h.p, the
number of edges encountered in all graphs during the algorithm is linear in the size
of the original graph.

6. High probability bounds. Consider a single invocation of Find-k-Min(H, i),
where H has m′ edges and n′ vertices. We want to place likely bounds on the number
of edges in each recursive call to Find-k-Min, in terms of m′ and i.

For the first recursive call, the edges of H are sampled independently with proba-
bility 1/(log(i−1) n)2. Call the sampled graph H1. By applying a Chernoff bound
[AS00], the probability that the size of H1 is less than twice its expectation is

1− exp(−Ω(m′/(log(i−1) n)2)).

Before analyzing the second recursive call, we recall the sampling lemma of
[KKT95] which states that the number of F -light edges is dominated by the negative
binomial distribution with parameters n′ and p, where p is the sampling probability,
and F is the MSF of H1. As we saw in the proof of Lemma 3.1, every k-Min-light edge
must also be F -light. Using this observation, we will analyze the size of the second
recursive call in terms of F -light edges and conclude that any bounds we attain apply
equally to k-Min-light edges.

We now bound the likelihood that more than twice the expected number of edges
are F -light. This is the probability that in a sequence of more than 2n′/p flips of a
coin, with probability p of heads, the coin comes up heads less than n′ times (since
each edge selected by a coin toss of heads goes into the MSF of the sampled graph).
By applying a Chernoff bound, this is exp(−Ω(n′)). In this particular instance of

Find-k-Min, n′ ≤ m/(log(i−1) n)4 and p = 1/(log(i−1) n)2, so the probability that

fewer than 2m/(log(i−1) n)2 edges are F -light is 1− exp(−Ω(m/(log(i−1) n)4)).

Given a single invocation of Find-k-Min(H, i), we can bound the probability that

H has more than 2log∗ n−im/(log(i) n)2 edges by exp(−Ω(m/(log(i) n)4)). This follows
from applying the argument used above to each invocation of Find-k-Min from the
initial call to the current call at depth log∗ n − i. Summing over all recursive calls
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to Find-k-Min, the total number of edges (and thus the total work) is bounded by∑log∗ n
i=3 22 log∗ n−2im/(log(i) n)2 = O(m) with probability 1−exp(−Ω(m/(log(3) n)4)).

The probability that phase 2 uses O(m) work is 1−exp(−Ω(m/ log2 n)). We omit
the analysis as it is similar to the analysis for phase 1.

The probability that our bounds on the time and total work performed by the
algorithm fail to hold is exponentially small in the input size. However, this assumes
perfect processor allocation. In the next section we show that the probability that
work fails to be distributed evenly among the processors is less than 1/mω(1). Thus
the overall probability of failure is very small, and the algorithm runs in logarithmic
time and linear work w.h.p.

7. Processor allocation. As stated in section 2, the processor allocation needed
for our algorithm can be performed by a fairly simple scheme given in [HZ96] that takes
logarithmic time and linear work overall but uses superlinear space. An algorithm
claimed in [HZ01] uses linear space; however, it is not given a clear description in
[HZ01] and, more seriously, it makes heavy use of a nontrivial linked-list based sorting
algorithm of Goodrich and Kosaraju [GK96]. In this section we give a self-contained
description of a processor allocation scheme for “tree structured” computations which
does not use any sorting subroutine.

Let M be a set of m processes which perform some computation. So long as the
computation is tree structured, in the sense given below, its exact nature is unimpor-
tant. At any point in the computation there is a set D ⊆ M of dead processes and
a stack S = (S0, S1, . . . , Sd), where S0 = M and Sj+1 ⊆ Sj . In the ith round of
computation, the stack is potentially changed and some set Ri ⊆M of the processes
compute for ti time steps. Round i follows these steps:

1. Either (a) S is unchanged, Ri := Sd −D, or
(b) S := (S0, . . . , Sd, Sd+1), Sd+1 ⊆ Sd, Ri := Sd+1 −D, or
(c) S := (S0, . . . , Sd−1), Ri := Sd−1 −D.

2. The Ri do something for ti ≥ 1 steps.
3. D := D + {some subset of Ri}.
This is a rather technical characterization of a class of algorithms. Informally,

any recursive algorithm fits into this scheme if the active processes in one recursive
call are a subset of the active processes from its parent call.

Let p ≤ m be the number of EREW processors available. Ideally, we would like
to simulate round i in O(Ri/p�) time (i.e., with zero overhead). Like [HZ96] our
overhead is nonconstant but usually negligible.

Theorem 7.1. For some tree computation, let r be the total number of rounds,
T =

∑
i ti be the total time for all rounds, W =

∑
i ti · |Ri| be the total work for all

rounds, dmax be the maximum depth of the stack, and q = Ω(log(mr)) be a parameter.
Then with probability 1−e−Ω(q) the computation of m processes can be simulated with
p EREW processors in O(T + W/p + r log q + log p) time. The space required is
O(m + p · dmax). It is assumed there is some (easily computable) bound ri such that
ri ≥ |Ri| and ri = O(|Ri|).

In our MSF algorithm the number of rounds r = O(2log∗ nk0 log k0) = O(log3 log n),
the time T = O(log n), work W = O(m), and dmax = O(log3 log n). Plugging
these values into Theorem 7.1, our MSF algorithm can be simulated in O(m/p +
log n + log q log3 log n) time with probability at least 1 − e−Ω(q), using space O(m +
p log3 log n). Since p < m/ log n, the space is linear in m. We could set q =
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Θ(log(mr)) = Θ(logn) and achieve a polynomially small error probability or set

q as high as 2logn/ log3 logn for a much smaller error probability. Also, the “dead pro-
cesses” correspond to those edges known to be k0-Min-heavy (in phase 1) or not in
the MSF at all (in phase 2).

As in [HZ96] we organize the processes into blocks of size b = qm/p (q processors
per block) as follows. We imagine placing the processes deterministically into an
m/b × b array, then performing a random rotation on each column. The processes
that end up in the same row are in the same block. Computing this initial allocation
is easily done in O(m/p + log p) time. Since processors from different blocks do not
communicate we will isolate our discussion to a single arbitrary block. Let B denote
the set of processes in this block; initially |B| = b.

We maintain the invariant that the block is represented as a linked list L =
Ld, Ld−1, . . . , L0, where Ld = Sd − D, and, in general, Lj = Sj − Sj+1 − D. That
is, L = B − D: no dead processes appear in this list, and Lj lists those processes
that do not appear higher up in the stack. We also maintain that for all j, Lj has
been fairly allocated. What this means is that the 1th processor (0 ≤ 1 < q) assigned

to this block “owns” a sublist L�,j of Lj extending from element 1 |Lj |
q � to element

(1+ 1) |Lj |
q � − 1 (if they exist). We assume processor 1 has a pointer to L�,j . (These

pointers contribute the pdmax term to the space in Theorem 7.1. The other space
requirements are linear in m.)

Suppose in round i, step 1 is of type (a)—the stack is not altered. Then Ri∩L =
Ld and we already have a fair allocation of Ld. Provided |Ld| is about the same in
this block as in any other, step 2 can be simulated optimally in O(ti ·  |Ld|/q�) time.
This will be discussed later. To restore our invariants after step 3 we simply need to
splice out newly dead processes from Ld and compute a fair allocation for the new
list. Let Ld and L′d be the list before and after step 3. Processor 1 will find all L′w,d

which lie in L�,d, sending a pointer of L′w,d to processor w. For this task processor
1 must know |L′d| and the number of elements from L′d which lie before L�,d, both
of which can be computed in O(|Ld|/q + log q) time with a prefix-sums computation.
Finally we compute L′d by splicing out all dead elements, also in O(|Ld|/q + log q)
time.2 The other two cases for step 1, (b) and (c), involve either splitting Ld into
two lists or combining Ld and Ld−1 into one list, followed by a step to compute a fair
allocation for the new list(s). We omit a discussion of these two cases; the techniques
used are the same as in step 3.

In implementing step 2 we use the assumption that there is a known upper bound
ri ≥ |Ri| on the number of processes taking part in the ith round. (In our MSF
algorithm, for instance, this upper bound would hold w.h.p.) We argue that with a
certain probability (that depends on q) for every round i, every processor is given
no more than (1 + ε)(1 + ri/p) active processes. Each of the ti time steps in step
2 is then easily simulated in (1 + ε)(1 + ri/p) time. Consider the m/b × b array
used in the initial allocation, and an arbitrary block and round. Let Xk be 1 if the
process initially placed in the kth column is active in the round, and 0 otherwise.
Because the rotations on different columns were independent, so too are the Xk’s.
Let X =

∑q
k=1 Xk be the number of active processes appearing in the block; clearly

E(X) = |Ri|b/m ≤ rib/m. Since each processor can be thought to have a “dummy”
process associated with it which is active in every round, assume, without loss of
generality, that E(X) ≥ q. Noting that X is the sum of independent Bernoulli trials,

2The prefix-sums and splicing can, of course, be performed in one pass.
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we can bound the probability that X deviates too far from its expectation using a
Chernoff bound [AS00]. For 0 < ε < 1, Pr[X > (1 + ε)E(X)] < e−Ω(ε2 E(X)), and for
constant ε, the probability that any block in any round gets more than 1 + ε times
its expectation is < mr

b e−Ω(q) = e−Ω(q) since q = Ω(log(mr)). The analysis of our
scheme is very similar to that of [HZ96] but considerably more efficient in terms of
time. In [HZ96] ε is increased in order to reduce the probability of failure. In our
scheme we would set ε to be a small constant and increase q (number of processors
per block) as necessary. It is crucial to keep ε small because in either scheme nearly
all processors spend an ε/(1 + ε) fraction of their time doing nothing! On the other
hand, the q parameter can usually be increased dramatically with negligible effects on
the overall running time. Hence our scheme achieves a low failure probability without
excessive processor idling.

We remark that the space claimed in Theorem 7.1 can be reduced to O(m) at the
expense of a slightly more complicated scheme. The idea is to compute fair allocations
only when necessary. Very frequently, a previously computed fair allocation is “fair
enough.” For instance, in step 1(b) Ld is split into two lists, L′d and L′d+1. If L′d+1

contains most of the elements from Ld, we might as well use the fair allocation of Ld

instead of computing new ones for L′d+1 and L′d.

8. Adaptations to other practical parallel models. Our results imply good
MSF algorithms for the QSM [GMR99] and BSP [Val90] models, which are more
realistic models of parallel computation than the PRAM models. Theorem 8.1 given
below follows directly from results mapping EREWcomputations on to QSM given in
[GMR99]. Theorem 8.2 follows from the QSM to BSP emulation given in [GMR99]
in conjunction with the observation that the slowdown in that emulation due to
hashing does not occur for our algorithm since the assignment of vertices and edges
to processors made by our processor allocation scheme achieves the same effect.

Theorem 8.1. An MSF of an edge-weighted graph on n nodes and m edges can
be found in O(g log n) time and O(g(m + n)) work w.h.p. using O(m + n) space on
the QSM with a simple processor allocation scheme, where g is the gap parameter of
the QSM.

Theorem 8.2. An MSF of an edge-weighted graph on n nodes and m edges can
be found on the BSP in O((L+ g) log n) time w.h.p. using (m+ n)/ log n processors
and O(m+n) space with a simple processor allocation scheme, where g and L are the
gap and periodicity parameters of the BSP.

9. Conclusion. We have presented a randomized algorithm for MSF on the
EREW PRAM which is provably optimal both in time and work. Our algorithm
works within the stated bounds with high probability in the input size and has good
performance in other popular parallel models.

One drawback to our algorithm is that it uses a linear number of random bits. A
recent MSF algorithm [PR02a] for the EREW PRAM performs linear work but uses
only a polylogarithmic number of random bits; however, the time required is subopti-
mal (O(log2 n log∗ n)). Unlike the algorithm presented here, the [PR02a] algorithm is
not a parallelization of [KKT95] and does not use the sampling lemma from [KKT95].

An open question is how to obtain a deterministic time-work optimal MSF algo-
rithm. Pettie and Ramachandran [PR02b] have given a provably optimal sequential
MSF algorithm; however, its exact complexity (and therefore the complexity of MSF)
is still unknown. Parallelizing this optimal sequential algorithm seems very difficult.
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Abstract. Lucas chains are a special type of addition chains satisfying an extra condition: for
the representation ak = aj + ai of each element ak in the chain, the difference aj − ai must also
be contained in the chain. In analogy to the relation between addition chains and exponentiation,
Lucas chains yield computation sequences for Lucas functions, a special kind of linear recurrences.

We show that the great majority of natural numbers n does not have Lucas chains shorter than
(1− ε) logφ n for any ε > 0, where φ is the golden ratio.

Peter L. Montgomery was the first to consider Lucas chains, in the early eighties. He discovered
a decomposition theorem for Lucas chains and a lower bound on their length in terms of Fibonacci
numbers. His work was not published. Therefore several of Montgomery’s original ideas are repre-
sented in this paper.

Key words. Lucas chain, addition chain, Lucas function, lower bound, Fibonacci number,
golden ratio, smooth number
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1. Introduction. An increasing sequence 1 = a0 < a1 < · · · < ar = n of
integers is called an addition chain for n if for each index k ≥ 1 there exist i ≤ j < k
so that

ak = ai + aj .(1)

This notion is motivated by the problem of computing xn from x with few multiplica-
tions, so one is primarily interested in chains of small length r for given n. Since their
first appearance in [12], addition chains have been intensively studied. See, for exam-
ple, Schönhage’s lower bound in [13] or Bergeron, Berstel, and Brlek’s paper [1] on
advanced methods for the construction of short addition chains. We refer to Section
4.6.3 of Knuth’s classic [5] for a broader survey.

In this paper, we investigate Lucas chains, a variant of addition chains introduced
by Peter L. Montgomery [9]. Those are chains for which the indices i, j in (1) can
be chosen such that either i = j or the difference aj − ai is also part of the chain.
The term “Lucas chain” is due to the observation that such chains yield computation
sequences for Lucas functions, a special kind of linear recurrences.

Montgomery’s paper [9], written in 1983, has never been published; for several
years no further research was done on Lucas chains. This changed in 1993 when
Smith and Lennon introduced the public-key crypto system LUC [14], which is based
on Lucas functions. Yen and Laih [16] proposed Lucas chains as a means of evaluating
the one-way functions of that crypto system; they used the term “Luc chains,” though.
Then in 1996 in his Ph.D. thesis on crypto systems [2], Bleichenbacher used results
from [9] to actually compute short Lucas chains.
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Besides some elaborate techniques for the construction of short Lucas chains,
Montgomery [9] proved lower bounds on the length of Lucas chains for given integers.
We will show similar results, reusing several of his ideas. From those bounds we will
derive the more general statement that the majority of natural numbers n does not
have Lucas chains shorter than (1−ε) logφ n for any ε > 0, where φ is the golden ratio.
Two important prerequisites for this bound are a decomposition theorem stating that
any Lucas chain can be uniquely factored into a product of so-called simple chains,
and a lower bound on the length of these chains in terms of Fibonacci numbers.

The results of this paper are from the author’s diploma thesis [6], written in
ignorance of Montgomery’s work. The author is grateful for Montgomery’s kind per-
mission to represent several ideas from his original work.

2. From Lucas functions to Lucas chains. Let P and Q be elements from a
commutative ring with identity. The Lucas functions Vn(P,Q) are defined recursively
by [7]:

V0(P,Q) = 2, V1(P,Q) = P, Vn+2(P,Q) = P · Vn+1(P,Q)−Q · Vn(P,Q).

If α and β are the roots of the polynomial X2 − PX + Q, then

P = α + β, Q = αβ, and Vn(P,Q) = αn + βn.(2)

In the following we will omit the arguments P,Q and simply write Vn.
We ask for a method to compute Vn for some n ≥ 0 from a given pair P,Q.

Looking at the identities

Vm+n = (αm + βm)(αn + βn)− αnβm − αmβn
= (αm + βm)(αn + βn)− αmβm(αn−m + βn−m)

= Vm · Vn −Qm · Vn−m(3)

for 0 ≤ m ≤ n, we see that we can compute Vm+n from Vm, Vn, Vn−m, and a certain
power of Q. This gives rise to the following definition.

Definition 1. A Lucas chain for an integer n ≥ 1 is an increasing sequence

1 = a0 < a1 < a2 < · · · < ar = n

of integers such that for every k ∈ {1, . . . , r},

(L)
there exist indices i, j with 0 ≤ i ≤ j < k
such that ak = aj + ai and aj − ai ∈ {0, a0, a1, . . . , ak−1}.

We call r the length of the chain.
Example 1. The sequence (1, 2, 3, 5) is a Lucas chain for 5 whereas (1, 2, 4, 5)

is not—both are addition chains, though. In the latter sequence, 5 can only be
represented as 4 + 1 but 4− 1 = 3 is not part of the sequence.

Example 2. (1, 2, 4, 8, . . . , 2l) is a Lucas chain of length l for 2l. For every k,
(L) is satisfied with i = j = k − 1.

Example 3. Let the Fibonacci numbers Fn be recursively defined by

F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2, n ≥ 2.

For any l ≥ 0 the sequence Fl = (F2, F3, F4, F5, . . . , Fl+2) is a Lucas chain of length l
for Fl+2. To show (L), let j = k − 1 and i = k − 2; then Fj − Fi = Fk−3. We call Fl
the lth Fibonacci chain.
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A Lucas chain for n directly yields a computation of Vn. First, we successively
compute Qak for k = 1, . . . , r − 1 with r − 1 multiplications. Second, we repeatedly
use (3) to obtain Vak for k = 1, . . . , r, which takes two multiplications in each step.
Thus we can compute Vn from P and Q with 3r − 1 multiplications altogether.

3. Applications. As stated in the introduction, Lucas chains turned out to be
useful in public-key cryptography. Instead of using powers Xn mod N with some
large integer N for the one-way function as in the RSA scheme [11], the LUC crypto
system [14] uses the Lucas function Vn mod N for encryption and decryption. In this
application, the parameter Q is always chosen to be 1 so that powers of Q need not be
computed and (3) simplifies to Vm+n = Vm · Vn − Vn−m (see also [16]). Hence in this
special case, a Lucas chain of length r for n yields a computation of Vn with exactly
r multiplications in Z/NZ.

The LUC crypto system stimulated research on Lucas chains [2, 16], but the use
of Lucas functions for public-key cryptography had been considered before: Müller
and Nöbauer [10] proposed the Dickson polynomials gn(x, a), given by

gn(x, a) =
∑

0≤j≤n/2

n

n− j
(
n− j
j

)
(−a)jxn−2j for n ≥ 1

and g0(x, a) = 2 with some a from a commutative ring with identity, as one-way
functions. Waring’s formula tells us that [8, p. 355]

gn(P,Q) = αn + βn = Vn(P,Q)

with α, β as in (2). Hence, from this point of view, the LUC system uses the Dickson
polynomials gn(x, 1) for encryption. Müller and Nöbauer argued that it might be dif-
ficult to efficiently compute Dickson polynomials for large n, but von zur Gathen [15]
used the equation gn+2 = xgn+1− agn and a matrix representation of this recurrence
relation to show that gn can be computed in O(log n) ring operations. Lucas chains
can thus be seen as a tool to reduce the multiplicative constant in this asymptotic
expression.

Montgomery [9] already pointed out another application of Lucas chains: For
every n ∈ N, the nth Chebyshev polynomial Tn is defined as the unique polynomial
satisfying

Tn(cos z) = cos(nz).

If we let α = eiz and β = e−iz, we get cos z = (αn + βn)/2 and P = 2 cos z, Q = 1
by (2). Writing x = cos z then yields [8, p. 355]

2Tn(x) = 2 cos(nz) = gn(2x, 1) = Vn(2x, 1).

In other words, these polynomials are just a special case of the Dickson polynomials
over the complex numbers. Again we see that we can compute Tn(x) from x with
r multiplications if we have a Lucas chain of length r for n.

4. Basic structural properties. For technical reasons we extend the usual
notion of Lucas chains to what we call “prechains.” They do not alter the capabilities
of the original chains but simplify our arguments and proofs in this section.

Definition 2. A strictly monotonically increasing sequence χ = (a0, a1, . . . , ar)
of positive integers is called a Lucas prechain if property (L) holds for every k ∈
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{1, . . . , r}. We define len(χ) := r to be the length and val(χ) := ar/a0 to be the
value of the prechain. A prechain of length zero is called trivial.

Obviously, every Lucas chain for some n is a Lucas prechain with value n. Con-
versely, it is also easy to see that a prechain is nothing but a scaled Lucas chain. Let
αχ denote the sequence (αa0, . . . , αar), α ∈ Q+. Property (L) is obviously invariant
under such scalar multiplications; i.e., a sequence χ of integers is a Lucas prechain iff
cχ is, c ∈ N+. Also note that the first element of a prechain divides all others. This
follows by induction since (L) implies that a0 divides ak if it divides ai and aj . Thus
we see that values of Lucas prechains are always integers, and scalar multiplication
with 1/a0 makes any prechain into a chain without changing length or value.

Example 4. The sequence (6, 12, 18, 30, 48) is a Lucas prechain of length 4 for 8.
Multiplication with 1/6 yields the chain (1, 2, 3, 5, 8).

4.1. Multiplying chains. It is a well-known fact that two addition chains for a
and b can be combined to yield an addition chain for ab [5, Sect. 4.6.3]. As shown in
the proof of Theorem 2 of [9], the same method applies to Lucas chains. We restate
it here in terms of prechains.

Definition 3. Let χ1 = (a0, . . . , ar) and χ2 = (b0, . . . , bs) be Lucas prechains
with ar = b0. Then their composition χ1 ◦χ2 is defined as the sequence (a0, . . . , ar−1,
b0, . . . , bs).

We see that the composition of two Lucas prechains is also a Lucas prechain
because no element is removed from the original sequences. This concept is easily
adapted to chains. We simply have to scale the second chain appropriately.

Definition 4. Let χ1 and χ2 be Lucas chains. Then their product χ1 ∗ χ2 is
the Lucas chain χ1 ◦ val(χ1)χ2.

Both operations, ◦ and ∗, clearly are associative. The following equations are
immediate from the definitions:

len(χ1 ∗ χ2) = len(χ1) + len(χ2),(4)

val(χ1 ∗ χ2) = val(χ1) · val(χ2).(5)

In order to obtain a chain for a composite number n = ab, we can thus multiply
chains χ1 and χ2 for a and b, respectively. As with addition chains, we call this
technique the factor method [5, p. 463].

Example 5. The product chain (1, 2, 3) ∗ (1, 2, 3, 5, 7) ∗ (1, 2, 4) = (1, 2, 3, 6, 9, 15,
21, 42, 84) is a Lucas chain of length 2 + 4 + 2 = 8 for 3 · 7 · 4 = 84.

4.2. Decomposing chains. We shall now identify those chains that can be
written as products of smaller chains. The following proposition is essentially equiva-
lent to Theorem 5 and Corollary 6 of [9]. But because of its fundamental importance
for the understanding of the structure of Lucas chains, we shall prove it here again,
in terms of prechains. It states that for Lucas chains, decomposability is a completely
local concept.

Proposition 1. Let χ = (a0, . . . , ar) be a Lucas prechain and let 0 ≤ m < r.
Then the following two statements are equivalent:

(i) am+1 = 2am,
(ii) χ(m) := (am, am+1, . . . , ar) is a Lucas prechain.
Proof. Assume that (i) holds. We show by induction on k = m+ 1, . . . , r that am

divides ak and that any pair of indices i, j satisfying (L) fulfills

m ≤ i ≤ j and aj − ai ∈ {0, am, . . . , ak−1}.
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For k = m + 1, property (L) is satisfied with i = j = m only. So let k > m + 1
and assume that am|al for m ≤ l < k. Let i, j as in (L). We have the implications

k > m + 1 ⇒ ak > am+1 = 2am ⇒ aj > am

⇒ aj ≥ am+1 = 2am ⇒ j ≥ m + 1,

hence am|aj by induction. Let us now consider the two cases ai ≥ aj/2 and ai < aj/2.
In the first case we get

ai ≥ aj/2 ⇒ ai ≥ am ⇒ i ≥ m ⇒ am|ai.
Otherwise

ai < aj/2 ⇒ aj − ai > aj/2 ≥ am ⇒ am|(aj − ai);
combined with am|aj this yields am|ai and thus i ≥ m. In both cases am divides
(aj + ai) = ak as was to be shown.

The implication (ii) ⇒ (i) is immediate from (L).
Such a pair (am, am+1) of consecutive elements with am+1 = 2am is called a

doubling step [5, p. 467] of the prechain χ. Note that the positions of doubling steps
in a prechain are obviously invariant under scaling, i.e., (a, b) is a doubling step of χ
iff (ca, cb) is a doubling step of cχ. It is now very easy to identify those chains that
are not representable as products.

Definition 5. We call a Lucas prechain simple if it contains exactly one doubling
step—its first two elements.

The Fibonacci chains Fl from Example 3 are simple for every l ≥ 1. Note that
by definition, trivial prechains are not simple.

The term simple is due to Bleichenbacher [2, Chap. 5]. He observed that Lucas
chains that cannot be written as nontrivial products are simple. For our lower bounds
in section 6, we need to make this notion a little more precise.

Proposition 2. Let χ = (a0, . . . , ar) be a nontrivial Lucas prechain and let
(arµ , arµ+1), 1 ≤ µ ≤ d, be all its doubling steps in increasing order, i.e., 1 = ar1 <
ar2 < · · · < ard . Additionally let rd+1 := r. Then

χµ := (arµ , arµ+1, . . . , arµ+1
)

is a simple Lucas prechain for every µ ∈ {1, . . . , d}. We have χ = χ1 ◦ . . . ◦ χd and
this decomposition into simple prechains is unique.

Proof. By Proposition 1, every χµ is a Lucas prechain because they all start with
a doubling step. They are also simple because none of them contains more doubling
steps. The equation χ = χ1 ◦ · · · ◦ χd is immediate from the definition of the χµ. For
uniqueness, just observe that by Proposition 1 every prechain χ′µ of a decomposition
into simple prechains has to start with a doubling step of χ. To be simple it must not
contain any other of χ’s doubling steps. And it is also of strictly positive length since
trivial prechains are not simple.

We can directly restate this result for chains. Defining the empty product to be
the trivial chain, we get the following theorem, which very much resembles the proof
of Theorem 7 in [9].

Theorem 1. Every Lucas chain χ has a unique decomposition χ = χ1 ∗ · · · ∗ χd
into simple chains. This induces a factorization

val(χ) =
d∏

µ=1

val(χµ)



LOWER BOUNDS FOR LUCAS CHAINS 1901

of its value.
Proof. The statement about the simple chain decomposition is just a reformu-

lation of Proposition 2. The product formula for the values directly follows from
equation (5).

Consequently, the structure of a Lucas chain for some n ∈ N+ is intimately related
to the prime number factorization of n. Theorem 1 will be very important for our
lower bounds in section 6.

5. Trivial bounds. Since Lucas chains resemble computation sequences, we are
interested in shortest chains for a given value.

Definition 6. For every number n ∈ N+ we let

t(n) := min{len(χ) | χ is a Lucas chain for n},
t′(n) := min{len(χ) | χ is a simple Lucas chain for n}.

A Lucas chain χ is called optimal if len(χ) = t(val(χ)).
Note that t′(1) = ∞ because any simple chain has value ≥ 2; this will be incon-

sequential since we shall consider t′(n) for n ≥ 2 only.
We can already state some basic facts about the function t. Application of the

factor method directly yields [9, Thm. 2]

t(a · b) ≤ t(a) + t(b).(6)

Just choose optimal chains χ1 and χ2 for a and b, respectively, and compare (4)
and (5). Denoting log2 by lg as usual, we also have the trivial lower bound

t(n) ≥ �lg n�(7)

because by property (L), no element of a Lucas chain can be more than twice as big
as any of its predecessors. Therefore the chains in Example 2 are obviously optimal.

5.1. A known upper bound. Montgomery developed the following binary
method [9] for the construction of a Lucas chain for any given odd n ≥ 3.

Let d0, d1, . . . , dk be the digits in the binary representation of n, starting from
the high end. We let a0 := d0 = 1 and inductively define

ai = 2ai−1 + di for i = 1, . . . , k.

In other words, ai has the binary representation d0d1 . . . di. Then

(a0, a0 + 1, a1, a1 + 1, . . . , ak−1, ak−1 + 1, ak)

is a Lucas chain for n because the elements ai+1 and ai+1 + 1 can always be written
as 2ai, ai + (ai + 1), or 2(ai + 1) so that the respective differences are either 0 or 1.
This chain has no more than 2k + 1 elements. Thus we get the upper bound

t(n) ≤ 2�lg n�.(8)

By application of the factor method to a = n/2 and b = 2, this bound also carries
over to even n.

Example 6. For n = 37 = 1001012, the binary method yields the Lucas chain
(1, 2, 3, 4, 5, 9, 10, 18, 19, 37).
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6. Lower bounds. It turns out that the trivial bound (7) can be substantially
improved upon. Montgomery showed the following [9, Thm. 7].

Theorem 2 (Montgomery). Let n be a positive integer with s prime divisors
(including multiplicities). Then the number of doubling steps in a Lucas chain for n
cannot exceed s, and n ≤ 2s−1Ft(n)−s+3.

This gives us a lower bound on t(n) for any n ∈ N+. The aim of this section is
to derive a similar bound that depends on the exact prime number factorization of n
and not only on the number of prime factors. That result will then enable us to prove
the desired lower bound of t(n) ≥ (1− ε) logφ n for the vast majority of integers.

6.1. A lower bound for simple chains. By definition, a simple Lucas chain
contains exactly one doubling step. Since these are the most efficient steps available,
we expect simple chains to grow notably slower than arbitrary Lucas chains can. The
following simple but important lemma, which in different form already appeared in [9],
captures this intuition.

Lemma 1. Let χ be a simple Lucas chain. Then its value is bounded by

val(χ) ≤ Flen(χ)+2.

Proof. Since every Lucas chain is also an addition chain, we may apply Theorem A
from [5, p. 467]. Letting d = 1 there immediately yields the stated inequality.

In order to rephrase Lemma 1 in terms of the function t′, we reinterpret it in the
following way: The average growth of a simple Lucas chain of length k is no more
than a factor of k

√
Fk+2 per step.

Definition 7. For any integer n ≥ 2, let k := min{l | n ≤ Fl+2} and define

Φ(n) := k
√
Fk+2.

Indeed, this is a useful notion. We obtain the following bound.
Proposition 3. For every n ≥ 2, we have

t′(n) ≥ lg n

lg Φ(n)
.

Proof. Let k be the unique integer that satisfies Fk+1 < n ≤ Fk+2. Then by
Lemma 1, any simple chain for n has length at least k. Thus

t′(n) ≥ k ≥ lg n

lgFk+2
k =

lg n

lg k
√
Fk+2

=
lg n

lg Φ(n)
.

6.2. From simple chains to arbitrary chains. Theorem 1 now tells us how
to obtain a bound for t(n) from Proposition 3. Any chain for n can be factored
into simple chains, and the values of these factors are restricted by the possible (par-
tial) factorizations of the integer n. Hence, we can apply Proposition 3 to all those
factorizations and get

t(n) ≥ min

{ d∑
i=1

lg fi
lg Φ(fi)

∣∣∣
d∏
i=1

fi = n

}
.(9)

We can already use this formula to achieve nontrivial bounds on t(n) for certain
values of n.
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Example 7. The prime factors of n = 85 are 5 and 17. Proposition 3 yields
t′(5) ≥ 3, t′(17) > 5.5, and t′(85) > 8.9. Since (1, 2, 3, 5) ∗ (1, 2, 3, 5, 7, 10, 17) is a
chain of length 9 for 85, we obtain t(85) = 9.

So this technique yields useful results, but it may become impractical due to the
combinatorial explosion in cases where n has many factors. In the following we shall
see how this drawback can be overcome. The key observation is that short simple
chains are potentially more efficient than long ones because the shorter the chain the
greater the effect of the initial doubling step on the average growth of the chain. In
fact, Proposition 3 already captures this behavior in a very satisfying way. We shall
see that it is sufficient to apply it only to the prime number factorization of n. In
order to prove this formally, we need some basic facts about the function Φ.

6.3. Properties of the function Φ. The Fibonacci numbers are closely related
to the golden ratio

φ =
1 +
√

5

2
,

and we have the well-known formula [4, p. 83]

Fk =
1√
5

(
φk − φ̂k),

where φ̂ = 1− φ = 1
2 (1−√5). Since φ̂ = −φ−1, we can restate this as

Fk =
1√
5

(
φk − (−φ)−k

)
,(10)

which will better suit our needs.
Lemma 2. For all k ≥ 1 we have

k+1
√
Fk+3 <

k
√
Fk+2.

Proof. We first raise both sides of the inequality to the k(k + 1)st power and
apply (10); thus we get

[
1√
5

(
φk+3 − (−φ)−k−3

)]k
<
[

1√
5

(
φk+2 − (−φ)−k−2

)]k+1

⇔
√

5
[(

1 + (−1)kφ−2k−6
)
φk+3

]k
<
[(

1 + (−1)k+1φ−2k−4
)
φk+2

]k+1

⇔
√

5φ−2 <
(
1 + (−1)k+1φ−2k−4

)k+1 (
1 + (−1)kφ−2k−6

)−k
.(11)

Numerical computation of the left-hand side of (11) yields
√

5φ−2 < 0.86. If k is
odd, the right-hand side is greater than one and hence (11) follows. If k is even, the
right-hand side of (11) equals

(
1− φ−2k−4

)k+1 (
1 + φ−2k−6

)−k

>
(
1− φ−2k−4

)k+1 (
1− φ−2k−6

)k

>
(
1− φ−2k−4

)2k+1

> 1− (2k + 1)φ−2k−4,
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where the last step is by application of the Bernoulli inequality. Now

h(x) := 1− (2x + 1)φ−2x−4 >
√

5φ−2 for x ≥ 2

since numerical computation for x = 2 yields 1− 5φ−8 > 0.89 >
√

5φ−2 and

h′(x) =
(
(2x + 1) lnφ2 − 2

)
φ−2x−4 > 0 for x ≥ 2.

Lemma 3. The sequence (Φ(n))n≥2 is monotonically decreasing. It converges
towards the golden ratio:

lim
n→∞Φ(n) = φ.

Proof. The first statement is a direct consequence of Lemma 2. Equation (10)
yields

k
√
Fk+2 = k

√
1√
5

(
φk+2 − (−φ)−k−2

)
= φ · k

√
φ2

√
5

(
1± φ−2k−4

)
,

and so the second statement follows.

6.4. The lower bound in closed form. We are now able to prove a lower
bound for t(n) that does not suffer from the combinatorial explosion of the rule (9).

Theorem 3. Let n be any positive integer, and let n =
∏e

1 pi be its factorization
into prime numbers. Then we have

t(n) ≥
e∑
1

lg pi
lg Φ(pi)

.

Proof. Let χ be an optimal chain for n and let χ1∗· · ·∗χd be its decomposition into
simple chains. We let nµ := val(χµ) be their corresponding values. Since n = n1 · · ·nd,
there exists a partition I1, . . . , Id of the index set {1, . . . , e} so that

nµ =
∏
i∈Iµ

pi

for every µ ∈ {1, . . . , d}. Since χ is optimal, every χµ must also be optimal. Thus, by
(4) and Proposition 3 we have

t(n) =
d∑

µ=1

t(nµ) =

d∑
µ=1

t′(nµ)

≥
d∑

µ=1

lg nµ
lg Φ(nµ)

=
d∑

µ=1

∑
i∈Iµ

lg pi
lg Φ(nµ)

≥
d∑

µ=1

∑
i∈Iµ

lg pi
lg Φ(pi)

=

e∑
i=1

lg pi
lg Φ(pi)

,

where the penultimate step makes use of Lemma 3.
Theorem 3 is a powerful and also practical tool for proving Lucas chains optimal.

Let us again consider the chain from Example 5. The prime number factorization is
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84 = 22 · 3 · 7. We have

t(84) ≥ 2
lg 2

lg Φ(2)
+

lg 3

lg Φ(3)
+

lg 7

lg Φ(7)

= 2
lg 2

lg 2
+

lg 3

lg
√

3
+

lg 7

lg 4
√

8
> 7.7,

and thus t(84) = 8.

6.5. Comparison of the bounds. Since we used methods similar to those of
Montgomery, the bounds from Theorem 3 are close to those from Theorem 2. For
example, the latter also yields t(84) ≥ 8, as we have computed from the former. But
there are also cases in which the former is slightly better than the latter. As an
example consider n = 177, where we get the lower bounds 11, which is the precise
value of t(177), and 10, respectively. The main advantage of Theorem 3, however, is
its dependence on the prime factors of n and its implicit relation to the golden ratio
through the function Φ. This will enable us to derive the general lower bound in the
subsequent section.

7. A general lower bound. By now we have considered only concrete lower
bounds for individual values. In this section we are going to show that the great
majority of numbers n does not have Lucas chains shorter than (1− ε) logφ n for any
given ε > 0.

For this, observe that our bound from Theorem 3 is closer to logφ n if n contains
many large prime factors. The next definition captures this notion.

Definition 8. Let n be any positive integer with prime number factorization
n =

∏e
1 pi. Let B ∈ N+ and δ ∈ (0, 1]. We call n a (B, δ)-fat number if

∏
pi≤B

pi < nδ,

that is, it contains less than a δ-portion (logarithmically) of factors smaller than B.
We call n (B, δ)-smooth if it is not (B, δ)-fat.

The term “smooth number” is generally used for integers that contain no prime
factors larger than a certain bound B. Note that this is just the special case δ = 1 in
the above definition.

As expected, it turns out that fat numbers cannot have short Lucas chains.

Lemma 4. Let n be a (B, δ)-fat integer, B ≥ 2. Then we have

t(n) ≥ 1− δ
lg Φ(B)

lg n.

Proof. Let
∏e

1 pi be the factorization of n into prime numbers, and let

S := {i | pi ≤ B},
L := {i | pi > B}

denote the collection of small and large factors indices, respectively. By Theorem 3
we have
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t(n) ≥
∑
i∈S∪L

lg pi
lg Φ(pi)

≥
∑
i∈L

lg pi
lg Φ(pi)

≥
∑
i∈L

lg pi
lg Φ(B)

=
1

lg Φ(B)
lg
∏
i∈L

pi

>
lg n1−δ

lg Φ(B)
=

1− δ
lg Φ(B)

lg n,

where the last line follows from the (B, δ)-fatness of n. Note that we had to exclude
B = 1 since Φ(1) is not defined.

We want to know how many numbers are not of this kind; that is, how frequent are
(B, δ)-smooth numbers for given B and δ? While much is known about the frequency
of the “ordinary” smooth numbers with δ = 1 (see, for example, [3]), our relaxed
notion of smoothness has not yet been investigated. The following lemma gives us
satisfactory estimates on the density of (B, δ)-smooth numbers. We let [N,M ] :=
{n ∈ Z | N ≤ n ≤ M} denote the set of integers between N and M , and let π(x) as
usual count the numbers of primes less than or equal to x.

Lemma 5. For every bound B ∈ N+, every δ ∈ (0, 1), and every N ∈ N+, the
interval [N, 2N − 1] contains fewer than

(
N1−δ + 1

)(δ lgN + lgB + π(B)

π(B)

)

(B, δ)-smooth numbers.
Proof. Let n be any (B, δ)-smooth number from the interval [N, 2N − 1], and let∏e

1 pi be its factorization into prime numbers. Let S := {i | pi ≤ B} be the collection
of its small factors indices. Then we have

∏
i∈S

pi ≥ nδ ≥ N δ

since n is (B, δ)-smooth. We can successively remove indices from S to obtain a subset
S′ ⊆ S that satisfies

N δ ≤ f :=
∏
i∈S′

pi < BNδ.

Hence, every (B, δ)-smooth number in the interval [N, 2N − 1] has such a divisor f .
Any such f is of the form

f = 2σ23σ35σ5 . . . pσp ,

where p is the greatest prime less than or equal to B. Since f < BNδ, all of the σ’s
are less than lg(BNδ). Thus, there are fewer than

(
lg(BNδ) + π(B)− 1

π(B)− 1

)
<

(
δ lgN + lgB + π(B)

π(B)

)

such f ’s. Every single f ≥ N δ divides no more than N/N δ + 1 numbers in the range
[N, 2N − 1], and hence the statement of the lemma follows.

Now we are prepared to prove the announced asymptotic lower bound for Lucas
chains.
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Theorem 4. For any ε > ρ > 0 and increasing N ∈ N+, there are only

O(N1−ρ) numbers n ∈ [N, 2N − 1] satisfying

t(n) ≤ (1− ε) logφ n,

where the constants hidden in the O depend on ε and ρ.
Proof. Let δ := (ε + ρ)/2 and choose an integer B so that

lg Φ(B) ≤ lg φ

1− ε−ρ
2

;

by Lemma 3 such a B exists. Now Lemma 4 yields

t(n) >
1− δ

lg Φ(B)
lg n ≥ (1− δ)

(
1− ε− ρ

2

)
logφ n > (1− ε) logφ n

for any (B, δ)-fat integer n. Thus, only (B, δ)-smooth numbers can have shorter
chains, but by Lemma 5 there are no more than

(
N1−δ + 1

)(δ lgN + lgB + π(B)

π(B)

)
∈ O

(
N1−ρ)

of these in any interval [N, 2N − 1].

8. Final remarks. Since logφ n ≈ 1.44 lg n, Theorem 4 is a significant improve-
ment on the trivial bound (7). But we may ask how close this comes to the optimum.
Examples 5 and 7 show that there are cases in which our bounds are extremely sharp.
Yet, the majority of numbers could still need chains much longer than Theorem 4
indicates.

We strongly believe that this is not the case. Comparison of the concrete bounds
from Theorem 3 with heuristic computations of short chains for the first million
natural numbers suggests that our bound is very sharp. It turned out that for all
n ≤ 106 we have

t(n) ≤
⌈ e∑

1

lg pi
lg Φ(pi)

⌉
+ 2,

where n =
∏e

1 pi is the prime number factorization of n.
It seems that Theorem 4 already captures the behavior of the function t in a most

fundamental way.
Conjecture 1. The length function t satisfies

lim sup
t(n)

lg n
=

1

lg φ
.

In fact, Montgomery already asked in Problem 2 of [9] whether this upper bound
holds. And in a private communication Donald E. Knuth conjectured the slightly
stronger bound of t(n) ≤ logφ n + O(1). Nevertheless, I do not expect Conjecture 1
to be shown in the near future. Though the heuristics have produced good results, it
seems to be very hard to actually prove any significantly better upper bound than (8).
By now we are not even able to show t(n) ≤ α lg n for any α < 2.
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SIMPLE LEARNING ALGORITHMS FOR DECISION TREES AND
MULTIVARIATE POLYNOMIALS∗
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Abstract. In this paper we develop a new approach for learning decision trees and multivariate
polynomials via interpolation of multivariate polynomials. This new approach yields simple learn-
ing algorithms for multivariate polynomials and decision trees over finite fields under any constant
bounded product distribution. The output hypothesis is a (single) multivariate polynomial that is
an ε-approximation of the target under any constant bounded product distribution.

The new approach demonstrates the learnability of many classes under any constant bounded
product distribution and using membership queries, such as j-disjoint disjunctive normal forms
(DNFs) and multivariate polynomials with bounded degree over any field.

The technique shows how to interpolate multivariate polynomials with bounded term size from
membership queries only. This, in particular, gives a learning algorithm for an O(logn)-depth deci-
sion tree from membership queries only and a new learning algorithm of any multivariate polynomial
over sufficiently large fields from membership queries only. We show that our results for learning
from membership queries only are the best possible.

Key words. learning interpolation, multivariate polynomial, decision tree learning

AMS subject classifications. 68Q32, 68Q25

PII. S009753979732058X

1. Introduction. From the start of computational learning theory, great empha-
sis has been put on developing algorithmic techniques for various problems. It seems
that great progress has been made in learning using membership queries, especially
such functions as decision trees and multivariate polynomials. Generally speaking,
three different techniques were developed for those tasks: the Fourier transform tech-
nique, the lattice-based techniques, and the multiplicity automata technique. All of
the techniques use membership queries (which are also called substitution queries for
nonbinary fields).

The Fourier transform technique is based on representing functions using a basis,
where a basis function is essentially a parity of a subset of the input. Any function
can be represented as a linear combination of the basis functions. Kushilevitz and
Mansour [KM93] gave a general technique to recover the significant coefficients. They
showed that this is sufficient for learning decision trees under the uniform distribution.
Jackson [J94] extended the result to learning disjunctive normal form (DNF) under
the uniform distribution. The output hypothesis is a majority of parities. (Also,
Jackson [J95] generalizes his DNF learning algorithm from uniform distribution to
any fixed constant bounded product distribution.)

The lattice-based techniques are, at a very high level, performing a traversal of
the binary cube, moving from one node to its neighbor in order to reach some goal
node. Angluin [A88] gave the first lattice-based algorithm for learning monotone
DNF. Bshouty [Bs93] developed the monotone theory, which gives a technique for
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learning decision trees under any distribution. (The output hypothesis in that case
is depth 3 formulas.) Schapire and Sellie [SS93] gave a lattice-based algorithm for
learning multivariate polynomials over a finite field under any distribution. (Their
algorithm depends polynomially on the size of the monotone polynomial that describes
the function.)

Multiplicity automata theory is a well-studied field in automata theory. Recently,
some very interesting connections were given, connecting learning such automata and
learning decision trees and multivariate polynomials. Ohnishi, Seki, and Kasami
[OSK94] and Bergadano and Varricchio [BV96] gave algorithms for learning multi-
plicity automata. Based on this work, Bergadano, Catlano, and Varricchio [BCV96]
showed that this algorithm learns disjoint DNF. Then Beimel et al. [BBB+96] gave an
algorithm that is based on Hankel matrices theory for learning multiplicity automata
and showed that multivariate polynomials over any field are learnable in polynomial
time. (In all the above algorithms the output hypothesis is a multiplicity automaton.)

All three techniques—the Fourier spectrum, the lattice-based, and the multiplicity
automata algorithms—also give learnability of many other classes such as learning
decision trees over parities (nodes contains parities) under constant bounded product
distributions, learning CDNF (poly size DNF that has poly size CNF) under any
distribution, and learning j-disjoint DNF (DNF where the intersection of any j terms
is 0).

In this paper we develop a new approach for learning decision trees and multi-
variate polynomials via interpolation of multivariate polynomials over GF (2). This
new approach leads to simple learning algorithms for decision trees over the uniform
and constant bounded product distributions, where the output hypotheses are a mul-
tivariate polynomial (parity of monotone terms).

The algorithm we develop gives a single hypothesis that approximates the target
function with respect to any constant bounded product distribution. In fact the
hypothesis is a good hypothesis under any distribution that supports small terms.
That is, for any distribution D, where for a term T of size ω(log n), we have PrD[T =
1] = 1/ω(poly(n)). Previous algorithms do not achieve this property.

It is also known that any DNF is learnable with membership queries under con-
stant bounded product distribution [J95], where the output hypothesis is a majority
of parities. Our contribution for j-disjoint DNF is to use an output hypothesis that
is a parity of terms and to show that the output hypothesis is an ε-approximation of
the target against any constant bounded distribution.

We also study the learnability of multivariate polynomials from membership
queries only. We give a learning algorithm for multivariate polynomials over n vari-
ables with maximal degree d < c|F| for each variable, where c < 1 is constant, and
with terms of size

k = O

( |F|
d
(log n+ log d)

)

using only membership queries. This result implies learning in polynomial time de-
cision trees of depth O(log n) with leaves from a field F from membership queries
only.

This result is a generalization of the results in [B95b] and [RB89], where the
learning algorithm uses membership and equivalence queries in the former and only
membership queries in the latter.

The second result is a generalization of the result in [KM93] for learning Boolean
decision trees from membership queries. The above result also gives an algorithm for
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learning any multivariate polynomial over fields of size q = n/(d(log n+ log d)) from
membership queries only.

This result is a generalization of the results in [BT88, CDG+91, Z90] for learning
multivariate polynomials under any field. Previous algorithms for learning multivari-
ate polynomials over finite fields F required asking membership queries with assign-
ments in some extension of the field F [CDG+91]. In [CDG+91] it is shown that an
extension n of the field is sufficient to interpolate any multivariate polynomial (when
membership queries with assignments from an extension field are allowed). Following
this work, [HR96] gave an algorithm that interpolates polynomials over “large” finite
fields, without using extension fields; for smaller fields they use an extension field.

The organization of the paper is as follows. In section 2 we define the learning
model and the concept classes. In section 3 we give the algorithm for learning multi-
variate polynomial for the Boolean domain. In section 4 we give some background for
multivariate interpolation. In section 5 we show how to reduce learning multivariate
polynomials to zero testing and to other problems. Then in section 6 we give the
algorithm for zero testing and also give a lower bound for zero testing multivariate
polynomials.

2. The learning model and concept classes.

2.1. Learning models. The learning criterion we consider is exact learning
[A88] and PAC-learning (probably approximately correct) [Val84].

In the exact learning model there is a function f called the target function f :
Fn → F which is a member of a class functions C defined over the variable set
Vn = {x1, . . . , xn} for some field F . The goal of the learning algorithm is to output a
formula h that is equivalent to f .

The learning algorithm performs a membership query (also called a substitution
query for the nonbinary fields) by supplying an assignment a to the variables in
Vn = {x1, . . . , xn} as input to a membership oracle and receives in return the value
of f(a). For our algorithms we will regard this oracle as a procedure MQf (). The
procedure input is an assignment a and its output is MQf (a) = f(a).

The learning algorithm performs an equivalence query by supplying any function
h as input to an equivalence oracle with the oracle returning either “yes,” signifying
that h is equivalent to f , or a counterexample, which is an assignment b such that
h(b) �= f(b). For our algorithms we will regard this oracle as a procedure EQf (h).
We say the hypothesis class of the learning algorithm is H if the algorithm supplies
the equivalence oracle functions from H.

We say that a class of Boolean function C is exactly learnable in polynomial time
if for any f ∈ C over Vn there is an algorithm that runs in polynomial time, asks a
polynomial number of queries (polynomial in n and in the size of the target function),
and outputs a hypothesis h that is equivalent to f .

The PAC-learning model is as follows. There is a function f called the target
function which is a member of a class of functions C defined over the variable set
Vn = {x1, . . . , xn}. There is a distribution D defined over the domain Fn. The goal
of the learning algorithm is to output a formula h that is ε-close to f with respect to
some distribution D, that is,

Pr
D
[f(x) = h(x)] ≥ 1− ε.

Such a function h is called an ε-approximation of f with respect to the distribution D.
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In the PAC or example query model, the learning algorithm asks for an example
from the example oracle, and receives an example (a, f(a)), where a is chosen from
{0, 1}n according to the distribution D.

We say that a class of Boolean functions C is PAC-learnable under the distribution
D in polynomial time if for any f ∈ C over Vn, there is an algorithm that runs in
polynomial time, asks a polynomial number of queries (polynomial in n, 1/ε, 1/δ,
and the size of the target function), and with probability at least 1 − δ outputs a
hypothesis h that is an ε-approximation of f with respect to the distribution D.

It is known from [A88] that if a class is exactly learnable in polynomial time from
equivalence queries and membership queries, then it is PAC-learnable with member-
ship queries in polynomial time under any distribution D.

Let D be a set of distributions. We says that C is PAC-learnable under D if there
is a PAC-learning algorithm for C such that for any distribution D ∈ D unknown to
the learner and for any f ∈ C the learning algorithm runs in polynomial time and
outputs a hypothesis h that is an ε-approximation of f under any distribution D′ ∈ D.

2.2. The concept classes and distributions. A function over a field F is a
function f : X → F for some set X. All classes considered in this paper are classes
of functions where X = Fn. The elements of Fn are called assignments. We will
consider the set of variables Vn = {x1, . . . , xn} where xi will describe the value of the
i-projection of the assignment in the domain Fn of f . For an assignment a, the ith
entry of a will be denoted by ai. A restriction α is a partial assignment, namely, it
assigns values to some subset Uα of the variables Vn. A function f restricted by α,
denoted by fα, has as inputs the variables in Vn − Uα. Given an assignment β for
Vn − Uα the value of fα(β) is f(α ∪ β).

A literal is a nonconstant polynomial p(xi). A monotone literal is xri for some
nonnegative integer r. A term (monotone term) is a product of literals (monotone
literals). A multivariate polynomial is a linear combination of monotone terms. A
multivariate polynomial with nonmonotone terms is a linear combination of terms.
The degree of a literal p(xi) is the degree of the polynomial p. The size of a term
pi1(xi1) · · · pk(xik) is k.

Let MULF (n, k, t, d) be the set of all multivariate polynomials over the field F
over n variables with at most t monotone terms, where each term is of size at most
k and each monotone literal is of degree at most d. For the binary field B the degree
is at most d = 1 so we will use MUL(n, k, t). MUL�F (n, k, t, d) will be the set of all
multivariate polynomials with nonmonotone terms with the above properties. We use
MUL�(n, k, t) when the field is the binary field. Throughout the paper we will assume
that t ≥ n. Since every term in MUL�F (n, k, t, d) can be written as a multivariate
polynomial in MULF (n, k, (d+ 1)k, d) we have the following proposition.

Proposition 2.1.

MUL�F (n, k, t, d) ⊆MULF (n, k, t(d+ 1)k, d).
For the Boolean field B = {0, 1} a DNF is a disjunction of terms. A j-disjoint

DNF is a DNF where the conjunction of any j terms is 0. A k-DNF is a DNF with
terms of size at most k literals.

A decision tree (with leaves from some field F) over Vn is a binary tree whose
nodes are labeled with variables from Vn and whose leaves are labeled with constants
from F . Each decision tree T represents a function fT : {0, 1}n → F . To compute
fT (a) we start from the root of the tree T : if the root is labeled with xi, then
fT (a) = fTR

(a) if ai = 1, where TR is the right subtree of the root (i.e., the subtree
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of the right child of the root with all its descendents). Otherwise (when ai = 0),
fT (a) = fTL

(a), where TL is the left subtree of the root. If T is a leaf, then fT (a) is
the label of this leaf.

It is not hard to see that a Boolean decision tree of depth k can be represented
in MUL�(n, k, 2k) (each leaf in the decision tree defines a term and the function
is the sum of all terms), and that a j-disjoint k-DNF of size t can be represented in
MUL�(n, k(j−1), tj−1). (See, for example, [K94].) So for constant k and d = O(log n)
the number of terms is polynomial.

For a DNF and a multivariate polynomial, f , we define size(f) to be the number
of terms in f . For a decision tree the size will be the number of leaves in the tree.

A product distribution is a distribution D that satisfies D(a1, . . . , an) =
∏
iDi(ai)

for some distributions Di on F . A product distribution is fixed constant bounded if
there is a constant 0 < c < 1/2, that is, independent of the number of variables n,
such that for any variable xi, c ≤ Prob[xi = 1] ≤ 1 − c. A distribution D supports
small terms if for every term of size ω(log n), we have PrD[T = 1] = 1/ω(poly(n)),
where n is the number of variables.

3. Simple algorithm for the Boolean domain. In this section we give an
algorithm that PAC-learns with membership queries MUL�(n, n, t) under any distri-
bution that supports small terms in polynomial time in n and t. We remind the reader
that we assume t ≥ n. However, all the algorithms in the paper run in polynomial
time also when t < n.

3.1. Zero test MUL(n, k, t). We first show how to zero test elements in
MUL(n, k, t) in polynomial time in n and 2k assuming k is known to the learner.
The algorithm will run in polynomial time for k = O(log n). Let f ∈ MUL(n, k, t).
Choose a term T = xi1 · · ·xij , j ≤ k, of maximal size in f . Choose any values from
{0, 1} for the variables not in T . The projection will not be the zero function because
the term T will stay alive in the projection. Since the projection is a nonzero function
with j ≤ k variables there is at least one assignment for xi1 , . . . , xij that gives value
1 for the function. This shows that for a random and uniform assignment a, f(a) = 1
with probability at least 1/2j ≥ 1/2k. So to zero test a function f ∈ MUL(n, k, t),
randomly and uniformly choose polynomial the number of assignments ai. If f(ai) is
zero for all the assignments, then with high probability we have f ≡ 0. Now from the
above we have the following claim.

Claim 3.1. For any f ∈MUL(n, k, t), f �≡ 0, the probability thatm = 2k log(1/δ)
randomly chosen elements a1, . . . , am in {0, 1}n satisfies f(a1) = . . . = f(am) = 0 is
at most δ.

This implies the following claim.

Claim 3.2. For f ∈MUL(n,O(log t), t), there is a polynomial time probabilistic
zero testing algorithm that succeeds with high probability.

In Figure 1 we have the code for zero test(h, α) that tests if the polynomial h
is identical to the target function f on all the inputs that obey a given restriction α.
For that case we have the following lemma.

Lemma 3.3. For any f ∈ MUL(n, k, t), and any h, if (h ⊕ f)α ≡ 0, then
zero test(h, α) returns TRUE, and if (h ⊕ f)α �≡ 0, then zero test(h, α) returns
FALSE with probability at least 1− δ.

3.2. Learning MUL(n, k, t). We now show how to reduce zero test to learning
monotone polynomials.
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FUNCTION MQ-hf(h: function, r: assignment); /* queries f ⊕ h at r */
RETURN h(r)⊕MQf (r);

FUNCTION zero test(h: function, α: restriction); /* testing if h⊕ f is zero */
m← 2k log(1/δ) /* number of queries */
FOR i = 1 to 2k log(1/δ) DO

αi ← α;
FOR j = 1 to n DO /* extending α randomly */

IF {xj ← bj} �∈ αi, THEN
αi ← αi ∪ {xj ← random bit()};

END-FOR;
IF MQ-hf(h, αi) = 1, THEN /* Evaluating h⊕ f at αi */
RETURN FALSE; /* Found an assignment for which h⊕ f is not zero */

END-FOR;
RETURN TRUE;

Fig. 1. The zero test function for polynomials. The function zero test checks if the input
polynomial h is identical to the target function f on the inputs that obey the restriction α. If
they are identical, it outputs TRUE, and if they are not identical, it outputs (with high probability)
FALSE. (The function random bit() returns 0 with probability half and 1 with probability half.)

Let f ∈ MUL(n, k, t). We first show how to find one term in f . If f(0) = 1,
then we know that T = 1 is a term in f . If f(0) = 0, then let f0 = f . Since we can
zero test we can find the minimal i1 such that f0|x1←0,...,...,xi1

←0 ≡ 0. This implies
that fx1←0,...,...,xi1−1←0 = xi1f1(xi1+1, . . . , xn) for some multivariate polynomial f1.
If f1(0) = 1, then we know that T = xi1 is a term in f . We continue recursively with
f1 = fx1←0,...,...,xi1−1←0,xi1

←1 until fj(0) ≡ 1, in this case T = xi1 · · ·xij is a term in
f . Note that we invoke the function zero test at most n times to recover a single
term. A formal definition of Find Term, the function that finds a single term, is found
in Figure 2.

After we find a term T we define f̂ = f + T . This removes the term T from
f , and thus f̂ ∈ MUL(n, k, t − 1). We continue recursively with f̂ until we recover
all the terms of f . Membership queries for f̂ can be simulated by membership for f
because MQf̂ (a) =MQf (a)+T (a). The formal definition of Monotone Polynomial,
the function that interpolates a monotone polynomial, is found in Figure 2.

The function Monotone Polynomial invokes the function Find Term once for each
of the terms. Each invocation of Find Term may invoke zero test at most n times.
This gives the following claim.

Claim 3.4. For f ∈ MUL(n, k, t), the function Monotone Polynomial returns
a polynomial h, such that h ≡ f with probability at least 1 − ntδ, uses nt2k log 1

δ
membership queries, and runs in time O(nt2k log 1

δ ).

In particular this gives the following claim.

Claim 3.5. For f ∈MUL(n,O(log t), t), there is a polynomial time probabilistic
interpolation algorithm that succeeds with high probability to learn f from membership
queries.

3.3. Learning MUL�(n, n, t). We now give a PAC-learning algorithm that
learns MUL�(n, n, t) under any distribution that support small terms. We first give
the idea of the algorithm.

Let f ∈ MUL�(n, n, t). To PAC-learn f we randomly choose an assignment a
and define f ′(x) = f(x⊕a). A term in f of size k will have on average k/2 monotone
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FUNCTION Find Term(h:function, a:offset, α: restriction); /* Finds a term in f ⊕ h */
β ← α; T ← ∅;
FOR i = 1 to n DO

IF{xi ← b} �∈ α, THEN /* check if variable is alive */
tmp β ← β ∪ {xi ← ai}; /* try to restrict xi */
IF zero test(h, tmp β)=TRUE, THEN /* does xi appear in all remaining terms? */

T ← T ∪ {xi}; /* add xi to the term T */
β ← β ∪ {xi ← (1− ai)}; /* restrict xi */
γ ← {xj ← aj |j ≥ i+ 1, {xj ← b} �∈ α}; /* complete the restriction β */
IF MQ-hf(h, β ∪ γ) = 1, THEN
RETURN T ; /* xi was the only variable left. we are done! */

ELSE β ← tmp β; /* there are terms without xi, search for such a term*/
END-FOR;

FUNCTION Monotone Polynomial(a: offset, α: restriction);
/* learn the monotone representation */

h = 0; /* initial hypothesis */
WHILE zero test(h, a) =FALSE DO /* test if we are done? */

h← h⊕ Find Term(h, a, α); /* add another monotone term */
END-WHILE;
RETURN h;

Fig. 2. The code of the learning algorithm for a polynomial using the representation of the
monotone terms. The offset and the restriction are introduced to extend the algorithm to handle
learning a polynomial with a small number of nonmonotone terms. If the target function, f , is a
sparse monotone polynomial, we can set the offset, a, to the zero vector and the restriction, α, to
be an empty set.

literals in f ′, and terms with k = Ω(log t) variable will have with high probability
Ω(k) monotone literals.

We perform a zero restriction, i.e., for each i, with probability 1/2 we substi-
tute xi ← 0 in f ′. Since a term of size k in f has on average k/2 monotone
literals after the shift f(x ⊕ a), in the zero restriction this term will be zero with
probability (about) 1 − 2−k/2. This probability is greater than 1 − 1/poly(t) for
k = Ω(log t). Therefore with high probability all the terms of size more than Ω(log t)
will be removed by the zero restriction. This ensures that with high probability the
projection f ′′ is in MUL�(n,O(log t), t), and therefore by Proposition 2.1
f ′′ ∈ MUL(n,O(log t), poly(t)). Now we can use the algorithm in subsection 3.2,
Monotone Polynomial, to learn f ′′. Notice that for multivariate polynomial h (with
monotone terms) when we performed a zero restriction, we deleted some of the mono-
tone terms from h; therefore, the monotone terms of f ′′ are monotone terms of f ′.

We continue to take zero restrictions and collect terms of f ′ until the sum of
terms that appear in at least one restriction defines a multivariate polynomial which
is a good approximation of f ′. We get a good approximation of f ′ with respect to
any distribution that supports small terms since we collect all the small size terms
(i.e., terms of size O(log t)).

Theorem 3.6. There is a polynomial time probabilistic PAC-learning algorithm
with membership queries that learns MUL�(n, n, t) under any distribution that sup-
ports small terms.

We now prove that the function Non Monotone Polynomial (given in Figure 3)
PAC-learns with membership queries any multivariate polynomial with at most t non-
monotone terms under distributions that support small terms. For the analysis of the
correctness of the algorithm we first need to formalize the notion of distributions that
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FUNCTION Non Monotone Polynomial(); /* learns a polynomial with t non-monotone terms */
a← random assignment(); /* we will learn f(x⊕ a) */
r =
(
t
ε

)c (
ln

(
t
4

(
t
ε

)4c))
;

FOR j = 1 to r DO
αj ← ∅; /* build a random restriction */
FOR i = 1 to n DO

IF random bit()= TRUE, /* restrict xi with probability half */
THEN αj ← αj ∪ {xi ← ai}

END-FOR;
hj ← Monotone Polynomial(a, αj); /* find terms of f(a⊕ x) restricted by αj */

END-FOR;
T ← {T |T is a term of hj and |T | ≤ 4c log(t/ε)} /* collect all short term found */
h(x⊕ a) = ⊕T∈T T ;
RETURN h(x⊕ a);

FUNCTION random assignment();
FOR i = 1 to n DO

ai ← random bit();
END-FOR;
RETURN (a1, . . . , an);

Fig. 3. The algorithm to learn a polynomial with t nonmonotone terms. First we fix a random
offset a. Then we choose many zero restrictions, αj , randomly. For each zero restriction we
reconstruct the polynomial by finding its monotone terms. Finally, our hypothesis includes all the
short terms.

support small terms. The following is one way to define this notion.
Definition 3.7. Let Dc,t,ε include any distribution D such that for any DNF f

with t terms, each of size greater than c log(t/ε), we have PrD[f = 1] ≤ ε.
Notice that all the constant bounded product distributions D, where 1 − d ≤

PrD[xi = 1] ≤ d for all i, are in D1/ log(1/d),t,ε. In what follows we will assume that
c ≥ 2 and ε < 1/8. We will use the Chernoff bound (see [ASE]).

Lemma 3.8. Let X1, . . . , Xm ∈ {0, 1} be independent random variables where
Pr[Xi = 1] = 1/2. Then for any γ we have

Pr

[
m∑
i=1

Xi ≤ m
2
− γ
]
≤ 2− 2γ2

m .

Let f = T1⊕· · ·⊕Tt be a multivariate polynomial where T1, . . . , Tt are terms and
|T1| ≤ |T2| ≤ · · · ≤ |Tt|. Our algorithm starts by choosing a random assignment a and
defines f ′(x) = f(x ⊕ a). All terms that are of size s (in f ′) will contain on average
s/2 monotone literals. Therefore by the Chernoff bound we have the following lemma.

Lemma 3.9. With probability at least 1− ε, all the terms in f ′ of size more than
αc log(t/ε) contain at least (α/4)c log(t/ε) monotone literals, where α ≥ 4 and c ≥ 2.

Proof. Let T be any term of size at least αc log(t/ε). Let P (T ) be the number of
monotone literals in T . We have

Pr

[
P (T ) <

α

4
c log

t

ε

]
≤ 2−αc

8 log t
ε =

(ε
t

)αc
8 ≤ ε

t
.

Since the number of terms of f ′ is t the lemma follows.
With probability at least 1 − ε, all the terms of size more than 4c log(t/ε) will

contain at least c log(t/ε) monotone literals and all terms of size 8c log(t/ε) will contain
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at least 2c log(t/ε) monotone literals. For the analysis, we now split the function f ′

into 3 functions f ′1, f
′
2, and f

′
3. The function f

′
1 = T1⊕· · ·⊕Tt1 will contain all terms

that are of size at most 4c log(t/ε). The function f ′2 = Tt1+1⊕· · ·⊕Tt2 will contain all
terms of size between 4c log(t/ε) and 8c log(t/ε), and the function f ′3 = Tt2+1⊕· · ·⊕Tt
will contain all terms of size more than 8c log(t/ε).

Since f ′1 ∈MUL�(n, 4c log(t/ε), t), we have f ′1 ∈MUL(n, 4c log(t/ε), t(t/ε)4c) by
Proposition 2.1. Similarly, f ′2 ∈MUL(n, 8c log(t/ε), t(t/ε)8c).

Our algorithm will find all the terms in f ′1, some of the terms in f
′
2, and none of

the terms in f ′3. The following lemma shows that this is sufficient in order to learn f .
Lemma 3.10. Let f ∈MUL�(n, n, t), a ∈ {0, 1}n be any assignment, and f ′(x) =

f(x⊕ a). Let g = f ′1 ⊕ h, where h is a multivariate polynomial that contains some of
the monotone terms in f ′2. Then for any D ∈ Dc,t,ε we have

Pr
D
[g �= f ′] ≤ ε,

assuming that all the terms in f ′ of size more than αc log(t/ε) contain at least
(α/4)c log(t/ε) monotone literals, where α ≥ 4 and c ≥ 2.

Proof. The error is

Pr
D
[g �= f ′] = Pr

D
[(f ′1 ⊕ h)⊕ f ′ = 1] = Pr

D
[h⊕ f ′2 ⊕ f ′3 = 1].

Let

f ′2 = T̂t1+1T̃t1+1 ⊕ · · · ⊕ T̂t2 T̃t2 ∈MUL�(n, 8c log(t/ε), t),
where Ti = T̂ti T̃ti , T̂ti is the part of the term that contains monotone literals and T̃ti
is the part that contains the nonmonotone literals. If T̂t1+1 = xi1 · · ·xik and T̃t1+1 =

x̄j1 · · · x̄jl , then notice that when we change T̂t1+1T̃t1+1 to the sum of monotone terms,
we get

∑

S⊆{j1,...,jl}
T̂t1+1

∏
q∈S
xjq .

So every monotone term in f ′2 will contain one of the terms T̂i, t1 + 1 ≤ i ≤ t2.
Therefore we can write f ′2 = T̂t1+1f

′
2,1 ⊕ · · · ⊕ T̂t2f ′2,t2−t1 , where f ′2,i are multivariate

polynomials with monotone terms. Since h is a multivariate polynomial that contains
some of the terms in f ′2, we have f

′
2 ⊕ h = T̂t1+1h2,1 ⊕ · · · ⊕ T̂t2h2,t2−t1 . By our

assumption, |T̂i| ≥ c log(t/ε), for t1 + 1 ≤ i ≤ t2, and |Ti| ≥ 2c log(t/ε), for i ≥ t2 + 1.
Since D is a distribution that supports small terms, i.e., D ∈ Dc,t,ε, we have

Pr
D
[(h⊕ f2)⊕ f3 = 1] ≤ Pr

D
[T̂t1+1 ∨ · · · ∨ T̂t2 ∨ Tt2+1 ∨ · · · ∨ Tt] ≤ ε,

and the lemma follows.
The algorithm will proceed as follows. We choose

r =

(
t

ε

)c(
ln

(
t

4

(
t

ε

)4c
))

zero restrictions α1, . . . , αr for f
′. Recall that a zero restriction α of f ′ is a function f ′α

where, with probability 1/2, xi ← 0 and, with probability 1/2, the variable xi remains
alive. We will show that with some constant probability we have the following:
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(A) For every monotone term in f ′1 there is a restriction αi such that (f
′
1)αi

contains this term.
(B) For every i = 1, . . . , r we have (f ′3)αi ≡ 0.
We define T (αi) = 0 if the restriction αi and the term T share a variable, and

T (αi) = ∗ if they do not share a variable. The next lemma proves (A), namely, that
all the small terms would be recovered (as monotone terms).

Lemma 3.11. Let f ∈MUL�(n, n, t), a ∈ {0, 1}n be any assignment, and f ′(x) =
f(x⊕ a). The probability that for each monotone term T of f ′1, whose size is at most
4c log(t/ε), there exists a random restriction αi, such that T (αi) �= 0 is at least 3/4.

Proof. Let T1 be the set of monotone terms in f ′1. By the definition of f ′1, we
have that |T1| ≤ t(t/ε)4c and every term in T1 is of size at most 4c log(t/ε). Let A be
the event that for each term T ∈ T1 there is a restriction αi such that T (αi) �= 0. We
have

Pr[not A] = Pr[(∃T ∈ T1)(∀αi) T (αi) = 0]

≤ t
(
t

ε

)4c

Pr[(∀αi) T (αi) = 0]

≤ t
(
t

ε

)4c(
1− 1

2c log(t/ε)

)r
=
1

4
,

which completes the proof of the lemma.
The next lemma proves (B), namely, that with high probability none of the large

terms survives any of the zero restrictions.
Lemma 3.12. Let f ∈MUL�(n, n, t) and let a ∈ {0, 1}n be a random assignment.

The probability that for some term T of f ′(x) = f(x ⊕ a), whose size is at least
8c log(t/ε), there exists a random restriction αi, such that T is a term of f ′αi

, 1 ≤ i ≤
r, is at most 2ε, where the probability is taken over the choice of a and αi.

Proof. Let T3 be the set of terms of f ′ of size at least 8c log(t/ε). Clearly the
number of terms in T3 is at most t. Let B be the event that for every T ∈ T3 and each
restriction αi, T (αi) = 0, and therefore f

′
αi
does not contain T . Let B′ be the event

that we select an a such that every term T of f ′, whose size is at least 8c log(t/ε), has
at least 2c log(t/ε) monotone literals.

By Lemma 3.9, with probability at least 1 − ε, event B′ holds. Assume that B′
holds. We compute the probability that B does not hold, given that B′ holds.

Pr[not B | B′] = Pr[(∃i)(∃T ∈ T3) T (αi) �= 0]

≤ rt
(
1

2

)2c log(t/ε)

≤ ε.

Clearly,

Pr[not B] ≤ Pr[not B′] + Pr[not B | B′] ≤ 2ε,

which completes the proof of the lemma.
From Lemmas 3.11 and 3.12 we have that with probability at least 3/4−2ε all the

projections f ′αi
contain terms of size at most 8c log(t/ε) and for each monotone term of

f ′1 there is a projection f
′
αi
that contains the term. Therefore, the algorithm proceeds

by learning each projection f ′αi
∈ MUL(n, 8c log(t/ε), t(t/ε)8c) using the monotone
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polynomial algorithm and collecting all the terms of size at most 4c log(t/ε). This
ensures that with probability 3/4− 2ε we recover all the terms of f ′1. By Lemma 3.10
this implies that the error is at most ε. (The details of the algorithm are found in
Figure 3.)

The running time of the function Non Monotone Polynomial, and the number of
membership queries, are bounded by

O

(
r ·
(
t

(
t

ε

)8c
)
· n · 28c log(t/ε) log 1/δ

)
= O

((
t

ε

)16c

t2n log(1/δ) ln(t/ε)

)
.

Recall that the constant c depends on the distribution. For example, for the uniform
distribution, c = 1.

The above analysis algorithm can also be used to learn functions f : {0, 1}n → F
of the form f = λ1T1 + · · ·+ λtTt, where λi ∈ F , Ti are terms and + is the addition
of a field F . These functions can be computed as follows. For an assignment a,
f(a) =

∑
Ti(a)=1 λi. This gives the learnability of decision trees with leaves that

contain elements from the field F .
4. Multivariate interpolation. In this section we show how to generalize the

above algorithm for any multivariate polynomial over any field. Let

f =
∑
α∈I

aαx
α1
1 · · ·xαn

n

be a multivariate polynomial over the field F , where aα ∈ F and α1, . . . , αn are
integers. We will denote the class of all multivariate polynomials over the field F and
over the variables x1, . . . , xn by F [x1, . . . , xn]. The number of terms of f is denoted
by |f |. We have |f | = |I| when all aα are not zero. When f = 0 then |f | = 0
and when f = c ∈ F\{0} then |f | = 1. Let d be the maximal degree of variables
in f , i.e., I ⊆ [d]n where [d] = {0, 1, . . . , d}. Suppose F ′ = {γ0, . . . , γd} ⊆ F are
d + 1 distinct field constants, where γ0 = 0 is the zero of the field. A univariate
polynomial f(x1) ∈ F [x1] over the field F of degree at most d can be interpolated
from membership queries as follows. Suppose that

f(x1) = ∆
(d)(f)xd1 + · · ·+∆(1)(f)x1 +∆

(0)(f),

where ∆(i)(f) is the coefficient of xi in f in its polynomial representation. Then





f(γ0) = ∆(d)(f)γd0 + · · ·+∆(1)(f)γ0 +∆
(0)(f),

f(γ1) = ∆(d)(f)γd1 + · · ·+∆(1)(f)γ1 +∆
(0)(f),

...
...

...
f(γd) = ∆(d)(f)γdd + · · ·+∆(1)(f)γd +∆

(0)(f).

This is a linear system of equations and can be solved for ∆(i)(f) as follows:

det

∣∣∣∣∣∣∣∣∣

γd0 · · · γi+1
0 f(γ0) γi−1

0 · · · γ0 1

γd1 · · · γi+1
1 f(γ1) γi−1

1 · · · γ1 1
...

...
...

...
...

...

γdd · · · γi+1
d f(γd) γi−1

d · · · γd 1

∣∣∣∣∣∣∣∣∣
,

det|V (γ0, . . . , γd)|(1)
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where V (γ0, . . . , γd) is the Vandermonde matrix.
If f is a multivariate polynomial, then f can be written as

f(x1, . . . , xn) = ∆
(d)(f)xd1 + · · ·+∆(1)(f)x1 +∆

(0)(f),

where ∆(i)(f) is a multivariate polynomial over the variables x2, . . . , xn. We can still
use (1) to find ∆(i)(f) by replacing each f(γi) with f(γi, x2, . . . , xn). Notice that from
the first equation in the system, since γ0 = 0, we have

∆(0)(f) = f(0, x2, . . . , xn).(2)

From (1) a membership query for ∆(i) can be simulated using d+ 1 membership
queries to f . From (2), a membership query to ∆(0) can be simulated using one
membership query to f .

We now extend the ∆ operators as follows: for i = (i1, . . . , ik) ∈ [d]k,
∆i = ∆ik∆ik−1 · · ·∆i1 .

Here ∆ always operates on the variable with the smallest index. So ∆i1 operates on
x1 in f to give a function f

′ that depends on x2, . . . , xn. Then ∆
i2 operates on x2

in f ′ and so on. We will also write xi for the term xi11 x
i2
2 · · ·xikk . The weight of i,

denoted by wt(i), is the number of nonzero entries in i.
The operator ∆i(f) gives the coefficient of xi1 in f when represented in F [x2, . . . , xn]

[x1]; the operator ∆
i(f) gives the coefficient of xi when f is represented in

F [xk+1, . . . , xn][x1, . . . , xk].

Suppose I ⊆ [d]k is such that ∆if �= 0 for all i ∈ I and ∆if = 0 for all i �∈ I,
that is, xi for i ∈ I are the k-suffixes of all terms of f . Here the k-suffix of a term
xi11 · · ·xinn is xi11 · · ·xikk . Since i ∈ I if and only if xi is a k-suffix of some term in f , it
is clear that |I| ≤ |f | and we must have

f =
∑

i∈I
(∆if)xi.

Now we will show how to simulate membership queries for (∆if)(xk+1, . . . , xn), i ∈ I,
using a polynomial number (in n and |f |) of membership queries to f . Suppose we
want to find (∆if)(c) for some c ∈ Fn−k using membership queries to f . We take r
assignments γ̂1, . . . , γ̂r ∈ Fk and ask membership queries for (γ̂i, c) for all i = 1, . . . , r.
If f(γ̂i, c) = ωi, then





∑
i∈I(∆

if)(c)γ̂i1 = ω1,
...

...
...∑

i∈I(∆
if)(c)γ̂ir = ωr.

Now if I = {i1, . . . , ir} and det|M[γ̂j ; ij ]| �= 0 for

M[γ̂j ; ij ] =



γ̂i11 · · · γ̂ir1
...

...
...

γ̂i1r · · · γ̂irr


 ,

then the above linear system of equations can be solved in time poly(r) = poly(|I|) ≤
poly(|f |). The solution gives (∆if)(c). The existence of γ̂i where the above determi-
nant is not zero will be proven in the next section.
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5. Reducing learning to zero testing (for any field). In this section we
show how to use the results from the previous section to learn multivariate polyno-
mials.

Let MULF (n, k, t, d) be the set of all multivariate polynomials over the field F
over n variables with t terms, where each term is of size k and the maximal degree
of each variable is at most d. We would like to answer the following questions. Let
f ∈MULF (n, k, t, d).

1. Is there a polynomial time algorithm that uses membership queries to f and
decides whether f ≡ 0?

2. Given i ≤ n, is there a polynomial time algorithm that uses membership
queries to f and decides whether f depends on xi?

3. Given {i1, . . . , ir} ⊆ [d]n, where wt(ij) ≤ k for all j and r ≤ t, is there an
algorithm that runs in polynomial time and finds γ1, . . . , γr ∈ Fk such that

∣∣∣∣∣∣∣

γi11 · · · γir1
...

...
...

γi1r · · · γirr

∣∣∣∣∣∣∣
�= 0?

4. Is there a polynomial time algorithm that uses membership queries to f and
identifies f?

When we say polynomial time we usually mean polynomial time in n, k, t, and d, but
all the results of this section hold for any time complexity T if we allow a blow up of
poly(n, t) in the complexity.

We show that 1, 2, and 4 are equivalent and 1⇒ 3. Obviously 2⇒ 1, 4⇒ 1, and
4⇒ 2. We will show 1⇒ 2, 1⇒ 3, and 1 + 2 + 3⇒ 4.

To prove 1 ⇒ 2 notice that f ∈ MULF (n, k, t, d) is independent of xi if and
only if g = f |xi←1 − f |xi←0 ≡ 0. Since g is the coefficient of xi in f , we have
g ∈MULF (n− 1, k, t, d). Therefore we can zero test g in polynomial time.

To prove 1 ⇒ 3, let γ1, . . . , γs be a zero test for functions in MULF (n, k, t, d),
that is, run the algorithm that zero test for the input 0 and take all the membership
queries in the algorithm γ1, . . . , γs. We now have f ∈ MULF (n, k, t, d) is 0 if and
only if f(γi) = 0 for all i = 1, . . . , s. Consider the s×r matrix with rows [γi1j , . . . , γirj ].
If this matrix has rank r, then we choose r linearly independent rows. If the rank
is less than r, then its columns are dependent, and therefore there are constants ci,
i = 1, . . . , r, such that

r∑
i=1

ciγ
ii
j = 0 for j = 1, . . . , s.

This shows that the multivariate polynomial
∑r

i=1 cix
ii is 0 for all γ1, . . . , γs. Since∑r

i=1 cix
ii is in MULF (n, k, t, d) we get a contradiction.

Now we show that 1 + 2+ 3⇒ 4. This will use results from the previous section.
The algorithm first checks whether f depends on x1, and if yes it generates a tree with
a root labeled with x1 that has d children. The ith child is the tree for ∆

i(f). If the
function is independent of x1, it builds a tree with one child for the root. The child
is ∆0(f). We then recursively build the tree for the children. The previous section
shows how to simulate membership queries at each level in polynomial time. This
algorithm obviously works and its correctness follows immediately from the previous
section and 1–3 above.
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The complexity of the algorithm is the size of the tree times the membership
query simulation. The size of the tree at each level is bounded by the number terms
in f , and the depth of the tree is bounded by n; therefore, the tree has at most O(nt)
nonzero nodes. The total number of nodes is at most a factor of d from the nonzero
nodes. Thus the algorithm has complexity the same as zero testing with a blow up of
poly(n, t, d) queries and time.

Now that we have reduced the problem to zero testing, we will investigate in the
next section the complexity of zero testing of MULF (n, k, t, d).

6. Zero test of MULF(n, k, t, d). In this section we will study the zero testing
ofMULF (n, k, 5, d) when the number of terms is unknown and might be exponentially
large. The time complexity for the zero testing should be polynomial in n and d. (We
have k < n so it is also polynomial in k.) We will show the following theorem.

Theorem 6.1. The class MULF (n, k, 5, d), where d ≤ c|F|, is zero testable in
randomized polynomial time in n, d, and t (here t is not the number of terms in the
target, but only a free parameter) for some constant c < 1 if and only if

k = O

( |F|
d
(log n+ log d+ log t)

)
.

The algorithm for the zero testing is simply to randomly and uniformly choose
poly(n, d) points ai from Fn and query f at ai and receive f(ai). If for all the points
ai, f is zero, then with high probability f ≡ 0.

This theorem implies the following one.
Theorem 6.2. The class MULF (n, k, t, d), where d < c|F| for some constant c,

is learnable in randomized polynomial time (in n, d, and t) from membership queries
if

k = O

( |F|
d
(log n+ log d+ log t)

)
.

Proof of Theorem 6.1 (upper bound). Let φ(n, k, d) be the maximal possible
number of roots of a multivariate polynomial in MULF (n, k, 5, d). We will show the
following facts:

1. φ(n, k, d) ≤ |F|n−kφ(k, k, d),
2. φ(k, k, d) ≤ |F|k − (|F| − d)k, and
3. φ(1, 1, d) = d.

This implies that if f �≡ 0, when we randomly uniformly choose an assignment a ∈ Fn,
we have

Pr
a
[f(a) �= 0] ≥ 1− φ(n, k, d)|F|n

≥ 1− φ(k, k, d)|F|k

≥ 1− |F|
k − (|F| − d)k
|F|k

≥
(
1− d

|F|
)k

≥ e−O
(

dk
|F|
)
.
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For d ≤ c|F| we have that this probability is bounded by 1
poly(n,d,t) . Therefore the

expected running time to detect that f is not 0 is poly(n, d, t).
It remains to prove conditions (1) and (2). To prove (1) let f ∈MULF (n, k, 5, d)

with a maximal number of roots. Let m be a term in f with a maximal number of
variables. Suppose, without loss of generality, that m = xi11 · · ·xikk . For any substi-
tution ak+1, . . . , an of the variables xk+1, . . . , xn, the term m will stay alive in the
projection g = f |xi←ai,i=k+1,...,n because it is maximal in f . Since g has at most
φ(k, k, d) roots, the result (1) follows.

The proof of (2) is similar to the proof of Schwartz [Sch80] and Zippel [Zip79].
Let f ∈MULF (k, k, 5, d). Write f as polynomial in F [x2, . . . , xd][x1],

f = fdx
d
1 + fd−1x

d−1
1 + · · ·+ f0.

Let t be the number of roots of fd. Since fd ∈MULF (k − 1, k − 1, 5, d), we have
t ≤ φ(k − 1, k − 1, d).

For |F|k−1− t assignments a for x2, . . . , xd, we have fd(a) �= 0. For those assignments
we get a polynomial in x1 of degree d that has at most d roots for x1. For t assignments
a for x2, . . . , xk, we have that fd is zero and then the possible values of x1 (to get a
root for f) are bounded by |F|. This implies that

φ(k, k, d) ≤ d(|F|k−1 − t) + t|F|
= d|F|k−1 + (|F| − d)t
≤ d|F|k−1 + (|F| − d)φ(k − 1, k − 1, d).

The theorem follows by induction on k.
Proof of Theorem 6.1 (lower bound). Let A be a randomized algorithm that

zero tests f ∈ MULF (n, k, 5, d). Algorithm A asks membership queries to f and if
f �≡ 0, it returns with probability at least 2/3 the answer “no.” If all the membership
queries in the algorithm return 0, the algorithm returns the answer “yes” indicating
that f ≡ 0.

We run the algorithm for f ≡ 0. Let D1, . . . , Dl, l = (dnt)
λ, be the distributions

that the membership assignments a1, . . . , al are chosen to zero test f . Notice that
if all membership queries answers are 0 while running the algorithm for f ≡ 0, it
would again choose membership queries according to the distributions D1, . . . , Dl.
Now randomly and uniformly choose γi,j ∈ F , i = 1, . . . , p, j = 1, . . . , d, and define

f� =

p∏
i=1

d∏
j=1

(xi − γi,j),

where p = 2λ |F|d (lnn+ln d+ln t). Note that the degree of f
� is d and the size of each

term is at most p. Let I[f∗(ai)] = 1 if f�(ai) �= 0 and 0 otherwise. For every input a
we have

Ef� [I[f�(a)]] =

(
1− 1

|F|
)pd

.

Therefore,

Ef�E(∀i)ai∈Di
{0,1}n

[∨
i

I[f�(ai)]

]
≤ Ef�E(∀i)ai∈Di

{0,1}n

[∑
i

I[f�(ai)]

]
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≤ E(∀i)ai∈Di
{0,1}n

[∑
i

Ef�I[f�(ai0)]

]

= l

[(
1− 1

|F|
)pd]

≤ 2
3
.

This shows that there exists f� �≡ 0 such that running algorithm A for f� will
give the wrong answer, i.e., “yes,” with probability more than 2/3. This is a
contradiction.

Acknowledgments. We would like to thank the anonymous referees for their
comments.
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A DETERMINISTIC POLYNOMIAL-TIME ALGORITHM FOR
HEILBRONN’S PROBLEM IN THREE DIMENSIONS∗
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Abstract. Heilbronn conjectured that among arbitrary n points in the two-dimensional unit
square [0, 1]2, there must be three points which form a triangle of area O(1/n2). This conjecture was
disproved by a nonconstructive argument of Komlós, Pintz, and Szemerédi [J. London Math. Soc.,
25 (1982), pp. 13–24], who showed that for every n there exists a configuration of n points in the unit
square [0, 1]2 where all triangles have area Ω(log n/n2). Here we will consider a three-dimensional
analogue of this problem and show how to find deterministically in polynomial time n points in the
unit cube [0, 1]3 such that the volume of every tetrahedron among these n points is Ω(log n/n3).

Key words. Heilbronn’s triangle problem, arrangements of simplices, independent sets in hy-
pergraphs

AMS subject classifications. 68W25, 68R05, 05C69
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1. Introduction. An old conjecture of Heilbronn states that for every distri-
bution of n points in the two-dimensional unit square [0, 1]2 (or unit disc) there
exist three distinct points which form a triangle of area O(1/n2). Erdős observed
that this conjecture, if true, would be best possible, as for n a prime the points
(i, i2 mod n)i=0,...,n−1 on the moment-curve in the n×n grid would show after rescal-
ing; see [2]. However, Komlós, Pintz, and Szemerédi [15] disproved Heilbronn’s con-
jecture by proving that for every n there exists a configuration of n points in the
unit square [0, 1]2 with every three points forming a triangle of area Ω(logn/n2). Us-
ing techniques from derandomization, this existence argument was made constructive
in [6], where a polynomial time algorithm was given, which finds n points in [0, 1]2

achieving this lower bound Ω(logn/n2) on the minimum triangle area. Upper bounds
on Heilbronn’s triangle problem were given by Roth [17], [18], [19], [20], [21] and
Schmidt [23] in a series of papers (see Rothschild and Straus [22] for related results),
and the current best upper bound O(1/n8/7−ε) for arbitrarily small ε > 0 is due to
Komlós, Pintz, and Szemerédi [14].

Using arguments from Kolmogorov complexity, Jiang, Li, and Vitány [12] recently
proved that if n points are dropped uniformly at random and independently of each
other in the unit square [0, 1]2, then the expected value of the smallest area of a
triangle among these n points is Θ(1/n3).

Also, Barequet [3] recently considered a k-dimensional version of Heilbronn’s
problem. For a subset S = {p0, . . . , pk} ⊂ Rk of (k + 1) points, the set S∗ =

{p0 +
∑k
i=1 λi · (pi − p0) |

∑k
i=1 λi ≤ 1;λ1, . . . , λk ∈ [0, 1]} is called a simplex. If

k = 3, then S∗ is called a tetrahedron. The volume of the simplex S∗ ⊂ Rk is defined
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by vol(S∗) := 1/k ·h·vol(S′), where h is the distance of pk to the affine space generated
by p0, . . . , pk−1 and S′ is in this space the simplex generated by p0, . . . , pk−1.

For given dimension k ≥ 3, Barequet showed that for every n there exist n points
in the k-dimensional unit cube [0, 1]k such that the minimum volume of every simplex
spanned by any (k + 1) of these n points is Ω(1/nk). Barequet gave three different
approaches for proving his lower bound. The first one, for dimension k = 3, uses
a Greedy-type argument (also see [23] for the case k = 2), and Barequet obtained
a configuration of n points in the three-dimensional unit cube [0, 1]3 such that the
minimum volume of every tetrahedron is Ω(1/n4). Indeed, this Greedy-type argument
yields an on-line algorithm for the problem. The second approach yields a better lower
bound, was worked out for arbitrary but fixed dimension k ≥ 3, and uses a random
argument: 2n points are dropped uniformly at random and independently of each
other in the k-dimensional unit cube [0, 1]k. For some suitable constant ck > 0,
the expected number of (k + 1)-point simplices with volume at most β := ck/n

k

is at most n. Deleting one point from every such small simplex with volume at
most β yields the existence of n points in [0, 1]k with every (k + 1)-point simplex
having minimum volume Ω(1/nk). The third approach, however, is similar to Erdős’
construction (and according to Bollobás [5] was known to him), namely, taking the
points Pl = ((lj mod n)/n)j=1,...,k for l = 0, 1, . . . , n − 1 on the moment-curve. The
volume of any (k + 1)-point simplex is given by a Vandermonde determinant, which
cannot vanish for n a prime, rescaled by a factor Θ(1/nk) and this gives a minimum
value for the volume of any (k + 1) points of these n points on the moment-curve of
Ω(1/nk).

The corresponding problem for dimension k = 1 is trivial as there are always n
points in the unit interval [0, 1] with minimum distance between two distinct points
Ω(1/n), and this bound cannot be improved.

In [16] Barequet’s lower bound was improved by a factor Θ(logn) for dimensions
k ≥ 3 using a probabilistic existence argument based on a variant of Theorem 2.2.
For the proof the continuous structure of the unit cube [0, 1]k was crucial.

Theorem 1.1 (see [16]). For every fixed integer k ≥ 2 and for every n, there
exists a configuration of n points in the k-dimensional unit cube [0, 1]k such that the
volume of any simplex spanned by any (k + 1) points is Ω(log n/nk).

Here we will give for dimension k = 3 a deterministic polynomial-time algorithm
for the result in Theorem 1.1.

Theorem 1.2. For every positive integer n, one can find deterministically in
polynomial time a configuration of n points in the unit cube [0, 1]3 such that the volume
of any tetrahedron spanned by any four of these points is Ω(log n/n3).

The proof of Theorem 1.2 is based on techniques from combinatorics and number
theory. Some of our arguments are given for the case of arbitrary dimension k ≥
3, where appropriate. However, so far we are able only to provide a deterministic
polynomial-time algorithm for the case k = 3.

2. Hypergraphs. In our arguments we will use hypergraphs. It will turn out
that the notions independence number of a hypergraph and 2-cycles are important in
our considerations.

Definition 2.1. Let G = (V, E) be a hypergraph; i.e., each edge E ∈ E is a
nonempty subset of V of arbitrary cardinality. The hypergraph G is k-uniform if
every edge E ∈ E contains exactly k vertices.

A subset I ⊆ V is called independent if I contains no edge E ∈ E. The largest
size of an independent set in G is called the independence number α(G).
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In a k-uniform hypergraph G = (V, E), k ≥ 3, a 2-cycle is a pair {E1, E2} of
distinct edges E1, E2 ∈ E with |E1 ∩ E2| ≥ 2. A 2-cycle {E1, E2} in G is called
(2, j)-cycle if |E1 ∩ E2| = j, where j = 2, . . . , k − 1.

Let Bk(ρ) = {x ∈ Rk | ‖x‖ ≤ ρ} ⊂ Rk be the k-dimensional ball around the
origin with radius ρ. We will reformulate our combinatorial, geometrical problem as
a problem of finding a large independent set in a suitably defined hypergraph. To
do so, we will discretize the three-dimensional search space [0, 1]3; namely, we will
consider only points from the set B3(ρ) ∩ Z3, where ρ will be of suitable size, i.e.,
polynomial in n. With this discretization, we also have to take care of tetrahedra of
volume 0—these are degenerate tetrahedra.

For some parameter β > 0 and for the given set of grid-points in B3(ρ) ∩ Z3, we
form a hypergraph G(β) = (V, E3∪E4) with the vertex set V being this set B3(ρ)∩Z3

of Θ(ρ3) grid-points. The edges contain three or four vertices. The 4-element edges
E ∈ E4 are determined by all subsets of four points from the set B3(ρ) ∩ Z3, no
three on a line, which form a tetrahedron of volume at most β, where later we will
set β := ρ3 · log n/n3. For technical reasons we will also use 3-element edges E′ ∈
E3, determined by triples of points from B3(ρ) ∩ Z3 which lie on a line. Then an
independent set in this hypergraph G(β) corresponds to a subset of points in the
set B3(ρ) ∩ Z3, where no tetrahedron has “small” volume, i.e., all tetrahedra have a
volume bigger than β, which after rescaling yields the desired result. In order to show
the existence of a large independent set, we will use the following result due to Ajtai,
Komlós, Pintz, Spencer, and Szemerédi [1] (see [10]), stated here in an algorithmic
variant proven in [4] (see [11]).

Theorem 2.2 (see [1], [4], [10], [11], [7]). Let k ≥ 3 be a fixed integer. Let
G = (V, E) be a k-uniform hypergraph with average degree tk−1 = k · |E|/|V |. If for
some constant γ > 0 the hypergraph G contains at most

|V | · t2k−j−1−γ

(2, j)-cycles for j = 2, . . . , k − 1, then one can find in G in polynomial time an inde-
pendent set of size

Ω

( |V |
t
· (log t)1/(k−1)

)
.(1)

If, in addition to the k-element edges, the hypergraph G = (V, E) contains also at most
|V | · ti−1−δ many i-element edges for some δ > 0 and i = 2, . . . , k− 1, then (1) holds,
too.

If the parameter tk−1 is an upper bound on the average degree of the hypergraph
G with respect to the k-element edges, then (1) holds, too.

In recent years, several applications of Theorem 2.2 have been found; see [4]. Here
we will give another application of this deep result.

A main part of the proof of Theorem 1.2 consists of counting the degenerate
(respectively, nondegenerate) tetrahedra in B3(ρ) ∩ Z3. The road map for its proof
is as follows. We want to apply Theorem 2.2 for k = 4 to the hypergraph G(β). To
do so, in sections 4 and 5 we will bound from above the number of 3- and 4-element
edges in G(β), which are the number of collinear triples of points and the number of
tetrahedra of volume at most β in B3(ρ)∩Z3, respectively. Then, in section 6 we will
estimate the numbers of (2, j)-cycles, j = 2, 3, among the 4-element edges in G(β),
that is, the number of pairs of tetrahedra in B3(ρ)∩Z3 with volume at most β, which
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have j vertices in common. With these estimates we will see that the assumptions of
Theorem 2.2 are fulfilled, and the desired result will follow.

In section 3, we will first recall and explain some tools, which we will use in our
arguments.

3. Grids in Zk. We will use some results from linear algebra and number theory,
which will be stated in the following.

3.1. Grids.
Definition 3.1. A grid L of Zk is a subset of Zk, which is generated by all

linear combinations of some linearly independent vectors q1, . . . , qm ∈ Zk, where all
coefficients are integers; i.e., L = Zq�1 + · · ·+ Zq�m.

The parameter m = rank(L) is called the rank of the grid L, and the set Q =
{q1, . . . , qm} is called the basis of L.

Definition 3.2. Let Q = {q1, . . . , qm} ⊂ Zk be a set of linearly independent
vectors.

(i) The k×m generator matrix of Q (up to the ordering of the vectors) is defined
by

G(Q) := (q1, . . . , qm)k×m.

(ii) The fundamental parallelepiped FQ of Q is the following set:

FQ :=

{
m∑
i=1

αi · qi | 0 ≤ αi ≤ 1, i = 1, . . . ,m

}
⊆ Rk .

The vertices of the fundamental parallelepiped FQ are all the points
∑m
i=1 αi·qi

with α1, . . . , αm ∈ {0, 1}.
(iii) The volume of the fundamental parallelepiped FQ ⊆ Rk of Q is given by

vol(FQ) :=
(
det(G(Q)� ·G(Q)))1/2 ,

where G(q)� is the transpose of the generator matrix G(Q).
The following result can be found in [8].
Lemma 3.3 (see [8]). Let Q and Q′ be two bases of a grid L in Zk. Then the

volumes of the corresponding fundamental parallelepipeds are equal; i.e., vol(FQ) =
vol(FQ′). The parameter d(L) := vol(FQ) is called the determinant of the grid L.

For integers a1, . . . , an ∈ Z, which are not all equal to 0, let gcd(a1, . . . , an) denote
the greatest common divisor of a1, . . . , an. From elementary number theory we recall
the well-known lemma of Bézout.

Lemma 3.4. Let a1, . . . , ak ∈ Z be integers, which are not all equal to 0. Then
there exist integers y1, . . . , yk ∈ Z such that

a1 · y1 + · · ·+ ak · yk = gcd(a1, . . . , ak) .

Lemma 3.5 (see [9]). Let a = (a1, . . . , ak) ∈ (Z \ {0})k be a sequence of nonzero
integers with gcd(a1, . . . , ak) = 1. Then the set L of all solutions in Zk of the equation

a1 ·X1 + · · ·+ ak ·Xk = 0

is a grid in Zk with rank(L) = k − 1.
An algorithm for determining a basis of a grid L ⊆ Zk can be found in [9].
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We use the standard scalar product 〈a, b〉 :=
∑k
i=1 ai · bi for vectors a =

(a1, . . . , ak)
� ∈ Rk and b = (b1, . . . , bk)

� ∈ Rk. The Euclidean distance dist(a, b)

of the corresponding points is defined by dist(a, b) := (
∑k
i=1(ai− bi)2)1/2. The length

of a vector a ∈ Rk is defined by ‖a‖ :=
√〈a, a〉. For a point p ∈ Rk and a real

affine subspace V ⊆ Rk, let dist(p, V ) := min {dist(p, v) | v ∈ V }. For vectors
q1, . . . , qm ∈ Rk let span(q1, . . . , qm) be the linear space over the reals, generated by
q1, . . . , qm. Where appropriate in this paper, we will not distinguish between points
p ∈ Zk and the corresponding vectors p� ∈ Zk.

The following results can be found in [13].

Lemma 3.6 (see [13]). Let V be a (k − 1)-dimensional linear subspace of Rk,
and let a ∈ Rk \ {0k} be any nonzero vector which is orthogonal to V . The distance
dist(p, V ) of every point p ∈ Rk to the subspace V is given by

dist(p, V ) =
|〈p�, a〉|
‖a‖ .

Lemma 3.7 (see [13]). Let q1, . . . , qm ∈ Rk be linearly independent vectors. Then,
with U := span(q1, . . . , qm−1), the volume of the fundamental parallelepiped F{q1,...,qm}
satisfies

vol(F{q1,...,qm}) = dist(qm, U) · vol(F{q1,...,qm−1}) .

Lemma 3.8 (see [8]). Let U and L be grids in Zk with U ⊆ L and rank(L) =
rank(U) = m. Then the following holds:

(i) There exists a positive integer λ ∈ N\{0} such that λ·L = {λ·x | x ∈ L} ⊆ U .
(ii) For every basis b1, . . . , bm of L there is a basis a1, . . . , am of U of the following

form:

a1 = v1,1 · b1,
a2 = v2,1 · b1 + v2,2 · b2,

...(2)

am = vm,1 · b1 + · · ·+ vm,m · bm,

with vi,j ∈ Z and vi,i �= 0 for 1 ≤ j ≤ i ≤ m.
(iii) For each basis a1, . . . , am of U , there is a basis b1, . . . , bm of L such that (2)

is fulfilled.

Lemma 3.8 can be made constructive in polynomial time, for example, by using
for (ii) a variant of the LLL-algorithm (Lenstra, Lenstra, Lovàsz); see [9].

In our arguments we will use only part (iii) of Lemma 3.8. However, for the proof
of part (iii), parts (i) and (ii) are used. A proof of Lemma 3.8 can be found in [8,
Theorem I, p. 11–13].

Crucial to our arguments is the following result.

Lemma 3.9. Let k ∈ N be fixed. Let L be a grid in Zk with rank(L) = m, and
let a1, . . . , am ∈ L be linearly independent. Then there exists a basis b1, . . . , bm of L
with ‖bi‖ = O(maxj=1,...,m ‖aj‖) for i = 1, . . . ,m.

Proof. The arguments are similar to those in [8, Lemma 8, p. 135–136]. For
completeness we include the proof.
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By Lemma 3.8(iii) we can find a basis c1, . . . , cm ∈ Zk of L such that

a1 = v1,1 · c1,
a2 = v2,1 · c1 + v2,2 · c2,

...(3)

am = vm,1 · c1 + · · ·+ vm,m · cm,
with vi,j ∈ Z and vi,i �= 0 for 1 ≤ j ≤ i ≤ m. With this we will construct the desired
basis b1, . . . , bm ∈ Zk of L with ‖bi‖ = O(maxl=1,...,m ‖al‖) for i = 1, . . . ,m.

For i = 1, . . . ,m we proceed as follows. If vi,i ∈ {+1,−1}, then we set bi := vi,i ·ai;
hence ‖bi‖ = ‖ai‖. Otherwise, for |vi,i| ≥ 2, we solve the system of equations (3)
successively for c1, . . . , cm, and we obtain

ci =
1

vi,i
· ai + li,i−1 · ai−1 + · · ·+ li,1 · a1

for i = 1, . . . ,m with rational numbers li,i−1, . . . , li,1 ∈ Q. For each j < i we choose
integers ti,j ∈ Z such that

|ti,j + li,j | ≤ 1

2
.

Then, we set ki,j := ti,j + li,j for j < i and ki,i := 1/vi,i and fix bi by

bi := ki,i · ai + ki,i−1 · ai−1 + · · ·+ ki,1 · a1
= ci + ti,i−1 · ai−1 + · · ·+ ti,1 · a1;

hence bi ∈ L, and b1, . . . , bm is a basis of L. By construction we have |ki,j | ≤ 1/2 for
j ≤ i; hence

‖bi‖ ≤ ‖ki,i · ai‖+ ‖ki,i−1 · ai−1‖+ · · ·+ ‖ki,1 · a1‖ ≤ i

2
· max
j=1,...,i

‖aj‖ .

3.2. Maximal grids in Zk. In our arguments we will use the notion of maximal
grids.

Definition 3.10. A grid L in Zk is called m-maximal if rank(L) = m and
there exists no other grid L′ in Zk with rank(L′) = m, which contains L as a proper
subset.

A vector a = (a1, . . . , ak)
� ∈ Zk \ {0k} is called primitive, if gcd(a1, . . . , ak) = 1

and aj > 0 for j = min{i | ai �= 0}.
For a subset A = {x1, . . . , xm} ⊆ Rk of vectors, let A⊥ = {a ∈ Rk | 〈a, x1〉 =

· · · = 〈a, xm〉 = 0} be the orthogonal of A.
Mainly we will deal here with (k − 1)-maximal grids in Zk.
Lemma 3.11. Let a = (a1, . . . , ak)

� ∈ Zk \ {0k} be an integer-valued vector,
where not all entries are equal to 0. Then the set La = (R · a)⊥ ∩ Zk of all solutions
of the equation a1 ·X1 + · · ·+ ak ·Xk = 0 over Zk is a (k − 1)-maximal grid in Zk.

Proof. By linearity and symmetry we can assume that gcd(a1, . . . , ak) = 1, that
ai �= 0 for i = 1, . . . , r, and that ai = 0 for i > r. By Lemma 3.5 the set of all
solutions of the equation a1 ·X1 + · · · + ar ·Xr = 0 over Zr is a grid L∗ in Zr with
rank(L∗) = r−1. Then the set of all solutions of the equation a1 ·X1+· · ·+ak ·Xk = 0
over Zk is the grid L = L∗ × Zk−r in Zk with rank(L) = k − 1.
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To see the maximality of the grid L, let L′ be a grid in Zk with rank(L′) = k− 1,
and L ⊆ L′. The set V ⊆ Rk of all solutions of the equation a1 · X1 + · · · + ak ·
Xk = 0 over Rk is a (k − 1)-dimensional linear subspace of Rk. Then we have
L′ ⊆ span(L′) = span(L) = V ; hence each vector in L′ is a solution of the equation
a1 ·X1 + · · ·+ ak ·Xk = 0, and thus L′ ⊆ L. Therefore, L is a (k − 1)-maximal grid
in Zk.

Lemma 3.12. For every grid L in Zk with rank(L) = k − 1 ≥ 1 there is exactly
one primitive vector aL = (a1, . . . , ak)

� ∈ Zk \ {0k} with aL ⊥ L; i.e., 〈aL, x�〉 = 0
for each x ∈ L.

Proof. Let Q ⊆ Zk be a basis of L, and let G(Q) be its generator matrix. The
system of linear equations

G(Q)� · (X1, . . . , Xk)
� = 0(4)

has a nontrivial solution (a1, . . . , ak) ∈ Zk\{0k}, and every solutionX satisfiesX ⊥ L.
Dividing each entry of (a1, . . . , ak) by gcd(a1, . . . , ak) and possibly multiplying the
resulting vector by −1, we obtain a primitive vector aL = (a′1, . . . , a

′
k)
� ∈ Zk \ {0k},

which is a solution of (4). Since the rank of the matrix G(Q) is equal to k − 1, the
solutions of the system (4) in Rk form a one-dimensional subspace, and therefore the
vector aL is unique.

Corollary 3.13.
(i) For every grid L′ in Zk with rank(L′) = k − 1 there is exactly one (k − 1)-

maximal grid L in Zk with L′ ⊆ L.
(ii) There is a bijective mapping between the set of all (k−1)-maximal grids L in

Zk and the set of all primitive vectors aL in Zk; i.e., aL ∈ Zk is the unique
primitive normal vector of the grid L.

Definition 3.14. Let L be a (k − 1)-maximal grid in Zk. A residue class of L
is a set L′ of the form L′ = x+ L with x ∈ Zk.

Lemma 3.15. Let L be a (k−1)-maximal grid in Zk with primitive normal vector
aL ∈ Zk. Then there exists a point v ∈ Zk \ L such that Zk can be partitioned into
the residue classes s · v + L, s ∈ Z, i.e.,

Zk =
⊎
s∈Z

(s · v + L) ,

where � symbolizes the union of pairwise disjoint sets.
Moreover, for each point x ∈ L it is

dist(s · v + x, span(L)) = |s|
‖aL‖ .

Proof. For every point x ∈ L we have 〈x�, aL〉 = 0 and for each point v ∈ Zk \ L
it is 〈v�, aL〉 ∈ Z \ {0}. As aL is primitive, the greatest common divisor of its entries
is equal to 1, and by Lemma 3.4 there exists a point v ∈ Zk \L such that 〈v�, aL〉 = 1.

Using aL ⊥ L and Lemma 3.6 we infer the following for each integer s ∈ Z and
each point x ∈ L:

dist(s · v + x, span(L)) = |〈s · v
� + x�, aL〉|
‖aL‖

=
|〈s · v�, aL〉+ 〈x�, aL〉|

‖aL‖ =
|s|
‖aL‖ ;
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hence distinct residue classes of L have a distance which is a multiple of 1/‖aL‖.
Now let p ∈ Zk be an arbitrary point. We will show that p is contained in some

residue class of L. With s := 〈p�, aL〉 ∈ Z we have

〈p� − s · v�, aL〉 = 〈p�, aL〉 − s · 〈v�, aL〉 = s− s = 0 ;

thus p− s · v ∈ L; hence p ∈ s · v + L.
To see that (s · v + L) ∩ (t · v + L) = ∅ for s �= t, we assume to the contrary that

s · v+x = t · v+ y for some x, y ∈ L. Then we have (s− t) · v = y−x, and since v �∈ L
but y − x ∈ L, we conclude that s = t, which is a contradiction.

Lemma 3.16. Let L be a (k−1)-maximal grid in Zk with primitive normal vector
aL = (a1, . . . , ak)

� ∈ Zk and with basis Q. Then the determinant d(L) of L, i.e., the
volume of the fundamental parallelepiped determined by Q, satisfies

d(L) = vol(FQ) = ‖aL‖.

Proof. Let Q = {q1, . . . , qk−1} be a basis of L. As stated in Lemma 3.15
there exists a vector qk ∈ Zk such that Zk = �s∈Z(s · qk + L); i.e., {q1, . . . , qk}
is a basis of Zk. Since dist(qk, span(L)) = 1/‖aL‖, we infer by Lemma 3.7, where
U := span(q1, . . . , qk−1), that

1 = d(Zk) = vol(F{q1,...,qk}) =
1

‖aL‖ · d(L).

3.3. Simplices and maximal grids in Zk.
Definition 3.17. For a subset S = {p0, . . . , pk} ⊂ Rk of (k + 1) points, the set

S∗ =

{
p0 +

k∑
i=1

λi · (pi − p0) |
k∑
i=1

λi ≤ 1;λ1, . . . , λk ∈ [0, 1]

}

is called a simplex. For short, we identify S and S∗ and call each of them simplex and
specify by calling the points p ∈ {p0, . . . , pk}, which satisfy ({p0, . . . , pk}\{p})∗ �= S∗,
vertices of the simplex.

(i) The rank of the simplex S is defined by

rank(S) = dim(span({p1 − p0, . . . , pk − p0})) .

(ii) The simplex S is nondegenerate, if rank(S) = k. If rank(S) < k, we call S a
degenerate simplex. A simplex S = {p0, . . . , pk} ⊂ Rk is called a triangle for
k = 2, and for k = 3 it is called a tetrahedron.

(iii) The volume of a simplex S = {p0, . . . , pk} ⊂ Rk is defined by

vol(S) =
1

k
· h · vol(S′) ,

where h is the distance of pk to the affine space generated by p0, . . . , pk−1,
and S′ = {p0, . . . , pk−1}.

Recall that Bk(ρ) = {x ∈ Rk | ‖x‖ ≤ ρ} ⊂ Rk is the k-dimensional ball around
the origin with radius ρ ∈ R+

0 . The following result will be used frequently in our
arguments.

Lemma 3.18. Let S ⊆ Bk(ρ) ∩ Zk be a set of points with rank(S) ≤ k − 1.
Then there exists a (k − 1)-maximal grid L of Zk such that S is contained in some
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residue class v + L of L for some v ∈ Zk, and L has a basis q1, . . . , qk−1 ⊂ Zk with
maxi=1,...,k−1 ‖qi‖ = O(ρ).

Proof. Let S = {p0, . . . , pm} ⊆ Bk(ρ) ∩ Zk with r = rank(S). The vectors
p1−p0, . . . , pm−p0 span a grid L′ in Zk with rank(L′) = r, and have length ‖pi−p0‖ ≤
2 · ρ for i = 1, . . . ,m. We take (k − 1− r) unit vectors from Zk \ L′, add them to L′,
and we obtain a grid L′′ of Zk with rank(L′′) = k− 1 and L′ ⊆ L′′. By Corollary 3.13
there is exactly one (k − 1)-maximal grid L of Zk with L′ ⊆ L′′ ⊆ L. By Lemma 3.9
we can find a basis q1, . . . , qk−1 of L with ‖qi‖ = O(ρ) for i = 1, . . . , k − 1. Then we
have S ⊆ p0 + L.

Theorem 3.19. Let k ∈ N be fixed. Let L be a (k − 1)-maximal grid of Zk with
primitive normal vector aL ∈ Zk, and let Q = {q1, . . . , qk−1} be a basis of L with
maxi ‖qi‖ = O(ρ). Then the following holds:

(i) The primitive normal vector aL satisfies ‖aL‖ = O(ρk−1).
(ii) There are O(ρ · ‖aL‖) different residue classes L′ of L with L′ ∩Bk(ρ) �= ∅.
(iii) For every residue class L′ of L it is |L′ ∩Bk(ρ)| = O

(
ρk−1/‖aL‖

)
.

Proof. (i) By Lemma 3.16 we have ‖aL‖ = d(L) = vol(FQ), and by using the
assumption maxi ‖qi‖ = O(ρ) we know that FQ ⊆ Bk(c · ρ) for some constant c > 0.
Since dim(FQ) = k − 1, the volume vol(FQ) of the parallelepiped FQ is O(ρk−1).

(ii) By Lemma 3.15 the distances of different residue classes of L are multiples of
1/‖aL‖. The Euclidean distance between any two points in the ball Bk(ρ) is at most
2 ·ρ; hence O(ρ · ‖aL‖) distinct residue classes of L have a nonempty intersection with
Bk(ρ).

(iii) The volume of a (k − 1)-dimensional space S intersected with Bk(ρ) is
O(ρk−1). Since FQ ⊆ Bk(c ·ρ) and vol(FQ) = ‖aL‖, we can cover the set S∩Bk(ρ) by
O
(
ρk−1/‖aL‖

)
distinct translates of the parallelepiped FQ. As L is maximal, the in-

terior of FQ (only the vertices are excluded) contains no points from L, which finishes
the proof.

3.4. Representations by sums of squares. We will use some results from
elementary number theory. For integers k, d ∈ N let rk(d) be the number of vectors
(x1, . . . , xk)

� ∈ Zk with x2
1 + · · ·+ x2

k = d.
Lemma 3.20. For fixed integers k ∈ N and all integers n ∈ N it is

n∑
d=1

rk(d) = Θ(nk/2) .(5)

Proof. The sum
∑n
d=1 rk(d) counts the number of grid-points in Zk in the k-

dimensional ball Bk(
√
n). If we put around each of these grid-points k-dimensional

unit cubes [0, 1]k, with centers being the grid-points, then all the points of these unit
cubes are contained in a k-dimensional ball around the origin with radius

√
n+
√
k/2,

since the diagonal of every k-dimensional unit cube [0, 1]k has length
√
k. Moreover,

the unit cubes cover the k-dimensional ball around the origin with radius
√
n−√k/2.

Since the number of unit cubes is equal to
∑n
d=1 rk(d), we infer

πk/2

Γ(k/2 + 1)
·
(
√
n−
√
k

2

)k
≤

n∑
d=1

rk(d) ≤ πk/2

Γ(k/2 + 1)
·
(
√
n+

√
k

2

)k
;

thus
∑n
d=1 rk(d) = Θ(nk/2). (Recall that Rk · πk/2/Γ(k/2 + 1) is the volume of the

k-dimensional ball around the origin with radius R ∈ R+.)
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Corollary 3.21. For fixed integers k, r ∈ N and for all integers n ∈ N, it is

n∑
d=1

rk(d)

dr
=




O
(
nk/2−r

)
if k/2− r > 0,

O (log n) if k/2− r = 0,
O(1) if k/2− r < 0.

Proof. We assume without loss of generality that n is a power of 2, i.e., n = 2l.
Set ni = 2i for i = 0, . . . , l. With (5) we infer for some constant ck > 0 that

n∑
d=1

rk(d)

dr
≤

l∑
i=0

ni+1∑
d=ni

rk(d)

dr
≤

l∑
i=0

ni+1∑
d=ni

rk(d)

nri
=

l∑
i=0

2−i·r ·
ni+1∑
d=ni

rk(d)

≤
l∑
i=0

2−i·r ·
ni+1∑
d=1

rk(d) ≤
l∑
i=0

2−i·r · ck · (ni+1)
k/2 = ck · 2k/2 ·

l∑
i=0

2i·(k/2−r) .

The sum
∑l
i=0 2

i·(k/2−r) is bounded from above as follows: (i) for k/2 − r > 0 by
O
(
2l·(k/2−r)

)
= O

(
nk/2−r

)
, (ii) for k/2 − r = 0 by O(l) = O(log n), and (iii) for

k/2− r < 0 by O(1).
For a (k − 1)-maximal grid L in Zk with primitive normal vector aL ∈ Zk and a

positive integer d, we denote by rk(d; aL) the number of grid-points P in L such that
the square of the Euclidean distance between P and the origin O is equal to d, i.e.,
(dist(O,P ))2 = d.

In our arguments we will use the following variants of Lemma 3.20 and Corollary
3.21.

Lemma 3.22. Let k ∈ N be a fixed integer. Let L be a (k − 1)-maximal grid in
Zk with primitive normal vector aL ∈ Zk. For all integers n ∈ N, it is

n∑
d=1

rk(d; aL) = O

(
n(k−1)/2

‖aL‖
)
.(6)

Proof. The sum
∑n
d=1 rk(d; aL) is equal to the number of grid-points in L in

the k-dimensional ball Bk(
√
n). By Theorem 3.19(iii) this sum

∑n
d=1 rk(d; aL) is

O((
√
n)k−1/‖aL‖), from which inequality (6) follows.

With (6) the following is straightforward with the same arguments used in the
proof of Corollary 3.21.

Corollary 3.23. Let k, r ∈ N be fixed integers and let L be a (k − 1)-maximal
grid in Zk with primitive normal vector aL ∈ Zk. For all positive integers n ∈ N, it is

n∑
d=1

rk(d; aL)

dr
=





O
(

1
‖aL‖ · n(k−1)/2−r

)
if (k − 1)/2− r > 0,

O
(

1
‖aL‖ · log n

)
if (k − 1)/2− r = 0,

O
(

1
‖aL‖

)
if (k − 1)/2− r < 0.

4. Degenerate simplices in Bk(ρ) ∩ Zk.
Theorem 4.1. Let k ∈ N be a fixed integer. The number Dk(ρ) of degenerate

simplices in Bk(ρ) ∩ Zk satisfies Dk(ρ) = O
(
ρk

2 · log ρ).
The set of all these degenerate simplices in Bk(ρ)∩Zk can be constructed in time

polynomial in ρ.
Proof. For fixed k ∈ N, by inspecting every (k+1)-element subset S ⊂ Bk(ρ)∩Zk

of points, we can determine all degenerate simplices in Bk(ρ)∩Zk in time O(ρk(k+1)),
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since there are O
((

ρk

k+1

))
(k + 1)-element subsets at all. To check whether or not

vol(S) = 0, one simply computes in time O(1) the determinant of the matrix with
columns p1 − p0, . . . , pk − p0.

By Lemma 3.18 each degenerate (k + 1)-element subset of points in Bk(ρ) ∩ Zk

is contained in a residue class L′ of some (k − 1)-maximal grid L in Zk, where L has
a basis q1, . . . , qk−1 ∈ Zk with ‖qi‖ = O(ρ) for i = 1, . . . , k − 1. By Theorem 3.19(i)
it suffices to consider all primitive normal vectors aL ∈ Zk of length ‖aL‖ = O(ρk−1)
and the corresponding residue classes L′ of L with L′ ∩B3(β) �= ∅.

Having fixed a (k− 1)-maximal grid L in Zk, determined by its primitive normal
vector aL ∈ Zk, by Theorem 3.19(ii) there are O(ρ · ‖aL‖) residue classes L′ of the
grid L, which intersect the ball Bk(ρ) in a nonempty set.

By Theorem 3.19(iii) each set L′ ∩ Bk(ρ) contains O(ρk−1/‖aL‖) points. From

each set L′ ∩ Bk(ρ) we can select (k + 1) points in O(
(
ρk−1/‖aL‖

k+1

)
) ways to obtain a

degenerate simplex. This implies the following upper bound on the number Dk(ρ) of
degenerate simplices in Bk(ρ) ∩ Zk:

Dk(ρ) = O


 ∑

a∈Zk, ‖a‖=O(ρk−1)

ρ · ‖a‖ ·
(
ρk−1/‖a‖
k + 1

)


= O


ρk2 ·

∑

a∈Zk, ‖a‖=O(ρk−1)

1

‖a‖k


 = O


ρk2 ·

O(ρ2k−2)∑
d=1

rk(d)

dk/2


 = O(ρk

2 · log ρ) ,

since by Corollary 3.21 we have
∑n
d=1 rk(d)/d

k/2 = O(log n).

5. Nondegenerate tetrahedra in B3(ρ)∩Z3. From now on we consider only
the case of dimension k = 3. We will determine for positive reals β the number
N3(ρ;β) of nondegenerate tetrahedra S = {p0, . . . , p3} in B3(ρ) ∩ Z3 with volume
vol(S) ≤ β. Recall that the volume of a (possibly degenerate) tetrahedron S is
defined by

vol(S) =
1

3
· h ·G ,

where h is the distance between p3 and the affine space defined by p0, p1, p2, and G
is the area of the triangle p0, p1, p2.

We will show in this section the following result.
Theorem 5.1. The number N3(ρ;β) of nondegenerate tetrahedra S ⊆ B3(ρ)∩Z3

with vol(S) ≤ β satisfies N3(ρ;β) = O(β · ρ9).
The set of all these nondegenerate tetrahedra in B3(ρ)∩Z3 can be constructed in

time polynomial in ρ.
Proof. By inspecting every 4-element subset S = {p0, . . . , p3} ⊂ B3(ρ) ∩ Z3, we

can determine all tetrahedra in B3(ρ) ∩ Z3 with volume at most β in time O(ρ12),
since checking whether or not vol(S) ≤ β can be done in time O(1).

First we consider the number of nondegenerate triangles S in B3(ρ) ∩ L for a
2-maximal grid L in Z3, where we distinguish whether area(S) ≥ v or area(S) ≤ v
for some real number v > 0.

Lemma 5.2. Let L be a 2-maximal grid in Z3 with primitive normal vector
aL ∈ Z3. Let v, β > 0 be real numbers. For every residue class L′ of L the number
of nondegenerate tetrahedra S = {p0, p1, p2, p3} in B3(ρ) ∩ Z3 with S \ {p3} ⊆ L′ and
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area(S \ {p3}) ≥ v and vol(S) ≤ β is at most

O

(
β · ρ8
v · ‖aL‖3

)
.

Proof. Let L′ be a residue class of a 2-maximal grid L in Z3 with primitive normal
vector aL ∈ Z3. By Lemma 3.18 we can assume that L has a basis q1, q2 ∈ Z3, with
‖q1‖, ‖q2‖ = O(ρ). By Theorem 3.19(iii) the set L′ ∩ B3(ρ) contains O(ρ2/‖aL‖)
points; hence we can choose O((ρ

2/‖aL‖
3 )) different sets of three points from this set.

In particular, for every real v > 0, we can choose from the set L′ ∩ B3(ρ) three

vertices of a nondegenerate triangle S′ with area(S′) ≥ v in O((ρ2/‖aL‖3 )) ways. Since
the desired tetrahedra should have volume at most β, the corresponding fourth point
has distance O(β/v) from the real affine space generated by L′. By Lemma 3.15 the
distance between distinct residue classes of L is a multiple of 1/‖aL‖, and since for
every residue class L′′ of L the set L′′ ∩B3(ρ) contains O(ρ

2/‖aL‖) points, the fourth
point can be chosen in

O

(
β

v
· ‖aL‖ · ρ

2

‖aL‖
)
= O

(
β · ρ2
v

)

ways. Altogether we obtain for the number of desired simplices

O

((
ρ2/‖aL‖

3

)
· β · ρ

2

v

)
= O

(
β · ρ8
v · ‖aL‖3

)
.

Next we will consider the nondegenerate triangles in B3(ρ)∩Z3 with area at most
v. For this case we will use the following lemma.

Lemma 5.3. Let L be a 2-maximal grid in Z3 with primitive normal vector
aL ∈ Z3. For every residue class L′ of L, and every two fixed distinct points P and
Q on L′, the number of nondegenerate triangles S in L′ ∩ B3(ρ) with vertices P and
Q and area(S) ≤ v is

O

(
v · ρ

dist(P,Q) · ‖aL‖
)
.

Proof. By an affine mapping f : L −→ Z2 we transform the 2-maximal grid L
in Z3 with primitive normal vector aL ∈ Z3 (or any residue class L′ of L) into the
standard two-dimensional rectangular grid Z2 with basis (1, 0)� and (0, 1)�. Points
in L∩B3(β) become points within an ellipsoid C. For a basis a = (a1, a2, a3)

� ∈ Z3,
b = (b1, b2, b3)

� ∈ Z3 of the grid L, let f(a) := (1, 0)� and f(b) := (0, 1)�. We
can assume that L′ = L, and that P = (0, 0, 0) and Q = λ · a + µ · b (for some
λ, µ ∈ Z) are the two given points. Via the mapping f : L′ −→ Z2 we obtain the
points f(P ) = P ′ = (0, 0) and f(Q) = Q′ = (λ, µ).

Points P,Q,R ∈ L′ ∩ B3(ρ) become the grid points P ′, Q′, R′ ∈ C ∩ Z2 in the
ellipsoid C. If area(P,Q,R) = v, then area(P ′, Q′, R′) = v/‖aL‖, as can be easily
seen.

Let g = gcd(λ, µ), and set λ′ := λ/g and µ′ := µ/g. The line 6 (residue class)
through the points P ′ and Q′ in Z2 has the primitive normal vector aN := (µ′,−λ′)�.

To estimate the number of points R ∈ L′ ∩ B3(ρ) such that area(P,Q,R) ≤ v,
we compute the number of points R′ ∈ C ∩ Z2 such that area(P ′, Q′, R′) ≤ v/‖aL‖.
The distance of R′ to the line 6 is at most 2 · v/(‖aL‖ · dist(P ′, Q′)). By Lemma 3.15



1938 HANNO LEFMANN AND NIELS SCHMITT

distinct residue classes 6′ of 6 have a distance which is a multiple of 1/‖aN‖; thus
there are

O

(
v · ‖aN‖

‖aL‖ · dist(P ′, Q′)
)

lines 6′ with R′ ∈ 6′ to consider. Since the distance between any two points in B3(ρ)
is at most 2 · ρ, the line 6 intersects the ellipsoid C in two points with distance D,
where

D = O

(
ρ · dist(P ′, Q′)
dist(P,Q)

)
.

Every line 6′ parallel to 6 intersects the ellipsoid C in two points whose distance
D′ is at most D. To see this, consider the line 6′′ obtained by reflecting the line 6′ at
6. By symmetry, the line 6′′ intersects the ellipsoid C in two points which also have
distance D′. From the convexity of the ellipsoid it follows that D′ ≤ D. By Lemma
3.16 the distance between points in 6′ ∩ Z2 is a multiple of ‖aN‖, and we infer that
|6′ ∩ E ∩ Z2| = O(D′/‖aN‖) = O(D/‖aN‖).

Thus, we have the following upper bound on the number of triangles in L′∩B3(ρ)
with area at most v and with fixed vertices P and Q:

O

(
v · ‖aN‖

‖aL‖ · dist(P ′, Q′) ·
D

‖aN‖
)
= O

(
v · ρ

dist(P,Q) · ‖aL‖
)
.

Corollary 5.4. Let L be a 2-maximal grid in Z3 with primitive normal vector
aL ∈ Z3. For every residue class L′ of L, the number of nondegenerate triangles S in
L′ ∩B3(ρ) with area(S) ≤ v is

O

(
v · ρ4
‖aL‖3

)
.

Proof. Since |L′ ∩ B3(ρ)| ≤ |L ∩ B3(ρ)| and L′ is a residue class of L, we can
assume that L′ = L. By Lemma 3.18 we can assume that the grid L has a basis
q1, q2 ∈ Z3 with ‖q1‖, ‖q2‖ = O(ρ). Fix a point P ∈ L′ ∩B3(ρ); by Theorem 3.19(iii)
there are O(ρ2/‖aL‖) possibilities for this. For every integer d ∈ N there are at most
r3(d; aL) points Q in L′∩B3(ρ) such that (dist(P,Q))2 = d. With d = O(ρ2), Lemma
5.3, and Corollary 3.23, the number of nondegenerate triangles S in the set L′∩B3(ρ)
with area(S) ≤ v is

O


 ρ2

‖aL‖ ·
O(ρ2)∑
d=1

v · ρ · r3(d; aL)
d1/2 · ‖aL‖


 = O


 v · ρ3
‖aL‖2 ·

O(ρ2)∑
d=1

r3(d; aL)

d1/2




= O

(
v · ρ4
‖aL‖3

)
.

Lemma 5.5. Let L be a 2-maximal grid L in Z3 with primitive normal vector
aL ∈ Z3. Then for every nondegenerate triangle S in L it is area(S) ≥ ‖aL‖/2.

Proof. Let Q be a basis of L. The minimum area of a nondegenerate triangle in
L is half of the volume of the fundamental parallelepiped FQ, where vol(FQ) = ‖aL‖
by Lemma 3.16.
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Lemma 5.6. Let L be a 2-maximal grid L in Z3 with primitive normal vector
aL ∈ Z3. Let L′ be any residue class of L. Let v > 0 be a real number. The number
of nondegenerate tetrahedra S = {p0, . . . , p3} in B3(ρ) ∩ Z3 with S \ {p3} ⊆ L′ and
area(S \ {p3}) ≤ v and vol(S) ≤ β is

O

(
β · v · ρ6
‖aL‖4

)
.

Proof. By Lemma 3.18 we can assume that the grid L has a basis q1, q2 ∈ Z3, with
‖q1‖, ‖q2‖ = O(ρ). Let S′ = {p0, p1, p2} be a nondegenerate triangle in L′ ∩ B3(ρ)
with area(S′) ≤ v. By Corollary 5.4 there are O(v · ρ4/‖aL‖3) of them. By Lemma
5.5 we have area(S′) ≥ ‖aL‖/2. To select the point p3 ∈ B3(ρ) ∩ Z3, the requirement
vol(S′ ∪ {p3}) ≤ β has to be satisfied; thus the distance between the point p3 and
the affine space defined by S′ is O(β/‖aL‖). By Lemma 3.15 the distance between
distinct residue classes of L is a multiple of 1/‖aL‖. By Theorem 3.19(iii) for every
residue class L′ of L the set L′∩B3(ρ) contains O(ρ

2/‖aL‖) points. Hence, for a fixed
triangle S′, the point p3 can be chosen in

O

(
β

‖aL‖ · ‖aL‖ ·
ρ2

‖aL‖
)
= O

(
β · ρ2
‖aL‖

)
(7)

ways. Thus, the number of tetrahedra S = {p0, . . . , p3} in B3(ρ)∩Z3 with vol(S) ≤ β
and S \ {p3} ⊆ L′ and area(S \ {p3}) ≤ v is

O

(
v · ρ4
‖aL‖3 ·

β · ρ2
‖aL‖

)
= O

(
β · v · ρ6
‖aL‖4

)
.

Lemma 5.7. Let L be a 2-maximal grid in Z3 with primitive normal vector
aL ∈ Z3. For every residue class L′ of L the number of nondegenerate tetrahedra S =
{p0, p1, p2, p3} ⊆ B3(ρ)∩Z3 with S \ {p3} ⊆ L′ and vol(S) ≤ β is O(β · ρ7/‖aL‖7/2).

Proof. From Lemmas 5.2 and 5.6 we infer that, for every residue class L′ of a
2-maximal grid L in Z3 with primitive normal vector aL ∈ Z3 and for every real
v > 0, the number of tetrahedra S = {p0, . . . , p3} in B3(ρ) ∩ Z3 with S \ {p3} ⊆ L′
and vol(S) ≤ β is

O

(
β · ρ8
v · ‖aL‖3 +

β · v · ρ6
‖aL‖4

)
.(8)

We have

β · v · ρ6
‖aL‖4 =

β · ρ8
v · ‖aL‖3 if v = ρ · ‖aL‖1/2.

For a given vector aL ∈ Z3 we set v(aL) := ρ · ‖aL‖1/2. Then, (8) becomes

O

(
β · ρ8
v · ‖aL‖3 +

β · v · ρ6
‖aL‖4

)
= O

(
β · ρ7
‖aL‖7/2

)
.

Now we can finish the proof of Theorem 5.1. By Lemma 3.18 we can assume that
the grid L has a basis q1, q2 ∈ Z3 with ‖q1‖, ‖q2‖ = O(ρ); hence ‖aL‖ = O(ρ2) by
Theorem 3.19(i). By Theorem 3.19(ii), for a fixed primitive normal vector aL ∈ Z3,
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there are O(ρ · ‖aL‖) distinct residue classes L′ of the grid L, which intersect B3(ρ)
in a nonempty set. Summing over all possible grids L, we have with Lemma 5.7 that

N3(ρ;β) = O

( ∑
a∈Z3

‖a‖=O(ρ2)

ρ · ‖a‖ · β · ρ
7

‖a‖7/2
)

= O

(
β · ρ8 ·

∑
a∈Z3

‖a‖=O(ρ2)

1

‖a‖5/2
)

= O

(
β · ρ8 ·

O(ρ4)∑
d=1

r3(d)

d5/4

)
= O(β · ρ9),

where the last equation follows with Corollary 3.21, i.e.,
∑n
d=1 r3(d)/d

5/4 = O(n1/4).
This finishes the proof of Theorem 5.1.

6. Properties of the hypergraph G(β). For some real number β > 0, which
will be fixed below, we form a hypergraph G(β) = (V, E3 ∪ E4) with the vertex set V
being the set B3(ρ) ∩ Z3 of Θ(ρ3) grid-points and Ei being the set of all i-element
edges, i = 3, 4. The hypergraph G contains 3- and 4-element edges. The 4-element
edges E ∈ E4 are determined by all 4-element subsets of V , no three of them on a line,
which form a tetrahedron of volume at most β including degenerate tetrahedra. The
3-element edges E′ ∈ E3 are formed by all collinear triples from V = B3(ρ)∩Z3. Then
an independent set in this hypergraph G(β) corresponds to a set of points in B3(ρ)∩Z3,
where all tetrahedra have volume bigger than β. In order to apply Theorem 2.2 we
will show that the assumptions there are satisfied; i.e., we will give upper bounds
on the numbers of 3- and 4-element edges and the numbers of 2-cycles among the
4-element edges. Set

β :=
log n

n3
· ρ3,

where ρ = n1+ε for some fixed ε > 0; thus β = n3ε · log n.
First we estimate the average degree t3 of the hypergraph G = (V, E4) among the

4-element edges. By Theorems 4.1 and 5.1 we can bound the number of 4-element
edges in G by

|E4| = O(ρ9 · log ρ+ β · ρ9) = O(β · ρ9);

hence, with |V | = Θ(ρ3), the average degree of G is

4 · |E4|
|V | = O

(
β · ρ9
ρ3

)
= O

(
β · ρ6) .

In our application of Theorem 2.2 we will calculate with an upper bound on t; thus
from now on for some constant c > 0 we use

t3 = c · β · ρ6.(9)

Next we will bound the number |E3| of 3-element edges in G(β), that is, the number
of collinear triples in B3(ρ) ∩ Z3.

We choose two points P and Q from B3(ρ) ∩ Z3 in O(ρ6) ways. There are O(ρ)
points in B3(ρ) ∩ Z3 on the line through P and Q; hence

|E3| = O(ρ7) .(10)
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To satisfy the assumptions of Theorem 2.2, we need to have for some δ > 0 that

|E3| = O(ρ3 · t2−δ) .(11)

Then (11) is satisfied for 0 < δ < 2ε/(2 + 3ε), as can be seen with (9) and (10) for
the constant c′ = c2/3−δ/3 from the following:

ρ3 · t2−δ = c′ · β2/3−δ/3 · ρ7−2δ = c′ · ρ7 ·
(
β2/3−δ/3 · ρ−2δ

)

= c′ · ρ7 · (log n)2/3−δ/3 · n2ε−3εδ−2δ = Ω(ρ7) .

Next we will give upper bounds on the number of 2-cycles in our hypergraph
G = (V, E4). We will distinguish two types of 2-cycles, namely, (2, 2)-cycles and (2, 3)-
cycles. In the following we will always assume by Lemma 3.18 that the 2-maximal
grids L in Z3 under consideration have a basis q1, q2 ∈ Z3, with ‖q1‖, ‖q2‖ = O(ρ);
hence by Theorem 3.19(i) we have ‖aL‖ = O(ρ2).

6.1. (2, 2)-cycles. Let us consider first the number s2,2(G) of (2, 2)-cycles in our
hypergraph G = (V, E4), that is, the number of pairs of tetrahedra in B3(ρ)∩Z3, which
have exactly two vertices in common, and both tetrahedra have volume at most β.

We distinguish three cases: (a) both tetrahedra are degenerate, (b) one tetrahe-
dron is degenerate and the other is nondegenerate, and (c) both tetrahedra are non-
degenerate. The corresponding numbers of (2, 2)-cycles are denoted by s2,2(G; dd),
s2,2(G; dn), s2,2(G;nn), respectively.

Case (a). Both tetrahedra are degenerate. By Theorem 4.1 there are O
(
ρ9 · log ρ)

degenerate tetrahedra in the set B3(ρ)∩Z3. Fix one of these tetrahedra. The second
degenerate tetrahedron is contained in a residue class M ′ of a 2-maximal grid M in
Z3 and has two vertices in common with the first one, say, P = (p1, p2, p3) ∈ M ′
and Q = (q1, q2, q3) ∈ M ′. Fix a primitive normal vector bM := (b1, b2, b3) ∈ Z3

with ‖bM‖ = O(ρ2), which belongs to a 2-maximal grid M in Z3, where P,Q ∈ M ′
for some residue class M ′ of the grid M . If P,Q ∈ M ′, then with yi := pi − qi for
i = 1, 2, 3 it must hold that

b1 · y1 + b2 · y2 + b3 · y3 = 0 ,

where (y1, y2, y3) �= (0, 0, 0). By Theorem 3.19(iii) the set M ′ ∩ B3(ρ) contains
O(ρ2/‖bM‖) points; by Lemma 3.18 we can assume that M has a basis q1, q2 ∈ Z3

with ‖q1‖, ‖q2‖ = O(ρ). Having already fixed the vertices P and Q of the second

degenerate tetrahedron, two further vertices from M ′ can be chosen in O((ρ
2/‖bM‖

2 ))
ways. Summing over all possible residue classes M ′ of 2-maximal grids M in Z3

with P,Q ∈ M ′, we obtain, using Corollary 3.21, the following upper bound on the
number of possibilities for the second tetrahedron, where, neglecting constant factors,
we assume in the calculations that y3 �= 0:




∑
b=(b1,b2,b3)∈Z3;‖b‖=O(ρ2)

b1y1+b2y2+b3y3=0

(
ρ2/‖b‖

2

)



= O


ρ4 ·

∑
(b1,b2)∈Z2

|b1|,|b2|=O(ρ2)

1

b21 + b
2
2 + (b1 · y1/y3 + b2 · y2/y3)2
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= O


ρ4 ·

∑
(b1,b2)∈Z2

|b1|,|b2|=O(ρ2)

1

b21 + b
2
2


 = O


ρ4 ·

O(ρ4)∑
d=1

r2(d)

d


 = O(ρ4 · log ρ).(12)

Hence the number s2,2(G; dd) of pairs of degenerate tetrahedra in B3(ρ) ∩ Z3, which
have two vertices in common, satisfies

s2,2(G; dd) = O
(
ρ9 · log ρ · ρ4 · log ρ) = O (ρ13 · (log ρ)2) .(13)

Case (b). One tetrahedron is degenerate and the other is nondegenerate and has
volume at most β. By Theorem 5.1 the number of nondegenerate tetrahedra with
volume at most β in B3(ρ)∩Z3 is O(β · ρ9). Fix such a tetrahedron and fix two of its
vertices, say, P = (p1, p2, p3) and Q = (q1, q2, q3), where yi := pi−qi for i = 1, 2, 3. As
in case (a), for a primitive normal vector bM = (b1, b2, b3) ∈ Z3 with ‖bM‖ = O(ρ2),
using Theorem 3.19(i), we must have for the case that P,Q ∈ M ′ for some residue
class M ′ of M that

b1 · y1 + b2 · y2 + b3 · y3 = 0.

Two further vertices of the second degenerate tetrahedron can be chosen from M ′ in
O((ρ

2/‖bM‖
2 )) ways; hence as in case (a) and using (12), altogether we have O(ρ4 ·log ρ)

possibilities for this. We infer for the number s2,2(G; dn) of pairs of tetrahedra, where
one is nondegenerate with volume at most β and the other is degenerate, the following
upper bound:

s2,2(G; dn) = O
(
β · ρ9 · ρ4 · log ρ) = O (β · ρ13 · log ρ) .(14)

Case (c). Both tetrahedra have volume at most β, are nondegenerate, and have
two vertices in common. To count this number s2,2(G;nn) of (2, 2)-cycles, we choose
a primitive normal vector aL ∈ Z3 of a 2-maximal grid L in Z3 with ‖aL‖ = O(ρ2).
Then we fix a point P ∈ Z3 ∩ B3(ρ). There is exactly one residue class L′ of L with
P ∈ L′. For fixed integers d > 0 consider a second pointQ ∈ L′ with (dist(P,Q))2 = d,
there are at most r3(d; aL) of these points. The points P and Q are the two common
vertices of the two tetrahedra.

Let v > 0 be a real number. By Lemma 5.3 there are O(v · ρ/(‖aL‖ · d1/2)) points
R ∈ L′ ∩B3(ρ) such that area(P,Q,R) ≤ v and the triangle determined by P,Q,R is
nondegenerate. Then the fourth point from B3(ρ)∩Z3 of a tetrahedron with volume
at most β can be chosen in O(β · ρ2/‖aL‖) ways; see (7). If we assume that the third
point R ∈ L′ ∩ B3(ρ) satisfies area(P,Q,R) > v, then there are O(ρ2/‖aL‖) choices
for the point R and the fourth point from B3(ρ) ∩ Z3 can be chosen in O(β · ρ2/v)
ways; thus we have

O

(
β · v · ρ3
‖aL‖2 · d1/2 +

β · ρ4
v · ‖aL‖

)
(15)

possibilities for the third and fourth vertices of the first tetrahedron. With v(aL) :=
ρ1/2 · ‖aL‖1/2 · d1/4 this upper bound (15) becomes

O

(
β · ρ7/2

‖aL‖3/2 · d1/4
)
.(16)
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Now we consider the second nondegenerate tetrahedron in B3(ρ) ∩ Z3 with the
already fixed vertices P = (p1, p2, p3) and Q = (q1, q2, q3). A third vertex R ∈
B3(ρ)∩Z3 of the second tetrahedron determines uniquely a 2-maximal grid M in Z3,
such that P,Q,R are contained in a residue classM ′ ofM . These 2-maximal gridsM
in Z3 with primitive normal vector bM = (b1, b2, b3) ∈ Z3 with ‖bM‖ = O(ρ2), where
P −Q ∈M and P,Q ∈M ′, satisfy

b1 · y1 + b2 · y2 + b3 · y3 = 0,(17)

where yi := pi − qi for i = 1, 2, 3. Since the third point R ∈ M of the nondegenerate
tetrahedron satisfies R ∈ B3(ρ) ∩ Z3, there are only O(ρ3) choices for the primitive
normal vector bM ∈ Z3. Let C ⊆ Z3 be the set of all possible choices for bM .

Having fixed P and Q, the number of possibilities to extend these two points to
the second tetrahedron in B3(ρ) ∩ Z3 is by (16)

O

(∑
b∈C

β · ρ7/2
‖b‖3/2 · d1/4

)
= O

(
β · ρ7/2
d1/4

·
∑
b∈C

1

‖b‖3/2
)

= O

(
β · ρ17/4
d1/4

)
.

The last equality can be seen as follows. Since we already fixed the two points P and
Q, there are O(ρ3) possibilities to choose a residue class M ′ (of a 2-maximal grid M
in Z3) such that P,Q ∈ M ′ and where |M ′ ∩B3(ρ)| ≥ 3. Assume that y3 �= 0. Then
by (17) we have that (b1, b2, b3), (b1, b2, b

′
3) ∈ C implies that b3 = b′3. We infer using

Corollary 3.21 that

∑

b=(b1,b2,b3)∈C

1

‖b‖3/2 = O


 ∑

b=(b1,b2,b3)∈C

1

(b21 + b
2
2)

3/4


 = O



O(ρ3)∑
d=1

r2(d)

d3/4


 = O(ρ3/4).

The second equality can be seen from the following.
Lemma 6.1. Let S ⊂ Z2 be a finite set and let α > 0. Then it holds that

∑

(s1,s2)∈S

1

(s21 + s
2
2)
α
= O



|S|∑
d=1

r2(d)

dα


 .

Proof. This is due to the fact that the function f(x) = 1/x is monotone decreasing

and that
∑N
d=1 r2(d) = θ(N) by Lemma 3.20; i.e., there are Θ(N) representations of

positive integers i < N as a sum of two squares.
Thus, we infer with Corollaries 3.21 and 3.23 that

s2,2(G;nn) = O




∑
a∈Z3

‖a‖=O(ρ2)

ρ3 ·
O(ρ2)∑
d=1

r3(d; a) · β · ρ7/2
‖a‖3/2 · d1/4 ·

β · ρ17/4
d1/4




= O


β2 · ρ43/4 ·

∑
a∈Z3

‖a‖=O(ρ2)

1

‖a‖3/2 ·
O(ρ2)∑
d=1

r3(d; a)

d1/2




= O


β2 · ρ47/4 ·

∑
a∈Z3

‖a‖=O(ρ2)

1

‖a‖5/2


 = O


β2 · ρ47/4 ·

O(ρ4)∑
d=1

r3(d)

d5/4




= O(β2 · ρ51/4).(18)
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To satisfy the assumptions of Theorem 2.2, we must have for some suitable con-
stant γ > 0 that

s2,2(G) = s2,2(G; dd) + s2,2(G; dn) + s2,2(G;nn)
= O

(
ρ3 · t5−γ) = O

(
ρ13−2γ · β5/3−γ/3

)
,(19)

where t = c1/3 ·β1/3 · ρ2 by (9) with β = ρ3 · log n/n3 and ρ = n1+ε for some constant
ε > 0.

Considering (13), (14), and (18), we have ρ13 · (log ρ)2 = O(β · ρ13 · log ρ), and
β2 · ρ51/4 = O(β · ρ13 · log ρ) for 0 < ε < 1/11. Thus it suffices to consider only case
(b). In this case (b) we infer with (14) for 0 < γ < 2ε/(2 + 3ε):

β · ρ13 · log ρ
ρ13−2γ · β5/3−γ/3 =

ρ2γ · log ρ
β2/3−γ/3 = O

(
(log n)1/3+γ/3

n2ε−3εγ−2γ

)
= o(1).(20)

Thus by (20) the upper bound (19) holds for 0 < ε < 1/11 and 0 < γ < 2ε/(2+3ε).

6.2. (2, 3)-cycles. Let us now consider the number s2,3(G) of (2, 3)-cycles in our
hypergraph G = (V, E4), that is, the number of pairs of tetrahedra in B3(ρ)∩Z3, both
with volume at most β, having exactly three vertices in common. As in the case of
(2, 2)-cycles, we distinguish three cases: (a) both tetrahedra are degenerate, (b) one
tetrahedron is degenerate and the other one is nondegenerate, and (c) both tetrahe-
dra are nondegenerate. The corresponding numbers of (2, 3)-cycles are denoted by
s2,3(G; dd), s2,3(G;nd), s2,3(G;nn), respectively. We consider only those configura-
tions where the three common points do not lie on a line, as care is taken of these
triples by the 3-element edges of the hypergraph G(β).

Case (a). Both tetrahedra are degenerate and have three vertices in common,
which do not lie on a line. Thus the two tetrahedra are contained in a unique residue
class L′ of a 2-maximal grid L in Z3 with L′∩B3(ρ) �= ∅, determined by some primitive
normal vector aL ∈ Z3 with ‖aL‖ = O(ρ2) by Theorem 3.19(i). By Theorem 3.19(iii)
the set L′ ∩ B3(ρ) contains O(ρ2/‖aL‖) points. We can choose the five vertices of

the two tetrahedra in O((ρ
2/‖aL‖

5 )) ways. By Theorem 3.19(ii), there are O(ρ · ‖aL‖)
residue classes of L intersecting B3(ρ) in a nonempty set; hence we have for these
pairs of tetrahedra the upper bound

s2,3(G; dd) = O




∑
a∈Z3

‖a‖=O(ρ2)

ρ · ‖a‖ ·
(
ρ2/‖a‖

5

)



= O


ρ11 ·

∑
a∈Z3

‖a‖=O(ρ2)

1

‖a‖4


 = O


ρ11 ·

O(ρ4)∑
d=1

r3(d)

d2


 = O(ρ11),(21)

since by Corollary 3.21 we have
∑n
d=1 r3(d)/d

2 = O(1).
Case (b). One tetrahedron is nondegenerate with volume at most β and the other

one is degenerate, and they have three vertices in common. By Theorem 5.1 there are
O(β ·ρ9) nondegenerate tetrahedra in B3(ρ)∩Z3 with volume at most β. Fix one of it
and choose three of its vertices, say p0, p1, p2, which are common to both tetrahedra.
Since the first tetrahedron is nondegenerate, the points p0, p1, p2 uniquely determine
a residue class L′ of a maximal grid L in Z3, and since the second tetrahedron is
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degenerate, the fourth point p′3 of the second degenerate tetrahedron is contained in
L′. With |L′∩B3(ρ)| = O(ρ2) there are O(ρ2) choices for the point p′3, and we obtain

s2,3(G; dn) = O(β · ρ9 · ρ2) = O(β · ρ11).(22)

Case (c). Both tetrahedra are nondegenerate, each with volume at most β, and
they have three vertices in common. Fix a 2-maximal grid L in Z3 with primitive
normal vector aL ∈ Z3, where ‖aL‖ = O(ρ2), and then fix a residue class L′ of L with
L′ ∩ B3(ρ) �= ∅. We count the pairs of nondegenerate tetrahedra S = {p0, p1, p2, p3}
and S′ = {p0, p1, p2, p′3} in B3(ρ) ∩ Z3 with p0, p1, p2 ∈ L′ and vol(S) ≤ β and
vol(S′) ≤ β.

The number of nondegenerate triangles in L′ ∩ B3(ρ) with area at most v is
O(v · ρ4/‖aL‖3) by Corollary 5.4. A fourth point of a tetrahedron from B3(ρ) ∩ Z3

with volume at most β can be chosen in O(β · ρ2/‖aL‖) ways.
On the other hand, the number of triangles in L′ ∩ B3(ρ) with area at least v is

O((ρ
2/‖aL‖

3 )), and a fourth point of a tetrahedron from B3(ρ) ∩ Z3 with maximum
volume β can be chosen in O(β · ρ2/v) ways.

Altogether, using v = v(aL) = ρ
2/3 · ‖aL‖2/3, the number of such pairs of tetra-

hedra is

O

(
v · ρ4
‖aL‖3 ·

(
β · ρ2
‖aL‖

)2

+
ρ6

‖aL‖3 ·
(
β · ρ2
v

)2
)

= O

(
v · β2 · ρ8
‖aL‖5 +

β2 · ρ10
v2 · ‖aL‖3

)
= O

(
β2 · ρ26/3
‖aL‖13/3

)
.

Summing over all grids L in Z3 with ‖aL‖ = O(ρ2) and over all O(ρ · ‖aL‖) residue
classes L′ of L with L′ ∩B3(ρ) �= ∅, we obtain by Corollary 3.21

s2,3(G;nn) = O




∑
a∈Z3

‖a‖=O(ρ2)

ρ · ‖a‖ · β
2 · ρ26/3
‖a‖13/3




= O


β2 · ρ29/3 ·

∑
a∈Z3

‖a‖=O(ρ2)

1

‖a‖10/3


 = O


β2 · ρ29/3 ·

O(ρ4)∑
d=1

r3(d)

d5/3




= O(β2 · ρ29/3).(23)

To satisfy the assumptions in Theorem 2.2, we must have, for some suitable
constant γ > 0, that

s2,3(G) = s2,3(G; dd) + s2,3(G; dn) + s2,3(G;nn) = O(ρ3 · t4−γ),(24)

where t = c1/3 · β1/3 · ρ2 by (9); i.e., using the estimates (21), (22), and (23), we need
for some γ > 0 the following:

ρ11 + β · ρ11 + β2 · ρ29/3 = O
(
ρ11−2γ · β4/3−γ/3

)
,

where β := ρ3 · log n/n3 and ρ = n1+ε with ε > 0.
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Since we have ρ11 = O(β · ρ11) and β2 · ρ29/3 = O(β · ρ11) for 0 < ε < 4/5, it
suffices to consider only case (b). For this case (b) with (22) and 0 < γ < ε/(2 + 3ε),
we have

s2,3(G; dn) = O
(
β · ρ11) = O

(
ρ11−2γ · β4/3−γ/3

)
,

since

β · ρ11
ρ11−2γ · β4/3−γ/3 =

ρ2γ

β1/3−γ/3 =
1

(log n)1/3−γ/3 · nε−3γε−2γ
= o(1).

For 0 < ε < 1/11 and 0 < γ < ε/(2 + 3ε), (24), (11), and (19) are satisfied; thus all
assumptions of Theorem 2.2 are fulfilled. Now we apply this theorem to our hyper-
graph G(β) = (V, E3 ∪ E4) with average degree t3 = O(β · ρ6) for the 4-element edges,
see (9), and we find in time polynomial in ρ = n1+ε and hence in n an independent
set in G(β) of size

Ω

( |V |
t
· (log t)1/3

)
= Ω

(
ρ3

β1/3 · ρ2 ·
(
log(β1/3 · ρ2)

)1/3
)

= Ω

(
ρ

(log n)1/3 · nε · (log n)
1/3

)
= Ω(n).

Thus we have found in polynomial time Ω(n) points in B3(ρ) ∩ Z3 such that the
volume of every tetrahedron is bigger than ρ3 · log n/n3. After rescaling and adapting
constant factors, we obtain n points in the unit cube [0, 1]3 such that the volume of
every tetrahedron is Ω(logn/n3).
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Abstract. More than a quarter of a century ago, the question of the complexity of determining
whether a given Boolean formula is minimal motivated Meyer and Stockmeyer to define the poly-
nomial hierarchy. This problem (in the standard formalized version—that of Garey and Johnson)
has been known for decades to be coNP-hard and in NPNP, and yet no one had even been able to
establish (many-one) NP-hardness. In this paper, we show that and more: The problem in fact is
(many-one) hard for parallel access to NP.

Key words. Boolean formula minimization, parallel access, computational complexity, polyno-
mial hierarchy, reductions
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1. Introduction. More than a quarter of a century ago, Meyer and Stockmeyer
defined the polynomial hierarchy [12]. They were led to this by looking at the language
Minimal: the set of those Boolean formulas for which there does not exist a shorter
equivalent formula. The best upper bound they could find for Minimal was an NP
machine with access to an NP oracle. Thus, the class Σp2 = NPNP was born, and the
rest of the polynomial hierarchy was defined analogously.

But what can one say about the complexity of Minimal? Is it Σp2-complete?
Nobody knows. In fact, no better upper bound than Σp2 is known, and until the
present paper no lower bounds were known. Similarly large gaps between upper and
lower bounds occur in other standard definitions of the minimization problem for
Boolean formulas. Typically, these problems are trivially in Σp2 and have trivial coNP
lower bounds, and nothing better was known until the present paper. In this paper we
study the complexity of these problems and prove much better lower bounds. Namely,
we establish hardness for parallel access to NP in those cases where coNP was the
best previously known lower bound, and we establish coNP-hardness for Minimal.

There exist different definitions for the minimization problem for Boolean formu-
las. We will look at the three classic definitions: the original Meyer and Stockmeyer
definition [12], the definition from Stockmeyer’s seminal polynomial hierarchy pa-
per [15], and the definition from Garey and Johnson [5].

1. Meyer and Stockmeyer [12]. Minimal: Given a formula φ, is it true that
there does not exist a formula equivalent to φ that is of smaller size than φ?

2. Garey and Johnson [5]. Minimum Equivalent Expression (MEE, for short):
Given a Boolean formula φ and a nonnegative integer k, is it true that there exists a
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Boolean formula of size at most k that is equivalent to φ?
3. Stockmeyer [15]. MEE restricted to formulas in DNF (disjunctive normal form)

(here and in the rest of the paper, restrictions also apply to the minimum equivalent
formula). This problem is called MIN in [15]; we will call it MEEDNF: Given a Boolean
formula φ in DNF and a nonnegative integer k, is it true that there exists a Boolean
formula in DNF of size at most k that is equivalent to φ?

In all these cases, Size(φ) is defined as the number of occurrences of propositional
variables in φ. Note that Size(true) = Size(false) = 0. Of course, Minimal and MEE

depend on the underlying language. We will look at Boolean formulas built from
propositional variables, the operators {↔,→,∧,∨,¬}, and the constants true and
false. However, we will show that our results are fairly robust in the sense that they
hold for any truth-functionally complete subset of {↔,→,∧,∨,¬, true, false}.

Before this paper, the only known results on the complexity of these problems
were as follows:

1. Trivial Σp2 upper bounds for MEE, MEEDNF, and Minimal: Given a formula φ
and integer k, guess a formula ψ of size at most k (guess a DNF formula for MEEDNF, and
guess ψ of size less than Size(φ) for Minimal), and verify that φ and ψ are equivalent.
Determining equivalence between two formulas is in coNP.

2. Trivial coNP lower bounds for MEE and MEEDNF, by a reduction from “tautology
for DNF formulas,” since φ in DNF is a tautology iff φ with all variables set to true
is true and φ has an equivalent formula of size 0.

Garey and Johnson [5] state that MEE is NP-hard, but by this they merely mean
NP-Turing-hard. In this paper, when we speak of hardness, we always mean many-
one-hardness.

The results of this paper are as follows:
1. Minimal is coNP-hard.
2. MEE and MEEDNF are hard for parallel access to NP.
3. Minimal restricted to positive formulas is coNP-hard.
4. MEE restricted to positive formulas is NP-hard.

Papadimitriou and Zachos [14] introduced and discussed a complexity class cap-
turing the power of parallel access to NP, denoted by PNP

|| : the class of problems
that can be solved by a P machine with access to an NP oracle with the restriction
that all the queries to the NP oracle are asked in parallel. Clearly, NP ∪ coNP ⊆
PNP
|| ⊆ PNP ⊆ NPNP. The class has been further studied in [7, 11, 18, 19, 9]. PNP

|| is

extremely robust. In particular, PNP
|| is the class of problems that can be solved in

polynomial time by O(log n) sequential Turing queries to NP [7].
The results of this paper should be contrasted with a recent result of Agrawal

and Thierauf [1], who showed that the Boolean Isomorphism problem, previously
only known to be coNP-hard and in Σp2, just like MEE, cannot be Σ

p
2-complete unless

the polynomial hierarchy collapses. (See [2] for related problems.) Their result draws
on recent work in learning theory [3]. However, our methods do not seem to apply to
their case, nor does their method seem to work in our case.

The rest of the paper is organized as follows. The next section proves that MEE
is NP-hard. It also shows that the same construction can be used to prove coNP-
hardness for Minimal. Section 3 shows how to use the NP-hardness reduction for MEE
in combination with a result of Wagner [18] to obtain the PNP

|| lower bound for MEE.
The last section describes how to adapt the proofs for MEE to MEEDNF.

2. MEE is NP-hard. In this section, we prove that MEE is NP-hard by a reduction
from Vertex Cover.
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Definition 2.1. Vertex Cover: Given a graph G = 〈V,E〉 and a positive integer
k, does G have a vertex cover of size ≤ k; i.e., does there exist a set W ⊆ V such
that ||W || ≤ k and, for all edges {v, w} ∈ E, {v, w} ∩W �= ∅?

In the next section, we will use the following properties of the reduction from
Vertex Cover to MEE to show that MEE is hard for parallel access to NP.

Theorem 2.2. There exists a polynomial-time computable function f such that
for all graphs G, f(G) is a Boolean formula, and for all positive integers k, G has a
vertex cover of size ≤ k iff f(G) has an equivalent formula of size ≤ k +m(1 + 2m),
where m is the number of edges in G.

Proof. Let G = 〈V,E〉 be a graph, and let k be a positive integer. Let ||V || = n
and ||E|| = m. Without loss of generality, we assume that V = {1, . . . , n}, that G
has no isolated vertices, and that k < n.

We will use the following n+2m2 propositional variables in the formula φ = f(G):
• a variable pi for every vertex i ∈ V , and
• a set Qe of 2m propositional variables for every edge e ∈ E.

Define f(G) = φ as follows:

φ =
∨

{i,j}∈E


pi ∧ pj ∧

∧
q∈Q{i,j}

q


 .

The formula φ contains all the information about graph G. We will show that G
has a vertex cover of size ≤ k iff φ has an equivalent formula of size ≤ k+m(1+2m).
Since f is clearly computable in polynomial time, this will prove Theorem 2.2.

For the left-to-right direction, suppose that {�1, . . . , �k} is a vertex cover of G.
Then for every edge {i, j} ∈ E, {i, j} ∩ {�1, . . . , �k} �= ∅. Thus, we can partition the
set of edges E into k disjoint sets E1, E2, . . . , Ek such that, for all 1 ≤ i ≤ k, e ∈ Ei
implies that �i ∈ e. (In general, it will not be the case that every edge incident with
�i will belong to Ei, because the Ei’s form a partition.)

Consider the following formula:

φ′ =
k∨
i=1


p
i ∧

∨

{
i,j}∈Ei


pj ∧

∧
q∈Q{�i,j}

q




 .

It is easy to see that φ′ and φ are equivalent. In addition, Size(φ′) = k +
Σki=1(||Ei|| · (1 + 2m)) = k + (Σki=1||Ei||) · (1 + 2m). Since the Ei’s form a parti-
tion of E, Size(φ′) = k +m(1 + 2m).

This completes the proof of the left-to-right direction. It remains to show that if
φ has an equivalent formula of size ≤ k +m(1 + 2m), then G has a vertex cover of
size ≤ k. We will first prove the following lemma, which will make the formula easier
to handle.

In the remainder of the proof, let φ be the formula defined above. For each e ∈ E,
let qe be a new propositional variable. Define φ̂ as follows:

φ̂ =
∨

{i,j}∈E
(pi ∧ pj ∧ q{i,j}).

Lemma 2.3. If 〈φ, k +m(1 + 2m)〉 ∈ MEE, then φ̂ has an equivalent formula ψ̂

such that Size(ψ̂) ≤ k + 2m and every qe occurs exactly once in ψ̂.
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Proof. Let ψ be a formula such that Size(ψ) ≤ k+m(1+2m) and ψ is equivalent
to φ. First note that all variables in φ occur at least once in ψ. Thus, there are
exactly n+ 2m2 different variables in ψ.

Also note that for every edge e ∈ E, there exists a variable in Qe that occurs
exactly once in ψ. To see this, suppose for a contradiction that there exists some
set Qe such that all the variables of Qe occur at least twice in ψ. Then Size(ψ) ≥
n+m · 2m+ 2m > k +m(1 + 2m).

For every e ∈ E, let q̂e ∈ Qe occur exactly once in ψ. Let ψ̂ be the formula that
results from ψ when we set every variable in

⋃
e∈E Qe\{q̂e} to true and replace q̂e by qe.

ψ̂ is equivalent to φ̂, and Size(ψ̂) ≤ Size(ψ)−m(2m−1) ≤ k+m(1+2m)−m(2m−1) =
k + 2m, and every qe occurs exactly once in ψ̂.

For the remainder of the proof of Theorem 2.2, let φ̂ be as defined before Lemma
2.3, let ψ̂ be equivalent to φ̂, and for all e ∈ E, let qe occur exactly once in ψ̂. To
finish the proof of Theorem 2.2, we will show that if G does not have a vertex cover
of size k, then Size(ψ̂) > k + 2m.

We will view ψ̂ as a binary tree. The nodes of the tree are labeled by operators,
propositional variables, true, and false. We will freely identify node X in the tree
with the formula represented by the subtree rooted at X. We adopt the convention
that every node is an ancestor of itself.

Lemma 2.4. Let e, f ∈ E, let i ∈ e, i �∈ f , and in the tree representing ψ̂,
• let X be the least common ancestor of the node labeled qe and the node labeled
qf ,

• let Xe be the child of X that is an ancestor of the node labeled qe, and
• let Xf be the child of X that is an ancestor of the node labeled qf .

Then pi occurs in Xe.
Proof. Since qe and qf occur only once in ψ̂, and since X and Xe (X and Xf ) are

on the path from the root to qe (qf ), we have the following fact, which will be used
repeatedly in the proof of Lemma 2.4.

Fact 2.5. If the value of qe(qf ) is changed and this change causes the value of

ψ̂ to change, then the values of X and Xe (X and Xf ) change as well.
Let e = {i, j}, and let f = {r, s}. We will allow freedom only in the assignments

to propositional variables qe, qf , and pi, and we will fix the assignments to all other
variables in such a way that the following formula α is satisfied:

α = pj ∧ pr ∧ ps ∧
∧

p�∈{qe,qf ,pi,pj ,pr,ps}
¬p.

To prove Lemma 2.4, it is sufficient to consider only two cases, namely, that X is
labeled ∧ and that X is labeled ↔. This is true since the connectives ∨ and →
may be replaced by ∧ and ¬ without an increase in the size of the formula (since
(p ∨ q)↔ ¬(¬p ∧ ¬q) and (p→ q)↔ ¬(p ∧ ¬q)).

Case 1: X is labeled ∧. Consider what happens to Xe, Xf , X, and ψ̂ for the

assignment that satisfies ¬qe ∧ ¬qf ∧ pi ∧ α. Note that ¬ψ̂ holds, and note that we
have four different possibilities for the values of Xe, Xf , and X, since X iff Xe ∧Xf .

Case 1.1: ¬qe ∧¬qf ∧ pi ∧α→ ¬Xe ∧¬Xf ∧¬X ∧¬ψ̂. Applying Fact 2.5, we get

qe ∧ ¬qf ∧ pi ∧ α→ Xe ∧ ¬Xf ∧X ∧ ψ̂,

which contradicts the fact that X iff Xe ∧Xf .
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Case 1.2: ¬qe ∧ ¬qf ∧ pi ∧ α→ Xe ∧ ¬Xf ∧ ¬X ∧ ¬ψ̂. Applying Fact 2.5, we get

qe ∧ ¬qf ∧ pi ∧ α→ ¬Xe ∧ ¬Xf ∧X ∧ ψ̂,

which contradicts the fact that X iff Xe ∧Xf .
Case 1.3: ¬qe ∧ ¬qf ∧ pi ∧ α→ ¬Xe ∧Xf ∧ ¬X ∧ ¬ψ̂. Applying Fact 2.5, we get

¬qe ∧ qf ∧ pi ∧ α→ ¬Xe ∧ ¬Xf ∧X ∧ ψ̂,

which contradicts the fact that X iff Xe ∧Xf .
Case 1.4: The only remaining case is ¬qe ∧ ¬qf ∧ pi ∧ α → Xe ∧Xf ∧X ∧ ¬ψ̂.

Applying Fact 2.5, we get

qe ∧ ¬qf ∧ pi ∧ α→ ¬Xe ∧Xf ∧ ¬X ∧ ψ̂.

For a contradiction, assume that pi does not occur in Xe. Then we get

qe ∧ ¬qf ∧ ¬pi ∧ α→ ¬Xe ∧ ¬X ∧ ¬ψ̂.

The first term on the right-hand side is justified by the assumption that pi does not
occur in Xe, and ¬X follows from ¬Xe. Making use of Fact 2.5, we get

qe ∧ qf ∧ ¬pi ∧ α→ ¬Xe ∧X ∧ ψ̂,

which contradicts the fact that X iff Xe ∧Xf .
Case 2: X is labeled↔. Again, we will consider what happens for the assignment

that satisfies ¬qe ∧ ¬qf ∧ pi ∧ α. We will write

¬qe ∧ ¬qf ∧ pi ∧ α→ X∗e ∧X∗f ∧X∗ ∧ ¬ψ̂,(1)

where X∗ ∈ {X,¬X}, X∗e ∈ {Xe,¬Xe}, and X∗f ∈ {Xf ,¬Xf}. Since X is labeled
↔, we know that

X∗ is true iff X∗e ↔ X∗f is true.(2)

Applying Fact 2.5, we get

qe ∧ ¬qf ∧ pi ∧ α→ ¬X∗e ∧X∗f ∧ ¬X∗ ∧ ψ̂.(3)

For a contradiction, assume that pi does not occur in Xe. Then we get from (3) that

qe ∧ ¬qf ∧ ¬pi ∧ α→ ¬X∗e ∧X+
f ∧X+ ∧ ¬ψ̂.(4)

The first term on the right-hand side is justified by (3) and the assumption that pi
does not occur in Xe. Since we do not know if pi influences Xf or X, we cautiously
write X+

f and X+, where X+ ∈ {X,¬X} and X+
f ∈ {Xf ,¬Xf}.

Making use of Fact 2.5, we get

qe ∧ qf ∧ ¬pi ∧ α→ ¬X∗e ∧ ¬X+
f ∧ ¬X+ ∧ ψ̂.(5)

Case 2.1: X+ = X∗ and X+
f = X∗f . From (4) we get X∗ is true and X∗f is true,

but X∗e is false. This contradicts (2).
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Case 2.2: X+ = ¬X∗ and X+
f = ¬X∗f . From (5) we get X∗ is true and X∗f is

true, but X∗e is false. This contradicts (2).
The remaining two cases need more work.
Case 2.3: X+ = X∗ and X+

f = ¬X∗f . We summarize the statements valid in this
case.

¬qe ∧ ¬qf ∧ pi ∧ α→ X∗e ∧X∗f ∧X∗ ∧ ¬ψ̂(1)

qe ∧ ¬qf ∧ pi ∧ α→ ¬X∗e ∧X∗f ∧ ¬X∗ ∧ ψ̂(3)

qe ∧ ¬qf ∧ ¬pi ∧ α→ ¬X∗e ∧ ¬X∗f ∧X∗∧¬ψ̂(4)

qe ∧ qf ∧ ¬pi ∧ α→ ¬X∗e ∧X∗f ∧ ¬X∗ ∧ ψ̂(5)

Comparing (3) and (4), we see that both Xf and X depend on pi. Since qe does not
have any influence on the dependency of Xf on pi, we get the following from (1) by
switching pi to ¬pi.

¬qe ∧ ¬qf ∧ ¬pi ∧ α→ X∗e ∧ ¬X∗f ∧ ¬X∗ ∧ ¬ψ̂.(6)

The reason for X∗e occurring on the right-hand side is that pi does not occur in Xe.

¬X∗ follows from (2), which always has to be satisfied. It is clear that ¬ψ̂ occurs

because the assignment that satisfies the left-hand side of (6) falsifies ψ̂.

If α = true, the value of ψ̂ depends only on the values of X and pi. However,
because of (5), X∗ and pi are false and ψ̂ is true, but because of (6), X∗ and pi are
false and ψ̂ is false. This is a contradiction.

Case 2.4: X+ = ¬X∗ and X+
f = X∗f . This case is treated in the same way as

Case 2.3.
This completes the proof of Lemma 2.4
Lemma 2.6. Let X be an internal node in ψ̂, and let Y be a child of X. If

⋂
{{i, j} | q{i,j} occurs in X} = ∅,

then for all {i, j} ∈ E, if q{i,j} occurs in Y , then so do pi and pj.
Proof. Suppose q{i,j} occurs in Y . We will show that pi occurs in Y . Because

⋂
{{i, j} | q{i,j} occurs in X} = ∅,

there exists an edge f ∈ E such that qf occurs in X, and i �∈ f .
Let Z be the least common ancestor of the nodes labeled q{i,j} and qf , and let

Z{i,j} be the child of Z that is an ancestor of the node labeled q{i,j}. By Lemma 2.4,
pi occurs in Z{i,j}. It remains to show that Y is an ancestor of Z{i,j}. This is simple:
Since there is only one node labeled q{i,j}, X, Y , Z, and Z{i,j} all lie on the unique
path from the root to the node labeled q{i,j}. In addition, X is an ancestor of the
node labeled qf and is therefore an ancestor of Z. It follows that Y is an ancestor of
Z{i,j}.

To finish the proof of Theorem 2.2, suppose that G does not have a vertex cover
of size k. We need to show that Size(ψ̂) > k + 2m.

Let Y1, Y2, . . . , Yr be all nodes in ψ̂ such that, for all 1 ≤ � ≤ r,
• ⋂{{i, j} | q{i,j} occurs in Y
} �= ∅, and
• if X is a proper ancestor of Y
, then

⋂{{i, j} | q{i,j} occurs in X} = ∅.
The following hold:
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• For every e ∈ E, the node labeled qe has exactly one Y
 as ancestor,
• r > k (because the Y
’s induce a vertex cover of size r), and
• if q{i,j} occurs in Y
, then so do pi and pj by Lemma 2.6.

It follows that

Size(ψ̂) ≥ m+
∑

1≤
≤r

∣∣∣
∣∣∣
⋃
{{pi, pj} | q{i,j} occurs in Y
}

∣∣∣
∣∣∣

≥ m+
∑

1≤
≤r
(||{qe | qe occurs in Y
}||+ 1)

= m+m+ r

> 2m+ k.

This completes the proof of Theorem 2.2.
We conclude this section by using Theorem 2.2 to show that Minimal is coNP-

hard.
Theorem 2.7. Minimal is coNP-hard.
Proof. We will reduce the complement of Vertex Cover to Minimal. Let G =

〈V,E〉 be a graph, and let k be a positive integer. Let ||V || = n, k < n, let W be a
set of n− k − 1 new vertices, and define G′ = 〈V ∪W,E ∪ (V ×W )〉.

The vertex covers for G′ are exactly those sets of vertices that either contain V
or are of the form W ∪ V̂ , where V̂ is a vertex cover for G. It follows that G does not
have a vertex cover of size ≤ k iff all vertex covers for G′ have size at least n, and the
latter is true iff V is a vertex cover of minimum size for G′.

Applying Theorem 2.2, this holds iff the minimum size of a formula equivalent to
f(G′) is n+m(1 + 2m), where m is the number of edges in G′.

Writing {1, . . . , n} for V and {n+1, . . . , 2n−k− 1} for W , f(G′) is the following
formula:

∨

{i,j}∈E∪(V×W )


pi ∧ pj ∧

∧
q∈Q{i,j}

q


 ,

where for each edge e, Qe consists of 2m new variables. Since V is clearly a vertex
cover for G′, the following formula φ′ is equivalent to f(G′):

φ′ =
n∨
i=1


pi ∧

∨

{i,j}∈E,i<j


pj ∧

∧
q∈Q{i,j}

q




 .

Note that Size(φ′) = n+m(1+2m). It follows that G = 〈V,E〉 does not have a vertex
cover of size ≤ k iff φ′ ∈ Minimal.

Since the reductions to MEE and Minimal construct formulas that use only ∧ and
∨, and since the minimum size formulas (i.e., φ′) in both constructions in this section
also use only ∧ and ∨, it is immediate that the results go through if we restrict the
problems to positive formulas.

Corollary 2.8. MEE restricted to positive formulas is NP-hard, and Minimal

restricted to positive formulas is coNP-hard.
Also note that formulas over {∨,∧} can in polynomial time be transformed into

formulas over any truth-functionally complete subset of {↔,→,∧,∨,¬, true, false}
without an increase in size. This immediately gives the following corollary.
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Corollary 2.9. For any truth-functionally complete subset of {↔,→,∧,∨,¬,
true, false}, MEE restricted to formulas over this subset is NP-hard, and Minimal re-
stricted to formulas over this subset is coNP-hard.

3. MEE is PNP
|| -hard. In this section, we will prove the following theorem.

Theorem 3.1. MEE is PNP
|| -hard.

Proof. We will use the following theorem from Wagner [18].
Theorem 3.2 (Wagner [18]). Let D be an NP-hard set, and let A be an arbitrary

set. If there exists a polynomial-time computable function h such that1

||{i | xi ∈ D}|| is odd ⇔ h(x1, . . . , x2k) ∈ A
for all k ≥ 1 and x1, x2, . . . , x2k ∈ Σ∗ with χD(x1) ≥ χD(x2) ≥ · · · ≥ χD(x2k), then
A is PNP

|| -hard.
2 (χD is the characteristic function of D.)

Thus, in our case it suffices to construct a polynomial-time computable function
h such that

||{i | φi ∈ SAT}|| is odd ⇔ h(φ1, . . . , φ2k) ∈ MEE

for all k ≥ 1 and conjunctive normal form (CNF) formulas φ1, φ2, . . . , φ2k with φi+1 ∈
SAT⇒ φi ∈ SAT for all i < 2k.

Before we can attempt to construct h, we have to look carefully at the properties
of the NP-hardness reduction to MEE. We introduce the following shorthand for the
minimum size of a formula equivalent to φ.

Definition 3.3. Minsize(φ) = min{Size(ψ) | ψ equivalent to φ}.
Lemma 3.4. There exists a reduction g from SAT to MEE such that, for all CNF

formulas φ, g(φ) = 〈ψ, k〉, where ψ is a Boolean formula, k is a positive integer, and
• ¬ψ ∈ SAT,
• φ ∈ SAT⇒ Minsize(ψ) = k, and
• φ �∈ SAT⇒ Minsize(ψ) = k + 1.

Proof. We may assume (see Papadimitriou and Yannakakis [13]) that there exists
a polynomial-time computable function g′ such that, for all CNF formulas φ, g′(φ) =
〈G, k〉, where G is a graph, k is a positive integer, and

• if φ ∈ SAT, then the size of a minimum vertex cover of G is k, and
• if φ �∈ SAT, then the size of a minimum vertex cover of G is k + 1.

Let f be the function from Theorem 2.2. Then, for all graphs G, f(G) is a Boolean
formula, and for all k, G has a vertex cover of size ≤ k iff f(G) has an equivalent
formula of size ≤ k +m(1 + 2m), where m is the number of edges in G.

It is immediate that, for all graphs G and for all k, the size of a minimum vertex
cover of G is k iff Minsize(f(G)) = k +m(1 + 2m), where m is the number of edges
in G. In addition, since k ≥ 1, Minsize(f(G)) ≥ 1, and thus f(G) is not equivalent
to true or false. Hence, both f(G),¬f(G) ∈ SAT. Now define g(φ) as follows:

g(φ) = 〈f(G), k +m(1 + 2m)〉, where 〈G, k〉 = g′(φ).
In our proof of Theorem 3.1, we will use the following well-known fact.
Fact 3.5. If φ and ψ are disjoint (i.e., the sets of propositional variables that

occur in φ and ψ are disjoint), then

1Since h is a variable-arity function, we mean that h’s running time is polynomial in 2k+ |x1|+
|x2|+ · · ·+ |x2k|; see [8] for a discussion on why we have to be careful here.

2In fact, Wagner actually proves hardness for PNP
bf
, but that class is now known to be equivalent

to PNP|| .
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1. Minsize(φ ∧ ψ) = Minsize(φ) +Minsize(ψ) if φ ∈ SAT and ψ ∈ SAT,
2. Minsize(φ ∧ ψ) = 0 if φ �∈ SAT or ψ �∈ SAT,
3. Minsize(φ ∨ ψ) = Minsize(φ) +Minsize(ψ) if ¬φ ∈ SAT and ¬ψ ∈ SAT,
4. Minsize(φ ∨ ψ) = 0 if ¬φ �∈ SAT or ¬ψ �∈ SAT.

Now we are ready to prove Theorem 3.1. Let k ≥ 1, and let φ1, φ2, . . . , φ2k

be CNF formulas such that φi+1 ∈ SAT ⇒ φi ∈ SAT for all i < 2k. We have
to construct a polynomial-time computable function h such that ||{i | φi ∈ SAT}||
is odd iff h(φ1, . . . , φ2k) ∈ MEE. Note that, for all m, ||{i | φi ∈ SAT}|| = m iff
φ1, φ2, . . . , φm ∈ SAT and φm+1, . . . , φ2k �∈ SAT. Therefore,

• if ||{i | φi ∈ SAT}|| is even, then ∀i (φ2i−1 ∈ SAT iff φ2i ∈ SAT), and
• if ||{i | φi ∈ SAT}|| is odd, then ∃i [(φ2i−1 ∈ SAT and φ2i �∈ SAT) and ∀j �= i
(φ2j−1 ∈ SAT iff φ2j ∈ SAT)].

Let g be the reduction from Lemma 3.4. For all i, let g(φ2i−1) = 〈ψ2i−1, ki〉. Then
ki ≥ 1 and

• ¬ψ2i−1 ∈ SAT,
• Minsize(ψ2i−1) = ki if φ2i−1 ∈ SAT, and
• Minsize(ψ2i−1) = ki + 1 if φ2i−1 �∈ SAT.

Define m = Σki=1Size(φ2i) + 1.
In order to apply Fact 3.5, we will need to make all formulas disjoint. We will

also need a number of disjoint copies of the same formula. Without loss of generality,
suppose that, for all i, every propositional variable in φ2i and ψ2i−1 is of the form p

for some �. The propositional variables in our new formulas will be of the form q
,i,j ,
r
,i,j , and wi,j .

• For all i, we need m disjoint copies of ψ2i−1. For 1 ≤ j ≤ m, let ψ2i−1,j be
a copy of ψ2i−1 with every occurrence of a propositional variable p
 replaced
by q
,i,j .

• For all i, let φ′′2i be a copy of φ2i with every occurrence of a propositional
variable p
 replaced by r
,i,j , and let

φ′2i = φ
′′
2i ∧ wi,1 ∧ wi,2 ∧ · · · ∧ wi,m.

Since all these formulas are disjoint, and ¬ψ2i−1 ∈ SAT, we obtain the following by
applying Fact 3.5:

• Minsize(∨mj=1 ψ2i−1,j) = mki if φ2i−1 ∈ SAT,
• Minsize(∨mj=1 ψ2i−1,j) = mki +m if φ2i−1 �∈ SAT,
• Minsize(φ′2i) = 0 if φ2i �∈ SAT, and
• m ≤ Minsize(φ′2i) ≤ m+ Size(φ2i) if φ2i ∈ SAT.

For 1 ≤ i ≤ k, define

ξi =

m∨
j=1

ψ2i−1,j ∨ φ′2i.

Note that ¬∨mj=1 ψ2i−1,j ∈ SAT and ¬φ′2i ∈ SAT. This implies by Fact 3.5 that

Minsize(ξi) = Minsize




m∨
j=1

ψ2i−1,j


+Minsize(φ′2i).

It follows that, for all i,
• Minsize(ξi) = mki if φ2i−1 ∈ SAT and φ2i �∈ SAT, and
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• mki+m ≤ Minsize(ξi) ≤ mki+m+Size(φ2i) if (φ2i−1 ∈ SAT iff φ2i ∈ SAT).
Now we define the reduction

h(φ1, φ2, . . . , φ2k) =

〈
k∨
i=1

ξi,mΣ
k
i=1ki + km− 1

〉
.

Clearly, h is computable in polynomial time. Note that, for all i, ¬ξi ∈ SAT. Thus,
Minsize(

∨k
i=1 ξi) = Σki=1Minsize(ξi).

We need to show that ||{i | φi ∈ SAT}|| is odd iff h(φ1, . . . , φ2k) ∈ MEE.
(⇐) Suppose that h(φ1, φ2, . . . , φ2k) ∈ MEE, and suppose for a contradiction that

||{i |φi ∈ SAT}|| is even. Then ∀i (φ2i−1 ∈ SAT iff φ2i ∈ SAT). It follows that,
for all i,Minsize(ξi) ≥ mki+m. And thus,Minsize(

∨k
i=1 ξi) ≥ mΣki=1ki+km.

But that contradicts the assumption that h(φ1, φ2, . . . , φ2k) ∈ MEE.
(⇒) Suppose ||{i | φi ∈ SAT}|| is odd. Let i be such that (φ2i−1 ∈ SAT and φ2i �∈

SAT) and ∀j �= i (φ2j−1 ∈ SAT iff φ2j ∈ SAT). It follows that Minsize(ξi) =
mki and that, for all j �= i, Minsize(ξj) ≤ mkj +m+ Size(φ2j). Thus,

Minsize




k∨
j=1

ξj




≤ mki +Σj �=i(mkj +m+ Size(φ2j))

≤ mΣkj=1kj +m(k − 1) + Σkj=1Size(φ2j)

≤ mΣkj=1kj +m(k − 1) +m− 1

= mΣkj=1kj + km− 1.

It follows that h(φ1, φ2, . . . , φ2k) ∈ MEE.

Careful inspection of the construction shows that ifMinsize(
∨k
i=1 ξi) ≤ mΣki=1ki+

km − 1, then this is witnessed by a formula over {∧,∨,¬}. Such a formula can in
polynomial time be transformed into an equivalent formula over any truth-functionally
complete subset of {↔,→,∧,∨,¬, true, false} without an increase in size.

Corollary 3.6. For any truth-functionally complete subset of {↔,→,∧,∨,¬,
true, false}, MEE restricted to formulas over this subset is PNP

|| -hard.

4. The Complexity of MEEDNF. In this section, we investigate the complexity
of MEE restricted to formulas in DNF. Note that we cannot use the reduction from
Theorem 2.2 to show that MEEDNF is NP-hard, since the equivalent formula of minimum
size (φ′) is definitely not in DNF.

In 1965, predating NP and NP-completeness, Gimpel [4] reduced the general set
covering problem to the prime implicant covering problem. As pointed out in Garey
and Johnson [5], this implicitly gives a reduction from the NP-complete problem
Minimum Cover to Minimum Disjunctive Normal Form, a problem that is closely
related to MEEDNF. A very careful inspection of the reduction implicit in [4] shows that
this reduction establishes the NP-hardness of MEEDNF. (The NP-hardness of MEEDNF
also follows from Hammer and Kogan’s result that MEE restricted to Horn CNFs is
NP-complete [6].)

Just as in the case for MEE, we can combine the properties of the NP-hardness
reduction with Wagner’s Theorem 3.2 to obtain a PNP

|| lower bound.

Theorem 4.1. MEEDNF is P
NP
|| -hard.

After our results appeared in [10], Umans showed that MEEDNF is complete for
Σp2 [16], and that MEEDNF is Σ

p
2-hard to approximate to within an n

ε factor [17]. Hence,
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we will not include the proof of Theorem 4.1 here. However, our proof can be found
in [10].
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